WorldWideScience

Sample records for two-dimensional parameter space

  1. Kinks in two-dimensional Anti-de Sitter Space

    CERN Document Server

    Barnes, J L; ter Veldhuis, T; Webster, M J

    2009-01-01

    Soliton solutions in scalar field theory defined on a two-dimensional Anti-de Sitter background space-time are investigated. It is shown that the lowest soliton excitation generically has frequency equal to the inverse radius of the space-time. Analytic and numerical soliton solutions are determined in "phi to the fourth" scalar field theory with a negative mass-squared. The classical soliton mass is calculated as a function of the ratio of the square of the mass scale of the field theory over the curvature of the space-time. For the case that this ratio equals unity, the soliton excitation spectrum is determined algebraically and the one-loop radiative correction to the soliton mass is computed in the semi-classical approximation.

  2. Random diffusion and cooperation in continuous two-dimensional space.

    Science.gov (United States)

    Antonioni, Alberto; Tomassini, Marco; Buesser, Pierre

    2014-03-07

    This work presents a systematic study of population games of the Prisoner's Dilemma, Hawk-Dove, and Stag Hunt types in two-dimensional Euclidean space under two-person, one-shot game-theoretic interactions, and in the presence of agent random mobility. The goal is to investigate whether cooperation can evolve and be stable when agents can move randomly in continuous space. When the agents all have the same constant velocity cooperation may evolve if the agents update their strategies imitating the most successful neighbor. If a fitness difference proportional is used instead, cooperation does not improve with respect to the static random geometric graph case. When viscosity effects set-in and agent velocity becomes a quickly decreasing function of the number of neighbors they have, one observes the formation of monomorphic stable clusters of cooperators or defectors in the Prisoner's Dilemma. However, cooperation does not spread in the population as in the constant velocity case.

  3. On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space

    Science.gov (United States)

    Falomir, H.; Pisani, P. A. G.; Vega, F.; Cárcamo, D.; Méndez, F.; Loewe, M.

    2016-02-01

    We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras {sl}(2,{{R}}) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.

  4. On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space

    CERN Document Server

    Falomir, H; Vega, F; Cárcamo, D; Méndez, F; Loewe, M

    2015-01-01

    We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras $sl(2,\\mathbb{R})$ or $su(2)$ according to the relation between the noncommutativity parameters. From this perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.

  5. Two-dimensional imaginary lobachevsky space. Separation of variables and contractions

    Energy Technology Data Exchange (ETDEWEB)

    Pogosyan, G. S., E-mail: pogosyan@theor.jinr.ru; Yakhno, A. [Universidad de Guadalajara, Departamento de Matematicas, CUCEI (Mexico)

    2011-07-15

    The Inoenue-Wigner contraction from the SO(2, 1) group to the E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the corresponding two-dimensional homogeneous spaces: two-dimensional one sheeted hyperboloid and two-dimensional pseudo-Euclidean space. Here we consider the contraction limits of some basis functions for the subgroup coordinates only.

  6. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Rao, S. Srinivasa

    2010-01-01

    , the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits additional space which can be preprocessed in O(N) time and achieves O(clog2 c) query time. For c = O(1), this is the first O(1) query time algorithm using...... optimal O(N) bits additional space. For the case where queries can not probe A, we give a data structure of size O(N· min {m,logn}) bits with O(1) query time, assuming m ≤ n. This leaves a gap to the lower bound of Ω(Nlogm) bits for this version of the problem....

  7. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Davoodi, Pooya; Rao, S. Srinivasa

    2012-01-01

    the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤c≤N. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version...... of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data...... structure of optimal size O(N) bits. For the case where queries can not probe A, we give a data structure of size O(N⋅min {m,log n}) bits with O(1) query time, assuming m≤n. This leaves a gap to the space lower bound of Ω(Nlog m) bits for this version of the problem...

  8. Hörmander multipliers on two-dimensional dyadic Hardy spaces

    Science.gov (United States)

    Daly, J.; Fridli, S.

    2008-12-01

    In this paper we are interested in conditions on the coefficients of a two-dimensional Walsh multiplier operator that imply the operator is bounded on certain of the Hardy type spaces Hp, 0Dokl. Akad. Nauk SSSR 109 (1956) 701-703; S.G. Mihlin, Multidimensional Singular Integrals and Integral Equations, Pergamon Press, 1965]. In this paper we extend these results to the two-dimensional dyadic Hardy spaces.

  9. Collective modes of a quasi-two-dimensional Bose condensate in large gas parameter regime

    Indian Academy of Sciences (India)

    S R Mishra; S P Ram; Arup Banerjee

    2007-06-01

    We have theoretically studied the collective modes of a quasi-two-dimensional (Q2D) Bose condensate in the large gas parameter regime by using a formalism which treats the interaction energy beyond the mean-field approximation. The results show that incorporation of this higher order term leads to significant modifications in the mode frequencies.

  10. Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

    Institute of Scientific and Technical Information of China (English)

    YAN Jun

    2005-01-01

    The integrability character of nonlinear equations of motion of two-dimensional gravity with dynamical torsion and bosonic string coupling is studied in this paper. The space-like and time-like first integrals of equations of motion are also found.

  11. Two-dimensional relativistic space charge limited current flow in the drift space

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-04-15

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  12. Energy Spectrum of Helium Confined to a Two-Dimensional Space

    Institute of Scientific and Technical Information of China (English)

    XIEWen-Fang

    2005-01-01

    Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional helium in a magnetic field. The results show that the ground and low-excited states of helium in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.

  13. Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-Yong; Tan Han-Dong; Wang Kun-Peng; Lin Chang-Hong; Zhang Bin; Xie Mao-Bi

    2016-01-01

    Traditional two-dimensional (2D) complex resistivity forward modeling is based on Poisson’s equation but spectral induced polarization (SIP) data are the coprod-ucts of the induced polarization (IP) and the electromagnetic induction (EMI) effects. This is especially true under high frequencies, where the EMI effect can exceed the IP effect. 2D inversion that only considers the IP effect reduces the reliability of the inver-sion data. In this paper, we derive differential equations using Maxwell’s equations. With the introduction of the Cole–Cole model, we use thefi nite-element method to conduct 2D SIP forward modeling that considers the EMI and IP effects simultaneously. The data-space Occam method, in which different constraints to the model smoothness and parametric boundaries are introduced, is then used to simultaneously obtain the four parameters of the Cole–Cole model using multi-array electricfi eld data. This approach not only improves the stability of the inversion but also signifi cantly reduces the solution ambiguity. To improve the computational effi ciency, message passing interface program-ming was used to accelerate the 2D SIP forward modeling and inversion. Synthetic da-tasets were tested using both serial and parallel algorithms, and the tests suggest that the proposed parallel algorithm is robust and effi cient.

  14. Two-dimensional inversion of spectral induced polarization data using MPI parallel algorithm in data space

    Science.gov (United States)

    Zhang, Zhi-Yong; Tan, Han-Dong; Wang, Kun-Peng; Lin, Chang-Hong; Zhang, Bin; Xie, Mao-Bi

    2016-03-01

    Traditional two-dimensional (2D) complex resistivity forward modeling is based on Poisson's equation but spectral induced polarization (SIP) data are the coproducts of the induced polarization (IP) and the electromagnetic induction (EMI) effects. This is especially true under high frequencies, where the EMI effect can exceed the IP effect. 2D inversion that only considers the IP effect reduces the reliability of the inversion data. In this paper, we derive differential equations using Maxwell's equations. With the introduction of the Cole-Cole model, we use the finite-element method to conduct 2D SIP forward modeling that considers the EMI and IP effects simultaneously. The data-space Occam method, in which different constraints to the model smoothness and parametric boundaries are introduced, is then used to simultaneously obtain the four parameters of the Cole—Cole model using multi-array electric field data. This approach not only improves the stability of the inversion but also significantly reduces the solution ambiguity. To improve the computational efficiency, message passing interface programming was used to accelerate the 2D SIP forward modeling and inversion. Synthetic datasets were tested using both serial and parallel algorithms, and the tests suggest that the proposed parallel algorithm is robust and efficient.

  15. The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces

    Science.gov (United States)

    Fath, Elaine

    2015-03-01

    A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.

  16. A method of boundary parameter estimation for a two-dimensional diffusion system under noisy observations

    Science.gov (United States)

    Sunahara, Y.; Kojima, F.

    1988-01-01

    The purpose of this paper is to establish a method for identifying unknown parameters involved in the boundary state of a class of diffusion systems under noisy observations. A mathematical model of the system dynamics is given by a two-dimensional diffusion equation. Noisy observations are made by sensors allocated on the system boundary. Starting with the mathematical model mentioned above, an online parameter estimation algorithm is proposed within the framework of the maximum likelihood estimation. Existence of the optimal solution and related necessary conditions are discussed. By solving a local variation of the cost functional with respect to the perturbation of parameters, the estimation mechanism is proposed in a form of recursive computations. Finally, the feasibility of the estimator proposed here is demonstrated through results of digital simulation experiments.

  17. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters

    Science.gov (United States)

    Cai, Xuan; Wang, Lei; Zhao, Zhigao; Zhao, Aiguo; Zhang, Xiangdong; Wu, Tao; Chen, Hong

    2016-09-01

    The effective mechanical and acoustic properties of two-dimensional pentamode metamaterials (PMs) with different structural parameters are investigated in this paper. It is found that with varying structural parameters, the effective bulk modulus and density remain constant as the same as those of water, while the figure of merit, i.e., the ratio of the bulk modulus to the shear modulus (B/G) gradually increases due to the decrease of the shear modulus. However, full wave simulations reveal that with the increase of B/G, the acoustic scattering becomes more and more intense, which indicates that the acoustic properties of pentamode metamaterials gradually deviate from those of water. These anomalous acoustic behaviors are proposed to arise from the existence of the bending modes in pentamode microstructures. Our results show that for pentamode metamaterials, the mechanical properties cannot be simply translated to their acoustic properties, and the structural parameters affect the mechanical and acoustic properties in much different ways.

  18. Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space

    CERN Document Server

    Setter, Ophir

    2009-05-01

    We present a general framework for computing two-dimensional Voronoi diagrams of different classes of sites under various distance functions. The framework is sufficiently general to support diagrams embedded on a family of two-dimensional parametric surfaces in $R^3$. The computation of the diagrams is carried out through the construction of envelopes of surfaces in 3-space provided by CGAL (the Computational Geometry Algorithm Library). The construction of the envelopes follows a divide-and-conquer approach. A straightforward application of the divide-and-conquer approach for computing Voronoi diagrams yields algorithms that are inefficient in the worst case. We prove that through randomization the expected running time becomes near-optimal in the worst case. We show how to employ our framework to realize various types of Voronoi diagrams with different properties by providing implementations for a vast collection of commonly used Voronoi diagrams. We also show how to apply the new framework and other exist...

  19. A Two-Dimensional Signal Space for Intensity-Modulated Channels

    CERN Document Server

    Karout, Johnny; Kschischang, Frank R; Agrell, Erik

    2012-01-01

    A two-dimensional signal space for intensity- modulated channels is presented. Modulation formats using this signal space are designed to maximize the minimum distance between signal points while satisfying average and peak power constraints. The uncoded, high-signal-to-noise ratio, power and spectral efficiencies are compared to those of the best known formats. The new formats are simpler than existing subcarrier formats, and are superior if the bandwidth is measured as 90% in-band power. Existing subcarrier formats are better if the bandwidth is measured as 99% in-band power.

  20. Hybrid-space density matrix renormalization group study of the doped two-dimensional Hubbard model

    Science.gov (United States)

    Ehlers, G.; White, S. R.; Noack, R. M.

    2017-03-01

    The performance of the density matrix renormalization group (DMRG) is strongly influenced by the choice of the local basis of the underlying physical lattice. We demonstrate that, for the two-dimensional Hubbard model, the hybrid-real-momentum-space formulation of the DMRG is computationally more efficient than the standard real-space formulation. In particular, we show that the computational cost for fixed bond dimension of the hybrid-space DMRG is approximately independent of the width of the lattice, in contrast to the real-space DMRG, for which it is proportional to the width squared. We apply the hybrid-space algorithm to calculate the ground state of the doped two-dimensional Hubbard model on cylinders of width four and six sites; at n =0.875 filling, the ground state exhibits a striped charge-density distribution with a wavelength of eight sites for both U /t =4.0 and 8.0 . We find that the strength of the charge ordering depends on U /t and on the boundary conditions. Furthermore, we investigate the magnetic ordering as well as the decay of the static spin, charge, and pair-field correlation functions.

  1. Errors in using two dimensional methods for ergonomic assessment of motion in three dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Hollerbach, K.; Van Vorhis, R.L. [Lawrence Livermore National Lab., CA (United States); Hollister, A. [Louisiana State Univ., Shreveport, LA (United States)

    1996-03-01

    Wrist posture and rapid wrist movements are risk factors for work related musculoskeletal disorders. Measurement studies frequently involve optoelectronic methods in which markers are placed on the subject`s hand and wrist and the trajectories of the markers are tracked in three dimensional space. A goal of wrist posture measurements is to quantitatively establish wrist posture orientation. Accuracy and fidelity of the measurement data with respect to kinematic mechanisms are essential in wrist motion studies. Fidelity with the physical kinematic mechanism can be limited by the choice of kinematic modeling techniques and the representation of motion. Frequently, ergonomic studies involving wrist kinematics make use of two dimensional measurement and analysis techniques. Two dimensional measurement of human joint motion involves the analysis of three dimensional displacements in an obersver selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. In nature, joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An arbitrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors that result from measuring joint motion about an arbitrary axis using two dimensional methods.

  2. Two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity: a numerical study.

    Science.gov (United States)

    Küchler, Sebastian; Meurer, Thomas; Jacobs, Laurence J; Qu, Jianmin

    2009-03-01

    This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter beta for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.

  3. Development and transition of spiral wave in the coupled Hindmarsh-Rose neurons in two-dimensional space

    Institute of Scientific and Technical Information of China (English)

    Ma Jun; Ying He-Ping; Liu Yong; Li Shi-Rong

    2009-01-01

    The dynamics and the transition of spiral waves in the couplcd Hindmarsh-Rose (H-R) neurons in two-dimensional space are investigated in the paper. It is found that the spiral wave can be induced and developed in the coupled HR neurons in two-dimensional space, with appropriate initial values and a parameter region given. However, the spiral wave could encounter instability when the intensity of the external current reaches a threshold value of 1.945. The transition of spiral wave is found to be affected by coupling intensity D and bifurcation parameter r. The spiral wave becomes sparse as the coupling intensity increases, while the spiral wave is eliminated and the whole neuronal system becomes homogeneous as the bifurcation parameter increases to a certain threshold value. Then the coupling action of the four sub-adjacent neurons, which is described by coupling coefficient DI, is also considered, and it is found that the spiral wave begins to breakup due to the introduced coupling action from the sub-adjacent neurons (or sites) and together with the coupling action of the nearest-neighbour neurons, which is described by the coupling intensity D.

  4. The role of sleep in forming a memory representation of a two-dimensional space.

    Science.gov (United States)

    Coutanche, Marc N; Gianessi, Carol A; Chanales, Avi J H; Willison, Kate W; Thompson-Schill, Sharon L

    2013-12-01

    There is ample evidence from human and animal models that sleep contributes to the consolidation of newly learned information. The precise role of sleep for integrating information into interconnected memory representations is less well understood. Building on prior findings that following sleep (as compared to wakefulness) people are better able to draw inferences across learned associations in a simple hierarchy, we ask how sleep helps consolidate relationships in a more complex representational space. We taught 60 subjects spatial relationships between pairs of buildings, which (unknown to participants) formed a two-dimensional grid. Critically, participants were only taught a subset of the many possible spatial relations, which allowed them to potentially infer the remainder. After a 12 h period that either did or did not include a normal period of sleep, participants returned to the lab. We examined the quality of each participant's map of the two-dimensional space, and their knowledge of relative distances between buildings. After 12 h with sleep, subjects could more accurately map the full space than subjects who experienced only wakefulness. The incorporation of untaught, but inferable, associations was particularly improved. We further found that participants' distance judgment performance related to self-reported navigational style, but only after sleep. These findings demonstrate that consolidation over a night of sleep begins to integrate relations into an interconnected complex representation, in a way that supports spatial relational inference.

  5. Positioning with stationary emitters in a two-dimensional space-time

    CERN Document Server

    Coll, B; Morales, J A; Coll, Bartolom\\'{e}; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D {\\bf 73}, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make {\\em relativistic gravimetry}. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called {\\em emission coordinates}, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, absence and presence of a gravitational field, are identical. The interesting...

  6. Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space

    Science.gov (United States)

    Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng

    2017-09-01

    A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.

  7. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

    Science.gov (United States)

    Matsyuk, Roman Ya.

    2008-02-01

    The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.

  8. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

    CERN Document Server

    Matsyuk, Roman Ya

    2008-01-01

    The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo)-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo)-Euclidean geometry.

  9. The Variational Principle for the Uniform Acceleration and Quasi-Spin in Two Dimensional Space-Time

    Directory of Open Access Journals (Sweden)

    Roman Ya. Matsyuk

    2008-02-01

    Full Text Available The variational principle and the corresponding differential equation for geodesic circles in two dimensional (pseudo-Riemannian space are being discovered. The relationship with the physical notion of uniformly accelerated relativistic particle is emphasized. The known form of spin-curvature interaction emerges due to the presence of second order derivatives in the expression for the Lagrange function. The variational equation itself reduces to the unique invariant variational equation of constant Frenet curvature in two dimensional (pseudo-Euclidean geometry.

  10. Identification of the dynamics of a two-dimensional grid structure using least square lattice filters. [for large space structures

    Science.gov (United States)

    Montgomery, R. C.; Sundararajan, N.

    1984-01-01

    It is doubtful whether the dynamics of large space structures (LSS) can be predicted well enough for control system design applications. Hence, dynamic modeling from on-orbit measurements followed by a modification of the control system is of interest, taking into account the utilization of adaptive control concepts. The present paper is concerned with the model determination phase of the adaptive control problem. Using spectral decoupling to determine mode shapes, mode frequency and damping data can be obtained with the aid of an equation error parameter identification method. This method employs a second-order auto-regressive moving average (ARMA) model to represent the natural mode amplitudes. The discussed procedure involves an extension of the application of the least square lattice filter in system identification to a nonintegral, two-dimensional grid structure made of overlapping bars.

  11. Positioning in a flat two-dimensional space-time: the delay master equation

    CERN Document Server

    Coll, Bartolomé; Morales-Lladosa, Juan Antonio

    2010-01-01

    The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [Phys. Rev. D {\\bf 73}, 084017 (2006); {\\bf 74}, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here we study generic relativistic positioning systems in the Minkowski plane. We analyze the information that can be obtained from the data received by a user of the positioning system. We show that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. We illustrate these result...

  12. Hofstadter butterfly evolution in the space of two-dimensional Bravais lattices

    Science.gov (United States)

    Yılmaz, F.; Oktel, M. Ö.

    2017-06-01

    The self-similar energy spectrum of a particle in a periodic potential under a magnetic field, known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold-atom experiments necessitate the consideration of these self-similar spectra for the most general two-dimensional lattice. In a previous work [F. Yılmaz et al., Phys. Rev. A 91, 063628 (2015), 10.1103/PhysRevA.91.063628], we investigated the evolution of the spectrum for an experimentally realized lattice which was tuned by changing the unit-cell structure but keeping the square Bravais lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point-symmetry groups. We model the optical lattice with a sinusoidal real-space potential and obtain the tight-binding model for any lattice geometry by calculating the Wannier functions. We introduce the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The transition between the two most symmetric lattices, i.e., the triangular and the square lattices, displays the importance of bipartite symmetry featuring deformation as well as closing of some of the major energy gaps. The transitions from the square to rectangular lattice and from the triangular to centered rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the Chern numbers of the major gaps and Chern number transfer between bands during the transitions. We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.

  13. Parameter estimation in heat conduction using a two-dimensional inverse analysis

    Science.gov (United States)

    Mohebbi, Farzad; Sellier, Mathieu

    2016-07-01

    This article is concerned with a two-dimensional inverse steady-state heat conduction problem. The aim of this study is to estimate the thermal conductivity, the heat transfer coefficient, and the heat flux in irregular bodies (both separately and simultaneously) using a two-dimensional inverse analysis. The numerical procedure consists of an elliptic grid generation technique to generate a mesh over the irregular body and solve for the heat conduction equation. This article describes a novel sensitivity analysis scheme to compute the sensitivity of the temperatures to variation of the thermal conductivity, the heat transfer coefficient, and the heat flux. This sensitivity analysis scheme allows for the solution of inverse problem without requiring solution of adjoint equation even for a large number of unknown variables. The conjugate gradient method (CGM) is used to minimize the difference between the computed temperature on part of the boundary and the simulated measured temperature distribution. The obtained results reveal that the proposed algorithm is very accurate and efficient.

  14. The Interaction of Vision and Audition in Two-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Martine eGodfroy-Cooper

    2015-09-01

    Full Text Available Using a mouse-driven visual pointer, ten participants made repeated open loop egocentric localizations of memorized visual, auditory and combined visual-auditory targets projected randomly across the two-dimensional frontal field (2D. The results are reported in terms of variable error, constant error and local distortion. The results confirmed that auditory and visual maps of the egocentric space differ in their precision (variable error and accuracy (constant error, both from one another, and as a function of eccentricity and direction within a given modality. These differences were used, in turn, to make predictions about the precision and accuracy within which spatially and temporally congruent bimodal visual-auditory targets are localized. Overall, the improvement in precision for bimodal relative to the best unimodal target revealed the presence of optimal integration well predicted by the Maximum Likelihood Estimation (MLE model. Conversely, the hypothesis that accuracy in localizing the bimodal visual-auditory targets would represent a compromise between auditory and visual performance in favor of the most precise modality was rejected. Instead, the bimodal accuracy was found to be equivalent to or to exceed that of the best unimodal condition. Finally, we described how the different types of errors could be used to identify properties of the internal representations and coordinate transformations within the central nervous system (CNS. The results provide some insight into the structure of the underlying sensorimotor processes employed by the brain. This result confirms the usefulness of capitalizing on naturally occurring differences between vision and audition to better understand their interaction and their contribution to multimodal perception.

  15. Resistive MHD reconstruction of two-dimensional coherent structures in space

    Directory of Open Access Journals (Sweden)

    W.-L. Teh

    2010-11-01

    Full Text Available We present a reconstruction technique to solve the steady resistive MHD equations in two dimensions with initial inputs of field and plasma data from a single spacecraft as it passes through a coherent structure in space. At least two components of directly measured electric fields (the spacecraft spin-plane components are required for the reconstruction, to produce two-dimensional (2-D field and plasma maps of the cross section of the structure. For convenience, the resistivity tensor η is assumed diagonal in the reconstruction coordinates, which allows its values to be estimated from Ohm's law, E+v×B=η·j. In the present paper, all three components of the electric field are used. We benchmark our numerical code by use of an exact, axi-symmetric solution of the resistive MHD equations and then apply it to synthetic data from a 3-D, resistive, MHD numerical simulation of reconnection in the geomagnetic tail, in a phase of the event where time dependence and deviations from 2-D are both weak. The resistivity used in the simulation is time-independent and localized around the reconnection site in an ellipsoidal region. For the magnetic field, plasma density, and pressure, we find very good agreement between the reconstruction results and the simulation, but the electric field and plasma velocity are not predicted with the same high accuracy.

  16. Experimentally determining the exchange parameters of quasi-two dimensional Heisenbert magnets

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, John [Los Alamos National Laboratory; Sengupta, P [Los Alamos National Laboratory; Mcdonald, R D [Los Alamos National Laboratory; Cox, S [Los Alamos National Laboratory; Harrison, N [Los Alamos National Laboratory; Goddard, P A [UNIV OF OXFORD; Lancaster, T [UNIV OF OXFORD; Blundell, S J [UNIV OF OXFORD; Pratt, F L [RUTHERFORD APPLETON LAB; Manson, J L [EASTERN WASHINGTON UNIV; Southerland, H I [EASTERN WASHINGTON UNIV; Schlueter, J A [ANL

    2008-01-01

    Though long-range magnetic order cannot occur at temperatures T > 0 in a perfect two-dimensional (2D) Heisenberg magnet, real quasi-2D materials will invariably possess nonzero inter-plane coupling J{sub {perpendicular}} driving the system to order at elevated temperatures. This process can be studied using quantum Monte Carlo calculations. However, it is difficult to test the results of these calculations experimentally since for highly anisotropic materials in which the in-plane coupling is comparable with attainable magnetic fields J{sub {perpendicular}} is necessarily very small and inaccessible directly. In addition, because of the large anisotropy, the Neel temperatures are low and difficult to determine from thermodynamic measurements. Here, we present an elegant method of assessing the calculations via two independent experimental probes: pulsed-field magnetization in fields of up to 85 T, and muon-spin rotation.

  17. Nonlinear sigma model in the case of N x. cap alpha. N rectangular matrices in two-dimensional euclidean space

    Energy Technology Data Exchange (ETDEWEB)

    Chekhov, L.O.

    1985-12-01

    Matrix nonlinear sigma models are discussed and the matrix nonlinear sigma model in the case of N x ..cap alpha..N rectangular matrices is considered. The authors show that in two-dimensional Euclidean space, the model is renormalizable with respect to ..cap alpha.. and 1/N. The fulfillment of the chirality identity is demonstrated in the operator expansion for the renormalized theory.

  18. Nonlinear sigma-model in the case of rectangular Nx. alpha. N matrices in two-dimensional euclidean space

    Energy Technology Data Exchange (ETDEWEB)

    Chekhov, L.O.

    1985-06-01

    Matrix nonlinear sigma-model is considered in the case of rectangular matrices of the dimension Nx..alpha..N. Renormalizability of the model with respect to ..alpha.. and 1/N is demonstrated for the case of two-dimensional Euclidean space. Validity of the chiral identity is proved in the operator expansion for the renormalized theory.

  19. The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quad-ratic Terms in Non-commutative Two Dimensional Real Spaces and Phases

    OpenAIRE

    Abdelmadjid Maireche

    2016-01-01

    A novel theoretical study for the exact solvability of nonrelativistic quantum spectrum systems for potential containing coulomb and quadratic terms is discussed used both Boopp’s shift method and standard perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), it has been observed that the exact corrections for the ground states spectrum of studied potential was depended on two infinitesimals parameters and which plays an opposite rolls, and we ha...

  20. Further two-dimensional code development for Stirling space engine components

    Science.gov (United States)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1990-01-01

    The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.

  1. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System

    Institute of Scientific and Technical Information of China (English)

    LIN Ming-Xi; QI Sheng-Wen; LIU Yu-Liang

    2006-01-01

    @@ Based on a two-dimensional electron system with pure gauge field, we demonstrate that the long range order of the electron pairing order parameter can be destroyed by the gauge fluctuation for both s-wave and d-wave symmetric Cooper pair parameters, even if the pure gauge field mediates attractive interaction between the spinup and spin-down electrons, while the signal of the Meissner effect is observable. This model can be used to explain the recent experimental data of the high Tc cuprate superconductors observed.

  2. Toeplitz Operators on the Weighted Bergman Space over the Two-Dimensional Unit Ball

    Directory of Open Access Journals (Sweden)

    Alma García

    2015-01-01

    Full Text Available We extend the known results on commutative Banach algebras generated by Toeplitz operators with radial quasi-homogeneous symbols on the two-dimensional unit ball. Spherical coordinates previously used hid a possibility to detect an essentially wider class of symbols that can generate commutative Banach Toeplitz operator algebras. We characterize these new algebras describing their properties and, under a certain extra condition, construct the corresponding Gelfand theory.

  3. Completely automated determination of two-dimensional photoelastic parameters using load stepping

    Science.gov (United States)

    Ekman, Matthew J.; Nurse, Andrew D.

    1998-06-01

    The new approach to phase-stepping photoelasticity known as `load stepping' is used to determine automatically the isochromatic parameter (alpha) and the isoclinic angle (theta) . There is no need for the user to calibrate the results other than to convert the isochromatic parameter into a principal stress difference using the material fringe constant. Four phase-stepped images are collected using a circular polariscope for each of three load steps, which differ by small equal increments. A ramped phase map for the isochromatic parameter is produced in the range -(pi) reflection photoelasticity we demonstrate how determination of the isoclinic angle in the range -(pi) /2<(theta)

  4. A new method of boundary parameter estimation for a two-dimensional diffusion system under noisy observations

    Science.gov (United States)

    Sunahara, Y.; Kojima, F.

    1987-01-01

    The purpose of this paper is to establish a method for identifying unknown parameters involved in the boundary state of a class of diffusion systems under noisy observations. A mathematical model of the system dynamics is given by a two-dimensional diffusion equation. Noisy observations are made by sensors allocated on the system boundary. Starting with the mathematical model mentioned above, an online parameter estimation algorithm is proposed within the framework of the maximum likelihood estimation. Existence of the optimal solution and related necessary conditions are discussed. By solving a local variation of the cost functional with respect to the perturbation of parameters, the estimation mechanism is proposed in a form of recursive computations. Finally, the feasibility of the estimator proposed here is demonstrated through results of digital simulation experiments.

  5. Choosing parameters for Rényi and Tsallis entropies within a two-dimensional multilevel image segmentation framework

    Science.gov (United States)

    Ben Ishak, Anis

    2017-01-01

    In this work, the effect of Rényi and Tsallis entropies' parameters on the image segmentation quality within a two-dimensional multilevel thresholding framework is assessed and analyzed. The problems of automatically tuning entropy's parameter and determining the optimal thresholding values are solved in a single task. This is done by using the Quantum Genetic Algorithm (QGA). The numerical experiments conducted on different types of images demonstrated that Rényi and Tsallis entropies perform approximately similarly, and they are optimal when their parameters are null. Moreover, it was shown that optimizing the entropy does not lead to maximize the Peak Signal to Noise Ratio (PSNR) and the Structural SIMilarity (SSIM) criteria. Then, we have proved that these two criteria are not sufficiently consistent with human visual perception. Finally, the comparative study performed on some synthetic and real images demonstrated the effectiveness of the proposed method.

  6. Canonical analysis of scalar fields in two-dimensional curved space

    Science.gov (United States)

    McKeon, D. G. C.; Patrushev, Alexander

    2011-12-01

    Scalar fields on a two-dimensional curved surface are considered and the canonical structure of this theory analyzed. Both the first- and second-order forms of the Einstein-Hilbert (EH) action for the metric are used (these being inequivalent in two dimensions). The Dirac constraint formalism is used to find the generator of the gauge transformation, using the formalisms of Henneaux, Teitelboim and Zanelli (HTZ) and of Castellani (C). The HTZ formalism is slightly modified in the case of the first-order EH action to accommodate the gauge transformation of the metric; this gauge transformation is unusual as it mixes the affine connection with the scalar field.

  7. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching

    Science.gov (United States)

    Özçelik, V. Ongun; Azadani, Javad G.; Yang, Ce; Koester, Steven J.; Low, Tony

    2016-07-01

    We present a comprehensive study of the band alignments of two-dimensional (2D) semiconducting materials and highlight the possibilities of forming momentum-matched type I, II, and III heterostructures, an enticing possibility being atomic heterostructures where the constituent monolayers have band edges at the zone center, i.e., Γ valley. Our study, which includes the group IV and III-V compound monolayer materials, group V elemental monolayer materials, transition-metal dichalcogenides, and transition-metal trichalcogenides, reveals that almost half of these materials have conduction and/or valence band edges residing at the zone center. Using first-principles density functional calculations, we present the type of the heterostructure for 903 different possible combinations of these 2D materials which establishes a periodic table of heterostructures.

  8. Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space

    CERN Document Server

    Maldacena, Juan; Yang, Zhenbin

    2016-01-01

    We study a two dimensional dilaton gravity system, recently examined by Almheiri and Polchinski, which describes near extremal black holes, or more generally, nearly $AdS_2$ spacetimes. The asymptotic symmetries of $AdS_2$ are all the time reparametrizations of the boundary. These symmetries are spontaneously broken by the $AdS_2$ geometry and they are explicitly broken by the small deformation away from $AdS_2$. This pattern of spontaneous plus explicit symmetry breaking governs the gravitational backreaction of the system. It determines several gravitational properties such as the linear in temperature dependence of the near extremal entropy as well as the gravitational corrections to correlation functions. These corrections include the ones determining the growth of out of time order correlators that is indicative of chaos. These gravitational aspects can be described in terms of a Schwarzian derivative effective action for a reparametrization.

  9. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping

    Science.gov (United States)

    Baiutti, F.; Logvenov, G.; Gregori, G.; Cristiani, G.; Wang, Y.; Sigle, W.; van Aken, P. A.; Maier, J.

    2015-10-01

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field.

  10. EXPERIMENTAL IMPACT ASSESSMENT OF PARAMETERS PERTAINING TO BLANK TWO-DIMENSIONAL CIRCULAR MOTION ON INTENSITY OF ITS CUTTING AND QUALITY OF MACHINED SURFACE

    National Research Council Canada - National Science Library

    M. G. Kiselev; A. V. Drozdov; S. G. Monich; D. A. Yamnaya

    2014-01-01

    The purpose of the paper is to make an experimental impact assessment of parameters pertaining to blank two-dimensional circular blank motion on intensity of its cutting and quality of the machined surfaces...

  11. Protein folding: complex potential for the driving force in a two-dimensional space of collective variables.

    Science.gov (United States)

    Chekmarev, Sergei F

    2013-10-14

    Using the Helmholtz decomposition of the vector field of folding fluxes in a two-dimensional space of collective variables, a potential of the driving force for protein folding is introduced. The potential has two components. One component is responsible for the source and sink of the folding flows, which represent respectively, the unfolded states and the native state of the protein, and the other, which accounts for the flow vorticity inherently generated at the periphery of the flow field, is responsible for the canalization of the flow between the source and sink. The theoretical consideration is illustrated by calculations for a model β-hairpin protein.

  12. Corner-Space Renormalization Method for Driven-Dissipative Two-Dimensional Correlated Systems.

    Science.gov (United States)

    Finazzi, S; Le Boité, A; Storme, F; Baksic, A; Ciuti, C

    2015-08-21

    We present a theoretical method to study driven-dissipative correlated quantum systems on lattices with two spatial dimensions (2D). The steady-state density matrix of the lattice is obtained by solving the master equation in a corner of the Hilbert space. The states spanning the corner space are determined through an iterative procedure, using eigenvectors of the density matrix of smaller lattice systems, merging in real space two lattices at each iteration and selecting M pairs of states by maximizing their joint probability. The accuracy of the results is then improved by increasing the dimension M of the corner space until convergence is reached. We demonstrate the efficiency of such an approach by applying it to the driven-dissipative 2D Bose-Hubbard model, describing lattices of coupled cavities with quantum optical nonlinearities.

  13. An adaptive, high-order phase-space remapping for the two-dimensional Vlasov-Poisson equations

    CERN Document Server

    Wang, Bei; Colella, Phil

    2012-01-01

    The numerical solution of high dimensional Vlasov equation is usually performed by particle-in-cell (PIC) methods. However, due to the well-known numerical noise, it is challenging to use PIC methods to get a precise description of the distribution function in phase space. To control the numerical error, we introduce an adaptive phase-space remapping which regularizes the particle distribution by periodically reconstructing the distribution function on a hierarchy of phase-space grids with high-order interpolations. The positivity of the distribution function can be preserved by using a local redistribution technique. The method has been successfully applied to a set of classical plasma problems in one dimension. In this paper, we present the algorithm for the two dimensional Vlasov-Poisson equations. An efficient Poisson solver with infinite domain boundary conditions is used. The parallel scalability of the algorithm on massively parallel computers will be discussed.

  14. Evaluation of Aqueductal Patency in Patients with Hydrocephalus: Three-Dimensional High-Sampling-Efficiency Technique (SPACE) versus Two-Dimensional Turbo Spin Echo at 3 Tesla

    National Research Council Canada - National Science Library

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut

    2014-01-01

    ...) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE...

  15. Electrostatic Structures in Space Plasmas: Stability of Two-dimensional Magnetic Bernstein-Greene-Kruskal Modes

    CERN Document Server

    Ng, C S; Yasin, E

    2011-01-01

    Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region, and in association with shocks, turbulence, and magnetic reconnection. Due to potentially large amplitude of electric fields within these structures, their effects on particle heating, scattering, or acceleration can be important. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. BGK modes have been studied extensively for many decades, predominately in one dimension (1D), although there have been observations showing that some of these structures have clear 3D features. While there have been approximate solutions of higher dimensional BGK modes, an exact 3D BGK mode solution in a finite magnetic field has not been found yet. Recently we have constructed exact solutions of 2D B...

  16. High-temperature superconductivity in space-charge regions of lanthanum cuprate induced by two-dimensional doping.

    Science.gov (United States)

    Baiutti, F; Logvenov, G; Gregori, G; Cristiani, G; Wang, Y; Sigle, W; van Aken, P A; Maier, J

    2015-10-20

    The exploitation of interface effects turned out to be a powerful tool for generating exciting material properties. Such properties include magnetism, electronic and ionic transport and even superconductivity. Here, instead of using conventional homogeneous doping to enhance the hole concentration in lanthanum cuprate and achieve superconductivity, we replace single LaO planes with SrO dopant planes using atomic-layer-by-layer molecular beam epitaxy (two-dimensional doping). Electron spectroscopy and microscopy, conductivity measurements and zinc tomography reveal such negatively charged interfaces to induce layer-dependent superconductivity (Tc up to 35 K) in the space-charge zone at the side of the planes facing the substrate, where the strontium (Sr) profile is abrupt. Owing to the growth conditions, the other side exhibits instead a Sr redistribution resulting in superconductivity due to conventional doping. The present study represents a successful example of two-dimensional doping of superconducting oxide systems and demonstrates its power in this field.

  17. Two-dimensional model of a Space Station Freedom thermal energy storage canister

    Science.gov (United States)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.

  18. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    Directory of Open Access Journals (Sweden)

    Kentaro Inoue

    Full Text Available BACKGROUND: For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. RESULTS: We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. CONCLUSIONS: Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  19. Phase-space properties of two-dimensional elastic phononic crystals and anharmonic effects in nano-phononic crystals

    Science.gov (United States)

    Swinteck, Nichlas Z.

    This dissertation contains research directed at investigating the behavior and properties of a class of composite materials known as phononic crystals. Two categories of phononic crystals are explicitly investigated: (I) elastic phononic crystals and (II) nano-scale phononic crystals. For elastic phononic crystals, attention is directed at two-dimensional structures. Two specific structures are evaluated (1) a two-dimensional configuration consisting of a square array of cylindrical Polyvinylchloride inclusions in air and (2) a two-dimensional configuration consisting of a square array of steel cylindrical inclusions in epoxy. For the first configuration, a theoretical model is developed to ascertain the necessary band structure and equi-frequency contour features for the realization of phase control between propagating acoustic waves. In contrasting this phononic crystal with a reference system, it is shown that phononic crystals with equifrequency contours showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. For the second configuration, it is demonstrated that multiple functions can be realized of a solid/solid phononic crystal. The epoxy/steel phononic crystal is shown to behave as (1) an acoustic wave collimator, (2) a defect-less wave guide, (3) a directional source for elastic waves, (4) an acoustic beam splitter, (5) a phase-control device and (6) a k-space multiplexer. To transition between macro-scale systems (elastic phononic crystals) and nano-scale systems (nano-phononic crystals), a toy model of a one-dimensional chain of masses connected with non-linear, anharmonic springs is utilized. The implementation of this model introduces critical ideas unique to nano-scale systems, particularly the concept of phonon mode lifetime. The nano-scale phononic crystal of interest is a graphene sheet with periodically spaced holes in a triangular array. It is found through equilibrium

  20. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.

    Science.gov (United States)

    Daugman, J G

    1985-07-01

    Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor's famous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Real-space and plane-wave hybrid method for electronic structure calculations for two-dimensional materials

    Science.gov (United States)

    Do, V. Nam; Le, H. Anh; Vu, V. Thieu

    2017-04-01

    We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.

  2. Variationality with second derivatives, relativistic uniform acceleration, and the 'spin'-curvature interaction in two-dimensional space-time

    OpenAIRE

    Matsyuk, Roman

    2015-01-01

    A variational formulation for the geodesic circles in two-dimensional Riemannian manifold is discovered. Some relations with the uniform relativistic acceleration and the one-dimensional 'spin'-curvature interaction is investigated.

  3. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  4. Fractional Killing-Yano Tensors and Killing Vectors Using the Caputo Derivative in Some One- and Two-Dimensional Curved Space

    Directory of Open Access Journals (Sweden)

    Ehab Malkawi

    2014-01-01

    Full Text Available The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.

  5. Band-gap tuning and optical response of two-dimensional SixC1 -x : A first-principles real-space study of disordered two-dimensional materials

    Science.gov (United States)

    Sadhukhan, Banasree; Singh, Prashant; Nayak, Arabinda; Datta, Sujoy; Johnson, Duane D.; Mookerjee, Abhijit

    2017-08-01

    We present a real-space formulation for calculating the electronic structure and optical conductivity of random alloys based on Kubo-Greenwood formalism interfaced with augmented space recursion technique [Mookerjee, J. Phys. C 6, 1340 (1973), 10.1088/0022-3719/6/8/003] formulated with the tight-binding linear muffin-tin orbital basis with the van Leeuwen-Baerends corrected exchange potential [Singh, Harbola, Hemanadhan, Mookerjee, and Johnson, Phys. Rev. B 93, 085204 (2016), 10.1103/PhysRevB.93.085204]. This approach has been used to quantitatively analyze the effect of chemical disorder on the configuration averaged electronic properties and optical response of two-dimensional honeycomb siliphene SixC1 -x beyond the usual Dirac-cone approximation. We predicted the quantitative effect of disorder on both the electronic structure and optical response over a wide energy range, and the results are discussed in the light of the available experimental and other theoretical data. Our proposed formalism may open up a facile way for planned band-gap engineering in optoelectronic applications.

  6. A Fibonacci collocation method for solving a class of Fredholm–Volterra integral equations in two-dimensional spaces

    Directory of Open Access Journals (Sweden)

    Farshid Mirzaee

    2014-06-01

    Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.

  7. Effect of the initial plasma parameters on the structure of the current sheets developing in two-dimensional magnetic fields with a null line

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.; Bogdanov, S. Yu.

    2010-07-01

    The effect of the initial plasma parameters on the structure of the plasma of the current sheets that form in two-dimensional magnetic fields with a null line is studied by holographic interferometry. The evolution of the plasma sheets that develop in an initial low-density plasma, where a gas is mainly ionized by a pulse current passing through the plasma and initiating the formation of a current sheet, has been comprehensively studied for the first time. At the early stage of evolution, the spatial structure of such a plasma sheet differs substantially from the classic current sheets forming in a dense plasma. Nevertheless, extended plasma sheets with similar parameters form eventually irrespective of the initial plasma density.

  8. Global parameter optimization of Mather type plasma focus in the framework of the Gratton-Vargas two-dimensional snowplow model

    CERN Document Server

    Auluck, S K H

    2014-01-01

    Dense Plasma Focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding of short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool which can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited [S K H Auluck, Physics of Plasmas 20, 112501 (2013)] Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather type plasma focus fitted to thousands of automated computations, which enables construction of such design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a 4-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy ...

  9. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  10. Exact solution to two-dimensional isotropic charged harmonic oscillator in uniform magnetic field in non-commutative phase space

    Institute of Scientific and Technical Information of China (English)

    WEI Gao-Feng; LONG Chao-Yun; LONG Zheng-Wen; QIN Shui-Jie

    2008-01-01

    In this paper,the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space;the corresponding exact energy is obtained,and the analytic eigenfunction is presented in terms of the confluent hypergeometric function.It is shown that in the non-commutative space,the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.

  11. Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J

    2012-07-01

    Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results.

  12. Near-degeneracy of extended s +dx2-y2 and dx y order parameters in quasi-two-dimensional organic superconductors

    Science.gov (United States)

    Guterding, Daniel; Altmeyer, Michaela; Jeschke, Harald O.; Valentí, Roser

    2016-07-01

    The symmetry of the superconducting order parameter in quasi-two-dimensional bis-ethylenedithio-tetrathiafulvalene (BEDT-TTF) organic superconductors is a subject of ongoing debate. We report ab initio density-functional-theory calculations for a number of organic superconductors containing κ -type layers. Using projective Wannier functions, we derive the parameters of a common low-energy Hamiltonian based on individual BEDT-TTF molecular orbitals. In a random-phase approximation spin-fluctuation approach, we investigate the evolution of the superconducting pairing symmetry within this model, and we point out a phase transition between extended s +dx2-y2 and dx y symmetry. We discuss the origin of the mixed order parameter and the relation between the realistic molecule description and the widely used dimer approximation. Based on our ab initio calculations, we position the investigated materials in the obtained molecule model phase diagram, and we simulate scanning tunneling spectroscopy experiments for selected cases. Our calculations show that many κ -type materials lie close to the phase-transition line between the two pairing symmetry types found in our calculation, possibly explaining the multitude of contradictory experiments in this field.

  13. A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation

    Indian Academy of Sciences (India)

    Ibrahim A Abbas

    2011-06-01

    The theory of thermoelasticity with energy dissipation is employed to study plane waves in a fibre-reinforced anisotropic thermoelastic half-space. We apply a thermal shock on the surface of the half-space which is taken to be traction free. The problem is solved numerically using a finite element method. Moreover, the numerical solutions of the non-dimensional governing partial differential equations of the problem are shown graphically. Comparisons are made with the results predicted by Green–Naghdi theory of the two types (GNII without energy dissipation) and (GNIII with energy dissipation). We found that the reinforcement has great effect on the distribution of field quantities. Results carried out in this paper can be used to design various fibre-reinforced anisotropic thermoelastic elements under thermal load to meet special engineering requirements.

  14. Global parameter optimization of a Mather-type plasma focus in the framework of the Gratton-Vargas two-dimensional snowplow model

    Science.gov (United States)

    Auluck, S. K. H.

    2014-12-01

    Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.

  15. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  16. Two-dimensional NMR relaxometry study of pore space characteristics of carbonate rocks from a Permian aquifer

    Science.gov (United States)

    Schoenfelder, Wiete; Gläser, Hans-Reinhard; Mitreiter, Ivonne; Stallmach, Frank

    2008-06-01

    Limestones and karstified limestones (dolostones) from a Permian aquifer in Central Germany were studied by 1H 2D NMR relaxometry and PFG NMR diffusometry, aiming at a non-destructive characterization of the pore space. Information concerning pore size distribution and water diffusion were in accord for different samples of each type of rock, but differed fundamentally between limestones and dolostones. The results of the 2D relaxometry measurements revealed a ratio of surface relaxation times Ts1/ Ts2 of about 2 for the limestones and about 4.5 for the dolostones, mirroring the different content of iron and manganese in the solid pore walls. In consideration of thin section interpretation, the corresponding fraction in the T1- T2 relaxation time distributions was attributed to interparticle porosity. Porosity of large vugs is clearly displayed by relaxation times longer than 1 s in the dolostones only. A third fraction of the total water-saturated pore space in the dolostones, which is clearly displayed in the 2D relaxation time distributions at the smallest relaxation times and a Ts1/ Ts2 ratio of about 12, is attributed to intrafossil porosity. The porosity classification, basing on non-destructive NMR experiments, is verified by mercury intrusion porosimetry and thin section interpretation.

  17. Sequential identification of model parameters by derivative double two-dimensional correlation spectroscopy and calibration-free approach for chemical reaction systems.

    Science.gov (United States)

    Spegazzini, Nicolas; Siesler, Heinz W; Ozaki, Yukihiro

    2012-10-02

    A sequential identification approach by two-dimensional (2D) correlation analysis for the identification of a chemical reaction model, activation, and thermodynamic parameters is presented in this paper. The identification task is decomposed into a sequence of subproblems. The first step is the construction of a reaction model with the suggested information by model-free 2D correlation analysis using a novel technique called derivative double 2D correlation spectroscopy (DD2DCOS), which enables one to analyze intensities with nonlinear behavior and overlapped bands. The second step is a model-based 2D correlation analysis where the activation and thermodynamic parameters are estimated by an indirect implicit calibration or a calibration-free approach. In this way, a minimization process for the spectral information by sample-sample 2D correlation spectroscopy and kinetic hard modeling (using ordinary differential equations) of the chemical reaction model is carried out. The sequential identification by 2D correlation analysis is illustrated with reference to the isomeric structure of diphenylurethane synthesized from phenylisocyanate and phenol. The reaction was investigated by FT-IR spectroscopy. The activation and thermodynamic parameters of the isomeric structures of diphenylurethane linked through a hydrogen bonding equilibrium were studied by means of an integration of model-free and model-based 2D correlation analysis called a sequential identification approach. The study determined the enthalpy (ΔH = 15.25 kJ/mol) and entropy (TΔS = 13.20 kJ/mol) of C═O···H hydrogen bonding of diphenylurethane through direct calculation from the differences in the kinetic parameters (δΔ(‡)H, -TδΔ(‡)S) at equilibrium in the chemical reaction system.

  18. On the Extrema of Dirichlet's First Eigenvalue of a Family of Punctured Regular Polygons in Two Dimensional Space Forms

    Indian Academy of Sciences (India)

    A R Aithal; Rajesh Raut

    2012-05-01

    Let $\\wp 1,\\wp 0$ be two regular polygons of sides in a space form $M^2()$ of constant curvature =0,1 or -1 such that $\\wp 0\\subset\\wp 1$ and having the same center of mass. Suppose $\\wp 0$ is circumscribed by a circle contained in $\\wp 1$. We fix $\\wp 1$ and vary $\\wp 0$ by rotating it in about its center of mass. Put $ =(\\wp 1\\backslash\\wp 0)^0$, the interior of $\\wp 1\\backslash\\wp 0$ in $M^2()$. It is shown that the first Dirichlet’s eigenvalue 1() attains extremum when the axes of symmetry of $\\wp 0$ coincide with those of $\\wp 1$.

  19. A new method for the determination of peak distribution across a two-dimensional separation space for the identification of optimal column combinations.

    Science.gov (United States)

    Leonhardt, Juri; Teutenberg, Thorsten; Buschmann, Greta; Gassner, Oliver; Schmidt, Torsten C

    2016-11-01

    For the identification of the optimal column combinations, a comparative orthogonality study of single columns and columns coupled in series for the first dimension of a microscale two-dimensional liquid chromatographic approach was performed. In total, eight columns or column combinations were chosen. For the assessment of the optimal column combination, the orthogonality value as well as the peak distributions across the first and second dimension was used. In total, three different methods of orthogonality calculation, namely the Convex Hull, Bin Counting, and Asterisk methods, were compared. Unfortunately, the first two methods do not provide any information of peak distribution. The third method provides this important information, but is not optimal when only a limited number of components are used for method development. Therefore, a new concept for peak distribution assessment across the separation space of two-dimensional chromatographic systems and clustering detection was developed. It could be shown that the Bin Counting method in combination with additionally calculated histograms for the respective dimensions is well suited for the evaluation of orthogonality and peak clustering. The newly developed method could be used generally in the assessment of 2D separations. Graphical Abstract ᅟ.

  20. Two-dimensional Kinematics of SLACS Lenses: I. Phase-space Analysis of the Early-Type Galaxy SDSS J2321-097 at z=0.1

    CERN Document Server

    Czoske, Oliver; Koopmans, Leon V E; Treu, Tommaso; Bolton, Adam S

    2007-01-01

    We present the first results of a combined VLT VIMOS-IFU and HST-ACS study of the early-type lens galaxy SDSS J2321-097 at z=0.0819, extending kinematic studies to a look-back time of 1 Gyr. This system, discovered in the Sloan Lens ACS Survey (SLACS), has been observed as part of a VLT Large Programme with the goal of obtaining two-dimensional stellar kinematics of 17 early-type galaxies to z~0.35 and Keck spectroscopy of an additional dozen lens systems. Bayesian modelling of both the surface brightness distribution of the lensed source and the two-dimensional measurements of velocity and velocity dispersion has allowed us to dissect this galaxy in three dimensions and break the classical mass--anisotropy, mass-sheet and inclination--oblateness degeneracies. Our main results are that the galaxy (i) has a total density profile well described by a single power-law \\rho propto r^{-\\gamma'} with \\gamma' = 2.06^{+0.03}_{-0.06}; (ii) is a very slow rotator (specific stellar angular momentum parameter \\lambda_R = ...

  1. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  2. Free flight in parameter space

    DEFF Research Database (Denmark)

    Dahlstedt, Palle; Nilsson, Per Anders

    2008-01-01

    The well-known difficulty of controlling many synthesis parameters in performance, for exploration and expression, is addressed. Inspired by interactive evolution, random vectors in parameter space are assigned to an array of pressure sensitive pads. Vectors are scaled with pressure and added to ...

  3. Evaluation of aqueductal patency in patients with hydrocephalus: three-dimensional high-sampling-efficiency technique (SPACE) versus two-dimensional turbo spin echo at 3 Tesla.

    Science.gov (United States)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut

    2014-01-01

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  4. EXPERIMENTAL IMPACT ASSESSMENT OF PARAMETERS PERTAINING TO BLANK TWO-DIMENSIONAL CIRCULAR MOTION ON INTENSITY OF ITS CUTTING AND QUALITY OF MACHINED SURFACE

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2014-01-01

    Full Text Available The purpose of the paper is to make an experimental impact assessment of parameters pertaining to blank two-dimensional circular blank motion on intensity of its cutting and quality of the machined surfaces. Experimental data have been obtained that reveal efficiency in application of blank circular motion and improvement of its output cutting indices.A methodology has been developed for execution of comparative experimental investigations on cutting glass, nephrite and jasper specimens as under conventional conditions required for the operation so while transferring induced oscillations to boom suspension assembly that ensure specimen.The proposed methodology makes it possible to assess quantitatively intensity of specimen cutting and quality of its machined surface. The paper has shown that a positive impact of the specimen circular motion on quality improvement of its cross-cut surface is related to peculiar kinematics features pertaining to relative motion of disc side surface with cross-cut portions of the specimen surface. It has been shown that the intensifying impact of the specimen circular motion on the cutting process is primarily related to the changes in dynamic conditions of its interaction with the cutting edge of the disc. In contrast to conventional cutting when the process is going on under static pressure of contacting surfaces there is their periodical impact-frictional interaction due to transfer of circular motion to the specimen along elliptical trajectory. In this case the rate of the positive impact of the specimen circular motion on its cross-cut surface becomes higher while increasing vertical velocity component that concerns its sliding relative to disc side surface that is ensured by increasing oscillation frequency which is transferred to the boom suspension assembly. Moreover, the rate of positive impact of the specimen circulatory motion on the quality of its cross-cut surface becomes higher while increasing

  5. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  6. Evaluation of aqueductal patency in patients with hydrocephalus: Three-dimensional high-sampling efficiency technique(SPACE) versus two-dimensional turbo spin echo at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)

    2014-12-15

    To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.

  7. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  8. Model independent search for new particles in two-dimensional mass space using events with missing energy, two jets and two leptons with the CMS detector

    CERN Document Server

    AUTHOR|(CDS)2080070; Hebbeker, Thomas

    2017-07-07

    The discovery of a new particle consistent with the standard model Higgs boson at the Large Hadron Collider in 2012 completed the standard model of particle physics (SM). Despite its remarkable success many questions remain unexplained. Numerous theoretical models, predicting the existence of new heavy particles, provide answers to these unresolved questions and are tested at high energy experiments such as the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). In this thesis a model independent search method for new particles in two-dimensional mass space in events with missing transverse energy is presented using 19.7 $\\mbox{fb}^{-1}$ of proton-proton collision data recorded by the CMS detector at a centre of mass energy $\\sqrt{s}$ = 8 TeV at the LHC. The analysis searches for signatures of pair-produced new heavy particles $\\mbox{T}^\\prime$ which decay further into unknown heavy particles $\\mbox{W}^\\prime$ and SM quarks $q$ ($\\mbox{T}^\\prime\\overline{\\mbox{T}^\\prime} \\rightarrow {...

  9. Rotational Symmetry of Classical Orbits, Arbitrary Quantization of Angular Momentum and the Role of Gauge Field in Two-Dimensional Space

    CERN Document Server

    Xin, Jun-Li

    2010-01-01

    We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than $\\hbar$ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily $2\\pi$-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of th...

  10. Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space

    Science.gov (United States)

    Xin, Jun-Li; Liang, Jiu-Qing

    2012-04-01

    We study quantum—classical correspondence in terms of the coherent wave functions of a charged particle in two-dimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than ħ is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization, where the classical orbits are 2π-periodic.

  11. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  12. 一种基于Snell定理反演二维斜界面的几何方法%A geometric algorithm based on Snell theorem for the inclined interface inversion in two-dimensional space

    Institute of Scientific and Technical Information of China (English)

    张义德; 关威

    2011-01-01

    在二维情况下,如果地质结构的分界面为一条有固定斜率的斜线,则反演该界面时所需要确定的参数可以归结为两个:一个是界面上的反射点,另一个是界面的斜率.依据Snell定理,利用源点与反射波最短路径点之间的几何关系,导出一种快速反演斜界面的方法.作为算例,首先利用时域有限差分法对一个二维倾斜界面模型进行了数值模拟,而后利用该方法进行反演,界面位置误差在1%以内.%In two-dimensional space, if an interface of geologic structure has one fixed slope, then only two parameters needs to determined for the inversion of the interface. One is a reflect point in it, and another is the slope. Using the geometrical relationship between the source point and the fastest travel point of the reflect wave, a quick inversion algorithm was gained based on Snell theorem. At last, some examples of numerical simulation were given and it is very good. The inversion data was got from a two-dimensional model with a slope interface using FDTD.

  13. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  14. Quasi-static deformation due to two-dimensional seismic sources embedded in an elastic half-space in welded contact with a poroelastic half-space

    Indian Academy of Sciences (India)

    Sunita Rani; Sarva Jit Singh

    2007-04-01

    The Biot linearized theory of fluid saturated porous materials is used to study the plane strain deformation of a two-phase medium consisting of a homogeneous, isotropic, poroelastic half-space in welded contact with a homogeneous, isotropic, perfectly elastic half-space caused by a twodimensional source in the elastic half-space. The integral expressions for the displacements and stresses in the two half-spaces in welded contact are obtained from the corresponding expressions for an unbounded elastic medium by applying suitable boundary conditions at the interface. The case of a long dip-slip fault is discussed in detail. The integrals for this source are solved analytically for two limiting cases: (i) undrained conditions in the high frequency limit, and (ii) steady state drained conditions as the frequency approaches zero. It has been verified that the solution for the drained case ( → 0) coincides with the known elastic solution. The drained and undrained displacements and stresses are compared graphically. Diffusion of the pore pressure with time is also studied.

  15. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  16. Determination of scale-invariant equations of state without fitting parameters: application to the two-dimensional Bose gas across the Berezinskii-Kosterlitz-Thouless transition.

    Science.gov (United States)

    Desbuquois, Rémi; Yefsah, Tarik; Chomaz, Lauriane; Weitenberg, Christof; Corman, Laura; Nascimbène, Sylvain; Dalibard, Jean

    2014-07-11

    We present a general "fit-free" method for measuring the equation of state (EoS) of a scale-invariant gas. This method, which is inspired from the procedure introduced by Ku et al. [Science 335, 563 (2012)] for the unitary three-dimensional Fermi gas, provides a general formalism which can be readily applied to any quantum gas in a known trapping potential, in the frame of the local density approximation. We implement this method on a weakly interacting two-dimensional Bose gas across the Berezinskii-Kosterlitz-Thouless transition and determine its EoS with unprecedented accuracy in the critical region. Our measurements provide an important experimental benchmark for classical-field approaches which are believed to accurately describe quantum systems in the weakly interacting but nonperturbative regime.

  17. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  18. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  19. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  20. Exponential Attractor for the Derivative Two dimensional Ginaburg-Landau Equation in Banach Spaces%二维广义Ginzburg-Landau方程在Banach空间的指数吸引子

    Institute of Scientific and Technical Information of China (English)

    黄健; 戴正德

    2004-01-01

    在本文中,我们在Banach空间考虑二维广义Ginzburg-Landau方程的指数吸引子,且得到其分形维度估计.%In this paper, we consider the exponential attractor for the derivative two - dimensional Ginzburg - Landau equation in Banach space Xαp and also obtain the estimation of the fractal dimension.

  1. Large parameter stochastic resonance of two-dimensional Duffing oscillator and its application on weak signal detection%二维Duffing振子的大参数随机共振及微弱信号检测研究

    Institute of Scientific and Technical Information of China (English)

    冷永刚; 赖志慧; 范胜波; 高毓璣

    2012-01-01

    In this paper, the stochastic resonance of two-dimensional Duffing oscillator under the adiabatic assumption is studied. For the large parameter condition, we propose the large parameter stochastic resonance of two-dimensional Duffing oscillator, and discuss the relationship between the scale transformation stochastic resonance and the parameter adjustment stochastic resonance. Then we reveal the mechanism of signal detection by Duffing oscillator stochastic resonance in large parameter condition, and extend its application to weak signal detection.%研究了二维Duffing振子在绝热近似条件下的随机共振特性,针对大参数条件,提出二维Duffing振子的大参数随机共振,并探讨二维Duffing振子变尺度随机共振和参数调节随机共振的关联性,揭示大参数条件下Duffing振子随机共振检测特征信号的机理,扩展其在微弱信号检测领域中的应用.

  2. Size-dispersity effects in two-dimensional melting.

    Science.gov (United States)

    Watanabe, Hiroshi; Yukawa, Satoshi; Ito, Nobuyasu

    2005-01-01

    In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium relaxation behaviors of bond-orientational order parameters, we find that (i) there is a critical dispersity at which the melting transition of the hexagonal solid vanishes and (ii) the quadratic structure is metastable in a certain region of the dispersity-density parameter space. These results suggest that the dispersity not only destroys order but produces new structures under certain specific conditions.

  3. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  4. Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 II. Two-dimensional Magnetic Doppler Imaging in all four Stokes parameters

    CERN Document Server

    Rusomarov, N; Ryabchikova, T; Piskunov, N

    2014-01-01

    Aims: We present a magnetic Doppler imaging study from all Stokes parameters of the cool, chemically peculiar star HD 24712. This is the very first such analysis performed at a resolving power exceeding 10^5. Methods: The analysis is performed on the basis of phase-resolved observations of line profiles in all four Stokes parameters obtained with the HARPSpol instrument attached at the 3.6-m ESO telescope. We use the magnetic Doppler imaging code, INVERS10, which allows us to derive the magnetic field geometry and surface chemical abundance distributions simultaneously. Results: We report magnetic maps of HD 24712 recovered from a selection of FeI, FeII, NdIII, and NaI lines with strong polarization signals in all Stokes parameters. Our magnetic maps successfully reproduce most of the details available from our observation data. We used these magnetic field maps to produce abundance distribution map of Ca. This new analysis shows that the surface magnetic field of HD 24712 has a dominant dipolar component wit...

  5. Critical parameters and universal amplitude ratios of two-dimensional spin-S Ising models using high- and low-temperature expansions

    CERN Document Server

    Butera, P

    2003-01-01

    For the study of Ising models of general spin S on the square lattice, we have combined our recently extended high-temperature expansions with the low-temperature expansions derived some time ago by Enting, Guttmann and Jensen. We have computed for the first time various critical parameters and improved the estimates of others. Moreover the properties of hyperscaling and of universality (spin S independence) of exponents and of various dimensionless amplitude combinations have been verified accurately. Assuming the validity of the lattice-lattice scaling, from our estimates of critical amplitudes for the square lattice we have also obtained estimates of the corresponding amplitudes for the spin S Ising model on the triangular, honeycomb, and kagome` lattices.

  6. Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.

    Science.gov (United States)

    Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P

    2009-03-20

    Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.

  7. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  8. SELECTION OF POLYMER SOLVENTS AND NEW TWO-DIMENSIONAL SOLUBILITY PARAMETER%聚合物的溶剂选择与新的两维溶解度参数

    Institute of Scientific and Technical Information of China (English)

    俞春芳; 黑恩成; 刘国杰

    2001-01-01

    按照溶解度参数的新定义,建立了一个两维溶解度参数体系,它由物理和化学两个溶解度参数分量构成,这两个分量的拆分借鉴了Wiehe新近提出的原则.对每一种聚合物在不同液体中的溶解度实验数据作图表明,所有溶剂几乎都聚集在溶解度参数图的某一区域内,这个区域可用一椭圆表示.通过一个简单的加和规则,它能用来满意地预测混合溶剂的溶解能力,为聚合物选择溶剂提供了重要的依据.广泛的检验表明,新的两维溶解度参数要比Hansen三维溶解度参数更加可靠.%Based on the new definition of solubility parameter obtained by our previous work, a new two-dimensional solubility parameter consisted of the physical and chemical (solubility parameter) components has been established. The method proposed by Wiehe is used as a reference to divide the two components. From the profile of solubility data, it can be seen that all solvents are almost located within some area of solubility parameter diagram for every polymer. This area can be expressed by an ellipse, which provides an important basis for the selection of polymer solvents. Using a simple adding rule, it can be satisfactorily used to predict the solvency of mixing solvents. The results of extensive testing show that the new two-dimensional solubility parameter is more reliable than Hansen's three-dimensional solubility parameter for the selection of polymer solvents.

  9. Quantum homogeneous spaces and special functions with a dimensional deformation parameter

    Science.gov (United States)

    Bonechi, F.; Giachetti, R.; del Olmo, M. A.; Sorace, E.; Tarlini, M.

    1996-12-01

    We study the most elementary aspects of harmonic analysis on a homogeneous space of a deformation of the two-dimensional Euclidean group, admitting generalizations to dimensions three and four, whose quantum parameter has the physical dimensions of length. The homogeneous space is recognized as a new quantum plane and the action of the Euclidean quantum group is used to determine an eigenvalue problem for the Casimir operator, which constitutes the analogue of the Schrödinger equation in the presence of such a deformation. The solutions are given in the plane-wave and angular-momentum bases and are expressed in terms of hypergeometric series with non-commuting parameters.

  10. Manifold parameter space and its applications

    Science.gov (United States)

    Sato, Atsushi

    2004-11-01

    We review the several features of the new parameter space which we presented in the previous paper, and show the differentiable manifold properties of this parameter space coordinate. Using this parameter coordinate we calculate three Feynman amplitudes of the vacuum polarization with a gluon loop, a quark loop and a ghost loop in QCD and show that the results are perfectly equal to those of the usual calculations by the Feynman parametrization technique in the scheme of the dimensional regularization. Then we try to calculate the anomalous magnetic moment of an on-shell quark in QCD by using the dimensional regularization, our new parametrization and integral method.

  11. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  12. Spectral Anisotropy of Els\\"asser Variables in Two Dimensional Wave-vector Space as Observed in the Fast Solar Wind Turbulence

    CERN Document Server

    Yan, Limei; Zhang, Lei; Tu, Chuanyi; Marsch, Eckart; Chen, Christopher H K; Wang, Xin; Wang, Linghua; Wicks, Robert T

    2016-01-01

    Intensive studies have been conducted to understand the anisotropy of solar wind turbulence. However, the anisotropy of Els\\"asser variables ($\\textbf{Z}^\\pm$) in 2D wave-vector space has yet to be investigated. Here we first verify the transformation based on the projection-slice theorem between the power spectral density PSD$_{2D}(k_\\parallel,k_\\perp )$ and the spatial correlation function CF$_{2D} (r_\\parallel,r_\\perp )$. Based on the application of the transformation to the magnetic field and the particle measurements from the WIND spacecraft, we investigate the spectral anisotropy of Els\\"asser variables ($\\textbf{Z}^\\pm$), and the distribution of residual energy E$_{R}$, Alfv\\'en ratio R$_{A}$ and Els\\"asser ratio R$_{E}$ in the $(k_\\parallel,k_\\perp)$ space. The spectra PSD$_{2D}(k_\\parallel,k_\\perp )$ of $\\textbf{B}$, $\\textbf{V}$, and $\\textbf{Z}_{major}$ (the larger of $\\textbf{Z}^\\pm$) show a similar pattern that PSD$_{2D}(k_\\parallel,k_\\perp )$ is mainly distributed along a ridge inclined toward t...

  13. Two-dimensional deformation of a uniform half-space due to non-uniform movement accompanying a long vertical tensile fracture

    Indian Academy of Sciences (India)

    Sunita Rani; Ram Chander Verma

    2013-08-01

    The solution of the static deformation of a homogeneous, isotropic, perfectly elastic half-space caused by uniform movement along a long vertical tensile fracture is well known. In this paper, we study the problem of static deformation of a homogeneous, isotropic, perfectly elastic half-space caused by a nonuniform movement along a long vertical tensile fracture of infinite length and finite depth. Four movement profiles are considered: linear, parabolic, elliptic and cubic. The deformation corresponding to the four non-uniform movement profiles is compared numerically with the deformation due to a uniform case, assuming the source potency to be the same. The equality in source potency is achieved in two ways: One, by varying the depth of fracture and keeping the surface discontinuity constant and the other way, by keeping the depth of fracture constant and varying the surface discontinuity. It is found that the effect of non-uniformity in movement in the near field is noteworthy. The far field is not affected significantly by the non-uniformity in movement. In the first case, horizontal displacement is significantly affected rather than vertical displacement. In the second case, non-uniformity in movement changes the magnitude of the displacement at the surface. Also, the displacements around a long vertical tensile fracture for different movement profiles are plotted in three dimensions.

  14. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  15. 二维非线性抛物型方程参数反演的贝叶斯推理估计%The estimated Bayesian inference of two-dimensional nonlinear parabolic equation parameter inversion

    Institute of Scientific and Technical Information of China (English)

    陈亚文; 邹学文

    2012-01-01

    为了克服观测数据有限以及数据存在一定误差对参数反演结果的影响,提出了一种参数反演的有效算法.根据已知参数的先验分布和已经获得的有误差的监测数据,以贝叶斯推理作为理论基础,获得参数的联合后验概率密度函数,再利用马尔科夫链蒙特卡罗模拟对后验分布进行采样,获得参数的后验边缘概率密度,由此得到了参数的数学期望等有效的统计量.数值模拟结果表明,此算法能够有效地解决二维非线性抛物型方程的参数识别反问题,且具有较高的精度.%In order to overcome the limited observation data with noise, an inversion of the effective parameters algorithm is presented. First, according to the parameters,a priori distribution and the limited observation data with noise, Bayesian inference as a theoretical foundation,parameters of the joint posterior probability density function are obtained. Markov chain Monte Carlo simulation was taken to sample the posterior distribution to get the marginal posterior probability function of the parameters, and the statistical quantities such as the mathematic expectation were calculated. Experimental results show that this algorithm can successfully solve the problem of two-dimensional nonlinear parabolic equation parameter inversion and inversion results have higher accuracy.

  16. Reduction of Z classification of a two-dimensional weak topological insulator: Real-space dynamical mean-field theory study

    Science.gov (United States)

    Yoshida, Tsuneya; Kawakami, Norio

    2017-01-01

    One of the remarkable interaction effects on topological insulators is the reduction of topological classification in free-fermion systems. We address this issue in a bilayer honeycomb lattice model by taking into account temperature effects on the reduction. Our analysis, based on the real-space dynamical mean-field theory, elucidates the following results. (i) Even when the reduction occurs, the winding number defined by the Green's function can take a nontrivial value at zero temperature. (ii) The winding number taking the nontrivial value becomes consistent with the absence of gapless edge modes due to Mott behaviors emerging only at the edges. (iii) Temperature effects can restore the gapless edge modes, provided that the energy scale of interactions is smaller than the bulk gap. In addition, we observe the topological edge Mott behavior only in some finite-temperature region.

  17. New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems

    Science.gov (United States)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1994-01-01

    A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.

  18. Rotational symmetry of classical orbits, arbitrary quantization of angular momentum and the role of the gauge field in two-dimensional space

    Institute of Scientific and Technical Information of China (English)

    Xin Jun-Li; Liang Jiu-Qing

    2012-01-01

    We study quantum-classical correspondence in terms of the coherent wave functions of a charged particle in twodimensional central-scalar potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits.For both closed and open classical orbits,the non-integer angular-momentum quantization with the level space of angular momentum being greater or less than h is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions,which is not necessarily 2π-periodic.The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value,which results in a common topological phase for all wave functions in the given model.The well-known quantum mechanical anyon model becomes a special case of the arbitrary quantization,where the classical orbits are 2π-periodic.

  19. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  20. Parton Distributions in Impact Parameter Space

    CERN Document Server

    Dahiya, H; Ray, S

    2007-01-01

    Fourier transform of the generalized parton distributions (GPDs) at zero skewness with respect to the transverse momentum transfer gives the distribution of partons in the impact parameter space. We investigate the GPDs as well as the impact parameter dependent parton distributions (ipdpdfs) by expressing them in terms of overlaps of light front wave functions (LFWFs) and present a comparative study using three different model LFWFs.

  1. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  2. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  3. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  4. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  5. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  6. Polarimetry for four Stockes parameters in space

    Institute of Scientific and Technical Information of China (English)

    张肇先; 王培纲

    2002-01-01

    Continuously growing attention has been paid to potential of polarimetry to provide additional information of remote sounding of the earth and other planets and to detect some special targets. In the present paper the polarimetric technique in space for all the four Stockes parameters is presented.

  7. MFV Reductions of MSSM Parameter Space

    CERN Document Server

    AbdusSalam, S.S.; Quevedo, F.

    2015-01-01

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours...

  8. MFV reductions of MSSM parameter space

    Energy Technology Data Exchange (ETDEWEB)

    AbdusSalam, S.S. [INFN - Sezione di Roma,P.le A. Moro 2, I-00185 Roma (Italy); The Abdus Salam ICTP,Trieste (Italy); Burgess, C.P. [Department of Physics & Astronomy, McMaster University,Hamilton ON (Canada); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Division PH -TH, CERN,CH-1211, Genève 23 (Switzerland); Quevedo, F. [The Abdus Salam ICTP,Trieste (Italy); DAMTP, Cambridge University,Cambridge (United Kingdom)

    2015-02-11

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan β∼10 with multi-TeV sparticles.

  9. MFV reductions of MSSM parameter space

    Science.gov (United States)

    AbdusSalam, S. S.; Burgess, C. P.; Quevedo, F.

    2015-02-01

    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan β ˜ 10 with multi-TeV sparticles.

  10. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  11. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  12. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  13. Visualization of Parameter Space for Image Analysis

    Science.gov (United States)

    Pretorius, A. Johannes; Bray, Mark-Anthony P.; Carpenter, Anne E.; Ruddle, Roy A.

    2013-01-01

    Image analysis algorithms are often highly parameterized and much human input is needed to optimize parameter settings. This incurs a time cost of up to several days. We analyze and characterize the conventional parameter optimization process for image analysis and formulate user requirements. With this as input, we propose a change in paradigm by optimizing parameters based on parameter sampling and interactive visual exploration. To save time and reduce memory load, users are only involved in the first step - initialization of sampling - and the last step - visual analysis of output. This helps users to more thoroughly explore the parameter space and produce higher quality results. We describe a custom sampling plug-in we developed for CellProfiler - a popular biomedical image analysis framework. Our main focus is the development of an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. We implemented this in a prototype called Paramorama. It provides users with a visual overview of parameters and their sampled values. User-defined areas of interest are presented in a structured way that includes image-based output and a novel layout algorithm. To find optimal parameter settings, users can tag high- and low-quality results to refine their search. We include two case studies to illustrate the utility of this approach. PMID:22034361

  14. Two-Dimensional Weak Pseudomanifolds on Eight Vertices

    Indian Academy of Sciences (India)

    Basudeb Datta; Nandini Nilakantan

    2002-05-01

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

  15. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  16. A Tool for Parameter-space Explorations

    Science.gov (United States)

    Murase, Yohsuke; Uchitane, Takeshi; Ito, Nobuyasu

    A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results. A few examples of the automated parameter selection are also demonstrated.

  17. Two-dimensional manifold with point-like defects

    CERN Document Server

    Gani, Vakhid A; Rubin, Sergei G

    2014-01-01

    We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  18. A tool for parameter-space explorations

    CERN Document Server

    Murase, Yohsuke; Ito, Nobuyasu

    2014-01-01

    A software for managing simulation jobs and results, named "OACIS", is presented. It controls a large number of simulation jobs executed in various remote servers, keeps these results in an organized way, and manages the analyses on these results. The software has a web browser front end, and users can submit various jobs to appropriate remote hosts from a web browser easily. After these jobs are finished, all the result files are automatically downloaded from the computational hosts and stored in a traceable way together with the logs of the date, host, and elapsed time of the jobs. Some visualization functions are also provided so that users can easily grasp the overview of the results distributed in a high-dimensional parameter space. Thus, OACIS is especially beneficial for the complex simulation models having many parameters for which a lot of parameter searches are required. By using API of OACIS, it is easy to write a code that automates parameter selection depending on the previous simulation results....

  19. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  20. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  1. Parameter space for successful soccer kicks

    Science.gov (United States)

    Cook, Brandon G.; Goff, John Eric

    2006-07-01

    A computational model of two important types of soccer kicks, the free kick and the corner kick, is developed with the goal of determining the success rate for each type of kick. What is meant by 'success rate' is the probability of getting an unassisted goal via a free kick and the probability of having a corner kick reach an optimum location so that a teammate's chance of scoring a goal is increased. Success rates are determined through the use of four-dimensional parameter space volumes. A one-in-ten success rate is found for the free kick while the corner-kick success rate is found to be one in four.

  2. IMMUNOHISTOCHEMICAL IMAGE SEGMENTATION USING IMPROVED TWO-DIMENSIONAL OTSU AND COMBINING HSV SPACE%结合 HSV 空间的改进二维 Otsu 免疫组化图像分割

    Institute of Scientific and Technical Information of China (English)

    兰红; 胡涵

    2016-01-01

    肝脏免疫组化图像中阳性区域的定量分析对肝癌的早期诊断有非常重要的意义。针对真彩色免疫组化图像特征,结合HSV 空间对二维 Otsu 算法进行改进。首先针对二维 Otsu 算法每次计算类间测度矩阵的迹需要遍历整幅图像导致运算量大耗时多的不足,提出一种快速递推算法,利用快速 Otsu 算法对图像进行预分割;然后针对分割结果中目标区域包含的少量阴性区域,结合图像的 HSV 空间特征进行优化。将预分割结果与 H 分量作交集运算,将交集运算结果与预分割结果作差集运算,得到初分割结果;将初分割结果与 H 分量和 S 分量的交集运算结果做并集运算,得到最终分割结果。通过与 Otsu 的对比实验表明,改进算法更好地实现了阳性区域的目标提取,提高了分割的精度。%The quantitative analysis of the positive area of liver immunohistochemical image is significant to the early diagnosis of liver cancer.Aiming at the features of true colour immunohistochemical image,we improved the two-dimensional Otsu algorithm in combination with HSV space.First,in view of the disadvantage that the two-dimensional Otsu has to traverse entire image when ever to calculate the trace of inter-class measure matrix and in turn leads to heavy computation and large time consumption,we proposed a fast recursion algorithm, which uses the fast Otsu to do the pre-segmentation on the image.Then,aiming at the small amount of negative area contained in target area of the segmented result,we optimised it combining the HSV space feature of the image.We carried out the intersection operation on the presegmentation result and the H component,and the subtraction operation on the intersection operation result and the pre-segmentation result to get initial segmentation result,and then carried out the union operation on the initial segmentation result and the result of H and S components

  3. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  4. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  5. Existence of Weak Solutions of Two-dimensional Euler Equations with Initial Vorticity in Lorentz Space L(2,1)(R2)%当初始旋度属于Lornetz空间L(2,1)(R2)时二维Euler方程弱解的存在性

    Institute of Scientific and Technical Information of China (English)

    酒全森

    2000-01-01

    Some estimates on 2-D Euler equations are given when initial vorticity ω belongs to a Lorentz space L(2,1). Then based on these estimates, it is proved that there exist global weak solutions of two dimensional Euler equations when ω0(2,1)∈L.

  6. Two-dimensional microwave band-gap structures of different dielectric materials

    Indian Academy of Sciences (India)

    E D V Nagesh; G Santosh Babu; V Subramanian; V Sivasubramanian; V R K Murthy

    2005-12-01

    We report the use of low dielectric constant materials to form two-dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The selected geometries are square and triangular and the materials chosen are PTFE ( = 2.1), PVC ( = 2.38) and glass ( = 5.5). Using the plane-wave expansion method, proper lattice spacing is selected for each structure and material. The observed experimental results are analyzed with the help of the theoretical prediction.

  7. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  8. Chaotic dynamics for two-dimensional tent maps

    Science.gov (United States)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  9. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  10. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  11. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  12. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  13. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Phase diagram of a two-dimensional large- Q Potts model in an external field

    Science.gov (United States)

    Tsai, Shan-Ho; Landau, D. P.

    2009-04-01

    We use a two-dimensional Wang-Landau sampling algorithm to map out the phase diagram of a Q-state Potts model with Q⩽10 in an external field H that couples to one state. Finite-size scaling analyses show that for large Q the first-order phase transition point at H=0 is in fact a triple point at which three first-order phase transition lines meet. One such line is restricted to H=0; another line has H⩽0. The third line, which starts at the H=0 triple point, ends at a critical point (T,H) which needs to be located in a two-dimensional parameter space. The critical field H(Q) is positive and decreases with decreasing Q, which is in qualitative agreement with previous predictions.

  15. Two-dimensional hydrogen negative ion in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Fang

    2004-01-01

    Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.

  16. 基于定位装置参数等效的接触网二维力学模型%Two-dimensional Mechanical Model of the Catenary Based on Equivalent Steady Device Parameters

    Institute of Scientific and Technical Information of China (English)

    关金发; 吴积钦

    2015-01-01

    接触网既是供电的线路,又是受电弓的滑道,其结构为三维柔性索网,当受电弓通过时,支持点和张力补偿点不存在瞬时大位移,其动态行为可以忽略,定位点由于存在非线性铰接,定位点处的动态行为不能被忽略。为等效定位点的动态行为,通过静力学分析,简化三维力学模型,将定位装置的三维非线性铰接等效为二维线性弹簧,并推导弹簧的等效刚度值计算公式,得到接触网二维力学模型。最后通过仿真实例,验证接触网二维力学模型的静态和动态效果与接触网三维模型完全吻合,并确认定位装置等效刚度的计算方法。%The catenary serves for power supply and as a path for pantograph sliding, When a pantograph is passing by, there is no large instant displacement at the support points and the tension compensation points, therefore the dynamic behavior can be ignored on account of its three-dimensional soft wire structure . However, the dynamic behavior at the fixing points cannot be ignored because of the non-linear hinge. To obtain the equivalent dynamic behavior of the fixing points, the three-dimensional mechanical model is simplified by static analysis, which converts the three-dimensional nonlinear hinge into a two-dimensional linear spring, and then the formula to calculate equivalent stiffness of the spring is derived and the two-dimensional mechanical model of the catenary is established. Finally, the static and dynamic effects of the two-dimensional mechanical model of the catenary are proved with simulation in full agreement with that of the three-dimensional mechanical model of the catenary, and the method to calculate the equivalent stiffness of the steady device is confirmed.

  17. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model.

    Science.gov (United States)

    Po, Hoi Chun; Zhou, Qi

    2015-08-13

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  18. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  19. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  20. A two-dimensional mathematical model of percutaneous drug absorption

    Directory of Open Access Journals (Sweden)

    Kubota K

    2004-06-01

    Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady

  1. New explicit instantons and the geometry of the parameter space

    NARCIS (Netherlands)

    Meyers, C.; Roo, M. de

    1979-01-01

    We obtain a geometrical description of the parameter space of instantons of topological charge k in an SU(n) gauge theory. We show how this space is related to a compact convex set of positive matrices. We give a characterization of points in the parameter space which correspond to embeddings. We de

  2. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  3. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    Science.gov (United States)

    Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E.; Landau, David P.

    2015-09-01

    We considered a higher-dimensional extension for the replica-exchange Wang- Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this difficulty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.

  4. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, Alexandra [University of Georgia, Athens, GA; Rocha, Julio C. S. [Universidade Federal de Minas Gerais; Tsai, Shan-Ho [University of Georgia, Athens, GA; Li, Ying Wai [ORNL; Eisenbach, Markus [ORNL; Fiore, Carlos E [University of Sao Paulo, BRAZIL; Landau, David P [University of Georgia, Athens, GA

    2015-01-01

    We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.

  5. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    Science.gov (United States)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  6. Quantifying leaf venation patterns: two-dimensional maps.

    Science.gov (United States)

    Rolland-Lagan, Anne-Gaëlle; Amin, Mira; Pakulska, Malgosia

    2009-01-01

    The leaf vasculature plays crucial roles in transport and mechanical support. Understanding how vein patterns develop and what underlies pattern variation between species has many implications from both physiological and evolutionary perspectives. We developed a method for extracting spatial vein pattern data from leaf images, such as vein densities and also the sizes and shapes of the vein reticulations. We used this method to quantify leaf venation patterns of the first rosette leaf of Arabidopsis thaliana throughout a series of developmental stages. In particular, we characterized the size and shape of vein network areoles (loops), which enlarge and are split by new veins as a leaf develops. Pattern parameters varied in time and space. In particular, we observed a distal to proximal gradient in loop shape (length/width ratio) which varied over time, and a margin-to-center gradient in loop sizes. Quantitative analyses of vein patterns at the tissue level provide a two-way link between theoretical models of patterning and molecular experimental work to further explore patterning mechanisms during development. Such analyses could also be used to investigate the effect of environmental factors on vein patterns, or to compare venation patterns from different species for evolutionary studies. The method also provides a framework for gathering and overlaying two-dimensional maps of point, line and surface morphological data.

  7. Aerodynamics of two-dimensional flapping wings in tandem configuration

    Science.gov (United States)

    Lua, K. B.; Lu, H.; Zhang, X. H.; Lim, T. T.; Yeo, K. S.

    2016-12-01

    This paper reports a fundamental investigation on the aerodynamics of two-dimensional flapping wings in tandem configuration in forward flight. Of particular interest are the effects of phase angle (φ) and center-to-center distance (L) between the front wing and the rear wing on the aerodynamic force generation at a Reynolds number of 5000. Both experimental and numerical methods were employed. A force sensor was used to measure the time-history aerodynamic forces experienced by the two wings and digital particle image velocimetry was utilized to obtain the corresponding flow structures. Both the front wing and the rear wing executed the same simple harmonic motions with φ ranging from -180° to 180° and four values of L, i.e., 1.5c, 2c, 3c, and 4c (c is the wing chord length). Results show that at fixed L = 2c, tandem wings perform better than the sum of two single wings that flap independently in terms of thrust for phase angle approximately from -90° to 90°. The maximum thrust on the rear wing occurs during in-phase flapping (φ = 0°). Correlation of transient thrust and flow structure indicates that there are generally two types of wing-wake interactions, depending on whether the rear wing crosses the shear layer shed from the front wing. Finally, increasing wing spacing has similar effect as reducing the phase angle, and an approximate mathematical model is derived to describe the relationship between these two parameters.

  8. Parameter space of general gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: arajaram@uci.edu; Shirman, Yuri [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: yshirman@uci.edu; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: jsmidt@uci.edu; Yu, Felix [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: felixy@uci.edu

    2009-07-27

    We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.

  9. Quantum State Transfer in a Two-dimensional Regular Spin Lattice of Triangular Shape

    CERN Document Server

    Miki, Hiroshi; Vinet, Luc; Zhedanov, Alexei

    2012-01-01

    Quantum state transfer in a triangular domain of a two-dimensional, equally-spaced, spin lat- tice with non-homogeneous nearest-neighbor couplings is analyzed. An exact solution of the one- excitation dynamics is provided in terms of 2-variable Krawtchouk orthogonal polynomials that have been recently defined. The probability amplitude for an excitation to transit from one site to another is given. For some values of the parameters, perfect transfer is shown to take place from the apex of the lattice to the boundary hypotenuse.

  10. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  11. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  12. Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows

    OpenAIRE

    Yatou, Hiroki

    2010-01-01

    We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, th...

  13. The Parameters of Common Information Spaces

    DEFF Research Database (Denmark)

    Bossen, Claus

    2002-01-01

    The paper proposes a refinement of the concept of 'Common Information Spaces' (CIS), which has been proposed as a conceptual framework for the CWCW field in order to provide analyses of cooperative work. The refinement is developed through an introductory discussion of previous analyses of CIS...

  14. The Parameters of Common Information Spaces

    DEFF Research Database (Denmark)

    Bossen, Claus

    2002-01-01

    The paper proposes a refinement of the concept of 'Common Information Spaces' (CIS), which has been proposed as a conceptual framework for the CWCW field in order to provide analyses of cooperative work. The refinement is developed through an introductory discussion of previous analyses of CIS...

  15. The use of experimental data in constraining the tight-binding band parameters of quasi-two-dimensional organic molecular metals: application to α-(BEDT- TTF)2KHg(SCN)4

    Science.gov (United States)

    Harrison, N.; Rzepniewski, E.; Singleton, J.; Gee, P. J.; Honold, M. M.; Day, P.; Kurmoo, M.

    1999-09-01

    Whilst tight-binding bandstructure calculations are very successful in describing the Fermi-surface configuration in many quasi-two-dimensional organic molecular metals, the detailed topology of the predicted Fermi surface often differs from that measured in experiments. This is very significant when, for example, the formation of a density-wave state depends critically on details of the nesting of Fermi-surface sheets. These differences between theory and experiment probably result from the limited accuracy to which the icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/>-orbitals of the component molecules (which give rise to the transfer integrals of the tight-binding bandstructure) are known. In order to surmount this problem, we have derived a method whereby the transfer integrals within a tight-binding bandstructure model are adjusted until the detailed Fermi-surface topology is in good agreement with a wide variety of experimental data. The method is applied to the charge-transfer salt icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/>-(BEDT-TTF)2KHg(SCN)4, the Fermi surface of which has been the source of much speculation in recent years. The Fermi surface obtained differs in detail from previous bandstructure calculation findings. In particular, the quasi-one-dimensional component of the Fermi surface is more strongly warped. This implies that upon nesting of these sheets, significant parts of the quasi-one-dimensional sheets remain, leading to a complicated Fermi-surface topology within the low-temperature, low-magnetic-field phase. In contrast to previous models of this phase, the model for the reconstructed Fermi surface in this work can explain virtually all of the current experimental observations in a consistent manner.

  16. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  17. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  18. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  19. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    J S Virdi; F Chand; C N Kumar; S C Mishra

    2012-08-01

    Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.

  20. Numerical Study of Two-Dimensional Viscous Flow over Dams

    Institute of Scientific and Technical Information of China (English)

    王利兵; 刘宇陆; 涂敏杰

    2003-01-01

    In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.

  1. Tricritical behavior in a two-dimensional field theory

    Science.gov (United States)

    Hamber, Herbert

    1980-05-01

    The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.

  2. Coll Positioning systems: a two-dimensional approach

    CERN Document Server

    Ferrando, J J

    2006-01-01

    The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.

  3. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    Science.gov (United States)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  4. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  5. Cosmological Parameters from Redshift-Space Correlations

    CERN Document Server

    Matsubara, T; Matsubara, Takahiko; Szalay, Alexander S.

    2002-01-01

    We estimate how clustering in large-scale redshift surveys can constrain various cosmological parameters. Depth and sky coverage of modern redshift surveys are greater than ever, opening new possibilities for statistical analysis. We have constructed a novel maximum likelihood technique applicable to deep redshift surveys of wide sky coverage by taking into account the effects of both curvature and linear velocity distortions. The Fisher information matrix is evaluated numerically to show the bounds derived from a given redshift sample. We find that intermediate-redshift galaxies, such as the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey, can constrain cosmological parameters, including the cosmological constant, unexpectedly well. The importance of the dense as well as deep sampling in designing redshift surveys is emphasized.

  6. Two-dimensional model of elastically coupled molecular motors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei

    2012-01-01

    A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.

  7. Chronology Protection in Two-Dimensional Dilaton Gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1994-01-01

    The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.

  8. 结构参数对二维Archimedes A7晶格光子晶体禁带的影响%Effects of structure parameters on the bandgap of two dimensional Archimedes A7 photonic crystals

    Institute of Scientific and Technical Information of China (English)

    杨毅彪; 王伟军; 费宏明; 梁伟; 王云才

    2012-01-01

    利用平面波展开法对空气背景中介质圆柱和方柱构造的二维Archimedes A7晶格光子晶体的禁带结构随介质折射率、填充比的变化关系进行了研究,并进一步计算了介质方柱的旋转角度对完全光子禁带宽度的影响.研究发现,介质圆柱构造的Archimedes A7晶格结构在介质柱折射率最低为n=2.40时出现完全光子禁带,当n=2.60时禁带宽度达到最大值.介质方柱构造的Archimedes A7晶格结构在介质柱折射率n=3.80时完全禁带宽度达到最大值,且随着折射率的增加禁带宽度变化很小;在介质方柱折射率恒定情况下,其最大禁带宽度与旋转角度无关,但旋转后出现完全禁带的填充比范围明显扩大.%Plane wave expansion method is introduced to simulate the band structures of two-dimensional photonic crystals made of Archimedes A7 lattice of circular and square dielectric rod in air. The bandgaps of Archimedes A7 lattice with dielectric rods is also discussed as functions of the refractive index, filling fraction and rotation angle. The results show that the complete bandgap can be obtained when the refractive index is greater than 2.40. The width of complete bandgap reaches the maximum when the dielectric refractive index of the circular rod is equal to 2.60. For the Archimedes A7 lattice of square dielectric rod, the complete bandgap reaches the maximum when the dielectric refractive index equals 3. 80. The maximum complete bandgap changes in a narrow range as the refractive index increases. When the rotation angle of the square dielectric rods changes, the maximum bandgap keeps constant for a fixed refractive index. However after the change of rotation angle, the complete bandgap appears in a large scale of the filling fraction.

  9. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  11. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  12. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  13. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  14. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  15. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  16. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  17. Stationary two-dimensional turbulence statistics using a Markovian forcing scheme

    CERN Document Server

    San, Omer; 10.1016/j.compfluid.2012.10.002

    2012-01-01

    In this study we investigate the statistics of two-dimensional stationary turbulence using a Markovian forcing scheme, which correlates the forcing process in the current time step to the previous time step according to a defined memory coefficient. In addition to the Markovian forcing mechanism, the hyperviscous dissipation mechanism for small scales and the Ekman friction type of linear damping mechanism for the large scales are included in the model. We examine the effects of various dissipation and forcing parameters on the turbulence statistics in both wave space and physical space. Our analysis includes the effects of the effective forcing scale, the bandwidth of the forcing, the memory correlation coefficient, and the forcing amplitude, along with the large scale friction and small scale dissipation coefficients. Scaling exponents of structure functions and energy spectra are calculated, and the role of the parameters associated with the Markovian forcing is discussed. We found that the scaling exponen...

  18. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  19. Topological Quantum Optics in Two-Dimensional Atomic Arrays

    Science.gov (United States)

    Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.

    2017-07-01

    We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.

  20. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    CERN Document Server

    Valentim, Alexandra; Tsai, Shan-Ho; Li, Ying Wai; Eisenbach, Markus; Fiore, Carlos E; Landau, David P

    2015-01-01

    We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, in which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this difficulty,...

  1. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  2. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  3. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  4. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  5. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  6. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  7. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  8. The Persistence Problem in Two-Dimensional Fluid Turbulence

    CERN Document Server

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2010-01-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.

  9. On Dirichlet eigenvectors for neutral two-dimensional Markov chains

    CERN Document Server

    Champagnat, Nicolas; Miclo, Laurent

    2012-01-01

    We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.

  10. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  11. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  12. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  13. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  14. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  15. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  16. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  18. A unified minimax result for restricted parameter spaces

    CERN Document Server

    Marchand, Éric; 10.3150/10-BEJ336

    2012-01-01

    We provide a development that unifies, simplifies and extends considerably a number of minimax results in the restricted parameter space literature. Various applications follow, such as that of estimating location or scale parameters under a lower (or upper) bound restriction, location parameter vectors restricted to a polyhedral cone, scale parameters subject to restricted ratios or products, linear combinations of restricted location parameters, location parameters bounded to an interval with unknown scale, quantiles for location-scale families with parametric restrictions and restricted covariance matrices.

  19. A geometrical approach to two-dimensional Conformal Field Theory

    Science.gov (United States)

    Dijkgraaf, Robertus Henricus

    1989-09-01

    manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.

  20. Parameter redundancy in discrete state‐space and integrated models

    Science.gov (United States)

    McCrea, Rachel S.

    2016-01-01

    Discrete state‐space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state‐space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state‐space models using discrete analogues of methods for continuous state‐space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. PMID:27362826

  1. Parameter redundancy in discrete state-space and integrated models.

    Science.gov (United States)

    Cole, Diana J; McCrea, Rachel S

    2016-09-01

    Discrete state-space models are used in ecology to describe the dynamics of wild animal populations, with parameters, such as the probability of survival, being of ecological interest. For a particular parametrization of a model it is not always clear which parameters can be estimated. This inability to estimate all parameters is known as parameter redundancy or a model is described as nonidentifiable. In this paper we develop methods that can be used to detect parameter redundancy in discrete state-space models. An exhaustive summary is a combination of parameters that fully specify a model. To use general methods for detecting parameter redundancy a suitable exhaustive summary is required. This paper proposes two methods for the derivation of an exhaustive summary for discrete state-space models using discrete analogues of methods for continuous state-space models. We also demonstrate that combining multiple data sets, through the use of an integrated population model, may result in a model in which all parameters are estimable, even though models fitted to the separate data sets may be parameter redundant. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  3. Mapping of ionospheric parameters for space weather predictions: A concise review

    Institute of Scientific and Technical Information of China (English)

    Y. KAMIDE; A. IEDA

    2008-01-01

    Reviewing brieflythe recent progress in a joint program of specifying the polar ionosphere primarily on the basis of ground magnetometer data, this paper em-phasizes the importance of processing data from around the world in real time for space weather predictions. The output parameters from the program include ionospheric electric fields and currents and field-aligned currents. These real-time records are essential for running computer simulations under realistic boundary conditions and thus for making numerical predictions of space weather efficient as reliable as possible. Data from individual ground magnetometers as well as from the solar wind are collected and are used as input for the KRM and AMIE mag-netogram-inversion algorithms, through which the two-dimensional distribution of the ionospheric parameters is calculated. One of the goals of the program is to specify the solar-terrestrial environment in terms of ionospheric processes and to provide the scientific community with more than what geomagnetic activity Indices and statistical models indicate.

  4. Mapping of ionospheric parameters for space weather predictions: A concise review

    Institute of Scientific and Technical Information of China (English)

    Y.; KAMIDE; A.; IEDA

    2008-01-01

    Reviewing briefly the recent progress in a joint program of specifying the polar ionosphere primarily on the basis of ground magnetometer data, this paper em-phasizes the importance of processing data from around the world in real time for space weather predictions. The output parameters from the program include ionospheric electric fields and currents and field-aligned currents. These real-time records are essential for running computer simulations under realistic boundary conditions and thus for making numerical predictions of space weather efficient as reliable as possible. Data from individual ground magnetometers as well as from the solar wind are collected and are used as input for the KRM and AMIE mag-netogram-inversion algorithms, through which the two-dimensional distribution of the ionospheric parameters is calculated. One of the goals of the program is to specify the solar-terrestrial environment in terms of ionospheric processes and to provide the scientific community with more than what geomagnetic activity indices and statistical models indicate.

  5. Transformation of state space for two-parameter Markov processes

    Institute of Scientific and Technical Information of China (English)

    周健伟

    1996-01-01

    Let X=(X) be a two-parameter *-Markov process with a transition function (p1, p2, p), where X, takes values in the state space (Er,), T=[0,)2. For each r T, let f, be a measurable transformation of (E,) into the state space (E’r, ). Set Y,=f,(X,), r T. A sufficient condition is given for the process Y=(Yr) still to be a two-parameter *-Markov process with a transition function in terms of transition function (p1, p2, p) and fr. For *-Markov families of two-parameter processes with a transition function, a similar problem is also discussed.

  6. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  7. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  8. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  9. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  10. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  11. Replicate periodic windows in the parameter space of driven oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, E.S., E-mail: esm@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Souza, S.L.T. de [Universidade Federal de Sao Joao del-Rei, Campus Alto Paraopeba, Minas Gerais (Brazil); Medrano-T, R.O. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo (Brazil); Caldas, I.L. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2011-11-15

    Highlights: > We apply a weak harmonic perturbation to control chaos in two driven oscillators. > We find replicate periodic windows in the driven oscillator parameter space. > We find that the periodic window replication is associated with the chaos control. - Abstract: In the bi-dimensional parameter space of driven oscillators, shrimp-shaped periodic windows are immersed in chaotic regions. For two of these oscillators, namely, Duffing and Josephson junction, we show that a weak harmonic perturbation replicates these periodic windows giving rise to parameter regions correspondent to periodic orbits. The new windows are composed of parameters whose periodic orbits have the same periodicity and pattern of stable and unstable periodic orbits already existent for the unperturbed oscillator. Moreover, these unstable periodic orbits are embedded in chaotic attractors in phase space regions where the new stable orbits are identified. Thus, the observed periodic window replication is an effective oscillator control process, once chaotic orbits are replaced by regular ones.

  12. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;

    2016-01-01

    BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...

  13. Local kinetic effects in two-dimensional plasma turbulence.

    Science.gov (United States)

    Servidio, S; Valentini, F; Califano, F; Veltri, P

    2012-01-27

    Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are investigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic topology, and can elongate along or across the local magnetic field. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysical and laboratory plasmas.

  14. A two-dimensional approach to relativistic positioning systems

    CERN Document Server

    Coll, B; Morales, J A; Coll, Bartolom\\'{e}; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allow to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out.

  15. Two-Dimensional Einstein Manifolds in Geometrothermodynamics

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2013-01-01

    Full Text Available We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessian curvature we write down the systems of partial differential equations. In such a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives of the isothermal coordinates. We conjecture that solutions on the characteristic circumference are of physical relevance, separating them from those of pure mathematical interest. We present the case of a one-parameter family of fundamental relations that—when lying in the circumference—describe a polytropic fluid.

  16. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  17. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  18. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  19. Two-dimensional Insect Flight on an Air-Water Interface is a Chaotic Oscillator

    CERN Document Server

    Mukundarajan, Haripriya; Prakash, Manu

    2014-01-01

    Two-dimensional flapping wing insect flight on an air-water interface provides a successful foraging strategy to explore an ecological niche on the surface of a pond. However, the complex interplay of surface tension, aerodynamic forces, biomechanics and neural control that enables two-dimensional flight is unknown. Here we report the discovery of two-dimensional flight in the waterlily beetle Galerucella nymphaeae, which is the fastest reported propulsion mode for an insect on a fluid interface. Using kinematics derived from high-speed videography coupled with analytical models, we demonstrate that two-dimensional flight is a chaotic interfacial oscillator, thus significantly constraining the possible range of flight parameters. Discovery of this complex dynamics in two-dimensional flight on time scales similar to neural responses indicates the challenge of evolving active flight control on a fluid interface.

  20. Two-dimensionally confined topological edge states in photonic crystals

    Science.gov (United States)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  1. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    CERN Document Server

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  2. Kinetic analysis of two dimensional metallic grating Cerenkov maser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.

  3. The problem of friction in two-dimensional relative motion

    CERN Document Server

    Grech, D K; Grech, Dariusz; Mazur, Zygmunt

    2000-01-01

    We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.

  4. Drift modes of a quasi-two-dimensional current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2012-03-15

    Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.

  5. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  6. Parameter and state estimator for state space models.

    Science.gov (United States)

    Ding, Ruifeng; Zhuang, Linfan

    2014-01-01

    This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  7. Determining Frequentist Confidence Limits Using a Directed Parameter Space Search

    Science.gov (United States)

    Daniel, Scott F.; Connolly, Andrew J.; Schneider, Jeff

    2014-10-01

    We consider the problem of inferring constraints on a high-dimensional parameter space with a computationally expensive likelihood function. We propose a machine learning algorithm that maps out the Frequentist confidence limit on parameter space by intelligently targeting likelihood evaluations so as to quickly and accurately characterize the likelihood surface in both low- and high-likelihood regions. We compare our algorithm to Bayesian credible limits derived by the well-tested Markov Chain Monte Carlo (MCMC) algorithm using both multi-modal toy likelihood functions and the seven yr Wilkinson Microwave Anisotropy Probe cosmic microwave background likelihood function. We find that our algorithm correctly identifies the location, general size, and general shape of high-likelihood regions in parameter space while being more robust against multi-modality than MCMC.

  8. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  9. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  10. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  11. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  12. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  13. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  14. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  15. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  16. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  17. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  18. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  19. Cross Validation Through Two-dimensional Solution Surface for Cost-Sensitive SVM.

    Science.gov (United States)

    Gu, Bin; Sheng, Victor; Tay, Keng; Romano, Walter; Li, Shuo

    2016-06-08

    Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.

  20. A TCAM-based Two-dimensional Prefix Packet Classification Algorithm

    Institute of Scientific and Technical Information of China (English)

    王志恒; 刘刚; 白英彩

    2004-01-01

    Packet classification (PC) has become the main method to support the quality of service and security of network application. And two-dimensional prefix packet classification (PPC) is the popular one. This paper analyzes the problem of ruler conflict, and then presents a TCAMbased two-dimensional PPC algorithm. This algorithm makes use of the parallelism of TCAM to lookup the longest prefix in one instruction cycle. Then it uses a memory image and associated data structures to eliminate the conflicts between rulers, and performs a fast two-dimensional PPC.Compared with other algorithms, this algorithm has the least time complexity and less space complexity.

  1. Atom-Based Geometrical Fingerprinting of Conformal Two-Dimensional Materials

    Science.gov (United States)

    Mehboudi, Mehrshad

    The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated. The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which indicates how much the surface is stretched and curved under a deformation as compared to a reference pre-deformed conformation. Many different disciplines advance theories on conformal two-dimensional materials by relying on continuum mechanics and fitting continuum surfaces to the shape of conformal two-dimensional materials. However two-dimensional materials are inherently discrete. The continuum models are only applicable when the size of two-dimensional materials is significantly large and the deformation is less than a few percent. In this research, the knowledge of discrete differential geometry was used to tell the local shape of conformal two-dimensional materials. Three kind of two-dimensional materials are discussed: 1) one atom thickness structures such as graphene and hexagonal boron nitride; 2) high and low buckled 2D meshes like stanene, leadene, aluminum phosphate; and, 3) multi layer 2D materials such as Bi2Se3 and WSe2. The lattice structures of these materials were created by designing a mechanical model - the mechanical model was devised in the form of a Gaussian bump and density-functional theory was used to inform the local height; and, the local geometries are also discussed.

  2. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Directory of Open Access Journals (Sweden)

    Christian Held

    2013-01-01

    Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  3. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Science.gov (United States)

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941

  4. The two dimensional fold test in paleomagnetism using ipython notebook

    Science.gov (United States)

    Setiabudidaya, Dedi; Piper, John D. A.

    2016-01-01

    One aspect of paleomagnetic analysis prone to controversy is the result of the fold test used to evaluate the age of a magnetisation component relative to the age of a structural event. Initially, the fold test was conducted by comparing the Fisherian precision parameter (k) to results from different limbs of a fold structure before and after tilt adjustment. To accommodate synfolding magnetisation, the tilt correction can be performed in stepwise fashion to both limbs simultaneously, here called one dimensional (1D) fold test. The two dimensional (2D) fold test described in this paper is carried out by applying stepwise tilt adjustment to each limb of the fold separately. The rationale for this is that tilts observed on contrasting limbs of deformed structure may not be synchronous or even belong to the same episode of deformation. A program for the procedure is presented here which generates two dimensional values of the k-parameter visually presented in contoured form. The use of ipython notebook enables this 2D fold test to be performed interactively and yield a more precise evaluation than the primitive 1D fold test.

  5. Estimating Illumination Parameters Using Spherical Harmonics Coefficients in Frequency Space

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; TAO Linmi; XU Guangyou

    2007-01-01

    An algorithm is presented for estimating the direction and strength of point light with the strength of ambient illumination. Existing approaches evaluate these illumination parameters directly in the high dimensional image space, while we estimate the parameters in two steps:first by projecting the image to an orthogonal linear subspace based on spherical harmonic basis functions and then by calculating the parameters in the low dimensional subspace.The test results using the CMU PIE database and Yale Database B show the stability and effectiveness of the method.The resulting illumination information can be used to synthesize more realistic relighting images and to recognize objects under variable illumination.

  6. The encoding complexity of two dimensional range minimum data structures

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Brodnik, Andrej; Davoodi, Pooya

    2013-01-01

    In the two-dimensional range minimum query problem an input matrix A of dimension m ×n, m ≤ n, has to be preprocessed into a data structure such that given a query rectangle within the matrix, the position of a minimum element within the query range can be reported. We consider the space complexity...... of the encoding variant of the problem where queries have access to the constructed data structure but can not access the input matrix A, i.e. all information must be encoded in the data structure. Previously it was known how to solve the problem with space O(mn min {m,logn}) bits (and with constant query time...

  7. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  8. Joint Dynamics Modeling and Parameter Identification for Space Robot Applications

    Directory of Open Access Journals (Sweden)

    Adenilson R. da Silva

    2007-01-01

    Full Text Available Long-term mission identification and model validation for in-flight manipulator control system in almost zero gravity with hostile space environment are extremely important for robotic applications. In this paper, a robot joint mathematical model is developed where several nonlinearities have been taken into account. In order to identify all the required system parameters, an integrated identification strategy is derived. This strategy makes use of a robust version of least-squares procedure (LS for getting the initial conditions and a general nonlinear optimization method (MCS—multilevel coordinate search—algorithm to estimate the nonlinear parameters. The approach is applied to the intelligent robot joint (IRJ experiment that was developed at DLR for utilization opportunity on the International Space Station (ISS. The results using real and simulated measurements have shown that the developed algorithm and strategy have remarkable features in identifying all the parameters with good accuracy.

  9. Nonlinear localized modes in dipolar Bose–Einstein condensates in two-dimensional optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rojas, Santiago, E-mail: srojas@cefop.cl [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Naether, Uta [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Delgado, Aldo [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Vicencio, Rodrigo A. [Center for Optics and Photonics and MSI-Nucleus on Advanced Optics, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago (Chile)

    2016-09-16

    Highlights: • We study discrete two-dimensional breathers in dipolar Bose–Einstein Condensates. • Important differences in the properties of three fundamental modes are found. • Norm threshold for existence of 2D breathers varies with dipolar interaction. • The Effective Potential Method is implemented for stability analysis. • Uncommon mobility of 2D discrete solitons is observed. - Abstract: We analyze the existence and properties of discrete localized excitations in a Bose–Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  10. Two dimensional fractional projectile motion in a resisting medium

    Science.gov (United States)

    Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan

    2014-07-01

    In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

  11. The random discrete action for two-dimensional spacetime

    Science.gov (United States)

    Benincasa, Dionigi M. T.; Dowker, Fay; Schmitzer, Bernhard

    2011-05-01

    A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, {M}^2. When a causally convex region of {M}^2 is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.

  12. Error analysis for satellite gravity field determination based on two-dimensional Fourier methods

    CERN Document Server

    Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun

    2012-01-01

    The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...

  13. Eigenvalue approach on a two-dimensional thermal shock problem with weak, normal and strong conductivity

    Science.gov (United States)

    Alzahrani, Faris S.; Abbas, Ibrahim A.

    2016-08-01

    The present paper is devoted to the study of a two-dimensional thermal shock problem with weak, normal and strong conductivity using the eigenvalue approach. The governing equations are taken in the context of the new consideration of heat conduction with fractional order generalized thermoelasticity with the Lord-Shulman model (LS model). The bounding surface of the half-space is taken to be traction free and subjected to a time-dependent thermal shock. The Laplace and the exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. Numerical computations have been done for copper-like material for weak, normal and strong conductivity and the results are presented graphically to estimate the effects of the fractional order parameter.

  14. Motility of Escherichia coli in a quasi-two-dimensional porous medium

    Science.gov (United States)

    Sosa-Hernández, Juan Eduardo; Santillán, Moisés; Santana-Solano, Jesús

    2017-03-01

    Bacterial migration through confined spaces is critical for several phenomena, such as biofilm formation, bacterial transport in soils, and bacterial therapy against cancer. In the present work, E. coli (strain K12-MG1655 WT) motility was characterized by recording and analyzing individual bacterium trajectories in a simulated quasi-two-dimensional porous medium. The porous medium was simulated by enclosing, between slide and cover slip, a bacterial-culture sample mixed with uniform 2.98-μ m -diameter spherical latex particles. The porosity of the medium was controlled by changing the latex particle concentration. By statistically analyzing several trajectory parameters (instantaneous velocity, turn angle, mean squared displacement, etc.), and contrasting with the results of a random-walk model developed ad hoc, we were able to quantify the effects that different obstacle concentrations have upon bacterial motility.

  15. Numerical simulations of blast wave characteristics with a two-dimensional axisymmetric room model

    Science.gov (United States)

    Sugiyama, Y.; Homae, T.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.

    2017-01-01

    This paper numerically visualizes explosion phenomena in order to discuss blast wave characteristics with a two-dimensional axisymmetric room model. After the shock wave exits via an opening, the blast wave propagates into open space. In the present study, a parametric study was conducted to determine the blast wave characteristics from the room exit by changing the room shape and the mass of the high explosive. Our results show that the blast wave characteristics can be correctly estimated using a scaling factor proposed in the present paper that includes the above parameters. We conducted normalization of the peak overpressure curve using the shock overpressure at the exit and the length scale of the room volume. In the case where the scaling factor has the same value, the normalized peak overpressure curve does not depend on the calculation conditions, and the scaling factor describes the blast wave characteristics emerging from the current room model.

  16. Peierls-Nabarro energy surfaces and directional mobility of discrete solitons in two-dimensional saturable nonlinear Schr\\"odinger lattices

    CERN Document Server

    Naether, Uta; Johansson, Magnus

    2010-01-01

    We address the problem of directional mobility of discrete solitons in two-dimensional rectangular lattices, in the framework of a discrete nonlinear Schr\\"odinger model with saturable on-site nonlinearity. A numerical constrained Newton-Raphson method is used to calculate two-dimensional Peierls-Nabarro energy surfaces, which describe a pseudopotential landscape for the slow mobility of coherent localized excitations, corresponding to continuous phase-space trajectories passing close to stationary modes. Investigating the two-parameter space of the model through independent variations of the nonlinearity constant and the power, we show how parameter regimes and directions of good mobility are connected to existence of smooth surfaces connecting the stationary states. In particular, directions where solutions can move with minimum radiation can be predicted from flatter parts of the surfaces. For such mobile solutions, slight perturbations in the transverse direction yield additional transverse oscillations w...

  17. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  18. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  19. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  20. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  1. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  2. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  3. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  4. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  5. Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2014-01-01

    Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.

  6. Mutagenesis by outer space parameters other than cosmic rays

    Science.gov (United States)

    Horneck, Gerda; Rabbow, Elke

    We have studied the ability of microorganisms to cope with the complex interplay of the parameters of space in experiments in low Earth orbit and using space simulation facilities on ground. Emphasis was laid on space parameters other than cosmic rays. The studies are directed towards understanding prebiotic chemical evolution and biological evolution processes, and interplanetary transfer of life. Effects of space vacuum: Space experiments have shown that up to 70% of bacterial and fungal spores survived short-term exposure to space vacuum. The chances of survival in space were increased when spores were embedded in chemical protectants such as sugars, or salt crystals, or when they were exposed in multilayer. During the six years lasting LDEF mission up to 80% of bacterial spores survived exposure to space vacuum. A 10-fold increased mutation rate over the spontaneous rate has been observed in spores of Bacillus subtilis after exposure to space vacuum, which is probably based on a unique molecular signature of tandem-double base change at restricted sites in the DNA. In addition, DNA strand breaks have been observed to be induced by vacuum treatment. Effects of extraterrestrial solar UV radiation: Solar UV radiation has been found to be the most deleterious factor of space. The reason for this is the highly energetic UV-C and vacuum UV radiation that is directly absorbed by the DNA and which induces specific photoproducts in the DNA that are highly mutagenic and lethal. The damaging effect of extraterrestrial solar UV radiation was even aggravated, when the spores were simultaneously exposed to both, solar UV radiation and space vacuum. In order to investigate the mutagenic potential of solar UV radiation, DNA of the Escherichia coli plasmid pUC19 was exposed to selected wavebands of UV radiation (from vacuum UV to UV-A) by use of a solar simulator and space simulation facilities. Action spectra revealed that for vacuum UV different kinds of photochemical damage

  7. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu

    1997-09-17

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  8. Two Dimensional Connectivity for Vehicular Ad-Hoc Networks

    CERN Document Server

    Farivar, Masoud; Ashtiani, Farid

    2008-01-01

    In this paper, we focus on two-dimensional connectivity in sparse vehicular ad hoc networks (VANETs). In this respect, we find thresholds for the arrival rates of vehicles at entrances of a block of streets such that the connectivity is guaranteed for any desired probability. To this end, we exploit a mobility model recently proposed for sparse VANETs, based on BCMP open queuing networks and solve the related traffic equations to find the traffic characteristics of each street and use the results to compute the exact probability of connectivity along these streets. Then, we use the results from percolation theory and the proposed fast algorithms for evaluation of bond percolation problem in a random graph corresponding to the block of the streets. We then find sufficiently accurate two dimensional connectivity-related parameters, such as the average number of intersections connected to each other and the size of the largest set of inter-connected intersections. We have also proposed lower bounds for the case ...

  9. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  10. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)

    2014-11-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.

  11. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  12. Sieve likelihood ratio inference on general parameter space

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiaotong; SHI Jian

    2005-01-01

    In this paper,a theory on sieve likelihood ratio inference on general parameter spaces(including infinite dimensional) is studied.Under fairly general regularity conditions,the sieve log-likelihood ratio statistic is proved to be asymptotically x2 distributed,which can be viewed as a generalization of the well-known Wilks' theorem.As an example,a emiparametric partial linear model is investigated.

  13. Two-dimensional static deformation of an anisotropic medium

    Indian Academy of Sciences (India)

    Kuldip Singh; Dinesh Kumar Madan; Anita Goel; Nat Ram Garg

    2005-08-01

    The problem of two-dimensional static deformation of a monoclinic elastic medium has been studied using the eigenvalue method, following a Fourier transform. We have obtained expressions for displacements and stresses for the medium in the transformed domain. As an application of the above theory, the particular case of a normal line-load acting inside an orthotropic elastic half-space has been considered in detail and closed form expressions for the displacements and stresses are obtained. Further, the results for the displacements for a transversely isotropic as well as for an isotropic medium have also been derived in the closed form. The use of matrix notation is straightforward and avoids unwieldy mathematical expressions. To examine the effect of anisotropy, variations of dimensionless displacements for an orthotropic, transversely isotropic and isotropic elastic medium have been compared numerically and it is found that anisotropy affects the deformation significantly.

  14. Entanglement in a two-dimensional string theory

    CERN Document Server

    Donnelly, William

    2016-01-01

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider entanglement entropy in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large $N$. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space, giving a precise state-counting interpretation to the entropy, including its leading $O(N^2)$ piece. In the process we reinterpret the sphere partition function as a thermal ensemble of of open strings whose endpoints are anchored to an object at the entangling surface that we call an E-brane.

  15. Two-Dimensional Planetary Surface Landers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new landing approach that significantly reduces development time and obviates the most complicated, most expensive and highest-risk phase of...

  16. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  17. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  18. Finite amplitude waves in two-dimensional lined ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    A second-order uniform expansion is obtained for nonlinear wave propagation in a two-dimensional duct lined with a point-reacting acoustic material consisting of a porous sheet followed by honeycomb cavities and backed by the impervious wall of the duct. The waves in the duct are coupled with those in the porous sheet and the cavities. An analytical expression is obtained for the absorption coefficient in terms of the sound frequency, the physical properties of the porous sheet, and the geometrical parameters of the flow configuration. The results show that the nonlinearity flattens and broadens the absorption vs. frequency curve, irrespective of the geometrical dimensions or the porous material acoustic properties, in agreement with experimental observations.

  19. Band structure of absorptive two-dimensional photonic crystals

    Science.gov (United States)

    van der Lem, Han; Tip, Adriaan; Moroz, Alexander

    2003-06-01

    The band structure for an absorptive two-dimensional photonic crystal made from cylinders consisting of a Drude material is calculated. Absorption causes the spectrum to become complex and form islands in the negative complex half-plane. The boundaries of these islands are not always formed by the eigenvalues calculated for Bloch vectors on the characteristic path, and we find a hole in the spectrum. For realistic parameter values, the real part of the spectrum is hardly influenced by absorption, typically less than 0.25%. The employed method uses a Korringa-Kohn-Rostoker procedure together with analytical continuation. This results in an efficient approach that allows these band-structure calculations to be done on a Pentium III personal computer.

  20. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks

    Institute of Scientific and Technical Information of China (English)

    LI Chao; YAO Kan; LI Fang

    2009-01-01

    Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.

  1. Coherent two-dimensional spectroscopy of a Fano model

    CERN Document Server

    Poulsen, Felipe; Pullerits, Tõnu; Hansen, Thorsten

    2016-01-01

    The Fano lineshape arises from the interference of two excitation pathways to reach a continuum. Its generality has resulted in a tremendous success in explaining the lineshapes of many one-dimensional spectroscopies - absorption, emission, scattering, conductance, photofragmentation - applied to very varied systems - atoms, molecules, semiconductors and metals. Unravelling a spectroscopy into a second dimension reveals the relationship between states in addition to decongesting the spectra. Femtosecond-resolved two-dimensional electronic spectroscopy (2DES) is a four-wave mixing technique that measures the time-evolution of the populations, and coherences of excited states. It has been applied extensively to the dynamics of photosynthetic units, and more recently to materials with extended band-structures. In this letter, we solve the full time-dependent third-order response, measured in 2DES, of a Fano model and give the new system parameters that become accessible.

  2. Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets

    Science.gov (United States)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2016-11-01

    We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.

  3. Crossed Andreev effects in two-dimensional quantum Hall systems

    Science.gov (United States)

    Hou, Zhe; Xing, Yanxia; Guo, Ai-Min; Sun, Qing-Feng

    2016-08-01

    We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.

  4. Quasi-Two-Dimensional Magnetism in Co-Based Shandites

    Science.gov (United States)

    Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki

    2016-06-01

    We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.

  5. A comparative study of two-dimensional multifractal detrended fluctuation analysis and two-dimensional multifractal detrended moving average algorithm to estimate the multifractal spectrum

    Science.gov (United States)

    Xi, Caiping; Zhang, Shunning; Xiong, Gang; Zhao, Huichang

    2016-07-01

    Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) algorithm have been established as two important methods to estimate the multifractal spectrum of the one-dimensional random fractal signal. They have been generalized to deal with two-dimensional and higher-dimensional fractal signals. This paper gives a brief introduction of the two-dimensional multifractal detrended fluctuation analysis (2D-MFDFA) and two-dimensional multifractal detrended moving average (2D-MFDMA) algorithm, and a detailed description of the application of the two-dimensional fractal signal processing by using the two methods. By applying the 2D-MFDFA and 2D-MFDMA to the series generated from the two-dimensional multiplicative cascading process, we systematically do the comparative analysis to get the advantages, disadvantages and the applicabilities of the two algorithms for the first time from six aspects such as the similarities and differences of the algorithm models, the statistical accuracy, the sensitivities of the sample size, the selection of scaling range, the choice of the q-orders and the calculation amount. The results provide a valuable reference on how to choose the algorithm from 2D-MFDFA and 2D-MFDMA, and how to make the schemes of the parameter settings of the two algorithms when dealing with specific signals in practical applications.

  6. A PARALIND Decomposition-Based Coherent Two-Dimensional Direction of Arrival Estimation Algorithm for Acoustic Vector-Sensor Arrays

    Science.gov (United States)

    Zhang, Xiaofei; Zhou, Min; Li, Jianfeng

    2013-01-01

    In this paper, we combine the acoustic vector-sensor array parameter estimation problem with the parallel profiles with linear dependencies (PARALIND) model, which was originally applied to biology and chemistry. Exploiting the PARALIND decomposition approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to unknown locations. The proposed algorithm works well to achieve automatically paired azimuth and elevation angles for coherent and incoherent angle estimation of acoustic vector-sensor arrays, as well as the paired correlated matrix of the sources. Our algorithm, in contrast with conventional coherent angle estimation algorithms such as the forward backward spatial smoothing (FBSS) estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, not only has much better angle estimation performance, even for closely-spaced sources, but is also available for arbitrary arrays. Simulation results verify the effectiveness of our algorithm. PMID:23604030

  7. The effect of temperature on generic stable periodic structures in the parameter space of dissipative relativistic standard map

    Science.gov (United States)

    Horstmann, Ana C. C.; Albuquerque, Holokx A.; Manchein, Cesar

    2017-05-01

    In this work, we have characterized changes in the dynamics of a two-dimensional relativistic standard map in the presence of dissipation and specially when it is submitted to thermal effects modeled by a Gaussian noise reservoir. By the addition of thermal noise in the dissipative relativistic standard map (DRSM) it is possible to suppress typical stable periodic structures (SPSs) embedded in the chaotic domains of parameter space for large enough temperature strengths. Smaller SPSs are first affected by thermal effects, starting from their borders, as a function of temperature. To estimate the necessary temperature strength capable to destroy those SPSs we use the largest Lyapunov exponent to obtain the critical temperature (TC) diagrams. For critical temperatures the chaotic behavior takes place with the suppression of periodic motion, although the temperature strengths considered in this work are not so large to convert the deterministic features of the underlying system into a stochastic ones.

  8. Describing variations of the Fisher-matrix across parameter space

    CERN Document Server

    Schäfer, Björn Malte

    2016-01-01

    Forecasts in cosmology, both with Monte-Carlo Markov-chain methods and with the Fisher matrix formalism, depend on the choice of the fiducial model because both the signal strength of any observable as well as the model nonlinearities linking observables to cosmological parameters vary in the general case. In this paper we propose a method for extrapolating Fisher-forecasts across the space of cosmological parameters by constructing a suitable ba- sis. We demonstrate the validity of our method with constraints on a standard dark energy model extrapolated from a {\\Lambda}CDM-model, as can be expected from 2-bin weak lensing to- mography with a Euclid-like survey, in the parameter pairs $(\\Omega_\\text{m},\\sigma_8)$, $(\\Omega_\\text{m}, w_0)$ and $(w_0, w_\\text{a})$. Our numerical results include very accurate extrapolations across a wide range of cosmo- logical parameters in terms of shape, size and orientation of the parameter likelihood, and a decomposition of the change of the likelihood contours into modes, ...

  9. Model and observed seismicity represented in a two dimensional space

    Directory of Open Access Journals (Sweden)

    M. Caputo

    1976-06-01

    Full Text Available In recent years theoretical seismology lias introduced
    some formulae relating the magnitude and the seismic moment of earthquakes
    to the size of the fault and the stress drop which generated the
    earthquake.
    In the present paper we introduce a model for the statistics of the
    earthquakes based on these formulae. The model gives formulae which
    show internal consistency and are also confirmed by observations.
    For intermediate magnitudes the formulae reproduce also the trend
    of linearity of the statistics of magnitude and moment observed in all the
    seismic regions of the world. This linear trend changes into a curve with
    increasing slope for large magnitudes and moment.
    When a catalogue of the magnitudes and/or the seismic moment of
    the earthquakes of a seismic region is available, the model allows to estimate
    the maximum magnitude possible in the region.

  10. System identification of two-dimensional continuous-time systems using wavelets as modulating functions.

    Science.gov (United States)

    Sadabadi, Mahdiye Sadat; Shafiee, Masoud; Karrari, Mehdi

    2008-07-01

    In this paper, parameter identification of two-dimensional continuous-time systems via two-dimensional modulating functions is proposed. In the proposed method, trigonometric functions and sine-cosine wavelets are used as modulating functions. By this, a partial differential equation on the finite-time intervals is converted into an algebraic equation linear in parameters. The parameters of the system can then be estimated using the least square algorithms. The underlying computations utilize a two-dimensional fast Fourier transform algorithm, without the need for estimating the unknown initial or boundary conditions, at the beginning of each finite-time interval. Numerical simulations are presented to show the effectiveness of the proposed algorithm.

  11. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  12. Renormalization of two-dimensional quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana S, Rodolfo; Dias, Sebastiao A

    1997-12-01

    The Schwinger model, when quantized in a gauge non-invariant way exhibits a dependence on a parameter {alpha} (the Jackiw-Rajaraman parameter) in a way which is analogous to the case involving chiral fermions (the chiral Schwinger model). For all values of a {alpha}1, there are divergences in the fermionic Green`s functions. We propose a regularization of the generating functional Z [{eta}, {eta}, J] and we use it to renormalize the theory to one loop level, in a semi-perturbative sense. At the end of the renormalization procedure we find an implicit dependence of {alpha} on the renormalization scale {mu}. (author) 26 refs.

  13. Parameter space of experimental chaotic circuits with high-precision control parameters

    Science.gov (United States)

    de Sousa, Francisco F. G.; Rubinger, Rero M.; Sartorelli, José C.; Albuquerque, Holokx A.; Baptista, Murilo S.

    2016-08-01

    We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (˜21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.

  14. Parameter space of experimental chaotic circuits with high-precision control parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Francisco F. G. de; Rubinger, Rero M. [Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, MG (Brazil); Sartorelli, José C., E-mail: sartorelli@if.usp.br [Universidade de São Paulo, São Paulo, SP (Brazil); Albuquerque, Holokx A. [Departamento de Física, Universidade do Estado de Santa Catarina, Joinville, SC (Brazil); Baptista, Murilo S. [Institute of Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen (United Kingdom)

    2016-08-15

    We report high-resolution measurements that experimentally confirm a spiral cascade structure and a scaling relationship of shrimps in the Chua's circuit. Circuits constructed using this component allow for a comprehensive characterization of the circuit behaviors through high resolution parameter spaces. To illustrate the power of our technological development for the creation and the study of chaotic circuits, we constructed a Chua circuit and study its high resolution parameter space. The reliability and stability of the designed component allowed us to obtain data for long periods of time (∼21 weeks), a data set from which an accurate estimation of Lyapunov exponents for the circuit characterization was possible. Moreover, this data, rigorously characterized by the Lyapunov exponents, allows us to reassure experimentally that the shrimps, stable islands embedded in a domain of chaos in the parameter spaces, can be observed in the laboratory. Finally, we confirm that their sizes decay exponentially with the period of the attractor, a result expected to be found in maps of the quadratic family.

  15. Electrical and optoelectronic properties of two-dimensional materials

    Science.gov (United States)

    Wang, Qiaoming

    Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We

  16. The determination of space parameters of the heliostatic collector field

    Directory of Open Access Journals (Sweden)

    Dušan Kudelas

    2006-04-01

    Full Text Available The assurance of perpetual perpendicular insolation of solar collector absorber surface may increase the insolation energy byca 42-45 %.. A consequence of theincrease in the energy production may be the reduction of the solar collectors’ surface area. For the large scale solar collector field conception is advantageous to build collector sections with several collectors in one heliostat. For the conception of the solar collector field with heliostat collectors is important to make a regular identification of space parameters of all parts of the solar system field. The placement of the heliostats is a basic condition for the optimal insolation conditions of heliostat solar collectors’ field.

  17. Multi-parameter Tikhonov Regularisation in Topological Spaces

    CERN Document Server

    Grasmair, Markus

    2011-01-01

    We study the behaviour of Tikhonov regularisation on topological spaces with multiple regularisation terms. The main result of the paper shows that multi-parameter regularisation is well-posed in the sense that the results depend continuously on the data and converge to a true solution of the equation to be solved as the noise level decreases to zero. Moreover, we derive convergence rates in terms of a generalised Bregman distance using the method of variational inequalities. All the results in the paper, including the convergence rates, consider not only noise in the data, but also errors in the operator.

  18. Dynamical Evolution of Young Embedded Clusters: A Parameter Space Survey

    CERN Document Server

    Proszkow, Eva-Marie

    2009-01-01

    This paper investigates the dynamical evolution of embedded stellar clusters from the protocluster stage, through the embedded star-forming phase, and out to ages of 10 Myr -- after the gas has been removed from the cluster. The relevant dynamical properties of young stellar clusters are explored over a wide range of possible star formation environments using N-body simulations. Many realizations of equivalent initial conditions are used to produce robust statistical descriptions of cluster evolution including the cluster bound fraction, radial probability distributions, as well as the distributions of close encounter distances and velocities. These cluster properties are presented as a function of parameters describing the initial configuration of the cluster, including the initial cluster membership N, initial stellar velocities, cluster radii, star formation efficiency, embedding gas dispersal time, and the degree of primordial mass segregation. The results of this parameter space survey, which includes ab...

  19. Parameter Space of the Columbia River Estuarine Turbidity Maxima

    Science.gov (United States)

    McNeil, C. L.; Shcherbina, A.; Lopez, J.; Karna, T.; Baptista, A. M.; Crump, B. C.; Sanford, T. B.

    2016-12-01

    We present observations of estuarine turbidity maxima (ETM) in the North Channel of the Columbia River estuary (OR and WA, USA) covering different river discharge and flood tide conditions. Measurements were made using optical backscattering sensors on two REMUS-100 autonomous underwater vehicles (AUVs) during spring 2012, summer 2013, and fall 2012. Although significant short term variability in AUV measured optical backscatter was observed, some clustering of the data occurs around the estuarine regimes defined by a mixing parameter and a freshwater Froude number (Geyer & MacCready [2014]). Similar clustering is observed in long term time series of turbidity from the SATURN observatory. We will use available measurements and numerical model simulations of suspended sediment to further explore the variability of suspended sediment dynamics within a frame work of estuarine parameter space.

  20. Organizing the Parameter Space of the Global 21-cm Signal

    CERN Document Server

    Cohen, Aviad; Barkana, Rennan; Lotem, Matan

    2016-01-01

    The early star-forming Universe is still poorly constrained, with the properties of high-redshift stars, the first heating sources, and reionization highly uncertain. This leaves observers planning 21-cm experiments with little theoretical guidance. In this work we explore the possible range of high-redshift parameters including the star formation efficiency and the minimal mass of star-forming halos; the efficiency, spectral energy distribution, and redshift evolution of the first X-ray sources; and the history of reionization. These parameters are only weakly constrained by available observations, mainly the optical depth to the cosmic microwave background. We use realistic semi-numerical simulations to produce the global 21-cm signal over the redshift range $z = 6-40$ for each of 181 different combinations of the astrophysical parameters spanning the allowed range. We show that the expected signal fills a large parameter space, but with a fixed general shape for the global 21-cm curve. Even with our wide s...

  1. On the critical behaviour of two-dimensional liquid crystals

    Directory of Open Access Journals (Sweden)

    A.l. Fariñas-Sánchez

    2010-01-01

    Full Text Available The Lebwohl-Lasher (LL model is the traditional model used to describe the nematic-isotropic transition of real liquid crystals. In this paper, we develop a numerical study of the temperature behaviour and of finite-size scaling of the two-dimensional (2D LL-model. We discuss two possible scenarios. In the first one, the 2D LL-model presents a phase transition similar to the topological transition appearing in the 2D XY-model. In the second one, the 2D LL-model does not exhibit any critical transition, but its low temperature behaviour is rather characterized by a crossover from a disordered phase to an ordered phase at zero temperature. We realize and discuss various comparisons with the 2D XY-model and the 2D Heisenberg model. Having added finite-size scaling behaviour of the order parameter and conformal mapping of order parameter profile to previous studies, we analyze the critical scaling of the probability distribution function, hyperscaling relations and stiffness order parameter and conclude that the second scenario (no critical transition is the most plausible.

  2. Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy

    Science.gov (United States)

    Harbison, Gerard S.; Slokenbergs, Andris

    1990-04-01

    We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.

  3. Exploration of Parameter Spaces in a Virtual Observatory

    CERN Document Server

    Djorgovski, S G; Brunner, R J; Williams, R; Granat, R; Curkendall, D; Jacob, J; Stolorz, P

    2001-01-01

    Like every other field of intellectual endeavor, astronomy is being revolutionised by the advances in information technology. There is an ongoing exponential growth in the volume, quality, and complexity of astronomical data sets, mainly through large digital sky surveys and archives. The Virtual Observatory (VO) concept represents a scientific and technological framework needed to cope with this data flood. Systematic exploration of the observable parameter spaces, covered by large digital sky surveys spanning a range of wavelengths, will be one of the primary modes of research with a VO. This is where the truly new discoveries will be made, and new insights be gained about the already known astronomical objects and phenomena. We review some of the methodological challenges posed by the analysis of large and complex data sets expected in the VO-based research. The challenges are driven both by the size and the complexity of the data sets (billions of data vectors in parameter spaces of tens or hundreds of di...

  4. Grammatical complexity for two-dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Ryouichi; Shudo, Akira [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397 (Japan)

    2004-11-05

    We calculate the grammatical complexity of the symbol sequences generated from the Henon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.

  5. USTIFICATION OF A TWO-DIMENSIONAL NONLINEAR SHELL MODEL OF KOITER'S TYPE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A two-dimensional nonlinear shell model"of Koiter's type"has recently been proposed by the first author. It is shown here that, according to two mutually exclusive sets of assumptions bearing on the associated manifold of admissible inextensional displacements, the leading term of a formal asymptotic expansion of the solution of this two-dimensional model, with the thickness as the"small" parameter, satisfies either the two-dimensional equations of a nonlinearly elastic "membrane" shell or those of a nonlinearly elastic "flexural" shell. These conclusions being identical to those recently drawn by B. Miara, then by V. Lods and B. Miara, for the leading term of a formal asymptotic expansion of the solution of the equations of three-dimensional nonlinear elasticity, again with the thickness as the "small" parameter, the nonlinear shell model of Koiter's type considered here is thus justified, at least formally.

  6. Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) adaptive analysis will be tested NASA's Gravity Recovery and Climate Experiment (GRACE) mission database in phase I in...

  7. Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) empirical mode decomposition (EMD) analysis was applied to NASA's Gravity Recovery and Climate Experiment (GRACE)...

  8. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  9. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  10. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  11. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  12. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  13. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  14. Emergence and spread of antibiotic resistance: setting a parameter space.

    Science.gov (United States)

    Martínez, José Luis; Baquero, Fernando

    2014-05-01

    The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. In addition, we analyse several parameters that modulate the evolution landscape of antibiotic resistance. Learning why some resistance mechanisms emerge but do not evolve after a first burst, whereas others can spread over the entire world very rapidly, mimicking a chain reaction, is important for predicting the evolution, and relevance for human health, of a given mechanism of resistance. Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.

  15. Two-dimensional gel-based protein standardization verified by western blot analysis.

    Science.gov (United States)

    Haniu, Hisao; Watanabe, Daisuke; Kawashima, Yusuke; Matsumoto, Hiroyuki

    2015-01-01

    In data presentation of biochemical investigation the amount of a target protein is shown in the y-axis against the x-axis representing time, concentrations of various agents, or other parameters. Western blot is a versatile and convenient tool in such an analysis to quantify and display the amount of proteins. In western blot, so-called housekeeping gene product(s), or "housekeeping proteins," are widely used as internal standards. The rationale of using housekeeping proteins for standardization of western blot is based on the assumption that the expression of chosen housekeeping gene is always constant, which could be false under certain physiological or pathological conditions. We have devised a two-dimensional gel-based standardization method in which the protein content of each sample is determined by scanning the total protein density of two-dimensional gels and the expression of each protein is quantified as the density ratio of each protein divided by the density of the total proteins on the two-dimensional gel. The advantage of this standardization method is that it is not based on any presumed "housekeeping proteins" that are supposed to be being expressed constantly under all physiological conditions. We will show that the total density of a two-dimensional gel can render a reliable protein standardization parameter by running western blot analysis on one of the proteins analyzed by two-dimensional gels.

  16. Grammatical complexity for two-dimensional maps

    Science.gov (United States)

    Hagiwara, Ryouichi; Shudo, Akira

    2004-11-01

    We calculate the grammatical complexity of the symbol sequences generated from the Hénon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.

  17. Filtering and control for classes of two-dimensional systems

    CERN Document Server

    Wu, Ligang

    2015-01-01

    This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: ·         general theory and methods of analysis and optimal synthesis for 2-D systems; and ·         application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...

  18. Two-dimensional collective Hamiltonian for chiral and wobbling modes

    CERN Document Server

    Chen, Q B; Zhao, P W; Jolos, R V; Meng, J

    2016-01-01

    A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor ($\\gamma=-30^\\circ$) coupling to one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobb...

  19. Two-dimensional collective Hamiltonian for chiral and wobbling modes

    Science.gov (United States)

    Chen, Q. B.; Zhang, S. Q.; Zhao, P. W.; Jolos, R. V.; Meng, J.

    2016-10-01

    A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor (γ =-30∘ ) coupling to one h11 /2 proton particle and one h11 /2 neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobbling motion have been presented in the 2DCH.

  20. Two-Dimensional Nucleation of Ice from Supercooled Water

    Science.gov (United States)

    Seeley, L. H.; Seidler, G. T.

    2001-03-01

    Heterogeneous nucleation is the initial formation of a stable phase from a metastable phase in the presence of a catalyzing surface. This ubiquitous process has consequences ranging from metallurgy to the formation of kidney stones. Heterogeneous nucleation of ice plays a central role in cloud formation, suggesting one possible connection between anthropogenic pollutants and global climate. A key topic in the theory of nucleation is the geometry of the critical nucleus. Standard nucleation theories generally predict a compact critical nucleus with a surface of roughly constant curvature. We report measurements of the temperature dependent nucleation rate of ice from water samples supporting aliphatic alcohol Langmuir films. We use classical nucleation theory to extract thermodynamic parameters from the measured nucleation rates. From these parameters we conclude that both the effective free energy barrier and the molecular kinetics of nucleation are dominated by the physics at the interface. Our results give self-consistent evidence that the geometry of the critical nucleus in this system is essentially two-dimensional.

  1. The random discrete action for two-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Benincasa, Dionigi M T; Dowker, Fay; Schmitzer, Bernhard, E-mail: db1808@ic.ac.uk [Theoretical Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2011-05-21

    A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, M{sup 2}. When a causally convex region of M{sup 2} is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.

  2. Construction of exact complex dynamical invariant of a two-dimensional classical system

    Indian Academy of Sciences (India)

    Fakir Chand; S C Mishra

    2006-12-01

    We present the construction of exact complex dynamical invariant of a two-dimensional classical dynamical system on an extended complex space utilizing Lie algebraic approach. These invariants are expected to play a vital role in understanding the complex trajectories of both classical and quantum systems.

  3. A two-dimensional embedded-boundary method for convection problems with moving boundaries

    NARCIS (Netherlands)

    Hassen, Y.J.; Koren, B.

    2010-01-01

    In this work, a two-dimensional embedded-boundary algorithm for convection problems is presented. A moving body of arbitrary boundary shape is immersed in a Cartesian finite-volume grid, which is fixed in space. The boundary surface is reconstructed in such a way that only certain fluxes in the imme

  4. RANDOM ATTRACTOR FOR A TWO-DIMENSIONAL INCOMPRESSIBLE NON-NEWTONIAN FLUID WITH MULTIPLICATIVE NOISE

    Institute of Scientific and Technical Information of China (English)

    Zhao Caidi; Li Yongsheng; Zhou Shengfan

    2011-01-01

    This article proves that the random dynamical system generated by a two- dimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.

  5. 一种基于非完整二维相空间分量置换的混沌检测方法∗%A chaotic signal detection metho d based on the comp onent p ermutation of the incomplete two-dimensional phase-space

    Institute of Scientific and Technical Information of China (English)

    朱胜利; 甘露

    2016-01-01

    由于混沌时间序列和随机过程具有很多类似的性质,因而在实际中很难将两者区分开来。混沌信号检测与识别是混沌时间序列分析中一个重要的课题。混沌信号是由确定性的混沌映射或混沌系统产生的,相比于高斯白噪声序列,其在非完整的二维相空间中表现出更加丰富的结构特性。本文通过研究混沌时间序列和高斯白噪声序列在非完整二维相空间中的分布特性,利用混沌信号的非线性动力学特性,提出了一种基于非完整二维相空间分量置换的混沌信号检测方法。该方法首先由接收序列得到非完整的二维相空间,基于第一维分量大小关系实现对第二维分量的置换与分组,进一步求得F检验统计量。然后利用混沌系统的局部特性,获取非完整二维相空间的动力学结构信息,实现对混沌序列的有效检测。在高斯白噪声条件下对多种混沌信号进行了信号检测的数值仿真。仿真结果表明:相比置换熵检测,本文所提算法所需数据量小、计算简单以及具有更低的时间复杂度,同时对噪声具有更好的鲁棒性。%Detection and identification of chaotic signal is very important in the chaotic time series analysis. It is not easy to distinguish chaotic time series from stochastic processes since they share some similar natures. The detection methods to capture and utilize the structure of state-space dynamics can be very effective. In practice, it is very hard to obtain full information about the structure, and accurate phase-space reconstruction from scalar time series data is also a real challenge. However, the chaotic signals also show fundamental dynamical structure in the incomplete two-dimensional phase-space for the reason that they are generated by the deterministic chaotic systems or maps. Based on the fact that the distribution of chaotic signals is quite different from that of the noise

  6. Exploring Parameter Space Coverage of Various LISA Configurations

    Science.gov (United States)

    Katz, Michael L.

    2017-01-01

    With the success of LISA Pathfinder, the measurement of gravitational waves in space has taken an important step forward. We conduct an analysis of the measurement abilities of distinctive LISA detector designs, examining how the low-frequency band-edge behavior of the detector sensitivity curve affects measurement capabilities. We are particularly interested in LISA’s ability to measure massive black holes that are merging near the band-edge, with masses in the range of $\\sim 10^6-10^{10}M_\\odot$. We examine the ringdown and insprial detectability over a wide range of Massive Black Hole (MBH) binaries along with a broad palette of possible LISA design parameters.

  7. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  8. Image interpolation by two-dimensional parametric cubic convolution.

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E

    2006-07-01

    Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2, 2] x [-2, 2] with constraints for biaxial symmetry, diagonal (or 90 degrees rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.

  9. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  10. Impact of geometry parameters on the thrust and infrared radiation characteristics of two-dimensional ejector nozzle%二元引射喷管几何特征参数对推力及红外特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘福城; 吉洪湖; 林兰之; 黄伟; 刘常春; 斯仁

    2011-01-01

    采用数值模拟的方法研究了二元引射喷管间距比变化和面积比变化对推力特性和3~5μm波段红外辐射特性的影响.排气系统的流场采用了商用软件计算,红外辐射特征采用了自主开发的软件(NU-AA-IR)进行计算.结果表明:间距比变化和面积比变化对二元引射喷管的推力系数和引射流量比有不同程度的影响.在小方向角范围内,间距比和面积比的变化对宽边探测平面上的积分辐射强度影响较大,最大降幅为30%左右,而对窄边探测平面上的积分辐射强度影响较小;二元引射喷管相对于二元喷管的红外辐射特性最大降幅为50%左右.%The thrust and infrared radiation (IR) characteristics in the waveband of 3 ~ 5 μm of two-dimensional (2-D) ejector nozzle were studied numerically. The flow field of the exhaust jet was calculated with commercial software. The infrared radiation characteristics were calculated with an IR analysis software (NUAA-IR) developed by our research group. The results show that spacing ratio and area ratio have different impacts on the thrust ratio and mass-flow ratio of the 2-D ejector nozzle. Spacing ratio and area ratio have greater impact on wide detected plane within a small azimuth angles. In relation to a 2-D nozzle, the integral IR intensity of a 2-D ejector nozzle can be reduced about 50%.

  11. Parallel axes gear set optimization in two-parameter space

    Science.gov (United States)

    Theberge, Y.; Cardou, A.; Cloutier, L.

    1991-05-01

    This paper presents a method for optimal spur and helical gear transmission design that may be used in a computer aided design (CAD) approach. The design objective is generally taken as obtaining the most compact set for a given power input and gear ratio. A mixed design procedure is employed which relies both on heuristic considerations and computer capabilities. Strength and kinematic constraints are considered in order to define the domain of feasible designs. Constraints allowed include: pinion tooth bending strength, gear tooth bending strength, surface stress (resistance to pitting), scoring resistance, pinion involute interference, gear involute interference, minimum pinion tooth thickness, minimum gear tooth thickness, and profile or transverse contact ratio. A computer program was developed which allows the user to input the problem parameters, to select the calculation procedure, to see constraint curves in graphic display, to have an objective function level curve drawn through the design space, to point at a feasible design point and to have constraint values calculated at that point. The user can also modify some of the parameters during the design process.

  12. Dynamical quantum Hall effect in the parameter space.

    Science.gov (United States)

    Gritsev, V; Polkovnikov, A

    2012-04-24

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.

  13. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  14. Density of states of Frenkel excitons in strongly disordered two-dimensional systems

    Science.gov (United States)

    Siemann, Robert; Boukahil, Abdelkrim

    2014-03-01

    We present the calculation of the density of states of Frenkel excitons in strongly disordered two-dimensional systems. A random distribution of transition frequencies with variance σ2 characterizes the disorder. The Coherent Potential Approximation (CPA) calculations show a strong dependence of the density of states (DOS) on the disorder parameter σ.

  15. Calculation of the electrical of induction heating coils in two dimensional axissymmetric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Nerg, J.; Partanen, J. [Lappeenranta University of Technology (Finland). Department of Energy Technology, Laboratory of Electrical Engineering

    1997-12-31

    The effect of the workpiece temperature on the electrical parameters of a plane, spiral inductor is discussed. The effect of workpiece temperature on the electrical efficiency, power transfer to the workpiece and electromagnetic distortion are also presented. Calculation is performed in two dimensional axissymmetric geometry using a FEM program. (orig.) 5 refs.

  16. Two Dimensional Electronic Correlation Spectroscopy of the npi* and pipi* Protein Backbone Transitions: A Simulation Study.

    Science.gov (United States)

    Li, Zhenyu; Abramavicius, Darius; Zhuang, Wei; Mukamel, Shaul

    2007-11-15

    The two dimensional (2D) photon echo spectrum of the amide ultraviolet (UV) bands of proteins are simulated. Two effective exciton Hamiltonian parameter sets developed by Woody and Hirst, which predict similar CD spectra, may be distinguished by their very different 2DUV spectra. These differences are enhanced in specific configurations of pulse polarizations which provide chirality-induced signals.

  17. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1999-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate...

  18. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1998-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate...

  19. Asymmetrical interference effects between two-dimensional geometric shapes and their corresponding shape words.

    Science.gov (United States)

    Sturz, Bradley R; Edwards, Joshua E; Boyer, Ty W

    2014-01-01

    Nativists have postulated fundamental geometric knowledge that predates linguistic and symbolic thought. Central to these claims is the proposal for an isolated cognitive system dedicated to processing geometric information. Testing such hypotheses presents challenges due to difficulties in eliminating the combination of geometric and non-geometric information through language. We present evidence using a modified matching interference paradigm that an incongruent shape word interferes with identifying a two-dimensional geometric shape, but an incongruent two-dimensional geometric shape does not interfere with identifying a shape word. This asymmetry in interference effects between two-dimensional geometric shapes and their corresponding shape words suggests that shape words activate spatial representations of shapes but shapes do not activate linguistic representations of shape words. These results appear consistent with hypotheses concerning a cognitive system dedicated to processing geometric information isolated from linguistic processing and provide evidence consistent with hypotheses concerning knowledge of geometric properties of space that predates linguistic and symbolic thought.

  20. Border collision bifurcations in a two-dimensional piecewise smooth map from a simple switching circuit.

    Science.gov (United States)

    Gardini, Laura; Fournier-Prunaret, Danièle; Chargé, Pascal

    2011-06-01

    In recent years, the study of chaotic and complex phenomena in electronic circuits has been widely developed due to the increasing number of applications. In these studies, associated with the use of chaotic sequences, chaos is required to be robust (not occurring only in a set of zero measure and persistent to perturbations of the system). These properties are not easy to be proved, and numerical simulations are often used. In this work, we consider a simple electronic switching circuit, proposed as chaos generator. The object of our study is to determine the ranges of the parameters at which the dynamics are chaotic, rigorously proving that chaos is robust. This is obtained showing that the model can be studied via a two-dimensional piecewise smooth map in triangular form and associated with a one-dimensional piecewise linear map. The bifurcations in the parameter space are determined analytically. These are the border collision bifurcation curves, the degenerate flip bifurcations, which only are allowed to occur to destabilize the stable cycles, and the homoclinic bifurcations occurring in cyclical chaotic regions leading to chaos in 1-piece.

  1. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  2. Generalized non-separable two-dimensional Dammann encoding method

    Science.gov (United States)

    Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei

    2017-01-01

    We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.

  3. Two-dimensional networks of lanthanide cubane-shaped dumbbells.

    Science.gov (United States)

    Savard, Didier; Lin, Po-Heng; Burchell, Tara J; Korobkov, Ilia; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2009-12-21

    The syntheses, structures, and magnetic properties are reported for three new lanthanide complexes, [Ln(III)(4)(mu(3)-OH)(2)(mu(3)-O)(2)(cpt)(6)(MeOH)(6)(H(2)O)](2) (Ln = Dy (1.15MeOH), Ho (2.14MeOH), and Tb (3.18MeOH)), based on 4-(4-carboxyphenyl)-1,2,4-triazole ligand (Hcpt). The three complexes were confirmed to be isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. The crystal structure of 1 reveals that the eight-coordinate metal centers are organized in two cubane-shaped moieties composed of four Dy(III) ions each. All metal centers in the cubane core are bridged by two mu(3)-oxide and two mu(3)-hydroxide asymmetrical units. Moreover, each cubane is linked to its neighbor by two externally coordinating ligands, forming the dumbbell {Dy(III)(4)}(2) moiety. Electrostatic interactions between the ligands of the triazole-bridged dimers form an extended supramolecular two-dimensional arrangement analogous to a metal-organic framework with quadrilateral spaces occupied by ligands from axial sheets and by four solvent molecules. The magnetic properties of the three compounds have been investigated using dc and ac susceptibility measurements. For 1, the static and dynamic data corroborate the fact that the {Dy(III)(4)} cubane-shaped core exhibits slow relaxation of its magnetization below 5 K associated with a single-molecule magnet behavior.

  4. Conformal QED in two-dimensional topological insulators

    CERN Document Server

    Menezes, N; Smith, C Morais

    2016-01-01

    It has been shown recently that local four-fermion interactions on the edges of two-dimensional time-reversal-invariant topological insulators give rise to a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this work, we provide a first-principle derivation of this non-Fermi-liquid phase based on the gauge-theory approach. Firstly, we derive a gauge theory for the edge states by simply assuming that the interactions between the Dirac fermions at the edge are mediated by a quantum dynamical electromagnetic field. Here, the massless Dirac fermions are confined to live on the one-dimensional boundary, while the (virtual) photons of the U(1) gauge field are free to propagate in all the three spatial dimensions that represent the physical space where the topological insulator is embedded. We then determine the effective 1+1-dimensional conformal field theory (CFT) given by the conformal quantum electrodynamics (CQED). By integrating out the gauge field in the corresponding partition function, ...

  5. The planiverse computer contact with a two-dimensional world

    CERN Document Server

    Dewdney, Alexander Keewatin

    2000-01-01

    When The Planiverse ?rst appeared 16 years ago, it caught more than a few readers off guard. The line between willing suspension of dis- lief and innocent acceptance, if it exists at all, is a thin one. There were those who wanted to believe, despite the tongue-in-cheek subtext, that we had made contact with a two-dimensional world called Arde, a di- shaped planet embedded in the skin of a vast, balloon-shaped space called the planiverse. It is tempting to imagine that those who believed, as well as those who suspended disbelief, did so because of a persuasive consistency in the cosmology and physics of this in?nitesimally thin universe, and x preface to the millennium edition in its bizarre but oddly workable organisms. This was not just your r- of-the-mill universe fashioned out of the whole cloth of wish-driven imagination. The planiverse is a weirder place than that precisely - cause so much of it was “worked out” by a virtual team of scientists and technologists. Reality, even the pseudoreality of su...

  6. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  7. Two-dimensional investigation of forced bubble oscillation under microgravity

    Institute of Scientific and Technical Information of China (English)

    HONG Ruoyu; Masahiro KAWAJI

    2003-01-01

    Recent referential studies of fluid interfaces subjected to small vibration under microgravity conditions are reviewed. An experimental investigation was carried out aboard the American Space Shuttle Discovery. Two-dimensional (2-D) modeling and simulation were conducted to further understand the experimental results. The oscillation of a bubble in fluid under surface tension is governed by the incompressible Navier-Stokes equations. The SIMPLEC algorithm was used to solve the partial differential equations on an Eulerian mesh in a 2-D coordinate. Free surfaces were represented with the volume of fluid (VOF) obtained by solving a kinematic equation. Surface tension was modeled via a continuous surface force (CSF) algorithm that ensures robustness and accuracy. A new surface reconstruction scheme, alternative phase integration (API) scheme, was adopted to solve the kinematic equation, and was compared with referential schemes. Numerical computations were conducted to simulate the transient behavior of an oscillating gas bubble in mineral oil under different conditions. The bubble positions and shapes under different external vibrations were obtained numerically. The computed bubble oscillation amplitudes were compared with experimental data.

  8. Efficient computation method for two-dimensional nonlinear waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.

  9. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  10. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  11. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  12. Two-Dimensional DOA Estimation for Uniform Rectangular Array Using Reduced-Dimension Propagator Method

    Directory of Open Access Journals (Sweden)

    Ming Zhou

    2015-01-01

    Full Text Available A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM. The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.

  13. 2 Algebra and two-dimensional quasiexactly solvable Hamiltonian related to Poschl–Teller potential

    Indian Academy of Sciences (India)

    H Panahi; H Rahmati

    2014-07-01

    In this article, we write the general form of the quasiexactly solvable Hamiltonian of 2 algebra via one special representation in the – two-dimensional space. Then, by choosing an appropriate set of coefficients and making a gauge rotation, we show that this Hamiltonian leads to the solvable Poschl–Teller model on an open infinite strip. Finally, we assign 2 hidden algebra to the Poschl–Teller potential and obtain its spectrum by using the representation space of 2 algebra.

  14. Intermittency measurement in two-dimensional bacterial turbulence

    Science.gov (United States)

    Qiu, Xiang; Ding, Long; Huang, Yongxiang; Chen, Ming; Lu, Zhiming; Liu, Yulu; Zhou, Quan

    2016-06-01

    In this paper, an experimental velocity database of a bacterial collective motion, e.g., Bacillus subtilis, in turbulent phase with volume filling fraction 84 % provided by Professor Goldstein at Cambridge University (UK), was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished by performing a Hilbert-based methodology analysis to retrieve the scaling property without the β -limitation. A dual-power-law behavior separated by the viscosity scale ℓν was observed for the q th -order Hilbert moment Lq(k ) . This dual-power-law belongs to an inverse-cascade since the scaling range is above the injection scale R , e.g., the bacterial body length. The measured scaling exponents ζ (q ) of both the small-scale (k >kν ) and large-scale (k parameters are μS=0.26 and μL=0.17 , respectively, for the small- and large-scale motions. It implies that the former cascade is more intermittent than the latter one, which is also confirmed by the corresponding singularity spectrum f (α ) versus α . Comparison with the conventional two-dimensional Ekman-Navier-Stokes equation, a continuum model indicates that the origin of the multifractality could be a result of some additional nonlinear interaction terms, which deservers a more careful investigation.

  15. ACCRETION DISKS IN TWO-DIMENSIONAL HOYLE-LYTTLETON FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M., E-mail: John_Blondin@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2013-04-20

    We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.

  16. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stavroula Foteinopoulou

    2003-12-12

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  17. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  18. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  19. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  20. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  1. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  2. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  3. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  4. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  5. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  6. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT

  7. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  8. Two space scatterer formalism calculation of bulk parameters of thunderclouds

    Science.gov (United States)

    Phanord, Dieudonne D.

    1994-01-01

    In a previous study, we used a modified two-space scatterer formalism of Twersky to establish for a cloud modeled as a statistically homogeneous distribution of spherical water droplets, the dispersion relations that determine its bulk propagation numbers and bulk indexes of refraction in terms of the vector equivalent scattering amplitude and the dyadic scattering amplitude of the single water droplet in isolation. The results were specialized to the forward direction of scattering while demanding that the scatterers preserve the incident polarization. We apply this approach to obtain specific numerical values for the macroscopic parameters of the cloud. We work with a cloud of density rho = 100 cm(exp -3), a wavelength lambda = 0.7774 microns, and with spherical water droplets of common radius alpha = 10 microns. In addition, the scattering medium is divided into three parts, the medium outside the cloud, moist air (the medium inside the cloud but outside the droplets), and the medium inside the spherical water droplets. The results of this report are applicable to a cloud of any geometry since the boundary does not interfere with the calculations. Also, it is important to notice the plane wave nature of the incidence wave in the moist atmosphere.

  9. A Monte Carlo Uncertainty Analysis of Ozone Trend Predictions in a Two Dimensional Model. Revision

    Science.gov (United States)

    Considine, D. B.; Stolarski, R. S.; Hollandsworth, S. M.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    We use Monte Carlo analysis to estimate the uncertainty in predictions of total O3 trends between 1979 and 1995 made by the Goddard Space Flight Center (GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics. The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients, and heterogeneous reaction parameters which are model inputs. The uncertainty represents a lower bound to the total model uncertainty assuming the input parameter uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in 1970 and integrated for 26 model years through the end of 1995. This was repeated 419 times using input parameter sets generated by Latin Hypercube Sampling. The standard deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to quantify the model uncertainty. The 34% difference between the model trend in globally and annually averaged total O3 using nominal inputs and atmospheric trends calculated from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data is less than the 46% calculated 1 (sigma), model uncertainty, so there is no significant difference between the modeled and observed trends. In the northern hemisphere midlatitude spring the modeled and observed total 03 trends differ by more than 1(sigma) but less than 2(sigma), which we refer to as marginal significance. We perform a multiple linear regression analysis of the runs which suggests that only a few of the model reactions contribute significantly to the variance in the model predictions. The lack of significance in these comparisons suggests that they are of questionable use as guides for continuing model development. Large model/measurement differences which are many multiples of the input parameter uncertainty are seen in the meridional gradients of the trend and the peak-to-peak variations in the trends over an annual cycle. These discrepancies unambiguously indicate model formulation

  10. Canonical quantization of a two-dimensional model with anomalous breaking of gauge invariance

    OpenAIRE

    Girotti, Horacio Oscar; Rothe, Heinz J.; Rothe, Klaus D.

    1986-01-01

    We investigate in detail the operator quantum dynamics of a two-dimensional model exhibiting anomalous breaking of gauge invariance. The equal-time algebra is systematically obtained by using the Dirac-bracket formalism for constrained systems. For certain values of the regularization parameter the system is shown to undergo drastic changes. For the value of the parameter corresponding to the chiral Schwinger model no operator solutions are found to exist.

  11. On the geometry of classically integrable two-dimensional non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammedi, N., E-mail: nouri@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique (CNRS - UMR 6083), Universite Francois Rabelais de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2010-11-11

    A master equation expressing the zero curvature representation of the equations of motion of a two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. Special attention is paid to those representations possessing a spectral parameter. Furthermore, a closer connection between integrability and T-duality transformations is emphasised. Finally, new integrable non-linear sigma models are found and all their corresponding Lax pairs depend on a spectral parameter.

  12. Fourier solution of two-dimensional Navier Stokes equation with periodic boundary conditions and incompressible flow

    CERN Document Server

    Kuiper, Logan K

    2016-01-01

    An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.

  13. Effect of a Two-Dimensional Periodic Dielectric Background on Complete Photonic Band Gap in Complex Square Lattices

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan; SHI Jun-Jie

    2008-01-01

    A two-dimensional photonic crystal model with a periodic square dielectric background is proposed.The photonic band modulation effects due to the two-dimensional periodic background are investigated jn detail.It is found that periodic modulation of the dielectric background greatly alters photonic band structures,especially for the Epolarization modes.The number,width and position of the photonic band gaps sensitively depend on the dielectric constants of the two-dimensional periodic background.Complete band gaps are found,and the dependence of the widths of these gaps on the structural and material parameters of the two alternating rods/holes is studied.

  14. Simple Two-Dimensional Corrections for One-Dimensional Pulse Tube Models

    Science.gov (United States)

    Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.

    2004-01-01

    One-dimensional oscillating flow models are very useful for designing pulse tubes. They are simple to use, not computationally intensive, and the physical relationship between temperature, pressure and mass flow are easy to understand when used in conjunction with phasor diagrams. They do not possess, however, the ability to directly calculate thermal and momentum diffusion in the direction transverse to the oscillating flow. To account for transverse effects, lumped parameter corrections, which are obtained though experiment, must be used. Or two-dimensional solutions of the differential fluid equations must be obtained. A linear two-dimensional solution to the fluid equations has been obtained. The solution provides lumped parameter corrections for one-dimensional models. The model accounts for heat transfer and shear flow between the gas and the tube. The complex Nusselt number and complex shear wall are useful in describing these corrections, with phase relations and amplitudes scaled with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional solution of the oscillating temperature and velocity and a one-dimensional solution for the same shows a scales linearly with Va for Va less than 30. In this region alpha less than 0.5, that is, the enthalpy flow calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. For Va greater than 250, alpha = 0.8, showing that diffusion is still important even when it is confined to a thing layer near the tube wall.

  15. Sensitivity of two-dimensional model predictions of ozone response to stratospheric aircraft: An update

    Energy Technology Data Exchange (ETDEWEB)

    Considine, D.B.; Douglass, A.R.; Jackman, C.H. [Applied Research Corp., Landover, MD (United States)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1995-02-01

    The Goddard Space Flight Center (GSFC) two-dimensional model of stratospheric photochemistry and dynamics has been used to calculate the O3 response to stratospheric aircraft (high-speed civil transport (HSCT)) emissions. The sensitivity of the model O3 response was examined for systematic variations of five parameters and two reaction rates over a wide range, expanding on calculations by various modeling groups for the NASA High Speed Research Program and the World Meteorological Organization. In all, 448 model runs were required to test the effects of variations in the latitude, altitude, and magnetitude of the aircraft emissions perturbation, the background chlorine levels, the background sulfate aerosol surface area densities, and the rates of two key reactions. No deviation from previous conclusions concerning the response of O3 to HSCTs was found in this more exhaustive exploration of parameter space. Maximum O3 depletions occur for high-altitude, low altitude HSCT perturbations. Small increases in global total O3 can occur for low-altitude, high-altitude injections. Decreasing aerosol surface area densities and background chlorine levels increases the sensitivity of model O3 to the HSCT perturbations. The location of the aircraft emissions is the most important determinant of the model response. Response to the location of the HSCT emissions is not changed qualitatively by changes in background chlorine and aerosol loading. The response is also not very sensitive to changes in the rates of the reactions NO + HO2 yields NO2 + OH and HO2 + O3 yields OH + 2O2 over the limits of their respective uncertainties. Finally, levels of lower stratospheric HO(sub x) generally decrease when the HSCT perturbation is included, even though there are large increases in H2O due to the perturbation.

  16. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    Science.gov (United States)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. PMID:22514069

  17. Quantum holographic encoding in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  18. Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows

    CERN Document Server

    Yatou, Hiroki

    2010-01-01

    We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, the elastic effect becomes suddenly comparable and the first transition sets in. Through the transition, a separation vortex disappears and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; The viscous drag significantly drops and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic eff...

  19. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure.

    Science.gov (United States)

    Rybin, Mikhail V; Samusev, Kirill B; Lukashenko, Stanislav Yu; Kivshar, Yuri S; Limonov, Mikhail F

    2016-08-05

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  20. Transition from two-dimensional photonic crystals to dielectric metasurfaces in the optical diffraction with a fine structure

    Science.gov (United States)

    Rybin, Mikhail V.; Samusev, Kirill B.; Lukashenko, Stanislav Yu.; Kivshar, Yuri S.; Limonov, Mikhail F.

    2016-08-01

    We study experimentally a fine structure of the optical Laue diffraction from two-dimensional periodic photonic lattices. The periodic photonic lattices with the C4v square symmetry, orthogonal C2v symmetry, and hexagonal C6v symmetry are composed of submicron dielectric elements fabricated by the direct laser writing technique. We observe surprisingly strong optical diffraction from a finite number of elements that provides an excellent tool to determine not only the symmetry but also exact number of particles in the finite-length structure and the sample shape. Using different samples with orthogonal C2v symmetry and varying the lattice spacing, we observe experimentally a transition between the regime of multi-order diffraction, being typical for photonic crystals to the regime where only the zero-order diffraction can be observed, being is a clear fingerprint of dielectric metasurfaces characterized by effective parameters.

  1. Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice

    CERN Document Server

    Ochiai, Tetsuyuki

    2016-01-01

    We show the presence of Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice. The Weyl points in the three-dimensional Brillouin zone and Fermi-arc surface states are clearly demonstrated in the quasienergy spectrum of the system in the Weyl phase. In addition, chiral surface states coexist in this phase. The Floquet-topological-insulator phase is characterized by the winding number of two in the reflection matrices of the semi-infinite system and resulting two gapless surface states in the quasienergy g ap of the bulk. The phase diagram of the system is derived in the two-parameter space of hopping S-matrices among the rings. We also discuss a possible optical realization of the system together with the introduction of synthetic gauge fields.

  2. Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice

    Science.gov (United States)

    Ochiai, Tetsuyuki

    2016-10-01

    We show the presence of Floquet-Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice. The Weyl points in the three-dimensional Brillouin zone and Fermi-arc surface states are clearly demonstrated in the quasienergy spectrum of the system in the Floquet-Weyl phase. In addition, chiral surface states coexist in this phase. The Floquet-topological-insulator phase is characterized by the winding number of two in the reflection matrices of the semi-infinite system and resulting two gapless surface states in the quasienergy gap of the bulk. The phase diagram of the system is derived in the two-parameter space of hopping S-matrices among the rings. We also discuss a possible optical realization of the system together with the introduction of synthetic gauge fields.

  3. Internetwork magnetic field as revealed by two-dimensional inversions

    Science.gov (United States)

    Danilovic, S.; van Noort, M.; Rempel, M.

    2016-09-01

    Context. Properties of magnetic field in the internetwork regions are still fairly unknown because of rather weak spectropolarimetric signals. Aims: We address the matter by using the two-dimensional (2D) inversion code, which is able to retrieve the information on smallest spatial scales up to the diffraction limit, while being less susceptible to noise than most of the previous methods used. Methods: Performance of the code and the impact of various effects on the retrieved field distribution is tested first on the realistic magneto-hydrodynamic (MHD) simulations. The best inversion scenario is then applied to the real data obtained by Spectropolarimeter (SP) on board Hinode. Results: Tests on simulations show that: (1) the best choice of node position ensures a decent retrieval of all parameters; (2) the code performs well for different configurations of magnetic field; (3) slightly different noise levels or slightly different defocus included in the spatial point spread function (PSF) produces no significant effect on the results; and (4) temporal integration shifts the field distribution to a stronger, more horizontally inclined field. Conclusions: Although the contribution of the weak field is slightly overestimated owing to noise, 2D inversions are able to recover well the overall distribution of the magnetic field strength. Application of the 2D inversion code on the Hinode SP internetwork observations reveals a monotonic field strength distribution. The mean field strength at optical depth unity is ~ 130 G. At higher layers, field strength drops as the field becomes more horizontal. Regarding the distribution of the field inclination, tests show that we cannot directly retrieve it with the observations and tools at hand, however, the obtained distributions are consistent with those expected from simulations with a quasi-isotropic field inclination after accounting for observational effects.

  4. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  5. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  6. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  7. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  8. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  9. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  10. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  11. Use of real Dirac matrices in two-dimensional coupled linear optics

    Science.gov (United States)

    Baumgarten, C.

    2011-11-01

    The Courant-Snyder theory for two-dimensional coupled linear optics is presented, based on the systematic use of the real representation of the Dirac matrices. Since any real 4×4 matrix can be expressed as a linear combination of these matrices, the presented ansatz allows for a comprehensive and complete treatment of two-dimensional linear coupling. A survey of symplectic transformations in two dimensions is presented. A subset of these transformations is shown to be identical to rotations and Lorentz boosts in Minkowski space-time. The transformation properties of the classical state vector are formulated and found to be analog to those of a Dirac spinor. The equations of motion for a relativistic charged particle—the Lorentz force equations—are shown to be isomorph to envelope equations of two-dimensional linear coupled optics. A universal and straightforward method to decouple two-dimensional harmonic oscillators with constant coefficients by symplectic transformations is presented, which is based on this isomorphism. The method yields the eigenvalues (i.e., tunes) and eigenvectors and can be applied to a one-turn transfer matrix or directly to the coefficient matrix of the linear differential equation.

  12. Two-dimensional superconductors with atomic-scale thickness

    Science.gov (United States)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  13. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  14. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  15. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  16. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  17. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....

  18. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  19. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  20. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  1. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  2. Quasinormal frequencies of asymptotically flat two-dimensional black holes

    CERN Document Server

    Lopez-Ortega, A

    2011-01-01

    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.

  3. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  4. STABILITY OF SYSTEM OF TWO-DIMENSIONAL NON-HYDROSTATIC REVOLVING FLUIDS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Applying the theory of stratification, it is proved that the system of the two-dimensional non-hydrostatic revolving fluids is unstable in the two-order continuous function class. The construction of solution space is given and the solution approach is offered. The sufficient and necessary conditions of the existence of formal solutions are expressed for some typical initial and boundary value problems and the calculating formulae to formal solutions are presented in detail.

  5. Tensor renormalization group approach to two-dimensional classical lattice models.

    Science.gov (United States)

    Levin, Michael; Nave, Cody P

    2007-09-21

    We describe a simple real space renormalization group technique for two-dimensional classical lattice models. The approach is similar in spirit to block spin methods, but at the same time it is fundamentally based on the theory of quantum entanglement. In this sense, the technique can be thought of as a classical analogue of the density matrix renormalization group method. We demonstrate the method - which we call the tensor renormalization group method - by computing the magnetization of the triangular lattice Ising model.

  6. Modeling two-dimensional water flow and bromide transport in a heterogeneous lignitic mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Buczko, U.; Gerke, H.H. [Brandenburg University of Technology, Cottbus (Germany)

    2006-02-15

    Water and solute fluxes in lignitic mine soils and in many other soils are often highly heterogeneous. Here, heterogeneity reflects dumping-induced inclined structures and embedded heterogeneous distributions of sediment mixtures and of lignitic fragments. Such two-scale heterogeneity effects may be analyzed through the application of two-dimensional models for calculating water and solute fluxes. The objective of this study was to gain more insight to what extent spatial heterogeneity of soil hydraulic parameters contributes to preferential flow at a lignitic mine soil. The simulations pertained to the 'Barenbrucker Hohe' site in Germany where previously water fluxes and applied tracers had been monitored with a cell lysimeter, and from where a soil block had been excavated for detailed two-dimensional characterization of the hydraulic parameters using pedotransfer functions. Based on those previous studies, scenarios with different distributions of hydraulic parameters were simulated. The results show that spatial variability of hydraulic parameters alone can hardly explain the observed flow patterns. The observed preferential flow at the site was probably caused by additional factors such as hydrophobicity, the presence of root channels, anisotropy in the hydraulic conductivity, and heterogeneous root distributions. To study the relative importance of these other factors by applying two-dimensional flow models to such sites, the experimental database must be improved. Single-continuum model approaches may be insufficient for such sites.

  7. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.

  8. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    Science.gov (United States)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  9. Two Dimensional Range Minimum Queries and Fibonacci Lattices

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Davoodi, Pooya; Lewenstein, Moshe;

    2012-01-01

    technique—the discrepancy properties of Fibonacci lattices—we give an indexing data structure for 2D-RMQs that uses O(N/c) bits additional space with O(clogc(loglogc)2) query time, for any parameter c, 4 ≤ c ≤ N. Also, when the entries of the input matrix are from {0,1}, we show that the query time can...

  10. Exact solutions for the static dewetting of two-dimensional charged conducting droplets on a substrate

    Science.gov (United States)

    Crowdy, Darren

    2015-06-01

    A one parameter family of analytical solutions for the equilibrium shapes of two-dimensional charged conducting droplets on a substrate with 90° contact angle is presented. The solutions exhibit the tendency to dewet at the droplet centre as the electrostatic stress increases. Such electrostatic deformations are believed to underlie the recently observed stick-slip dynamics of nanodroplets on substrates. Our theoretical results complement a number of other recent analytical and numerical studies of this phenomenon.

  11. Numerical Simulation and Visualization of a Flowfield by Interaction of Two Parallel Two-Dimensional Freejets

    OpenAIRE

    TESHIMA, Koji; NAKATSUJI, Hiroyuki

    1987-01-01

    Flowfields resulted from interaction of two equivalent freejets issued from two parallel two-dimensional sonic nozzles at various nozzle distances and at various values of the stagnation to ambient pressure ratio are investigated numerically and by visualization. A strong shear flow region appears between the two jets, which is observed by visualization, is simulated well by the present calculation. Agreements of the parameters representing the whole structure of the flowfield, such as the lo...

  12. A Hybrid Demon Algorithm for the Two-Dimensional Orthogonal Strip Packing Problem

    Directory of Open Access Journals (Sweden)

    Bili Chen

    2015-01-01

    Full Text Available This paper develops a hybrid demon algorithm for a two-dimensional orthogonal strip packing problem. This algorithm combines a placement procedure based on an improved heuristic, local search, and demon algorithm involved in setting one parameter. The hybrid algorithm is tested on a wide set of benchmark instances taken from the literature and compared with other well-known algorithms. The computation results validate the quality of the solutions and the effectiveness of the proposed algorithm.

  13. A Piecewise Linear Fitting Technique for Multivalued Two-dimensional Paths

    Directory of Open Access Journals (Sweden)

    V.M. Jimenez-Fernandez

    2013-10-01

    Full Text Available This paper presents a curve-fitting technique for multivalued two-dimensional piecewise-linear paths. The proposed method is based on a decomposed formulation of the canonical piecewise linear model description of Chua and Kang. The path is treated as a parametric system of two position equations (x(k, y(k, where k is an artificial parameter to map each variable (x and y into an independent k-domain.

  14. Two-dimensional atom localization via probe absorption in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven fourlevel atomic system by means of a radio-frequency field driving a hyperfine transition.It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters.As a result,our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.

  15. Pulsating strings from two-dimensional CFT on (T4N/S(N

    Directory of Open Access Journals (Sweden)

    Carlos Cardona

    2015-04-01

    Full Text Available We propose a state from the two-dimensional conformal field theory on the orbifold (T4N/S(N as a dual description for a pulsating string moving in AdS3. We show that, up to first order in the deforming parameter, the energy in both descriptions has the same dependence on the mode number, but with a non-trivial function of the coupling.

  16. Graphene as a Prototypical Model for Two-Dimensional Continuous Mechanics

    Directory of Open Access Journals (Sweden)

    Philippe Lambin

    2017-08-01

    Full Text Available This paper reviews a few problems where continuous-medium theory specialized to two-dimensional media provides a qualitatively correct picture of the mechanical behavior of graphene. A critical analysis of the parameters involved is given. Among other results, a simple mathematical description of a folded graphene sheet is proposed. It is also shown how the graphene–graphene adhesion interaction is related to the cleavage energy of graphite and its C 33 bulk elastic constant.

  17. Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nichiporuk, O.; Kaminski, A.; Lemiti, M.; Fave, A. [Instituit National des Sciences Appliquees Lyon, Villeurbanne (France). Lab. de Physique de la Matiere; Skryshevsky, V. [National Taras Shevchenko Univ., Kiev (Ukraine). Radiophysics Dept.

    2005-04-01

    In this paper we present the results of the simulation of interdigitated back contacts solar cell on thin-film ({approx}{mu}m) silicon layer. The influence of several parameters (surface recombination rate, substrate thickness and type, diffusion length, device geometry, doping levels) on device characteristics are simulated using the accurate two-dimensional numerical simulator DESSIS that allows to optimise the cell design. (Author)

  18. Universality class of the two-dimensional site-diluted Ising model.

    Science.gov (United States)

    Martins, P H L; Plascak, J A

    2007-07-01

    In this work, we evaluate the probability distribution function of the order parameter for the two-dimensional site-diluted Ising model. Extensive Monte Carlo simulations have been performed for different spin concentrations p (0.70universality class of the diluted Ising model seems to be independent of the amount of dilution. Logarithmic corrections of the finite-size critical temperature behavior of the model can also be inferred even for such small lattices.

  19. Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model.

    Science.gov (United States)

    Yamase, Hiroyuki; Eberlein, Andreas; Metzner, Walter

    2016-03-04

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Néel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  20. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  1. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  2. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  3. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  4. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  5. Low-frequency scattering from two-dimensional perfect conductors

    DEFF Research Database (Denmark)

    Hansen, Thorkild; Yaghjian, A.D

    1991-01-01

    Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...

  6. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem

  7. Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards

    Science.gov (United States)

    Fel, Leonid G.

    2002-05-01

    The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).

  8. Specification of a Two-Dimensional Test Case

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....

  9. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  10. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...

  11. Spin-orbit torques in two-dimensional Rashba ferromagnets

    NARCIS (Netherlands)

    Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.

    2015-01-01

    Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent

  12. Numerical blowup in two-dimensional Boussinesq equations

    CERN Document Server

    Yin, Zhaohua

    2009-01-01

    In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.

  13. Exact two-dimensional superconformal R symmetry and c extremization.

    Science.gov (United States)

    Benini, Francesco; Bobev, Nikolay

    2013-02-08

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.

  14. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f

  15. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  16. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  17. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  18. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  19. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the

  20. Dynamical phase transitions in the two-dimensional ANNNI model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, M.N.; Derrida, B.

    1988-06-01

    We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.

  1. Two-dimensional static black holes with pointlike sources

    CERN Document Server

    Melis, M

    2004-01-01

    We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.

  2. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r

  3. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    Science.gov (United States)

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  4. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  5. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  6. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  7. Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation

    Indian Academy of Sciences (India)

    N Sabu

    2003-08-01

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  8. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  9. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  10. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  11. Two Dimensional F(R) Horava-Lifshitz Gravity

    CERN Document Server

    Kluson, J

    2016-01-01

    We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.

  12. Localization of Tight Closure in Two-Dimensional Rings

    Indian Academy of Sciences (India)

    Kamran Divaani-Aazar; Massoud Tousi

    2005-02-01

    It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.

  13. Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Bart Preneel

    2005-07-01

    Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.

  14. New directions in science and technology: two-dimensional crystals

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2011-08-15

    Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.

  15. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  16. On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra

    NARCIS (Netherlands)

    De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.

    2000-01-01

    The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp

  17. Dislocation climb in two-dimensional discrete dislocation dynamics

    NARCIS (Netherlands)

    Davoudi, K.M.; Nicola, L.; Vlassak, J.J.

    2012-01-01

    In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r

  18. SAR Processing Based On Two-Dimensional Transfer Function

    Science.gov (United States)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  19. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  20. Confined two-dimensional fermions at finite density

    CERN Document Server

    De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M

    1995-01-01

    We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.

  1. Imperfect two-dimensional topological insulator field-effect transistors

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059

  2. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  3. Miniature sensor for two-dimensional magnetic field distributions

    NARCIS (Netherlands)

    Fluitman, J.H.J.; Krabbe, H.W.

    1972-01-01

    Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or

  4. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  5. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  6. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro

  7. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.

    1997-01-01

    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  8. Instability of two-dimensional heterotic stringy black holes

    CERN Document Server

    Azreg-Ainou, M

    1999-01-01

    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.

  9. Two Dimensional Tensor Product B-Spline Wavelet Scaling Functions for the Solution of Two-Dimensional Unsteady Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    XIONG Lei; LI haijiao; ZHANG Lewen

    2008-01-01

    The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.

  10. GIS-based data model and tools for creating and managing two-dimensional cross sections

    Science.gov (United States)

    Whiteaker, Timothy L.; Jones, Norm; Strassberg, Gil; Lemon, Alan; Gallup, Doug

    2012-02-01

    While modern Geographic Information Systems (GIS) software is robust in handling maps and data in plan view, the software generally falls short when representing features in section view. Further complicating the issue is the fact that geologic cross sections are often drawn by connecting a series of wells together that do not fall along a single straight line. In this case, the x-axis of the cross section represents the distance along the set of individual lines connecting the series of wells, effectively "flattening out" the cross section along this path to create a view of the subsurface with which geologists often work in printed folios. Even 3D-enabled GIS cannot handle this type of cross section. A GIS data model and tools for creating and working with two-dimensional cross sections are presented. The data model and tools create a framework that can be applied using ESRI's ArcGIS software, enabling users to create, edit, manage, and print two-dimensional cross sections from within one of the most well-known GIS software packages. The data model is a component of the arc hydro groundwater data model, which means all two-dimensional cross sections are inherently linked to other features in the hydrogeologic domain, including those represented by xyz coordinates in real world space. Thus, the creation of two-dimensional cross sections can be guided by or completely driven from standard GIS data, and geologic interpretations established on two-dimensional cross sections can be translated back to real world coordinates to create three-dimensional features such as fence diagrams, giving GIS users the capacity to characterize the subsurface environment in a variety of integrated views that was not possible before. A case study for the Sacramento Regional Model in California demonstrates the application of the methodology in support of a regional groundwater management plan.

  11. Vertical dynamics of a horizontally oscillating active object in a two-dimensional granular medium

    Science.gov (United States)

    Huang, Ling; Ran, Xianwen; Blumenfeld, Raphael

    2016-12-01

    We use a discrete-element method simulation and analytical considerations to study the dynamics of a self-energized object, modeled as a disk, oscillating horizontally within a two-dimensional bed of denser and smaller particles. We find that, for given material parameters, the immersed object (IO) may rise, sink, or not change depth, depending on the oscillation amplitude and frequency, as well as on the initial depth. With time, the IO settles at a specific depth that depends on the oscillation parameters. We construct a phase diagram of this behavior in the oscillation frequency and velocity amplitude variable space. We explain the observed rich behavior by two competing effects: climbing on particles, which fill voids opening under the disk, and sinking due to bed fluidization. We present a cavity model that allows us to derive analytically general results, which agree very well with the observations and explain quantitatively the phase diagram. Our specific analytical results are the following. (i) Derivation of a critical frequency, fc, above which the IO cannot float up against gravity. We show that this frequency depends only on the gravitational acceleration and the IO size. (ii) Derivation of a minimal amplitude, Amin, below which the IO cannot rise even if the frequency is below fc. We show that this amplitude also depends only on the gravitational acceleration and the IO size. (iii) Derivation of a critical value, gc, of the IO's acceleration amplitude, below which the IO cannot sink. We show that the value of gc depends on the characteristics of both the IO and the granular bed, as well as on the initial IO's depth.

  12. Two-dimensional performance of MIPAS observation modes in the upper-troposphere/lower-stratosphere

    Directory of Open Access Journals (Sweden)

    M. Carlotti

    2011-02-01

    Full Text Available In this paper we analyze the performance of the three MIPAS (Michelson Interferometer for Passive Atmospheric Sounding observation modes that sound the Upper-Troposphere/Lower-Stratosphere (UT/LS region. The two-dimensional (2-D tomographic retrieval approach is assumed to derive the atmospheric field of geophysical parameters. For each observation mode we have calculated the 2-D distribution of the information load quantifier relative to the main MIPAS targets. The performance of the observation modes has been evaluated in terms of strength and spatial coverage of the information-load distribution along the full orbit. The indications of the information-load analysis has been validated with simulated retrievals based on the observational parameters of real orbits. In the simulation studies we have assessed the precision and the spatial (both horizontal and vertical resolution of the retrieval products. The performance of the three observation modes has been compared for the MIPAS main products in both the UT/LS and the extended altitude range. This study shows that the two observation modes that were specifically designed for the UT/LS region are actually competitive with the third one, designed for the whole stratosphere, up to altitudes that far exceed the UT/LS. In the UT/LS the performance of the two specific observation modes is comparable even if the best performance in terms of horizontal resolution is provided by the observation mode that was excluded by the European Space Agency (ESA from the current MIPAS duty cycle. This paper reports the first application of the information-load analysis and highlights the worthiness of this approach to make qualitative considerations about retrieval potential and selection of retrieval grid.

  13. Heteroepitaxial growth modes with dislocations in a two-dimensional elastic lattice model

    Science.gov (United States)

    Katsuno, Hiroyasu; Uwaha, Makio; Saito, Yukio

    2008-11-01

    We study equilibrium shapes of adsorbate crystals by allowing a possibility of dislocations on an elastic substrate in a two-dimensional lattice model. The ground state energy is calculated numerically with the use of an elastic lattice Green's function. From the equilibrium shapes determined for various coverages, we infer the growth mode. As the misfit parameter increases, the growth mode changes from the Frank-van der Merwe (FM) to the Stranski-Krastanov (SK), further to the FM with dislocations for a parameter range of ordinary semiconductor materials. Conceivable growth modes such as the SK with dislocations appear in a parameter range between the SK and the FM with dislocations.

  14. A six-parameter space to describe galaxy diversification

    CERN Document Server

    Fraix-Burnet, Didier; Chattopadhyay, Asis Kumar; Davoust, Emmanuel; Thuillard, Marc

    2012-01-01

    Galaxy diversification proceeds by transforming events like accretion, interaction or mergers. These explain the formation and evolution of galaxies that can now be described with many observables. Multivariate analyses are the obvious tools to tackle the datasets and understand the differences between different kinds of objects. However, depending on the method used, redundancies, incompatibilities or subjective choices of the parameters can void the usefulness of such analyses. The behaviour of the available parameters should be analysed before an objective reduction of dimensionality and subsequent clustering analyses can be undertaken, especially in an evolutionary context. We study a sample of 424 early-type galaxies described by 25 parameters, ten of which are Lick indices, to identify the most structuring parameters and determine an evolutionary classification of these objects. Four independent statistical methods are used to investigate the discriminant properties of the observables and the partitioni...

  15. Two-dimensional Confinement of Heavy Fermions in Artificial Superlattices

    Science.gov (United States)

    Shishido, Hiroaki

    2011-03-01

    Low dimensionality and strong electron-electron Coulomb interactions are both key parameters for novel quantum states of condensed matter. A metallic system with the strongest electron correlations is reported in rare-earth and actinide compounds with f electrons, known as heavy-fermion compounds, where the effective mass of the conduction electrons are strikingly enhanced by the electron correlations up to some hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. We realized experimentally a two-dimensional heavy fermion system, adjusting the dimensionality in a controllable fashion. We grew artificial superlattices of CeIn 3 (m)/ LaIn 3 (n), in which m -layers of heavy-fermion antiferromagnet CeIn 3 and n -layers of a non-magnetic isostructual compound LaIn 3 are stacked alternately, by a molecular beam epitaxy. By reducing the thickness of the CeIn 3 layers, the magnetic order was suppressed and the effective electron mass was further enhanced. The Néel temperature becomes zero at around m = 2 , concomitant with striking deviations from the standard Fermi liquid low-temperature electronic properties. Standard Fermi liquid behaviors are, however, recovered under high magnetic field. These behaviors imply new ``dimensional tuning'' towards a quantum critical point. We also succeeded to fabricate artificial superlattices of a heavy fermion superconductor CeCoIn 5 and non-magnetic divalent Yb-compound YbCoIn 5 . Superconductivity survives even in CeCoIn 5 (3)/ YbCoIn 5 (5) films, while the thickness of CeCoIn 5 layer, 2.3 nm, is comparable to the c -axis coherence length ξc ~ 2 nm. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T. Shibauchi, T. Terashima and Y. Matsuda.superconductivity is realized in the artificial superlattices. This work has been done in collaboration with Y. Mizukami, S. Yasumoto, M. Shimozawa, H. Kontani, T

  16. Hybrid numerical scheme for nonlinear two-dimensional phase-change problems with the irregular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering

    1997-09-01

    A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.

  17. Two-dimensional Green`s function Poisson solution appropriate for cylindrical-symmetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.E.

    1998-04-01

    This report describes the numerical procedure used to implement the Green`s function method for solving the Poisson equation in two-dimensional (r,z) cylindrical coordinates. The procedure can determine the solution to a problem with any or all of the applied voltage boundary conditions, dielectric media, floating (insulated) conducting media, dielectric surface charging, and volumetric space charge. The numerical solution is reasonably fast, and the dimension of the linear problem to be solved is that of the number of elements needed to represent the surfaces, not the whole computational volume. The method of solution is useful in the simulation of plasma particle motion in the vicinity of complex surface structures as found in microelectronics plasma processing applications. This report is a stand-alone supplement to the previous Sandia Technical Report SAND98-0537 presenting the two-dimensional Cartesian Poisson solver.

  18. Logarithmic discretization and systematic derivation of shell models in two-dimensional turbulence.

    Science.gov (United States)

    Gürcan, Ö D; Morel, P; Kobayashi, S; Singh, Rameswar; Xu, S; Diamond, P H

    2016-09-01

    A detailed systematic derivation of a logarithmically discretized model for two-dimensional turbulence is given, starting from the basic fluid equations and proceeding with a particular form of discretization of the wave-number space. We show that it is possible to keep all or a subset of the interactions, either local or disparate scale, and recover various limiting forms of shell models used in plasma and geophysical turbulence studies. The method makes no use of the conservation laws even though it respects the underlying conservation properties of the fluid equations. It gives a family of models ranging from shell models with nonlocal interactions to anisotropic shell models depending on the way the shells are constructed. Numerical integration of the model shows that energy and enstrophy equipartition seem to dominate over the dual cascade, which is a common problem of two-dimensional shell models.

  19. Novel effects of strains in graphene and other two dimensional materials

    Science.gov (United States)

    Amorim, B.; Cortijo, A.; de Juan, F.; Grushin, A. G.; Guinea, F.; Gutiérrez-Rubio, A.; Ochoa, H.; Parente, V.; Roldán, R.; San-Jose, P.; Schiefele, J.; Sturla, M.; Vozmediano, M. A. H.

    2016-03-01

    The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent theoretical and experimental work shows the influence of strains in many properties of graphene not considered before, such as electronic transport, spin-orbit coupling, the formation of Moiré patterns and optics. There is also significant evidence of anharmonic effects, which can modify the structural properties of graphene. These phenomena are not restricted to graphene, and they are being intensively studied in other two dimensional materials, such as the transition metal dichalcogenides. We review here recent developments related to the role of strains in the structural and electronic properties of graphene and other two dimensional compounds.

  20. Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane

    CERN Document Server

    Zunino, Luciano

    2016-01-01

    The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.