WorldWideScience

Sample records for two-dimensional periodic arrays

  1. Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.

    Science.gov (United States)

    Dallapiccola, Ramona; Gopinath, Ashwin; Stellacci, Francesco; Dal Negro, Luca

    2008-04-14

    In this paper we investigate for the first time the near-field optical behavior of two-dimensional Fibonacci plasmonic lattices fabricated by electron-beam lithography on transparent quartz substrates. In particular, by performing near-field optical microscopy measurements and three dimensional Finite Difference Time Domain simulations we demonstrate that near-field coupling of nanoparticle dimers in Fibonacci arrays results in a quasi-periodic lattice of localized nanoparticle plasmons. The possibility to accurately predict the spatial distribution of enhanced localized plasmon modes in quasi-periodic Fibonacci arrays can have a significant impact for the design and fabrication of novel nano-plasmonics devices.

  2. Elastic Wave Scattering by Two-Dimensional Periodical Array of Cylinders

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism, we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.

  3. Crystallization studies on phase-change optical recording media by use of a two-dimensional periodic mark array.

    Science.gov (United States)

    Xun, X; Erwin, J K; Bletscher, W; Choi, J; Kallenbach, S; Mansuripur, M

    2001-12-10

    We present the results of crystallization studies in thin-film samples of amorphous and crystalline Ge(x)Sb(y)Te(z). The experiments, conducted at moderately elevated temperatures, are based on measurements of the first-order diffraction efficiency from a two-dimensional periodic array of recorded marks. When the samples are slowly heated above room temperature, changes in the efficiencies of various diffracted orders give information about the on-going crystallization process within the sample. Two different compositions of the GeSbTe alloy are used in these experiments. Measurements on Ge(2)Sb(2.3)Te(5) films show crystallization dominated by nucleation. For the Sb-rich eutectic composition Ge-(SbTe), crystallization is found to be dominated by growth from crystalline boundaries. We also show that crystalline marks written by relatively high-power laser pulses are different in their optical properties from the regions crystallized by slow heating of the sample to moderate temperatures.

  4. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  5. THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.

  6. Defect Characterization Using Two-Dimensional Arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2011-06-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. In this paper a quantitative comparison of 2D arrays with different element layouts is performed. A technique for extracting the scattering matrix of a defect from the raw 2D array data is also presented. The method is tested on experimental data for characterization of various volumetric defects.

  7. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Two-dimensional random arrays for real time volumetric imaging

    DEFF Research Database (Denmark)

    Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.

    1994-01-01

    Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...

  9. Self-Organized Two-Dimensional Vidro-Nanodot Array on Laser-Irradiated Si Surface

    Science.gov (United States)

    Yoshida, Yutaka; Sakaguchi, Norihito; Watanabe, Seiichi; Kato, Takahiko

    2011-05-01

    We report a periodic two-dimensional (2D) array of uniquely shaped dotlike nanoprotrusions (NPs), which simultaneously self-organize on a Si surface under pulsed laser irradiation. The shape of the dotlike NPs can be controlled by adjusting the number of laser pulses. The flask-shaped dotlike NP array is named a vidro-nanodot (VND) array. We present a detailed analysis of the internal structure of VND using high-resolution electron microscopy.

  10. Topological Quantum Optics in Two-Dimensional Atomic Arrays

    Science.gov (United States)

    Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.

    2017-07-01

    We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.

  11. Soliton nanoantennas in two-dimensional arrays of quantum dots

    CERN Document Server

    Gligorić, G; Hadžievski, Lj; Slepyan, G Ya; Malomed, B A

    2015-01-01

    We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schr\\"{o}dinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D \\textit{% soliton-based nano-antenna}, which should be stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.

  12. Tilted Two-Dimensional Array Multifocus Confocal Raman Microspectroscopy.

    Science.gov (United States)

    Yabumoto, Sohshi; Hamaguchi, Hiro-O

    2017-07-18

    A simple and efficient two-dimensional multifocus confocal Raman microspectroscopy featuring the tilted-array technique is demonstrated. Raman scattering from a 4 × 4 square foci array passing through a 4 × 4 confocal pinhole array is tilted with a periscope. The tilted array of Raman scattering signals is dispersed by an imaging spectrograph onto a CCD detector, giving 16 independent Raman spectra formed as 16 bands with different heights on the sensor. Use of a state-of-the-art imaging spectrograph enables high-precision wavenumber duplicability of the 16 spectra. This high duplicability makes the simultaneously obtained spectra endurable for multivariate spectral analyses, which is demonstrated by a singular value decomposition analysis for Raman spectra of liquid indene. Although the present implementation attains only 16 measurement points, the number of points can be extended to larger than 100 without any technical leaps. Limit of parallelization depends on the interval of measurement points as well as the performance of the optical system. Criteria for finding the maximum feasible number are discussed.

  13. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel

    2014-09-16

    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  14. Strategies for Ultrasound Imaging Using Two-Dimensional Arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.

    2010-02-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. This has clear benefits as real defects and engineering structures are three-dimensional. This paper describes different approaches to optimize 2D array design. Results are shown that illustrate the application of the proposed techniques to modeling and experimental data.

  15. Plasmon spectra in two-dimensional nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Z H; Fava, D; Kumacheva, E [Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6 (Canada); Ruda, H E; Shik, A [Centre for Advanced Nanotechnology, University of Toronto, Toronto, Ontario, M5S 3E4 (Canada)

    2009-07-22

    For various types of ensembles of metal nanorods, the frequencies of longitudinal and transverse plasmons were calculated and correlations between the plasmon frequency shifts and the topology of nanorod arrays were found. The theoretical predictions were compared with the experimentally determined optical absorption in arrays of polymer-terminated Au nanorods obtained by self-assembly in selective solvents.

  16. Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites

    CERN Document Server

    Li Xiao Ling; Hu He Fei; Zhong Shao; Liu You Yan

    2003-01-01

    Effects of orientations of square rods on the acoustic band gaps in two-dimensional periodic arrays of rigid solid rods embedded in air are studied. The acoustic band gaps will be opened and enlarged greatly by increasing the rotation angle. For any filling fraction F, the maximum acoustic band gaps appear at the same rotation angle theta = 45 deg. for the cases of F<=0.50, otherwise they will appear at different limit values theta sub c and the largest band gap is achieved at a filling fraction of about F=0.85. This gap-tuning effect will be stronger with increase in filling fraction. This tuning mechanism of band gap suggests a new way to design band gaps of two-dimensional phononic crystals. (rapid communication)

  17. Two-dimensional pixel array image sensor for protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Beche, J.-F.; Cork, C. [and others

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  18. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  19. Modulating two-dimensional non-close-packed colloidal crystal arrays by deformable soft lithography.

    Science.gov (United States)

    Li, Xiao; Wang, Tieqiang; Zhang, Junhu; Yan, Xin; Zhang, Xuemin; Zhu, Difu; Li, Wei; Zhang, Xun; Yang, Bai

    2010-02-16

    We report a simple method to fabricate two-dimensional (2D) periodic non-close-packed (ncp) arrays of colloidal microspheres with controllable lattice spacing, lattice structure, and pattern arrangement. This method combines soft lithography technique with controlled deformation of polydimethylsiloxane (PDMS) elastomer to convert 2D hexagonal close-packed (hcp) silica microsphere arrays into ncp ones. Self-assembled 2D hcp microsphere arrays were transferred onto the surface of PDMS stamps using the lift-up technique, and then their lattice spacing and lattice structure could be adjusted by solvent swelling or mechanical stretching of the PDMS stamps. Followed by a modified microcontact printing (microcp) technique, the as-prepared 2D ncp microsphere arrays were transferred onto a flat substrate coated with a thin film of poly(vinyl alcohol) (PVA). After removing the PVA film by calcination, the ncp arrays that fell on the substrate without being disturbed could be lifted up, deformed, and transferred again by another PDMS stamp; therefore, the lattice feature could be changed step by step. Combining isotropic solvent swelling and anisotropic mechanical stretching, it is possible to change hcp colloidal arrays into full dimensional ncp ones in all five 2D Bravais lattices. This deformable soft lithography-based lift-up process can also generate patterned ncp arrays of colloidal crystals, including one-dimensional (1D) microsphere arrays with designed structures. This method affords opportunities and spaces for fabrication of novel and complex structures of 1D and 2D ncp colloidal crystal arrays, and these as-prepared structures can be used as molds for colloidal lithography or prototype models for optical materials.

  20. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    Science.gov (United States)

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-10-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of `water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour.

  1. Efficient processing of two-dimensional arrays with C or C++

    Science.gov (United States)

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  2. Simulation of vortex motion in underdamped two-dimensional arrays of Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Bobbert, P.A. (Department of Applied Physics, Delft University of Technology, Lorentweg 1, 2628 CJ Delft (Netherlands) Department of Physics and Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States))

    1992-04-01

    We report numerical simulations of classical vortex motion in two-dimensional arrays of underdamped Josephson junctions. A very efficient algorithm was developed, using a piecewise linear approximation for the Josephson current. We find no indication for ballistic motion, in square arrays nor in triangular arrays. Instead, in the limit of very low damping, there appears to be an effective viscosity due to excitation of the lattice behind the moving vortex.

  3. Two-dimensional array of nanoparticles intermitted by long chain molecules

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is an important theme in nanoscience to control the interval of the ordered array of nanoparticles through modifying the chain length of the passivating molecules of the nanoparticles. The theme runs through most of the applications of the ordered array of nanoparticles. Though the Langmuir-Blodgett (LB) technique is one of the most important ways to prepare the two- dimensional ordered array of nanoparticles, it has only been used in case that the passivating molecules are short enough (array of the particles simply by compressing them on the surface of water. The present work focused on the formation of the two-dimensional array of the octadecyl- amine-passivated gold nanoparticles at the air/water interface. By properly modifying the ordinary LB technique, the long-term two-dimensional ordered array of nanoparticles was successfully achieved. The surface pressure-area isotherms and the electron microscopy observation showed that the key to preparing the two-dimensional ordered arrangement of nanoparticles is to overcome the interaction among the passivant shells.

  4. Non-Hermitian engineering of single mode two dimensional laser arrays

    CERN Document Server

    Teimourpour, Mohammad H; Christodoulides, Demetrios N; El-Ganainy, Ramy

    2016-01-01

    A new scheme for building two dimensional laser arrays that operate in the single supermode regime is proposed. This is done by introducing an optical coupling between the laser array and a lossy pseudo-isospectral chain of photonic resonators. The spectrum of this discrete reservoir is tailored to suppress all the supermodes of the main array except the fundamental one. This spectral engineering is facilitated by employing the Householder transformation in conjunction with discrete supersymmetry. The proposed scheme is general and can in principle be used in different platforms such as VCSEL arrays and photonic crystal laser arrays.

  5. LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Pan, Wei; Reno, John Louis; Wendt, Joel Robert; Barton, Daniel Lee

    2008-09-01

    We have investigated the physics of Bloch oscillations (BO) of electrons, engineered in high mobility quantum wells patterned into lateral periodic arrays of nanostructures, i.e. two-dimensional (2D) quantum dot superlattices (QDSLs). A BO occurs when an electron moves out of the Brillouin zone (BZ) in response to a DC electric field, passing back into the BZ on the opposite side. This results in quantum oscillations of the electron--i.e., a high frequency AC current in response to a DC voltage. Thus, engineering a BO will yield continuously electrically tunable high-frequency sources (and detectors) for sensor applications, and be a physics tour-de-force. More than a decade ago, Bloch oscillation (BO) was observed in a quantum well superlattice (QWSL) in short-pulse optical experiments. However, its potential as electrically biased high frequency source and detector so far has not been realized. This is partially due to fast damping of BO in QWSLs. In this project, we have investigated the possibility of improving the stability of BO by fabricating lateral superlattices of periodic coupled nanostructures, such as metal grid, quantum (anti)dots arrays, in high quality GaAs/Al{sub x}Ga{sub 1-x}As heterostructures. In these nanostructures, the lateral quantum confinement has been shown theoretically to suppress the optical-phonon scattering, believed to be the main mechanism for fast damping of BO in QWSLs. Over the last three years, we have made great progress toward demonstrating Bloch oscillations in QDSLs. In the first two years of this project, we studied the negative differential conductance and the Bloch radiation induced edge-magnetoplasmon resonance. Recently, in collaboration with Prof. Kono's group at Rice University, we investigated the time-domain THz magneto-spectroscopy measurements in QDSLs and two-dimensional electron systems. A surprising DC electrical field induced THz phase flip was observed. More measurements are planned to investigate this

  6. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays

    Science.gov (United States)

    Barredo, Daniel; de Léséleuc, Sylvain; Lienhard, Vincent; Lahaye, Thierry; Browaeys, Antoine

    2016-11-01

    Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, deterministic loading of the traps is experimentally challenging. We demonstrate the preparation of fully loaded two-dimensional arrays of up to ~50 microtraps, each containing a single atom and arranged in arbitrary geometries. Starting from initially larger, half-filled matrices of randomly loaded traps, we obtain user-defined target arrays at unit filling. This is achieved with a real-time control system and a moving optical tweezers, which together enable a sequence of rapid atom moves depending on the initial distribution of the atoms in the arrays. These results open exciting prospects for quantum engineering with neutral atoms in tunable two-dimensional geometries.

  7. Scalable loading of a two-dimensional trapped-ion array

    Science.gov (United States)

    Bruzewicz, Colin D.; McConnell, Robert; Chiaverini, John; Sage, Jeremy M.

    2016-09-01

    Two-dimensional arrays of trapped-ion qubits are attractive platforms for scalable quantum information processing. Sufficiently rapid reloading capable of sustaining a large array, however, remains a significant challenge. Here with the use of a continuous flux of pre-cooled neutral atoms from a remotely located source, we achieve fast loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive two-dimensional arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.

  8. Two-Dimensional DOA Estimation for Uniform Rectangular Array Using Reduced-Dimension Propagator Method

    Directory of Open Access Journals (Sweden)

    Ming Zhou

    2015-01-01

    Full Text Available A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM. The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.

  9. Performance of Thomas-Fermi and linear response approaches in periodic two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Calderin, L; Stott, M J [Department of Physics, Queen' s University, Kingston, Ontario, K7 L 3N6 (Canada)], E-mail: calderin@physics.queensu.ca, E-mail: stott@mjs.phy.queensu.ca

    2010-04-16

    A study of the performance of Thomas-Fermi and linear response theories in the case of a two-dimensional periodic model system is presented. The calculated density distribution and total energy per unit cell compare very well with exact results except when there is a small number of particles per cell, even though the potential has narrow tight-binding bands. The results supplement earlier findings of Koivisto and Stott for a localized impurity in a two-dimensional uniform gas.

  10. Comment on "Thermal propagation in two-dimensional Josephson junction arrays"

    OpenAIRE

    De Leo, Cinzia

    2009-01-01

    In a recent paper, Filatrella et al. [Phys. Rev. B 75, 54510 (2007)] report results of numerical calculations of energy barriers for flux quanta propagation in two-dimensional arrays of Josephson junctions with finite self and mutual inductances. To avoid complex numerical calculations, they use an approximated inductance model to address the effects of the mutual couplings. Using a full inductance matrix model, we show that this approximated model cannot be used to calculate the energy barri...

  11. Two-dimensional gold nanoparticle arrays. A platform for molecular optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Markus Andreas

    2011-11-15

    In my research, I study the optoelectronic properties of two-dimensional, hexagonal gold nanoparticle arrays formed by self-assembly. When the nanoparticle arrays are embedded in a matrix of alkane thiols, the photoresponse is dominated by a bolometric conductance increase. At room temperature, I observe a strong enhancement of the bolometric photoconductance when the surface plasmon resonance of the nanoparticles is excited. At cryogenic temperatures, the bolometric conductance enhancement leads to a redistribution of the potential landscape which dominates the optoelectronic response of the nanoparticle arrays. When optically active oligo(phenylene vinylene) (OPV) molecules are covalently bound to the nanoparticles, an increased photoconductance due to the resonant excitation of the OPV is observed. The results suggest that the charge carriers, which are resonantly excited in the OPV molecules, directly contribute to the current flow through the nanoparticle arrays. Thus, the conductance of OPV in its excited state is measured in the presented experiments. (orig.)

  12. Micro-LED arrays: a tool for two-dimensional neuron stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Poher, V; Kennedy, G T; French, P M W; Neil, M A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Grossman, N; Nikolic, K; Drakakis, E M; Degenaar, P [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Zhang, H X; Gong, Z; Gu, E; Dawson, M D [Institute of Photonics, University of Strathclyde, 106 Rottenrow, Glasgow G4 0NW (United Kingdom)], E-mail: vincent.poher@imperial.ac.uk

    2008-05-07

    Stimulating neuron cells with light is an exciting new technology that is revolutionizing the neurosciences. To date, due to the optical complexity that is involved, photostimulation has only been achieved at a single site using high power light sources. Here we present a GaN based micro-light emitting diode (LED) array that can open the way to multi-site photostimulation of neuron cells. The device is a two-dimensional array of micrometre size LED emitters. Each emitter has the required wavelength, optical power and modulation bandwidth to trigger almost any photosensitizer and is individually addressable. We demonstrate micrometre resolution photoactivation of a caged fluorophore and photostimulation of sensitized living neuron cells. In addition, a complete system that combines the micro-LED array with multi-site electrophysiological recording based on microelectrode array technology and/or fluorescence imaging is presented.

  13. Two-dimensional Josephson junction arrays coupled through a high-Q cavity

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2001-01-01

    the cavity. The highly resonant cavity induces synchronized behavior, which is qualitatively different than what is familiar from other studies on nonlinear oscillator arrays, for example the Kuramoto model. We also address the effects of disorder, as well as the role of detuning between the spontaneous...... emission frequency of the junctions and the cavity resonant frequency. We show with a simple argument that we can predict the scaling behavior of disorder with the size of the array. The consequences for the design of microwave oscillators in the Gigahertz region are discussed......The problem of disordered two-dimensional arrays of underdamped Josephson junctions is addressed. Our simulations show that when coupled to a high-Q cavity, the array exhibits synchronized behavior, and the power emitted can be considerably increased once enough junctions are activated to pump...

  14. Cooperative resonances in light scattering from two-dimensional atomic arrays

    CERN Document Server

    Shahmoon, Ephraim; Lukin, Mikhail D; Yelin, Susanne F

    2016-01-01

    We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate that such arrays can operate as nearly perfect mirrors for a wide range of incident angles and frequencies close to the individual atomic resonance. These results can be understood in terms of the cooperative resonances of the surface modes supported by the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and nanomechanics.

  15. Progress in two-dimensional arrays for real-time volumetric imaging.

    Science.gov (United States)

    Light, E D; Davidsen, R E; Fiering, J O; Hruschka, T A; Smith, S W

    1998-01-01

    The design, fabrication, and evaluation of two dimensional array transducers for real-time volumetric imaging are described. The transducers we have previously described operated at frequencies below 3 MHz and were unwieldy to the operator because of the interconnect schemes used in connecting to the transducer handle. Several new transducers have been developed using new connection technology. A 40 x 40 = 1,600 element, 3.5 MHz array was fabricated with 256 transmit and 256 receive elements. A 60 x 60 = 3,600 element 5.0 MHz array was constructed with 248 transmit and 256 receive elements. An 80 x 80 = 6,400 element, 2.5 MHz array was fabricated with 256 transmit and 208receive elements. 2-D transducer arrays were also developed for volumetric scanning in an intra cardiac catheter, a 10 x 10 = 100 element 5.0 MHz forward-looking array and an 11 x 13 = 143 element 5.0 MHz side-scanning array. The-6dB fractional bandwidths for the different arrays varied from 50% to 63%, and the 50 omega insertion loss for all the transducers was about-64 dB. The transducers were used to generate real-time volumetric images in phantoms and in vivo using the Duke University real time volumetric imaging system, which is capable of generating multiple planes at any desired angle and depth within the pyramidal volume.

  16. Two dimensional thermo-optic beam steering using a silicon photonic optical phased array

    Science.gov (United States)

    Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.

    2016-03-01

    Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.

  17. Freely configurable quantum simulator based on a two-dimensional array of individually trapped ions

    CERN Document Server

    Mielenz, Manuel; Wittemer, Matthias; Hakelberg, Frederick; Schmied, Roman; Blain, Matthew; Maunz, Peter; Leibfried, Dietrich; Warring, Ulrich; Schaetz, Tobias

    2015-01-01

    A custom-built and precisely controlled quantum system may offer access to a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analog quantum simulator that makes the relevant observables, interactions, and states of a quantum model accessible could permit experimental insight into complex quantum dynamics that are intractable on conventional computers. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here we characterise two-dimensional arrays of three ions trapped by radio-frequency fields in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 micrometer. In our approach, which is scalable to arbitrary two dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as tuning of crucial couplings be...

  18. Hybrid simulation of whistler excitation by electron beams in two-dimensional non-periodic domains

    Energy Technology Data Exchange (ETDEWEB)

    Woodroffe, J.R., E-mail: woodrofj@erau.edu; Streltsov, A.V., E-mail: streltsa@erau.edu

    2014-11-01

    We present a two-dimensional hybrid fluid-PIC scheme for the simulation of whistler wave excitation by relativistic electron beams. This scheme includes a number of features which are novel to simulations of this type, including non-periodic boundary conditions and fresh particle injection. Results from our model suggest that non-periodicity of the simulation domain results in the development of fundamentally different wave characteristics than are observed in periodic domains.

  19. Photonic Band Gap Structures with Periodically Arranged Atoms in a Two-Dimensional Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Yu; CHEN Fang; ZHOU Jian-Ying

    2005-01-01

    @@ Linear transmission, reflection and absorption spectra for a new two-dimensional photonic crystal with periodically arranged resonant atoms are examined. Numerical results show that a twin-gap structure with forbidden bands displaced from a non-doped bandgap structure can be produced as a result of atomic polarization. The absorption spectrum is also significantly altered compared to the single atom entity.

  20. Novel two-dimensional DOA estimation with L-shaped array

    Science.gov (United States)

    Xiaofei, Zhang; Jianfeng, Li; Lingyun, Xu

    2011-12-01

    Two-dimensional (2D) direction-of-arrival (DOA) estimation has played an important role in array signal processing. In this article, we address a problem of bind 2D-DOA estimation with L-shaped array. This article links the 2D-DOA estimation problem to the trilinear model. To exploit this link, we derive a trilinear decomposition-based 2D-DOA estimation algorithm in L-shaped array. Without spectral peak searching and pairing, the proposed algorithm employs well. Moreover, our algorithm has much better 2D-DOA estimation performance than the estimation of signal parameters via rotational invariance technique algorithms and propagator method. Simulation results illustrate validity of the algorithm.

  1. Novel two-dimensional DOA estimation with L-shaped array

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhang

    2011-01-01

    Full Text Available Abstract Two-dimensional (2D direction-of-arrival (DOA estimation has played an important role in array signal processing. In this article, we address a problem of bind 2D-DOA estimation with L-shaped array. This article links the 2D-DOA estimation problem to the trilinear model. To exploit this link, we derive a trilinear decomposition-based 2D-DOA estimation algorithm in L-shaped array. Without spectral peak searching and pairing, the proposed algorithm employs well. Moreover, our algorithm has much better 2D-DOA estimation performance than the estimation of signal parameters via rotational invariance technique algorithms and propagator method. Simulation results illustrate validity of the algorithm.

  2. Correlated rotational switching in two-dimensional self-assembled molecular rotor arrays

    Science.gov (United States)

    Wasio, Natalie A.; Slough, Diana P.; Smith, Zachary C.; Ivimey, Christopher J.; Thomas, Samuel W., III; Lin, Yu-Shan; Sykes, E. Charles H.

    2017-07-01

    Molecular devices are capable of performing a number of functions from mechanical motion to simple computation. Their utility is somewhat limited, however, by difficulties associated with coupling them with either each other or with interfaces such as electrodes. Self-assembly of coupled molecular devices provides an option for the construction of larger entities that can more easily integrate with existing technologies. Here we demonstrate that ordered organometallic arrays can be formed spontaneously by reaction of precursor molecular rotor molecules with a metal surface. Scanning tunnelling microscopy enables individual rotors in the arrays to be switched and the resultant switches in neighbouring rotors imaged. The structure and dimensions of the ordered molecular rotor arrays dictate the correlated switching properties of the internal submolecular rotor units. Our results indicate that self-assembly of two-dimensional rotor crystals produces systems with correlated dynamics that would not have been predicted a priori.

  3. Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors.

    Science.gov (United States)

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-01-20

    Acousto-optic deflectors are photonic devices that are used for scanning high-power laser beams in advanced microprocessing applications such as marking and direct writing. The operation of conventional deflectors mostly relies on one-dimensional sinusoidal variation of the refractive index in an acousto-optic medium. Sometimes static phased array transducers, such as step configuration or planar configuration transducer architecture, are used to tilt the index modulation planes for achieving higher performance and higher resolution than a single transducer AO device. However, the index can be modulated in two dimensions, and the modulation plane can be tilted arbitrarily by creating dynamic phase gratings in the medium using phased array transducers. This type of dynamic two-dimensional acousto-optic deflector can provide better performance using, for example, a large deflection angle and high diffraction efficiency. This paper utilizes an ultrasonic beam steering approach to study the two-dimensional strain-induced index modulation due to the photoelastic effect. The modulation is numerically simulated, and the effects of various parameters, such as the operating radiofrequency of the transducers, the ultrasonic beam steering angle, and different combinations of pressure on each element of the transducer array, are demonstrated.

  4. Optical matrix for clock distribution and synchronous operation in two-dimensional array devices

    Science.gov (United States)

    Lee, K. S.; Shu, C.

    1996-06-01

    A scheme to generate an optical matrix from a mode-locked Nd:YAG laser has been theoretically explored and experimentally demonstrated. The matrix consists of highly synchronized and sequentially delayed optical pulses suitable for use with two-dimensional array optoelectronic devices and clock distribution system. The output pulses have the same state of polarization and no timing jitter is produced among the elements. Encoded outputs have been generated from the matrix using a set of photomasks. This technique can be applied to high-speed optical parallel processing.

  5. Design and Fabrication of a Two-Dimensional Superconducting Pop-up Bolometer Array

    Science.gov (United States)

    Benford, Dominic J.; Staguhn, Johannes G.; Chervenak, James A.; Allen, Christine A.; Moseley, S. Harvey; Irwin, Kent D.; Stacey, Gordon J.; Page, Lyman A.

    2004-01-01

    We have been developing an architecture for producing large format, two dimensional arrays of close-packed bolometers, which will enable submillimeter cameras and spectrometers to obtain images and spectra orders of magnitude faster than present instruments. The low backgrounds achieved in these instruments require very sensitive detectors with NEPs of order 5 x 10(exp -18) W/square root of Hz. Superconducting transition edge sensor bolometers can be close-packed using the Pop-up Detector (PUD) format, and SQUID multiplexers operating at the detector base temperature can be intimately coupled to them. The array unit cell is 8 x 32 pixels, using 32- element detector and multiplexer components. We have fabricated an engineering model array with this technology which features a very compact, modular approach for large format arrays. We report on the production of the 32-element components for the arrays. Planned instruments using this array architecture include the Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory, the South Pole Imaging Fabry-Perot Interferometer (SPIFI) for the AST/RO observatory, the Millimeter Bolometer Camera for the Atacama Cosmology Telescope (MBC/ACT), and the Redshift (Z) Early Universe Spectrometer (ZEUS j.

  6. Scalable Loading of a Two-Dimensional Trapped-Ion Array

    CERN Document Server

    Bruzewicz, C D; Chiaverini, J; Sage, J M

    2015-01-01

    We describe rapid, random-access loading of a two-dimensional (2D) surface-electrode ion-trap array based on two crossed photo-ionization laser beams. With the use of a continuous flux of pre-cooled neutral atoms from a remotely-located source, we achieve loading of a single ion per site while maintaining long trap lifetimes and without disturbing the coherence of an ion quantum bit in an adjacent site. This demonstration satisfies all major criteria necessary for loading and reloading extensive 2D arrays, as will be required for large-scale quantum information processing. Moreover, the already high loading rate can be increased by loading ions in parallel with only a concomitant increase in photo-ionization laser power and no need for additional atomic flux.

  7. Spectral locking in an extended area two-dimensional coherent grating surface emitting laser array

    Energy Technology Data Exchange (ETDEWEB)

    DeFreez, R.K.; Ximen, H.; Bossert, D.J.; Hunt, J.M.; Wilson, G.A.; Elliott, R.A.; Orloff, J. (Dept. of Applied Physics and Electrical Engineering, Oregon Graduate Center, Beaverton, OR (US)); Evans, G.A.; Carlson, N.W.; Lurie, M. (David Sarnoff Research Center, Princeton, NJ (US))

    1990-01-01

    The spectral properties of a monolithic pair of two-dimensional coherent grating surface emitting laser arrays optically coupled by means of total-internal-reflection (TIR) corner turning mirrors have been studied. Each of the pair consists of six groups of ten laterally {ital Y}-coupled, index-guided ridge lasers interspersed with second-order DBR grating sections in the longitudinal direction to provide feedback and surface emitting output coupling. The turning mirrors were formed by focused-ion-beam micromachining channels in the wafer angled at 45{degrees} to the laser waveguide. Locking of the emission spectra of the pair of GSE arrays and shifting of the spectrum of one of the pair by varying the drive current to one gain section in the other is demonstrated.

  8. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance.

    Science.gov (United States)

    Arjomandy, Bijan; Sahoo, Narayan; Ding, Xiaoning; Gillin, Michael

    2008-09-01

    Two-dimensional ion chamber arrays are primarily used for conventional and intensity modulated radiotherapy quality assurance. There is no commercial device of such type available on the market that is offered for proton therapy quality assurance. We have investigated suitability of the MatriXX, a commercial two-dimensional ion chamber array detector for proton therapy QA. This device is designed to be used for photon and electron therapy QA. The device is equipped with 32 x 32 parallel plate ion chambers, each with 4.5 mm diam and 7.62 mm center-to-center separation. A 250 MeV proton beam was used to calibrate the dose measured by this device. The water equivalent thickness of the buildup material was determined to be 3.9 mm using a 160 MeV proton beam. Proton beams of different energies were used to measure the reproducibility of dose output and to evaluate the consistency in the beam flatness and symmetry measured by MatriXX. The output measurement results were compared with the clinical commissioning beam data that were obtained using a 0.6 cc Farmer chamber. The agreement was consistently found to be within 1%. The profiles were compared with film dosimetry and also with ion chamber data in water with an excellent agreement. The device is found to be well suited for quality assurance of proton therapy beams. It provides fast two-dimensional dose distribution information in real time with the accuracy comparable to that of ion chamber measurements and film dosimetry.

  9. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array

    Directory of Open Access Journals (Sweden)

    Liang Hao

    2016-06-01

    Full Text Available In this study, we investigate the estimation of the Two-Dimensional (2D Direction Of Arrival (DOA in monostatic multiple-input–multiple-output radar with cross array and propose a novel, highly accurate DOA estimation method based on unitary transformation. First, we design a new unitary matrix using the central symmetry of a cross array at transmit and receive sites. Then, the rotational invariance relationships of these arrays with long and short baselines can be transformed into a real-value field via unitary transformation. In addition, non-ambiguous and highly accurate 2D DOA estimations can be obtained using a unitary dual-resolution ESPRIT algorithm. Simulations show that the proposed method can estimate 2D highly accurate spatial angles using automatic pairing without incurring the expense of array aperture and peak searching. Compared with traditional unitary transformation, the steering vectors of transmit and receive arrays can be transformed into real-value fields via the unitary matrix and the transformation method of our scheme, respectively. This effectively overcomes the problem of shift invariance factors in real-value fields that cannot be extracted using traditional algorithms. Therefore, the proposed method can absolutely compute eigenvalue decomposition and estimate parameters in a real-value field, resulting in lower computational complexity compared with traditional methods. Simulation results verify both the correctness of our theoretical analysis and the effectiveness of the proposed algorithm.

  10. Periodic, quasiperiodic, and chaotic breathers in two-dimensional discrete β-Fermi-Pasta-Ulam lattice

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2013-01-01

    Using numerical method,we investigate whether periodic,quasiperiodic,and chaotic breathers are supported by the two-dimensional discrete Fermi-Pasta-Ulam (FPU) lattice with linear dispersion term.The spatial profile and time evolution of the two-dimensional discrete β-FPU lattice are segregated by the method of separation of variables,and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system.By introducing a periodic interaction into the linear interaction between the atoms,we achieve the coupling of two incommensurate frequencies for a single DB,and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system,too.

  11. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  12. Enhancement transmission filter using a two-dimensional subwavelength periodic membrane

    Science.gov (United States)

    Zhou, Jianyu; Sang, Tian; Li, Junlang; Wang, Rui; Wang, La; Gao, Jian

    2017-06-01

    Enhancement transmission filter using a two-dimensional (2-D) subwavelength periodic membrane is proposed. It can be found that strong refractive-index modulation of the silicon periodic membrane can support the excitation of multiple guided-mode resonances (GMRs) in a reflection band, and every GMR relates a transmission peak on its edge, therefore the overlapping of the edges of these resonances can be tailored to create enhancement transmission. Thelocation of the transmission peak is shifted linearly with a slop of 1.51 as the period is varied. Enhancement transmission with multiple channels near 1310 nm can also be achieved using the interaction of the nondegenerate GMRs at oblique incidence.

  13. Water-channel study of flow and turbulence past a two-dimensional array of obstacles

    CERN Document Server

    Di Bernardino, Annalisa; Leuzzi, Giovanni; Querzoli, Giorgio

    2016-01-01

    A neutral boundary layer was generated in the laboratory to analyze the mean velocity field and the turbulence field within and above an array of two-dimensional obstacles simulating an urban canopy. Different geometrical configurations were considered in order to investigate the main characteristics of the flow as a function of the aspect ratio (AR) of the canopy. To this end, a summary of the two-dimensional fields of the fundamental turbulence parameters is given for AR ranging from 1 to 2. The results show that the flow field depends strongly on AR only within the canyon, while the outer flow seems to be less sensitive to this parameter. This is not true for the vertical momentum flux, which is one of the parameters most affected by AR, both within and outside the canyon. The experiments also indicate that, when (i.e. the skimming flow regime), the roughness sub-layer extends up to a height equal to 1.25 times the height of the obstacles (H), surmounted by an inertial sub-layer that extends up to 2.7 H. I...

  14. Magnetic field induced phase branches of the superconducting transition in two-dimensional square Π-loop arrays

    Institute of Scientific and Technical Information of China (English)

    Liu Dang-Ting; Tian Ye; Chen Geng-Hua; Yang Qian-Sheng

    2008-01-01

    Based on the results of explicit forms of free energy density for each possible arrangement of magnetization fluxes in large-scale two-dimensional (2D) square Π-loop arrays given by Li et al [2007 Chin.Phys.16 1450],the field-cooled superconducting phase transition is further investigated by analysing the free energy of the arrays with a simplified symmetrical model.Our analytical result is exactly the same as that obtained in Li's paper by means of numerical calculations.It is shown that the phase transition splits into two branches with either ferromagnetic or anti-ferromagnetic flux ordering,which depends periodically on the strength of external magnetic flux φe through each loop and monotonically on the screen parameter β of the loops in the arrays.In principle,the diagram of the phase branches is similar to that of its one-dimensional counterpart.The influence of thermal fluctuation on the flux ordering during the transition from normal to superconducting states of the Π-loop arrays is also discussed.

  15. Fourier solution of two-dimensional Navier Stokes equation with periodic boundary conditions and incompressible flow

    CERN Document Server

    Kuiper, Logan K

    2016-01-01

    An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.

  16. Topological Invariants of Edge States for Periodic Two-Dimensional Models

    Energy Technology Data Exchange (ETDEWEB)

    Avila, Julio Cesar; Schulz-Baldes, Hermann, E-mail: schuba@mi.uni-erlangen.de; Villegas-Blas, Carlos [Instituto de Matematicas, UNAM (Mexico)

    2013-06-15

    Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z{sub 2} -invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.

  17. Topological invariants of edge states for periodic two-dimensional models

    CERN Document Server

    Avila, Julio Cesar; Villegas-Blas, Carlos

    2012-01-01

    Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z_2-invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.

  18. Investigation of polarization-selective InGaAs sensor with elliptical two-dimensional holes array structure

    Science.gov (United States)

    Wang, Wenbo; Fu, Dong; Hu, Xiaobin; Xu, Yun; Song, Guofeng; Wei, Xin

    2016-10-01

    Polarimetric imaging in infrared wavelengths have attracted more and more attention for broad applications in meteorological observations, medicine, remote sensing and many other fields. Metal metamaterial structures are used in nanophotonics in order to localize and enhance the incident electromagnetic field. Here we develop an elliptical gold Two-Dimensional Holes Array (2DHA) in which photons can be manipulated by surface plasmon resonance, and the ellipse introduce the asymmetry to realize a polarization selective function. Strong polarization dependence is observed in the simulated transmission spectra. To further understand the coupling mechanism between gold holes array and InP, the different parameters of the 2DHA are analyzed. It is shown that the polarization axis is perpendicular to the major axis of the ellipse, and the degree of polarization is determined by the aspect ratio of the ellipse. Furthermore, the resonance frequency of the 2DHA shows a linear dependence on the array period, the bandwidth of transmission spectra closely related to duty cycle of the ellipse in each period. This result will establish a basis for the development of innovative polarization selective infrared sensor.

  19. The Two-dimensional ElectromagneticScattering from Periodic Chiral Structures and Its Finite Element Approximation

    Institute of Scientific and Technical Information of China (English)

    张德悦; 马富明

    2004-01-01

    In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.

  20. Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride

    Science.gov (United States)

    da Silva, Carlos; Saiz, Fernan; Romero, David A.; Amon, Cristina H.

    2016-03-01

    Promoting coherent transport of phonons at material interfaces is a promising strategy for controlling thermal transport in nanostructures and an alternative to traditional methods based on structural defects. Coherent transport is particularly relevant in short-period heterostructures with smooth interfaces and long-wavelength heat-carrying phonons, such as two-dimensional superlattices of graphene and boron nitride. In this work, we predict phonon properties and thermal conductivities in these superlattices using a normal mode decomposition approach. We study the variation of the frequency dependence of these properties with the periodicity and interface configuration (zigzag and armchair) for superlattices with period lengths within the coherent regime. Our results showed that the thermal conductivity decreases significantly from the first period length (0.44 nm) to the second period length (0.87 nm), 13% across the interfaces and 16% along the interfaces. For greater periods, the conductivity across the interfaces continues decreasing at a smaller rate of 11 W/mK per period length increase (0.43 nm), driven by changes in the phonon group velocities (coherent effects). In contrast, the conductivity along the interfaces slightly recovers at a rate of 2 W/mK per period, driven by changes in the phonon relaxation times (diffusive effects). By changing the interface configuration from armchair to zigzag, the conductivities for all period lengths increase by approximately 7% across the interfaces and 19% along the interfaces.

  1. Effect of a Two-Dimensional Periodic Dielectric Background on Complete Photonic Band Gap in Complex Square Lattices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; SHI Jun-Jie

    2008-01-01

    A two-dimensional photonic crystal model with a periodic square dielectric background is proposed.The photonic band modulation effects due to the two-dimensional periodic background are investigated jn detail.It is found that periodic modulation of the dielectric background greatly alters photonic band structures,especially for the Epolarization modes.The number,width and position of the photonic band gaps sensitively depend on the dielectric constants of the two-dimensional periodic background.Complete band gaps are found,and the dependence of the widths of these gaps on the structural and material parameters of the two alternating rods/holes is studied.

  2. Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces

    Science.gov (United States)

    Sikdar, Debabrata; Kornyshev, Alexei A.

    2016-01-01

    Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from ‘top–down’ patterning or ‘bottom–up’ self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system’s optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel ‘metamaterials’, optimised for light reflection or harvesting. PMID:27652788

  3. Thin catheter bending in the direction perpendicular to ultrasound propagation using two-dimensional array transducer

    Science.gov (United States)

    Suzuki, Toshiya; Mochizuki, Takashi; Ushimizu, Hidetaka; Miyazawa, Shinya; Tsurui, Nobuhiro; Masuda, Kohji

    2017-07-01

    Although we have already experimented on the bending of a thin catheter with acoustic radiation force using a single transducer, it is necessary to develop a method of bending a catheter in an arbitrary direction because the installation position of ultrasound transducers on a body surface is limited for application to various shapes of in vivo blood vessels. Therefore, we examined the bending of a thin catheter in the direction perpendicular to ultrasound propagation using a two-dimensional array transducer (1 MHz), which realizes not only the temporospatial design but also the dynamic variation of acoustic fields. Forming two focal points with opposite phases, where the amplitudes of the two points instantaneously have the positive and negative relationship, we confirmed the bending of a thin catheter in the direction perpendicular to ultrasound propagation. We used a thin catheter (diameter, 200 µm length, 50 mm) to obtain the maximum displacement of 220 µm, where the displacement was proportional to the square of the maximum sound pressure and the duty ratio. From these results, the acoustic energy densities observed in front of and behind the catheter are dominant for the bending of the thin catheter independent of ultrasound propagation. We also found that the distance between two focal points may improve the bending performance without requiring a precise position setting.

  4. Direct-referencing Two-dimensional-array Digital Microfluidics Using Multi-layer Printed Circuit Board

    Science.gov (United States)

    Gong, Jian; Kim, Chang-Jin “CJ”

    2008-01-01

    Digital (i.e. droplet-based) microfluidics, by the electrowetting-on-dielectric (EWOD) mechanism, has shown great potential for a wide range of applications, such as lab-on-a-chip. While most reported EWOD chips use a series of electrode pads essentially in one-dimensional line pattern designed for specific tasks, the desired universal chips allowing user-reconfigurable paths would require the electrode pads in two-dimensional pattern. However, to electrically access the electrode pads independently, conductive lines need to be fabricated underneath the pads in multiple layers, raising a cost issue especially for disposable chip applications. In this article, we report the building of digital microfluidic plates based on a printed-circuit-board (PCB), in which multilayer electrical access lines were created inexpensively using mature PCB technology. However, due to its surface topography and roughness and resulting high resistance against droplet movement, as-fabricated PCB surfaces require unacceptably high (~500 V) voltages unless coated with or immersed in oil. Our goal is EWOD operations of aqueous droplets not only on oil-covered but also on dry surfaces. To meet varying levels of performances, three types of gradually complex post-PCB microfabrication processes are developed and evaluated. By introducing land-grid-array (LGA) sockets in the packaging, a scalable digital microfluidics system with reconfigurable and low-cost chip is also demonstrated. PMID:19234613

  5. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  6. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models.

    Science.gov (United States)

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-30

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.

  7. Electrically tunable two-dimensional holographic polymer-dispersed liquid crystal grating with variable period

    Science.gov (United States)

    Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin

    2017-06-01

    An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.

  8. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512

    Energy Technology Data Exchange (ETDEWEB)

    Aldosari, A. H.; Petasecca, M., E-mail: marcop@uow.edu.au; Espinoza, A.; Newall, M.; Fuduli, I.; Porumb, C.; Alshaikh, S.; Alrowaili, Z. A.; Weaver, M.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500 (Australia); Carolan, M. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia and Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500 (Australia); Perevertaylo, V. [SPA-BIT, KIEV 02232 (Ukraine)

    2014-09-15

    Purpose: Silicon diode arrays are commonly implemented in radiation therapy quality assurance applications as they have a number of advantages including: real time operation (compared to the film) and high spatial resolution, large dynamic range and small size (compared to ionizing chambers). Most diode arrays have detector pitch that is too coarse for routine use in small field applications. The goal of this work is to characterize the two-dimensional monolithic silicon diode array named “MagicPlate-512” (MP512) designed for QA in stereotactic body radiation therapy (SBRT) and stereotactic radio surgery (SRS). Methods: MP512 is a silicon monolithic detector manufactured on ap-type substrate. An array contains of 512 pixels with size 0.5 × 0.5 mm{sup 2} and pitch 2 mm with an overall dimension of 52 × 52 mm{sup 2}. The MP512 monolithic detector is wire bonded on a printed circuit board 0.5 mm thick and covered by a thin layer of raisin to preserve the silicon detector from moisture and chemical contamination and to protect the bonding wires. Characterization of the silicon monolithic diode array response was performed, and included pixels response uniformity, dose linearity, percent depth dose, output factor, and beam profiling for beam sizes relevant to SBRT and SRS and depth dose response in comparison with ionization chamber. Results: MP512 shows a good dose linearity (R{sup 2} = 0.998) and repeatability within 0.2%. The measured depth dose response for field size of 10 × 10 cm{sup 2} agreed to within 1.3%, when compared to a CC13 ionization chamber for depths in PMMA up to 30 cm. The output factor of a 6 MV Varian 2100EX medical linac beam measured by MP512 at the isocenter agrees to within 2% when compared to PTW diamond, Scanditronix point EDD-2 diode and MOSkin detectors for field sizes down to 1 × 1 cm{sup 2}. An over response of 4% was observed for square beam size smaller than 1 cm when compared to EBT3 films, while the beam profiles (FWHM) of MP

  9. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map

    Science.gov (United States)

    Akaishi, A.; Shudo, A.

    2009-12-01

    We investigate the stickiness of the two-dimensional piecewise linear map with a family of marginal unstable periodic orbits (FMUPOs), and show that a series of unstable periodic orbits accumulating to FMUPOs plays a significant role to give rise to the power law correlation of trajectories. We can explicitly specify the sticky zone in which unstable periodic orbits whose stability increases algebraically exist, and find that there exists a hierarchy in accumulating periodic orbits. In particular, the periodic orbits with linearly increasing stability play the role of fundamental cycles as in the hyperbolic systems, which allows us to apply the method of cycle expansion. We also study the recurrence time distribution, especially discussing the position and size of the recurrence region. Following the definition adopted in one-dimensional maps, we show that the recurrence time distribution has an exponential part in the short time regime and an asymptotic power law part. The analysis on the crossover time Tc∗ between these two regimes implies Tc∗˜-log[μ(R)] where μ(R) denotes the area of the recurrence region.

  10. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald, E-mail: xrzhu@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2015-07-30

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  11. Plasmonic black metals via radiation absorption by two-dimensional arrays of ultra-sharp convex grooves

    DEFF Research Database (Denmark)

    Beermann, Jonas; Eriksen, René L.; Stær, Tobias Holmgaard;

    2014-01-01

    Plasmonic black surfaces formed by two-dimensional arrays of ultra-sharp convex metal grooves, in which the incident radiation is converted into gap surface plasmon polaritons (GSPPs) and subsequently absorbed (via adiabatic nanofocusing), are fabricated and investigated experimentally for gold...

  12. Anti-periodic traveling wave solution to a forced two-dimensional generalized KdV-Burgers equation

    Institute of Scientific and Technical Information of China (English)

    TAN Junyu

    2003-01-01

    The anti-periodic traveling wave solutions to a forced two-dimensional generalized KdV-Burgers equation are studied.Some theorems concerning the boundness, existence and uniqueness of the solution to this equation are proved.

  13. Combining Multiple Electrode Arrays for Two-Dimensional Electrical Resistivity Imaging Using the Unsupervised Classification Technique

    Science.gov (United States)

    Ishola, K. S.; Nawawi, M. N. M.; Abdullah, K.

    2015-06-01

    This article describes the use of k-means clustering, an unsupervised image classification technique, to help interpret subsurface targets. The k-means algorithm is employed to combine and classify the two-dimensional (2D) inverse resistivity models obtained from three different electrode arrays. The algorithm is initialized through the selection of the number of clusters, number of iterations and other parameters such as stopping criteria. Automatically, it seeks to find groups of closely related resistivity values that belong to the same cluster and are more similar to each other than resistivity values belonging to other clusters. The approach is applied to both synthetic and field data. The 2D postinversions of the resistivity data were preprocessed by resampling and interpolating to the same coordinate. Following the preprocessing, the three images are combined into a single classified image. All the image preprocessing, manipulation and analysis are performed using the PCI Geomatics software package. The results of the clustering and classification are presented as classified images. An assessment of the performance of the individual and combined images for the synthetic models is carried out using an error matrix, mean absolute error and mean absolute percent error. The estimated errors show that images obtained from maximum values of the reconstructed resistivity for the different models give the best representation of the true models. Additionally, the overall accuracy and kappa values show good agreement between the combined classified images and true models. Depending on the model, the overall accuracy ranges from 86 to 99 %, while the kappa coefficient is in the range of 54-98 %. Classified images with kappa coefficients greater than 0.8 show strong agreement, while images with kappa coefficients greater than 0.5 but less than 0.8 give moderate agreement. For the field data, the k-mean classifier produces images that incorporate structural features of

  14. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nevedomskiy, V. N., E-mail: nevedom@mail.ioffe.ru; Bert, N. A.; Chaldyshev, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  15. Two-Dimensional Time-Domain Antenna Arrays for Optimum Steerable Energy Pattern with Low Side Lobes

    Directory of Open Access Journals (Sweden)

    Alberto Reyna

    2014-01-01

    Full Text Available This document presents the synthesis of different two-dimensional time-domain antenna arrays for steerable energy patterns with side lobe levels. The research is focused on the uniform and nonuniform distributions of true-time exciting delays and positions of antenna elements. The uniform square array, random array, uniform concentric ring array, and rotated nonuniform concentric ring array geometries are particularly studied. These geometries are synthesized by using the well-known sequential quadratic programming. The synthesis regards the optimal true-time exciting delays and optimal positions of pulsed antenna elements. The results show the capabilities of the different antenna arrays to steer the beam in their energy pattern in time domain and how their performance is in frequency domain after the synthesis in time domain.

  16. Time-domain analysis of bandgap characteristics of two-dimensional periodic structures by use of a source-model technique.

    Science.gov (United States)

    Ludwig, Alon; Leviatan, Yehuda

    2008-02-01

    We introduce a time-domain source-model technique for analysis of two-dimensional, transverse-magnetic, plane-wave scattering by a photonic crystal slab composed of a finite number of identical layers, each comprising a linear periodic array of dielectric cylinders. The proposed technique takes advantage of the periodicity of the slab by solving the problem within a unit cell of the periodic structure. A spectral analysis of the temporal behavior of the fields scattered by the slab shows a clear agreement between frequency bands where the spectral density of the transmitted energy is low and the bandgaps of the corresponding two-dimensionally infinite periodic structure. The effect of the bandwidth of the incident pulse and its center frequency on the manner it is transmitted through and reflected by the slab is studied via numerical examples.

  17. Enhanced Transport of Passive Tracers In A Time Periodic Two-dimensional Flow

    Science.gov (United States)

    Boffetta, G.; Cencini, M.; Espa, S.; Musacchio, S.

    , investigating systems in which the second condition is violated is much more inter- esting. With this purpose, some experiments have shown how superdiffusion arises in a two-dimensional quasi-geostrophic (planetary-type) flow, where particles can jump for very long time in the same direction performing a Levy flight (Castiglione et al., 2001 ). Moreover, two recent papers (Vulpiani, 1998; Solomon, 2001) show how, also in very simple two-dimensional, time and space periodic cellular flows,anomalous diffusive behaviours can appear. In this paper we present an experimental study of transport in an electromagnetically forced time periodic two-dimensional flow. The flow is generated by applying an electromagnetic forcing on a thin layer of an elec- trolyte solution and reveals in a square grid of alternating vortices. Time dependence can be easily obtained by changing the time dependence of the electric fields. In par- ticular, considering certain values of the imposed oscillation frequencies, particles can display very long jump. Particle Tracking Velocimetry (PTV) is used to measure the flow field. This technique is the most suitable for studying dispersion phenomena in a Lagrangian framework allowing the direct evaluation of particle displacements and related quantities (Cenedese, Querzoli; 2000). Moreover, due to the characteristics of the analyzed flow and to the improvement of the tracking procedure, we have been able to track a great number of particles for time intervals greater than the charac- teristic time-scales of the flow. In order to characterize the time correlations we will evaluate the so-called jumps probabilities with memory which represent the probabil- ities to jump in a given direction conditioned to having experienced jumps in the same direction at previous times. Such statistics will revealed very useful and suitable for detecting the onset of the aforementioned correlations. 2

  18. Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders

    Institute of Scientific and Technical Information of China (English)

    T.; Kim

    2009-01-01

    Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap performance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cylinder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental measurements on square arrays of hollow Al cylinders in air and semi-hollow Al cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.

  19. Theoretical and numerical investigation of HF elastic wave propagation in two-dimensional periodic beam lattices

    Science.gov (United States)

    Tie, B.; Tian, B. Y.; Aubry, D.

    2013-12-01

    The elastic wave propagation phenomena in two-dimensional periodic beam lattices are studied by using the Bloch wave transform. The numerical modeling is applied to the hexagonal and the rectangular beam lattices, in which, both the in-plane (with respect to the lattice plane) and out-of-plane waves are considered. The dispersion relations are obtained by calculating the Bloch eigenfrequencies and eigenmodes. The frequency bandgaps are observed and the influence of the elastic and geometric properties of the primitive cell on the bandgaps is studied. By analyzing the phase and the group velocities of the Bloch wave modes, the anisotropic behaviors and the dispersive characteristics of the hexagonal beam lattice with respect to the wave propagation are highlighted in high frequency domains. One important result presented herein is the comparison between the first Bloch wave modes to the membrane and bending/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the hexagonal beam lattice. It is shown that, in low frequency ranges, the homogenized plate model can correctly represent both the in-plane and out-of-plane dynamic behaviors of the beam lattice, its frequency validity domain can be precisely evaluated thanks to the Bloch modal analysis. As another important and original result, we have highlighted the existence of the retropropagating Bloch wave modes with a negative group velocity, and of the corresponding "retro-propagating" frequency bands.

  20. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot

    Science.gov (United States)

    Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang

    2015-01-01

    In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.

  1. Multi-channel laser Doppler velocimetry using a two-dimensional optical fiber array for obtaining instantaneous velocity distribution characteristics

    Science.gov (United States)

    Kyoden, Tomoaki; Yasue, Youichi; Ishida, Hiroki; Akiguchi, Shunsuke; Andoh, Tsugunobu; Takada, Yogo; Teranishi, Tsunenobu; Hachiga, Tadashi

    2015-01-01

    A laser Doppler velocimeter (LDV) has been developed that is capable of performing two-dimensional (2D) cross-sectional measurements. It employs two horizontal laser light sheets that intersect at an angle of 13.3°. Since the intersection region is thin, it can be used to approximately determine the 2D flow field. An 8 × 8 array of optical fibers is used to simultaneously measure Doppler frequencies at 64 points. Experiments were conducted to assess the performance of the LDV, and it was found to be capable of obtaining spatial and temporal velocity information at multiple points in a flow field. The technique is fast, noninvasive, and accurate over long sampling periods. Furthermore, its applicability to an actual flow field was confirmed by measuring the temporal velocity distribution of a pulsatile flow in a rectangular flow channel with an obstruction. The proposed device is thus a useful, compact optical instrument for conducting simultaneous 2D cross-sectional multipoint measurements.

  2. Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders

    Institute of Scientific and Technical Information of China (English)

    LU TianJian; GAO GuoQin; MA ShouLin; JIN Feng; T.Kim

    2009-01-01

    Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap per-formance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cyl-inder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental meas-urements on square arrays of hollow AI cylinders in air and semi-hollow AI cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.

  3. Dynamics of two-dimensional vortex system in a strong square pinning array at the second matching field

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qing-Bao [Department of Physics, Lishui University, Lishui 323000 (China); Luo, Meng-Bo, E-mail: Luomengbo@zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2013-10-30

    We study the dynamics of a two-dimensional vortex system in a strong square pinning array at the second matching field. Two kinds of depinning behaviors, a continuous depinning transition at weak pinning and a discontinuous one at strong pinning, are found. We show that the two different kinds of vortex depinning transitions can be identified in transport as a function of the pinning strength and temperature. Moreover, interstitial vortex state can be probed from the transport properties of vortices.

  4. Light Focusing and Two-Dimensional Imaging Through Scattering Media using the Photoacoustic Transmission-Matrix with an Ultrasound Array

    CERN Document Server

    Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain

    2014-01-01

    We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.

  5. Aerosol assisted fabrication of two dimensional ZnO island arrays and honeycomb patterns with identical lattice structures

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Numata

    2010-11-01

    Full Text Available Two dimensional island arrays and honeycomb patterns consisting of ZnO nanocrystal clusters were fabricated on predefined TiO2 seed patterns prepared by vacuum free, aerosol assisted wet-chemical synthesis. The TiO2 seed patterns were prepared by applying an aerosol of a water soluble titanium complex on hexagonally close-packed polystyrene bead arrays for different lengths of time. Scanning electron microscopy revealed that a dot array grows into a honeycomb shape as increasing amounts of the precursor were deposited. ZnO nucleation on substrates with a dot array and honeycomb patterns resulted in the formation of two discrete patterns with contrasting fill fractions of the materials.

  6. A PARALIND Decomposition-Based Coherent Two-Dimensional Direction of Arrival Estimation Algorithm for Acoustic Vector-Sensor Arrays

    Science.gov (United States)

    Zhang, Xiaofei; Zhou, Min; Li, Jianfeng

    2013-01-01

    In this paper, we combine the acoustic vector-sensor array parameter estimation problem with the parallel profiles with linear dependencies (PARALIND) model, which was originally applied to biology and chemistry. Exploiting the PARALIND decomposition approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to unknown locations. The proposed algorithm works well to achieve automatically paired azimuth and elevation angles for coherent and incoherent angle estimation of acoustic vector-sensor arrays, as well as the paired correlated matrix of the sources. Our algorithm, in contrast with conventional coherent angle estimation algorithms such as the forward backward spatial smoothing (FBSS) estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, not only has much better angle estimation performance, even for closely-spaced sources, but is also available for arbitrary arrays. Simulation results verify the effectiveness of our algorithm. PMID:23604030

  7. Two-dimensional periodic relief grating as a versatile platform for selective immunosorbent assay and visualizing of antigens.

    Science.gov (United States)

    Chen, Jem-Kun; Zhou, Gang-Yan; Huang, Chih-Feng; Chang, Jia-Yaw

    2013-04-24

    In this study, we fabricated a nanopillar array of silicon oxide, involving very-large-scale integration (VLSI) and reactive ion etching (RIE), as two-dimensional periodic relief gratings (2DPRGs) on Si surfaces. Antihuman ALB was successively oriented on the pillar surface of 2DPRG modified protein G as an optical detector that is specific for targeted antigen. The antibody modified 2DPRG alone produces insignificant structure change, but upon immunocapture of antigens, the antigen filling in the 2DPRG leads to a dramatic change of the pillar scale. Binding of the antibodies to the 2DPRG occurs in a way that still allows them to function and selectively bind antigen. The performance of the sensor was evaluated by capturing HRP-human ALB on the antibody-modified 2DPRG and measuring the effective refractive index (neff) resulting from the attachment of antigens. The neff values of the 2DPRG are found to relate with the pillar scale of the 2DPRG, generated by antigen coupling, resulting in color change from pure green to orange, observed by the naked eye along an incident angle of 10-20°. Moreover, we calculated the filling factors inside the 2DPRG with effective-medium theory to verify the pillar structure changes. This technique eliminates much of the surface modifications and the secondary immunochemical or enzyme-linked steps that are common in immunoassays. Such films have potential applications as optical biosensors.

  8. Defects detection in thin components using two-dimensional ultrasonic arrays

    Science.gov (United States)

    Velichko, A.; Wilcox, P. D.; Drinkwater, B. W.

    2013-01-01

    The use of 2D ultrasonic arrays provides great flexibility, as one array probe allows a given defect to be illuminated from a wide range of angles. However there are a number of challenges in the application of 2D arrays to detection and characterization of 3D defects. In the current paper the problem of finding the optimal array configuration for defects detection in thin sections is investigated. The efficient FE scattering model is used to simulate an ultrasonic array response for different 3D defects. The data provided by this model is then used to analyze the influence of different parameters on the array performance (signal to noise ratio, sensitivity, resolution). Finally, experimental results are shown that illustrate the imaging performance of optimal 2D array configuration.

  9. High-density flexible interconnect for two-dimensional ultrasound arrays.

    Science.gov (United States)

    Fiering, J O; Hultman, P; Lee, W; Light, E D; Smith, S W

    2000-01-01

    We present a method for fabricating flexible multilayer circuits for interconnection to 2-D array ultrasound transducers. In addition, we describe four 2-D arrays in which such flexible interconnect is implemented, including transthoracic arrays with 438 channels operating at up to 7 MHz and intracardiac catheter arrays with 70 channels operating at up to 7 MHz. We employ thin and thick film microfabrication techniques to batch produce the interconnect circuits with minimum dimensions of 12-mum lines, 40-mum vias, and 150-mum array pitch. The arrays show 50-Omega insertion loss of -60 to -84 dB and a fractional bandwidth of 27 to 67%. The arrays are used to obtain real time, in vivo volumetric scans.

  10. Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces

    Science.gov (United States)

    Bacigalupo, Andrea; Gambarotta, Luigi

    2017-05-01

    Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of

  11. Two-dimensional catheter arrays for real-time intracardiac volumetric imaging

    Science.gov (United States)

    Light, Edward D.; Fiering, Jason O.; Lee, Warren; Wolf, Patrick D.; Smith, Stephen W.

    1999-06-01

    We have previously described 2D arrays of several thousand elements operating up to 5.0 MHz for transthoracic cardiac imaging. Lately, there has been interest in developing catheter based intracardiac imaging systems to aid in the precise tracking of anatomical features for improved diagnoses and therapies. We have constructed several arrays for real time intracardiac volumetric imaging based upon two different designs; a 10 X 10 equals 100 element 5.0 MHz forward looking 2D array, and a 13 X 11 equals 143 element 5.0 MHz 2D array for side scanning applications.

  12. Two-Dimensional Microdischarge Jet Array in Air: Characterization and Inactivation of Virus

    Science.gov (United States)

    Nayak, Gaurav

    Cold atmospheric pressure plasmas (CAPs) have proven to be quite effective for surface disinfection, wound healing and even cancer treatment in recent years. One of the major societal challenges faced today is related to illness caused by food-borne bacteria and viruses, particularly in minimally processed, fresh or ready-to-eat foods. Gastroenteritis outbreaks, caused, for example, by the human Norovirus (NV) is a growing concern. Current used technologies seem not to be fully effective. In this work we focus on a possible solution based on CAP technology for surface disinfection. Many discharge sources have been studied for disinfection and the two major challenges faced are the use of expensive noble gases (Ar/He) by many plasma sources and the difficulty to scale up the plasma devices. The efficacies of these devices also vary for different plasma sources, making it difficult to compare results from different research groups. Also, the interaction of plasma with the biological matter is not understood well, particularly for virus. In this work, a two-dimensional array of micro dielectric barrier discharge is used to treat Feline Calicivirus (FCV), which is a surrogate for human Norovirus. The plasma source can be operated with an air flow rate (up to 94 standard liters per minute or slm). The use of such discharge source also raises important scientific questions which are addressed in this work. These questions include the effect of gas flow rate on discharge properties and the production of reactive species responsible for virus inactivation and the underlying inactivation mechanism. The plasma source is characterized via several diagnostic techniques such as current voltage measurements for electrical characterization and power measurements, optical emission spectroscopy (OES) to determine the gas temperature, cross-correlation spectroscopy (CCS) for microdischarge evolution and timescales, UV absorption spectroscopy to measure the O3 density, absolute IR

  13. Quantized transport for a skyrmion moving on a two-dimensional periodic substrate

    Science.gov (United States)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-03-01

    We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular ( ) and parallel ( ) to the external drive direction: / =n /m , where n and m are integers. The skyrmion passes through a series of directional locking phases in which the motion is locked to certain symmetry directions of the substrate for fixed intervals of the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions into and out of these locked phases take the form of pronounced cusps in the skyrmion velocity versus force curves, as well as regions of negative differential mobility in which the net skyrmion velocity decreases with increasing external driving force. The number of steps in the transport curve increases when the relative strength of the Magnus term is increased. We also observe an overshoot phenomena in the directional locking, where the skyrmion motion

  14. On the large-scale structure and spectral dynamics of two-dimensional turbulence in a periodic channel

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; van Heijst, G.J.F.

    2008-01-01

    This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, which are met in the standard rectangular, square, or circular geometries, are absent in this geometry, the (statistical) analysis of

  15. Spectroscopic studies of the electronic properties of regularly arrayed two-dimensional protein layers

    Energy Technology Data Exchange (ETDEWEB)

    Vyalikh, D V [Institute of Solid State Physics, Dresden University of Technology, D-01062 Dresden (Germany); Kirchner, A [BioNanotechnology and Structure Formation Group, Max Bergmann Centre of Biomaterials, Dresden University of Technology, D-01062 Dresden (Germany); Kade, A [Institute of Solid State Physics, Dresden University of Technology, D-01062 Dresden (Germany); Danzenbaecher, S [Institute of Solid State Physics, Dresden University of Technology, D-01062 Dresden (Germany); Dedkov, Yu S [Institute of Solid State Physics, Dresden University of Technology, D-01062 Dresden (Germany); Mertig, M [BioNanotechnology and Structure Formation Group, Max Bergmann Centre of Biomaterials, Dresden University of Technology, D-01062 Dresden (Germany); Molodtsov, S L [Institute of Solid State Physics, Dresden University of Technology, D-01062 Dresden (Germany)

    2006-04-05

    Photoemission (PE) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy were applied to characterize electronic properties of the regular two-dimensional bacterial surface protein layer (S layer) of Bacillus sphaericus NCTC 9602, which is widely used as a protein template for the bottom-up fabrication of advanced metallic and hybrid nanostructures. PE and NEXAFS at the C 1s, O 1s, and N 1s core levels show similar chemical states for each oxygen atom and also for each nitrogen atom, while carbon atoms exhibit a range of chemical environments in different functional groups of the amino acids. A series of characteristic NEXAFS peaks were assigned to particular molecular orbitals of the amino acids by applying a phenomenological building-block model. It was found that the {pi} clouds of aromatic rings make the main contribution to both the lowest unoccupied and highest occupied molecular orbitals. The two-dimensional protein crystal shows a semiconductor-like behaviour with a gap value of {approx}3.0 eV and the Fermi energy close to the bottom of the LUMO.

  16. Striped periodic minimizers of a two-dimensional model for martensitic phase transitions

    CERN Document Server

    Giuliani, Alessandro

    2010-01-01

    In this paper we consider a simplified two-dimensional scalar model for the formation of mesoscopic domain patterns in martensitic shape-memory alloys at the interface between a region occupied by the parent (austenite) phase and a region occupied by the product (martensite) phase, which can occur in two variants (twins). The model, first proposed by Kohn and Mueller, is defined by the following functional:

  17. Analysis of bandgap characteristics of two-dimensional periodic structures by using the source-model technique.

    Science.gov (United States)

    Ludwig, Alon; Leviatan, Yehuda

    2003-08-01

    We introduce a solution based on the source-model technique for periodic structures for the problem of electromagnetic scattering by a two-dimensional photonic bandgap crystal slab illuminated by a transverse-magnetic plane wave. The proposed technique takes advantage of the periodicity of the slab by solving the problem within the unit cell of the periodic structure. The results imply the existence of a frequency bandgap and provide a valuable insight into the relationship between the dimensions of a finite periodic structure and its frequency bandgap characteristics. A comparison shows a discrepancy between the frequency bandgap obtained for a very thick slab and the bandgap obtained by solving the corresponding two-dimensionally infinite periodic structure. The final part of the paper is devoted to explaining in detail this apparent discrepancy.

  18. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    Science.gov (United States)

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D

    2017-01-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120±32 nm, which may be improved with further optimization of the nanopillar dimensions. PMID:28530219

  19. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor

    Science.gov (United States)

    Branny, Artur; Kumar, Santosh; Proux, Raphaël; Gerardot, Brian D.

    2017-05-01

    An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture. Here, using nanoscale strain engineering, we deterministically achieve a two-dimensional lattice of quantum emitters in an atomically thin semiconductor. We create point-like strain perturbations in mono- and bi-layer WSe2 which locally modify the band-gap, leading to efficient funnelling of excitons towards isolated strain-tuned quantum emitters that exhibit high-purity single photon emission. We achieve near unity emitter creation probability and a mean positioning accuracy of 120+/-32 nm, which may be improved with further optimization of the nanopillar dimensions.

  20. Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout

    Energy Technology Data Exchange (ETDEWEB)

    Ferhanoglu, Onur; Urey, Hakan

    2011-07-01

    Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-{lambda}) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization ({approx}20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. {approx}30% increase in the average sensitivity was demonstrated for a 160x120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

  1. Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout.

    Science.gov (United States)

    Ferhanoglu, Onur; Urey, Hakan

    2011-07-01

    Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-λ) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization (~20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. ~30% increase in the average sensitivity was demonstrated for a 160×120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

  2. Accurate two-dimensional model of an arrayed-waveguide grating demultiplexer and optimal design based on the reciprocity theory.

    Science.gov (United States)

    Dai, Daoxin; He, Sailing

    2004-12-01

    An accurate two-dimensional (2D) model is introduced for the simulation of an arrayed-waveguide grating (AWG) demultiplexer by integrating the field distribution along the vertical direction. The equivalent 2D model has almost the same accuracy as the original three-dimensional model and is more accurate for the AWG considered here than the conventional 2D model based on the effective-index method. To further improve the computational efficiency, the reciprocity theory is applied to the optimal design of a flat-top AWG demultiplexer with a special input structure.

  3. Fabrication of Two-Dimensional Arrays of Micron-Sized Gold Rings Based on Preferential Nucleation at Reentrant Sites

    Institute of Scientific and Technical Information of China (English)

    DONG Wen; GUO Xiang; WANG Si-Zhen; WANG Zhen-Lin; MING Nai-Ben

    2008-01-01

    @@ A templating method for fabricating two-dimensional (2D) arrays of micron-sized gold rings is reported. The microstructures are formed by electroless plating in a through-porous polymer membrane on a silicon substrate obtained from a closed-packed silica colloidal crystal. Our results show that the sizes of gold rings can be altered by varying electroless plating conditions for the porous polystyrene membranes. Moreover, we explain the growth mechanism of gold rings using the classical crystal growth theory that is preferential nucleation at reentrant sites.

  4. Optical characterization of two-dimensional array of 2,048 tilting micromirrors for astronomical spectroscopy.

    Science.gov (United States)

    Canonica, Michael D; Zamkotsian, Frédéric; Lanzoni, Patrick; Noell, Wilfried; De Rooij, Nico

    2013-09-23

    A micromirror array composed of 2048 silicon micromirrors measuring 200 × 100 μm² and tilting by 25° was developed as a reconfigurable slit mask for multi-object spectroscopy (MOS) in astronomy. The fill factor, contrast, and mirror deformation at both room and cryogenic temperatures were investigated. Contrast was measured using an optical setup that mimics a MOS instrument, and mirror deformation was characterized using a Twyman-Green interferometer. The results indicate that the array exhibited a fill factor of 82%, a contrast ratio of 1000:1, and surface mirror deformations of 8 nm and 27 nm for mirrors tilted at 298 K and 162 K, respectively.

  5. Stochastic Resonance in a Coupled Array Without Periodic Driving

    Institute of Scientific and Technical Information of China (English)

    钱敏; 张雪娟

    2002-01-01

    We manifest a stochastic resonance in a two-dimensional square array of coupled oscillators subjected only to white noise and constant driving forces. The result shows that the coherent output of every single oscillator plays the role of periodic input to its neighbours. Even without periodic driving, the cooperation of the white noise and the coupling can also result in the array enhanced stochastic resonance effect. In our investigation, global as well as local noise perturbation is taken into account.

  6. Two-dimensional array of microtraps with atomic shift register on a chip

    NARCIS (Netherlands)

    Whitlock, S.; Gerritsma, R.; Fernholz, T.; Spreeuw, R.J.C.

    2009-01-01

    Arrays of trapped atoms are the ideal starting points for developing registers comprising large numbers of physical qubits for storing and processing quantum information. One very promising approach involves neutral atom traps produced on microfabricated devices known as atom chips, as almost

  7. Modeling and optimization of non-phased two-dimensional ultrasonic arrays

    Science.gov (United States)

    Denisov, Alexey A.

    Ultrasonic image acquisition with non-phased 2D arrays is a relatively new method in NDE inspection. Historically, ultrasonic array development progressed mostly in the medical imaging where phased arrays found a great application. However, in the field of NDE inspection of metals, heavy plastics and composites, and many other materials the applicability of phased arrays is often restricted due to physical limitations. On the other hand, using versatile systems with mechanical scanning is not always convenient. Therefore, non-phased arrays of independent elements have a strong potential for becoming a valuable tool for rapid ultrasonic image acquisition in the industrial environment as well as in many other areas where conventional methods may not be applicable. The main motivation of this work is to build the necessary mathematical apparatus for estimating the process of signal and image formation in such systems. A model of signal penetration through a complex multilayered structure with non-parallel interfaces is discussed in the plane-wave approximation. This model is then refined to finite-size transducers and finite-size defects inside the sample. A new method of obtaining the beam structure in such multi-layered media is presented. The advantage of this method is that it allows for a very fast calculation while the precision is still comparable to more precise and more computationally expensive methods. A new method of calculating the response of the transducer to defects inside the sample is presented and discussed. The results of numerical calculations using these two methods are discussed and compared with experimental data. Using these models, image formation algorithms together with new image refining techniques are discussed.

  8. Photonic Band Modulation in a Two-Dimensional Photonic Crystal with a ne-Dimensional Periodic Dielectric Background

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen-Xing; ZHANG Yan; SHI Jun-Jie

    2008-01-01

    A two-dimensional photonic crystal with a one-dimensional periodic dielectric background is proposed. The photonic band modulation effects due to the periodic background are investigated based on the plane wave expansion method. We find that periodic modulation of the dielectric background greatly alters photonic band structures, especially for the E-polarization modes. The number, width and position of the photonic band gaps (PBGs) sensitively depend on the structure parameters (the layer thicknesses and dielectric constants) of the one-dimensional periodic background.

  9. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    Science.gov (United States)

    Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.

    2017-02-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.

  10. Two dimensional, electronic particle tracking in liquids with a graphene-based magnetic sensor array

    Science.gov (United States)

    Neumann, Rodrigo F.; Engel, Michael; Steiner, Mathias

    2016-07-01

    The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual nanoparticles in the liquid with high accuracy and (b) the reconstruction of a particle's flow-driven trajectory across the integrated sensor array with sub-pixel precision as a function of time, in what we call the ``Magnetic nanoparticle velocimetry'' technique. Since the method does not rely on optical detection, potential lab-on-chip applications include particle tracking and flow analysis in opaque media at the sub-micron scale.The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual

  11. Fabricating centimeter-scale high quality factor two-dimensional periodic photonic crystal slabs.

    Science.gov (United States)

    Lee, Jeongwon; Zhen, Bo; Chua, Song-Liang; Shapira, Ofer; Soljačić, Marin

    2014-02-10

    We present a fabrication route for centimeter-scale two-dimensional defect-free photonic crystal slabs with quality factors bigger than 10,000 in the visible, together with a unique way to quantify their quality factors. We fabricate Si(3)N(4) photonic crystal slabs, and perform an angle-resolved reflection measurement. This measurement data is used to retrieve the quality factors of the slabs by fitting it to a model based on temporal coupled-mode theory. The macroscopic nature of the structure and the high quality factors of their resonances could open up new opportunities for realizing efficient macroscale optoelectronic devices such as sensors, lasers, and energy harvesting systems.

  12. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Yi-chao

    2015-10-01

    Full Text Available The linear array Synthetic Aperture Radar (SAR system is a popular research tool, because it can realize three-dimensional imaging. However, owning to limitations of the aircraft platform and actual conditions, resolution improvement is difficult in cross-track and along-track directions. In this study, a twodimensional fast Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT algorithm for linear array SAR imaging is proposed to overcome these limitations. This approach combines the Gerschgorin disks method and the ESPRIT algorithm to estimate the positions of scatterers in cross and along-rack directions. Moreover, the reflectivity of scatterers is obtained by a modified pairing method based on “region growing”, replacing the least-squares method. The simulation results demonstrate the applicability of the algorithm with high resolution, quick calculation, and good real-time response.

  13. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    Science.gov (United States)

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model.

  14. Structured mirror array for two-dimensional collimation of a chromium beam in atom lithography

    Institute of Scientific and Technical Information of China (English)

    Zhang Wan-Jing; Ma Yan; Li Tong-Bao; Zhang Ping-Ping; Deng Xiao; Chen Sheng; Xiao Sheng-Wei

    2013-01-01

    Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically (in x axis),and it is 0.55 horizontally (in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.

  15. Rational design of two-dimensional molecular donor-acceptor nanostructure arrays

    Science.gov (United States)

    Zhang, Jia Lin; Zhong, Shu; Zhong, Jian Qiang; Niu, Tian Chao; Hu, Wen Ping; Wee, Andrew Thye Shen; Chen, Wei

    2015-02-01

    The construction of long-range ordered organic donor-acceptor nanostructure arrays over microscopic areas supported on solid substrates is one of the most challenging tasks towards the realization of molecular nanodevices. They can also be used as ideal model systems to understand light induced charge transfer, charge separation and energy conversion processes and mechanisms at the nanometer scale. The aim of this paper is to highlight recent advances and progress in this topic. Special attention is given to two different strategies for the construction of organic donor-acceptor nanostructure arrays, namely (i) molecular self-assembly on artificially patterned or pre-defined molecular surface nanotemplates and (ii) molecular nanostructure formation steered via directional and selective intermolecular interactions. The interfacial charge transfer and the energy level alignment of these donor-acceptor nanostructures are also discussed.

  16. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors.

    Science.gov (United States)

    Sharma, P; Vasan, S N Swetadri; Cartwright, A N; Titus, A H; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed from the discrete component level a high resolution dynamic x- ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm(2) (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of- interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  17. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors

    Science.gov (United States)

    Sharma, P.; Swetadri Vasan, S. N.; Cartwright, A. N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We have designed and developed from the discrete component level a high resolution dynamic x-ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 ×1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2 (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of-interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  18. Two dimensional, electronic particle tracking in liquids with a graphene-based magnetic sensor array.

    Science.gov (United States)

    Neumann, Rodrigo F; Engel, Michael; Steiner, Mathias

    2016-07-14

    The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual nanoparticles in the liquid with high accuracy and (b) the reconstruction of a particle's flow-driven trajectory across the integrated sensor array with sub-pixel precision as a function of time, in what we call the "Magnetic nanoparticle velocimetry" technique. Since the method does not rely on optical detection, potential lab-on-chip applications include particle tracking and flow analysis in opaque media at the sub-micron scale.

  19. Two-dimensional X-ray imaging using plastic scintillating fiber array

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Due to its low cost,flexibility and convenience for long distance dala transfer,plastic scintillation fiber (PSF)have been increasingly used in building detectors or sensors for detecting various radiations and imaging.In this work,the performance of using PSF coupled with charge-coupled devices(CCD)to build are adetectors for 2D X-ray imaging is studied.We describe the experimental setup and show the obtained images from CCD.Modulation Transfer Function(MTF)of the PSF array is also presented and compared to earlier reports.

  20. Two-dimensional spin liquids with Z2 topological order in an array of quantum wires

    Science.gov (United States)

    Patel, Aavishkar A.; Chowdhury, Debanjan

    2016-11-01

    Insulating Z2 spin liquids are a phase of matter with bulk anyonic quasiparticle excitations and ground-state degeneracies on manifolds with nontrivial topology. We construct a time-reversal symmetric Z2 spin liquid in two spatial dimensions using an array of quantum wires. We identify the anyons as kinks in the appropriate Luttinger-liquid description, compute their mutual statistics, and construct local operators that transport these quasiparticles. We also present a construction of a fractionalized Fermi liquid (FL*) by coupling the spin sector of the Z2 spin liquid to a Fermi liquid via a Kondo-like coupling.

  1. Efficient Two-Dimensional Direction Finding via Auxiliary-Variable Manifold Separation Technique for Arbitrary Array Structure

    Directory of Open Access Journals (Sweden)

    Guang Hua

    2015-01-01

    Full Text Available A polynomial rooting direction of arrival (DOA algorithm for multiple plane waves incident on an arbitrary array structure that combines the multipolynomial resultants and matrix computations is proposed in this paper. Firstly, a new auxiliary-variable manifold separation technique (AV-MST is used to model the steering vector of arbitrary array structure as the product of a sampling matrix (dependent only on the array structure and two Vandermonde-structured wavefield coefficient vectors (dependent on the wavefield. Then the propagator operator is calculated and used to form a system of bivariate polynomial equations. Finally, the automatically paired azimuth and elevation estimates are derived by polynomial rooting. The presented algorithm employs the concept of auxiliary-variable manifold separation technique which requires no sector by sector array interpolation and thus does not suffer from any mapping errors. In addition, the new algorithm does not need any eigenvalue decomposition of the covariance matrix and exhausted search over the two-dimensional parameter space. Moreover, the algorithm gives automatically paired estimates, thus avoiding the complex pairing procedure. Therefore, the proposed algorithm shows low computational complexity and high robustness performance. Simulation results are shown to validate the effectiveness of the proposed method.

  2. Self-Assembled Two-Dimensional Array of Gold Nanoparticles with Different Size for the Sensing Application

    Science.gov (United States)

    Li, Wan-Chao; Park, Sang-Eun; Kim, Jongsung; Lee, Sang-Wha

    2009-06-01

    Self-assembled two-dimensional array of gold nanoparticles (GNPs) on the glass substrate was systematically investigated in terms of glass cleaning, K2CO3 addition, GNP size, and pH of gold colloids. An ambient-air plasma treatment produced a highly-activated glass surface with the lowest air/water contact angles and K2CO3 addition is very effective to preserve the optical properties of gold nanoparticles for a long time. Small GNPs (≤40 nm) was uniformly arrayed on the amine-functionalized glass through the optimization process of electrostatic attractions between positively-charged glass and negatively-charged gold nanoparticles. For large GNPs (≥50 nm) that resulted in discrete (or loosely-packed) array on the glass substrate, pH adjustment of gold colloids (from pH 11 to 9) produced more densely-packed array of GNPs with less void areas, probably due to the reduction of electrostatic repulsion forces between large gold nanoparticles.

  3. Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma

    Science.gov (United States)

    Singh, Pramod K.; Hopwood, Jeffrey; Sonkusale, Sameer

    2014-08-01

    Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials.

  4. Metamaterials for remote generation of spatially controllable two dimensional array of microplasma.

    Science.gov (United States)

    Singh, Pramod K; Hopwood, Jeffrey; Sonkusale, Sameer

    2014-08-07

    Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials.

  5. Growth of two-dimensional arrays of uncapped gold nanoparticles on silicon substrates

    Indian Academy of Sciences (India)

    Anindya Das; Soma Das; A K Raychaudhuri

    2008-06-01

    A method of preparing large area patterned 2D arrays of uncapped gold (Au) nanoparticles has been developed. The pattern has been formed using self-assembly of uncapped Au nanoparticles. The Au nanoparticles were synthesized via toluene/water two phase systems using a reducing agent and colloidal solution of Au nanoparticles was produced. These nanoparticles have been prepared without using any kind of capping agent. Analysis by TEM showed discrete Au nanoparticles of 4 nm average diameter. AFM analysis also showed similar result. The TEM studies showed that these nanoparticles formed self-assembled coherent patterns with dimensions exceeding 500 nm. Spin coating on silicon substrate by suitably adjusting the speed can self-assemble these nanoparticles to lengths exceeding 1 m.

  6. A Study on Group Key Agreement in Sensor Network Environments Using Two-Dimensional Arrays

    Directory of Open Access Journals (Sweden)

    Moon-Seog Jun

    2011-08-01

    Full Text Available These days, with the emergence of the concept of ubiquitous computing, sensor networks that collect, analyze and process all the information through the sensors have become of huge interest. However, sensor network technology fundamentally has wireless communication infrastructure as its foundation and thus has security weakness and limitations such as low computing capacity, power supply limitations and price. In this paper, and considering the characteristics of the sensor network environment, we propose a group key agreement method using a keyset pre-distribution of two-dimension arrays that should minimize the exposure of key and personal information. The key collision problems are resolved by utilizing a polygonal shape’s center of gravity. The method shows that calculating a polygonal shape’s center of gravity only requires a very small amount of calculations from the users. The simple calculation not only increases the group key generation efficiency, but also enhances the sense of security by protecting information between nodes.

  7. Two-Dimensional Analytical Solution of the Laminar Forced Convection in a Circular Duct with Periodic Boundary Condition

    Directory of Open Access Journals (Sweden)

    M. R. Astaraki

    2012-01-01

    Full Text Available In the present study analytical solution for forced convection heat transfer in a circular duct with a special boundary condition has been presented, because the external wall temperature is a periodic function of axial direction. Local energy balance equation is written with reference to the fully developed regime. Also governing equations are two-dimensionally solved, and the effect of duct wall thickness has been considered. The temperature distribution of fluid and solid phases is assumed as a periodic function of axial direction and finally temperature distribution in the flow field, solid wall, and local Nusselt number, is obtained analytically.

  8. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices

    Science.gov (United States)

    Giberti, Claudio; Vernia, Cecilia

    1994-12-01

    We consider diffusively coupled logistic maps in one- and two-dimensional lattices. We investigate periodic behaviors as the coupling parameter varies, i.e., existence and bifurcations of some periodic orbits with the largest domain of attraction. Similarity and differences between the two lattices are shown. For small coupling the periodic behavior appears to be characterized by a number of periodic orbits structured in such a way to give rise to distinct, reverse period-doubling sequences. For intermediate values of the coupling a prominent role in the dynamics is played by the presence of normally attracting manifolds that contain periodic orbits. The dynamics on these manifolds is very weakly hyperbolic, which implies long transients. A detailed investigation allows the understanding of the mechanism of their formation. A complex bifurcation is found which causes an attracting manifold to become unstable.

  9. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    Science.gov (United States)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  10. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  11. A fast adaptive convex hull algorithm on two-dimensional processor arrays with a reconfigurable BUS system

    Science.gov (United States)

    Olariu, S.; Schwing, J.; Zhang, J.

    1991-01-01

    A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.

  12. Fast transport, atom sample splitting, and single-atom qubit supply in two-dimensional arrays of optical microtraps

    CERN Document Server

    Schlosser, Malte; Gierl, Christian; Teichmann, Stephan; Tichelmann, Sascha; Birkl, Gerhard; 10.1088/1367-2630/14/12/123034

    2013-01-01

    Two-dimensional arrays of optical micro-traps created by microoptical elements present a versatile and scalable architecture for neutral atom quantum information processing, quantum simulation, and the manipulation of ultra-cold quantum gases. In this article, we demonstrate advanced capabilities of this approach by introducing novel techniques and functionalities as well as the combined operation of previously separately implemented functions. We introduce piezo-actuator based transport of atom ensembles over distances of more than one trap separation, examine the capabilities of rapid atom transport provided by acousto-optical beam steering, and analyze the adiabaticity limit for atom transport in these configurations. We implement a spatial light modulator with 8-bit transmission control for the per-site adjustment of the trap depth and the number of atoms loaded. We combine single-site addressing, trap depth control, and atom transport in one configuration for demonstrating the splitting of atom ensembles...

  13. One- and Two-Dimensional Arrays of Double-Well Optical Traps for Cold Atoms or Molecules

    Institute of Scientific and Technical Information of China (English)

    JI Xian-Ming; YIN Jian-Ping

    2004-01-01

    @@ We propose a novel scheme to form one- and two-dimensional arrays of double-well optical dipole traps for cold atoms (or molecules) by using an optical system composed of a binary π-phase grating and a lens illuminated by a plane light wave, and study the relationship between the maximum intensity Imax of each optical well (or the maximum trapping potential Umax for 85Rb atoms) and the relative apertureβ (= a/f) of the lens. We also calculate the intensity gradients of each optical well and their curvatures, and estimate the spontaneous photon-scattering rate of trapped atom in each well, including Rayleigh and Raman scattering rates. Our study shows that the proposed 1D and 2D arrays of double-well traps can be used to prepare 1D and 2D novel optical lattices with cold atoms (or molecules), or form an all-optically integrated atom optical chip, or even to realize an array of all-optical double-well atomic (or molecular) Bose-Einstein condensates by optical-potential evaporative cooling, and so on.

  14. ELASTIC WAVE LOCALIZATION IN TWO-DIMENSIONAL PHONONIC CRYSTALS WITH ONE-DIMENSIONAL QUASI-PERIODICITY AND RANDOM DISORDER

    Institute of Scientific and Technical Information of China (English)

    Ali Chen; Yuesheng Wang; Guilan Yu; Yafang Guo; Zhengdao Wang

    2008-01-01

    The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phcnonic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.

  15. Selective cleavage of periodic mesoscale structures: two-dimensional replication of binary colloidal crystals into dimpled gold nanoplates.

    Science.gov (United States)

    Kuroda, Yoshiyuki; Sakamoto, Yasuhiro; Kuroda, Kazuyuki

    2012-05-23

    Specific crystallographic planes of binary colloidal crystals consisting of silica nanoparticles are two-dimensionally replicated on the surface of gold nanoplates. The selectivity of the surface patterns is explained by the geometrical characteristics of the binary colloidal crystals as templates. The binary colloidal crystals with the AlB(2)- and NaZn(13)-type structures are fabricated from aqueous dispersions of stoichiometrically mixed silica nanoparticles with different sizes. The stoichiometry is precisely controlled on the basis of a seed growth of silica nanoparticles. Dimpled gold nanoplates are formed by the two-dimensional growth of gold between partially cleaved surfaces of templates. The selectivity of the surface patterns is explained using the AlB(2)-type binary colloidal crystal as a template. The surface pattern is determined by the preferential cleavage of the plane with the lowest density of particle-particle connections. The tendency to form well-defined cleavage in binary colloidal crystals is crucial to formation of dimpled gold nanoplates, which is explained using the NaZn(13)-type binary colloidal crystal as a template. Its complex structure does not show well-defined cleavage, and only distorted nanoplates are obtained. Therefore, the mechanism of the two-dimensional replication of binary colloidal crystals is reasonably explained on the basis of their periodic mesoscale structures and crystal-like properties.

  16. Modeling and process design for laser interference lithography used in fabricating two-dimensional periodic structures

    NARCIS (Netherlands)

    Bostan, C.G.; Ridder, de R.M.; Dorssen, van I.; Wolferen, van H.A.G.M.; Kuipers, L.; Hulst, van N.F.

    2002-01-01

    Laser interference lithography (LIL) is a technique that can be successfully used for realization of 2D periodic structures, with excellent uniformity over large areas. However, detailed modeling is needed in order to extract the optimum design parameters. In this paper, we refer to a design procedu

  17. Two-dimensional periodic and quasiperiodic spatial structures in microchip laser resonator

    CERN Document Server

    Okulov, A Yu

    2014-01-01

    The spatially periodic 2D patterns at output mirror of solid state microchip laser with high Fresnel number (100-1000) are discussed in view of numerical modeling with split-step FFT code comprising nonlinear gain, relaxation of inversion and paraxial diffraction.

  18. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance.

    Science.gov (United States)

    Lin, Liyong; Kang, Minglei; Solberg, Timothy D; Mertens, Thierry; Baeumer, Christian; Ainsley, Christopher G; McDonough, James E

    2015-05-08

    The need to accurately and efficiently verify both output and dose profiles creates significant challenges in quality assurance of pencil beam scanning (PBS) proton delivery. A system for PBS QA has been developed that combines a new two-dimensional ionization chamber array in a waterproof housing that is scanned in a water phantom. The MatriXX PT has the same detector array arrangement as the standard MatriXX(Evolution) but utilizes a smaller 2 mm plate spacing instead of 5mm. Because the bias voltage of the MatriXX PT and Evolution cannot be changed, PPC40 and FC65-G ionization chambers were used to assess recombination effects. The PPC40 is a parallel plate chamber with an electrode spacing of 2mm, while the FC65-G is a Farmer chamber FC65-G with an electrode spacing of 2.8 mm. Three bias voltages (500, 200, and 100 V) were used for both detectors to determine which radiation type (continuous, pulse or pulse-scanned beam) could closely estimate Pion from the ratios of charges collected. In comparison with the MatriXX(Evolution), a significant improvement in measurement of absolute dose with the MatriXX PT was observed. While dose uncertainty of the MatriXX(Evolution) can be up to 4%, it is 1%; chambers with an electrode spacing of 2 mm or smaller are recommended.

  19. Dosimetric characterization of a commercial two-dimensional array detector; Caracterizacao dosimetrica de um detector matricial bidimensional comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gialluisi, Bruno L.; Santos, Gabriela R. dos; Sales, Camila P. de; Resende, Guilherme R.A.; Habitzreuter, Angela B.; Rodrigues, Laura N., E-mail: brunogialluisi@gmail.com [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2013-04-15

    This paper investigates the dosimetric characteristics and performance of an array detector commercially available. The device is the I'mRT MatriXX® which is a two-dimensional detector array used in the verification of complex radiotherapy plans. It consists of 1,020 parallel plate ion chamber arranged in a 32x32 grid. Dose linearity was studied and its response was linear within the range of 5 to 1000 MU (R{sup 2} = 1). Dose rate dependence showed a maximum deviation of 0,62% comparatively with readings to 320 cGy/min. The detector stability was verified through repeated irradiations. Output factors matched well with measurements made with a Farmer chamber with an average deviation of 1,54%. The detector's effective point of measurement was determined and the inverse square law was also verified with a percentage deviation smaller than 3%. The results show that this detector can be used for quality control in IMRT thus reducing the time spent in the dosimetric verification of radiation fields. (author)

  20. Two-dimensional finite-element modeling of periodical interdigitated full organic solar cells

    Science.gov (United States)

    Granero, P.; Balderrama, V. S.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F.

    2013-01-01

    By means of finite-element numerical modeling, we analyze the influence of the nanostructured dissociation interface geometry on the behavior of interdigitated heterojunction full organic solar cells. A systematic analysis of light absorption, exciton diffusion, and carrier transport, all in the same numerical framework, is carried out to obtain their dependence on the interface geometrical parameters: pillar diameter and height, and nanostructure period. Cells are constituted of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61. Results show that light absorption is maximum for pillar heights of 80 nm and 230 nm. However, due to the short exciton diffusion length of organic materials, the analysis of the exciton diffusion process reveals that the 80 nm thickness gives rise to a higher photocurrent, except for the smaller pillar diameters. In terms of efficiency, it has been observed that the charge carrier transport is weakly dependent on the geometric parameters of the nanostructured interface if compared with the exciton diffusion process. The optimal cell is a device with a pillar height of 80 nm, a structure period of 25 nm, and a ratio of the nanopillar diameter to the period of 0.75, with an efficiency 3.6 times higher than the best planar bilayer reference device. This structure is such that it reaches a compromise between having a high proportion of P3HT to increase light absorption but preserving a small pillar diameter and interpillar distance to ensure an extended exciton dissociation interface.

  1. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    Science.gov (United States)

    Ben Abdelaziz, K.; Bouazzi, Y.; Kanzari, M.

    2015-09-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization. The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x1+k. Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra.

  2. Periodic dislocation dynamics in two-dimensional concentrated emulsion flowing in a tapered microchannel

    Science.gov (United States)

    Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K. Y.

    2016-11-01

    Here we report a surprising order in concentrated emulsion when flowing as a monolayer in a tapered microfluidic channel. The flow of droplets in micro-channels can be non-trivial, and may lead to unexpected phenomena such as long-period oscillations and chaos. Previously, there have been studies on concentrated emulsions in straight channels and channels with bends. The dynamics of how drops flow and rearrange in a tapered geometry has not yet been characterized. At sufficiently slow flow rates, the drops arrange into a hexagonal lattice. At a given x-position, the time-averaged droplet velocities are uniform. The instantaneous drop velocities, however, reveal a different, wave-like pattern. Within the rearrangement zone where the number of rows of drops decreases from N to N-1, there is always a drop moved faster than the others. Close examination reveals the anomalous velocity profile arises from a series of dislocations that are both spatial and temporal periodic. To our knowledge, such reproducible dislocation motion has not been reported before. Our results are useful in novel flow control and mixing strategies in droplet microfluidics as well as modeling crystal plasticity in low-dimensional nanomaterials.

  3. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials

    Science.gov (United States)

    Hao, Qing; Xiao, Yue; Zhao, Hongbo

    2016-08-01

    In the past two decades, phonon transport within nanoporous thin films has attracted enormous attention for their potential applications in thermoelectrics and thermal insulation. Various computational studies have been carried out to explain the thermal conductivity reduction within these thin films. Considering classical phonon size effects, the lattice thermal conductivity can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. Following this, detailed phonon transport can be simulated for a given porous structure to find the lattice thermal conductivity [Hao et al., J. Appl. Phys. 106, 114321 (2009)]. However, such simulations are intrinsically complicated and cannot be used for the data analysis of general samples. In this work, the characteristic length Λ P o r e of periodic nanoporous thin films is extracted by comparing the predictions of phonon Monte Carlo simulations and the kinetic relationship using bulk phonon mean free paths modified by Λ P o r e . Under strong ballistic phonon transport, Λ P o r e is also extracted by the Monte Carlo ray-tracing method for graphene with periodic nanopores. The presented model can be widely used to analyze the measured thermal conductivities of such nanoporous structures.

  4. Band structure of magneto-metallo-dielectric photonic crystals with hybrid one- and two-dimensional periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ayona, E. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apartado Postal J-48, Puebla 72570 (Mexico); Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico); Halevi, P. [Instituto Nacional de Astrofisica Optica y Electronica, Apartado Postal 51, Puebla 72000 (Mexico)

    2012-06-15

    We calculate the band structure of a magneto-metallo-dielectric photonic crystal (PC) with hybrid one- and two-dimensional periodicity. Namely, the permittivity (permeability) is periodic in a plane (single direction). The metallic and magnetic properties are described, respectively, by means of the Drude model and a specific permeability model for Barium-M ferrite. Because of the dispersion of both the permeability and the permittivity, we obtain a non-standard eigenvalue problem which is possible to solve by means of a linearization technique. We found that the first band of this PC is very sensitive to the filling fraction of the magnetic component: by changing this fraction from 0.20 to 0.16 the slope - and effective index of refraction - changes from positive to negative. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Characterizing classical periodic orbits from quantum Green's functions in two-dimensional integrable systems: Harmonic oscillators and quantum billiards

    Science.gov (United States)

    Chen, Y. F.; Tung, J. C.; Tuan, P. H.; Yu, Y. T.; Liang, H. C.; Huang, K. F.

    2017-01-01

    A general method is developed to characterize the family of classical periodic orbits from the quantum Green's function for the two-dimensional (2D) integrable systems. A decomposing formula related to the beta function is derived to link the quantum Green's function with the individual classical periodic orbits. The practicality of the developed formula is demonstrated by numerically analyzing the 2D commensurate harmonic oscillators and integrable quantum billiards. Numerical analyses reveal that the emergence of the classical features in quantum Green's functions principally comes from the superposition of the degenerate states for 2D harmonic oscillators. On the other hand, the damping factor in quantum Green's functions plays a critical role to display the classical features in mesoscopic regime for integrable quantum billiards, where the physical function of the damping factor is to lead to the coherent superposition of the nearly degenerate eigenstates.

  6. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    Science.gov (United States)

    Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad

    2013-12-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.

  7. Geometrical approach in physical understanding of the Goos-Haenchen shift in one- and two-dimensional periodic structures.

    Science.gov (United States)

    Miri, Mehdi; Naqavi, Ali; Khavasi, Amin; Mehrany, Khashayar; Khorasani, Sina; Rashidian, Bizhan

    2008-12-15

    The Goos-Haenchen shift of a totally reflected beam at the planar interface of two dielectric media, as if the incident beam is reflected from beneath the interface between the incident and transmitted media, has been geometrically associated with the penetration of the incident photons in the less-dense forbidden transmission region. This geometrical approach is here generalized to analytically calculate the Goos-Haenchen shift in one- and two-dimensional periodic structures. Several numerical examples are presented, and the obtained results are successfully tested against the well-known Artman's formula. The proposed approach is shown to be a fast, simple, and efficient method that can provide good physical insight to the nature of the phenomenon.

  8. Coherent Excitonic Wavepackets in Two-Dimensional Square Dot-Arrays Driven by an In-Plane Uniform Electric Field

    Institute of Scientific and Technical Information of China (English)

    李秀平; 阎维贤

    2004-01-01

    We investigate the evolution behaviour of electron-hole pair wavepacket in optically excited square quantum-dot arrays driven by in-plane (x-y plane) uniform electric field E (viz, E = Exex + Eyey, ex,ey are unit vectors along x and y directions respectively), in the time domain. It is found that if the ratio of the x-component electric field Ex to the y-component electric field Ey is a rational p/q (p and q being coprime integer numbers),the wavepackets undergo a time-periodic breathing mode, with the period 2πp/ωBx, where ωBx = eExa/h, with a being the lattice constant of square dot arrays, h being Planck's constant, e being the electron charge. This finding provides a time-domain demonstration of the recent spectral result [Phys. Rev. Lett. 86 (2001)3116].

  9. Ballistic aggregation on two-dimensional arrays of seeds with oblique incident flux: Growth model for amorphous Si on Si

    Science.gov (United States)

    Ye, D.-X.; Lu, T.-M.

    2007-12-01

    Amorphous silicon (Si) structures on two-dimensional arrays of seeds on a Si substrate were experimentally prepared at near room temperature using a physical vapor deposition system with an 85° oblique incident flux. In the stationary deposition case where the substrate is fixed at a position, the Si on the seeds form a ballistic inclined fanlike structure with an initial cone shape and the fan size R grows with time in a power law form tp , where ptilde 1 . We show that with a swing rotation where the substrate is rotated back-and-forth azimuthally, the fan size grows slower (pshadowing, surface diffusion, and substrate rotation in a three-dimensional Monte Carlo simulator. The evolution of the fanlike structures at different deposition times was simulated for both stationary deposition and swing rotation. The growth of the fan size R with time t in simulations was quantitatively analyzed and the exponents ptilde 1.0 and ptilde 0.46 were extracted for the stationary deposition and the swing rotation, respectively. For stationary deposition, the exponent 1 does not change significantly with the strength of surface diffusion. However, the fan-out angle decreases with the increased strength of surface diffusion. For swing rotation, the reduced exponent 0.46 at the initial stages of growth is primarily due to the self-shadowing of the fan itself under rotation. At the later stages of growth, the saturation of the fan size produces uniform rods and is due to the global shadowing from the adjacent fan structures. The morphology and the exponent obtained from our simulations are consistent with our experimental observations.

  10. Efficient split field FDTD analysis of third-order nonlinear materials in two-dimensionally periodic media

    Science.gov (United States)

    Francés, Jorge; Bleda, Sergio; Bej, Subhajit; Tervo, Jani; Navarro-Fuster, Víctor; Fenoll, Sandra; Martínez-Gaurdiola, Francisco J.; Neipp, Cristian

    2016-04-01

    In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.

  11. Fano resonance in asymmetric-period two-dimensional plasmonic absorbers for dual-band uncooled infrared sensors

    Science.gov (United States)

    Ogawa, Shinpei; Takagawa, Yousuke; Kimata, Masafumi

    2016-11-01

    The spectral discrimination function of uncooled infrared (IR) sensors has significant advantages for applications such as fire detection, gas analysis, and biological analysis. We have previously demonstrated wavelength-selective uncooled IR sensors using two-dimensional plasmonic absorbers (2-D PLAs) over a wide range spanning the middle- and long-wavelength IR regions. 2-D PLAs are highly promising in terms of practical application due to the ease of fabrication and robustness for structural fluctuations. However, dual-band operation based on this concept has not yet been investigated, even though the ability to absorb in two different wavelength bands is extremely important for object recognition. Thus, a dual-band uncooled IR sensor was developed that employs Fano resonance in the plasmonic structures. To achieve dual-band detection, asymmetric periods in the orthogonal x- and y-directions were introduced into 2-D PLAs. Theoretical investigations predicted an asymmetric absorbance line shape dependent on the polarization attributed to Fano resonance. The spectral responsivity of the developed sensor demonstrated that selective detection occurred in two different wavelength bands due to polarization-dependent Fano resonance. The results obtained in this study will be applicable to the development of advanced sensors capable of multiband detection in the IR region.

  12. Comparison of one-dimensional and two-dimensional least-squares strain estimators for phased array displacement data.

    NARCIS (Netherlands)

    Lopata, R.G.P.; Hansen, H.H.G.; Nillesen, M.M.; Thijssen, J.M.; Korte, C.L. de

    2009-01-01

    In this study, the performances of one-dimensional and two-dimensional least-squares strain estimators (LSQSE) are compared. Furthermore, the effects of kernel size are examined using simulated raw frequency data of a widely-adapted hard lesion/soft tissue model. The performances of both methods are

  13. Characteristics of Acoustic Field of Two-dimensional Ultrasonic Phased Array%二维超声相控阵的声场特性

    Institute of Scientific and Technical Information of China (English)

    龙绒蓉; 王海涛; 郭瑞鹏; 徐君; 郭艳; 沈立军

    2015-01-01

    基于空间冲激响应的脉冲声场模型及超声相控阵指向性理论,使用 MATLAB 仿真软件,分析了二维矩形阵列各参数对其声场特性的影响,据此推导出阵列探头设计、选取的一般准则;对比研究二维矩形阵列和圆形阵列的脉冲回波声场。结果表明,圆形阵列具有更窄的主瓣宽度和更低的第一级旁瓣,更优的指向性。%Based on the pulsed ultrasonic field model of the space impulse response and the directivity theory of ultrasonic phased array,the effect of two-dimensional rectangular array parameters on the acoustical characteristics was investigated by using MATLAB simulation software.Accordingly,the general guidelines of array probe design and selection was derived.Comparative studies were also carried on the pulse-echo acoustic field of two-dimensional rectangular array and circular array,showing that the circular array had a narrower width of main lobe and lower first side lobe,etc,so the performance of the latter being more outstanding.

  14. Existence and Stability of Periodic Solutions for Reaction-Diffusion Equations in the Two-Dimensional Case

    Directory of Open Access Journals (Sweden)

    N. N. Nefedov

    2016-01-01

    Full Text Available Parabolic singularly perturbed problems have been actively studied in recent years in connection with a large number of practical applications: chemical kinetics, synergetics, astrophysics, biology, and so on. In this work a singularly perturbed periodic problem for a parabolic reaction-diffusion equation is studied in the two-dimensional case. The case when there is an internal transition layer under unbalanced nonlinearity is considered. The internal layer is localised near the so called transitional curve. An asymptotic expansion of the solution is constructed and an asymptotics for the transitional curve is determined. The asymptotical expansion consists of a regular part, an interior layer part and a boundary part. In this work we focus on the interior layer part. In order to describe it in the neighborhood of the transition curve the local coordinate system is introduced and the stretched variables are used. To substantiate the asymptotics thus constructed, the asymptotic method of differential inequalities is used. The upper and lower solutions are constructed by sufficiently complicated modification of the asymptotic expansion of the solution. The Lyapunov asymptotical stability of the solution was proved by using the method of contracting barriers. This method is based on the asymptotic comparison principle and uses the upper and lower solutions which are exponentially tending to the solution to the problem. As a result, the solution is locally unique.The article is published in the authors’ wording.

  15. Spectroscopic orbits of two short-period early-type binaries using two-dimensional cross-correlations

    Science.gov (United States)

    González, J. F.; Lapasset, E.

    2003-06-01

    We apply the two-dimensional cross-correlation technique TODCOR to derive spectroscopic orbits for the two B-type double-lined spectroscopic binaries HD 66066A and HD 315031, previously mentioned as blue straggler candidates of the open clusters NGC 2516 and NGC 6530, respectively. Reliable radial velocities for both components are measured even for orbital phases for which the separation between the spectral lines are about 0.5 times the quadratic sum of the full-width at half-maximum of the lines. Both binaries have circular orbits and the orbital periods are 1.67 and 1.38 days for HD 66066A and HD 315031, respectively. We calculate minimum masses with errors of 3-5% and obtain the projected radii from the line widths. We derive absolute stellar parameters which are consistent with the age and distance of the clusters. Both binary systems are formed by main-sequence stars and it is expected that they will experience mass-transfer between their components before the end of the core H-burning stage. HD 315031 is likely a triple system as suggested by the variation of the center-of-mass velocity. The observations presented here were obtained at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the National Universities of La Plata, Córdoba and San Juan.

  16. Range imaging pulsed laser sensor with two-dimensional scanning of transmitted beam and scanless receiver using high-aspect avalanche photodiode array for eye-safe wavelength

    Science.gov (United States)

    Tsuji, Hidenobu; Imaki, Masaharu; Kotake, Nobuki; Hirai, Akihito; Nakaji, Masaharu; Kameyama, Shumpei

    2017-03-01

    We demonstrate a range imaging pulsed laser sensor with two-dimensional scanning of a transmitted beam and a scanless receiver using a high-aspect avalanche photodiode (APD) array for the eye-safe wavelength. The system achieves a high frame rate and long-range imaging with a relatively simple sensor configuration. We developed a high-aspect APD array for the wavelength of 1.5 μm, a receiver integrated circuit, and a range and intensity detector. By combining these devices, we realized 160×120 pixels range imaging with a frame rate of 8 Hz at a distance of about 50 m.

  17. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang; LUO Jun

    2009-01-01

    @@ We study a two-dimensional lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the two-dimensional Klein-Gordon lattice with hard on-site potential. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.

  18. Fabrication of large-sized two-dimensional ordered surface array with well-controlled structure via colloidal particle lithography.

    Science.gov (United States)

    Meng, Xiaohui; Zhang, Xinping; Ye, Lei; Qiu, Dong

    2014-06-17

    Epoxy resin coated glass slides were used for colloidal particle lithography, in order to prepare well-defined 2D surface arrays. Upon the assistance of a large-sized 2D colloidal single crystal as template, centimeter-sized ordered surface arrays of bowl-like units were obtained. Systematic studies revealed that the parameters of obtained surface arrays could be readily controlled by some operational factors, such as temperature, epoxy resin layer thickness, and template particle size. With epoxy resin substituting for normal linear polymer, the height/diameter ratio of bowls in the formed surface arrays can be largely increased. With further reactive plasma etching, the parameters of ordered surface arrays could be finely tuned through controlling etching time. This study provides a facile way to prepare large-sized 2D surface arrays with tunable parameters.

  19. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.

    Science.gov (United States)

    Lei, Ting; Poon, Andrew W

    2013-01-28

    We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

  20. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-06-01

    Full Text Available Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems.

  1. Surface Light Extraction Mapping from Two-Dimensional Array of 12-Fold Photonic Quasicrystal on Current Injected GaN-Based LEDs

    Institute of Scientific and Technical Information of China (English)

    DAI Tao; ZHU Xing; ZHANG Bei; ZHANG Zhen-Sheng; LIU Dan; WANG Xiao; BAO Kui; KANG Xiang-Ning; XU Jun; Yu Da-Peng

    2007-01-01

    A two-dimensional array of dodecagonal photonic quasicrystal(12PQC)is fabricated on the surface of current injected GaN-based LEDs to out-couple guided modes.The spatially-resolved surface light extraction mapping of 12PQC is observed and compared with that of triangular lattice photonic crystal (3PC)by microscopic electrical luminescence and scanning near-field microscopy.The higher enhancement factor of 12PQC is obtained to be larger than that of 3PC.It is shown that 12PQC is more favourable and efficient for light extraction of guided lights.

  2. Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels

    Science.gov (United States)

    Yoo, B.; Purekar, A. S.; Zhang, Y.; Pines, D. J.

    2010-07-01

    A damage detection method based on an innovative 2D phased sensor array made of piezoelectric paint is proposed for in situ damage detection of a thin isotropic panel using guided Lamb waves. A design analysis of candidate 2D arrays based on spiral, cruciform and circular element layouts is performed. In this study, a 2D phased sensor array with a spiral configuration is fabricated using a piezoelectric composite (piezopaint) patch and used for detecting damages in an aluminum panel. Steered array responses are generated from the raw sensor signals using a directional filtering algorithm based on phased array signal processing. The fundamental flexural (or transverse), A0 mode, of the guided Lamb waves is used though the sensing and analysis technique is not limited to the mode used in this work. To enhance the proposed analysis technique, empirical mode decomposition (EMD) and a Hilbert-Huang transform (HHT) are applied. A new damage detection algorithm including threshold setting and damage index (DI) calculation is developed and implemented for detecting damages in the form of holes and a simulated crack. The characteristic damage indices consistently increase as damage size grows.

  3. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field

    Directory of Open Access Journals (Sweden)

    Fujita Shigetaka

    2016-01-01

    Full Text Available The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194 operated by the linearized constant temperature anemometers (DANTEC, and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  4. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    Science.gov (United States)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  5. Damage-free top-down processes for fabricating two-dimensional arrays of 7 nm GaAs nanodiscs using bio-templates and neutral beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xuanyu; Huang, Chi-Hsien; Tsukamoto, Rikako; Samukawa, Seiji [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Mortemousque, Pierre-Andre; Itoh, Kohei M; Ohno, Yuzo, E-mail: samukawa@ifs.tohoku.ac.jp [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda, Tokyo 102-0075 (Japan)

    2011-09-07

    The first damage-free top-down fabrication processes for a two-dimensional array of 7 nm GaAs nanodiscs was developed by using ferritin (a protein which includes a 7 nm diameter iron core) bio-templates and neutral beam etching. The photoluminescence of GaAs etched with a neutral beam clearly revealed that the processes could accomplish defect-free etching for GaAs. In the bio-template process, to remove the ferritin protein shell without thermal damage to the GaAs, we firstly developed an oxygen-radical treatment method with a low temperature of 280 deg. C. Then, the neutral beam etched the defect-free nanodisc structure of the GaAs using the iron core as an etching mask. As a result, a two-dimensional array of GaAs quantum dots with a diameter of {approx} 7 nm, a height of {approx} 10 nm, a high taper angle of 88 deg. and a quantum dot density of more than 7 x 10{sup 11} cm{sup -2} was successfully fabricated without causing any damage to the GaAs.

  6. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array.

    Science.gov (United States)

    Si, Weijian; Zhao, Pinjiao; Qu, Zhiyu

    2016-05-31

    This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method.

  7. Two-Dimensional DOA and Polarization Estimation for a Mixture of Uncorrelated and Coherent Sources with Sparsely-Distributed Vector Sensor Array

    Directory of Open Access Journals (Sweden)

    Weijian Si

    2016-05-01

    Full Text Available This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D direction of arrival (DOA and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method.

  8. Periodic, quasiperiodic and chaotic discrete breathers in a parametrical driven two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    We study a two-dimensional (2D) diatomic lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the 2D discrete diatomic Klein-Gordon lattice with hard and soft on-site potentials. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers (QDBs) and chaotic discrete breathers (CDBs) by changing the amplitude of the driver. But the DBs and QDBs with symmetric and anti-symmetric profiles that are centered at a heavy atom are more stable than at a light atom, because the frequencies of the DBs and QDBs centered at a heavy atom are lower than those centered at a light atom.

  9. Understanding the role of surface plasmon polaritons in two-dimensional achiral nanohole arrays for polarization conversion

    CERN Document Server

    Cao, Z L; Zhang, Z Q; Chan, C T; Ong, H C

    2016-01-01

    We have studied the dependence of the rotation angle and ellipticity on the sample orientation and incident polarization from metallic nanohole arrays. The arrays have four-fold symmetry and thus do not possess any intrinsic chirality. We elucidate the role of surface plasmon polaritons (SPPs) in determining the extrinsic chirality and we verify the results by using finite-difference time-domain simulation. Our results have indicated the outgoing reflection arises from the interference between the nonresonant background, which preserves the input polarization, and the SPP radiation damping, which is linearly polarized but carries a different polarization defined by the vectorial field of SPPs. More importantly, the interference manifests various polarization states ranging from linear to elliptical across the SPP resonance. We analytically formulate the outgoing waves based on temporal coupled mode theory (CMT) and the results agree well with the experiment and simulation. From CMT, we find the polarization c...

  10. The Development of a Two-Dimensional Multielectrode Array for Visual Perception Research in the Mammalian Brain.

    Science.gov (United States)

    1980-12-01

    two areas called the primary visual cortex (Ari,; 17 of Brod;.iann) and the secondary visual cortex ( Area 18 of Brodmann ). Figure 4 shows the location...may improve our knowledge of the human visual system. Motivation for such) a project lies in two fundamental areas . The first area concerns the...seemingly unrelated areas : pattern recognition and human neurology. The array is designed to obtain r fi: e zi:ied data from the visial cortex of a

  11. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  12. A method to improve fluence resolution derived from two-dimensional detector array measurements for patient-specific IMRT verification using the information collected in dynalog files

    Science.gov (United States)

    Santiago, Juan Agustin Calama; Utrilla, Miguel Angel Infante; Rodriguez, Maria Elisa Lavado

    2015-01-01

    This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC) positions and used as input to the treatment planning system (TPS) to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D) phantom gamma test (3% local dose - 3 mm) for all of the treatment verifications, but in some dose–volume histogram (DVH) comparisons, we note sensitive differences for the planning target volume (PTV) coverage and for the maximum doses in at-risk organs (up to 3.5%). In dose–distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data. PMID:26150681

  13. A method to improve fluence resolution derived from two-dimensional detector array measurements for patient-specific IMRT verification using the information collected in dynalog files

    Directory of Open Access Journals (Sweden)

    Juan Agustin Calama Santiago

    2015-01-01

    Full Text Available This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC positions and used as input to the treatment planning system (TPS to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D phantom gamma test (3% local dose - 3 mm for all of the treatment verifications, but in some dose-volume histogram (DVH comparisons, we note sensitive differences for the planning target volume (PTV coverage and for the maximum doses in at-risk organs (up to 3.5%. In dose-distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data.

  14. Model of tunnelling through periodic array of quantum dots in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    I.Yu.Popov; S.A.Osipov

    2012-01-01

    A two-dimensional periodic array of quantum dots with two laterally coupled leads in a magnetic field is considered.The model of electron transport through the system based on the theory of self-adjoint extensions of symmetric operators is suggested.We obtain the formula for the transmission coefficient and investigate its dependence on the magnetic field.

  15. LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS

    Science.gov (United States)

    The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...array with parasitic elements, these elements are used in place of every alternate dipole, thereby eliminating the need of a twisted feed arrangement...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the

  16. Vertically Aligned Two-Dimensional Graphene-Metal Hydroxide Hybrid Arrays for Li-O2 Batteries.

    Science.gov (United States)

    Zhu, Jixin; Metzger, Michael; Antonietti, Markus; Fellinger, Tim-Patrick

    2016-10-05

    Lithium oxygen batteries (LOBs) are a very promising upcoming technology which, however, still suffers from low lifespan and dramatic capacities fading. Solid discharge products increase the contact resistance and block the electrochemically active electrodes. The resulting high oxidative potentials and formation of Li2CO3 due to electrolyte and carbon electrode decomposition at the positive electrode lead to irreversible deactivation of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) sites. Here we demonstrate a facile strategy for the scalable production of a new electrode structure constituted of vertically aligned carbon nanosheets and metal hydroxide (M(OH)x@CNS) hybrid arrays, integrating both favorable ORR and OER active materials to construct bifunctional catalysts for LOBs. Excellent lithium-oxygen battery properties with high specific capacity of 5403 mAh g(-1) and 12123 mAh g(-1) referenced to the carbon and M(OH)x weight, respectively, long cyclability, and low charge potentials are achieved in the resulting M(OH)x@CNS cathode architecture. The properties are explained by improved O2/ion transport properties and spatially limited precipitation of Li2O2 nanoparticles inside interstitial cavities resulting in high reversibility. The strategy of creating ORR and OER bifunctional catalysts in a single conductive hybrid component may pave the way to new cathode architectures for metal air batteries.

  17. Very Large Scale Integration of Nano-Patterned YBa2Cu3O7-delta Josephson Junctions in a Two-Dimensional Array

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane A; Anton, Steven; Wu, Stephen; Clarke, John; Dynes, Robert

    2009-09-01

    Very large scale integration of Josephson junctions in a two-dimensional series-parallel array has been achieved by ion irradiating a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} film through slits in a nano-fabricated mask created with electron beam lithography and reactive ion etching. The mask consisted of 15,820 high-aspect ratio (20:1), 35-nm wide slits that restricted the irradiation in the film below to form Josephson junctions. Characterizing each parallel segment k, containing 28 junctions, with a single critical current I{sub ck} we found a standard deviation in I{sub ck} of about 16%.

  18. Simple and rapid CD4 testing based on large-field imaging system composed of microcavity array and two-dimensional photosensor.

    Science.gov (United States)

    Saeki, Tatsuya; Sugamura, Yuriko; Hosokawa, Masahito; Yoshino, Tomoko; Lim, Tae-Kyu; Harada, Manabu; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2015-05-15

    This study presents a novel method for CD4 testing based on one-shot large-field imaging. The large-field imaging system was fabricated by a microcavity array and a two-dimensional (2D) photosensor within the desk-top-sized instrument. The microcavity array was employed to separate leukocytes from whole blood based on differences in the size of leukocytes and other blood cells. The large-field imaging system with lower side irradiation enabled acquisition of cell signatures with high signal-to-noise ratio, because the metallic substrate of the microcavity array obstructed excessive excitation light. In this setting, dual-color imaging of CD4(+) and CD8(+) T cells was achieved within the entire image area (64 mm(2)) in 2s. The practical performance of the large-field imaging system was demonstrated by determining the CD4/CD8 ratio in a few microliter of control whole blood as small as those obtained by a finger prick. The CD4/CD8 ratios measured using the large-field imaging system correlated well with those measured by microscopic analysis. These results indicate that our proposed system provides a simple and rapid CD4 testing for the application of HIV/AIDS treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in two-dimensional integrable billiards

    Science.gov (United States)

    Hsieh, Y. H.; Yu, Y. T.; Tuan, P. H.; Tung, J. C.; Huang, K. F.; Chen, Y. F.

    2017-02-01

    The trajectory equations for classical periodic orbits in the equilateral-triangular and circular billiards are systematically extracted from quantum stationary coherent states. The relationship between the phase factors of quantum stationary coherent states and the initial positions of classical periodic orbits is analytically derived. In addition, the stationary coherent states with noncoprime parametric numbers are shown to correspond to the multiple periodic orbits, which cannot be explicable in the one-particle picture. The stationary coherent states are further verified to be linked to the resonant modes that are generally observed in the experimental wave system excited by a localized and unidirectional source. The excellent agreement between the resonant modes and the stationary coherent states not only manifests the importance of classical features in experimental systems but also paves the way to manipulate the mesoscopic wave functions localized on the periodic orbits for applications.

  20. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yijing, E-mail: yzhng123@illinois.edu; Moore, Keegan J.; Vakakis, Alexander F. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); McFarland, D. Michael [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  1. Spatiotemporal periodicity of dislocation dynamics in a two-dimensional microfluidic crystal flowing in a tapered channel

    Science.gov (United States)

    Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K. Y.

    2016-10-01

    When a many-body system is driven away from equilibrium, order can spontaneously emerge in places where disorder might be expected. Here we report an unexpected order in the flow of a concentrated emulsion in a tapered microfluidic channel. The velocity profiles of individual drops in the emulsion show periodic patterns in both space and time. Such periodic patterns appear surprising from both a fluid and a solid mechanics point of view. In particular, when the emulsion is considered as a soft crystal under extrusion, a disordered scenario might be expected based on the stochastic nature of dislocation dynamics in microscopic crystals. However, an orchestrated sequence of dislocation nucleation and migration is observed to give rise to a highly ordered deformation mode. This discovery suggests that nanocrystals can be made to deform more controllably than previously thought. It can also lead to novel flow control and mixing strategies in droplet microfluidics.

  2. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun

    2016-03-14

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.

  3. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates.

    Science.gov (United States)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  4. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    Science.gov (United States)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  5. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection.

    Science.gov (United States)

    Montero, Lidia; Ibáñez, Elena; Russo, Mariateresa; di Sanzo, Rosa; Rastrelli, Luca; Piccinelli, Anna Lisa; Celano, Rita; Cifuentes, Alejandro; Herrero, Miguel

    2016-03-24

    Profiling of the main metabolites from several licorice (Glycyrrhiza glabra) samples collected at different locations is carried out in this work by using comprehensive two-dimensional liquid chromatography (LC × LC) coupled to diode array (DAD) and mass spectrometry (MS) detectors. The optimized method was based on the application of a HILIC-based separation in the first dimension combined with fast RP-based second dimension separation. This set-up was shown to possess powerful separation capabilities allowing separating as much as 89 different metabolites in a single sample. Identification and grouping of metabolites according to their chemical class were achieved using the DAD, MS and MS/MS data. Triterpene saponins were the most abundant metabolites followed by glycosylated flavanones and chalcones, whereas glycyrrhizic acid, as expected, was confirmed as the main component in all the studied samples. LC × LC-DAD-MS/MS was able to resolve these complex licorice samples providing with specific metabolite profiles to the different licorice samples depending on their geographical origin. Namely, from 19 to 50 specific compounds were exclusively determined in the 2D-chromatograms from the different licorice samples depending on their geographical origin, which can be used as a typical pattern that could potentially be related to their geographical location and authentication.

  6. Investigation of interpolation techniques for the reconstruction of the first dimension of comprehensive two-dimensional liquid chromatography-diode array detector data.

    Science.gov (United States)

    Allen, Robert C; Rutan, Sarah C

    2011-10-31

    Simulated and experimental data were used to measure the effectiveness of common interpolation techniques during chromatographic alignment of comprehensive two-dimensional liquid chromatography-diode array detector (LC×LC-DAD) data. Interpolation was used to generate a sufficient number of data points in the sampled first chromatographic dimension to allow for alignment of retention times from different injections. Five different interpolation methods, linear interpolation followed by cross correlation, piecewise cubic Hermite interpolating polynomial, cubic spline, Fourier zero-filling, and Gaussian fitting, were investigated. The fully aligned chromatograms, in both the first and second chromatographic dimensions, were analyzed by parallel factor analysis to determine the relative area for each peak in each injection. A calibration curve was generated for the simulated data set. The standard error of prediction and percent relative standard deviation were calculated for the simulated peak for each technique. The Gaussian fitting interpolation technique resulted in the lowest standard error of prediction and average relative standard deviation for the simulated data. However, upon applying the interpolation techniques to the experimental data, most of the interpolation methods were not found to produce statistically different relative peak areas from each other. While most of the techniques were not statistically different, the performance was improved relative to the PARAFAC results obtained when analyzing the unaligned data.

  7. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Instability and Death of Spiral Wave in a Two-Dimensional Array of Hindmarsh-Rose Neurons

    Science.gov (United States)

    Wang, Chun-Ni; Ma, Jun; Tang, Jun; Li, Yan-Long

    2010-02-01

    Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.

  8. Design and experimental verification of low-voltage two-dimensional CMOS electrophoresis platform with 32 × 32 sample/hold cell array

    Science.gov (United States)

    Yamaji, Yuuki; Niitsu, Kiichi; Nakazato, Kazuo

    2016-03-01

    Electrophoresis is widely used in biomedical applications. However, conventional (centimeter-order) electrophoresis requires a high-voltage power supply, which is not suitable for point-of-care testing (POCT). Electrophoresis is driven by electric fields, and miniaturization (from the centimeter order to the micrometer order) is effective for low-voltage operation. A CMOS platform is a cost-competitive and promising candidate for miniaturization and enables the integration of biomolecule manipulation by electrophoresis and its electrochemical sensing. These features will contribute to the development of a biochemical analyzer called the micro-total analysis system (µ-TAS). To realize a truly portable electrophoresis system, we present the design and experimental verification of a low-voltage (<1 V), two-dimensional CMOS electrophoresis platform with 32 × 32 sample/hold cell array. Experimental results showed successful constant voltage outputs to each electrode. By miniaturizing the electrode structure to a 60 µm pitch, we achieved sufficient electric field strength even at low voltages.

  9. Electrodeposition of flake-like Cu2O on vertically aligned two-dimensional TiO2 nanosheet array films for enhanced photoelectrochemical properties

    Science.gov (United States)

    Yang, Lei; Zhang, Miao; Zhu, Kerong; Lv, Jianguo; He, Gang; Sun, Zhaoqi

    2017-01-01

    A novel Cu2O/TNS composite structure of single crystal TiO2 nanosheet (TNS) arrays decorated with flake-like Cu2O were synthesized by a facile hydrothermal reaction followed by the electrodeposition process. The effects of deposition potential on the microstructure, morphology, and optical property of the thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectrophotometer. When the deposition potential is higher than -0.4 V, peaks corresponding to Cu appear, meanwhile, flake-like Cu2O become agglomerating, and transform into dense Cu2O particles. Additionally, photoelectrochemical experiments indicate that the films deposited at -0.4 V show the lowest resistivity and highest exciton separation efficiency. This enhanced photoelectrochemical properties can be explained by synergistic effect of p-type flake-like Cu2O and n-type TiO2 heterojunctions combined with two-dimensional TiO2 nanosheet with exposed highly reactive {001} facets.

  10. Derivatization technique to increase the spectral selectivity of two-dimensional Fourier transform infrared focal plane array imaging: analysis of binder composition in aged oil and tempera paint.

    Science.gov (United States)

    Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

    2014-01-01

    The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF4), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF4 derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds.

  11. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    Science.gov (United States)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  12. SU-E-CAMPUS-T-04: Measurement of Proton Pencil Beam Spot Profile Using Cherenkov Radiation in Two Dimensional Optical Fiber Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; SHIN, D; Park, J; Lim, Y; Lee, S; Kim, J [National Cancer Center, Goyang, Gyeonggi-do (Korea, Republic of); Son, J [National Cancer Center, Goyang, Gyeonggi-do, Korea University, Seoul, Gyeonggi-do (Korea, Republic of); Hwang, U [National Medical Center in Korea, Seoul (Korea, Republic of)

    2014-06-15

    Purpose: Proton therapy aims to deliver a high dose in a well-defined target volume while sparing the healthy surrounding tissues thanks to their inherent depth dose characteristic (Bragg peak). In proton therapy, several techniques can be used to deliver the dose into the target volume. The one that allows the best conformity with the tumor, is called PBS (Pencil Beam Scanning). The measurement of the proton pencil beam spot profile (spot size) and position is very important for the accurate delivery of dose to the target volume with a good conformity. Methods: We have developed a fine segmented detector array to monitor the PBS. A prototype beam monitor using Cherenkov radiation in clear plastic optical fibers (cPOF) has been developed for continuous display of the pencil beam status during the therapeutic proton Pencil Beam Scanning mode operation. The benefit of using Cherenkov radiation is that the optical output is linear to the dose. Pedestal substraction and the gain adjustment between channels are performed. Spot profiles of various pencil beam energies(100 MeV to 226 MeV) are measured. Two dimensional gaussian fit is used to analyze the beam width and the spot center. The results are compared with that of Lynx(Scintillator-based sensor with CCD camera) and EBT3 Film. Results: The measured gaussian widths using fiber array system changes from 13 to 5 mm for the beam energies from 100 to 226 MeV. The results agree well with Lynx and Film within the systematic error. Conclusion: The results demonstrate good monitoring capability of the system. Not only measuing the spot profile but also monitoring dose map by accumulating each spot measurement is available. The x-y monitoing system with 128 channel readout will be mounted to the snout for the in-situ real time monitoring.

  13. Characterization of a two-dimensional liquid-filled ion chamber detector array used for verification of the treatments in radiotherapy.

    Science.gov (United States)

    Markovic, Miljenko; Stathakis, Sotirios; Mavroidis, Panayiotis; Jurkovic, Ines-Ana; Papanikolaou, Nikos

    2014-05-01

    The purpose of the study is to investigate the characteristics of a two-dimensional (2D) liquid-filled ion chamber detector array, which is used for the verification of radiotherapy treatment plans that use small field sizes of up to 10 × 10 cm. The device used in this study was Octavius 1000 SRS model (PTW, Freiburg, Germany). Its 2D array of detectors consists of 977 liquid-filled ion chambers arranged over an area of 11 × 11 cm. The size of the detectors is 2.3 × 2.3 × 0.5 mm (volume of 0.003 cm(3)) and their spacing in the inner area of 5.5 × 5.5 cm is 2.5 mm center-to-center, whereas in the outer area it is 5 mm center-to-center. The detector reproducibility, dose linearity, and sensitivity to positional changes of the collimator were tested. Also, the output factors of field sizes ranging from 0.5 × 0.5 to 10 × 10 cm(2) both for open and wedged fields have been measured and compared against those measured by a pin-point ionization chamber, liquid filled microchamber, SRS diode, and EDR2 film. Its short-term reproducibility was within 0.2% and its medium and long-term reproducibility was within 0.5% (verified with air ionization chamber absolute dose measurements), which is an excellent result taking into account the daily fluctuation of the linear accelerator and the errors in the device setup reproducibility. The dose linearity and dose rate dependence were measured in the range of 0.5-85 Gy and 0.5-10 Gy min(-1), respectively, and were verified with air ionization chamber absolute dose measurements was within 3%. The measurements of the sensitivity showed that the 2D Array could detect millimetric collimator positional changes. The measured output factors showed an agreement of better than 0.3% with the pinpoint chamber and microliquid filled chamber for the field sizes between 3 × 3 and 10 × 10 cm(2). For field sizes down to 1 × 1 cm(2), the agreement with SRS diode and microliquid filled chamber is better than 2%. The measurements of open and

  14. Characterization of a two-dimensional liquid-filled ion chamber detector array used for verification of the treatments in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, Miljenko, E-mail: markovic@livemail.uthscsa.edu; Stathakis, Sotirios; Mavroidis, Panayiotis; Jurkovic, Ines-Ana; Papanikolaou, Nikos [Department of Radiation Oncology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78229 (United States)

    2014-05-15

    Purpose: The purpose of the study is to investigate the characteristics of a two-dimensional (2D) liquid-filled ion chamber detector array, which is used for the verification of radiotherapy treatment plans that use small field sizes of up to 10 × 10 cm. Methods: The device used in this study was Octavius 1000 SRS model (PTW, Freiburg, Germany). Its 2D array of detectors consists of 977 liquid-filled ion chambers arranged over an area of 11 × 11 cm. The size of the detectors is 2.3 × 2.3 × 0.5 mm (volume of 0.003 cm{sup 3}) and their spacing in the inner area of 5.5 × 5.5 cm is 2.5 mm center-to-center, whereas in the outer area it is 5 mm center-to-center. The detector reproducibility, dose linearity, and sensitivity to positional changes of the collimator were tested. Also, the output factors of field sizes ranging from 0.5 × 0.5 to 10 × 10 cm{sup 2} both for open and wedged fields have been measured and compared against those measured by a pin-point ionization chamber, liquid filled microchamber, SRS diode, and EDR2 film. Results: Its short-term reproducibility was within 0.2% and its medium and long-term reproducibility was within 0.5% (verified with air ionization chamber absolute dose measurements), which is an excellent result taking into account the daily fluctuation of the linear accelerator and the errors in the device setup reproducibility. The dose linearity and dose rate dependence were measured in the range of 0.5–85 Gy and 0.5–10 Gy min{sup −1}, respectively, and were verified with air ionization chamber absolute dose measurements was within 3%. The measurements of the sensitivity showed that the 2D Array could detect millimetric collimator positional changes. The measured output factors showed an agreement of better than 0.3% with the pinpoint chamber and microliquid filled chamber for the field sizes between 3 × 3 and 10 × 10 cm{sup 2}. For field sizes down to 1 × 1 cm{sup 2}, the agreement with SRS diode and microliquid filled

  15. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    Directory of Open Access Journals (Sweden)

    Vorwerk Hilke

    2011-02-01

    Full Text Available Abstract Purpose To verify the dose distribution and number of monitor units (MU for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany. Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany. Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99

  16. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors.

    Science.gov (United States)

    Mroczek, Tomasz

    2016-09-10

    Recently launched thin-layer chromatography-mass spectrometry (TLC-MS) interface enabling extraction of compounds directly from TLC plates into MS ion source was unusually extended into two-dimensional thin-layer chromatography/high performance liquid chromatography (2D, TLC/HPLC) system by its a direct connection to a rapid resolution 50×2.1mm, I.D. C18 column compartment followed by detection by diode array (DAD) and electrospray ionisation time-of-flight mass spectrometry (ESI-TOF-MS). In this way, even not separated bands of complicated mixtures of natural compounds could be analysed structurally, only within 1-2min after development of TLC plates. In comparison to typically applied TLC-MS interface, no ion suppression for acidic mobile phases was observed. Also, substantial increase in ESI-TOF-MS sensitivities and quality of spectra, were noticed. It has been utilised in combination with TLC- based bioautographic approaches of acetylcholinesterase (AChE) inhibitors, However, it can be also applied in any other procedures related to bioactivity (e.g. 2,2-Diphenyl-1-picryl-hydrazyl-DPPH screen test for radicals). This system has been also used for determination of half maximal inhibitory concentration (IC50 values) of the active inhibitor-galanthamine, as an example. Moreover, AChE inhibitory potencies of some of purified plant extracts, never studied before, have been quantitatively measured. This is first report of usage such the 2D TLC/HPLC/MS system both for qualitative and quantitative evaluation of cholinesterase inhibitors in biological matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Model of tunnelling through periodic array of quantum dots

    Directory of Open Access Journals (Sweden)

    Meynster Dmitry

    2017-01-01

    Full Text Available Several explicitly solvable models of electron tunnelling in a system of single and double two-dimensional periodic arrays of quantum dots with two laterally coupled leads in a homogeneous magnetic field are constructed. First, a model of single layer formed by periodic array of zero-range potentials is described. The Landau operator (the Schrodinger operator with a magnetic field with point-like interactions is the system Hamiltonian. We deal with two types of the layer lattices: square and honeycomb. The periodicity condition gives one an invariance property for the Hamiltonian in respect to magnetic translations group. The consideration of double quantum layer reduces to the replacement of the basic cell for the single layer by a cell including centers of different layers. Two variants of themodel for the double layer are suggested: with direct tunneling between the layers and with the connecting channels (segments in the model between the layers. The theory of self-adjoint extensions of symmetric operators is a mathematical background of the model. The third stage of the construction is the description of leads connection. It is made by the operator extensions theory method too. Electron tunneling from input lead to the output lead through the double quantum layer is described. Energy ranges with extremely small (practically, zero transmission were found. Dependencies of the transmission coefficient (particularly, “zero transmission bands” positions on the magnetic field, the energy of electron and the distance between layers are investigated. The results are compared with the corresponding single-layer transmission.

  18. Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes

    Science.gov (United States)

    2010-01-01

    To fabricate quantum dot arrays with programmable periodicity, functionalized DNA origami nanotubes were developed. Selected DNA staple strands were biotin-labeled to form periodic binding sites for streptavidin-conjugated quantum dots. Successful formation of arrays with periods of 43 and 71 nm demonstrates precise, programmable, large-scale nanoparticle patterning; however, limitations in array periodicity were also observed. Statistical analysis of AFM images revealed evidence for steric hindrance or site bridging that limited the minimum array periodicity. PMID:20681601

  19. A matrix-exponential decomposition based time-domain method for calculating the defect states of scalar waves in two-dimensional periodic structures

    Science.gov (United States)

    Su, Xiao-Xing; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-05-01

    A time-domain method for calculating the defect states of scalar waves in two-dimensional (2D) periodic structures is proposed. In the time-stepping process of the proposed method, the column vector containing the spatially sampled field values is updated by multiplying it with an iteration matrix, which is written in a matrix-exponential form. The matrix-exponential is first computed by using the Suzuki's decomposition based technique of the fourth order, in which the Floquet-Bloch boundary conditions are incorporated. The obtained iteration matrix is then squared to enlarge the time-step that can be used in the time-stepping process (namely, the squaring technique), and the small nonzero elements in the iteration matrix is finally pruned to improve the sparse structure of the matrix (namely, the pruning technique). The numerical examples of the super-cell calculations for 2D defect-containing phononic crystal structures show that, the fourth order decomposition based technique for the matrix-exponential computation is much more efficient than the frequently used precise integration technique (PIT) if the PIT is of an order greater than 2. Although it is not unconditionally stable, the proposed time-domain method is particularly efficient for the super-cell calculations of the defect states in a 2D periodic structure containing a defect with a wave speed much higher than those of the background materials. For this kind of defect-containing structures, the time-stepping process can run stably for a sufficiently large number of the time-steps with a time-step much larger than the Courant-Friedrichs-Lewy (CFL) upper limit, and consequently the overall efficiency of the proposed time-domain method can be significantly higher than that of the conventional finite-difference time-domain (FDTD) method. Some physical interpretations on the properties of the band structures and the defect states of the calculated periodic structures are also presented.

  20. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Corde, S.; Jackson, M. [Department of Radiation Oncology, Prince of Wales Hospital, New South Wales 2031 (Australia)

    2013-11-15

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly {sup 192}Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m{sup 2}/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the {sup 192}Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a {sup 192}Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm

  1. Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos

    Science.gov (United States)

    Chen, Sheng-Bing; Wen, Ji-Hong; Wang, Gang; Wen, Xi-Sen

    2013-07-01

    Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.

  2. Periodic Arrays of M2-Branes

    CERN Document Server

    Jeon, Imtak; Richmond, Paul

    2012-01-01

    We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms of fermions, seven transverse scalars, a non-dynamical gauge field and an additional scalar `dual gluon'. Upon further T-duality on a transverse torus we obtain a non-manifest-Lorentz-invariant description of five-dimensional maximally supersymmetric Yang-Mills. Here the additional scalar field can be thought of as the components of a two-form along the torus. This action can be viewed as an M-theory description of M5-branes on ${\\mathbb T}^3$.

  3. Stability of periodic arrays of vortices

    CERN Document Server

    Dauxois, T; Tuckerman, L S; Dauxois, Thierry; Fauve, Stephan; Tuckerman, Laurette

    1995-01-01

    The stability of periodic arrays of Mallier-Maslowe or Kelvin-Stuart vortices is discussed. We derive with the energy-Casimir stability method the nonlinear stability of this solution in the inviscid case as a function of the solution parameters and of the domain size. We exhibit the maximum size of the domain for which the vortex street is stable. By adapting a numerical time-stepping code, we calculate the linear stability of the Mallier-Maslowe solution in the presence of viscosity and compensating forcing. Finally, the results are discussed and compared to a recent experiment in fluids performed by Tabeling et al.~[Europhysics Letters {\\bf 3}, 459 (1987)]. Electromagnetically driven counter-rotating vortices are unstable above a critical electric current, and give way to co-rotating vortices. The importance of the friction at the bottom of the experimental apparatus is also discussed.

  4. L型阵列的二维DOA估计方法%Method of two-dimensional DOA estimation for L-shaped array

    Institute of Scientific and Technical Information of China (English)

    景小荣; 刘雪峰

    2016-01-01

    低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典的二维(two-dimensional,2D)波达方向(direction of arrival,DOA)算法存在估计精度低的缺点。针对该问题,充分利用 L 型阵列接收数据的自、互相关信息,提出一种适用于低 SNR 及小接收快拍数环境下的2D DOA 估计新方法。该方法首先通过解析优化2D 谱峰搜索问题,获得方位角与仰角之间的特定约束关系,进而将包含2D 角度参量的目标函数转化为只包含一维(one-di-mensional,1 D)角度参量,即可通过1 D 谱峰搜索获得方位角(或仰角)估计值,最后再次利用该约束关系求得与之对应的仰角(或方位角)估计值。该方法只需1 D 谱峰搜索,而且所得2D 角度估计参数可自动实现配对。计算机仿真验证了该方法在低 SNR 及小接收快拍数情况下的有效性。%Under low SNR region or with the small number of the snapshots,the classic two-dimensional (2D)direction-of-arrival (DOA)algorithms have the drawback of low estimation accuracy.To resolve the problem,the paper presents a new method of 2D DOA estimation suitable for low signal-to-noise (SNR)region and small number of the snapshots by fully tak-ing advantage of the autocorrelation and cross-correlation information of the received snapshots of L-shape sensor arrays. Analytically optimizing the problem of 2D spectrum peak search,we obtain the specific constraint relationship between the azimuth and elevation.On the basis of it,the method firstly converts the objective function with 2D angle parameter into the one with one-dimensional (1 D)angle parameter.Then the azimuth (or elevation)is obtained by 1 D searching.Finally, the elevation (or azimuth)can be estimated according to the specific constraint relationship between the azimuth and eleva-tion.The method only needs 1 D spectrum peak searching,and the estimated azimuth and elevation can be

  5. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  6. Acoustic Bloch oscillations in a two-dimensional phononic crystal.

    Science.gov (United States)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  7. Very Large Scale Integration of Nano-Patterned YBa2Cu3O7-delta Josephson Junctions in a Two-Dimensional Array

    Science.gov (United States)

    2010-03-26

    suggested that it may be possible to use incommensurate area SQUID arrays as radio frequency ( RF ) amplifiers.32 3 Shane A. Cybart et al. The layout of...our array is shown in Figure 1. For efficient coupling of RF in future experiments we chose a microstrip line configuration with SQUID loops cut into...variations of the process to reproduce single junctions,20–24 series arrays of tens of junctions,25,26 and a series array of 280 SQUIDs .27 Here we report

  8. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  9. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  10. A Vacuum Ultraviolet Absorption Array Spectrometer as a Selective Detector for Comprehensive Two-Dimensional Gas Chromatography: Concept and First Results.

    Science.gov (United States)

    Gröger, Thomas; Gruber, Beate; Harrison, Dale; Saraji-Bozorgzad, Mohammad; Mthembu, Makhosazana; Sutherland, Aimée; Zimmermann, Ralf

    2016-03-15

    Fast and selective detectors are very interesting for comprehensive two-dimensional gas chromatography (GC × GC). This is particularly true if the detector system can provide additional spectroscopic information on the compound structure and/or functionality. Other than mass spectrometry (MS), only optical spectroscopic detectors are able to provide selective spectral information. However, until present the application of optical spectroscopy technologies as universal detectors for GC × GC has been restricted mainly due to physical limitations such as insufficient acquisition speed or high detection limits. A recently developed simultaneous-detection spectrometer working in the vacuum ultraviolet (VUV) region of 125-240 nm overcomes these limitations and meets all the criteria of a universal detector for GC × GC. Peak shape and chromatographic resolution is preserved and unique spectral information, complementary to mass spectrometry data, is gained. The power of this detector is quickly recognized as it has the ability to discriminate between isomeric compounds or difficult to separate structurally related isobaric species; thus, it provides additional selectivity. A further promising feature of this detector is the data analysis concept of spectral filtering, which is accomplished by targeting special electronic transitions that allows for a fast screening of GC × GC chromatograms for designated compound classes.

  11. 二维稀疏相控阵声场优化及阵元故障影响分析%Optimization of Acoustic Field of Two-Dimensional Sparse Phased Array and the Effect Analysis of Element Errors

    Institute of Scientific and Technical Information of China (English)

    梅艳莹; 杨涛; 刘玉佼

    2014-01-01

    To address the issue of the grating lobes and side lobes of the acoustic field of two-dimensional sparse ultrasonic phased array,the formula for calculating the directivity of two-dimensional sparse ultrasonic phased array is deduced,and the transmit array and the receive array are interleavingly placed to eliminate grating lobes and sup-press side lobes.After optimization,the transverse and lateral scanning ranges have been expanded from 30°to 60°. Considering the effect of the damaged element on the directivity of acoustic field,the function of the acoustic field di-rectivity versus the position of the damaged element is established.the acoustic field simulation analysis shows that the element errors near the array center result in a maximum increase in side lobes of 20 dB,and the main lobe de-creases 6 dB independent of the location of the damaged element.When the damaged elements of the transmit array and the receive array are in the same place,the influence on array directivity reaches its maximum.%针对二维稀疏超声相控阵声场分布中的栅瓣和旁瓣问题,推导了二维稀疏超声相控阵的指向性公式,并利用发射阵列和接收阵列交错分布的方式消除栅瓣及抑制旁瓣,从而优化声场特性,优化后横向和侧向扫描范围由30°扩大到60°。建立了优化后阵列声场指向性与损坏阵元位置的函数关系式。声场指向性仿真结果表明,距阵列中心越近的阵元损坏时旁瓣升高越多,单个阵元损坏导致一级旁瓣最多升高20 dB,主瓣下降约6 dB,且与损坏阵元位置无关;相同位置的发射阵列和接收阵列阵元同时损坏时,对声场特性影响达到最大。

  12. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  13. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  14. Feasibility study, software design, layout and simulation of a two-dimensional Fast Fourier Transform machine for use in optical array interferometry

    Science.gov (United States)

    Boriakoff, Valentin

    1994-01-01

    The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).

  15. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests.

    Science.gov (United States)

    Brualla-González, Luis; Gómez, Faustino; Vicedo, Aurora; González-Castaño, Diego M; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Roselló, Joan V; Pardo-Montero, Juan

    2012-08-21

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development.

  16. Periodic Arrays of Film-Coupled Cubic Nanoantennas as Tunable Plasmonic Metasurfaces

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that a two-dimensional periodic array of metallic nanocubes in close proximity to a metallic film acts as a metasurface with tunable absorbance. The presence of a metallic film underneath the array of plasmonic nanocubes leads to an impedance matched plasmonic metasurface enhancing up to 4 times the absorbance of incident radiation, in the spectral region below 500 nm. The absorbance spectrum is weakly dependent on the angle of incidence and state of polarization of incident light a functionality which can find application in thermo-photovoltaics. Our calculations are based on a hybrid layer-multiple-scattering (hLMS method based on a discrete-dipole approximation (DDA/T-matrix point matching method.

  17. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    Science.gov (United States)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-04-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γ avg <0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  18. Phononic thermal resistance due to a finite periodic array of nano-scatterers

    Science.gov (United States)

    Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier

    2016-07-01

    The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5-100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.

  19. Phononic thermal resistance due to a finite periodic array of nano-scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier [Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne (France)

    2016-07-28

    The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.

  20. Discovery of hard-magnetic domains in two-dimensional arrays of soft-magnetic Fe{sub 3}O{sub 4} nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ji; Sun, Shuangshuang; Wang, Tiantian; Chen, Kezheng, E-mail: kchen@qust.edu.cn [Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2015-08-21

    In this study, abnormal hard-magnetic domains were discovered in Fe{sub 3}O{sub 4}@C composite material, in which well-ordered 16-nm-sized Fe{sub 3}O{sub 4} cubes were tightly embedded into carbon sheets of tens of nanometers thick. It was found that ca. 40 columns of Fe{sub 3}O{sub 4} nanocubes magnetically self-assembled into a single strip-type domain with perpendicular magnetic anisotropy. More strikingly, remarkable domain misalignments, which were very similar to common edge dislocations among atomic planes in crystal lattices, were clearly observed and termed as “domain dislocation” in this work. The hard-magnetic properties of Fe{sub 3}O{sub 4}@C material, including large coercivity of 2150 Oe, high M{sub R}/M{sub S} value of 0.9, and strong anisotropy energy of 3.772 × 10{sup 5} erg/cm{sup 3}, were further ascertained by carefully designed electromagnetic absorption contrast experiments. It is anticipated that the discovery of hard-magnetic domains and domain dislocations within 2-D arrays of soft-magnetic nanomaterials will shed new light on the development of high-density perpendicular magnetic recording industry.

  1. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  2. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  3. Stirring by Periodic Arrays of Microswimmers

    CERN Document Server

    de Graaf, Joost

    2016-01-01

    The interaction between swimming microorganisms or artificial self-propelled colloids and passive (tracer) particles in a fluid leads to enhanced diffusion of the tracers. This enhancement has attracted strong interest, as it could lead to new strategies to tackle the difficult problem of mixing on a microfluidic scale. Most of the theoretical work on this topic has focused on hydrodynamic interactions between the tracers and swimmers in a bulk fluid. However, in simulations, periodic boundary conditions (PBCs) are often imposed on the sample and the fluid. Here, we theoretically analyze the effect of PBCs on the hydrodynamic interactions between tracer particles and microswimmers. We formulate an Ewald sum for the leading-order stresslet singularity produced by a swimmer to probe the effect of PBCs on tracer trajectories. We find that introducing periodicity into the system has a surprisingly significant effect, even for relatively small swimmer-tracer separations. We also find that the bulk limit is only re...

  4. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Deckers, Elke [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Claeys, Claus; Atak, Onur [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Groby, Jean-Philippe; Dazel, Olivier [Laboratiore d' Acoustique de l' Universiteé du Maine, L' Université Nantes Angers Le Mans, Université du Maine, CNRS, UMR-6613 CNRS, Avenue Olivier Messiaen, 72085 Le Mans (France); Desmet, Wim [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium)

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  5. Fabrication of two-dimensional micro patterns for adaptive optics by using laser interference lithography

    Science.gov (United States)

    Li, Xinghui; Cai, Yindi; Aihara, Ryo; Shimizu, Yuki; Ito, So; Gao, Wei

    2015-07-01

    This paper presents a fabrication method of two-dimensional micro patterns for adaptive optics with a micrometric or sub-micrometric period to be used for fabrication of micro lens array or two-dimensional diffraction gratings. A multibeam two-axis Lloyd's mirror interferometer is employed to carry out laser interference lithography for the fabrication of two-dimensional grating structures. In the proposed instrument, the optical setup consists of a light source providing a laser beam, a multi-beam generator, two plane mirrors to generate a two-dimensional XY interference pattern and a substrate on which the XY interference pattern is to be exposed. In this paper, pattern exposure tests are carried out by the developed optical configuration optimized by computer simulations. Some experimental results of the XY pattern fabrication will be reported.

  6. Dynamics of two disks settling in a two-dimensional narrow channel: From periodic motion to vertical chain in Oldroyd-B fluid

    CERN Document Server

    Pan, Tsorng-Whay

    2016-01-01

    In this article we present a numerical study of the dynamics of two disks settling in a narrow vertical channel filled with Oldroyd-B fluid. Two kinds of particle dynamics are obtained: (i) periodic interaction between two disks and (ii) the chain formation of two disks. For the periodic interaction of two disks, two different motions are obtained: (a) two disks stay far apart and interact periodically and (b) two disks interact closely and then far apart in a periodic way, like the drafting, kissing and tumbling of two disks sedimenting in Newtonian fluid, due to the lack of strong enough elastic force. For the formation of two disk chain occurred at higher values of the elasticity number, it is either a tilted chain or a vertical chain. The tilted chain can be obtained for either that the elasticity number is less than the critical value for having the vertical chain or that the Mach number is greater than the critical value for a long body to fall broadside-on. Hence the values of the elasticity number and...

  7. The Two-dimensional Electromagnetic Scattering from Periodic Chiral Structures and Its Finite Element Approximation%周期手性介质中二维电磁散射问题及有限元逼近

    Institute of Scientific and Technical Information of China (English)

    张德悦; 马富明

    2004-01-01

    In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.

  8. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  9. Fast Computation Methods Research for Two Dimensional MUSIC Spectrum Based on Circular Array%圆阵二维 MUSIC 谱快速计算方法研究

    Institute of Scientific and Technical Information of China (English)

    杜政东; 魏平; 赵菲; 尹文禄

    2015-01-01

    针对二维波达方向估计时 MUSIC 谱的快速计算问题,研究了均匀圆阵变换到虚拟线阵的 MUSIC 算法(UCA-ULA-MUSIC)、流形分离 MUSIC 算法(MS-MUSIC)、傅立叶域线性求根 MUSIC 算法(FD-Line-Search-MU-SIC)、基于 FFT 的2n 元均匀圆阵 MUSIC 算法(2n-UCA-FFT-MUSIC)与基于 FFT 的任意圆阵 MUSIC 算法(ACA-FFT-MUSIC)。对各种算法快速计算二维 MUSIC 谱的实现步骤进行了总结。在此基础上,给出了各算法计算二维MUSIC 谱的计算复杂度表达式,并以传统方法为参考,对比了各种快速算法相对于传统方法的计算复杂度比值;同时,针对不同的阵列形式,对适用的快速算法的测向性能进行了仿真对比。根据分析和对比的结果,指出 MS-MUSIC 算法与 ACA-FFT-MUSIC 算法具有更高的工程应用价值,由具体的情况单独或分频段联合使用 MS-MUSIC算法与 ACA-FFT-MUSIC 算法,可以使测向系统较好的兼顾测向性能与时效性。%According to the fast computation problem of MUSIC spectrum in two dimensional direction of arrival estimation, the fast algorithms by manifold transformation or spectrum function transformation are studied.The implementation steps of computation method for two dimensional MUSIC spectrum by these algorithms are summarized.Furthermore,expressions for computational complexity of discussed algorithms in computing two dimensional MUSIC spectrum are presented.With refer-ence to the conventional method,the ratio of computational complexity of discussed algorithms is compared.Meanwhile,for different circular arrays,the direction finding performance of applicable algorithms is compared by simulation.It is proved that the MUSIC algorithm based on Manifold Separation (MS-MUSIC)and Fast Fourier Transformation (FFT)which suits to arbitrary circular array (ACA-FFT-MUSIC)have higher engineering value according to the results of analysis and com-parison.The performance and

  10. Transverse impedance of a periodic array of cavities

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    1999-06-01

    Full Text Available We examine the transverse impedance of a periodic array of cavities in a beam pipe at high frequency. The calculation is an extension of a previous one for the longitudinal impedance of a periodic array of azimuthally symmetric pillboxes, for which only TM modes were needed. In the present case, we must include TE modes as well. In addition, we extend the applicability of the previous calculation by including an extra term in the coupling kernel so that the results are valid for all values of the ratio of the cavity length to the period of the structure (all values of the ratio of iris thickness to structure period. In spite of the presence of TE modes, we find that the high frequency limit of the transverse impedance is simply (2/ka^{2} times the corresponding limit of the longitudinal impedance, just as it is for the resistive wall impedances, a relation which occurs frequently for azimuthally symmetric structures. Finally, we present numerical results as well as approximate expressions for the impedance per period, valid for all ratios of cavity length to structure period.

  11. Fabrication of periodic gold nanocup arrays using colloidal lithography

    Energy Technology Data Exchange (ETDEWEB)

    De Vetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Alvine, Kyle J.

    2017-09-02

    Within recent years, the field of plasmonics has exploded as researchers have demonstrated exciting applications related to chemical and optical sensing in combination with new nanofabrication techniques. A plasmon is a quantum of charge density oscillation that lends nanoscale metals such as gold and silver unique optical properties. In particular, gold and silver nanoparticles exhibit localized surface plasmon resonances—collective charge density oscillations on the surface of the nanoparticle—in the visible spectrum. Here, we focus on the fabrication of periodic arrays of anisotropic plasmonic nanostructures. These half-shell (or nanocup) structures can exhibit additional unique light-bending and polarization dependent optical properties that simple isotropic nanostructures cannot. Researchers are interested in the fabrication of periodic arrays of nanocups for a wide variety of applications such as low-cost optical devices, surface-enhanced Raman scattering, and tamper indication. We present a scalable technique based on colloidal lithography in which it is possible to easily fabricate large periodic arrays of nanocups using spin-coating and self-assembled commercially available polymeric nanospheres. Electron microscopy and optical spectroscopy from the visible to near-IR was performed to confirm successful nanocup fabrication. We conclude with a demonstration of the transfer of nanocups to a flexible, conformal adhesive film.

  12. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  13. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, M; Aldoohan, S; Sonnad, J; Ahmad, S; Ali, I [University of Oklahoma Health Science Center, Oklahoma City, OK (United States)

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: The dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.

  14. Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension.

    Science.gov (United States)

    Cimrák, I

    2016-11-01

    Recently, computational modelling has been successfully used for determination of collision rates for rare cell capture in periodic obstacle arrays. The models were based on particle advection simulations where the cells were advected according to velocity field computed from two dimensional Navier-Stokes equations. This approach may be used under the assumption of very dilute cell suspensions where no mutual cell collisions occur. We use the object-in-fluid framework to demonstrate that even with low cell-to-fluid ratio, the optimal geometry of the obstacle array significantly changes. We show computational simulations for ratios of 3.5, 6.9 and 10.4% determining the optimal geometry of the periodic obstacle arrays. It was already previously demonstrated that cells in periodic obstacle arrays follow trajectories in two modes: the colliding mode and the zig-zag mode. The colliding mode maximizes the cell-obstacle collision frequency. Our simulations reveal that for dilute suspensions and for suspensions with cell-to-fluid ratio 3.5%, there is a range of column shifts for which the cells follow colliding trajectories. However we showed, that for 6.9 and 10.4%, the cells never follow colliding trajectories.

  15. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  16. X-ray Phase Imaging Microscopy with Two-Dimensional Knife-Edge Filters

    Science.gov (United States)

    Choi, Jaeho; Park, Yong-Sung

    2012-04-01

    A novel scheme of X-ray differential phase imaging was implemented with an array source and a two-dimensional Foucault knife-edge (2DFK). A pinhole array lens was employed to manipulate the X-ray beam on the Fourier space. An emerging biaxial scanning procedure was also demonstrated with the periodic 2DFK. The differential phase images (DPIs) of the midrib in a leaf of a rose bush were visualized to verify the phase imaging of biological specimens by the proposed method. It also has features of depicting multiple-stack phase images, and rendering morphological DPIs, because it acquires pure phase information.

  17. 周期子波在二维声辐射和声散射中的应用%On Reducing High Computational Cost with Periodic Wavelets in Solving Two-Dimensional Acoustic Radiation and Scattering

    Institute of Scientific and Technical Information of China (English)

    文立华; 张京妹; 孙进才

    2001-01-01

    Traditional methods for solving acoustic problems in engineering often require the solution of non-symmetric full matrix, whose dimension may be even higher than 10 000 and thus computational cost becomes quite high. To overcome this serious shortcoming, we propose a new periodic wavelet approach for the Helmholtz integral-equation solution of two-dimensional acoustic radiation and scattering over curved computation domain. We expand the boundary quantities in terms of periodic and orthogonal wavelets and we obtain the algebraic equations needed for solving the acoustic problems with Dirichlet, Neumann and mixed conditions. We evaluate the coefficients with fast wavelet transform. The advantage of the new approach is a highly sparse matrix system. We compare the numerical results obtained with our new approach, boundary element method or analytical solutions; the numerical results, as given in Table 1, show that our new approach converges rapidly and is of good accuracy.%提出了一种新的求解二维Helmholtz积分方程的方法。它通过将边界量用周期子波展开,将Helmholtz积分方程化为一组代数方程求解。即可求解Dirichlet、Neumann问题,也可求解混合边值问题。方程的系数形成可用快速子波变换。用该方法形成的Helmholtz积分方程的系数矩阵是一稀疏矩阵。这样大大提高了计算效率。本文算例表明:该方法收敛快,精度高,相同的精度下,本文方法求解的未知量大大少于边界元所用未知量。

  18. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  19. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  20. Enhanced optical absorbance and fabrication of periodic arrays on nickel surface using nanosecond laser

    Science.gov (United States)

    Fu, Jinxiang; Liang, Hao; Zhang, Jingyuan; Wang, Yibo; Liu, Yannan; Zhang, Zhiyan; Lin, Xuechun

    2017-04-01

    A hundred-nanosecond pulsed laser was employed to structure the nickel surface. The effects of laser spatial filling interval and laser scanning speed on the optical absorbance capacity and morphologies on the nickel surface were experimentally investigated. The black nickel surface covered with dense micro/nanostructured broccoli-like clusters with strong light trapping capacity ranging from the UV to the near IR was produced at a high laser scanning speed up to v=100 mm/s. The absorbance of the black nickel is as high as 98% in the UV range of 200-400 nm, more than 97% in the visible spectrum, ranging from 400 to 800 nm, and over 90% in the IR between 800 and 2000 nm. In addition, when the nickel surface was irradiated in two-dimensional crossing scans by laser with different processing parameters, self-organized and shape-controllable structures of three-dimensional (3D) periodic arrays can be fabricated. Compared with ultrafast laser systems previously used for such processing, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. This nickel surface structured technique may be applicable in optoelectronics, batteries industry, solar/wave absorbers, and wettability materials.

  1. Transverse commensurability effect for vortices on periodic pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory

    2008-01-01

    Using computer simulations, we demonstrate a type of commensurability that occurs for vortices moving longitudinally through periodic pinning arrays in the presence of an additional transverse driving force. As a function of vortex density, there is a series of broad maxima in the transverse critical depinning force that do not fall at the matching fields where the number of vortices equals an integer multiple of the number of pinning sites. The commensurability effects are associated with dynamical states in which evenly spaced structures consisting of one or more moving rows of vortices form between rows of pinning sites. Remarkably, the critical transverse depinning force can be more than an order of magnitude larger than the longitudinal depinning force.

  2. Coupling Impedance of a Periodic Array of Diaphragms (Erratum)

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, G.V.; /SLAC

    2012-05-24

    A method is presented for calculating the high-frequency longitudinal and transverse coupling impedances in a periodic array of diaphragms in a circular perfectly conducting pipe. The method is based on Weinstein's theory of diffraction of a plane electromagnetic wave on a stack of halfplanes. Using Weinstein's solution, it is shown that the problem of finding the beam field in the pipe reduces to an effective boundary condition at the radius of the diaphragms that couples the longitudinal electric field with the azimuthal magnetic one. Solving Maxwell's equations with this boundary condition leads to simple formulae for Z{sub long} and Z{sub tr}. A good agreement with a numerical solution of the problem found by other authors is demonstrated.

  3. Integrated lithography to prepare periodic arrays of nano-objects

    Science.gov (United States)

    Sipos, Áron; Szalai, Anikó; Csete, Mária

    2013-08-01

    We present an integrated lithography method to prepare versatile nano-objects with variable shape and nano-scaled substructure, in wavelength-scaled periodic arrays with arbitrary symmetry. The idea is to illuminate colloid sphere monolayers by polarized beams possessing periodic lateral intensity modulations. Finite element method was applied to determine the effects of the wavelength, polarization and angle of incidence of the incoming beam, and to predict the characteristics of nano-objects, which can be fabricated on thin metal layer covered substrates due to the near-field enhancement under silica colloid spheres. The inter-object distance is controlled by varying the relative orientation of the periodic intensity modulation with respect to the silica colloid sphere monolayer. It is shown that illuminating silica colloid sphere monolayers by two interfering beams, linear patterns made of elliptical holes appear in case of linear polarization, while circularly polarized beams result in co-existent rounded objects, as more circular nano-holes and nano-crescents. The size of the nano-objects and their sub-structure is determined by the spheres diameter and by the wavelength. We present various complex plasmonic patterns made of versatile nano-objects that can be uniquely fabricated applying the inherent symmetry breaking possibilities in the integrated lithography method.

  4. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  5. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  6. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  7. 二维氧化锌纳米阵列的制备及光学吸收特性研究%Research on the Preparation and Optical Absorption Properties of Two-Dimensional ZnO Array

    Institute of Scientific and Technical Information of China (English)

    乔璐; 朱亚彬; 徐浩

    2014-01-01

    采用漂移法,在玻璃衬底上制备出粒径分别为117,350和500 nm单层、大面积的聚苯乙烯胶体球掩膜板,在已制得的掩膜板上用射频磁控溅射的方法沉积一层氧化锌薄膜,最后用有机溶液四氢呋喃(THF)浸泡去除聚苯乙烯胶体球,获得不同粒径的二维氧化锌纳米团簇。通过扫描电子显微镜和能量色散X射线光谱仪对样品的形貌及成份进行表征,表明所制得样品为有序分布的蜂窝网状氧化锌纳米阵列。在室温下,通过吸收光谱仪测试样品在300~800 nm波长范围内的吸收光谱,结果表明对于具有不同尺寸晶粒的氧化锌纳米团簇样品,随着所采用的聚苯乙烯胶体球粒径的增大,即氧化锌纳米团簇粒径的增加,光吸收峰出现了宽化和红移;随着溅射时间的延长,即氧化锌薄膜膜厚的增加,光吸收率提高。此外,对氧化锌纳米团簇阵列的光吸收特性进行了基于离散偶极子近似的理论计算从而获得任意形状和尺寸粒子的吸收。目前,文献报道中用此理论计算各种形状的纳米金、银等金属的结果与实验结果相符,但是应用离散偶极子的近似理论计算氧化锌纳米颗粒的报道很少。应用此理论计算三角棱台形状的氧化锌光学吸收特性,根据氧化锌薄膜介电常数和膜厚的变化进行光吸收特性的模拟,并解释了实验结果。%The present paper’s main work is firstly preparing a single layer and a large area polystyrene microspheres mask,with 117,350 and 500 nm in diameter,and then depositing a layer of zinc oxide thin film on the mask board by RF magnetron sputte-ring technique,using nanospheres lithography technique to remove the polystyrene spheres by soaking with tetrahydrofuran,and two-dimensional zinc oxide nano-array samples were obtained at last.The samples were characterized on the morphology and composition by scanning electron microscopy

  8. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the

  9. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r

  10. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  11. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  12. Logarithmic periodic dipole antennas for the Auger engineering radio array

    Science.gov (United States)

    Seeger, Oliver; Pierre Auger Collaboration

    2012-01-01

    The Pierre Auger Observatory constitutes the largest detector for measurements of ultra-high-energy cosmic rays (UHECRs) through extended air showers. Radio signals originating from the shower development have been detected with suitable antennas in the 50 MHz regime. The Auger engineering radio array (AERA) is being established to exploit the radio technique at these high energies.The favoured antenna for the first stage of AERA is a logarithmic periodic dipole antenna (LPDA) especially designed to suit the demands of cosmic-ray detection at the Auger site. This antenna is characterized by ultra-broadband sensitivity in the frequency range from 30 to 80 MHz and allows polarization-sensitive measurements of radio signals from all incoming directions. Our characterization of this LPDA includes careful evaluation of the frequency range obtained by combining wire-based dipoles, stability and weather testing, quality assurance in the mass production process, and a benchmark measurement of the sensitivity obtained with the time dependence of the galactic radio background.For the final setup, a fully calibrated radio-detection system including antennas, filters and low-noise amplifiers is required. We present our approach for this calibration in simulations and measurements.

  13. Energy concentration of periodic nanoparticle array using Green function formalism

    Science.gov (United States)

    Lai, King Chun; Fung Lee, Sze; Yu, Kin Wah

    2013-03-01

    We have studied a periodic array of nanoparticle wires by using the Green function formalism (GFF). When light is incident on the wire, a collective oscillation of the free electrons is excited on the surface of the wires, which is called the coupled surface plasmon. The excitation of coupled surface plasmon can cause an enhancement of the local energy density. By tuning the separation relative to the radius of the wires, an energy concentration can be controlled. When the separation of the wires is small, multipolar effect becomes significant. Dealing with tight-binding model by Park and Stroud (2004) would involve interaction term which appears to be non-existent and the resolution of FDTD is insufficient to resolve the multipole interaction as the multipole field can vary rapidly. We applied GFF to this problem which expresses all interaction in a Greenian within one unit cell. The system was studied under spectral representation and the relation between different resonance modes and the outcoming energy concentration was examined. The energy concentration is largest several hot spots which depend on the incident directions.

  14. Melamine-DNA encoded periodicity of quantum dot arrays.

    Science.gov (United States)

    Singh, Seema; Kumari, Rina; Chakraborty, Anirban; Hussain, Sahid; Singh, Manoj K; Das, Prolay

    2016-01-01

    Formation of QD-array in solution phase guided by the self-assembly with DNA-melamine hybrid molecules is reported here. Melamine was conjugated with ssDNA using phosphoramidate chemistry. Aqueous soluble ZnSe/ZnS QDs conjugated to complementary ssDNA was self-assembled with the DNA-melamine hybrid molecules by DNA-hybridization. The self-assembly leads to the precise positioning of the QDs in QDs array where the inter QD distance is being maintained by the DNA sequence length. The QD array was characterized by gel electrophoresis, UV-visible and fluorescence spectrophotometry and circular dichroism. Direct visualization of the DNA-melamine hybrid molecule mediated QD array was made possible by atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis. Substantial increase in the fluorescence intensity and lifetime of the QDs was observed on array formation by DNA self-assembly.

  15. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  16. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  17. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  18. Wigner crystallization of electrons in deep traps in a two-dimensional dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Shaimeev, S. S., E-mail: shaimeev@isp.nsc.ru; Gritsenko, V. A. [Institute of Semiconductor Physics (Russian Federation)

    2011-03-15

    A two-dimensional model is used to examine the spatial distribution of electrons in deep traps in a two-dimensional dielectric. When the trap concentration is much higher than the trapped electron concentration, Coulomb repulsion leads to the formation of a two-dimensional quasi-periodic hexagonal lattice of localized electrons (Wigner glass).

  19. Band Gap and Waveguide States in Two-Dimensional Disorder Phononic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Chun; LIU Zheng-You; LIANG Hong-Yu; XIAO Qing-Wu

    2006-01-01

    @@ The influences of the configurational disorders on phononic band gaps and on waveguide modes are investigated for the two-dimensional phononic crystals consisting of water cylinders periodically arrayed in mercury. Two types of conflgurational disorders, relevant to the cylinder position and cylinder size respectively, are taken into account. It is found that the phononic band gap and the guide band are sensitive to the disorders, and generally become narrower with the increasing disorders. It is also found that the waveguide side walls without disorder can significantly prevent the guide modes in the waveguide from influence by the disorders in the crystals to a large amount.

  20. Entropy of Bit-Stuffing-Induced Measures for Two-Dimensional Checkerboard Constraints

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Vaarby, Torben Strange

    2007-01-01

    A modified bit-stuffing scheme for two-dimensional (2-D) checkerboard constraints is introduced. The entropy of the scheme is determined based on a probability measure defined by the modified bit-stuffing. Entropy results of the scheme are given for 2-D constraints on a binary alphabet....... The constraints considered are 2-D RLL (d, infinity) for d = 2, 3 and 4 as well as for the constraint with a minimum 1-norm distance of 3 between Is. For these results the entropy is within 1-2% of an upper bound on the capacity for the constraint. As a variation of the scheme, periodic merging arrays are also...

  1. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  2. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  3. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  4. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  5. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  6. Using a two dimensional array of cameras for daily quality control of ALE following different protocols; Uso de una matriz bidimensional de camaras para el control de calidad diario de un ALE siguiendo diferentes protocolos

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Caballero, L. J.; Angulo Pain, E.; Urena Llinares, A.; Iborra Oquendo, M.; Quinones Rodriguez, I.; Castro Ramirez, I.

    2011-07-01

    During the first months of operation of a new electron linear accelerator, beginning the quality assurance program, there is a need to establish an initial record of equipment that can be done in different ways, depending on the existing measuring equipment for each service . The availability of compact arrays formed by ionization chambers like the one we used, permite facilitate this work and also verifying the consistency of other parameters that are usually checked with a higher temporal spacing.

  7. Use of two-dimensional chamber arrays in volumetric modulated arc therapy treatment verification; Empleo de matrices bidimensionales de camaras de ionizacion en la verificacion de tratamientos de arcoterapia volumetrica modulada

    Energy Technology Data Exchange (ETDEWEB)

    Clemente Gutierrez, F.; Perez Vara, C.; Prieto Villacorta, M.; Fernandez Ruiz, M. L.; Ruiz Prados, M.

    2013-09-01

    Volumetric modulated arc therapy (VMAT) requires, as another kind of intensity-modulated radiation therapy (IMRT), patient-specific QA procedures. This work analyzes the method carried out in our institution for VMAT treatment verification. Our hypothesis is that traditional IMRT QA is valid for VMAT technique. Results obtained for absolute point-dose measurements with ion chamber are presented, as well as comparison with treatment planning system calculations (mean difference of (-0.50 {+-} 0.43)%). In addition, different setups with 2D ion chamber array for dose distributions comparison are analyzed. These detectors are the basis of our QA procedure. Advantages and disadvantages of those setups are shown. The present study includes results for 111 patients treated with VMAT technique from different disease sites. We conclude that 2D ion chamber arrays traditionally used in IMRT QA are valid detectors for rotational techniques if these arrays are used together with additional devices (phantoms, accessories) that allow us to obtain as much information as possible. (Author)

  8. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  9. Chaotic dynamics for two-dimensional tent maps

    Science.gov (United States)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  10. Interstitial vortex in superconducting film with periodic hole arrays

    Institute of Scientific and Technical Information of China (English)

    He Shi-Kun; Zhang Wei-Jun; Wen Zhen-Chao; Xiao Hong; Han Xiu-Feng; Gu Chang-Zhi; Qiu Xiang-Gang

    2012-01-01

    The response of superconducting Nb films with a diluted triangular and square array of holes to a perpendicular magnetic field are investigated.Due to small edge-to-edge separation of the holes,the patterned films are similar to multi-connected superconducting islands.Two regions in the magnetoresistance R(H) curves can be identified according to the field intervals of the resistance minima.Moreover,in between these two regions,variation of the minima spacing was observed.Our results provide strong evidence of the coexistence of interstitial vortices in the islands and fluxoids in the holes.

  11. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  12. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  13. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  14. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  15. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  16. Two-dimensional lattice solitons in polariton condensates with spin-orbit coupling

    CERN Document Server

    Kartashov, Yaroslav V

    2016-01-01

    We study two-dimensional fundamental and vortex solitons in polariton condensates with spin-orbit coupling and Zeeman splitting evolving in square arrays of microcavity pillars. Due to repulsive excitonic nonlinearity such states are encountered in finite gaps in the spectrum of the periodic array. Spin-orbit coupling between two polarization components stemming from TE-TM energy splitting of the cavity photons acting together with Zeeman splitting lifts the degeneracy between vortex solitons with opposite topological charges and makes their density profiles different for a fixed energy. This results in formation of four distinct families of vortex solitons with topological charges m=+-1, all of which can be stable. At the same time, only two stable families of fundamental gap solitons characterized by domination of different polarization components are encountered.

  17. Transport and Dispersion of Nanoparticles in Periodic Nanopost Arrays

    KAUST Repository

    He, Kai

    2014-05-27

    Nanoparticles transported through highly confined porous media exhibit faster breakthrough than small molecule tracers. Despite important technological applications in advanced materials, human health, energy, and environment, the microscale mechanisms leading to early breakthrough have not been identified. Here, we measure dispersion of nanoparticles at the single-particle scale in regular arrays of nanoposts and show that for highly confined flows of dilute suspensions of nanoparticles the longitudinal and transverse velocities exhibit distinct scaling behaviors. The distributions of transverse particle velocities become narrower and more non-Gaussian when the particles are strongly confined. As a result, the transverse dispersion of highly confined nanoparticles at low Péclet numbers is significantly less important than longitudinal dispersion, leading to early breakthrough. This finding suggests a fundamental mechanism by which to control dispersion and thereby improve efficacy of nanoparticles applied for advanced polymer nanocomposites, drug delivery, hydrocarbon production, and environmental remediation. © 2014 American Chemical Society.

  18. Epsilon-near-zero behavior from plasmonic Dirac point: Theory and realization using two-dimensional materials

    Science.gov (United States)

    Mattheakis, Marios; Valagiannopoulos, Constantinos A.; Kaxiras, Efthimios

    2016-11-01

    The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host can give rise to a plasmonic Dirac point that emulates epsilon-near-zero (ENZ) behavior. This theoretical result is extremely sensitive to structural features like periodicity of the dielectric medium and thickness imperfections. We propose that such a device can actually be realized by using graphene as the two-dimensional metal and materials like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with linear, elliptical, and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffraction.

  19. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  20. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  1. Analysis of directional dependence of the two-dimensional array of detectors 2D array seven 29 implications in the planning system; Analisis de la dependencia direcccional de la matriz bidimensional de detectores 2D array seven29. Implicaciones en el sistema de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Mora Melendez, R.; Seguro Fernandez, A.; Iborra Oquendo, M.; Urena Llinares, A.

    2013-07-01

    The main objective of our study is to find correction factors dependent on the 2D array incidence angles, and to give account of the phenomenon, allowing the Planner to faithfully reproduce data and curves measured experimentally. (Author)

  2. Periodic arrays of pinning centers in thin vanadium films.

    Energy Technology Data Exchange (ETDEWEB)

    Brueck, S. R. J.; Chung, K.; Crabtree, G.; DeLong, L. E.; Hesketh, P. J.; Ilic, B.; Metlushko, V.; Watkins, B.; Welp, U.; Zhang, Z.

    1997-07-13

    Commensurability effects between the superconducting flux line lattice and a square lattice (period d=1{micro}m and diameter D=0.4{micro}m) of submicron holes in 1500 {angstrom} vanadium films were studied by atomic force microscopy, DC magnetization, AC susceptibility, magnetoresistivity and I-V measurements. Peaks in the magnetization and critical current at matching fields are found to depend nonlinearly upon the value of external AC field or current, as well as the inferred symmetry of the flux line lattice.

  3. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications

    Science.gov (United States)

    Kumara, N. T. R. N.; Chou Chau, Yuan-Fong; Huang, Jin-Wei; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-11-01

    Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core-shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.

  4. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  5. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  6. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  7. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  8. Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies

    Institute of Scientific and Technical Information of China (English)

    NI Qing; CHENG Jian-Chun

    2005-01-01

    @@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.

  9. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  11. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  12. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  13. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  14. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  15. Periodically Aligned Si Nanopillar Arrays as Efficient Antireflection Layers for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Li Xiaocheng

    2010-01-01

    Full Text Available Abstract Periodically aligned Si nanopillar (PASiNP arrays were fabricated on Si substrate via a silver-catalyzed chemical etching process using the diameter-reduced polystyrene spheres as mask. The typical sub-wavelength structure of PASiNP arrays had excellent antireflection property with a low reflection loss of 2.84% for incident light within the wavelength range of 200–1,000 nm. The solar cell incorporated with the PASiNP arrays exhibited a power conversion efficiency (PCE of ~9.24% with a short circuit current density (JSC of ~29.5 mA/cm2 without using any extra surface passivation technique. The high PCE of PASiNP array-based solar cell was attributed to the excellent antireflection property of the special periodical Si nanostructure.

  16. Experimental characterization of periodic frequency-steerable arrays for structural health monitoring

    Science.gov (United States)

    Senesi, Matteo; Xu, Buli; Ruzzene, Massimo

    2010-05-01

    Beam steering through phased arrays is a well-established technique, used extensively in ultrasonic imaging for medical, NDE and SHM applications. Phased arrays typically need individual control of their elements, which involves hardware and software complexity. This paper presents the characterization of a novel frequency-steerable array for structural health monitoring. In the considered configuration, beam steering is achieved by exploiting interference phenomena generated by the spatial lay-out of the array elements, and their simultaneous activation at specific frequencies. Such frequencies correspond to wavenumbers which are associated with radiation in determined spatial directions. In essence, the array acts as a spatial filter, which preferentially radiates at wavenumbers defined by the spatial arrangement of the elements. As such, the array is also effective at tuning its radiation to specific wave modes. In this paper, a simple quadrilateral periodic topology illustrates the directional properties of the array and shows its tuning capabilities. The investigations are supported by a preliminary numerical analysis, which is used to design an experimental prototype. Tests successfully validate the numerical predictions and demonstrate the directional and tuning capabilities of the proposed array design.

  17. Two dimensional radiated power diagnostics on Alcator C-Moda)

    Science.gov (United States)

    Reinke, M. L.; Hutchinson, I. H.

    2008-10-01

    The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.

  18. Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos

    Institute of Scientific and Technical Information of China (English)

    Chen Sheng-Bing; Wen Ji-Hong; Wang Gang; Wen Xi-Sen

    2013-01-01

    Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a twodimensional (2D) acoustic metamaterial.The performance is characterized by the finite element method.More importantly,we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem,and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article.Based on this modeling method,the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated.The results show that the internal resonances of the shunting system split the dispersion curves,thereby forming a locally resonant band gap.However,unlike the conventional locally resonant gap,the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches.

  19. Two-Dimensional Crystallization of the Ca(2+)-ATPase for Electron Crystallography.

    Science.gov (United States)

    Glaves, John Paul; Primeau, Joseph O; Young, Howard S

    2016-01-01

    Electron crystallography of two-dimensional crystalline arrays is a powerful alternative for the structure determination of membrane proteins. The advantages offered by this technique include a native membrane environment and the ability to closely correlate function and dynamics with crystalline preparations and structural data. Herein, we provide a detailed protocol for the reconstitution and two-dimensional crystallization of the sarcoplasmic reticulum calcium pump (also known as Ca(2+)-ATPase or SERCA) and its regulatory subunits phospholamban and sarcolipin.

  20. Two-Dimensional Arrays of Neutral Atom Quantum Gates

    Science.gov (United States)

    2012-10-20

    Isenhower, X. Zhang, A. Gill, T. Walker, M. Saffman. Deterministic entanglement of two neutral atoms via Rydberg blockade, Physical Review A, (09 2010...squeezing of atomic ensembles by multicolor quantum nondemolition measurements, Physical Review A, (02 2009): 0. doi: 10.1103/PhysRevA.79.023831 10/19/2012...collective encoding in holmium atoms, Physical Review A, (07 2008): 0. doi: 10.1103/PhysRevA.78.012336 10/19/2012 10.00 M Saffman, X L Zhang, A T

  1. Measurements on Two-Dimensional Arrays of Mesoscopic Josephson Junctions

    Science.gov (United States)

    1993-02-01

    are reasonably well- understood, with the possible exceptions of ballistic motion of vortices [van der Zant, et al. (1992b)] and the Aharonov - Casher (AC... effect , the magnetic analog of the Aharonov - Bohm effect (with the AC effect , it is theoretically predicted that one can measure the interference... Aharonov and Bohm (1959), and Aharonov and Casher (1984). 148 REFERENCES Aharonov , Y., and D. Bohm, Phys. Rev. B 3, 485 (1959). Aharonoy, Y., and A

  2. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  3. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  4. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  5. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  6. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  7. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  8. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  9. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  10. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  11. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  12. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  13. Phase separation under two-dimensional Poiseuille flow.

    Science.gov (United States)

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  14. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  15. Acoustic band gaps due to diffraction modes in two-dimensional phononic crystals

    Science.gov (United States)

    Kang, Hwi Suk; Lee, Kang Il; Yoon, Suk Wang

    2017-06-01

    In this study, we experimentally and theoretically investigated acoustic band gap control with diffraction modes in two-dimensional (2D) phononic crystals (PCs) consisting of periodic arrays of stainless steel (SS) rods immersed in water. We could classify the acoustic band gaps into two types with diffraction modes in the reflection region, and control the center frequencies of the band gaps by varying the vertical lattice constants. Pressure transmission coefficients and acoustic pressure fields were calculated using the finite element method (FEM), to classify and control the acoustic band gaps. As the vertical lattice constants were varied, the center frequencies of the band gaps, where only normal reflection occurred, were almost constant while those of the band gaps, where additional reflected waves with different propagation directions occurred, decreased with increasing the vertical lattice constants. This work can be used to manipulate acoustic band gap adding, splitting, and shifting.

  16. Eigenstates of a particle in an array of hexagons with periodic boundary condition

    Directory of Open Access Journals (Sweden)

    A Nemati

    2013-10-01

    Full Text Available In this paper the problem of a particle in an array of hexagons with periodic boundary condition is solved. Using the projection operators, we categorize eigenfunctions corresponding to each of the irreducible representations of the symmetry group . Based on these results, the Dirichlet and Neumann boundary conditions are discussed.

  17. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...

  18. Method for fast computation of angular light scattering spectra from 2D periodic arrays

    CERN Document Server

    Pomplun, J; Zschiedrich, L; Gutsche, P; Schmidt, F

    2016-01-01

    An efficient numerical method for computing angle-resolved light scattering off periodic arrays is presented. The method combines finite-element discretization with a Schur complement solver. A significant speed-up of the computations in comparison to standard finite-element method computations is observed.

  19. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    Science.gov (United States)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  20. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  1. Experimental realization of two-dimensional boron sheets.

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  2. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  3. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  4. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  5. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  6. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  7. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  8. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  9. Nanometer scale assessment of mechanical strain induced in silicon by a periodic line array.

    Science.gov (United States)

    Escoubas, S; Gaudeau, G; Ezzaidi, Y; Thomas, O; Morin, P

    2011-10-01

    Measuring stress and strain, induced by nanostructures, at the nanometer scale is still a challenge. In this work, we investigate the strain induced by sub-micrometric periodic line arrays deposited on single crystal (001) Si substrate. We study the influence of the lines width and the spacing between the lines for two sets of samples: a silicon nitride lines array and a poly-silicon line array capped with a Si3N4 stressor layer. The periodic strain field in mono-crystalline silicon is investigated by High Resolution X-ray Diffraction which is very sensitive to local strain (goniometer with a laboratory source. The line arrays induce a periodic strain field in silicon, which gives rise to distinct satellites in reciprocal space. The intensity envelope of these satellites is related to the strain field in one cell. In order to assess this strain field in silicon, mechanical modeling is necessary. Elastic calculations are performed with a Finite Element Modeling (FEM) code in order to extract the displacement field that is used for structure factor calculations within kinematical approximation. The calculated reciprocal space map is compared to the experimental results in order to validate the strain field. We show that for capped poly arrays, the diffracted intensity envelope is influenced by the spacing between the lines. This area is filled with silicon nitride which induces a noticeable change in displacement and strain field. While for bare stressor arrays the nitride line width is responsible of change in displacement field and thus on the RSM intensity envelope.

  10. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  11. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  12. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  13. Two-dimensional visualization of cluster beams by microchannel plates

    CERN Document Server

    Khoukaz, Alfons; Grieser, Silke; Hergemöller, Ann-Katrin; Köhler, Esperanza; Täschner, Alexander

    2013-01-01

    An advanced technique for a two-dimensional real time visualization of cluster beams in vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCP) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This inf...

  14. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  15. Enhanced terahertz transmission through a periodic array of tapered rectangular apertures

    CERN Document Server

    Devi, Koijam Monika; Kumar, Gagan

    2016-01-01

    We numerically analyse extraordinary terahertz transmission properties of an array of rectangular shaped apertures perforated periodically on a thin metal film. The apertures are tapered at different angles to achieve higher field concentration at the tapered end. The periodic sub-wavelength scale apertures ensure plasmonic behaviour giving rise to the enhanced transmission of a specific frequency mode decided by the periodicity. We compare results of transmission with the rectangular shaped apertures of same parameters and observe a significant increase in the transmission for the tapered case. We have compared results of our numerical simulations with theory and have found them consistent.

  16. 二维电离室矩阵在鼻咽癌调强适形放射治疗相对剂量验证中的应用%The application of two-dimensional ionization chamber array for relative dosimetric verification of intensity-modulated radiation therapy in nasoparyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    张晓军; 许锡元; 王建华; 涂彧; 江振龙; 方明明

    2008-01-01

    Objective Use two-dimensional ionization chamber array(matrixx)for relative dosimetry verification of intensity modulated radiation therapy(IMRT)nasoparyngeal carcinoma(NPC).Methods Thirty patients were treated with IMRT,used theirs IMRT plans transferred to verification of matrixx model,then generated quality assurance(QA)plane in therapy plan system (TPS).According to QA plan treat for twodimensional ionization chamber array with an actual gantry angle,and then output the measured plane dose distribution and identical plan dose distribution to ominiPro-IMRT software.Afterwards carry out QA plan and measured sectional image analysis,QA plan and measured isodose curve analysis by turns,and gamma analysis quantization.The gamma value[γ(rm)]of the measurement point,[γ(rm)]≤1 demonstrate point calculation passes,the passes point more than 90%indicate that QA plan passes for relative dosimetric verification.Results Thirty patients IMRT plans have twenty-seven plans calculation passes,the other three patients'passed point are 85.89%,86.56%,80.53%,which means the calculation fails.The pass rate is 90%.According to adjust therapy plan,theirs plan passed.Conclusion Two-dimensional ionization chamber array is easy and convenient to apply,which can be used as a tool for plane dose distribution verification of IMRT.It ensure that plan accuracy,which use a method of relative dosimetric verification for patients treated with intensity modulated radiation therapy.%目的 利用二维电离室矩阵(matrixx)对鼻咽癌调强适形放射治疗(IMRT)计划进行相对剂量验证.方法 将30例鼻咽癌患者的IMRT计划移植到matrixx验证模型,生成验证计划.对二维电离室矩阵按验证计划进行实际机架角度下照射,将测得的平面剂量分布与验证计划中相同平面剂量分布分别输入到ominiPro-IMRT软件,依次进行验证计划与实测剖面图分析、验证计划与实测等剂量曲线分析,

  17. General polynomial factorization-based design of sparse periodic linear arrays.

    Science.gov (United States)

    Mitra, Sanjit K; Mondal, Kalyan; Tchobanou, Mikhail K; Dolecek, Gordana Jovanovic

    2010-09-01

    We have developed several methods of designing sparse periodic arrays based upon the polynomial factorization method. In these methods, transmit and receive aperture polynomials are selected such that their product results in a polynomial representing the desired combined transmit/receive (T/R) effective aperture function. A desired combined T/R effective aperture is simply an aperture with an appropriate width exhibiting a spectrum that corresponds to the desired two-way radiation pattern. At least one of the two aperture functions that constitute the combined T/R effective aperture function will be a sparse polynomial. A measure of sparsity of the designed array is defined in terms of the element reduction factor. We show that elements of a linear array can be reduced with varying degrees of beam mainlobe width to sidelobe reduction properties.

  18. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments

    CERN Document Server

    Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw

    2010-01-01

    This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...

  19. Field analysis of two-dimensional integrated optical gratings

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.

  20. Deformable two-dimensional photonic crystal slab for cavity optomechanics

    CERN Document Server

    Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I

    2011-01-01

    We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects

  1. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  2. Weak-periodic stochastic resonance in a parallel array of static nonlinearities.

    Directory of Open Access Journals (Sweden)

    Yumei Ma

    Full Text Available This paper studies the output-input signal-to-noise ratio (SNR gain of an uncoupled parallel array of static, yet arbitrary, nonlinear elements for transmitting a weak periodic signal in additive white noise. In the small-signal limit, an explicit expression for the SNR gain is derived. It serves to prove that the SNR gain is always a monotonically increasing function of the array size for any given nonlinearity and noisy environment. It also determines the SNR gain maximized by the locally optimal nonlinearity as the upper bound of the SNR gain achieved by an array of static nonlinear elements. With locally optimal nonlinearity, it is demonstrated that stochastic resonance cannot occur, i.e. adding internal noise into the array never improves the SNR gain. However, in an array of suboptimal but easily implemented threshold nonlinearities, we show the feasibility of situations where stochastic resonance occurs, and also the possibility of the SNR gain exceeding unity for a wide range of input noise distributions.

  3. Electronic nanobiosensors based on two-dimensional materials

    Science.gov (United States)

    Ping, Jinglei

    Atomically-thick two-dimensional (2D) nanomaterials have tremendous potential to be applied as transduction elements in biosensors and bioelectronics. We developed scalable methods for synthesis and large-area transfer of two-dimensional nanomaterials, particularly graphene and metal dichalcogenides (so called ``MX2'' materials). We also developed versatile fabrication methods for large arrays of field-effect transistors (FETs) and micro-electrodes with these nanomaterials based on either conventional photolithography or innovative approaches that minimize contamination of the 2D layer. By functionalizing the FETs with a computationally redesigned water-soluble mu-opioid receptor, we created selective and sensitive biosensors suitable for detection of the drug target naltrexone and the neuropeptide enkephalin at pg/mL concentrations. We also constructed DNA-functionalized biosensors and nano-particle decorated biosensors by applying related bio-nano integration techniques. Our methodology paves the way for multiplexed nanosensor arrays with all-electronic readout suitable for inexpensive point-of-care diagnostics, drug-development and biomedical research. With graphene field-effect transistors, we investigated the graphene/solution interface and developed a quantitative model for the effect of ionic screening on the graphene carrier density based on theories of the electric double layer. Finally, we have developed a technique for measuring low-level Faradaic charge-transfer current (fA) across the graphene/solution interface via real-time charge monitoring of graphene microelectrodes in ionic solution. This technique enables the development of flexible and transparent pH sensors that are promising for in vivo applications. The author acknowledges the support from the Defense Advanced Research Projects Agency (DARPA) and the U. S. Army Research Office under Grant Number W911NF1010093.

  4. Pattern formation by kicked solitons in the two-dimensional Ginzburg-Landau medium with a transverse grating.

    Science.gov (United States)

    Besse, Valentin; Leblond, Hervé; Mihalache, Dumitru; Malomed, Boris A

    2013-01-01

    We consider the kick- (tilt-) induced mobility of two-dimensional (2D) fundamental dissipative solitons in models of bulk lasing media based on the 2D complex Ginzburg-Landau equation including a spatially periodic potential (transverse grating). The depinning threshold, which depends on the orientation of the kick, is identified by means of systematic simulations and estimated by means of an analytical approximation. Various pattern-formation scenarios are found above the threshold. Most typically, the soliton, hopping between potential cells, leaves arrayed patterns of different sizes in its wake. In the single-pass-amplifier setup, this effect may be used as a mechanism for the selective pattern formation controlled by the tilt of the input beam. Freely moving solitons feature two distinct values of the established velocity. Elastic and inelastic collisions between free solitons and pinned arrayed patterns are studied too.

  5. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  6. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  7. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  8. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  9. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  10. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  11. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  12. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  13. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  14. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  15. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  16. Imaging Functions of Quasi-Periodic Nanohole Array as an Ultra-Thin Planar Optical Lens

    Directory of Open Access Journals (Sweden)

    Tsung Sheng Kao

    2015-06-01

    Full Text Available In this paper, the lensing functions and imaging abilities of a quasi-periodic nanohole array in a metal screen have been theoretically investigated and demonstrated. Such an optical binary mask with nanoholes designed in an aperiodic arrangement can function as an ultra-thin planar optical lens, imaging complex structures composed of multiple light sources at tens of wavelengths away from the lens surface. Via resolving two adjacent testing objects at different separations, the effective numerical aperture (N.A. and the effective imaging area of the planar optical lens can be evaluated, mimicking the imaging function of a conventional lens with high N.A. Furthermore, by using the quasi-periodic nanohole array as an ultra-thin planar optical lens, important applications such as X-ray imaging and nano-optical circuits may be found in circumstances where conventional optical lenses cannot readily be applied.

  17. Controlling the Directional Emission of Light by Periodic Arrays of Heterostructured Semiconductor Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Diedenhofen, S.L. [FOM Institute AMOLF, c/o Philips Research, High-Tech Campus 4, 5656 AE Eindhoven (Netherlands); Janssen, O.T.A.; Urbach, H.P. [Optics Research Group, Delft University of Technology, PO Box 5046, 2608 GA Delft (Netherlands); Hocevar, M. [Kavli Institute of Nanoscience, Quantum Transport, Delft University of Technology, 2600 GA Delft (Netherlands); Pierret, A.; Bakkers, E.P.A.M. [Philips Research Laboratories, High-Tech Campus 4, 5656 AE Eindhoven (Netherlands); Gomez Rivas, J. [Applied Physics, Photonics and Semiconductor Nanophysics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2011-07-01

    We demonstrate experimentally the directional emission of light by InAsP segments embedded in InP nanowires. The nanowires are arranged in a periodic array, forming a 2D photonic crystal slab. The directionality of the emission is interpreted in terms of the preferential decay of the photoexcited nanowires and the InAsP segments into Bloch modes of the periodic structure. By simulating the emission of arrays of nanowires with the emitting segments located at different heights, we conclude that the position of this active region strongly influences the directionality and efficiency of the emission. Our results will help to improve the design of nanowire based LEDs and single photon sources.

  18. Controlling the directional emission of light by periodic arrays of heterostructured semiconductor nanowires.

    Science.gov (United States)

    Diedenhofen, Silke L; Janssen, Olaf T A; Hocevar, Moïra; Pierret, Aurélie; Bakkers, Erik P A M; Urbach, H Paul; Rivas, Jaime Gómez

    2011-07-26

    We demonstrate experimentally the directional emission of light by InAsP segments embedded in InP nanowires. The nanowires are arranged in a periodic array, forming a 2D photonic crystal slab. The directionality of the emission is interpreted in terms of the preferential decay of the photoexcited nanowires and the InAsP segments into Bloch modes of the periodic structure. By simulating the emission of arrays of nanowires with the emitting segments located at different heights, we conclude that the position of this active region strongly influences the directionality and efficiency of the emission. Our results will help to improve the design of nanowire based LEDs and single photon sources.

  19. Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays.

    Science.gov (United States)

    Beruete, Miguel; Sorolla, Mario; Navarro-Cía, Miguel; Falcone, Francisco; Campillo, Igor; Lomakin, Vitaliy

    2007-02-05

    Metallic plates embedded between dielectric slabs and perforated by rectangular arrays of subwavelength holes with a dense periodicity in one of the directions support extraordinary transmission (ET) phenomena, viz. strong peaks in the transmittance frequency dependence. Stacks of such perforated plates support ET phenomena with propagation along the stack axis that is characterized by the left handed behavior. The incorporation of the dielectric materials and dense periodicity allows significantly reducing the illuminated area of the perforated plate required experimentally to observe the ET phenomena as compared to the areas required in the case of free standing rectangular hole arrays. This facilitates the experimental investigation of ET under excitation in the Fresnel zone of Gaussian beams.

  20. Combining the Masking and Scaffolding Modalities of Colloidal Crystal Templates: Plasmonic Nanoparticle Arrays with Multiple Periodicities

    OpenAIRE

    Yang, Shikuan; Slotcavage, Daniel; Mai, John D.; Liang, Wansheng; Xie, Yuliang; Chen, Yuchao; Huang, Tony Jun

    2014-01-01

    Surface patterns with prescribed structures and properties are highly desirable for a variety of applications. Increasing the heterogeneity of surface patterns is frequently required. This work opens a new avenue toward creating nanoparticle arrays with multiple periodicities by combining two generally separately applied modalities (i.e., scaffolding and masking) of a monolayer colloidal crystal (MCC) template. Highly ordered, loosely packed binary and ternary surface patterns are realized by...

  1. Commensurability oscillations in a two-dimensional lateral superlattice

    Science.gov (United States)

    Davies, John; Long, Andrew; Grant, David; Chowdhury, Suja

    2000-03-01

    We have calculated and measured conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential and a normal magnetic field. Simulations with a potential Vx \\cos(2π x/a) + Vy \\cos(2π y/a) show the usual commensurability oscillations in ρ_xx(B) with Vx alone. The introduction of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρ_yy(B) expected from previous perturbation theories. We explain this in terms of drift of the guiding center of cyclotron motion along contours of an effective potential: open orbits of the guiding center contribute to conduction but closed orbits do not. All orbits are closed in a symmetric superlattice with |V_x| = |V_y| and commensurability oscillations are therefore quenched. Experiments on etched superlattices confirm this picture. Conventional lattice-matched samples give a symmetric potential and weak oscillations; the symmetry is broken by the piezoelectric effect in stressed samples, leading to strong oscillations. Periodic modulation of the magnetic field can be treated in the same way, which explains previous experimental results.

  2. Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2014-01-01

    Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.

  3. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Gordiichuk, Pavlo; Wu, Zhong-Shuai; Liu, Zhaoyang; Wei, Wei; Wagner, Manfred; Mohamed-Noriega, Nasser; Wu, Dongqing; Mai, Yiyong; Herrmann, Andreas; Müllen, Klaus; Feng, Xinliang

    2015-01-01

    The ability to pattern functional moieties with well-defined architectures is highly important in material science, nanotechnology and bioengineering. Although two-dimensional surfaces can serve as attractive platforms, direct patterning them in solution with regular arrays remains a major challenge

  4. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun

    2016-09-02

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  5. Pseudo-two-dimensional random dimer lattices

    Energy Technology Data Exchange (ETDEWEB)

    Naether, U., E-mail: naether@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC – Universidad de Zaragoza, 50009 Zaragoza (Spain); Mejía-Cortés, C.; Vicencio, R.A. [Departamento de Física and MSI – Nucleus for Advanced Optics, Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2015-06-05

    We study the long-time wave transport in correlated and uncorrelated disordered 2D arrays. When a separation of dimensions is applied to the model, we find that the previously predicted 1D random dimer phenomenology also appears in so-called pseudo-2D arrays. Therefore, a threshold behavior is observed in terms of the effective size for eigenmodes, as well as in long-time dynamics. A minimum system size is required to observe this threshold, which is very important when considering a possible experimental realization. For the long-time evolution, we find that for correlated lattices a super-diffusive long-range transport is observed. For completely uncorrelated disorder 2D transport becomes sub-diffusive within the localization length and for random binary pseudo-2D arrays localization is observed.

  6. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  7. Fibre-optic sensors using long-period gratings and microlens arrays

    Science.gov (United States)

    Liu, Michael Shun Yee

    In this project, two fibre-optic sensing systems were developed which use long-period fibre grating (LPG) and Brillouin scattering in single-mode fibre for temperature and bending measurement. In order to realize the LPG grating sensor, two novel LPG fabrication techniques, namely, the microlens array technique and the plano-convex microlens techniques were also developed in this project. The microlens array is characterized by a higher transmission efficiency of UV laser light and higher LPG inscription efficiency than other conventional method, such as the amplitude mask technique. By using the same hydrogen loaded germanosilicate fibre and UV laser irradiation, the microlens array technique can produce an LPG rejection band with a peak loss of -11 dB after 50 seconds of UV laser irradiation while using a metal amplitude mask, a -10.9 dB resonant peak can only be produced after 200 seconds of UV laser irradiation. The microlens array technique was further improved by polishing the microlens array to produce the piano-convex microlens array via which the problems of damage to the microlens array and fibre due to internal focusing and excessive power on the inscription plane were eliminated. Also, the new method is capable of selective control of resonant peaks at higher harmonic frequencies by using the plano-convex microlens array with different polishing depths. In the second stage of the study, a highly sensitive temperature sensor based on a packaged LPG was developed. In addition, a low-cost and high return loss fibre-optic switch was implemented with this packaged LPG. In this project a simple LPG bending sensor was developed which is based on the measurement of total transmitted power, instead of the wavelength shift. It has been shown that the total transmitted power from a LPG has a linear response with respect to the bending curvature within the range from 0 to 0.001 mm-1. Therefore, this kind of LPGs can be used as bending sensors for different

  8. Optical nonlinearity enhancement of a periodic array of semiconductor elliptical cylinders

    Science.gov (United States)

    Yang, Baifeng; Zhang, Chengxiang; Tian, Decheng

    2002-11-01

    We investigate the effect of geometric anisotropy on optical nonlinearity enhancement for composites with semiconductor elliptical cylinders in an insulating host in a square lattice. The frequency dependences of the effective nonlinear susceptibility are calculated, and the optical nonlinearity of the composites near the percolation threshold are studied. The calculations are based on the Stroud-Hui relation and a series expression of the space-dependent electric field in periodic composites. The results show that, analogous to metal-insulator composites, a local minimum appears in the nonlinear optical responses near the percolation threshold for two-dimensional percolating semiconductor-insulator composites with geometric anisotropy when the ratio of the bound-electron number density to the effective mass of the electron is large. The results also show that the nonlinearity enhancement increases almost to its maximum when a structure with layers of fluctuating thicknesses forms, and there are no further obvious increases of the enhancement when the thickness fluctuation of the layers decreases. We compare the results of our calculation with those calculated by use of the Boyd-Sipe relation in layered composites, and we conclude that the nonlinearity enhancement reaches its maximum when composites with elliptic cylinders are transformed into Boyd-Sipe-type layered composites.

  9. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  10. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  11. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  12. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  13. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  14. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  16. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  17. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  18. Volumetric display containing multiple two-dimensional color motion pictures

    Science.gov (United States)

    Hirayama, R.; Shiraki, A.; Nakayama, H.; Kakue, T.; Shimobaba, T.; Ito, T.

    2014-06-01

    We have developed an algorithm which can record multiple two-dimensional (2-D) gradated projection patterns in a single three-dimensional (3-D) object. Each recorded pattern has the individual projected direction and can only be seen from the direction. The proposed algorithm has two important features: the number of recorded patterns is theoretically infinite and no meaningful pattern can be seen outside of the projected directions. In this paper, we expanded the algorithm to record multiple 2-D projection patterns in color. There are two popular ways of color mixing: additive one and subtractive one. Additive color mixing used to mix light is based on RGB colors and subtractive color mixing used to mix inks is based on CMY colors. We made two coloring methods based on the additive mixing and subtractive mixing. We performed numerical simulations of the coloring methods, and confirmed their effectiveness. We also fabricated two types of volumetric display and applied the proposed algorithm to them. One is a cubic displays constructed by light-emitting diodes (LEDs) in 8×8×8 array. Lighting patterns of LEDs are controlled by a microcomputer board. The other one is made of 7×7 array of threads. Each thread is illuminated by a projector connected with PC. As a result of the implementation, we succeeded in recording multiple 2-D color motion pictures in the volumetric displays. Our algorithm can be applied to digital signage, media art and so forth.

  19. Generalized non-separable two-dimensional Dammann encoding method

    Science.gov (United States)

    Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei

    2017-01-01

    We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.

  20. Two-dimensional audio watermark for MPEG AAC audio

    Science.gov (United States)

    Tachibana, Ryuki

    2004-06-01

    Since digital music is often stored in a compressed file, it is desirable that an audio watermarking method in a content management system handles compressed files. Using an audio watermarking method that directly manipulates compressed files makes it unnecessary to decompress the files before embedding or detection, so more files can be processed per unit time. However, it is difficult to detect a watermark in a compressed file that has been compressed after the file was watermarked. This paper proposes an MPEG Advanced Audio Coding (AAC) bitstream watermarking method using a two-dimensional pseudo-random array. Detection is done by correlating the absolute values of the recovered MDCT coefficients and the pseudo-random array. Since the embedding algorithm uses the same pseudo-random values for two adjacent overlapping frames and the detection algorithm selects the better frame in the two by comparing detected watermark strengths, it is possible to detect a watermark from a compressed file that was compressed after the watermark was embedded in the original uncompressed file. Though the watermark is not detected as clearly in this case, the watermark can still be detected even when the watermark was embedded in a compressed file and the file was then decompressed, trimmed, and compressed again.

  1. The modified cumulant expansion for two-dimensional isotropic turbulence

    Science.gov (United States)

    Tatsumi, T.; Yanase, S.

    1981-09-01

    The two-dimensional isotropic turbulence in an incompressible fluid is investigated using the modified zero fourth-order cumulant approximation. The dynamical equation for the energy spectrum obtained under this approximation is solved numerically and the similarity laws governing the solution in the energy-containing and enstrophy-dissipation ranges are derived analytically. At large Reynolds numbers the numerical solutions yield the k to the -3rd power inertial subrange spectrum which was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969), assuming a finite enstrophy dissipation in the inviscid limit. The energy-containing range is found to satisfy an inviscid similarity while the enstrophy-dissipation range is governed by the quasi-equilibrium similarity with respect to the enstrophy dissipation as proposed by Batchelor (1969). There exists a critical time which separates the initial period and the similarity period in which the enstrophy dissipation vanishes and remains non-zero respectively in the inviscid limit.

  2. Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes

    Directory of Open Access Journals (Sweden)

    E. Petronijevic

    2017-02-01

    Full Text Available We apply photo-acoustic (PA technique to examine plasmonic properties of 2D periodic arrays of nanoholes etched in gold/chromium layer upon a glass substrate. The pitch of these arrays lies in the near IR, and this, under appropriate wave vector matching conditions in the visible region, allows for the excitation of surface plasmon polaritons (SPP guided along a dielectric – metal surface. SPP offered new approaches in light guiding and local field intensity enhancement, but their detection is often difficult due to the problematic discrimination of their contribution from the overall scattering. Here PA measures the energy absorbed due to the non-radiative decay of SPPs. We report on the absorption enhancement by presenting the spatial mapping of absorption under the incidence angles and wavelength that correspond to the efficient excitation of SPPs. Moreover, a comparison with optical transmission measurements is carried out, underlining the applicability and sensitivity of PA technique.

  3. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders

    CERN Document Server

    Ndangali, Friends R

    2010-01-01

    Electromagnetic bound states in the radiation continuum are studied for periodic double arrays of subwavelength dielectric cylinders in TM polarization. They are similar to localized waveguide mode solutions of Maxwell's equations for metal cavities or defects of photonic crystals, but, in contrast to the latter, their spectrum lies in the radiation continuum. The phenomenon is identical to the existence of bound sates in the radiation continuum in quantum mechanics, discovered by von Neumann and Wigner. In the formal scattering theory, these states appear as resonances with the vanishing width. For the system studied, the bound states are shown to exist at specific distances between the arrays in the spectral region where one or two diffraction channels are open. Analytic solutions are obtained for all bound states (below the radiation continuum and in it) in the limit of thin cylinders (the cylinder radius is much smaller than the wavelength). The existence of bound states is also established in the spectra...

  4. Bloch bound states in the radiation continuum in a periodic array of dielectric rods

    CERN Document Server

    Bulgakov, Evgeny N

    2014-01-01

    We consider an infinite periodic array of dielectric rods in vacuum with the aim to demonstrate three types of a Bloch bound states in the continuum (BSC), symmetry protected with a zero Bloch vector, embedded into one diffraction channel with nonzero Bloch vector, and embedded into two and three diffraction channels. The first and second types of the BSC exist in a wide range of material parameters of the rods, while the third occurs only at a specific value of the radius of the rods. We show that the second type supports the power flux along the array. In order to find BSC we put forward an approach based on the expansion over the Hankel functions. We show how the BSC reveals itself in the scattering function when the singular BSC point is approached along a specific path in the parametric space.

  5. Quantum magnetotransport in a modulated two-dimensional electron gas

    Science.gov (United States)

    Park, Tae-ik; Gumbs, Godfrey

    1997-09-01

    Quantum mechanical calculations of the magnetotransport coefficients of a modulated two-dimensional electron gas in a perpendicular magnetic field are presented using the Kubo method. The model modulation potential used is such that the effect of the steepness of the potential and its strength on the band part of the longitudinal resistivity ρxxand the Hall resistivity ρxycould be studied. In the extreme limit of a very steep potential, a two-dimensional square array of antidots is simulated. Impurity scattering is included in the self-consistent t-matrix approximation. The results show that for a strong lateral superlattice potential, ρxyis quenched in the low magnetic field regime and as the magnetic field increases there is a large negative Hall resistivity. The intensity of this negative peak is suppressed as the strength of the modulation potential is decreased. It is also shown that the height of the negative peak depends on the steepness of the potential. The longitudinal resistivity also has some interesting features. There are Aharonov-Bohm oscillations and a double peak structure which depends on both the strength of the modulation potential as well as its slope. The numerical results show that the position and intensity of the lower peak is not very sensitive to a change in the strength of the lattice potential or its steepness. However, the upper peak is greatly reduced when the lattice potential is diminished in strength. The double peak feature in ρxxand the negative peak and quenching of the Hall effect at low magnetic fields have been observed experimentally for antidots in both the quasiclassical and quantum regimes.

  6. Two-dimensional visualization of cluster beams by microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    Khoukaz, A., E-mail: khoukaz@uni-muenster.de; Bonaventura, D.; Grieser, S.; Hergemöller, A.-K.; Köhler, E.; Täschner, A.

    2014-01-21

    An advanced technique for a two-dimensional real time visualization of cluster beams in a vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCPs) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This information can directly be used for the reconstruction of vertex positions as well as for an input for numerical simulations of the reaction zone. The spatial resolution of the images is dominated by the granularity of the complete MCP device and was found to be in the order of σ≈100μm. -- Highlights: • We present a MCP system for a 2D real time visualization of cluster target beams. • With this device the vertex region of storage ring experiments can be investigated. • Time resolved 2D information about the target thickness distribution is accessible. • A spatial resolution of the MCP device of 0.1 mm was achieved. • The presented MCP system also allows for measurements on cluster masses.

  7. Intensity correlations in metal films with periodic-on-average random nanohole arrays

    Science.gov (United States)

    Kumar, Randhir; Mujumdar, Sushil

    2016-12-01

    We report detailed numerical studies based on three-dimensional finite-difference time domain computations of the intensity-intensity correlations in deliberately randomized, periodic-on-average systems. Correlation analyses are carried out in plasmonic thin films with nanohole arrays as a function of strength of disorder. We find that the intensity at certain uncharacteristic wavelengths remains strongly correlated with that in the periodic system, and these wavelengths do not match the global maxima of the periodic transmission spectrum. The study indicates that the strength of correlations is related to the pinning of the intensity to the holes. Since the intensity pinning is special characteristic of metals, the effect is only applicable in plasmonic systems.

  8. Epsilon-Near-Zero behavior from plasmonic Dirac point: theory and realization using two-dimensional materials

    CERN Document Server

    Mattheakis, Marios; Kaxiras, Efthimios

    2016-01-01

    The electromagnetic response of a two-dimensional metal embedded in a periodic array of a dielectric host can give rise to a plasmonic Dirac point that emulates Epsilon-Near-Zero (ENZ) behavior. This theoretical result is extremely sensitive to tructural features like periodicity of the dielectric medium and thickness imperfections. We propose that such a device can actually be realized by using graphene as the 2D metal and materials like the layered semiconducting transition-metal dichalcogenides or hexagonal boron nitride as the dielectric host. We propose a systematic approach, in terms of design characteristics, for constructing metamaterials with linear, elliptical and hyperbolic dispersion relations which produce ENZ behavior, normal or negative diffraction.

  9. Noise reduction in long‐period seismograms by way of array summing

    Science.gov (United States)

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  10. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  11. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  12. Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures.

    Science.gov (United States)

    Stankevičius, Evaldas; Garliauskas, Mantas; Gedvilas, Mindaugas; Račiukaitis, Gediminas

    2015-11-02

    Here, we report the formation of Bessel-like beam array from periodic patterns fabricated by the four-beam interference lithography. Characteristics of the generated Bessel-like beams depend on geometrical parameters of the fabricated microaxicon-like structures, which can be easily controlled via the laser processing parameters. The output beam characteristics disclose the attributes of Bessel beams. The demonstrated method enables an easy fabrication of angular-tolerant wavefront detectors, optical tweezers, optical imaging systems or materials processing tools, having a broad range of applications.

  13. Stability Diagrams of a Bose-Einstein Condensate in a Periodic Array of Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    XUE Rui; LIANG Zhao-Xin; LI Wei-Dong

    2009-01-01

    With the help of a set of exact closed-form solutions to the stationary Gross-Pitaevskii equation, we compre-hensively investigate Landau and dynamical instabilities of a Bose-Einstein condensate in a periodic array of quantum wells. In the tight-binding limit, the analytical expressions for both Landau and dynamical instabilities are obtained in terms of the compressibility and effective mass of the BEC system. Then the stability phase diagrams are shown to be similar to the one in the case of the sinusoidal optical lattice.

  14. Log-Periodic Dipole Array Antenna as a Chipless Radio-Frequeny Identification (RFID) Tag

    CERN Document Server

    Gupta, Shulabh; Roberts, Robert Chris; Jiang, Li Jun

    2013-01-01

    A passive chipless Radio-frequency identification (RFID) tag based on log-periodic (LP) dipole array is proposed, where the tailorable band-rejection property of the LP aperture is utilized to realize large number of codes. The proposed tag principle is successfully validated using measurements, where the absence and presence of the band-rejection, is shown to carry the bit information. Its fabrication simplicity is also demonstrated by its implementation on a flexible substrate. Finally, two different tag formation schemes, based on specific set of resonance suppressions, are discussed in detailed.

  15. Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography

    Energy Technology Data Exchange (ETDEWEB)

    Woldering, Leon A; Tjerkstra, R Willem; Vos, Willem L [Complex Photonic Systems (COPS), MESA Institute for Nanotechnology and Department of Science and Technology, University of Twente, PO Box 217, NL-7500 AE Enschede (Netherlands); Jansen, Henri V [Transducers Science and Technology (TST), MESA Institute for Nanotechnology and Department of Electrical Engineering, Mathematics and Computer Science, University of Twente, PO Box 217, NL-7500 AE Enschede (Netherlands); Setija, Irwan D [ASML Netherlands B V, De Run 6501, NL-5504 DR Veldhoven (Netherlands)], E-mail: l.a.woldering@utwente.nl

    2008-04-09

    We report on the fabrication of periodic arrays of deep nanopores with high aspect ratios in crystalline silicon. The radii and pitches of the pores were defined in a chromium mask by means of deep UV scan and step technology. The pores were etched with a reactive ion etching process with SF{sub 6}, optimized for the formation of deep nanopores. We have realized structures with pitches between 440 and 750 nm, pore diameters between 310 and 515 nm, and depth to diameter aspect ratios up to 16. To the best of our knowledge, this is the highest aspect ratio ever reported for arrays of nanopores in silicon made with a reactive ion etching process. Our experimental results show that the etching rate of the nanopores is aspect-ratio-dependent, and is mostly influenced by the angular distribution of the etching ions. Furthermore we show both experimentally and theoretically that, for sub-micrometer structures, reducing the sidewall erosion is the best way to maximize the aspect ratio of the pores. Our structures have potential applications in chemical sensors, in the control of liquid wetting of surfaces, and as capacitors in high-frequency electronics. We demonstrate by means of optical reflectivity that our high-quality structures are very well suited as photonic crystals. Since the process studied is compatible with existing CMOS semiconductor fabrication, it allows for the incorporation of the etched arrays in silicon chips.

  16. The study of structural color filter based on periodic nanohole arrays for bio-detection

    Science.gov (United States)

    Kim, Seunguk; Shin, Jeonghee; Yoo, Seungjun; Kim, Samhwan; Jeon, Byoungok; Moon, Cheil; Jang, Jae-Eun

    2015-07-01

    A nanostructure which induces localized surface plasmon resonance (LSPR) can be utilized in visible light and near infrared (NIR) regions and it shows promising features as a bio-detector because LSPR state is changed easily by different bio-related materials. Owing to transparent property of many biomolecules as well as diluted states in base solutions, it is hard to distinguish each other by eye or microscope analysis. However, difference in molecular structure and composition makes difference in optical characteristics such as a refractive index or a dielectric constant. Therefore, our LSPR-based nanohole array structure which has high sensitivity to detect small changes in optical characteristics can be a great candidate for a bio detector. Here, we fabricated structural color filters (SCFs) to detect wavelength shifts for several biomolecules and optimized the nanohole array structures for high sensitivity. Periodic nanohole arrays were designed to present resonance peaks in visible light region for optical analysis and fabricated in Au or Al thin film layer. The spectral shifts were detected caused by biomolecules.

  17. Extremely asymmetrical scattering of electromagnetic waves in gradually varying periodic arrays

    CERN Document Server

    Gramotnev, D K

    1999-01-01

    This paper analyses theoretically and numerically the effect of varying grating amplitude on the extremely asymmetrical scattering (EAS) of bulk and guided optical modes in non-uniform strip-like periodic Bragg arrays with stepwise and gradual variations in the grating amplitude across the array. A recently developed new approach based on allowance for the diffractional divergence of the scattered wave is used for this analysis. It is demonstrated that gradual variations in magnitude of the grating amplitude may change the pattern of EAS noticeably but not radically. On the other hand, phase variations in the grating may result in a radically new type of Bragg scattering - double-resonant EAS (DEAS). In this case, a combination of two strong simultaneous resonances (one with respect to frequency, and another with respect to the phase variation) is predicted to take place in non-uniform arrays with a step-like phase and gradual magnitude variations of the grating amplitude. The tolerances of EAS and DEAS to sm...

  18. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  19. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  20. Coupling between Fano and Bragg bands in photonic band structure of two-dimensional metallic photonic structures

    CERN Document Server

    Markos, Peter

    2016-01-01

    Frequency and transmission spectrum of two-dimensional array of metallic rods is investigated numerically. Based on the recent analysis of the band structure of two-dimensional photonic crystal with dielectric rods [P. Marko\\v{s}, Phys. Rev. A 92 043814 (2015)] we identify two types of bands in the frequency spectrum: Bragg (P) bands resulting from a periodicity and Fano (F) bands which arise from Fano resonances associated with each of the cylinders within the periodic structure. It is shown that the existence of Fano band in a certain frequency range is manifested by a Fano resonance in the transmittance. In particular, we re-examine the symmetry properties of the H- polarized band structure in the frequency range where the spectrum consists of the localized modes associated with the single scatterer resonances and we explore process of formation of Fano bands by identifying individual terms in the expansion of the LCAO states. We demonstrate how the interplay between the two scattering mechanisms affects p...

  1. Acoustic resonances in two dimensional radial sonic crystals shells

    CERN Document Server

    Torrent, Daniel

    2010-01-01

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction. They have been recently introduced and are only possible thanks to the anisotropy of specially designed acoustic metamaterials [see Phys. Rev. Lett. {\\bf 103} 064301 (2009)]. We present here a comprehensive analysis of two-dimensional RSC shells, which consist of a cavity defect centered at the origin of the crystal and a finite thickness crystal shell surrounded by a fluidlike background. We develop analytic expressions demonstrating that, like for other type of crystals (photonic or phononic) with defects, these shells contain Fabry-Perot like resonances and strongly localized modes. The results are completely general and can be extended to three dimensional acoustic structures and to their photonic counterparts, the radial photonic crystals.

  2. Acoustic resonances in two-dimensional radial sonic crystal shells

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2010-07-01

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  3. Patched Green's function techniques for two-dimensional systems

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Lin, Jun

    2015-01-01

    We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...... of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well...... as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations...

  4. Two-dimensional optical thermal ratchets based on Fibonacci spirals.

    Science.gov (United States)

    Xiao, Ke; Roichman, Yael; Grier, David G

    2011-07-01

    An ensemble of symmetric potential energy wells arranged at the vertices of a Fibonacci spiral can serve as the basis for an irreducibly two-dimensional thermal ratchet. Periodic rotation of the potential energy landscape through a three-step cycle drives trapped Brownian particles along spiral trajectories through the pattern. Which spiral is selected depends on the angular displacement at each step, with transitions between selected spirals arising at rational proportions of the golden angle. Fibonacci spiral ratchets therefore display an exceptionally rich range of transport properties, including inhomogeneous states in which different parts of the pattern induce motion in different directions. Both the radial and angular components of these trajectories can undergo flux reversal as a function of the scale of the pattern or the rate of rotation.

  5. Pattern Coarsening in a Two Dimensional Hexagonal System

    Science.gov (United States)

    Chaikin, Paul

    2008-03-01

    We have been studying the ordering, annealing, coarsening and alignment of two dimensional periodically ordered structures in thin films of diblock copolymers*. Coarsening by dislocation and disclination annihilation is clearly observed in AFM studies of monolayer films of cylindrical patterns with a time dependence given by t^α, with α about 1/4. However in hexagonal structures the mechanism is less well defined and appears to involve the collapse of small grains entrained in the grain boundaries of larger domains. Remarkably the exponent of α about 1/4 remains. We also report on shear aligned samples and samples quenched in a gradient after alignment. * Harrison C, Angelescu DE, Trawick M, Cheng ZD, Huse DA, Chaikin PM, Vega DA, Sebastian JM, Register RA, Adamson DH, EUROPHYSICS LETTERS 67 800-806 (2004)

  6. Intensity Coding in Two-Dimensional Excitable Neural Networks

    CERN Document Server

    Copelli, Mauro

    2016-01-01

    In the light of recent experimental findings that gap junctions are essential for low level intensity detection in the sensory periphery, the Greenberg-Hastings cellular automaton is employed to model the response of a two-dimensional sensory network to external stimuli. We show that excitable elements (sensory neurons) that have a small dynamical range are shown to give rise to a collective large dynamical range. Therefore the network transfer (gain) function (which is Hill or Stevens law-like) is an emergent property generated from a pool of small dynamical range cells, providing a basis for a "neural psychophysics". The growth of the dynamical range with the system size is approximately logarithmic, suggesting a functional role for electrical coupling. For a fixed number of neurons, the dynamical range displays a maximum as a function of the refractory period, which suggests experimental tests for the model. A biological application to ephaptic interactions in olfactory nerve fascicles is proposed.

  7. Self-assembled periodic patterns on the optical fiber tip by microsphere arrays

    Science.gov (United States)

    Pisco, Marco; Galeotti, Francesco; Grisci, Giorgio; Quero, Giuseppe; Cusano, Andrea

    2015-09-01

    In this work, we report a fabrication route for self-assembling periodic patterns on optical fiber tips. The technique is based on self-assembling polystyrene microspheres at the air/water interface and on successive transferring of the monolayer colloidal crystal on the fiber tip. By applying to the fiber further treatments like particle size reduction, metal coating and sphere removal, different periodic structures are conveniently realized. The results obtained indicate that self-assembly technique affords opportunity to create on the optical fiber tip dielectric and metallic-dielectric spheres' arrays with a feature size down to a submicron scale or metallic patterns with a few hundred nanometers at low fabrication costs.

  8. Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride

    Science.gov (United States)

    Ju, Long

    This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is

  9. Locally Resonant Gaps of Phononic Beams Induced by Periodic Arrays of Resonant Shunts

    Institute of Scientific and Technical Information of China (English)

    CHEN Sheng-Bing; WEN Ji-Hong; WANG Gang; HAN Xiao-Yun; WEN Xi-Sen

    2011-01-01

    @@ Periodic arrays of shunted piezoelectric patches are employed to control the propagation of elastic waves in phononic beams.Each piezo-patch is connected to a single resistance-inductance-capacitance shunting circuit.Therefore,the resonances of the shunting circuits will produce locally resonant gaps in the phononic beam.However,the existence of locally resonant gaps induced by resonant shunts has not been clearly proved by experiment so far.In this work,the locally resonant gap in a piezo-shunted phononic beam is investigated theoretically and verified by experiment.The results prove that resonances of shunting circuits can produce locally resonant gaps in phononic beams.%Periodic arrays of shunted piezoelectric patches are employed to control the propagation of elastic waves in phononic beams. Each piezo-patch is connected to a single resistance-inductance-capacitance shunting circuit. Therefore, the resonances of the shunting circuits will produce locally resonant gaps in the phononic beam. However, the existence of locally resonant gaps induced by resonant shunts has not been clearly proved by experiment so far. In this work, the locally resonant gap in a piezo-shunted phononic beam is investigated theoretically and verified by experiment. The results prove that resonances of shunting circuits can produce locally resonant gaps in phononic beams.

  10. 基于PTW Seven29TM二维电离室矩阵的调强放疗计划剂量验证%Dosimetric Veriifcation for Intensity-modulated Radiation Therapy Based on PTW Seven29TM Two-dimensional Ion Chamber Array

    Institute of Scientific and Technical Information of China (English)

    汪志; 王成; 唐虹; 洪浩; 李锐; 陈香存; 童铸廷; 王凡

    2016-01-01

    目的:探讨利用PTW Seven29TM二维电离室矩阵验证调强放疗计划的可行性。方法选取70例肿瘤患者(头颈部肿瘤15例,胸部肿瘤30例,腹部肿瘤25例)。在Pinnacle 9.8计划系统中设计相应的调强放疗计划,然后将调强放疗计划移植到验证模体上。在加速器上对放疗计划进行验证并利用PTW Seven29TM测量相应的剂量分布,采用Gamma分析法比较计划系统的理论输出数据和PTW Seven29TM实际测量数据的差异。结果头、胸、腹部肿瘤患者调强放疗计划的Gamma通过率(3 mm,3%)分别为:95.29%±2.46%,96.11%±2.66%和96.03%±1.98%,表明所有患者的调强放疗计划均能够满足临床需要。结论使用PTW Seven29TM二维电离室矩阵验证调强放疗计划简便、可行。%Objective To investigate the feasibility of dosimetric verification for Intensity-modulated Radiation Therapy (IMRT) based on the Seven29TM two-dimensional ion chamber array (2D-array). Methods The IMRT plans of 70 patients (15 head and neck neoplasm patients, 30 thoracicneoplasm patients, 25 abdominalneoplasm patients) were designed with Pinnacle 9.8 and copied to dosimetric phantom. The results of IMRT plans were imported to linear accelerators (Siemens Artiste) and the plans were executed. The delivered dose distribution were measured by the Seven29TM and compared with the planned dose distribution.Results The results of Gamma of patients with head and neck, breast, abdomen were 95.29%±2.46%, 96.11%±2.66% and 96.03%±1.98% with a standard error of 3 mm and 3%. The radiation therapeutic regimens all meet the clinical needs of all patients examined.Conclusion The IMRT plans can be veriifed with PTW Seven29TMin a simple and feasible way.

  11. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  12. The intrinsic two-dimensional size of Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Geoffrey C. [Academica Sinica Institute of Astronomy and Astrophysics (ASIAA), 645 North A' ohoku Place, Hilo, HI 96720 (United States); Markoff, Sera [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Brunthaler, Andreas; Falcke, Heino [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Law, Casey [Radio Astronomy Laboratory, UC Berkeley, B-20 Hearst Field Annex, Berkeley, CA 94720-3411 (United States); Maitra, Dipankar [Department of Physics and Astronomy, Wheaton College, Norton, MA 02766 (United States); Clavel, M.; Goldwurm, A. [AstroParticule et Cosmologie (APC), Université Paris 7 Denis Diderot, F-75205 Paris cedex 13 (France); Morris, M. R.; Witzel, Gunther; Meyer, Leo; Ghez, A. M., E-mail: grower@asiaa.sinica.edu.tw [UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095-1562 (United States)

    2014-07-20

    We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array observations at a wavelength of 7 mm. The intrinsic source is modeled as an elliptical Gaussian with major-axis size 35.4 × 12.6 R{sub S} in position angle 95° east of north. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95°. We also place a maximum peak-to-peak change of 15% in the intrinsic major-axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.

  13. The Intrinsic Two-Dimensional Size of Sagittarius A*

    CERN Document Server

    Bower, Geoffrey C; Brunthaler, Andreas; Law, Casey; Falcke, Heino; Maitra, Dipankar; Clavel, M; Goldwurm, A; Morris, M R; Witzel, Gunther; Meyer, Leo; Ghez, A M

    2014-01-01

    We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array (VLBA) observations at a wavelength of 7mm. The intrinsic source is modeled as an elliptical Gaussian with major axis size 35.4 x 12.6 R_S in position angle 95 deg East of North. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95 deg. We also place a maximum peak-to-peak change of 15% in the intrinsic major axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports...

  14. Two-dimensional magnetic ordering in a multilayer structure

    Indian Academy of Sciences (India)

    M K Mukhopadhyay; M K Sanyal

    2006-07-01

    The effect of confinement from one, two or from all three directions on magnetic ordering has remained an active field of research for almost 100 years. The role of dipolar interactions and anisotropy are important to obtain, the otherwise forbidden, ferromagnetic ordering at finite temperature for ions arranged in two-dimensional (2D) arrays (monolayers). We have demonstrated that conventional low-temperature magnetometry and polarized neutron scattering measurements can be performed to study short-range ferromagnetic ordering of in-plane spins in 2D systems using a multilayer stack of non-interacting monolayers of gadolinium ions formed by Langmuir–Blodgett (LB) technique. The spontaneous magnetization could not be detected in the heterogeneous magnetic phase observed here and the saturation value of the net magnetization was found to depend on the sample temperature and applied magnetic field. The net magnetization rises exponentially with lowering temperature and then reaches saturation following a ln( ) dependence. The ln( ) dependence of magnetization has been predicted from spin-wave theory of 2D in-plane spin system with ferromagnetic interaction. The experimental findings reported here could be explained by extending this theory to a temperature domain of < 1.

  15. 从全球地震11/30周期分布律揭示的时间新维度——11/30二维时间坐标系%New Dimensions of Time Discovered from 11 and 30 Global Earthquakes Time Periodic Law 11 and 30 Two-Dimensional Time Coordinate System

    Institute of Scientific and Technical Information of China (English)

    陈伟

    2012-01-01

    In this article, Collected more than 400 cases of global earthquakes (Global earthquakes greater than 7.5 and China earthquake greater than 7.0) from the year 1201 so far, earthquake cases in the calculation of the time difference between any two data, we found two basic cycles 11 and 30,no matter what the time scale selected, such as year, month or day. This global seismic time distribution model is called "11 and 30 global earthquakes time periodic law". ARer outlining the content of this law, this article focus on revealing the hidden nature of the physical laws more "11/30 time two-dimensional coordinate system".%根据收集到的自公元1201年以来全球7.5级/中国7.O级以上强震共400余例,通过计算每个震例之间的年差、月差(如取近期发生的地震亦可计算其日差,结果完全类似),发现在不同时间尺度中均存在着两个基本周期数:11与30;根据这两个基本周期数表达出的地震时间分布规律称为“全球地震11/30周期分布律”;本文在概要介绍“11/30地震周期律”基础上,来重点揭示在这一周期律背后所隐藏的更为本质的物理规律:“11/30二维时间坐标系”。

  16. Plasmonic properties of nanoparticle-film systems and periodic nanoparticle arrays

    Science.gov (United States)

    Le, Fei

    In this thesis we perform theoretical investigations on the optical properties of geometrically infinite metallic nano-structures such as nanoparticle/film systems and periodic nanoparticle arrays. We apply both Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) methods and we obtain quantitative agreement with experimental measurements as well as other theoretical methods such as Mie Theory and Finite Element simulation. For the nanoparticle over film structure, our research shows that the plasmonic interaction between the nanoparticle and the film is an electromagnetic analogue of the spinless Anderson-Fano model, which was used to describe the interaction of a localized electronic state with a continuous band of electronic states. Three characteristic regimes of the model are realized as the energy of the nanoparticle plasmon resonance lies above, within, or below the energy band of the surface plasmon state. These three interaction regimes are controlled by the film thickness. In the thin film limit, the plasmonic coupling between the nanoshell and the film induces a low-energy virtual state (VS) mainly composed of delocalized film, which can be further tuned as the aspect ratio of the nanoshell changes. The calculations are found to agree well with experimental measurements. Using FDTD method, we show that the electromagnetic field enhancement induced by the VS in the thin film limit can be very large and the nanoparticle/film system could serve as an ideal substrate for Surface Enhanced Raman Spectroscopy (SERS) and Tip Enhanced Raman Spectroscopy (TERS). The plasmonic properties of nanoparticle arrays are investigated using FDTD with Periodic Boundary Conditions (PBC). Our research shows that 2D hexagonal (hcp) nanoshell arrays possess ideal properties as a substrate that combines SERS and Surface Enhanced Infrared Absorption (SEIRA), with large electric field enhancements at the same spatial locations in the structure. With small

  17. Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm

    2010-01-01

    We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e......We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show...

  18. Commensurability oscillations due to pinned and drifting orbits in a two-dimensional lateral surface superlattice

    Science.gov (United States)

    Grant, David E.; Long, Andrew R.; Davies, John H.

    2000-05-01

    We have simulated conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential Vx cos(2πx/a)+Vy cos(2πy/a). The usual commensurability oscillations in ρxx(B) are seen with Vx alone. An increase of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρyy(B) expected from previous perturbation theories. We show that this behavior arises from drift of the guiding center of cyclotron motion along contours of an effective potential. Periodic modulation in the magnetic field can be treated in the same way.

  19. Uniplanar Millimeter-Wave Log-Periodic Dipole Array Antenna Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Guohua Zhai

    2013-01-01

    Full Text Available A uniplanar millimeter-wave broadband printed log-periodic dipole array (PLPDA antenna fed by coplanar waveguide (CPW is introduced. This proposed structure consists of several active dipole elements, feeding lines, parallel coupled line, and the CPW, which are etched on a single metallic layer of the substrate. The parallel coupled line can be optimized to act as a transformer between the CPW and the PLPDA antenna. Meanwhile, this transform performs the task of a balun to achieve a wideband, low cost, low loss, simple directional antenna. The uniplanar nature makes the antenna suitable to be integrated into modern printed communication circuits, especially the monolithic millimeter-wave integrated circuits (MMIC. The antenna has been carefully examined and measured to present the return loss, far-field patterns, and antenna gain.

  20. Tunable Optical Performances on a Periodic Array of Plasmonic Bowtie Nanoantennas with Hollow Cavities

    Science.gov (United States)

    Chou Chau, Yuan-Fong; Chou Chao, Chung-Ting; Rao, Jhin-Yu; Chiang, Hai-Pang; Lim, Chee Ming; Lim, Ren Chong; Voo, Nyuk Yoong

    2016-09-01

    We propose a design method to tune the near-field intensities and absorption spectra of a periodic array of plasmonic bowtie nanoantennas (PBNAs) by introducing the hollow cavities inside the metal nanostructures. The numerical method is performed by finite element method that demonstrates the engineered hollow PBNAs can tune the optical spectrum in the range of 400-3000 nm. Simulation results show the hollow number is a key factor for enhancing the cavity plasmon resonance with respect to the hotspot region in PBNAs. The design efforts primarily concentrate on shifting the operation wavelength and enhancing the local fields by manipulating the filling dielectric medium, outline film thickness, and hollow number in PBNAs. Such characteristics indicate that the proposed hollow PBNAs can be a potential candidate for plasmonic enhancers and absorbers in multifunctional opto-electronic biosensors.

  1. Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays.

    Science.gov (United States)

    Molero, Carlos; Rodríguez-Berral, Raúl; Mesa, Francisco; Medina, Francisco; Yakovlev, Alexander B

    2016-01-01

    A wideband equivalent circuit is proposed for the accurate analysis of scattering from a set of stacked slit gratings illuminated by a plane wave with transverse magnetic or electric polarization that impinges normally or obliquely along one of the principal planes of the structure. The slit gratings are printed on dielectric slabs of arbitrary thickness, including the case of closely spaced gratings that interact by higher-order modes. A Π-circuit topology is obtained for a pair of coupled arrays, with fully analytical expressions for all the circuit elements. This equivalent Π circuit is employed as the basis to derive the equivalent circuit of finite stacks with any given number of gratings. Analytical expressions for the Brillouin diagram and the Bloch impedance are also obtained for infinite periodic stacks.

  2. Wave propagation in beams with periodic arrays of airfoil-shaped resonating units

    Science.gov (United States)

    Casadei, Filippo; Bertoldi, Katia

    2014-12-01

    This paper presents an analytical and numerical study on the dispersion properties of an Euler-Bernoulli beam immersed in a steady fluid flow with periodic arrays of airfoil-shaped vibration absorbers attached to it. The resonance characteristics of the airfoils generate strong attenuation of flexural waves in the beam occurring at frequencies defined by the properties of the airfoils and the speed of the incident fluid. Analytical and numerical tools are developed to investigate the effects of the incident flow on the dispersion properties and the bandgaps of the system. Both steady and unsteady aerodynamic models are used to model the lift force and the pitching moment acting on the resonators and their effect on the dispersion relations of the system is evaluated. Finally, an effective medium description of the beam is developed to capture its behavior at long-wavelengths. In this regime, the system can be effectively considered as an acoustic metamaterial with adaptive dispersion properties.

  3. Two-dimensional novel optical lattices with multi-well traps for cold atoms or molecules

    Institute of Scientific and Technical Information of China (English)

    Junfa Lu; Xianming Ji; Jianping Yin

    2006-01-01

    We propose some new schemes to constitute two-dimensional (2D) array of multi-well optical dipole traps for cold atoms (or molecules) by using an optical system consisting of a binary π-phase grating and a 2D array of rectangle microlens. We calculate the intensity distribution of each optical well in 2D array of multi-well traps and its geometric parameters and so on. The proposed 2D array of multi-well traps can be used to form novel 2D optical lattices with cold atoms (or molecules), and form various novel optical crystals with cold atoms (or molecules), or to perform quantum computing and quantum information processing on an atom chip, even to realize an array of all-optical multi-well atomic (or molecular) BoseEinstein condensates (BECs) on an all-optical integrated atom (or molecule) chip.

  4. Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements

    Science.gov (United States)

    Jensen, Flemming; Shkondin, Evgeniy; Takayama, Osamu; Larsen, Pernille V.; Mar, Mikkel D.; Malureanu, Radu; Lavrinenko, Andrei V.

    2016-09-01

    In this work, we report on fabrication of deep-profile one- and two-dimensional lattices made from Al-doped ZnO (AZO). AZO is considered as an alternative plasmonic material having the real part of the permittivity negative in the near infrared range. The exact position of the plasma frequency of AZO is doping concentration dependent, allowing for tuning possibilities. In addition, the thickness of the AZO film also affects its material properties. Physical vapor deposition techniques typically applied for AZO coating do not enable deep profiling of a plasmonic structure. Using the atomic layer deposition technique, a highly conformal deposition method, allows us to fabricate high-aspect ratio structures such as one-dimensional lattices with a period of 400 nm and size of the lamina of 200 nm in width and 3 μm in depth. Thus, our structures have an aspect ratio of 1:15 and are homogeneous on areas of 2×2 cm2 and more. We also produce two-dimensional arrays of circular nanopillars with similar dimensions. Instead of nanopillars hollow tubes with a wall thickness on demand from 20 nm up to a complete fill can be fabricated.

  5. Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities

    Science.gov (United States)

    El-Jallal, Said; Oudich, Mourad; Pennec, Yan; Djafari-Rouhani, Bahram; Laude, Vincent; Beugnot, Jean-Charles; Martínez, Alejandro; Escalante, José María; Makhoute, Abdelkader

    2013-11-01

    We theoretically investigate phonon-photon interaction in cavities created in a phoxonic crystal slab constituted by a two-dimensional (2D) square array of holes in a silicon membrane. The structure without defects provides 2D band gaps for both electromagnetic and elastic waves. We consider two types of cavities, namely, an L3 cavity (a row of three holes is removed) and a cross-shape cavity, which both possess highly confined phononic and photonic localized modes suitable for enhancing their interaction. In our theoretical study, we take into account two mechanisms that contribute to optomechanical interaction, namely, the photoelastic and the interface motion effects. We show that, depending on the considered pair of photonic and phononic modes, the two mechanisms can have similar or very different magnitudes, and their contributions can be either in or out of phase. We find out that only acoustic modes with a specific symmetry are allowed to couple with photonic cavity modes. The coupling strength is quantified by two different methods. In the first method, we compute a direct estimation of coupling rates by overlap integrals, while in the second one, we analyze the temporal modulation of the resonant photonic frequency by the phonon-induced acoustic vibrational motion during one acoustic period. Interestingly, we obtain high optomechanical interaction, with the coupling rate reaching more than 2.4 MHz for some specific phonon-photon pairs.

  6. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  7. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  8. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  9. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  10. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  11. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  12. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  13. Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics

    Science.gov (United States)

    Cable, William; Romanovsky, Vladimir; Busey, Robert

    2016-04-01

    necessarily found in areas of higher MAGT. Active layer thickness does not appear to be correlated to mean annual air temperature but rather is a function of summer air temperature or thawing degree-days. While the refreezing of the active layer initiated at nearly the same time for all locations and polygons, we find differences in the proportion of top-down versus bottom-up freezing and the length of time required to complete the refreezing process. Examination of the daily temperature dynamics using interpolated two-dimensional temperature fields reveal that during the summer, the predominate temperature gradient is vertical while the isotherms tend to follow the topography. However, as the active layer begins to refreeze and snow accumulates, the thermal regime diverges. The fall shows an increased temperature gradient horizontally with landscape positions containing higher soil moisture and/or snow depth (low centers and troughs) cooling more slowly than the adjacent ground (rims and high centers). This two-dimensional effect is greatest as the active layer refreezes and persists until mid-winter, by which time the temperature gradients are again mostly vertical and the isotherms follow the topography. Our findings demonstrate the complexity and two-dimensionality of the temperature dynamics in these landscapes.

  14. Rapidly convergent quasi-periodic Green functions for scattering by arrays of cylinders---including Wood anomalies

    CERN Document Server

    Bruno, Oscar P

    2016-01-01

    This paper presents a full-spectrum Green function methodology (which is valid, in particular, at and around Wood-anomaly frequencies) for evaluation of scattering by periodic arrays of cylinders of arbitrary cross section-with application to wire gratings, particle arrays and reflectarrays and, indeed, general arrays of conducting or dielectric bounded obstacles under both TE and TM polarized illumination. The proposed method, which, for definiteness is demonstrated here for arrays of perfectly conducting particles under TE polarization, is based on use of the shifted Green-function method introduced in the recent contribution (Bruno and Delourme, Jour. Computat. Phys. pp. 262--290 (2014)). A certain infinite term arises at Wood anomalies for the cylinder-array problems considered here that is not present in the previous rough-surface case. As shown in this paper, these infinite terms can be treated via an application of ideas related to the Woodbury-Sherman-Morrison formulae. The resulting approach, which i...

  15. Phase-space properties of two-dimensional elastic phononic crystals and anharmonic effects in nano-phononic crystals

    Science.gov (United States)

    Swinteck, Nichlas Z.

    This dissertation contains research directed at investigating the behavior and properties of a class of composite materials known as phononic crystals. Two categories of phononic crystals are explicitly investigated: (I) elastic phononic crystals and (II) nano-scale phononic crystals. For elastic phononic crystals, attention is directed at two-dimensional structures. Two specific structures are evaluated (1) a two-dimensional configuration consisting of a square array of cylindrical Polyvinylchloride inclusions in air and (2) a two-dimensional configuration consisting of a square array of steel cylindrical inclusions in epoxy. For the first configuration, a theoretical model is developed to ascertain the necessary band structure and equi-frequency contour features for the realization of phase control between propagating acoustic waves. In contrasting this phononic crystal with a reference system, it is shown that phononic crystals with equifrequency contours showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. For the second configuration, it is demonstrated that multiple functions can be realized of a solid/solid phononic crystal. The epoxy/steel phononic crystal is shown to behave as (1) an acoustic wave collimator, (2) a defect-less wave guide, (3) a directional source for elastic waves, (4) an acoustic beam splitter, (5) a phase-control device and (6) a k-space multiplexer. To transition between macro-scale systems (elastic phononic crystals) and nano-scale systems (nano-phononic crystals), a toy model of a one-dimensional chain of masses connected with non-linear, anharmonic springs is utilized. The implementation of this model introduces critical ideas unique to nano-scale systems, particularly the concept of phonon mode lifetime. The nano-scale phononic crystal of interest is a graphene sheet with periodically spaced holes in a triangular array. It is found through equilibrium

  16. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stavroula Foteinopoulou

    2003-12-12

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  17. Displacement field of doubly periodic array of dislocation dipoles in elastically anisotropic media

    Science.gov (United States)

    Soleymani Shishvan, Siamak; Moghaddam, Babak

    2016-01-01

    The displacement field for dislocation dipoles periodically arranged along both x- and y-directions is found to be conditionally convergent. That is, different displacement fields are obtained depending on the order of the summation to be adopted. From the two summations, one can be performed analytically; however, the other one has to be performed numerically. We first derive analytic expressions for the displacement field of periodic array of dipoles along one (either x or y) direction considering anisotropic elasticity; they are then applied for the numerical summation (practically truncated) along the other direction. The resulting displacement field needs to be corrected by subtracting the spurious displacement field, whose expressions are analytically derived. As a first application, we employ the displacement and corresponding stress fields in a 2D discrete dislocation plasticity (DDP) model of a fine-grained polycrystal under shear loading. To this end, anisotropic plane-strain DDP method is utilised to solve the underlying boundary value problem. Subsequently, predictions of size-dependent plastic behaviour in anisotropic polycrystals with grain sizes in the range ? are presented.

  18. Two-dimensional modeling of apparent resistivity pseudosections in the Cerro Prieto region

    Energy Technology Data Exchange (ETDEWEB)

    Vega, R.; Martinez, M.

    1981-01-01

    Using a finite-difference program (Dey, 1976) for two-dimensional modeling of apparent resistivity pseudosections obtained by different measuring arrays, four apparent resistivity pseudosections obtained at Cerro Prieto with a Schlumberger array by CFE personnel were modeled (Razo, 1978). Using geologic (Puente and de la Pena, 1978) and lithologic (Diaz, et al., 1981) data from the geothermal region, models were obtained which show clearly that, for the actual resistivity present in the zone, the information contained in the measured pseudosections is primarily due to the near-surface structure and does not show either the presence of the geothermal reservoir or the granitic basement which underlies it.

  19. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  20. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  1. A comparison between two-dimensional ion chamber array and EDR2 film for intensity modulated planning of helical tomotherapy%二维电离室阵列与EDR2胶片在螺旋断层治疗计划剂量验证中的应用研究

    Institute of Scientific and Technical Information of China (English)

    解传滨; 徐寿平; 鞠忠建; 戴相昆; 葛瑞刚; 巩汉顺

    2011-01-01

    目的 比较EDR2胶片与二维电离室阵列在螺旋断层治疗(HT)计划质量保证过程中的剂量学特性,并分析测量方法间的可能差异.方法 采用IBA公司I′mRT MatriXX二维电离室阵列其相配套MULTICube等效固体水模体,同时夹放EDR2胶片对15例患者HT计划实施剂量学验证,分别实行轴位和纵向摆位测量以获取模体冠、矢状面剂量分布.照后将两种方法所测得的剂量分布与其对应模体计划中计算结果进行比对,以γ分析法(3 mm/3%)评估验证情况及实施效率.结果 15例患者冠状面、矢状面二维电离室阵列和EDR2胶片测量的γ≤1平均通过率分别为97.00%±1.56%和95.98%±2.52%(t=-2.22,P=0.043)、98.28%±1.55%和95.42%±1.99%(t=0.75,P=0.464);其中>90%、>95%通过率比例分别为93.3%、66.7%.两种方法测量所得剂量分布与计算结果在相同平面的几何分布均有较好的符合度,且亦存在一定相关性(r=0.14,P=0.001).结论 日常HT质量保证中二维电离室阵列可有效替代胶片和电离室测量,而胶片验证作为"金标准"为定期相互比对提供了可能.%Objective The aim of this work is to compare the performances of EDR2 film dosimetry with two-dimensional ion chamber array (2DICA) in quality assurance (QA) procedures and to investigate the origin of possible discrepancies between the two methods.Methods A 2DICA, I′mRT MatriXX and MULTICube equivalent solid water phantom from IBA Company were used to verify the dose distribution of 15 tomotherapy plan cases.The combined phantom which includes EDR2 film on the array was set up to measure the dose distribution from coronal and sagittal orientations.After the irradiation, the dose distributions of 2DICA and film were compared with those calculated in the planning system for verification.The results and efficiency were evaluated independently in the two methods.Results The mean number of points satifying γ parameter ≤1 in the coronal and sagittal

  2. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  3. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  4. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  5. Cluster algorithm for two-dimensional U(1) lattice gauge theory

    Science.gov (United States)

    Sinclair, R.

    1992-03-01

    We use gauge fixing to rewrite the two-dimensional U(1) pure gauge model with Wilson action and periodic boundary conditions as a nonfrustrated XY model on a closed chain. The Wolff single-cluster algorithm is then applied, eliminating critical slowing down of topological modes and Polyakov loops.

  6. The Study of Two-Dimensional Oscillations Using a Smartphone Acceleration Sensor: Example of Lissajous Curves

    Science.gov (United States)

    Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.

    2015-01-01

    A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for…

  7. Design of Two-Dimensional Photonic Crystal Edge Emitting Laser for Photonic Integrated Circuits

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-Tao; ZHENG Wan-Hua; REN Gang; CHEN Liang-Hui

    2006-01-01

    @@ An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide.

  8. Exact Solutions of the Two-Dimensional Discrete Nonlinear Schr\\"odinger Equation with Saturable Nonlinearity

    CERN Document Server

    Khare, Avinash; Samuelsen, Mogens R; Saxena, Avadh; 10.1088/1751-8113/43/37/375209

    2010-01-01

    We show that the two-dimensional, nonlinear Schr\\"odinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the effective Peierls-Nabarro barrier for the pulse-like soliton solution is zero.

  9. Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography

    Science.gov (United States)

    Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2008-02-01

    We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.

  10. Electrical Oscillations in Two-Dimensional Microtubular Structures

    Science.gov (United States)

    Cantero, María Del Rocío; Perez, Paula L.; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio F.

    2016-06-01

    Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton.

  11. DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS

    Institute of Scientific and Technical Information of China (English)

    Qicheng Sun

    2003-01-01

    Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.

  12. Two-dimensional Fourier transform ESR correlation spectroscopy

    Science.gov (United States)

    Gorcester, Jeff; Freed, Jack H.

    1988-04-01

    We describe our pulsed two-dimensional Fourier transform ESR experiment and demonstrate its applicabilty for the double resonance of motionally narrowed nitroxides. Multiple pulse irradiation of the entire nitroxide spectrum enables the correlation of two precessional periods, allowing observation of cross correlations between hyperfine lines introduced by magnetization transfer in the case of a three-pulse experiment (2D ELDOR), or coherence transfer in the case of a two-pulse experiment (COSY). Cross correlations are revealed by the presence of cross peaks which connect the autocorrelation lines appearing along the diagonal ω1=ω2. The amplitudes of these cross peaks are determined by the rates of magnetization transfer in the 2D ELDOR experiment. The density operator theory for the experiment is outlined and applied to the determination of Heisenberg exchange (HE) rates in 2,2,6,6-tetramethyl-4-piperidone-N-oxyl-d15 (PD-tempone) dissolved in toluene-d8. The quantitative accuracy of this experiment is established by comparison with the HE rate measured from the dependence of the spin echo T2 on nitroxide concentration.

  13. Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy

    Science.gov (United States)

    Harbison, Gerard S.; Slokenbergs, Andris

    1990-04-01

    We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.

  14. Efficient computation method for two-dimensional nonlinear waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.

  15. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  16. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  17. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  18. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  19. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  20. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  1. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  2. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  3. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  4. Stability of periodic solutions in series arrays of Josephson junctions with internal Capacitance

    CERN Document Server

    Watanabe, S; Watanabe, Shinya; Swift, James W.

    1996-01-01

    A mystery surrounds the stability properties of the splay-phase periodic solutions to a series array of N Josephson junction oscillators. Contrary to what one would expect from dynamical systems theory, the splay state appears to be neutrally stable for a wide range of system parameters. It has been explained why the splay state must be neutrally stable when the Stewart-McCumber parameter beta is zero. In this paper we complete the explanation of the apparent neutral stability; we show that the splay state is typically hyperbolic -- either asymptotically stable or unstable -- when beta > 0. We conclude that there is only a single unit Floquet multiplier, based on accurate and systematic computations of the Floquet multipliers for beta ranging from 0 to 10. However, N-2 multipliers are extremely close to 1 for beta larger than about 1. In addition, two more Floquet multipliers approach 1 as beta becomes large. We visualize the global dynamics responsible for these nearly degenerate multipliers, and then estima...

  5. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  6. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  7. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT

  8. Two-Dimensional Weak Pseudomanifolds on Eight Vertices

    Indian Academy of Sciences (India)

    Basudeb Datta; Nandini Nilakantan

    2002-05-01

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

  9. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  10. 用二维电离室阵列对螺旋断层治疗的调强计划进行剂量验证%Two-dimensional ion chamber array in dose verification for intensity modulated planning of helical tomotherapy

    Institute of Scientific and Technical Information of China (English)

    徐寿平; 解传滨; 鞠忠建; 戴相昆; 郭妍妍; 巩汉顺; 王连元

    2009-01-01

    Objective To investigate the feasibility of dose verification of intensity modulated (IM) planning of helical tomotherapy (HT) using two-dimensional ion chamber array (2DICA),and develop an efficient way to validate the dose delivered under the parameters mirroring those during the treatment. Meth-ods A 2DICA,I'mRT MatriXX and MULTICube equivalent solid water phantom from IBA company were used to verify the dose distribution of 10 IM planning. The combined phantom was set up to measure the dose distributions on coronal and sagittal surface. The precise setup of phantom was guided by HTMVCT images. After the irradiation, the measured dose distributions on the coronal and sngittal plane were compared with those calculated by the IM planning system for verification. The results were evaluated and the feasibility of the different measuring methods was studied. Results The dose distribution measured by the MatriXX 2DICA was well consistent with that calculated by the treatment planning system. The errors between the measured dose and predicted dose in the selected points were within ±3%. In the comparison of the pixel-segmented ionization chamber versus treatment planning system using the 3 mm/3% γ criteria, the passing ratio of pixels with γ parameter ≤1 was 97.76% and 96.83%, respectively. Conclusions MatriXX is a-ble to measure the absolute and relative dose distributions simultaneously,which can be used for dose verifi-cation of IM planning.%目的 研究采用二维电离室阵列对螺旋断层治疗(HT)的调强计划实施剂量验证的可行性,寻求建立一套临床上针对该条件下患者治疗更为有效的剂量验证方法 .方法 采用IBA公司I'mRT MatriXX二维电离室阵列及其相配套MULTICube等效同体水模体对10例患者HT的调强计划实施验证.分别对二维电离室阵列实行冠状及纵向位测量,并获取模体中阵列轴平面和纵断面剂量分布.通过HT系统兆伏级CT图像实现模体精确配准及校

  11. Surface plasmon hurdles leading to a strongly localized giant field enhancement on two-dimensional (2D) metallic diffraction gratings.

    Science.gov (United States)

    Brûlé, Yoann; Demésy, Guillaume; Gralak, Boris; Popov, Evgeny

    2015-04-01

    An extensive numerical study of diffraction of a plane monochromatic wave by a single gold cone on a plane gold substrate and by a periodical array of such cones shows formation of curls in the map of the Poynting vector. They result from the interference between the incident wave, the wave reflected by the substrate, and the field scattered by the cone(s). In case of a single cone, when going away from its base along the surface, the main contribution in the scattered field is given by the plasmon surface wave (PSW) excited on the surface. As expected, it has a predominant direction of propagation, determined by the incident wave polarization. Two particular cones with height approximately 1/6 and 1/3 of the wavelength are studied in detail, as they present the strongest absorption and field enhancement when arranged in a periodic array. While the PSW excited by the smaller single cone shows an energy flux globally directed along the substrate surface, we show that curls of the Poynting vector generated with the larger cone touch the diopter surface. At this point, their direction is opposite to the energy flow of the PSW, which is then forced to jump over the vortex regions. Arranging the cones in a two-dimensional subwavelength periodic array (diffraction grating), supporting a specular reflected order only, resonantly strengthens the field intensity at the tip of cones and leads to a field intensity enhancement of the order of 10 000 with respect to the incident wave intensity. The enhanced field is strongly localized on the rounded top of the cones. It is accompanied by a total absorption of the incident light exhibiting large angular tolerances. This strongly localized giant field enhancement can be of much interest in many applications, including fluorescence spectroscopy, label-free biosensing, surface-enhanced Raman scattering (SERS), nonlinear optical effects and photovoltaics.

  12. Elastic wave localization in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity

    Science.gov (United States)

    Yan, Zhi-Zhong; Zhang, Chuanzeng; Wang, Yue-Sheng

    2011-03-01

    The band structures of in-plane elastic waves propagating in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity are analyzed in this paper. The localization of wave propagation is discussed by introducing the concept of the localization factor, which is calculated by the plane-wave-based transfer-matrix method. By treating the random disorder and aperiodicity as the deviation from the periodicity in a special way, three kinds of aperiodic phononic crystals that have normally distributed random disorder, Thue-Morse and Rudin-Shapiro sequence in one direction and translational symmetry in the other direction are considered and the band structures are characterized using localization factors. Besides, as a special case, we analyze the band gap properties of a periodic planar layered composite containing a periodic array of square inclusions. The transmission coefficients based on eigen-mode matching theory are also calculated and the results show the same behaviors as the localization factor does. In the case of random disorders, the localization degree of the normally distributed random disorder is larger than that of the uniformly distributed random disorder although the eigenstates are both localized no matter what types of random disorders, whereas, for the case of Thue-Morse and Rudin-Shapiro structures, the band structures of Thue-Morse sequence exhibit similarities with the quasi-periodic (Fibonacci) sequence not present in the results of the Rudin-Shapiro sequence.

  13. Two dimensional tunable photonic crystal defect based drop filter at communication wavelength

    Science.gov (United States)

    D'souza, Nirmala Maria; Mathew, Vincent

    2017-07-01

    We propose a two dimensional photonic crystal (PhC) based drop filter, at communication wavelength with more than 90% transmission. The filtering is achieved by introducing two line defects and three point defects in a two dimensional triangular array of ferroelectric rods in air. Using the electro-optic property of the ferroelectric, about 32 nm tuning in the resonance wavelength is obtained. For the calculation of transmission, finite difference time domain (FDTD) simulations were performed. The operating frequency range is explored via the band structure which is obtained by the implementation of plane wave expansion (PWE) method. The influence of the radius of various rods on the filter wavelength as well as efficiency is also analyzed. The different possible configurations of this filter are also considered.

  14. Non-classical photon correlation in a two-dimensional photonic lattice

    CERN Document Server

    Gao, Jun; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min

    2016-01-01

    Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to $0.890\\pm0.001$. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated phot...

  15. Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices

    Science.gov (United States)

    Gleghorn, Jason P.; Smith, James P.; Kirby, Brian J.

    2013-09-01

    Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or capture rare cells from complex samples has broad and impactful applications in biology and medicine. We have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant change in the flow field. Using these analytical and computational simulations, we elucidate design parameters that induce high collision rates for all particles larger than a threshold size or selectively increase collision frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental observations from various obstacle array geometries are well described by our computational model.

  16. Band Gap Computation of Two Dimensional Photonic Crystal for High Index Contrast Grating Application

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2014-05-01

    Full Text Available Two Dimensional Photonic Crystal (PHc is convenient type of PHc, It refers to the fact that the dielectric is periodic in Two directions. The study of photonic structure by a simulation method is extremely momentous. At optical frequencies the optical density contained by two dimensional PHc changes periodically. They have the property to strong effect the propagation of light waves at these optical frequencies. A typical linearization method which solves the common nonlinear Eigen values difficulties has been used to achieve structures of the photonic band. There are two method plane wave expansion method (PWE and Finite Difference Time Domain method (FDTD. These Methods are most widely used for band gap calculation of PHc’s. FDTD Method has more smoothness and directness and can be explored effortlessly for simulation of the field circulation inside the photonic structure than PWE method so we have used FDTD Method for Two dimensional PHc’s calculation. In simulation of Two Dimensional band structures, silicon material has 0.543nm lattice constant and 1.46refractive index.

  17. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  18. Imaging Properties of Planar Microlens Arrays

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The planar microlens arrays is a two-dimensional array of optical component which is fabricated monolithically available. Imaging properties of planar microlens arrays are described, which provide both image multiplexer and erect, unit magnification images.

  19. Optimizing two-dimensional renewable warranty policies for sensor embedded remanufactured products

    Directory of Open Access Journals (Sweden)

    Ammar Alqahtani

    2017-05-01

    Full Text Available Purpose: Remanufactured products, in addition to being environment friendly, are popular with consumers because they can offer the latest technology with lower prices in comparison to brand new products. However, some consumers are hesitant to buy remanufactured products because they are skeptical about the quality of the remanufactured product and thus are unsure of the extent to which the product will render services when compared to a new product. A strategy that remanufacturers may employ to entice customers is to offer warranties on remanufactured products. To that end, this paper studies and scrutinizes the impact of offering renewing warranties on remanufactured products. Specifically, the paper suggests a methodology which simultaneously minimizes the cost incurred by the remanufacturers and maximizes the confidence of the consumers towards buying remanufacturing products. Design/methodology/approach: This study uses discrete-event simulation to optimize the implementation of a two-dimensional renewing warranty policy for remanufactured products. The implementation is illustrated using a specific product recovery system called the Advanced Remanufacturing-To-Order (ARTO system. The experiments used in the study were designed using Taguchi’s Orthogonal Arrays to represent the entire domain of the recovery system so as to observe the system behavior under various experimental conditions. In order to determine the optimum strategy offered by the remanufacturer, various warranty and preventive maintenance scenarios were analyzed using pairwise t-tests along with one-way analysis of variance (ANOVA and Tukey pairwise comparisons tests for every scenario. Findings: The proposed methodology is able to simultaneously minimize the cost incurred by the remanufacturer, optimize the warranty price and period, and optimize the preventive maintenance strategy resulting in increased consumer confidence. Originality/value: This is the first study that

  20. Bandwidth control of wavelength-selective uncooled infrared sensors using two-dimensional plasmonic absorbers

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Kimata, Masafumi

    2016-05-01

    Although standard uncooled infrared (IR) sensors can be used to record information such as the shape, position, and average radiant intensity of objects, these devices cannot capture color (that is, wavelength) data. Achieving wavelength selectivity would pave the way for the development of advanced uncooled IR sensors capable of providing color information as well as multi-color image sensors that would have significant advantages in applications such as fire detection, gas analysis, hazardous material recognition, and biological analysis. We have previously demonstrated an uncooled IR sensor incorporating a two-dimensional plasmonic absorber (2D PLA) that exhibits wavelength selectivity over a wide range in the mid- and long-IR regions. This PLA has a 2D Au-based periodic array of dimples, in which surface plasmon modes are induced and wavelength-selective absorption occurs. However, the dependence of the absorption bandwidth on certain structural parameters has yet to be clarified. The bandwidth of such devices is a vital factor when considering the practical application of these sensors to tasks such as gas detection. In the present study, control of the bandwidth was theoretically investigated using a rigorous coupled wave analysis approach. It is demonstrated that the dimple sidewall structure has a significant impact on the bandwidth and can be used to control both narrow- and broadband absorption. Increasing the sidewall slope was found to decrease the bandwidth due to suppression of cavity-mode resonance in the depth direction of the dimples. These results will contribute to the development of high-resolution, wavelength-selective uncooled IR sensors.

  1. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  2. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  3. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  4. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  5. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  6. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  7. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  8. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  9. Two-dimensional superconductors with atomic-scale thickness

    Science.gov (United States)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  10. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  11. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  12. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  13. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  14. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  15. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....

  16. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  17. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  18. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  19. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  20. Quasinormal frequencies of asymptotically flat two-dimensional black holes

    CERN Document Server

    Lopez-Ortega, A

    2011-01-01

    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.