Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Two dimensional NMR of liquids and oriented molecules
Energy Technology Data Exchange (ETDEWEB)
Gochin, M.
1987-02-01
Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.
Energy Technology Data Exchange (ETDEWEB)
Yamasaki, Ryohei; Nasholds, W.; Griffiss, J.M. (Univ. of California, San Francisco (United States) Veterans Administration Medical Center, San Francisco, CA (United States)); Bacon, B.E. (Veterans Administration Medical Center, San Francisco (United States)); Schneider, H. (Walter Reed Research Inst., Washington, DC (United States))
1991-10-29
F62 LOS of Neisseria gonorrhoeae consists of two major LOS components; the higher and smaller molecular weight (MW) components were recognized by MAbs 1-1-M and 3F11 respectively. Base-line separation of the two major oligosaccharide (OS) components from F62 LOS was achieved by Bio-Gel P-4 chromatography after dephosphorylation of the OS mixture. The structures of the two major OSs were studied by chemical, enzymatic, and 2D NMR methods as well as methylation followed by GC/MS analysis. The OS component derived from the MAb 1-1-M defined LOS component was determined to have a V{sup 3}-({beta}-N-acetylgalactosaminyl)neolactotetraose structure at one of its nonreducing termini. The OS component derived from the MAb 3F11 defined LOS component did not have a GalNAc residue. The rest of its structure was identical to that of the OS-1, and a neolactotetraose is exposed at its nonreducing terminus.
Two-dimensional NMR exchange spectroscopy. Quantitative treatment of multisite exchanging systems
Abel, Edward W.; Coston, Timothy P. J.; Orrell, Keith G.; Šik, Vladimir; Stephenson, David
A general method for evaluating rate constants in complex exchange networks with N-sites from two-dimensional EXSY (NOESY) NMR spectra is proposed. A computer program D2DNMR capable of performing signal intensity to exchange rate calculations (and vice versa), based on a matrix formalism, is outlined. The method is illustrated by 195Pt 2D NMR studies of the A ⇌ B ⇌ C spin system arising from pyramidal sulfur inversion in platinum(IV) complexes of type [Pt XMe 3(MeSCH 2CH 2SMe)] ( X = Cl, I). Comparison with 1H NMR bandshape analyses of the same compounds shows high agreement between the rate constants and activation parameters determined by both techniques. Mechanisms of 195Pt spin-lattice relaxation are briefly discussed.
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Profiling of carotenoids in tomato juice by one- and two-dimensional NMR.
Tiziani, Stefano; Schwartz, Steven J; Vodovotz, Yael
2006-08-09
Epidemiological data have shown a link between dietary intake of tomatoes and tomato products (rich in carotenoids) and a decreased risk of chronic diseases. The carotenoid profile in tomato products depends on tomato variety as well as the thermal conditions used in processing. The final carotenoid profile may affect the bioaccessibility and bioavailability of these biomolecules. Therefore, nondestructive, reliable methods are needed to characterize the structural and stereochemical variation of carotenoids. CDCl(3) rapid extraction was used to extract carotenoids from tomato juice as an alternative rapid procedure that minimizes solvents and time consumption prior to NMR analysis. The profile of these biomolecules was characterized by application of high-resolution multidimensional NMR techniques using a cryogenic probe. The combination of homonuclear and heteronuclear two-dimensional NMR techniques served to identify (all-E)-, (5Z)-, (9Z)-, and (13Z)-lycopene isomers and other carotenoids such as (all-E)-beta-carotene and (15Z)-phytoene dissolved in the extracted lipid mixture. The use of one-dimensional NMR enabled the rapid identification of lycopene isomers, thereby minimizing further isomerization of (all-E)-lycopene as compared to HPLC data. On the basis of the assignments accomplished, the carotenoid profile of typical tomato juice was successfully determined with minimal purification procedures.
Separation of 2H MAS NMR Spectra by Two-Dimensional Spectroscopy
Kristensen, J. H.; Bildsøe, H.; Jakobsen, H. J.; Nielsen, N. C.
1999-08-01
New methods for optimum separation of 2H MAS NMR spectra are presented. The approach is based on hypercomplex spectroscopy that is useful for sign discrimination and phase separation. A new theoretical formalism is developed for the description of hypercomplex experiments. This exploits the properties of Lie algebras and hypercomplex numbers to obtain a solution to the Liouville-von Neumann equation. The solution is expressed in terms of coherence transfer functions that describe the allowed coherence transfer pathways in the system. The theoretical formalism is essential in order to understand all the features of hypercomplex experiments. The method is applied to the development of two-dimensional quadrupole-resolved 2H MAS NMR spectroscopy. The important features of this technique are discussed and two different versions are presented with widely different characteristics. An improved version of two-dimensional double-quantum 2H MAS NMR spectroscopy is developed. The conditions under which the double-quantum experiment is useful are discussed and its performance is compared with that observed for the quadrupole-resolved experiments. A general method is presented for evaluating the optimum pulse sequence parameters consistent with maximum sensitivity and resolution. This approach improves the performance of the experiments and is essential for any further development of the techniques. The effects of finite pulse width and hypercomplex data processing may lead to both intensity and phase distortions in the spectra. These effects are analyzed and general correction procedures are suggested. The techniques are applied to polycrystalline malonic-acid-2H4 for which the spinning sideband manifolds from the carboxyl and methylene deuterons are separated. The spinning sideband manifolds are simulated to determine the quadrupole parameters. The values are consistent with previous results, indicating that the techniques are both accurate and reliable.
Rapid determination of fluid viscosity using low-field two-dimensional NMR.
Deng, Feng; Xiao, Lizhi; Chen, Weiliang; Liu, Huabing; Liao, Guangzhi; Wang, Mengying; Xie, Qingming
2014-10-01
The rapid prediction of fluid viscosity, especially the fluid in heavy-oil petroleum reservoirs, is of great importance for oil exploration and transportation. We suggest a new method for rapid prediction of fluid viscosity using two-dimensional (2D) NMR relaxation time distributions. DEFIR, Driven-Equilibrium Fast-Inversion Recovery, a new pulse sequence for rapid measurement of 2D relaxation times, is proposed. The 2D relation between the ratio of transverse relaxation time to longitudinal relaxation time (T1/T2) and T1 distribution of fluid are obtained by means of DEFIR with only two one-dimensional measurements. The measurement speed of DEFIR pulse sequence over 2 times as fast as that of the traditional 2D method. Using Bloembergen theory, the relation between the distributions and fluid viscosity is found. Precise method for viscosity prediction is then established. Finally, we apply this method to a down-hole NMR fluid analysis system and realized on-site and on-line prediction of viscosity for formation fluids. The results demonstrated that the new method for viscosity prediction is efficient and accurate. Copyright © 2014 Elsevier Inc. All rights reserved.
Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru
2010-11-01
A complex mixture analysis by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was carried out for the first time for the identification and quantification of organic compounds in green coffee bean extract (GCBE). A combination of (1)H-(1)H DQF-COSY, (1)H-(13)C HSQC, and (1)H-(13)C CT-HMBC two-dimensional sequences was used, and 16 compounds were identified. In particular, three isomers of caffeoylquinic acid were identified in the complex mixture without any separation. In addition, GCBE components were quantified by the integration of carbon signals by use of a relaxation reagent and an inverse-gated decoupling method without a nuclear Overhauser effect. This NMR methodology provides detailed information about the kinds and amounts of GCBE components, and in our study, the chemical makeup of GCBE was clarified by the NMR results. 2010 John Wiley & Sons, Ltd.
Methods for two-dimensional cell confinement.
Le Berre, Maël; Zlotek-Zlotkiewicz, Ewa; Bonazzi, Daria; Lautenschlaeger, Franziska; Piel, Matthieu
2014-01-01
Protocols described in this chapter relate to a method to dynamically confine cells in two dimensions with various microenvironments. It can be used to impose on cells a given height, with an accuracy of less than 100 nm on large surfaces (cm(2)). The method is based on the gentle application of a modified glass coverslip onto a standard cell culture. Depending on the preparation, this confinement slide can impose on the cells a given geometry but also an environment of controlled stiffness, controlled adhesion, or a more complex environment. An advantage is that the method is compatible with most optical microscopy technologies and molecular biology protocols allowing advanced analysis of confined cells. In this chapter, we first explain the principle and issues of using these slides to confine cells in a controlled geometry and describe their fabrication. Finally, we discuss how the nature of the confinement slide can vary and provide an alternative method to confine cells with gels of controlled rigidity.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru
2011-09-14
Coffee was characterized by proton and carbon nuclear magnetic resonance (NMR) spectroscopy. To identify the coffee components, a detailed and approximately 90% signal assignment was carried out using various two-dimensional NMR spectra and a spiking method, in which authentic compounds were added to the roasted coffee bean extract (RCBE) sample. A total of 24 coffee components, including 5 polysaccharide units, 3 stereoisomers of chlorogenic acids, and 2 stereoisomers of quinic acids, were identified with the NMR spectra of RCBE. On the basis of the signal assignment, state analyses were further launched for the metal ion-citrate complexes and caffeine-chlorogenate complexes. On the basis of the signal integration, the coffee components were successfully quantified. This NMR methodology yielded detailed information on RCBE using only a single observation and provides a systemic approach for the analysis of other complex mixtures.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen
2016-04-01
Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular
Gopinath, T; Kumar, Anil
2006-12-01
Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm.
Extension of modified power method to two-dimensional problems
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
Two-Dimensional Change Detection Methods Remote Sensing Applications
Ilsever, Murat
2012-01-01
Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a
Two-dimensional NMR investigations of the dynamic conformations of phospholipids and liquid crystals
Energy Technology Data Exchange (ETDEWEB)
Hong, Mei [Univ. of California, Berkeley, CA (United States). Applied Science and Technology
1996-05-01
Two-dimensional 13C, 1H, and 31P nuclear magnetic resonance (NMR) techniques are developed and used to study molecular structure and dynamics in liquid-crystalline systems, primarily phospholipids and nematic liquid crystals. NMR spectroscopy characterizes molecular conformation in terms of orientations and distances of molecular segments. In anisotropically mobile systems, this is achieved by measuring motionally-averaged nuclear dipolar couplings and chemical shift anisotropies. The short-range couplings yield useful bond order parameters, while the long-range interactions constrain the overall conformation. In this work, techniques for probing proton dipolar local fields are further developed to obtain highlyresolved dipolar couplings between protons and rare spins. By exploiting variable-angle sample spinning techniques, orientation-sensitive NMR spectra are resolved according to sitespecific isotropic chemical shifts. Moreover, the signs and magnitudes of various short-range dipolar couplings are obtained. They are used in novel theoretical analyses that provide information about segmental orientations and their distributions. Such information is obtained in a model-independent fashion or with physically reasonable assumptions. The structural investigation of phospholipids is focused on the dynam
Energy Technology Data Exchange (ETDEWEB)
Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)
2015-01-07
A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.
Two-dimensional NMR and structure determination of salmon calcitonin in methanol
Energy Technology Data Exchange (ETDEWEB)
Meadows, R.P.; Nikonowicz, E.P.; Jones, C.R.; Gorenstein, D.G. (Purdue Univ., Lafayette, IN (USA)); Bastian, J.W.
1991-02-05
The structure of the 32-residue peptide salmon calcitonin (sCT) in 90% MeOH-10% H{sub 2}O has been investigated by two-dimensional NMR techniques and molecular modeling. Sequential assignments for nearly all of the 32 spin systems have been obtained, and results indicate that the heptaresidue loop formed by the disulfide bond between Cys-1 and Cys-7 is followed by an {alpha}-helical segment from Val-8 through Tyr-22. A region of conformational heterogeneity is observed for residues 20-25, resulting from the slow isomerism of the cis and trans forms of Pro-23. The C-terminal segment is found to exist in an extended conformation.
Wehrli, S L; Moore, K S; Roder, H; Durell, S; Zasloff, M
1993-08-01
Squalamine is a novel aminosterol recently isolated from the dogfish shark, Squalus acanthias. This water-soluble steroid exhibits potent antibacterial activity against both gram-negative and gram-positive bacteria. In addition, squalamine is fungicidal and induces osmotic lysis of protozoa. We report here the structural determination of squalamine, 3 beta-N-1-[N(3-[4-aminobutyl])-1,3 diaminopropane]-7 alpha,24 zeta-dihydroxy-5 alpha-cholestane 24-sulfate, which was deduced from the analysis of fast atom bombardment spectra and a series of two-dimensional nuclear magnetic resonance (NMR) spectra. Squalamine is a cationic steroid characterized by a condensation of an anionic bile salt intermediate with the polyamine, spermidine. This molecule is a potential host-defense agent in the shark, and provides insight into a new class of vertebrate antimicrobial molecules.
Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection
Directory of Open Access Journals (Sweden)
Jie Zhao
2014-01-01
Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.
Smoothed Particle Hydrodynamics Method for Two-dimensional Stefan Problem
Tarwidi, Dede
2016-01-01
Smoothed particle hydrodynamics (SPH) is developed for modelling of melting and solidification. Enthalpy method is used to solve heat conduction equations which involved moving interface between phases. At first, we study the melting of floating ice in the water for two-dimensional system. The ice objects are assumed as solid particles floating in fluid particles. The fluid and solid motion are governed by Navier-Stokes equation and basic rigid dynamics equation, respectively. We also propose a strategy to separate solid particles due to melting and solidification. Numerical results are obtained and plotted for several initial conditions.
Generalized non-separable two-dimensional Dammann encoding method
Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei
2017-01-01
We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.
Kaminker, Ilia; Wilson, Tiffany D; Savelieff, Masha G; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella
2014-03-01
ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between (14)N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the (14)N mI=0 and mI=-1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S=1/2, I=1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due to
Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy
Kaminker, Ilia; Wilson, Tiffany D.; Savelieff, Masha G.; Hovav, Yonatan; Zimmermann, Herbert; Lu, Yi; Goldfarb, Daniella
2014-03-01
ELDOR (Electron Double Resonance)-detected NMR (EDNMR) is a pulse EPR experiment that is used to measure the transition frequencies of nuclear spins coupled to electron spins. These frequencies are further used to determine hyperfine and quadrupolar couplings, which are signatures of the electronic and spatial structures of paramagnetic centers. In recent years, EDNMR has been shown to be particularly useful at high fields/high frequencies, such as W-band (∼95 GHz, ∼3.5 T), for low γ quadrupolar nuclei. Although at high fields the nuclear Larmor frequencies are usually well resolved, the limited resolution of EDNMR still remains a major concern. In this work we introduce a two dimensional, triple resonance, correlation experiment based on the EDNMR pulse sequence, which we term 2D-EDNMR. This experiment allows circumventing the resolution limitation by spreading the signals in two dimensions and the observed correlations help in the assignment of the signals. First we demonstrate the utility of the 2D-EDNMR experiment on a nitroxide spin label, where we observe correlations between 14N nuclear frequencies. Negative cross-peaks appear between lines belonging to different MS electron spin manifolds. We resolved two independent correlation patterns for nuclear frequencies arising from the EPR transitions corresponding to the 14N mI = 0 and mI = -1 nuclear spin states, which severely overlap in the one dimensional EDNMR spectrum. The observed correlations could be accounted for by considering changes in the populations of energy levels that S = 1/2, I = 1 spin systems undergo during the pulse sequence. In addition to these negative cross-peaks, positive cross-peaks appear as well. We present a theoretical model based on the Liouville equation and use it to calculate the time evolution of populations of the various energy levels during the 2D-EDNMR experiment and generated simulated 2D-EDMR spectra. These calculations show that the positive cross-peaks appear due
1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy
Abidi, S.L.; Adams, B.R.
1987-01-01
Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen
2014-05-01
Environmental factors (e.g. temperature and moisture) and the size and composition of soil microbial populations are often considered the main drivers of soil organic matter (SOM) mineralization. Less consideration is given to the role of SOM as a substrate for microbial metabolism and the importance of the organo-chemical composition of SOM on decomposition. In addition, a fraction of the SOM is often considered as recalcitrant to mineralization leading to accumulation of SOM. However, recently the concept of intrinsic recalcitrance of SOM to mineralization has been questioned. The challenge in investigating the role of SOM composition on its mineralization to a large extent stems from the difficulties in obtaining high resolution characterization of a very complex matrix. 13C nuclear magnetic resonance (NMR) spectroscopy is a widely used tool to characterize SOM. However, SOM is a very complex mixture and in the resulting 13C NMR spectra, the identified functional groups may represent different molecular fragments that appear in the same spectral region leading to broad peaks. These overlaps defy attempts to identify molecular moieties, and this makes it impossible to derive information at a resolution needed for evaluating e.g. recalcitrance of SOM. Here we applied a method, developed in wood science for the pulp paper industry, to achieve a better characterization of SOM. We directly dissolved finely ground organic layers of boreal forest floors-litters, fibric and humic horizons of both coniferous and broadleaved stands-in dimethyl sulfoxide and analyzed the resulting solution with a two-dimensional (2D) 1H-13C NMR experiment. We will discuss methodological aspects related to the ability to identify and quantify individual molecular moieties in SOM. We will demonstrate how the spectra resolve signals of CH groups in a 2D plane determined by the 13C and 1H chemical shifts, thereby vastly increasing the resolving power and information content of NMR spectra. The
Edén, Mattias
2010-05-01
Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.
Bedani, F.; Schoenmakers, P.J.; Janssen, H.-G.
2012-01-01
On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization
Weisz, K; Shafer, R H; Egan, W; James, T L
1992-08-25
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.
Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby
2012-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...
Two-Dimensional Rectangular Stock Cutting Problem and Solution Methods
Institute of Scientific and Technical Information of China (English)
Zhao Hui; Yu Liang; Ning Tao; Xi Ping
2001-01-01
Optimal layout of rectangular stock cutting is still in great demand from industry for diversified applications. This paper introduces four basic solution methods to the problem: linear programming, dynamic programming, tree search and heuristic approach. A prototype of application software is developed to verify the pros and cons of various approaches.
VARIATION METHOD FOR ACOUSTIC WAVE IMAGING OF TWO DIMENSIONAL TARGETS
Institute of Scientific and Technical Information of China (English)
冯文杰; 邹振祝
2003-01-01
A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations, which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation, which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.
Two-Dimensional Correlation Method for Polymer Analysis
Energy Technology Data Exchange (ETDEWEB)
Herman, Matthew Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-06-08
Since its introduction by Noda in 1986 two-dimension correlation spectroscopy has been offering polymer scientists an opportunity to look more deeply into collected spectroscopic data. When the spectra are recorded in response to an external perturbation, it is possible to correlate the spectra and expand the information over a separate spectra axis allow for enhancement of spectral resolution, the ability to determine synchronous change, and a unique way to organize observed changes in the spectra into sequential order following a set of three simple rules. By organizing the 2D spectra into synchronous change plots and asynchronous change plots it is possible to correlate change between spectral regions and develop their temporal relationships to one another. With the introduction of moving-window correlation-spectroscopy by Thomas and Richardson in 2000, a method of binning and processing data, it became possible to directly correlate relationships generated in the spectra from the change in the perturbation variable. This method takes advantage of the added resolution of two-dimension spectroscopy and has been applied to study very week transitions found in polymer materials. Appling both of these techniques we are beginning to develop an understanding of how polymers decay under radiolytic aging, to develop a stronger understanding of changes in mechanical properties and the service capabilities of materials.
Method and apparatus for two-dimensional spectroscopy
DeCamp, Matthew F.; Tokmakoff, Andrei
2010-10-12
Preferred embodiments of the invention provide for methods and systems of 2D spectroscopy using ultrafast, first light and second light beams and a CCD array detector. A cylindrically-focused second light beam interrogates a target that is optically interactive with a frequency-dispersed excitation (first light) pulse, whereupon the second light beam is frequency-dispersed at right angle orientation to its line of focus, so that the horizontal dimension encodes the spatial location of the second light pulse and the first light frequency, while the vertical dimension encodes the second light frequency. Differential spectra of the first and second light pulses result in a 2D frequency-frequency surface equivalent to double-resonance spectroscopy. Because the first light frequency is spatially encoded in the sample, an entire surface can be acquired in a single interaction of the first and second light pulses.
Solution of two-dimensional Fredholm integral equation via RBF-triangular method
Directory of Open Access Journals (Sweden)
Amir Fallahzadeh
2012-04-01
Full Text Available In this paper, a new method is introduced to solve a two-dimensional Fredholm integral equation. The method is based on the approximation by Gaussian radial basis functions and triangular nodes and weights. Also, a new quadrature is introduced to approximate the two dimensional integrals which is called the triangular method. The results of the example illustrate the accuracy of the proposed method increases.
Sensitivity and resolution of two-dimensional NMR diffusion-relaxation measurements
Kausik, Ravinath; Hürlimann, Martin D.
2016-09-01
The performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff , that scales like T2,cutoff ∝g - 2 / 3D - 1 / 3 . For stimulated echo encoding, the optimal diffusion encoding times (Td and δ), that provide the best diffusion sensitivity, rely only on the T1 /T2 ratios and not on the diffusion coefficients of the fluids or the applied gradient strengths. Irrespective of T1 , for high enough gradients (i.e. when γ2g2 DT23 >102), the Hahn echo based encoding is superior to encoding based on the stimulated echo. For weaker gradients, the stimulated echo is superior only if the T1 /T2 ratio is much larger than 1. For single component systems, the diffusion sensitivity is not adversely impacted by the uniformity of the gradients and the diffusion distributions can be well measured. The presence of non-uniform gradients can affect the determination of the diffusion distributions when you have two fluids of comparable T2 . In such situations the effective single component diffusion coefficient is always closer to the geometric mean diffusion coefficient of the two fluids.
NONLINEAR GALERKIN METHODS FOR SOLVING TWO DIMENSIONAL NEWTON-BOUSSINESQ EQUATIONS
Institute of Scientific and Technical Information of China (English)
GUOBOLING
1995-01-01
The nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations are proposed. The existence and uniqueness of global generalized solution of these equations,and the convergence of approximate solutions are also obtained.
Method and system for determining a volume of an object from two-dimensional images
Abercrombie, Robert K [Knoxville, TN; Schlicher, Bob G [Portsmouth, NH
2010-08-10
The invention provides a method and a computer program stored in a tangible medium for automatically determining a volume of three-dimensional objects represented in two-dimensional images, by acquiring at two least two-dimensional digitized images, by analyzing the two-dimensional images to identify reference points and geometric patterns, by determining distances between the reference points and the component objects utilizing reference data provided for the three-dimensional object, and by calculating a volume for the three-dimensional object.
Matsumoto, Hisanori; Tokiwano, Kazuo; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi
2002-05-01
We present a new technique for the restoration of scanning tunneling microscopy (STM) images, which is a two-dimensional extension of a recently developed statistical approach based on the one-dimensional least-squares method (LSM). An STM image is regarded as a realization of a stochastic process and assumed to be a composition of an underlying image and noise. We express the underlying image in terms of a two-dimensional generalized trigonometric polynomial suitable for representing the atomic protrusions in STM images. The optimization of the polynomial is performed by the two-dimensional LSM combined with the power spectral density function estimated by means of the maximum entropy method (MEM) iterative algorithm for two-dimensional signals. The restored images are obtained as the optimum least-squares fitting polynomial which is a continuous surface. We apply this technique to modeled and actual STM data. Results show that the present method yields a reasonable restoration of STM images.
Hydrothermal changes in wheat starch monitored by two-dimensional NMR.
Kovrlija, R; Rondeau-Mouro, C
2017-01-01
The temperature-dependent changes in wheat starch powder and wheat starch-water mixtures were monitored in real-time throughout the heating/cooling program using a classical one-dimensional T1 method and a novel bi-dimensional approach to correlate spin-lattice and spin-spin relaxation times (T1-T2) including acquisition of the FID signal. The influence of two controlling factors (i.e. water content (11%, 35-50%, wet basis) and temperature (20-90°C and back to 20°C)) on water distribution and starch transformation was investigated. Quantitative analysis of 2D T1-T2 maps greatly facilitated the interpretation of T1 relaxation times, which have been interpreted rather narrowly in the literature when classically measured in one-dimension. Application of the new IR-FID-CPMG sequence allowed distinction between different proton pools with different T1 relaxation times, particularly when the starch gelatinization occurred. The quantification of each T1 component permitted to assign the short T1 to slow cross relaxation phenomena, highlighting proton chemical and/or diffusional exchanges between water and starch.
Energy Technology Data Exchange (ETDEWEB)
Benn, R.; Brenneke, H.; Frings, A.; Lehmkuhl, H.; Mehler, G.; Rufinska, A.; Wildt, T.
1988-08-17
The indirect heteronuclear two-dimensional (2D) triple-resonance (S,I)-(/sup 1/H) NMR spectroscopy is introduced for measuring the chemical shift and scalar spin-spin coupling constants of an insensitive nucleus I via its scalar coupling J(S,I) by detection of the nucleus S of higher sensitivity. The versatility of this approach is demonstrated by extracting delta(/sup 57/Fe) and J(Fe,X) from (/sup 31/P,/sup 57/Fe)-(/sup 1/H) spectra of various dissolved ((/eta//sup 5/-Cp)(L/sub 2/(R)))Fe, ((/eta//sup 3/-allyl)(/eta//sup 5/-Cp)(L))Fe, and ((/eta//sup 1/,/eta//sup 2/-alkenyl)(/eta//sup 5/-Cp)(L))Fe complexes (R = alkyl, hydride; L = PR/sub 3/). In practice the sensitivity of 2D (/sup 31/P,/sup 57/Fe) spectra was found to be higher than that of the direct observation scheme by at least a factor (..gamma../sub P//..gamma../sub Fe/)/sup 5/2/. Due to the intrinsically higher resolving power of a two-dimensional experiment, small scalar couplings like /sup 2J/(Fe,F) and /sup 1/J(Fe,H) were readily obtained from indirect two-dimensional spectra. Combinations of (/sup 1/H,/sup 57/Fe) and (/sup 31/P,/sup 57/Fe) spectra yielded the relative signs of the J(Fe,X) couplings: /sup 1/J(Fe,P) is positive and increases with increasing ..pi..-acceptor power of the phosphorus ligand L from 55 (L = PMe/sub 3/, R = H) to 149 Hz (L = PF/sub 3/). /sup 1/J(Fe,H) is around +9 Hz (R = H), whereas /sup 2/J(P,H) in these complexes was found to be negative. In all of the allyl complexes investigated, /sup 2J/(Fe,F) (L = PF/sub 3/) is positive and around 3 Hz. In the quasi-tetragonal and -trigonal iron complexes, delta(/sup 57/Fe) varies by about 4000 ppM. This can be rationalized qualitatively by the electronegativity of the atoms directly bonded to iron and the higher oxidation potential in the presence of more basic ligands L via the paramagnetic shielding term. 52 references, 5 figures, 5 tables.
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen
2015-04-01
Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could
Lattice Methods for Pricing American Strangles with Two-Dimensional Stochastic Volatility Models
Directory of Open Access Journals (Sweden)
Xuemei Gao
2014-01-01
Full Text Available The aim of this paper is to extend the lattice method proposed by Ritchken and Trevor (1999 for pricing American options with one-dimensional stochastic volatility models to the two-dimensional cases with strangle payoff. This proposed method is compared with the least square Monte-Carlo method via numerical examples.
Directory of Open Access Journals (Sweden)
S. M. Sadatrasoul
2014-01-01
Full Text Available We introduce some generalized quadrature rules to approximate two-dimensional, Henstock integral of fuzzy-number-valued functions. We also give error bounds for mappings of bounded variation in terms of uniform modulus of continuity. Moreover, we propose an iterative procedure based on quadrature formula to solve two-dimensional linear fuzzy Fredholm integral equations of the second kind (2DFFLIE2, and we present the error estimation of the proposed method. Finally, some numerical experiments confirm the theoretical results and illustrate the accuracy of the method.
Jeener, Jean; Alewaeters, Gerrit
2016-05-01
The review articles published in "Progress in NMR Spectroscopy" are usually invited treatments of topics of current interest, but occasionally the Editorial Board may take an initiative to publish important historical material that is not widely available. The present article represents just such a case. Jean Jeener gave a lecture in 1971 at a summer school in Basko Polje, in what was then called Yugoslavia. As is now widely known, Jean Jeener laid down the foundations in that lecture of two - and higher - dimensional NMR spectroscopy by proposing the homonuclear COSY experiment. Jeener realized that the new proposal would open the door towards protein NMR and molecular structure determinations, but he felt that useful versions of such experiments could not be achieved with the NMR, computer and electronics technology available at that time, so that copies of the lecture notes were circulated (the Basko Polje lecture notes by J. Jeener and G. Alewaeters), but no formal publication followed. Fortunately, Ernst, Freeman, Griffin, and many others were more far-sighted and optimistic. An early useful extension was Ernst's proposal to replace the original projection/reconstruction technique of MRI by the widely adopted Fourier transform method inspired by the Basko Polje lecture. Later, the pulse method spread over many fields of spectroscopy as soon as the required technology became available. Jean Jeener, Emeritus professor, Université Libre de Bruxelles. Geoffrey Bodenhausen, Ecole Normale Supérieure, Paris.
DEFF Research Database (Denmark)
Yelle, Daniel J.; Kaparaju, Laxmi-Narasimha Prasad; Hunt, Christopher G.
2013-01-01
Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond C-H NMR......-methyl-α-d-glucuronic acid of xylan. In the polysaccharide anomeric region, decreases in the minor β-d-mannopyranosyl, and α-l-arabinofuranosyl units were observed in the NMR spectra from hydrothermally pretreated wheat straw. The aromatic region indicated only minor changes to the aromatic structures during the process (e...
Directory of Open Access Journals (Sweden)
Ming Zhou
2015-01-01
Full Text Available A novel algorithm is proposed for two-dimensional direction of arrival (2D-DOA estimation with uniform rectangular array using reduced-dimension propagator method (RD-PM. The proposed algorithm requires no eigenvalue decomposition of the covariance matrix of the receive data and simplifies two-dimensional global searching in two-dimensional PM (2D-PM to one-dimensional local searching. The complexity of the proposed algorithm is much lower than that of 2D-PM. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT algorithm and conventional PM algorithms, also very close to 2D-PM. The angle estimation error and Cramér-Rao bound (CRB are derived in this paper. Furthermore, the proposed algorithm can achieve automatically paired 2D-DOA estimation. The simulation results verify the effectiveness of the algorithm.
Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schriidinger Equation
Institute of Scientific and Technical Information of China (English)
陈亚铭; 朱华君; 宋松和
2011-01-01
Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting （MSS） method to solve the two-dimensional nonlinear Schrodinger equation （2D-NLSE） in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.
Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method
van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.
2013-01-01
We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this
Geotechnical applications of a two-dimensional elastodynamic displacement discontinuity method
CSIR Research Space (South Africa)
Siebrits, E
1993-12-01
Full Text Available A general two-dimensional elastodynamic displacement discontinuity method is used to model a variety of application problems. The plane strain problems are: the elastodynamic motions induced on a cavity by shear slip on a nearby crack; the dynamic...
Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method
van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.
2013-01-01
We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this feedba
A new complex variable element-free Galerkin method for two-dimensional potential problems
Institute of Scientific and Technical Information of China (English)
Cheng Yu-Min; Wang Jian-Fei; Bai Fu-Nong
2012-01-01
In this paper,based on the element-free Galerkin (EFG) method and the improved complex variable moving least-square (ICVMLS) approximation,a new meshless method,which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems,is presented. In the method,the integral weak form of control equations is employed,and the Lagrange multiplier is used to apply the essential boundary conditions.Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained.Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng,the functional in the ICVMLS approximation has an explicit physical meaning.Furthermore,the ICVEFG method has greater computational precision and efficiency.Three numerical examples are given to show the validity of the proposed method.
Institute of Scientific and Technical Information of China (English)
Yang Xiu-Li; Dai Bao-Dong; Zhang Wei-Wei
2012-01-01
Based on the complex variable moving least-square (CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin (CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square (MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local PetrovGalerkin (MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
Quadrature-free spline method for two-dimensional Navier-Stokes equation
Institute of Scientific and Technical Information of China (English)
HU Xian-liang; HAN Dan-fu
2008-01-01
In this paper,a quadrature-free scheme of spline method for two-dimensional Navier-Stokes equation is derived,which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally,the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-magnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is ob-tained using the Radon transform. The expression is further simplified under condi-tions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelec-tric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.
Energy Technology Data Exchange (ETDEWEB)
Kosasi, S.; Sluis, W.G. van der; Hart, L.A. ' t; Labadie, R.P. (Utrecht University (Netherlands). Faculty of Pharmacy, Department of Pharmacognosy); Boelens, R. (Utrecht University (Netherlands). Department of Chemistry)
1989-10-09
An immunologically active novel cyclic decapeptide, consisting of 1 Ala, 2 Gly, 1 Ile, 2 Thr, 2 Trp and 2 Val, has been isolated from the latex of Jatropha multifida L. (Euphorbiaceae). The structure was elucidated by means of amino acid analysis and FAB-mass spectroscopy. The animo acid sequence was obtained by two-dimensional {sup 1}H NMR spectroscopy (COSY and NOESY). 12 refs.; 3 figs.; 2 tabs.
Moment-based method for computing the two-dimensional discrete Hartley transform
Dong, Zhifang; Wu, Jiasong; Shu, Huazhong
2009-10-01
In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.
An immersed interface method for two-dimensional modelling of stratified flow in pipes
Berthelsen, Petter Andreas
2004-01-01
This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...
Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method
Energy Technology Data Exchange (ETDEWEB)
Molabahrami, A. [Department of Mathematics, Ilam University, PO Box 69315516, Ilam (Iran, Islamic Republic of)], E-mail: a_m_bahrami@yahoo.com; Khani, F. [Department of Mathematics, Ilam University, PO Box 69315516, Ilam (Iran, Islamic Republic of); Bakhtar Institute of Higher Education, PO Box 696, Ilam (Iran, Islamic Republic of)], E-mail: farzad_khani59@yahoo.com; Hamedi-Nezhad, S. [Bakhtar Institute of Higher Education, PO Box 696, Ilam (Iran, Islamic Republic of)
2007-10-29
In this Letter, the He's homotopy perturbation method (HPM) to finding the soliton solutions of the two-dimensional Korteweg-de Vries Burgers' equation (tdKdVB) for the initial conditions was applied. Numerical solutions of the equation were obtained. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. The results reveal that the HPM is very effective and simple.
Directory of Open Access Journals (Sweden)
Taha Aziz
2013-01-01
Full Text Available The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl's boundary layer equation for two-dimensional flow with vanishing or uniform mainstream velocity. We obtain solutions for the case when the simplest equation is the Bernoulli equation or the Riccati equation. Prandtl's boundary layer equation arises in the study of various physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.
Suppression method of low-frequency noise for two-dimensional integrated magnetic sensor
Kimura, Takayuki; Sakairi, Yusuke; Mori, Akihiro; Masuzawa, Toru
2017-04-01
A new correlated double sampling method for two-dimensional magnetic sensors was proposed. In this method, output from a magnetic sensor is controlled by adjusting the drain bias of a MOSFET used as a Hall element. The two-dimensional integrated magnetic sensor used for the demonstration of correlated double sampling was composed of a 64 × 64 array of Hall sensors and fabricated by a 0.18 µm CMOS standard process. The size of a Hall element was 2.7 × 2.7 µm2. The dimensions of one pixel in which a Hall element was embedded were 7 × 7 µm2. The magnitude of residual noise after correlated double sampling with drain bias control was 0.81 mVp–p. This value is 16% of the original low-frequency noise. From the experimental results, the proposed correlated double sampling method is found to be suitable for low-frequency noise suppression in the two-dimensional magnetic sensors.
Short-pulsed laser transport in two-dimensional scattering media by natural element method.
Zhang, Yong; Yi, Hong-Liang; Xie, Ming; Tan, He-Ping
2014-04-01
The natural element method (NEM) is extended to solve transient radiative transfer (TRT) in two-dimensional semitransparent media subjected to a collimated short laser irradiation. The least-squares (LS) weighted residuals approach is employed to spatially discretize the transient radiative heat transfer equation. First, for the case of the refractive index matched boundary, LSNEM solutions to TRT are validated by comparison with results reported in the literature. Effects of the incident angle on time-resolved signals of transmittance and reflectance are investigated. Afterward, the accuracy of this algorithm for the case of the refractive index mismatched boundary is studied. Finally, the LSNEM is extended to study the TRT in a two-dimensional semitransparent medium with refractive index discontinuity irradiated by the short pulse laser. The effects of scattering albedo, optical thickness, scattering phase function, and refractive index on transmittance and reflectance signals are investigated. Several interesting trends on the time-resolved signals are observed and analyzed.
Directory of Open Access Journals (Sweden)
Carlos Salinas
2011-05-01
Full Text Available The work was aimed at simulating two-dimensional wood drying stress using the control-volume finite element method (CVFEM. Stress/strain was modeled by moisture content gradients regarding shrinkage and mechanical sorption in a cross-section of wood. CVFEM was implemented with triangular finite elements and lineal interpolation of the independent variable which were programmed in Fortran 90 language. The model was validated by contrasting results with similar ones available in the specialised literature. The present model’s results came from isothermal (20ºC drying of quaking aspen (Populus tremuloides: two-dimensional distribution of stress/strain and water content, 40, 80, 130, 190 and 260 hour drying time and evolution of normal stress (2.5 <σ͓ ͓ < 1.2, MPa, from the interior to the exterior of wood.
Energy Technology Data Exchange (ETDEWEB)
Hollerbach, K.; Van Vorhis, R.L. [Lawrence Livermore National Lab., CA (United States); Hollister, A. [Louisiana State Univ., Shreveport, LA (United States)
1996-03-01
Wrist posture and rapid wrist movements are risk factors for work related musculoskeletal disorders. Measurement studies frequently involve optoelectronic methods in which markers are placed on the subject`s hand and wrist and the trajectories of the markers are tracked in three dimensional space. A goal of wrist posture measurements is to quantitatively establish wrist posture orientation. Accuracy and fidelity of the measurement data with respect to kinematic mechanisms are essential in wrist motion studies. Fidelity with the physical kinematic mechanism can be limited by the choice of kinematic modeling techniques and the representation of motion. Frequently, ergonomic studies involving wrist kinematics make use of two dimensional measurement and analysis techniques. Two dimensional measurement of human joint motion involves the analysis of three dimensional displacements in an obersver selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. In nature, joint axes can exist at any orientation and location relative to an arbitrarily chosen global reference frame. An arbitrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors that result from measuring joint motion about an arbitrary axis using two dimensional methods.
A Convergent Method of Auxiliary Sources for Two-Dimensional Impedance Scatterers With Edges
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2001-01-01
A modification to the Method of Auxiliary Sources (MAS) is introduced which renders the method operational for two-dimensional impedance scatterers with edges. The modification consists in letting the auxiliary surface converge to the scatterer physical surface for increasing number of auxiliary...... sources, whereby MAS approaches a surface integral equation (IE) method. Hereby, a systematic procedure for selecting the number and locations of the auxiliary sources is provided, and convergence of numerical results is obtained. The new method resulting from this modification thus combines the desirable...
Li, Jun-Jie; Yan, Jia-Bin; Huang, Xiang-Yu
2015-12-01
Meshfree method offers high accuracy and computational capability and constructs the shape function without relying on predefined elements. We comparatively analyze the global weak form meshfree methods, such as element-free Galerkin method (EFGM), the point interpolation method (PIM), and the radial point interpolation method (RPIM). Taking two dimensional Poisson equation as an example, we discuss the support-domain dimensionless size, the field nodes, and background element settings with respect to their effect on calculation accuracy of the meshfree method. RPIM and EFGM are applied to controlled-source two-dimensional electromagnetic modeling with fixed shape parameters. The accuracy of boundary conditions imposed directly and by a penalty function are discussed in the case of forward modeling of two-dimensional magnetotellurics in a homogeneous medium model. The coupling algorithm of EFG-PIM and EFG-RPIM are generated by integrating the PIM or RPIM and EFGM. The results of the numerical modeling suggest the following. First, the proposed meshfree method and corresponding coupled methods are well-suited for electromagnetic numerical modeling. The accuracy of the algorithm is the highest when the support-domain dimensionless size is 1.0 and the distribution of field nodes is consistent with the nodes of background elements. Second, the accuracy of PIM and RPIM are lower than that of EFGM for the Poisson equation but higher than EFGM for the homogeneous medium MT response. Third, RPIM overcomes the matrix inversion problem of PIM and has a wider selection of support-domain dimensionless sizes as compared to RPIM.
Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation
Kouatchou, Jules
1999-01-01
In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.
Contact position controlling for two-dimensional motion bodies by the boundary element method
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the presented scheme.
A discontinuous Galerkin method for two-dimensional PDE models of Asian options
Hozman, J.; Tichý, T.; Cvejnová, D.
2016-06-01
In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.
The PLSI Method of Stabilizing Two-Dimensional Nonsymmetric Half-Plane Recursive Digital Filters
Gangatharan N; Reddy PS
2003-01-01
Two-dimensional (2D) recursive digital filters find applications in image processing as in medical X-ray processing. Nonsymmetric half-plane (NSHP) filters have definitely positive magnitude characteristics as opposed to quarter-plane (QP) filters. In this paper, we provide methods for stabilizing the given 2D NSHP polynomial by the planar least squares inverse (PLSI) method. We have proved in this paper that if the given 2D unstable NSHP polynomial and its PLSI are of the same degree, the P...
Two dimensional density and its fluctuation measurements by using phase imaging method in GAMMA 10
Energy Technology Data Exchange (ETDEWEB)
Yoshikawa, M.; Negishi, S.; Shima, Y.; Hojo, H.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Mase, A. [Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Kogi, Y. [Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashiku, Fukuoka 811-0295 (Japan)
2010-10-15
Two dimensional (2D) plasma image analysis is useful to study the improvement of plasma confinement in magnetically confined fusion plasmas. We have constructed a 2D interferometer system with phase imaging method for studying 2D plasma density distribution and its fluctuation measurement in the tandem mirror GAMMA 10. 2D profiles of electron density and its fluctuation have been successfully obtained by using this 2D phase imaging system. We show that 2D plasma density and fluctuation profiles clearly depends on the axial confining potential formation with application of plug electron cyclotron heating in GAMMA 10.
Numerical simulation of two-dimensional spouted bed with draft plates by discrete element method
Institute of Scientific and Technical Information of China (English)
Yongzhi ZHAO; Yi CHENG; Maoqiang JIANG; Yong JIN
2008-01-01
A discrete element method (DEM)-computa-tional fluid dynamics (CFD) two-way coupling method was employed to simulate the hydrodynamics in a two-dimensional spouted bed with draft plates. The motion of particles was modeled by the DEM and the gas flow was modeled by the Navier-Stokes equation. The interactions between gas and particles were considered using a two-way coupling method. The motion of particles in the spouted bed with complex geometry was solved by com-bining DEM and boundary element method (BEM). The minimal spouted velocity was obtained by the BEM-DEM-CFD simulation and the variation of the flow pat-tern in the bed with different superficial gas velocity was studied. The relationship between the pressure drop of the spouted bed and the superficial gas velocity was achieved from the simulations. The radial profile of the averaged vertical velocities of particles and the profile of the aver-aged void fraction in the spout and the annulus were stat-istically analyzed. The flow characteristics of the gas-solid system in the two-dimensional spouted bed were clearly described by the simulation results.
Yamada, K.; Ahmad, M. M.; Ogiso, Y.; Okuda, T.; Chikami, J.; Miehe, G.; Ehrenberg, H.; Fuess, H.
2004-07-01
RbSn2F5 is a two-dimensional fluoride ion conductor. It undergoes a first-order phase transition to a superionic state at 368 K. The structure of the low temperature phase has been determined from the Rietveld analysis of the X-ray powder diffraction. The dynamic properties of the fluoride ions in RbSn2F5 have been studied by impedance spectroscopy and solid state NMR. The dc ionic conductivity of this sample shows an abrupt increase at the phase transition temperature. We have obtained the hopping frequency and the concentration of the charge carriers (F- ions) at different temperatures from the analysis of the conductivity spectra using Almond-West formalism. The estimated values of the charge carriers’ concentration agree well with that determined from the structure and were found to be independent of temperature. The relatively small value of the power-law exponent, n ≈ 0.55, supports the two-dimensional property of the investigated material. Furthermore, 19F NMR with simulation has suggested the diffusive motions of the fluoride ions between different sites. In contrast, 119Sn and 87Rb NMR spectra below 250 K supported the intrinsic disordered nature due to the random distribution of the fluoride ion vacancies.
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems
Institute of Scientific and Technical Information of China (English)
Bai Fu-Nong; Li Dong-Ming; Wang Jian-Fei; Cheng Yu-Min
2012-01-01
In this paper,the improved complex variable moving least-squares (ICVMLS) approximation is presented.The ICVMLS approximation has an explicit physics meaning.Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren,the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation,the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems,and the corresponding formulae are obtained.Compared with the conventional EFG method,the ICVEFG method has a great computational accuracy and efficiency.For the purpose of demonstration,three selected numerical examples are solved using the ICVEFG method.
Li, Shenhui; Zheng, Anmin; Su, Yongchao; Fang, Hanjun; Shen, Wanling; Yu, Zhiwu; Chen, Lei; Deng, Feng
2010-04-21
Extra-framework aluminium (EFAL) species in hydrated dealuminated HY zeolite were thoroughly investigated by various two-dimensional solid-state NMR techniques as well as density functional theoretical calculations. (27)Al MQ MAS NMR experiments demonstrated that five-coordinated and four-coordinated extra-framework aluminium subsequently disappeared with the increase of water loading, and the quadrupole interaction of each aluminium species decreased gradually during the hydration process. (1)H double quantum MAS NMR revealed that the EFAL species in the hydrated zeolite consisted of three components: a hydroxyl AlOH group, and two types of water molecule (rigid and mobile water). (1)H-(27)Al LG-CP HETCOR experiments indicated that both the extra-framework and the framework Al atoms were in close proximity to the rigid water in the fully rehydrated zeolite. The experimental results were further confirmed by DFT theoretical calculations. Moreover, theoretical calculation results further demonstrated that the EFAL species in the hydrated zeolite consisted of the three components and the calculated (1)H NMR chemical shift for each component agreed well with our NMR observations. It is the rigid water that connects the extra-framework aluminium with the four-coordinated framework aluminium through strong hydrogen bonds.
Parallel processing method for two-dimensional Sn transport code DOT3.5
Energy Technology Data Exchange (ETDEWEB)
Uematsu, Mikio [Toshiba Corp., Kawasaki, Kanagawa (Japan)
1998-03-01
A parallel processing method for the two-dimensional Sn transport code DOT3.5 has been developed to achieve drastic reduction of computation time. In the proposed method, parallelization is made with angular domain decomposition and/or space domain decomposition. Calculational speedup for parallel processing by angular domain decomposition is achieved by minimizing frequency of communications between processing elements. As for parallel processing by space domain decomposition, two-step rescaling method consisting of segmentwise rescaling and the ordinary pointwise rescaling have been developed to accelerate convergence, which will otherwise be degraded because of discontinuity at the segment boundaries. The developed method was examined with a Sun workstation using the PVM message-passing library, and sufficient speedup was observed. (author)
The solution of the two-dimensional sine-Gordon equation using the method of lines
Bratsos, A. G.
2007-09-01
The method of lines is used to transform the initial/boundary-value problem associated with the two-dimensional sine-Gordon equation in two space variables into a second-order initial-value problem. The finite-difference methods are developed by replacing the matrix-exponential term in a recurrence relation with rational approximants. The resulting finite-difference methods are analyzed for local truncation error, stability and convergence. To avoid solving the nonlinear system a predictor-corrector scheme using the explicit method as predictor and the implicit as corrector is applied. Numerical solutions for cases involving the most known from the bibliography line and ring solitons are given.
A characteristic mapping method for two-dimensional incompressible Euler flows
Yadav, Badal; Mercier, Olivier; Nave, Jean-Christophe; Schneider, Kai
2016-11-01
We propose an efficient semi-Lagrangian method for solving the two-dimensional incompressible Euler equations with high precision on a coarse grid. The new approach evolves the flow map using the gradient-augmented level set method (GALSM). Since the flow map can be decomposed into submaps (each over a finite time interval), the error can be controlled by choosing the remapping times appropriately. This leads to a numerical scheme that has exponential resolution in linear time. The computational efficiency and the high precision of the method are illustrated for a vortex merger and a four mode flow. Comparisons with a Cauchy-Lagrangian method are also presented. KS thankfully acknowledges financial support from the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA).
A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow
Hsu, Li-Chieh
The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.
Directory of Open Access Journals (Sweden)
Ze-yu MAO
2014-01-01
Full Text Available River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.
Two-dimensional thermal analysis of a fuel rod by finite volume method
Energy Technology Data Exchange (ETDEWEB)
Costa, Rhayanne Y.N.; Silva, Mario A.B. da; Lira, Carlos A.B. de O., E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamaento de Energia Nuclear
2015-07-01
In a nuclear reactor, the amount of power generation is limited by thermal and physic limitations rather than by nuclear parameters. The operation of a reactor core, considering the best heat removal system, must take into account the fact that the temperatures of fuel and cladding shall not exceed safety limits anywhere in the core. If such considerations are not considered, damages in the fuel element may release huge quantities of radioactive materials in the coolant or even core meltdown. Thermal analyses for fuel rods are often accomplished by considering one-dimensional heat diffusion equation. The aim of this study is to develop the first paper to verify the temperature distribution for a two-dimensional heat transfer problem in an advanced reactor. The methodology is based on the Finite Volume Method (FVM), which considers a balance for the property of interest. The validation for such methodology is made by comparing numerical and analytical solutions. For the two-dimensional analysis, the results indicate that the temperature profile agree with expected physical considerations, providing quantitative information for the development of advanced reactors. (author)
A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries
Energy Technology Data Exchange (ETDEWEB)
Toreja, A J; Uddin, R
2002-10-21
A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.
Wang, Shouyu; Yan, Keding; Xue, Liang
2017-01-01
In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.
Xu, Chunhui; He, Ping; Liu, Jie; Cui, Ajuan; Dong, Huanli; Zhen, Yonggang; Chen, Wei; Hu, Wenping
2016-08-08
Two-dimensional (2D) crystals of organic semiconductors (2DCOS) have attracted attention for large-area and low-cost flexible optoelectronics. However, growing large 2DCOS in controllable ways and transferring them onto technologically important substrates, remain key challenges. Herein we report a facile, general, and effective method to grow 2DCOS up to centimeter size which can be transferred to any substrate efficiently. The method named "solution epitaxy" involves two steps. The first is to self-assemble micrometer-sized 2DCOS on water surface. The second is epitaxial growth of them into millimeter or centimeter sized 2DCOS with thickness of several molecular layers. The general applicability of this method for the growth of 2DCOS is demonstrated by nine organic semiconductors with different molecular structures. Organic field-effect transistors (OFETs) based on the 2DCOS demonstrated high performance, confirming the high quality of the 2DCOS.
Fratila, R.M.; Gomez, M.V.; Sykora, S.; Velders, A.H.
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique, but its low sensitivity and highly sophisticated, costly, equipment severely constrain more widespread applications. Here we show that a non-resonant planar transceiver microcoil integrated in a microfluidic chip (dete
Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method
Energy Technology Data Exchange (ETDEWEB)
Landmann, S. [Universität Leipzig, Institut für Theoretische Physik, Brüderstr. 16, 04103 Leipzig (Germany); Kählert, H.; Thomsen, H.; Bonitz, M. [Christian-Albrechts-Universität zu Kiel, Institut für Theoretische Physik und Astrophysik, Leibnizstr. 15, 24098 Kiel (Germany)
2015-09-15
We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas.
A minimum action method for small random perturbations of two-dimensional parallel shear flows
Wan, Xiaoliang
2013-02-01
In this work, we develop a parallel minimum action method for small random perturbations of Navier-Stokes equations to solve the optimization problem given by the large deviation theory. The Freidlin-Wentzell action functional is discretized by hp finite elements in time direction and spectral methods in physical space. A simple diagonal preconditioner is constructed for the nonlinear conjugate gradient solver of the optimization problem. A hybrid parallel strategy based on MPI and OpenMP is developed to improve numerical efficiency. Both h- and p-convergence are obtained when the discretization error from physical space can be neglected. We also present preliminary results for the transition in two-dimensional Poiseuille flow from the base flow to a non-attenuated traveling wave.
A Ternary Solvent Method for Large-Sized Two-Dimensional Perovskites.
Chen, Junnian; Gan, Lin; Zhuge, Fuwei; Li, Huiqiao; Song, Jizhong; Zeng, Haibo; Zhai, Tianyou
2017-02-20
Recent reports demonstrate that a two-dimensional (2D) structural characteristic can endow perovskites with both remarkable photoelectric conversion efficiency and high stability, but the synthesis of ultrathin 2D perovskites with large sizes by facile solution methods is still a challenge. Reported herein is the controlled growth of 2D (C4 H9 NH3 )2 PbBr4 perovskites by a chlorobenzene-dimethylformide-acetonitrile ternary solvent method. The critical factors, including solvent volume ratio, crystallization temperature, and solvent polarity on the growth dynamics were systematically studied. Under optimum reaction condition, 2D (C4 H9 NH3 )2 PbBr4 perovskites, with the largest lateral dimension of up to 40 μm and smallest thickness down to a few nanometers, were fabricated. Furthermore, various iodine doped 2D (C4 H9 NH3 )2 PbBrx I4-x perovskites were accessed to tune the optical properties rationally.
INTERVAL FINITE VOLUME METHOD FOR UNCERTAINTY SIMULATION OF TWO-DIMENSIONAL RIVER WATER QUALITY
Institute of Scientific and Technical Information of China (English)
HE Li; ZENG Guang-ming; HUANG Guo-he; LU Hong-wei
2004-01-01
Under the interval uncertainties, by incorporating the discretization form of finite volume method and interval algebra theory, an Interval Finite Volume Method (IFVM) was developed to solve water quality simulation issues for two-dimensional river when lacking effective data of flow velocity and flow quantity. The IFVM was practically applied to a segment of the Xiangjiang River because the Project of Hunan Inland Waterway Multipurpose must be started working after the environmental impact assessment for it. The simulation results suggest that there exist rather apparent pollution zones of BOD5 downstream the Dongqiaogang discharger and that of COD downstream Xiaoxiangjie discharger, but the pollution sources have no impact on the safety of the three water plants located in this river segment. Although the developed IFVM is to be perfected, it is still a powerful tool under interval uncertainties for water environmental impact assessment, risk analysis, and water quality planning, etc. besides water quality simulation studied in this paper.
The PLSI Method of Stabilizing Two-Dimensional Nonsymmetric Half-Plane Recursive Digital Filters
Directory of Open Access Journals (Sweden)
Gangatharan N
2003-01-01
Full Text Available Two-dimensional (2D recursive digital filters find applications in image processing as in medical X-ray processing. Nonsymmetric half-plane (NSHP filters have definitely positive magnitude characteristics as opposed to quarter-plane (QP filters. In this paper, we provide methods for stabilizing the given 2D NSHP polynomial by the planar least squares inverse (PLSI method. We have proved in this paper that if the given 2D unstable NSHP polynomial and its PLSI are of the same degree, the PLSI polynomial is always stable, irrespective of whether the coefficients of the given polynomial have relationship among its coefficients or not. Examples are given for 2D first-order and second-order cases to prove our results. The generalization is done for the th order polynomial.
Experimental study on two-dimensional film flow with local measurement methods
Energy Technology Data Exchange (ETDEWEB)
Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)
2015-12-01
Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged
Two-grain nanoindentation using the quasicontinuum method: Two-dimensional model approach
Energy Technology Data Exchange (ETDEWEB)
Iglesias, Rodrigo A. [Instituto de Investigaciones en Fisicoquimica de Cordoba (INFIQC), Consejo Nacional de Investigaciones, Cientificas y Tecnicas (CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Edificio Integrador, Ciudad Universitaria, Cordoba, CP 5000 (Argentina)]. E-mail: riglesias@mail.fcq.unc.edu.ar; Leiva, Ezequiel P.M. [Instituto de Investigaciones en Fisicoquimica de Cordoba (INFIQC), Consejo Nacional de Investigaciones, Cientificas y Tecnicas (CONICET), Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Edificio Integrador, Ciudad Universitaria, Cordoba, CP 5000 (Argentina)
2006-06-15
The quasicontinuum method (two-dimensional) developed by Tadmor et al. [Tadmor EB, Ortiz M, Phillips R. Philos Mag 1996;73:1529] is applied to an indentation process taking account of the atomic structure of the indenter and the substrate subject to indentation. Slip vectors, dislocation nucleation and nanostructure formation are analyzed for different indenter materials (Ag, Cu and Pd) and indenter crystal orientations. Slip vectors near to the contact region show that, depending on the material and orientation of the indenter, plastic deformations occur either inside the indenter or the substrate. Long-range material deformations appear during the indentation or retraction of the indenter. All of these aspects mainly dictate the formation of nanoclusters or nanoholes on the substrate surface.
Sunahara, Y.; Kojima, F.
1988-01-01
The purpose of this paper is to establish a method for identifying unknown parameters involved in the boundary state of a class of diffusion systems under noisy observations. A mathematical model of the system dynamics is given by a two-dimensional diffusion equation. Noisy observations are made by sensors allocated on the system boundary. Starting with the mathematical model mentioned above, an online parameter estimation algorithm is proposed within the framework of the maximum likelihood estimation. Existence of the optimal solution and related necessary conditions are discussed. By solving a local variation of the cost functional with respect to the perturbation of parameters, the estimation mechanism is proposed in a form of recursive computations. Finally, the feasibility of the estimator proposed here is demonstrated through results of digital simulation experiments.
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
Men, Han; Freund, Robert M; Parrilo, Pablo A; Peraire, Jaume
2009-01-01
In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several fr...
Schoenfelder, Wiete; Gläser, Hans-Reinhard; Mitreiter, Ivonne; Stallmach, Frank
2008-06-01
Limestones and karstified limestones (dolostones) from a Permian aquifer in Central Germany were studied by 1H 2D NMR relaxometry and PFG NMR diffusometry, aiming at a non-destructive characterization of the pore space. Information concerning pore size distribution and water diffusion were in accord for different samples of each type of rock, but differed fundamentally between limestones and dolostones. The results of the 2D relaxometry measurements revealed a ratio of surface relaxation times Ts1/ Ts2 of about 2 for the limestones and about 4.5 for the dolostones, mirroring the different content of iron and manganese in the solid pore walls. In consideration of thin section interpretation, the corresponding fraction in the T1- T2 relaxation time distributions was attributed to interparticle porosity. Porosity of large vugs is clearly displayed by relaxation times longer than 1 s in the dolostones only. A third fraction of the total water-saturated pore space in the dolostones, which is clearly displayed in the 2D relaxation time distributions at the smallest relaxation times and a Ts1/ Ts2 ratio of about 12, is attributed to intrafossil porosity. The porosity classification, basing on non-destructive NMR experiments, is verified by mercury intrusion porosimetry and thin section interpretation.
Institute of Scientific and Technical Information of China (English)
何春山; 李志兵
2003-01-01
The correlation function of a two-dimensionalIsing model is calculated by the corner transfer matrix renormalization group method.We obtain the critical exponent η= 0.2496 with few computer resources.
Institute of Scientific and Technical Information of China (English)
Jin-lu Sun; Hong-yu Zhang; Zhi-yi Guo; Wan-tao Ying; Xiao-hong Qian; Jing-lan Wang
2009-01-01
Objective To explore an effective method of Dermatophagoides pteronyssinus protein extraction suitable for two-dimensional electrophoresis (2-DE) analysis. Methods The extracts of Dermatophagoides pteronyssinus were prepared with Coca's solution, lysis buffer of 2-DE, and Trizol reagent, respectively. Bicinchoninic acid (BCA) assay was used to determine the total protein concentration of the samples. The efficiency of different protein extraction methods were evaluated with 2-DE analysis. Results The concentrations of extracted protein by methods of Coca's solution, lysis buffer, and Trizol reagent were 0.63 g/L, 0.90 g/L, and 0.80 g/L, respectively. The 2-DE analysis results showed that some protein spots in low molecular weight (LMW) range could be detected with the Coca's solution method. With the lysis buffer of 2-DE method, more protein spots in LMW range could be detected, while the medium molecular weight (MMW) protein spots were absent. Several MMW protein spots (174-178 kD and 133 kD) and more LMW protein spots were detected with Trizol reagent method. Conclusions Among Coca's solution, lysis buffer of 2-DE, and Trizol reagent, the concentration of extracted protein of Dermatophagoides pteronyssinus by lysis buffer of 2-DE is the highest. However, most protein components of Dermatophagoides pteronyssinus purified mite bodies can be extracted by Trizol reagent, which may generally reflect the whole profile of Dermatophagoides pteronyssinus allergens.
Wang, Zhiheng
2014-12-10
A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.
Two-dimensional Phase Unwrapping Method Using Cost Function of L0 Norm
GAO, J.; LI, L.; SHI, L.
2017-02-01
Considering cost model and convergence speed of the minimum norm unwrapping, a highly efficient two-dimensional global phase unwrapping method optimized with L0 norm is proposed. As analysing features of cost model in phase unwrapping with minimum norm, a cost function definition is provided in line with the L0 norm, which impose a stronger constraint in the tangent direction of phase discontinuity boundary than that in normal direction, in order to preserve integrity of discontinuity during iterative unwrapping processing for continuous phase. For the sake of slow speed of low-frequency error convergence during linear solving, a data partitioning strategy is introduced into unwrapping processing. Due to independence of minimum norm method in blocks, linear solving only focus on high-frequency information and improve efficiency of iterative work, and the low-frequency processing part is transferred to offsetting-aligning between blocks. With experiments and analysis, reliability and efficiency of the novel phase unwrapping method are certified comparing to existing methods.
Two-dimensional cylindrical thermal cloak designed by implicit transformation method
Yuan, Xuebo; Lin, Guochang; Wang, Youshan
2016-07-01
As a new-type technology of heat management, thermal metamaterials have attracted more and more attentions recently and thermal cloak is a typical case. Thermal conductivity of thermal cloak designed by coordinate transformation method is usually featured by inhomogeneity, anisotropy and local singularity. Explicit transformation method, which is commonly used to design thermal cloak with the coordinate transformation known in advance, has insufficient flexibility, making it hard to proactively reduce the difficulty of device fabrication. In this work, we designed the thermal conductivity of two-dimensional (2D) cylindrical thermal cloak using the implicit transformation method without knowledge of the coordinate transformation in advance. With two classes of generation functions taken into consideration, this study adopted full-wave simulations to analyze the thermal cloaking performances of designed thermal cloaks. Material distributions and simulation results showed that the implicit transformation method has high flexibility. The form of coordinate transformation not only influences the homogeneity and anisotropy but also directly influences the thermal cloaking performance. An improved layered structure for 2D cylindrical thermal cloak was put forward based on the generation function g(r) = r15, which reduces the number of the kinds of constituent materials while guaranteeing good thermal cloaking performance. This work provides a beneficial guidance for reducing the fabrication difficulty of thermal cloak.
McNett, Gabriel D; Miles, Ronald N; Homentcovschi, Dorel; Cocroft, Reginald B
2006-12-01
Conventional approaches to measuring animal vibrational signals on plant stems use a single transducer to measure the amplitude of vibrations. Such an approach, however, will often underestimate the amplitude of bending waves traveling along the stem. This occurs because vibration transducers are maximally sensitive along a single axis, which may not correspond to the major axis of stem motion. Furthermore, stem motion may be more complex than that of a bending wave propagating along a single axis, and such motion cannot be described using a single transducer. Here, we describe a method for characterizing stem motion in two dimensions by processing the signals from two orthogonally positioned transducers. Viewed relative to a cross-sectional plane, a point on the stem surface moves in an ellipse at any one frequency, with the ellipse's major axis corresponding to the maximum amplitude of vibration. The method outlined here measures the ellipse's major and minor axes, and its angle of rotation relative to one of the transducers. We illustrate this method with measurements of stem motion during insect vibrational communication. It is likely the two-dimensional nature of stem motion is relevant to insect vibration perception, making this method a promising avenue for studies of plant-borne transmission.
Tuning of Feedback Decoupling Controller for Two-Dimensional Heat Plate by Using VRFT Method
Matsunaga, Nobutomo; Nakano, Masahiko; Okajima, Hiroshi; Kawaji, Shigeyasu
In manufacturing processes, inappropriate thermal distribution, which is observed in both steady and transient states of the thermal plant, leads to inferior quality. For a plant with strong thermal interaction, decoupling control is effective in precisely tuning the control system. We proposed the decoupling controller based on the temperature-difference feedback model. However, no parameter-identification method of thermal interaction has been presented so far. Traditionally, iterative tuning by trial and error has been used to tune the controller parameters. In the case of an industrial plant, the tuning time would be long because of the large time constants of the plant. Recently, the virtual reference feedback tuning (VRFT) method, which can be used for off-line tuning of the controller parameters using a set of I/O data, has been studied to examine the possibility of shortening the tuning time. In this paper, a VRFT method for the feedback decoupling controller is proposed for a two-dimensional heat plate by taking consideration the thermal interaction property. The effectiveness of this VRFT method is evaluated by performing an experimental simulation.
Pfeiffer, F.; Meyer-Koenig, W.
1949-01-01
By means of characteristics theory, formulas for the numerical treatment of stationary compressible supersonic flows for the two-dimensional and rotationally symmetrical cases have been obtained from their differential equations.
Two-dimensional thermoluminescence method for checking LiF crystals homogeneity
Marczewska, B.; Bilski, P.; Gieszczyk, W.; Kłosowski, M.
2017-01-01
Thermoluminescence (TL), being one of the common luminescence methods, is very sensitive to the presence of any impurities in the material structure and can be used for the detection of impurity distribution in the bulk of the crystal. If in a TL reader a CCD camera is used, a measurement of TL signal would give us an unique two-dimensional (2-D) imaging of TL signal distribution, and thereby the distribution of dopants. The possibility of the application of 2-D TL method for the control of uniformity of the crystal related to dopant distribution in the volume of the bulk crystal was tested on the large area samples of LiF doped and un-doped crystals grown by Czochralski method at the IFJ PAN in Kraków. The special TL reader with a CCD camera was used for analyzing of luminescence emitting during the heating of the irradiated in uniform radiation field slices of crystals cut longitudinal and perpendicular to the growth axis and for analyzing of the shape of TL glow curves for selected crystal areas. Non-uniform distribution of the dopants was demonstrated for doped crystal grown with relatively slow growth rate.
Directory of Open Access Journals (Sweden)
Neng Wan
2014-01-01
Full Text Available In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field, and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the proposed method is verified with some examples.
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li
2016-04-01
A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).
Directory of Open Access Journals (Sweden)
Pasi Ojala
2008-02-01
Full Text Available During the last decades software process improvement (SPI has been recognized as a usable possibility to increase the quality of software development. Implemented SPI investments have often indicated increased process capabilities as well. Recently more attention has been focused on the costs of SPI as well as on the cost-effectiveness and productivity of software development, although the roots of economic-driven software engineering originate from the very early days of software engineering research. This research combines Value Engineering and capability assessment into usable new method in order to better respond to the challenges that cost-effectiveness and productivity has brought to software companies. This is done in part by defining the concepts of value, worth and cost and in part by defining the Value Engineering process and different enhancements it has seen to offer to software assessment. The practical industrial cases show that proposed two-dimensional method works in practise and is useful to assessed companies.
Directory of Open Access Journals (Sweden)
Chunye Gong
2014-01-01
Full Text Available It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE with iterative implicit finite difference method is O(MxMyN2. In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16–4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.
A digital sampling moiré method for two-dimensional displacement measurement
Chen, Xinxing; Chang, Chih-Chen
2015-04-01
Measuring static and dynamic displacements for in-service structures is an important issue for the purpose of design validation, performance monitoring and safety assessment of structures. Currently available techniques can be classified into indirect measurement and direct measurement. These methods however have their own problems and limitations Digital sampling moiré method is a newly developed vision-based technique for direct displacement measurement. It uses one camera to capture digital images containing a grating pattern. The images are subsampled and interpolated to generate moiré patterns whose phase information can then be used to calculate displacements of the grating pattern. As the moiré patterns can magnify the pattern's movement, this technique is expected to provide more accurate displacement measurement than the other vision based approaches. In this study, a digital sampling moiré technique is proposed for measuring two-dimensional structural displacements using a designed grating pattern. The pattern contains two orthogonally inclined gratings and does not have to be perfectly aligned with the image plane. A series of simulation and laboratory tests are conducted to validate the accuracy of the proposed technique. Results show that the technique can achieve accuracy in the order of 10 micrometers in the laboratory. Also, the technique does not seem to suffer from the issue of misalignment between the camera and the pattern and exhibits a potential for accurate measurement of displacement for civil engineering structures.
Two-dimensional nonlinear geophysical data filtering using the multidimensional EEMD method
Chen, Chih-Sung; Jeng, Yih
2014-12-01
A variety of two-dimensional (2D) empirical mode decomposition (EMD) methods have been proposed in the last decade. Furthermore, the multidimensional EMD algorithm and its parallel class, multivariate EMD (MEMD), are available in recent years. From those achievements, it is possible to design an efficient 2D nonlinear filter for geophysical data processing. We introduce a robust 2D nonlinear filter which can be applied to enhance the signal of 2D geophysical data or to highlight the feature component on an image. We did this by replacing the conventionally used smooth interpolation in the ensemble empirical mode decomposition (EEMD) algorithm with a piecewise interpolation method. The one-dimensional (1D) EEMD procedures were consecutively performed in all directions, and then the comparable minimal scale combination technique was applied to the decomposed components. The theoretical derivation, model simulation, and real data applications are demonstrated in this paper. The proposed filtering method is effective in improving the image resolution by suppressing the random noise added in the simulation example and strong low frequency track corrugation noise bands with background noise in the field example. Furthermore, the algorithm can be easily extended to higher dimensions by repeating the same procedure in the succeeding dimension. To evaluate the proposed method, one data set is processed separately by using the enhanced analytic signal method and the multivariate EMD (MEMD) algorithm, and the results from these two methods are compared with that of the proposed method. A general equation for generating three-dimensional (3D) EEMD components based on the comparable minimal scale combination principle is derived for further applications.
Efficient two-dimensional magnetotellurics modelling using implicitly restarted Lanczos method
Indian Academy of Sciences (India)
Krishna Kumar; Pravin K Gupta; Sri Niwas
2011-08-01
This paper presents an efficient algorithm, FDA2DMT (Free Decay Analysis for 2D Magnetotellurics (MT)), based on eigenmode approach to solve the relevant partial differential equation, for forward computation of two-dimensional (2D) responses. The main advantage of this approach lies in the fact that only a small subset of eigenvalues and corresponding eigenvectors are required for satisfactory results. This small subset (pre-specified number) of eigenmodes are obtained using shift and invert implementation of Implicitly Restarted Lanczos Method (IRLM). It has been established by experimentation that only 15–20% smallest eigenvalue and corresponding eigenvectors are sufficient to secure the acceptable accuracy. Once the single frequency response is computed using eigenmode approach, the responses for subsequent frequencies can be obtained in negligible time. Experiment design results for validation of FDA2DMT are presented by considering two synthetic models from COMMEMI report, Brewitt-Taylor and Weaver (1976) model and a field data based model from Garhwal Himalaya.
A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer
Peng, Xiaohui; Protas, Bartosz
2013-01-01
This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady-state heat conduction described by elliptic partial differential equations and involving a one-dimensional cooling element represented by a contour on which interface boundary conditions are specified. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least squares sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using a gradient-based descent algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary-integral formulation which exploits certain analytical properties of the sol...
Kaseman, Derrick C; Hung, Ivan; Lee, Kathleen; Kovnir, Kirill; Gan, Zhehong; Aitken, Bruce; Sen, Sabyasachi
2015-02-05
The short-range structure, connectivity, and chemical order in As(x)Te(100-x) (25 ≤ x ≤ 65) glasses are studied using high-resolution two-dimensional projection magic-angle-turning (pjMAT) (125)Te nuclear magnetic resonance (NMR) spectroscopy. The (125)Te pjMAT NMR results indicate that the coordination of Te atoms obeys the 8-N coordination rule over the entire composition range. However, in strong contrast with the analogous glass-forming As-S and As-Se chalcogenides, significant violation of chemical order is observed in As-Te glasses over the entire composition range in the form of homopolar As-As (Te-Te) bonds, even in severely As (Te)-deficient glasses. The speciation of the Te coordination environments can be explained with the dissociation reaction model As2Te3 → 2As + 3Te(II), characterized by a dissociation constant that is independent of glass composition. These structural characteristics can be attributed to the high metallicity of Te and the strong energetic similarity between the Te-Te, Te-As, and As-As bonds, and they are consistent with the monotonic and often nearly linear variation of physical properties observed in telluride glasses as a function of the Te content.
Vallverdú-Queralt, Anna; Meudec, Emmanuelle; Ferreira-Lima, Nayla; Sommerer, Nicolas; Dangles, Olivier; Cheynier, Véronique; Le Guernevé, Christine
2016-05-15
In red and rosé wines, the grape anthocyanins are progressively converted to more stable pigments, including phenylpyranoanthocyanins. One-/two-dimensional NMR and UPLC-DAD-ESI-MS(n) measurements were used to monitor the synthesis of guaiacylpyranomalvidin 3-O-glucoside from malvidin 3-O-glucoside and vinylguaiacol in model solutions and identify the products formed during the reaction. The highest conversion rates (30%, determined by (1)H qNMR) were obtained with a small excess of vinylguaiacol in methanol/water (70/30) at pH 3 and 35°C. Two reaction pathways competed with the formation of guaiacylpyranomalvidin 3-O-glucoside. The first one only concerns malvidin 3-O-glucoside and consists in C-ring cleavage with formation of malvone and smaller molecular weight breakdown products. This pathway is favored at higher pH and incubation temperature. At lower pH values or in the presence of large vinylguaiacol excess, faster consumption of malvidin 3-O-glucoside resulted from the formation of more complex pyranoanthocyanins substituted by vinylguaiacol oligomers.
A two-dimensional embedded-boundary method for convection problems with moving boundaries
Hassen, Y.J.; Koren, B.
2010-01-01
In this work, a two-dimensional embedded-boundary algorithm for convection problems is presented. A moving body of arbitrary boundary shape is immersed in a Cartesian finite-volume grid, which is fixed in space. The boundary surface is reconstructed in such a way that only certain fluxes in the imme
Directory of Open Access Journals (Sweden)
H. Hasegawa
2004-04-01
Full Text Available A recently developed technique for reconstructing approximately two-dimensional (∂/∂z≈0, time-stationary magnetic field structures in space is applied to two magnetopause traversals on the dawnside flank by the four Cluster spacecraft, when the spacecraft separation was about 2000km. The method consists of solving the Grad-Shafranov equation for magnetohydrostatic structures, using plasma and magnetic field data measured along a single spacecraft trajectory as spatial initial values. We assess the usefulness of this single-spacecraft-based technique by comparing the magnetic field maps produced from one spacecraft with the field vectors that other spacecraft actually observed. For an optimally selected invariant (z-axis, the correlation between the field components predicted from the reconstructed map and the corresponding measured components reaches more than 0.97. This result indicates that the reconstruction technique predicts conditions at the other spacecraft locations quite well.
The optimal invariant axis is relatively close to the intermediate variance direction, computed from minimum variance analysis of the measured magnetic field, and is generally well determined with respect to rotations about the maximum variance direction but less well with respect to rotations about the minimum variance direction. In one of the events, field maps recovered individually for two of the spacecraft, which crossed the magnetopause with an interval of a few tens of seconds, show substantial differences in configuration. By comparing these field maps, time evolution of the magnetopause structures, such as the formation of magnetic islands, motion of the structures, and thickening of the magnetopause current layer, is discussed.
Key words. Magnetospheric physics (Magnetopause, cusp, and boundary layers – Space plasma physics (Experimental and mathematical techniques, Magnetic reconnection
Basudhar, Debashree; Madrona, Yarrow; Kandel, Sylvie; Lampe, Jed N; Nishida, Clinton R; de Montellano, Paul R Ortiz
2015-04-17
Defining the conformational states of cytochrome P450 active sites is critical for the design of agents that minimize drug-drug interactions, the development of isoform-specific P450 inhibitors, and the engineering of novel oxidative catalysts. We used two-dimensional (1)H,(15)N HSQC chemical shift perturbation mapping of (15)N-labeled Phe residues and x-ray crystallography to examine the ligand-dependent conformational dynamics of CYP119. Active site Phe residues were most affected by the binding of azole inhibitors and fatty acid substrates, in agreement with active site localization of the conformational changes. This was supported by crystallography, which revealed movement of the F-G loop with various azoles. Nevertheless, the NMR chemical shift perturbations caused by azoles and substrates were distinguishable. The absence of significant chemical shift perturbations with several azoles revealed binding of ligands to an open conformation similar to that of the ligand-free state. In contrast, 4-phenylimidazole caused pronounced NMR changes involving Phe-87, Phe-144, and Phe-153 that support the closed conformation found in the crystal structure. The same closed conformation is observed by NMR and crystallography with a para-fluoro substituent on the 4-phenylimidazole, but a para-chloro or bromo substituent engendered a second closed conformation. An open conformation is thus favored in solution with many azole ligands, but para-substituted phenylimidazoles give rise to two closed conformations that depend on the size of the para-substituent. The results suggest that ligands selectively stabilize discrete cytochrome P450 conformational states.
Cannata, F; Nishnianidze, D N
2002-01-01
Two new methods for investigation of two-dimensional quantum systems, whose Hamiltonians are not amenable to separation of variables, are proposed. 1)The first one - $SUSY-$ separation of variables - is based on the intertwining relations of Higher order SUSY Quantum Mechanics (HSUSY QM) with supercharges allowing for separation of variables. 2)The second one is a generalization of shape invariance. While in one dimension shape invariance allows to solve algebraically a class of (exactly solvable) quantum problems, its generalization to higher dimensions has not been yet explored. Here we provide a formal framework in HSUSY QM for two-dimensional quantum mechanical systems for which shape invariance holds. Given the knowledge of one eigenvalue and eigenfunction, shape invariance allows to construct a chain of new eigenfunctions and eigenvalues. These methods are applied to a two-dimensional quantum system, and partial explicit solvability is achieved in the sense that only part of the spectrum is found analyt...
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Directory of Open Access Journals (Sweden)
shadan sadigh behzadi
2012-03-01
Full Text Available In this present paper, we solve a two-dimensional nonlinear Volterra-Fredholm integro-differential equation by using the following powerful, efficient but simple methods: (i Modified Adomian decomposition method (MADM, (ii Variational iteration method (VIM, (iii Homotopy analysis method (HAM and (iv Modified homotopy perturbation method (MHPM. The uniqueness of the solution and the convergence of the proposed methods are proved in detail. Numerical examples are studied to demonstrate the accuracy of the presented methods.
Ma, Jing; Hou, Xiaofang; Zhang, Bing; Wang, Yunan; He, Langchong
2014-03-01
In this study, a new"heart-cutting" two-dimensional liquid chromatography method for the simultaneous determination of carbohydrate contents in milk powder was presented. In this two dimensional liquid chromatography system, a Venusil XBP-C4 analysis column was used in the first dimension ((1)D) as a pre-separation column, a ZORBAX carbohydrates analysis column was used in the second dimension ((2)D) as a final-analysis column. The whole process was completed in less than 35min without a particular sample preparation procedure. The capability of the new two dimensional HPLC method was demonstrated in the determination of carbohydrates in various brands of milk powder samples. A conventional one dimensional chromatography method was also proposed. The two proposed methods were both validated in terms of linearity, limits of detection, accuracy and precision. The comparison between the results obtained with the two methods showed that the new and completely automated two dimensional liquid chromatography method is more suitable for milk powder sample because of its online cleanup effect involved.
Description of Collective Motion in Two-Dimensional Nuclei; Tomonaga's Method Revisited
Nishiyama, Seiya
2014-01-01
Four decades ago, Tomonaga proposed the elementary theory of quantum mechanical collective motion of two-dimensional nuclei of N nucleons. The theory is based essentially on the neglect of 1/sqrtN against unity. Very recently we have given exact canonically conjugate momenta to quadrupole-type collective coordinates under some subsidiary conditions and have derived nuclear quadrupole-type collective Hamiltonian. Even in the case of simple two-dimensional nuclei, we have a subsidiary condition to obtain exact canonical variables. Particularly the structure of the collective subspace satisfying the subsidiary condition is studied in detail. This subsidiary condition is important to investigate what is a structure of the collective subspace.
The investigation on two-dimensional pilot-symbol-aided channel estimation method for OFDM system
Institute of Scientific and Technical Information of China (English)
Sun Juying; Zhang Yanhua
2008-01-01
Channel estimation for orthogonal frequency division multiplexing (OFDM) system has attracted widespread attention. In this paper, a novel efficient two-dimensional (2-D) channel estimation algorithm based on fast Fourier transform (FFT) is proposed for a time-variant, frequency-selective wideband wireless channel. Both theoretical analysis and simulation results are addressed in the paper. The simulation results prove that the proposed algorithm has simpler implementation, better performance and wider application than other traditional decision-directed algorithms.
Third order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation system
Lukácová-Medvid'ová, Maria; Warnecke, Gerald; Zahaykah, Yousef
2003-01-01
The subject of the paper is the derivation and analysis of third order finite volume evolution Galerkin schemes for the two-dimensional wave equation system. To achieve this the first order approximate evolution operator is considered. A recovery stage is carried out at each level to generate a piecewise polynomial approximation from the piecewise constants, to feed into the calculation of the fluxes. We estimate the truncation error and give numerical examples to demonstrate the higher order...
Directory of Open Access Journals (Sweden)
Farshid Mirzaee
2014-06-01
Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.
Bessel-Modal Method for Finite-Height Two-Dimensional Photonic Crystal
Institute of Scientific and Technical Information of China (English)
SHI Jun-Feng; HUANG Sheng-Ye; WANG Dong-Sheng
2005-01-01
@@ By applying the dyadic Green function, the dispersion relation of two-dimensional photonic crystal can be ex pressed as the cylindrical wave expansions of eigenmodes. With the aid of Green's theorem, the plane-wavecoefficients of eigenmodes are reconstructed and employed to formulate the scattering matrix of finite-height twodimensional photonic crystal. These operations make the convergence rate very rapid, and reduce the dimension of the scattering matrix. As a demonstration, we present the transmission and electromagnetic field distributions for an InGaAsIn photonic crystal, and investigate their convergence.
Institute of Scientific and Technical Information of China (English)
Guangwei Yuan; Longjun Shen
2003-01-01
In this paper we are going to discuss the difference schemes with intrinsic parallelismfor the boundary value problem of the two dimensional semilinear parabolic systems. Theunconditional stability of the general finite difference schemes with intrinsic parallelismis justified in the sense of the continuous dependence of the discrete vector solution ofthe difference schemes on the discrete data of the original problems in the discrete W2(2,1)norms. Then the uniqueness of the discrete vector solution of this difference scheme followsas the consequence of the stability.
Li, Xiaoming; Shen, Qirong; Zhang, Dongqing; Mei, Xinlan; Ran, Wei; Xu, Yangchun; Yu, Guanghui
2013-01-01
While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) (13)C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity) further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH) carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.
Directory of Open Access Journals (Sweden)
Xiaoming Li
Full Text Available While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D (13C nuclear magnetic resonance (NMR correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.
Energy Technology Data Exchange (ETDEWEB)
Chae, Young Kee; Kim, Seol Hyun [Sejong Univ., Seoul (Korea, Republic of); Ellinger, James E.; Markley, John L. [Univ. of Wisconsin-Madison Madison (United States)
2013-12-15
Saccharomyces cerevisiae, which is a common species of yeast, is by far the most extensively studied model of a eukaryote because although it is one of the simplest eukaryotes, its basic cellular processes resemble those of higher organisms. In addition, yeast is a commercially valuable organism for ethanol production. Since the yeast data can be extrapolated to the important aspects of higher organisms, many researchers have studied yeast metabolism under various conditions. In this report, we analyzed and compared metabolites of Saccharomyces cerevisiae under salt and pH stresses of various strengths by using two-dimensional NMR spectroscopy. A total of 31 metabolites were identified for most of the samples. The levels of many identified metabolites showed gradual or drastic increases or decreases depending on the severity of the stresses involved. The statistical analysis produced a holistic outline: pH stresses were clustered together, but salt stresses were spread out depending on the severity. This work could provide a link between the metabolite profiles and mRNA or protein profiles under representative and well studied stress conditions.
Directory of Open Access Journals (Sweden)
H. S. Shukla
2014-11-01
Full Text Available In this paper, a numerical solution of two dimensional nonlinear coupled viscous Burger equation is discussed with appropriate initial and boundary conditions using the modified cubic B-spline differential quadrature method. In this method, the weighting coefficients are computed using the modified cubic B-spline as a basis function in the differential quadrature method. Thus, the coupled Burger equation is reduced into a system of ordinary differential equations. An optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme is applied for solving the resulting system of ordinary differential equations. The accuracy of the scheme is illustrated by taking two numerical examples. Computed results are compared with the exact solutions and other results available in literature. Obtained numerical result shows that the described method is efficient and reliable scheme for solving two dimensional coupled viscous Burger equation.
Marco Pedro Ramirez-Tachiquin; Cesar Marco Antonio Robles Gonzalez; Rogelio Adrian Hernandez-Becerril; Ariana Guadalupe Bucio Ramirez
2013-01-01
Based upon the elements of the modern pseudoanalytic function theory, we analyze a new method for numerically solving the forward Dirichlet boundary value problem corresponding to the two-dimensional electrical impedance equation. The analysis is performed by introducing interpolating piecewise separable-variables conductivity functions in the unit circle. To warrant the effectiveness of the posed method, we consider several examples of conductivity functions, whose boundary condi...
Energy Technology Data Exchange (ETDEWEB)
Ong, R.L.; Yu, R.K.
1986-02-15
The 1H-NMR spectra of the oligosaccharide derived from monosialoganglioside GM1 (GM1 = beta-D-galactosyl-(1-3)-beta-D-N-acetylgalactosaminyl-(1-4)- (alpha-N-acetylneuraminyl-(2-3)-)-beta-D-galactosyl-(1-4)-b eta-D-glucosylceramide) (GM1OS) and its reduced form (GM1OS-R) have been obtained at 500 MHz in D2O. Through the combined use of one-dimensional and homonuclear two-dimensional spin-echo J-correlated (2D SECSY) spectra of GM1OS-R, the assignments for the ring protons of GM1OS are made. Data on chemical shifts and coupling constants of GM1OS including the alpha-linked neuraminic acid protons, in aqueous solution, are tabulated. Due to the very small coupling constants (less than 2 Hz) and the closeness in chemical shifts (less than 0.04 ppm) for the pair of correlated peaks in the two-dimensional spectrum, the information on the connectivities of the H5 ring protons of the neutral sugar residues is missing. Second-order coupling also blurs this information. Data are compared with those obtained for ganglioside GM1 in dimethyl sulfoxide (DMSO; the actual composition therein was 97% DMSO-d6 and 3% D2O) by T. A. W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu. While the heterogeneity of chemical shifts for the H5, H6a, and H6b protons diminishes in D2O, that for A-9a and A-9b remains. The latter suggests an intraneuraminic acid conformation involving the glycerol side chain unaffected by the solvent. Moreover, the chemical shifts of the III-1, III-2, and A-4 protons (and perhaps the II-4, IV-2, and A-8 protons) in D2O exhibit unusual upfield shifts compared with those in DMSO. This indicates that the intramolecular interactions between GalNAc residue III and neuraminic acid present in DMSO are weakened in D2O. The effect of temperature on the conformation is also examined and appears to be minimal (less than 0.02 ppm) in the range 22-50 degrees C.
Error analysis for satellite gravity field determination based on two-dimensional Fourier methods
Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun
2012-01-01
The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...
Qian, Lin-Feng; Shi, Guo-Dong; Huang, Yong; Xing, Yu-Ming
2017-10-01
In vector radiative transfer, backward ray tracing is seldom used. We present a backward and forward Monte Carlo method to simulate vector radiative transfer in a two-dimensional graded index medium, which is new and different from the conventional Monte Carlo method. The backward and forward Monte Carlo method involves dividing the ray tracing into two processes backward tracing and forward tracing. In multidimensional graded index media, the trajectory of a ray is usually a three-dimensional curve. During the transport of a polarization ellipse, the curved ray trajectory will induce geometrical effects and cause Stokes parameters to continuously change. The solution processes for a non-scattering medium and an anisotropic scattering medium are analysed. We also analyse some parameters that influence the Stokes vector in two-dimensional graded index media. The research shows that the Q component of the Stokes vector cannot be ignored. However, the U and V components of the Stokes vector are very small.
Ju, Xu-Dong; Zhou, Chuan-Xing; Dong, Jing; Zhao, Yu-Bin; Zhang, Hong-Yu; Qi, Hui-Rong; Ou-Yang, Qun
2016-01-01
We report the application of the resistive anode readout method on a two dimensional imaging GEM detector. The resistive anode consists $6\\times6$ cells with the cell size $6~\\mathrm{mm}\\times6~\\mathrm{mm}$. New electronics and DAQ system are used to process the signals from 49 readout channels. The detector has been tested by using the X-ray tube (8~keV). The spatial resolution of the detector is about $103.46~\\mathrm{{\\mu}m}$ with the signal part $66.41~\\mathrm{{\\mu}m}$. The nonlinearity of the detector is less than $0.5\\%$. A good two dimensional imaging capability is achieved as well. The performances of the detector show the prospect of the resistive anode readout method for the large readout area imaging detectors.
Institute of Scientific and Technical Information of China (English)
Chaojun Yan; Wenbiao Peng; Haijun Li
2007-01-01
@@ The alternate-direction implicit finite difference beam propagation method (FD-BPM) is used to analyze the two-dimensional (2D) symmetrical multimode interference (MMI) couplers. The positions of the images at the output plane and the length of multimode waveguide are accurately determined numerically. In order to reduce calculation time, the parallel processing of the arithmetic is implemented by the message passing interface and the simulation is accomplished by eight personal computers.
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
Paul, Sudeshna; Friedman, Alan M; Bailey-Kellogg, Chris; Craig, Bruce A
2013-04-01
The interatomic distance distribution, P(r), is a valuable tool for evaluating the structure of a molecule in solution and represents the maximum structural information that can be derived from solution scattering data without further assumptions. Most current instrumentation for scattering experiments (typically CCD detectors) generates a finely pixelated two-dimensional image. In contin-uation of the standard practice with earlier one-dimensional detectors, these images are typically reduced to a one-dimensional profile of scattering inten-sities, I(q), by circular averaging of the two-dimensional image. Indirect Fourier transformation methods are then used to reconstruct P(r) from I(q). Substantial advantages in data analysis, however, could be achieved by directly estimating the P(r) curve from the two-dimensional images. This article describes a Bayesian framework, using a Markov chain Monte Carlo method, for estimating the parameters of the indirect transform, and thus P(r), directly from the two-dimensional images. Using simulated detector images, it is demonstrated that this method yields P(r) curves nearly identical to the reference P(r). Furthermore, an approach for evaluating spatially correlated errors (such as those that arise from a detector point spread function) is evaluated. Accounting for these errors further improves the precision of the P(r) estimation. Experimental scattering data, where no ground truth reference P(r) is available, are used to demonstrate that this method yields a scattering and detector model that more closely reflects the two-dimensional data, as judged by smaller residuals in cross-validation, than P(r) obtained by indirect transformation of a one-dimensional profile. Finally, the method allows concurrent estimation of the beam center and Dmax, the longest interatomic distance in P(r), as part of the Bayesian Markov chain Monte Carlo method, reducing experimental effort and providing a well defined protocol for these
Photonic-Crystal Band-pass Resonant Filters Design Using the Two-dimensional FDTD Method
Directory of Open Access Journals (Sweden)
Hadjira Badaoui
2011-05-01
Full Text Available Recently, band-pass photonic crystal filters have attracted great attention due to their important applications in the fields of optical interconnection network and ultrahigh speed information processing. In this paper we propose the design of a new type of photonic crystal band-pass resonant filters realized in one-missing-row waveguide by decreasing proper defects along the waveguide with broadband acceptable bandwidth. Two types of photonic crystal band-pass filters are utilized and optimized using the Two-dimensional finite-difference time-domain (FDTD technique. The first one is based on the Fabry-Perot cavities and in the second one a cavity is introduced in the middle by omitting two neighboring air holes in waveguide. Numerical results show that a band [1.47 and#956;m-1.57 and#956;m] around 1.55um is transmitted with a maximum transmission of about 68% and as a result wide band-pass filters are designed.
Institute of Scientific and Technical Information of China (English)
Bai Jing-Song; Zhang Zhan-Ji; Li Ping; Zhong Min
2006-01-01
Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.
A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Zhu Pei-Ping; Tian Yang-Chao; Wu Zi-Yu
2012-01-01
Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique.By using two-dimensional (2D) gratings,the observable contrast is extended to two refraction directions.Recently,we have developed a novel reverse-projection (RP) method,which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging.In this contribution,we present its extension to the 2D grating-based X-ray phase contrast imaging,named the two-dimensional reverseprojection (2D-RP) method,for information retrieval.The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption,the horizontal and the vertical refraction images.The obtained information can be used for the reconstruction of the three-dimensional phase gradient field,and for an improved phase map retrieval and reconstruction.Numerical experiments are carried out,and the results confirm the validity of the 2D-RP method.
CHEBYSHEV SPECTRAL-FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL UNSTEADY NAVIER-STOKES EQUATION
Institute of Scientific and Technical Information of China (English)
Benyu Guo; Songnian He; Heping Ma
2002-01-01
A mixed Chebyshev spectral-finite element method is proposed for solving two-dimensionalunsteady Navier-Stokes equation. The generalized stability and convergence are proved.The numerical results show the advantages of this method.
2015-04-01
distribution is unlimited. i CONTENTS Page Introduction 1 Two-dimensional Material Geometry and Analogs with Close-packed Systems 1 Matching...distribution is unlimited. 1 INTRODUCTION Two-dimensional (2D) material heterostructures offer novel and compelling electronic and optical...methods have undoubtedly been created for matching lattice constants of dissimilar nanomaterials , very few are actually covered explicitly in literature
The CABARET method for a weakly compressible fluid flows in one- and two-dimensional implementations
Kulikov, Yu M.; Son, E. E.
2016-11-01
The CABARET method implementation for a weakly compressible fluid flow is in the focus of present paper. Testing both one-dimensional pressure balancing problem and a classical plane Poiseuille flow, we analyze this method in terms of discontinuity resolution, dispersion and dissipation. The method is proved to have an adequate convergence to an analytical solution for a velocity profile. We also show that a flow formation process represents a set of self-similar solutions under varying pressure differential and sound speed.
AN IMPROVED HYBRID BOUNDARY NODE METHOD IN TWO-DIMENSIONAL SOLIDS
Institute of Scientific and Technical Information of China (English)
Miao Yu; Wang Yuanhan; Jiang Heyang
2005-01-01
The hybrid boundary node method (HBNM) is a promising method for solving boundary value problems with the hybrid displacement variational formulation and shape functions from the moving least squares(MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the latter. Following its application in solving potential problems, it is further developed and numerically implemented for 2D solids in this paper. The rigid movement method is employed to solve the hyper-singular integrations. Numerical examples for some 2D solids have been given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution.The parameters that influence the performance of this method are studied through numerical examples.
Two Hybrid Methods for Solving Two-Dimensional Linear Time-Fractional Partial Differential Equations
Directory of Open Access Journals (Sweden)
B. A. Jacobs
2014-01-01
Full Text Available A computationally efficient hybridization of the Laplace transform with two spatial discretization techniques is investigated for numerical solutions of time-fractional linear partial differential equations in two space variables. The Chebyshev collocation method is compared with the standard finite difference spatial discretization and the absolute error is obtained for several test problems. Accurate numerical solutions are achieved in the Chebyshev collocation method subject to both Dirichlet and Neumann boundary conditions. The solution obtained by these hybrid methods allows for the evaluation at any point in time without the need for time-marching to a particular point in time.
Ibrahim, A. H.; Tiwari, S. N.; Smith, R. E.
1997-01-01
Variational methods (VM) sensitivity analysis employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.
Ni, Haibin; Wang, Ming; Hao, Hui; Zhou, Jing
2016-06-01
By uniform infiltration of a different material into monolayered polystyrene colloidal crystals and by flexibly combining the two materials as etching masks, we demonstrate an improved nanosphere lithography method that possesses the ability to produce a diverse range of tunable nano-patterns in a small area with good reproducibility. The factors that affect the infiltration height and uniformity are characterized and discussed. Annular gap arrays, close-packed ring arrays, and bowl arrays are demonstrated by this method. The geometry size of these nano-patterns can be tuned over the range 10 nm to ∼500 nm with steps of ∼5 nm during the fabrication progress. Formation mechanisms of the close-packed ring arrays are experimentally investigated. Because all the fabrication processes involved in this method are adaptable to sophisticated integrated circuit fabrication techniques, most of the nano-patterns produced by this method could be integrated on thin films, which is desirable for optics integration and array sensing.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A novel method has been developed by integration of multi-concentration and two-dimensional(2D) capillary electrophoresis(CE) for simultaneous enhancement of detection sensitivity and separation power in complex samples.Capillary zone electrophoresis(CZE) was used as the first dimension separation according to mobilities,from which the effluent fractions were further analyzed by micellar electrokinetic capillary chromatography(MEKC) acting as the second dimension.Cation-selective exhaustive injection(CSEI) preconcentration method was used to introduce more analytes into the capillary.Furthermore,pH junction and sweeping dual concentration strategies were employed to avoid sample zone diffusion at the interface.The resulting electrophoregram was quite different from that of either CZE or MEKC separation.Up to(0.5-1.2) ×104 fold improvements in sensitivity were obtained relative to the conventional electrokinetic injection method.The proposed method was successfully applied to the determination of drugs in human urine.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yong [Ningbo Univ., Ningbo (China). Department of Mathematics; Shanghai Jiao-Tong Univ., Shangai (China). Department of Physics; Chinese Academy of sciences, Beijing (China). Key Laboratory of Mathematics Mechanization
2005-03-01
A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion.
Hogerheijde, M R; Hogerheijde, Michiel R.; Tak, Floris F. S. van der
2000-01-01
We present a numerical method and computer code to calculate the radiative transfer and excitation of molecular lines. Formulating the Monte Carlo method from the viewpoint of cells rather than photons allows us to separate local and external contributions to the radiation field. This separation is critical to accurate and fast performance at high optical depths (tau>100). The random nature of the Monte Carlo method serves to verify the independence of the solution to the angular, spatial, and frequency sampling of the radiation field. These features allow use of our method in a wide variety of astrophysical problems without specific adaptations: in any axially symmetric source model and for all atoms or molecules for which collisional rate coefficients are available. Continuum emission and absorption by dust is explicitly taken into account but scattering is neglected. We illustrate these features in calculations of (i) the HCO+ J=1-0 and 3-2 emission from a flattened protostellar envelope with infall and ro...
A method for geometric modelling of magnetic anomalies: Two dimensional bodies
Digital Repository Service at National Institute of Oceanography (India)
Rao, T.C.S.
for bodies of different shapes. A procedure has been evolved to compute the anomalies for all types of step and dyke models from a single formula by suitably reorienting the 'step model and by redefining its edges and the slope or dip angle. This method also...
Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method.
Wendling, M.; Louwe, R.J.W.; McDermott, L.N.; Sonke, J.J.; Herk, M. van; Mijnheer, B.J.
2006-01-01
The use of electronic portal imaging devices (EPIDs) is a promising method for the dosimetric verification of external beam, megavoltage radiation therapy-both pretreatment and in vivo. In this study, a previously developed EPID back-projection algorithm was modified for IMRT techniques and applied
Two-Dimensional Far Field Source Locating Method with Nonprior Velocity
Directory of Open Access Journals (Sweden)
Qing Chen
2016-01-01
Full Text Available Relative position of seismic source and sensors has great influence on locating accuracy, particularly in far field conditions, and the accuracy will decrease seriously due to limited calculation precision and prior velocity error. In order to improve the locating accuracy of far field sources by isometric placed sensors in a straight line, a new locating method with nonprior velocity is proposed. After exhaustive research, this paper states that the hyperbola which is used for locating will be very close to its asymptote when seismic source locates in far field of sensors; therefore, the locating problem with prior velocity is equivalent to solving linear equations and the problem with nonprior velocity is equivalent to a nonlinear optimization problem with respect to the unknown velocity. And then, this paper proposed a new locating method based on a one-variable objective function with respect to the unknown velocity. Numerical experiments show that the proposed method has faster convergence speed, higher accuracy, and better stability.
Errors in using two dimensional methods to measure motion about an offset revolute
Energy Technology Data Exchange (ETDEWEB)
Hollerbach, K. [Lawrence Livermore National Lab., CA (United States); Hollister, A. [Louisiana State Univ., Shreveport, LA (United States). Medical Center
1996-03-01
2D measurement of human joint motion involves analysis of 3D displacements in an observer selected measurement plane. Accurate marker placement and alignment of joint motion plane with the observer plane are difficult. Alignment of the two planes is essential for accurate recording and understanding of the joint mechanism and the movement about it. In nature, joint axes can exist at any orientation and location relative to a global reference frame. An aritrary axis is any axis that is not coincident with a reference coordinate. We calculate the errors resulting from measuring joint motion about an arbitrary axis using 2D methods.
Level set formulation of two-dimensional Lagrangian vortex detection methods
Hadjighasem, Alireza
2016-01-01
We propose here the use of the variational level set methodology to capture Lagrangian vortex boundaries in 2D unsteady velocity fields. This method reformulates earlier approaches that seek material vortex boundaries as extremum solutions of variational problems. We demonstrate the performance of this technique for two different variational formulations built upon different notions of coherence. The first formulation uses an energy functional that penalizes the deviation of a closed material line from piecewise uniform stretching [Haller and Beron-Vera, J. Fluid Mech. 731, R4 (2013)]. The second energy function is derived for a graph-based approach to vortex boundary detection [Hadjighasem et al., Phys. Rev. E 93, 063107 (2016)]. Our level-set formulation captures an a priori unknown number of vortices simultaneously at relatively low computational cost. We illustrate the approach by identifying vortices from different coherence principles in several examples.
Corner-Space Renormalization Method for Driven-Dissipative Two-Dimensional Correlated Systems.
Finazzi, S; Le Boité, A; Storme, F; Baksic, A; Ciuti, C
2015-08-21
We present a theoretical method to study driven-dissipative correlated quantum systems on lattices with two spatial dimensions (2D). The steady-state density matrix of the lattice is obtained by solving the master equation in a corner of the Hilbert space. The states spanning the corner space are determined through an iterative procedure, using eigenvectors of the density matrix of smaller lattice systems, merging in real space two lattices at each iteration and selecting M pairs of states by maximizing their joint probability. The accuracy of the results is then improved by increasing the dimension M of the corner space until convergence is reached. We demonstrate the efficiency of such an approach by applying it to the driven-dissipative 2D Bose-Hubbard model, describing lattices of coupled cavities with quantum optical nonlinearities.
Two-dimensional finite volume method for dam-break flow simulation
Institute of Scientific and Technical Information of China (English)
M.ALIPARAST
2009-01-01
A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).
Two-dimensional cell tracking by FPGA-optical correlation method
Solís, Iraís; Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Ibarra-Manzano, O. G.; Debeir, O.; Ledesma-Orozco, S.; Pérez-Careta, E.; Sanchez-Mondragón, J. J.
2009-06-01
Our work uses 1080 images sequence obtained from "in vitro" samples taken every 4 min from a microscope under phase contrast technique. These images are in JPEG format and are 500×700 pixels size with a compression rate of 3:1. We developed an algorithm and characterize it over several image operations against the tracking effectiveness and its robustness respect mitosis and cell shape change. Image equalization, dilation and erosion were the image processing procedures founded to provide best tracking results. Equalization procedure, for example, required a time delay of 5 sec for a size target of 60×90 pixels and 9 sec for size target of 89×100 pixels. This algorithm was implemented into a FPGA which controlled our optical correlator in order to performance all Fourier operations by optical method. Our results showed that the use of the optical correlator can reduce the time consuming in the image process until for 90% which able us to track cells in vascular structure.
Note on the Physical Basis of the Kutta Condition in Unsteady Two-Dimensional Panel Methods
Directory of Open Access Journals (Sweden)
M. La Mantia
2015-01-01
Full Text Available Force generation in avian and aquatic species is of considerable interest for possible engineering applications. The aim of this work is to highlight the theoretical and physical foundations of a new formulation of the unsteady Kutta condition, which postulates a finite pressure difference at the trailing edge of the foil. The condition, necessary to obtain a unique solution and derived from the unsteady Bernoulli equation, implies that the energy supplied for the wing motion generates trailing-edge vortices and their overall effect, which depends on the motion initial parameters, is a jet of fluid that propels the wing. The postulated pressure difference (the value of which should be experimentally obtained models the trailing-edge velocity difference that generates the thrust-producing jet. Although the average thrust values computed by the proposed method are comparable to those calculated by assuming null pressure difference at the trailing edge, the latter (commonly used approach is less physically meaningful than the present one, as there is a singularity at the foil trailing edge. Additionally, in biological applications, that is, for autonomous flapping, the differences ought to be more significant, as the corresponding energy requirements should be substantially altered, compared to the studied oscillatory motions.
Streamline integration as a method for two-dimensional elliptic grid generation
Wiesenberger, Matthias; Einkemmer, Lukas
2016-01-01
We propose a new numerical algorithm to construct a structured numerical grid of a doubly connected domain that is bounded by the contour lines of a given function. It is based on the integration of the streamlines of the two vector fields that form the basis of the coordinate system. These vector fields are either built directly from the given function or from the solution of a suitably chosen elliptic equation (which can be solved once an initial grid has been constructed). We are able to construct conformal, orthogonal and curvilinear coordinates. The method is parallelizable and the metric elements can be computed with high accuracy. Furthermore, it is easy to implement as only the integration of well-behaved ordinary differential equations and the inversion of a linear elliptic equation are required. All our grids are orthogonal to the boundary of the domain, which is the major advantage over previously suggested grids. We assess the quality of our grids with the solution of an elliptic equation and the ...
Huang, Huaxiong; Takagi, Shu
2003-08-01
In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local (near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to potential and Stokes flows. However, they are also relevant to Navier-Stokes flows, heat conduction in composite media, and other problems.
Sandhu, Ali Imran
2016-04-10
A sparsity-regularized Born iterative method (BIM) is proposed for efficiently reconstructing two-dimensional piecewise-continuous inhomogeneous dielectric profiles. Such profiles are typically not spatially sparse, which reduces the efficiency of the sparsity-promoting regularization. To overcome this problem, scattered fields are represented in terms of the spatial derivative of the dielectric profile and reconstruction is carried out over samples of the dielectric profile\\'s derivative. Then, like the conventional BIM, the nonlinear problem is iteratively converted into a sequence of linear problems (in derivative samples) and sparsity constraint is enforced on each linear problem using the thresholded Landweber iterations. Numerical results, which demonstrate the efficiency and accuracy of the proposed method in reconstructing piecewise-continuous dielectric profiles, are presented.
Liu, Jun; Han, Jiuqiang; Lv, Hongqiang; Li, Bing
2015-04-16
With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV) detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS) and vehicular ad hoc networks (VANETs). Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.
Directory of Open Access Journals (Sweden)
H. S. Shukla
2015-01-01
Full Text Available In this paper, a modified cubic B-spline differential quadrature method (MCB-DQM is employed for the numerical simulation of two-space dimensional nonlinear sine-Gordon equation with appropriate initial and boundary conditions. The modified cubic B-spline works as a basis function in the differential quadrature method to compute the weighting coefficients. Accordingly, two dimensional sine-Gordon equation is transformed into a system of second order ordinary differential equations (ODEs. The resultant system of ODEs is solved by employing an optimal five stage and fourth-order strong stability preserving Runge–Kutta scheme (SSP-RK54. Numerical simulation is discussed for both damped and undamped cases. Computational results are found to be in good agreement with the exact solution and other numerical results available in the literature.
Institute of Scientific and Technical Information of China (English)
Neila Jellouli; Asma Ben Salem; Abdelwahed Ghorbel; Hatem Ben Jouira
2010-01-01
An efficient protein extraction method is crucial to ensure successful separation by two-dimensional electrophoresis(2-DE)for recalcitrant plant species, in particular for grapevine(Vitis vinifera L.). Trichloroacetic acid-acetone(TCA-acetone)and phenol extraction methods were evaluated for proteome analysis of leaves and roots from the Tunisian cultivar 'Razegui'. The phenol-based protocol proved to give a higher protein yield,a greater spot resolution, and a minimal streaking on 2-DE gels for both leaf and root tissues compared with the TCA-based protocol. Furthermore, the highest numbers of detected proteins on 2-DE gels were observed using the phenol extraction from leaves and roots as compared with TCA-acetone extraction.
Directory of Open Access Journals (Sweden)
Shogo Kaneko
2014-01-01
Full Text Available We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.
T., M P Ramirez; Hernandez-Becerril, R A
2012-01-01
Based upon elements of the modern Pseudoanalytic Function Theory, we analyse a new method for numerically approaching the solution of the Dirichlet boundary value problem, corresponding to the two-dimensional Electrical Impedance Equation. The analysis is performed by interpolating piecewise separable-variables conductivity functions, that are eventually used in the numerical calculations in order to obtain finite sets of orthonormal functions, whose linear combinations succeed to approach the imposed boundary conditions. To warrant the effectiveness of the numerical method, we study six different examples of conductivity. The boundary condition for every case is selected considering one exact solution of the Electrical Impedance Equation. The work intends to discuss the contributions of these results into the field of the Electrical Impedance Tomography.
Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.
2007-04-01
A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.
Directory of Open Access Journals (Sweden)
Fusong Yuan
Full Text Available To develop a real-time recording system based on computer binocular vision and two-dimensional image feature extraction to accurately record mandibular movement in three dimensions.A computer-based binocular vision device with two digital cameras was used in conjunction with a fixed head retention bracket to track occlusal movement. Software was developed for extracting target spatial coordinates in real time based on two-dimensional image feature recognition. A plaster model of a subject's upper and lower dentition were made using conventional methods. A mandibular occlusal splint was made on the plaster model, and then the occlusal surface was removed. Temporal denture base resin was used to make a 3-cm handle extending outside the mouth connecting the anterior labial surface of the occlusal splint with a detection target with intersecting lines designed for spatial coordinate extraction. The subject's head was firmly fixed in place, and the occlusal splint was fully seated on the mandibular dentition. The subject was then asked to make various mouth movements while the mandibular movement target locus point set was recorded. Comparisons between the coordinate values and the actual values of the 30 intersections on the detection target were then analyzed using paired t-tests.The three-dimensional trajectory curve shapes of the mandibular movements were consistent with the respective subject movements. Mean XYZ coordinate values and paired t-test results were as follows: X axis: -0.0037 ± 0.02953, P = 0.502; Y axis: 0.0037 ± 0.05242, P = 0.704; and Z axis: 0.0007 ± 0.06040, P = 0.952. The t-test result showed that the coordinate values of the 30 cross points were considered statistically no significant. (P<0.05.Use of a real-time recording system of three-dimensional mandibular movement based on computer binocular vision and two-dimensional image feature recognition technology produced a recording accuracy of approximately ± 0.1 mm, and is
Maloth, Saritha; Ganapathy, K S
2011-01-01
The present study was conducted to determine the most accurate bite mark overlay fabrication technique by studying two physical characteristics, i.e., area and rotation of biting edges of anterior teeth of thirty volunteers. The objective of the study was to evaluate the reliability and efficacy of five commonly used methods of human bite mark overlays using two dimensional (2D) digital images of dental study casts as a gold standard, to rank different methods according to statistically based determination of relative accuracy of each method and to determine its feasibility in Forensic science. Overlays were produced from the biting surfaces of six upper and six lower anterior teeth of 30 volunteers using the following five methods: a) hand tracing from study casts, b) hand tracing from wax impressions, c) xerographic method, d) radiopaque impression method and e) 2D computer-based method. Area of the biting edges of the anterior teeth and relative rotation of each anterior tooth were measured and compared. The xerographic method was determined to be the more accurate method with respect to tooth area and rotation. Hand tracing methods, from either wax impressions of teeth or directly from study casts, were determined to be inaccurate and subjective. It is recommended that forensic odontologists discontinue the use of hand tracing overlays in bite mark comparison cases as there is lot of scope for manipulation and observer bias.
Zarei, Mohammad Hossein
2016-01-01
Although creating a unified theory in Elementary Particles Physics is still an open problem, there are a lot of attempts for unifying other fields of physics. Following such unifications, we regard a two dimensional (2D) classical $\\Phi^{4}$ field theory model to study several field theories with different symmetries in various dimensions. While the completeness of this model has been already proved by a mapping between statistical mechanics and quantum information theory, here, we take into account a fundamental systematic approach with purely mathematical basis to re-derive such completeness in a general manner. Due to simplicity and generality, we believe that our method leads to a general approach which can be understood by other physical communities as well as quantum information theorists. Furthermore, our proof of the completeness is not only a proof-of-principle, but also an interesting algorithmic proof. We consider a discrete version of a general field theory as an arbitrary polynomial function of f...
Sunahara, Y.; Kojima, F.
1987-01-01
The purpose of this paper is to establish a method for identifying unknown parameters involved in the boundary state of a class of diffusion systems under noisy observations. A mathematical model of the system dynamics is given by a two-dimensional diffusion equation. Noisy observations are made by sensors allocated on the system boundary. Starting with the mathematical model mentioned above, an online parameter estimation algorithm is proposed within the framework of the maximum likelihood estimation. Existence of the optimal solution and related necessary conditions are discussed. By solving a local variation of the cost functional with respect to the perturbation of parameters, the estimation mechanism is proposed in a form of recursive computations. Finally, the feasibility of the estimator proposed here is demonstrated through results of digital simulation experiments.
Takagi, S.; Og˜uz, H. N.; Zhang, Z.; Prosperetti, A.
2003-05-01
This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to "transfer" the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.
DEFF Research Database (Denmark)
Castillo, John J.; Torres, Mary H.; Molina, Daniel R.
2012-01-01
A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate that was......A conjugate between single-walled carbon nanotubes, chitosan and folic acid has been prepared. It was characterized by diffusion ordered two-dimensional hydrogen-1 nuclear magnetic resonance and hydrogen-1 nuclear magnetic resonance spectroscopy which revealed the presence of a conjugate...... that was generated by the linkage between the carboxyl moiety of the folic acid and the amino group of the chitosan, which in turn was non-covalently bound to the single-walled carbon nanotubes. The obtained diffusion coefficient values demonstrated that free folic acid diffused more rapidly than the folic acid...... conjugated to single-walled carbon nanotubes-chitosan. The values of the proton signal of hydrogen-1 nuclear magnetic resonance spectroscopy and two-dimensional hydrogen-1 nuclear magnetic resonance spectroscopy further confirmed that the folic acid was conjugated to the chitosan, wrapping the single...
Two-dimensional thin-layer chromatographic method for the analysis of ochratoxin A in green coffee.
Ventura, Meritxell; Anaya, Ivan; Broto-Puig, Francesc; Agut, Montserrat; Comellas, Lluís
2005-09-01
A low-cost thin-layer chromatographic method has been developed for the presumptive measurement of ochratoxin A (OTA) at 5 microg/kg in green coffee beans. The analytical method consisted of extracting OTA by shaking the beans with a mixture of methanol and aqueous sodium bicarbonate solution, which was then purified by liquid-liquid partition into toluene. OTA was separated by normal-phase two-dimensional thin-layer chromatography and detected by visual estimation of fluorescence intensity under a UV lamp at 365 nm. The chromatography solvents were toluene-methanol-formic acid (8:2:0.03) for the first development and petroleum ether-ethyl acetate-formic acid (8:10:1) for the second dimension development. This method was tested with uncontaminated green coffee bean samples spiked with an OTA standard at four different concentrations (5, 10, 20, and 30 microg/kg). The method is rapid, simple, and very easy to implement in coffee-producing countries. It is highly selective and does not involve the use of chlorinated solvents in the sample extraction step. This inexpensive method has been applied to different types of green coffee samples from various countries (Zimbabwe, Brazil, India, Uganda, Colombia, and Indonesia) and different manufacturers, and no OTA below the detection limit of 5 microg/kg was detected in any samples analyzed.
Do, V. Nam; Le, H. Anh; Vu, V. Thieu
2017-04-01
We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.
Energy Technology Data Exchange (ETDEWEB)
Schmidt-Rohr, K.; Fritzsching, K. J.; Liao, S. Y.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry and Ames Laboratory (United States)
2012-12-15
Several techniques for spectral editing of 2D {sup 13}C-{sup 13}C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N-CO peaks through {sup 13}C-{sup 15}N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH{sub 2}) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other {pi}-pulse is shifted from the center of a rotor period t{sub r} by about 0.15 t{sub r}. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled {sup 13}C-{sup 1}H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via {sup 13}C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.
Directory of Open Access Journals (Sweden)
Jun Liu
2015-04-01
Full Text Available With the continuing growth of highway construction and vehicle use expansion all over the world, highway vehicle traffic rule violation (TRV detection has become more and more important so as to avoid traffic accidents and injuries in intelligent transportation systems (ITS and vehicular ad hoc networks (VANETs. Since very few works have contributed to solve the TRV detection problem by moving vehicle measurements and surveillance devices, this paper develops a novel parallel ultrasonic sensor system that can be used to identify the TRV behavior of a host vehicle in real-time. Then a two-dimensional state method is proposed, utilizing the spacial state and time sequential states from the data of two parallel ultrasonic sensors to detect and count the highway vehicle violations. Finally, the theoretical TRV identification probability is analyzed, and actual experiments are conducted on different highway segments with various driving speeds, which indicates that the identification accuracy of the proposed method can reach about 90.97%.
Douglas, Amber M.
Graphene is a two-dimensional (2D) sp2-hybridized carbon-based material possessing properties which include high electrical conductivity, ballistic thermal conductivity, tensile strength exceeding that of steel, high flexural strength, optical transparency, and the ability to adsorb and desorb atoms and molecules. Due to the characteristics of said material, graphene is a candidate for applications in integrated circuits, electrochromic devices, transparent conducting electrodes, desalination, solar cells, thermal management materials, polymer nanocomposites, and biosensors. Despite the above mentioned properties and possible applications, very few technologies have been commercialized utilizing graphene due to the high cost associated with the production of graphene. Therefore, a great deal of effort and research has been performed to produce a material that provides similar properties, reduced graphene oxide due (RGO) to the ease of commercial scaling of the production processes. This material is typically prepared through the oxidation of graphite in an aqueous media to graphene oxide (GO) followed by reduction to yield RGO. Although this material has been extensively studied, there is a lack of consistency in the scientific community regarding the analysis of the resulting RGO material. In this dissertation, a study of the reduction methods for GO and an alternate 2D carbon-based material, humic acid (HA), followed by analysis of the materials using Raman spectroscopy and Energy Dispersive X-ray Spectroscopy (EDS). Means of reduction will include chemical and thermal methods. Characterization of the material has been carried out on both before and after reduction.
Directory of Open Access Journals (Sweden)
Levente Czegledi
2010-05-01
Full Text Available Proteomics in animal science as well as in other biological sciences is a significant tool in the post-genomic era. In proteomic studies the presence and relative abundance of expressed proteins of a cell, tissue or biological fluid is studied. Recently, the whole genome of more and more domestic animal species is known, but genes and the transcribed mRNA have no direct effect on biological systems as they are regulated by proteins, which explain the importance of proteomics. The most common tool in proteomic approach is the two-dimensional polyacrylamide gel electrophoresis (2D PAGE, when proteins are separated by their isoelectric point followed by their mass separation as a second dimension. In this study authors used different sample preparation and protein staining methods on meat, liver and blood plasma and carried out 2D PAGE experiments. The most appropriate sample preparation methods are described in this paper. We concluded that depletion of major proteins in plasma is required but not necessary for meat and liver samples.
Energy Technology Data Exchange (ETDEWEB)
Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica
2014-04-15
In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)
Qin, Mingpu; Zhang, Shiwei
2016-01-01
Ground state properties of the Hubbard model on a two-dimensional square lattice are studied by the auxiliary-field quantum Monte Carlo method. Accurate results for energy, double occupancy, effective hopping, magnetization, and momentum distribution are calculated for interaction strengths of U/t from 2 to 8, for a range of densities including half-filling and n = 0.3, 0.5, 0.6, 0.75, and 0.875. At half-filling, the results are numerically exact. Away from half-filling, the constrained path Monte Carlo method is employed to control the sign problem. Our results are obtained with several advances in the computational algorithm, which are described in detail. We discuss the advantages of generalized Hartree-Fock trial wave functions and its connection to pairing wave functions, as well as the interplay with different forms of Hubbard-Stratonovich decompositions. We study the use of different twist angle sets when applying the twist averaged boundary conditions. We propose the use of quasi-random sequences, whi...
Bertolde, F Z; Almeida, A-A F; Silva, F A C; Oliveira, T M; Pirovani, C P
2014-07-04
Theobroma cacao is a woody and recalcitrant plant with a very high level of interfering compounds. Standard protocols for protein extraction were proposed for various types of samples, but the presence of interfering compounds in many samples prevented the isolation of proteins suitable for two-dimensional gel electrophoresis (2-DE). An efficient method to extract root proteins for 2-DE was established to overcome these problems. The main features of this protocol are: i) precipitation with trichloroacetic acid/acetone overnight to prepare the acetone dry powder (ADP), ii) several additional steps of sonication in the ADP preparation and extractions with dense sodium dodecyl sulfate and phenol, and iii) adding two stages of phenol extractions. Proteins were extracted from roots using this new protocol (Method B) and a protocol described in the literature for T. cacao leaves and meristems (Method A). Using these methods, we obtained a protein yield of about 0.7 and 2.5 mg per 1.0 g lyophilized root, and a total of 60 and 400 spots could be separated, respectively. Through Method B, it was possible to isolate high-quality protein and a high yield of roots from T. cacao for high-quality 2-DE gels. To demonstrate the quality of the extracted proteins from roots of T. cacao using Method B, several protein spots were cut from the 2-DE gels, analyzed by tandem mass spectrometry, and identified. Method B was further tested on Citrus roots, with a protein yield of about 2.7 mg per 1.0 g lyophilized root and 800 detected spots.
Directory of Open Access Journals (Sweden)
Guodong Liu
2013-01-01
Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.
Zhang, J.; Zhao, Zh.; Wang, L.; Zhu, X.; Shen, L.; Yu, Y.
2015-05-01
Two-dimensional correlation spectroscopy (2D-COS) combined with UV absorption spectroscopy was evaluated as a technique for the identification of spectral regions associated with the residues of thiamethoxam in tea. There is only one absorption peak at 275 nm in the absorption spectrum of a mixture of thiamethoxam and tea, which is the absorption peak of tea. Based on 2D-COS, the absorption peak of thiamethoxam at 250 nm is extracted from the UV spectra of the mixture. To determine the residue of thiamethoxam in tea, 250 nm is selected as the measured wavelength, at which the fitting result is as follows: the residual sum of squares is 0.01375, standard deviation R2 is 0.99068, and F value is 426. Statistical analysis shows that there is a significant linear relationship between the concentration of thiamethoxam in tea and the absorbance at 250 nm in the UV spectra of the mixture. Moreover, the average prediction error is 0.0033 and the prediction variance is 0.1654, indicating good predictive result. Thus, the UV absorption spectrum can be used as a measurement method for rapid detection of thiamethoxam residues in tea.
Buitink, S; Enriquez, J E; Halcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G
2014-01-01
The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve long-standing issues such as the transition from Galactic to extragalactic origin, and the nature of the cutoff observed at the highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earth's atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the LOFAR radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation me...
Agafonov, Dmitry E.; Deckert, Jochen; Wolf, Elmar; Odenwälder, Peter; Bessonov, Sergey; Will, Cindy L.; Urlaub, Henning; Lührmann, Reinhard
2011-01-01
More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinity-purified human B, Bact, and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, Bact, and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosome's compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing. PMID:21536652
Riva, Fabio; Milanese, Lucio; Ricci, Paolo
2017-10-01
To reduce the computational cost of the uncertainty propagation analysis, which is used to study the impact of input parameter variations on the results of a simulation, a general and simple to apply methodology based on decomposing the solution to the model equations in terms of Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [Am. J. Comput. Math. 2, 173-193 (2012)], approximates the model equation solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the simulation results of the input parameter that describes the parallel losses. The uncertainty that characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be obtained with a single reduced-cost simulation.
Wang, Yanfei; Wu, Rong; Cho, Kathleen R; Shedden, Kerby A; Barder, Timothy J; Lubman, David M
2006-01-01
A two-dimensional liquid mapping method was used to map the protein expression of eight ovarian serous carcinoma cell lines and three immortalized ovarian surface epithelial cell lines. Maps were produced using pI as the separation parameter in the first dimension and hydrophobicity based upon reversed-phase HPLC separation in the second dimension. The method can be reproducibly used to produce protein expression maps over a pH range from 4.0 to 8.5. A dynamic programming method was used to correct for minor shifts in peaks during the HPLC gradient between sample runs. The resulting corrected maps can then be compared using hierarchical clustering to produce dendrograms indicating the relationship between different cell lines. It was found that several of the ovarian surface epithelial cell lines clustered together, whereas specific groups of serous carcinoma cell lines clustered with each other. Although there is limited information on the current biology of these cell lines, it was shown that the protein expression of certain cell lines is closely related to each other. Other cell lines, including one ovarian clear cell carcinoma cell line, two endometrioid carcinoma cell lines, and three breast epithelial cell lines, were also mapped for comparison to show that their protein profiles cluster differently than the serous samples and to study how they cluster relative to each other. In addition, comparisons can be made between proteins differentially expressed between cell lines that may serve as markers of ovarian serous carcinomas. The automation of the method allows reproducible comparison of many samples, and the use of differential analysis limits the number of proteins that might require further analysis by mass spectrometry techniques.
Institute of Scientific and Technical Information of China (English)
张许; 刘买利
1999-01-01
It has been a continuous interest in measurement of homonuclear scalar coupling constants using two-dimensional NMR spectroscopy because large chemical shift dispersions can efficiently increase spectral resolution. Numerous methods have been developed using homo- and hetero-nuclear correlation and successfully used for a variety of samples. Here we demonstrate an alternative approach based on maximum-quantum correlation NMR spectroscopy (MAXY NMR). The new method combines the advantages of two-dimensional chemical shift dispersion and the spectral editing feature of the MAXY approach and results in separated correlations of CH, CH2, and CH3 groups in a single experiment with enhanced chemical shift resolution. The method had been tested on a middle-sized molecule, dexamethasone, and a tridecapeptide, neurotensin.%偶合常数是一个重要的NMR参数,其数值与分子中化学键的二面角有关,可以为分子结构研究提供很重要的信息.多维NMR谱由于具有较大的化学位移分辨率,因此常常被用来测定同核或异核自旋-自旋偶合常数.本文介绍了利用最高量子相关技术(MAXY)测定同核偶合常数的方法.MAXY是最近发展的一种多维NMR谱编辑技术,可以使不同官能团(CH, CH2, CH3)的相关峰分布于不同的图谱区域,因此比常规的二维谱具有更高的化学位移分辨率.而且被分离开来的NMR相关峰呈吸收性线型,能清楚地展示各自的偶合分裂特征,可以直接用于测定偶合常数.
二维Arimoto熵直线型阈值分割法%Two-Dimensional Arimoto Entropy Linear-type Threshold Segmentation Method
Institute of Scientific and Technical Information of China (English)
张弘; 范九伦
2013-01-01
Arimoto熵是一种广义熵形式.本文首先指出了已提出的二维Arimoto熵阈值分割法的表述错误,给出了正确的二维Arimoto熵阈值分割法；然后提出了二维Arimoto熵直线型阈值分割法,并给出了快速递推公式；对Arimoto熵公式中参量的选择进行了探讨,并基于标准图像进行了分割性能评估.大量分割实验表明,二维Arimoto熵直线型阈值法至少与二维Arimoto熵和二维Renyi熵直线型阈值法分割效果相当；在图像边缘和噪音信息丰富的情况下,二维Arimoto熵直线型阈值法的分割效果优于二维Arimoto熵和二维Renyi熵直线型阈值法,是一种有效的图像阈值方法.%Arimoto entropy is a general form of entropy. Firstly, a representation error on the two-dimensional Arimoto entropy is pointed out. and a correct two-dimensional Arimoto entropy thresholding method is given; a two-dimensional Arimoto entropy linear-type thresholding method and its fast recursive formula are proposed; Arimoto entropy formula parameter selection and the segmentation performance assessment according to the ground truth images are discussed. A large number of segmentation experiment results show that the two-dimensional Arimoto entropy linear-type thresholding method has at least a similar effect with the two-dimensional Arimoto entropy & the two-dimensional Renyi entropy linear-type thresholding; in the cases of the more image edge and noise information, the two-dimensional Arimoto entropy linear-type method is better than the two-dimensional Arimoto entropy & the two-dimensional Renyi entropy linear-type method, is a effective thresholding method.
Directory of Open Access Journals (Sweden)
Saraswati Acharya
2015-08-01
Full Text Available Objective: To deal the implication of metabolic reaction relying on dermal thicknesses of males and females for temperature distribution on the layers of dermal part at various atmospheric temperatures. Methods: The mathematical model involving bioheat equation has been solved using finite element method and Crank-Nicolson technique to numerically investigate two dimensional temperature distributions. Initially, human dermal region under consideration is divided into six parts: stratum corneum, stratum germinativum, papillary region, reticular region, fatty layer and muscle part of subcutaneous tissue. Pennes bioheat equation is used considering the suitable physical and physiological parameters that affect the heat regulation in the layers. Computer simulation has been used for numerical results and graph of the temperatures profiles. Results: Lower percentage of muscle mass and higher percentage of adipose tissue in subcutaneous part of females result lower metabolic rate compared to males. Metabolism is considered as a heat source within the body tissue. The study delineates that when the metabolic heat generation S increases, body temperature rises and when S decreases, it goes down. In higher ambient temperature T∞ effect of S is lower as compared to lower T∞. Conclusions: Males and females would differ in their physiological responses in temperature distribution due to differences in metabolic heat production between genders. The thinner layers of males lead to higher values of skin temperature than thicker layer of females. Thickness plays a significant role in temperature distributions in human males and females body. Current understanding of human thermoregulation is based on male patterns; studies on women are still relatively rare and involve only small number of subjects. So it is still necessary for micro level study for temperature distribution model on the dermal layers of males and females.
Institute of Scientific and Technical Information of China (English)
SaraswatiAcharya; Dil Bahadur Gurung; Vinod Prakash Saxena
2015-01-01
Objective: To deal the implication of metabolic reaction relying on dermal thicknesses of males and females for temperature distribution on the layers of dermal part at various atmospheric temperatures. Methods: The mathematical model involving bioheat equation has been solved using finite element method and Crank-Nicolson technique to numerically investigate two dimensional temperature distributions. Initially, human dermal region under consideration is divided into six parts: stratum corneum, stratum germinativum, papillary region, reticular region, fatty layer and muscle part of subcutaneous tissue. Pennes bioheat equation is used considering the suitable physical and physiological parameters that affect the heat regulation in the layers. Computer simulation has been used for numerical results and graph of the temperatures profiles. Results: Lower percentage of muscle mass and higher percentage of adipose tissue in subcutaneous part of females result lower metabolic rate compared to males. Metabolism is considered as a heat source within the body tissue. The study delineates that when the metabolic heat generation S increases, body temperature rises and when S decreases, it goes down. In higher ambient temperature T∞ effect of S is lower as compared to lower T∞. Conclusions: Males and females would differ in their physiological responses in temperature distribution due to differences in metabolic heat production between genders. The thinner layers of males lead to higher values of skin temperature than thicker layer of females. Thickness plays a significant role in temperature distributions in human males and females body. Current understanding of human thermoregulation is based on male patterns; studies on women are still relatively rare and involve only small number of subjects. So it is still necessary for micro level study for temperature distribution model on the dermal layers of males and females.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and
Halliday, I; Xu, X; Burgin, K
2017-02-01
An extended Benzi-Dellar lattice Boltzmann equation scheme [R. Benzi, S. Succi, and M. Vergassola, Europhys. Lett. 13, 727 (1990)EULEEJ0295-507510.1209/0295-5075/13/8/010; R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145 (1992)PRPLCM0370-157310.1016/0370-1573(92)90090-M; P. J. Dellar, Phys. Rev. E 65, 036309 (2002)1063-651X10.1103/PhysRevE.65.036309] is developed and applied to the problem of confirming, at low Re and drop fluid concentration, c, the variation of effective shear viscosity, η_{eff}=η_{1}[1+f(η_{1},η_{2})c], with respect to c for a sheared, two-dimensional, initially crystalline emulsion [here η_{1} (η_{2}) is the fluid (drop fluid) shear viscosity]. Data obtained with our enhanced multicomponent lattice Boltzmann method, using average shear stress and hydrodynamic dissipation, agree well once appropriate corrections to Landau's volume average shear stress [L. Landau and E. M. Lifshitz, Fluid Mechanics, 6th ed. (Pergamon, London, 1966)] are applied. Simulation results also confirm the expected form for f(η_{i},η_{2}), and they provide a reasonable estimate of its parameters. Most significantly, perhaps, the generality of our data supports the validity of Taylor's disputed simplification [G. I. Taylor, Proc. R. Soc. London, Ser. A 138, 133 (1932)1364-502110.1098/rspa.1932.0175] to reduce the effect of one hydrodynamic boundary condition (on the continuity of the normal contraction of stress) to an assumption that interfacial tension is sufficiently strong to maintain a spherical drop shape.
Halliday, I.; Xu, X.; Burgin, K.
2017-02-01
An extended Benzi-Dellar lattice Boltzmann equation scheme [R. Benzi, S. Succi, and M. Vergassola, Europhys. Lett. 13, 727 (1990), 10.1209/0295-5075/13/8/010; R. Benzi, S. Succi, and M. Vergassola, Phys. Rep. 222, 145 (1992), 10.1016/0370-1573(92)90090-M; P. J. Dellar, Phys. Rev. E 65, 036309 (2002), 10.1103/PhysRevE.65.036309] is developed and applied to the problem of confirming, at low Re and drop fluid concentration, c , the variation of effective shear viscosity, ηeff=η1[1 +f (η1,η2) c ] , with respect to c for a sheared, two-dimensional, initially crystalline emulsion [here η1 (η2) is the fluid (drop fluid) shear viscosity]. Data obtained with our enhanced multicomponent lattice Boltzmann method, using average shear stress and hydrodynamic dissipation, agree well once appropriate corrections to Landau's volume average shear stress [L. Landau and E. M. Lifshitz, Fluid Mechanics, 6th ed. (Pergamon, London, 1966)] are applied. Simulation results also confirm the expected form for f (ηi,η2) , and they provide a reasonable estimate of its parameters. Most significantly, perhaps, the generality of our data supports the validity of Taylor's disputed simplification [G. I. Taylor, Proc. R. Soc. London, Ser. A 138, 133 (1932), 10.1098/rspa.1932.0175] to reduce the effect of one hydrodynamic boundary condition (on the continuity of the normal contraction of stress) to an assumption that interfacial tension is sufficiently strong to maintain a spherical drop shape.
Energy Technology Data Exchange (ETDEWEB)
Sudasinghe, Nilusha [New Mexico State Univ., Las Cruces, NM (United States); Cort, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, Mariefel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States)
2014-12-01
Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bond correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.
Maassen, G.H; Steenbeek, H.W.; Van Geert, P. L. C.
2004-01-01
This study aimed at comparing the stability of three methods for two-dimensional sociometric status determination, including (1) the recently developed SSrat technique (Maassen, Akkermans, & Van der Linden, 1996), as well as (2) the procedure of Howes (1988), which is based on the algorithm and clas
Abeling, N.G.G.M.; Wadman, S.K.; Gennip, A.H. van
1974-01-01
A technique for two-dimensional electrophoresis of urinary mucopolysaccharides (MPS) is described. The method allows differentiation of a number of mucopolysaccharidoses and is suitable for application in the routine laboratory. This technique should be used to evaluate urines from patients who
Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu
2016-07-01
An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice.
Zabihi, F.; Saffarian, M.
2016-07-01
The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
Chakravarthy, S.
1978-01-01
An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.
Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel
2013-08-15
In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.
Metabolic profiling based on two-dimensional J-resolved ^{1}H NMR data and parallel factor analysis
DEFF Research Database (Denmark)
Yilmaz, Ali; Nyberg, Nils T; Jaroszewski, Jerzy W.
2011-01-01
method that fits three-way experimental data to a model whose parameters in this case reflect concentrations and individual components spectrum along the chemical shift axis and corresponding profiles along the J-coupling axis. A set of saffron samples, directly extracted with methanol-d4, were used...
Energy Technology Data Exchange (ETDEWEB)
Nie, Lina [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Ceantech Loop, Singapore 637141 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Xiong, Wei-Wei [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Peizhou [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Han, Jianyu [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Zhang, Guodong [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Yin, Shengming [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Zhao, Yanli [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xu, Rong, E-mail: RXu@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); SinBeRISE CREATE, National Research Foundation, CREATE Tower level 11, 1 Create Way, University Town, National University of Singapore, 138602 Singapore (Singapore); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2014-12-15
Two novel two-dimensional crystalline chalcogenidoantimonates, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions through using PEG-400 and sodium dodecyl sulfate as reaction media, respectively. In compound 1, [MnS{sub 2}N{sub 4}]{sub n}{sup 2n−} species connect [SbS{sub 2}]{sub n}{sup n−} chains via vertex-sharing S atoms to form neutral layered frameworks, while in compound 2, 8-membered windows [Sb{sub 4}S{sub 8}]{sub n}{sup 4n−}, 24-membered windows [Sb{sub 12}S{sub 24}]{sub n}{sup 12n−} and Mn atoms are connected together to form neutral 2D-[MnSb{sub 6}S{sub 10}] layers. All Sb atoms in both complexes form [Sb{sup ⍰}S{sub 3}]{sup 3−} trigonal-pyramid by coordinating with three S atoms. The steep UV–vis absorption edges indicate that 1 and 2 have the band gaps of 1.96 eV and 2.12 eV, respectively. Both compound 1 and 2 show active visible-light-driven photocatalytic properties for hydrogen production. - Graphiacl abstract: Two novel 2D framework sulfides, [MnSb{sub 2}S{sub 4}(N{sub 2}H{sub 4}){sub 2}] (1) and [Mn(tepa)Sb{sub 6}S{sub 10}] (2) (tepa=tetraethylenepentamine), have been successfully synthesized under surfactant-thermal conditions and show active visible-light-driven photocatalytic properties for hydrogen production. - Highlights: • Two novel two-dimensional Mn–Sb–sulfide frameworks. • Synthesis through surfactant-thermal condition. • Photocatalytic properties for hydrogen generation.
Nakayama, Katsuyuki; Mizushima, Lucas Dias; Murata, Junsuke; Maeda, Takao
2016-06-01
A numerical method is presented to extract three-dimensional vortical structure of a spiral vortex (wing tip vortex) in a wind turbine, from two-dimensional velocity data at several azimuthal angles. This numerical method contributes to analyze a vortex observed in experiment where three-dimensional velocity field is difficult to be measured. This analysis needs two-dimensional velocity data in parallel planes at different azimuthal angles of a rotating blade, which facilitates the experiment since the angle of the plane does not change. The vortical structure is specified in terms of the invariant flow topology derived from eigenvalues and eigenvectors of three-dimensional velocity gradient tensor and corresponding physical properties. In addition, this analysis enables to investigate not only vortical flow topology but also important vortical features such as pressure minimum and vortex stretching that are derived from the three-dimensional velocity gradient tensor.
Institute of Scientific and Technical Information of China (English)
宋丽娜; 王维国
2012-01-01
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.
Song, Li-Na; Wang, Wei-Guo
2012-08-01
By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.
Energy Technology Data Exchange (ETDEWEB)
Maita, S.; Ando, J.; Nakatake, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1996-10-01
A simple panel method, the source and quasi continuous vortex lattice method (SQCM) was expanded to two-dimensional non-steady hydrofoil problems. Discussions were given on the results of calculations on two-dimensional hydrofoils making a simple non-steady motion. In calculating hydrofoils which move suddenly from a still state with angle of elevation {alpha} at a velocity U, the following results were obtained: the time differential item in a pressure equation gives a considerably strong effect on lifting power; and the lifting power converges to a steady state with lapse of time, and the lifting power coefficient in that state shows that the lifting power increases as hydrofoil thickness increases. This result agrees with the hydrofoil thickness effect in the two-dimensional steady problem, proving the reasonability of this calculation method. In the calculations of time history of the lifting power acting on hydrofoils passing a sinusoidal gust and hydrofoils in a pitching motion, the calculated values from the SQCM were found to approach analysis solution to thin hydrofoils as the hydrofoil thickness becomes thinner for both cases. This result also proves the result of calculations on non-steady state by using the SQCM reasonable. 11 refs., 10 figs.
Directory of Open Access Journals (Sweden)
L.-L. Wang
2011-08-01
Full Text Available Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM. Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km^{2} for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Wang, L.-L.; Chen, D.-H.; Li, Z.-J.; Zhao, L.-N.
2011-08-01
Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model) coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM). Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km2 for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Vaganan, M Mayil; Sarumathi, S; Nandakumar, A; Ravi, I; Mustaffa, M M
2015-02-01
Four protocols viz., the trichloroacetic acid-acetone (TCA), phenol-ammonium acetate (PAA), phenol/SDS-ammonium acetate (PSA) and trisbase-acetone (TBA) were evaluated with modifications for protein extraction from banana (Grand Naine) roots, considered as recalcitrant tissues for proteomic analysis. The two-dimensional electrophoresis (2-DE) separated proteins were compared based on protein yield, number of resolved proteins, sum of spot quantity, average spot intensity and proteins resolved in 4-7 pI range. The PAA protocol yielded more proteins (0.89 mg/g of tissues) and protein spots (584) in 2-DE gel than TCA and other protocols. Also, the PAA protocol was superior in terms of sum of total spot quantity and average spot intensity than TCA and other protocols, suggesting phenol as extractant and ammonium acetate as precipitant of proteins were the most suitable for banana rooteomics analysis by 2-DE. In addition, 1:3 ratios of root tissue to extraction buffer and overnight protein precipitation were most efficient to obtain maximum protein yield.
Directory of Open Access Journals (Sweden)
Shun Takahashi
2014-01-01
Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.
Singh, Gurpreet; Tan, Eng Leong; Chen, Zhi Ning
2012-02-01
This Letter presents a split-step (SS) finite-difference time-domain (FDTD) method for the efficient analysis of two-dimensional (2-D) photonic crystals (PhCs) with anisotropic media. The proposed SS FDTD method is formulated with perfectly matched layer boundary conditions and caters for inhomogeneous anisotropic media. Furthermore, the proposed method is derived using the efficient SS1 splitting formulas with simpler right-hand sides that are more efficient and easier to implement. A 2-D PhC cavity with anisotropic media is used as an example to validate the efficiency of the proposed method.
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Taking the distributing calculation of velocity and concentration as an example, the paper established a series of governing equations by the vorticity-stream function method, and dispersed the equations by the finite differencing method. After figuring out the distribution field of velocity, the paper also calculated the concentration distribution in sedimentation tank by using the two-dimensional concentration transport equation. The validity and feasibility of the numerical method was verified through comparing with experimental data. Furthermore, the paper carried out a tentative exploration into the application of numerical simulation of sedimentation tanks.
Hayashi, Hidetaka; Izumi, Chisato; Takahashi, Shuichi; Uchikoshi, Masato; Yamazaki, Ryou; Asanuma, Toshihiko; Ishikura, Fuminobu; Beppu, Shintaro; Nakatani, Satoshi
2011-09-01
Recently, it has become possible to evaluate left ventricular (LV) torsion by two-dimensional (2D) speckle tracking images. However, LV torsion is a three-dimensional (3D) performance, which per se cannot be assessed by the 2D speckle tracking method. The present study investigated the accuracy of the 2D speckle tracking method and real-time 3D echocardiography in measuring LV rotation, comparing with the MRI tagging method. We assessed LV apical rotation using the 2D speckle tracking method, real-time 3D echocardiography, and MRI tagging method in 26 normal subjects, and compared the results of these three methods. LV apical rotation was measured just before the level in which the posterior papillary muscle was absorbed into the free wall. The degree of LV apical rotation evaluated by the 2D speckle tracking method (Δθ 2D) was significantly smaller than that evaluated by 3D echocardiography (Δθ 3D) and the MRI tagging method (Δθ MRI) (Δθ 2D 7.3 ± 2.8°; Δθ 3D 8.8 ± 3.4°; Δθ MRI 9.0 ± 3.4°; Δθ 2D vs. Δθ 3D, p = 0.0001; Δθ 2D vs. Δθ MRI, p speckle tracking method compared with the MRI tagging method, whereas it could be precisely measured by 3D echocardiography.
Leonhardt, Juri; Teutenberg, Thorsten; Buschmann, Greta; Gassner, Oliver; Schmidt, Torsten C
2016-11-01
For the identification of the optimal column combinations, a comparative orthogonality study of single columns and columns coupled in series for the first dimension of a microscale two-dimensional liquid chromatographic approach was performed. In total, eight columns or column combinations were chosen. For the assessment of the optimal column combination, the orthogonality value as well as the peak distributions across the first and second dimension was used. In total, three different methods of orthogonality calculation, namely the Convex Hull, Bin Counting, and Asterisk methods, were compared. Unfortunately, the first two methods do not provide any information of peak distribution. The third method provides this important information, but is not optimal when only a limited number of components are used for method development. Therefore, a new concept for peak distribution assessment across the separation space of two-dimensional chromatographic systems and clustering detection was developed. It could be shown that the Bin Counting method in combination with additionally calculated histograms for the respective dimensions is well suited for the evaluation of orthogonality and peak clustering. The newly developed method could be used generally in the assessment of 2D separations. Graphical Abstract ᅟ.
Kamizuru, Kohei; Nakamura, Kazuya; Kawasaki, Hiroshi; Ono, Satoshi
2017-03-01
Two-dimensional (2D) codes are widely used for various fields such as production, logistics, and marketing thanks to their larger capacity than one-dimensional barcodes. However, they are subject to distortion when printed on non-rigid materials, such as papers and clothes. Although general 2D code decoders correct uniform distortion such as perspective distortion, it is difficult to correct non-uniform and irregular distortion of the 2D code itself. This paper proposes a decoding method for the 2D code, which models monochrome auxiliary line recognition as Markov random field, and solves it using belief propagation.
Directory of Open Access Journals (Sweden)
Puskar Raj SHARMA
2012-01-01
Full Text Available Aim of the paper is to investigate solution of twodimensional linear parabolic partial differential equation with non-local boundary conditions using Homotopy Perturbation Method (HPM. This method is not only reliable in obtaining solution of such problems in series form with high accuracy but it also guarantees considerable saving of the calculation volume and time as compared to other methods. The application of the method has been illustrated through an example
Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean (Glycine max (L.) Merr.) worldwide. In this study, three different protein extraction methods including phenol/ammonium acetate (phenol method), thiourea/urea solublization (lysis method) and trichloroaceti...
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Golbabai, Ahmad; Nikpour, Ahmad
2016-10-01
In this paper, two-dimensional Schrödinger equations are solved by differential quadrature method. Key point in this method is the determination of the weight coefficients for approximation of spatial derivatives. Multiquadric (MQ) radial basis function is applied as test functions to compute these weight coefficients. Unlike traditional DQ methods, which were originally defined on meshes of node points, the RBFDQ method requires no mesh-connectivity information and allows straightforward implementation in an unstructured nodes. Moreover, the calculation of coefficients using MQ function includes a shape parameter c. A new variable shape parameter is introduced and its effect on the accuracy and stability of the method is studied. We perform an analysis for the dispersion error and different internal parameters of the algorithm are studied in order to examine the behavior of this error. Numerical examples show that MQDQ method can efficiently approximate problems in complexly shaped domains.
Aumelas, A; Chiche, L; Kubo, S; Chino, N; Tamaoki, H; Kobayashi, Y
1995-04-11
Addition of the Lys(-2)-Arg(-1) dipeptide, present in the precursor protein, to the N-terminus of endothelin-1 (ET-1), to form a 23-residue peptide (KR-ET-1) has been shown to greatly improve formation of native disulfide bridges and to dramatically decrease biological activity. Conformational analysis was carried out on this peptide. During protonation of the carboxyl groups, CD spectra showed a decrease in the helical contribution, and NMR spectra displayed strong chemical shift modifications, suggesting the importance of electrostatic interactions in the KR-ET-1 conformation. CD spectra and two-dimensional NMR experiments were performed to investigate the KR-ET-1 three-dimensional structure in water in the carboxylic acid and carboxylate states. Distance and angle constraints were used as input for distance geometry calculations. The KR-ET-1 carboxylic acid conformation was found to be very similar to ET-1, with a helix spanning residues 9-15 and an unconstrained C-terminal part. In contrast, in the carboxylate state, large changes in Arg(-1) and Phe14 chemical shifts and long-range NOEs were consistent with a conformation characterized by a helix extension to Leu17 and a stabilized C-terminal section folded back toward the N-terminus. In addition, thanks to NOEs with Cys11 and Phe14, the Arg(-1) side chain appeared well-defined. Simulated annealing and molecular dynamics calculations, supported an Arg(-1)-Glu10 salt bridge and an electrostatic network involving the charged groups of Trp21, Asp18, and Lys(-2). Moreover, stabilization of the KR-ET-1 C-terminal part is probably reinforced by hydrophobic interactions involving the Val12, Tyr13, Phe14, Leu17, Ile19, Ile20, and Trp21 side chains. In vitro, native disulfide bond formation improvement observed for KR-ET-1 could be ascribed to electrostatic interactions and more specifically to the Arg(-1)-Glu10 salt bridge. In vivo, similar interactions could play an important role in the native folding of the ET-1
Li, Hanshan; Lei, Zhiyong
2013-01-01
To improve projectile coordinate measurement precision in fire measurement system, this paper introduces the optical fiber coding fire measurement method and principle, sets up their measurement model, and analyzes coordinate errors by using the differential method. To study the projectile coordinate position distribution, using the mathematical statistics hypothesis method to analyze their distributing law, firing dispersion and probability of projectile shooting the object center were put under study. The results show that exponential distribution testing is relatively reasonable to ensure projectile position distribution on the given significance level. Through experimentation and calculation, the optical fiber coding fire measurement method is scientific and feasible, which can gain accurate projectile coordinate position.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu
1997-09-17
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Kamataki, K.; Morita, Y.; Shiratani, M.; Koga, K.; Uchida, G.; Itagaki, N.
2012-04-01
We have developed a simple in-situ method for measuring the size distribution (the mean size (mean diameter) and size dispersion) of nano-particles generated in reactive plasmas using the 2 dimensional laser light scattering (2DLLS) method. The principle of the method is based on thermal coagulation of the nano-particles, which occurs after the discharge is turned off, and the size and density of the nano-particles can then be deduced. We first determined the 2D spatial distribution of the density and size of the nano-particles in smaller particle size (a few nm) range than ones deduced from the conventional 2DLLS method. From this 2D dataset, we have for the first time been able to determine the size distribution of nano-particles generated in a reactive plasma without ex-situ measurements.
Suzuki, S; Arai, H
1990-04-01
In single-photon emission computed tomography (SPECT) and X-ray CT one-dimensional (1-D) convolution method is used for their image reconstruction from projections. The method makes a 1-D convolution filtering on projection data with a 1-D filter in the space domain, and back projects the filtered data for reconstruction. Images can also be reconstructed by first forming the 2-D backprojection images from projections and then convoluting them with a 2-D space-domain filter. This is the reconstruction by the 2-D convolution method, and it has the opposite reconstruction process to the 1-D convolution method. Since the 2-D convolution method is inferior to the 1-D convolution method in speed in reconstruction, it has no practical use. In the actual reconstruction by the 2-D convolution method, convolution is made on a finite plane which is called convolution window. A convolution window of size N X N needs a 2-D discrete filter of the same size. If better reconstructions are achieved with small convolution windows, the reconstruction time for the 2-D convolution method can be reduced. For this purpose, 2-D filters of a simple function form are proposed which can give good reconstructions with small convolution windows. They are here defined on a finite plane, depending on the window size used, although a filter function is usually defined on the infinite plane. They are however set so that they better approximate the property of a 2-D filter function defined on the infinite plane. Filters of size N X N are thus determined. Their value varies with window size. The filters are applied to image reconstructions of SPECT.(ABSTRACT TRUNCATED AT 250 WORDS)
Tan, A A; Azman, S N; Abdul Rani, N R; Kua, B C; Sasidharan, S; Kiew, L V; Othman, N; Noordin, R; Chen, Y
2011-12-01
There is a great diversity of protein samples types and origins, therefore the optimal procedure for each sample type must be determined empirically. In order to obtain a reproducible and complete sample presentation which view as many proteins as possible on the desired 2DE gel, it is critical to perform additional sample preparation steps to improve the quality of the final results, yet without selectively losing the proteins. To address this, we developed a general method that is suitable for diverse sample types based on phenolchloroform extraction method (represented by TRI reagent). This method was found to yield good results when used to analyze human breast cancer cell line (MCF-7), Vibrio cholerae, Cryptocaryon irritans cyst and liver abscess fat tissue. These types represent cell line, bacteria, parasite cyst and pus respectively. For each type of samples, several attempts were made to methodically compare protein isolation methods using TRI-reagent Kit, EasyBlue Kit, PRO-PREP™ Protein Extraction Solution and lysis buffer. The most useful protocol allows the extraction and separation of a wide diversity of protein samples that is reproducible among repeated experiments. Our results demonstrated that the modified TRI-reagent Kit had the highest protein yield as well as the greatest number of total proteins spots count for all type of samples. Distinctive differences in spot patterns were also observed in the 2DE gel of different extraction methods used for each type of sample.
Noguchi, Kyotaro; Tanikawa, Toko; Inagaki, Yoshiyuki; Ishizuka, Shigehiro
2017-06-01
Several recent studies have used the net sheet method to estimate fine root production rates in forest ecosystems, wherein net sheets are inserted into the soil and fine roots growing through them are observed. Although this method has advantages in terms of its easy handling and low cost, there are uncertainties in the estimates per unit soil volume or unit stand area, because the net sheet is a two-dimensional material. Therefore, this study aimed to establish calculation procedures for estimating fine root production rates from two-dimensional fine root data on net sheets. This study was conducted in a hinoki cypress (Chamaecyparis obtusa (Sieb. & Zucc.) Endl.) stand in western Japan. We estimated fine root production rates in length and volume from the number (RN) and cross-sectional area (RCSA) densities, respectively, for fine roots crossing the net sheets, which were then converted to dry mass values. For these calculations, we used empirical regression equations or theoretical equations between the RN or RCSA densities on the vertical walls of soil pits and fine root densities in length or volume, respectively, in the soil, wherein the theoretical equations assumed random orientation of the growing fine roots. The estimates of mean fine root (diameter sheets using these calculation procedures, with the empirical regression equations reflecting fine root orientation in the study site. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Halliday, I; Lishchuk, S V; Spencer, T J; Pontrelli, G; Evans, P C
2016-08-01
We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013)10.1140/epjst/e2013-01834-y] and underscore the importance of a correct vesicle membrane condition.
Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)
2010-01-01
A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.
Directory of Open Access Journals (Sweden)
Jin Guanghu
2014-09-01
Full Text Available The length of ballistic target is one of the most important features for target recognition. It can be extracted from ISAR Images. Unlike from the optical image, the length extraction from ISAR image has two difficulties. The first one is that it is hard to get the actual position of scattering centres by the traditional target extraction method. The second one is that the ISAR image’s cross scale is not known because of the target’s complex rotation. Here we propose two methods to solve these problems. Firstly, we use clustering method to get scattering centers. Secondly we propose to get cross scale of the ISAR images by affine registration. Experiments verified that our approach is realisable and has good performance.Defence Science Journal, Vol. 64, No. 5, September 2014, pp.458-463, DOI:http://dx.doi.org/10.14429/dsj.64.5001
A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings
Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.
2014-03-01
The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.
Energy Technology Data Exchange (ETDEWEB)
Park, Young Seok; Kim, Sung Tae; Oh, Seung Hee; Park, Hee Jung; Lee, Sophia; Kim, Taeil; Lee, Young Kyu; Heo, Min Suk [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)
2014-06-15
This study evaluated the efficacy of alveolar ridge preservation methods with and without primary wound closure and the relationship between histometric and micro-computed tomographic (CT) data. Porcine hydroxyapatite with polytetrafluoroethylene membrane was implanted into a canine extraction socket. The density of the total mineralized tissue, remaining hydroxyapatite, and new bone was analyzed by histometry and micro-CT. The statistical association between these methods was evaluated. Histometry and micro-CT showed that the group which underwent alveolar preservation without primary wound closure had significantly higher new bone density than the group with primary wound closure (P<0.05). However, there was no significant association between the data from histometry and micro-CT analysis. These results suggest that alveolar ridge preservation without primary wound closure enhanced new bone formation more effectively than that with primary wound closure. Further investigation is needed with respect to the comparison of histometry and micro-CT analysis.
A new numerical method for solving two-dimensional variable-order anomalous sub-diffusion equation
Directory of Open Access Journals (Sweden)
Jiang Wei
2016-01-01
Full Text Available The novelty and innovativeness of this paper are the combination of reproducing kernel theory and spline, this leads to a new simple but effective numerical method for solving variable-order anomalous sub-diffusion equation successfully. This combination overcomes the weaknesses of piecewise polynomials that can not be used to solve differential equations directly because of lack of the smoothness. Moreover, new bases of reproducing kernel spaces are constructed. On the other hand, the existence of any ε-approximate solution is proved and an effective method for obtaining the ε-approximate solution is established. A numerical example is given to show the accuracy and effectiveness of theoretical results.
Natural position of the head: review of two-dimensional and three-dimensional methods of recording.
Cassi, D; De Biase, C; Tonni, I; Gandolfini, M; Di Blasio, A; Piancino, M G
2016-04-01
Both the correct position of the patient's head and a standard system for the acquisition of images are essential for objective evaluation of the facial profile and the skull, and for longitudinal superimposition. The natural position of the head was introduced into orthodontics in the late 1950s, and is used as a postural basis for craniocervical and craniofacial morphological analysis. It can also have a role in the planning of the surgical correction of craniomaxillofacial deformities. The relatively recent transition in orthodontics from 2-dimensional to 3-dimensional imaging, and from analogue to digital technology, has renewed attention in finding a versatile method for the establishment of an accurate and reliable head position during the acquisition of serial records. In this review we discuss definition, clinical applications, and procedures to establish the natural head position and their reproducibility. We also consider methods to reproduce and record the position in two and three planes.
Energy Technology Data Exchange (ETDEWEB)
Hou Zhilin [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)], E-mail: zhilin.hou@lpmi.uhp-nancy.fr; Assouar, Badreddine M. [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)
2008-03-17
We show that the conversional three-dimensional plane wave expansion method can be revised to investigate the lamb wave propagation in the plate with two-dimensional phononic crystal layer coated on uniform substrate. We find that an imaginary three-dimensional periodic system can be constructed by stacking the studied plates and vacuum layers alternately, and then the Fourier series expansion can be performed. The difference between our imaginary periodic system and the true three-dimensional one is that, in our system, the Bloch feature of the wave along the thickness direction is broken. Three different systems are investigated by the proposed method as examples. The principle and reliability of the method are also discussed.
Shahriari, S; Kadem, L; Rogers, B D; Hassan, I
2012-11-01
This paper aims to extend the application of smoothed particle hydrodynamics (SPH), a meshfree particle method, to simulate flow inside a model of the heart's left ventricle (LV). This work is considered the first attempt to simulate flow inside a heart cavity using a meshfree particle method. Simulating this kind of flow, characterized by high pulsatility and moderate Reynolds number using SPH is challenging. As a consequence, validation of the computational code using benchmark cases is required prior to simulating the flow inside a model of the LV. In this work, this is accomplished by simulating an unsteady oscillating flow (pressure amplitude: A = 2500 N ∕ m(3) and Womersley number: W(o) = 16) and the steady lid-driven cavity flow (Re = 3200, 5000). The results are compared against analytical solutions and reference data to assess convergence. Then, both benchmark cases are combined and a pulsatile jet in a cavity is simulated and the results are compared with the finite volume method. Here, an approach to deal with inflow and outflow boundary conditions is introduced. Finally, pulsatile inlet flow in a rigid model of the LV is simulated. The results demonstrate the ability of SPH to model complex cardiovascular flows and to track the history of fluid properties. Some interesting features of SPH are also demonstrated in this study, including the relation between particle resolution and sound speed to control compressibility effects and also order of convergence in SPH simulations, which is consistently demonstrated to be between first-order and second-order at the moderate Reynolds numbers investigated.
Belfort, Benjamin; Weill, Sylvain; Lehmann, François
2017-07-01
A novel, non-invasive imaging technique is proposed that determines 2D maps of water content in unsaturated porous media. This method directly relates digitally measured intensities to the water content of the porous medium. This method requires the classical image analysis steps, i.e., normalization, filtering, background subtraction, scaling and calibration. The main advantages of this approach are that no calibration experiment is needed, because calibration curve relating water content and reflected light intensities is established during the main monitoring phase of each experiment and that no tracer or dye is injected into the flow tank. The procedure enables effective processing of a large number of photographs and thus produces 2D water content maps at high temporal resolution. A drainage/imbibition experiment in a 2D flow tank with inner dimensions of 40 cm × 14 cm × 6 cm (L × W × D) is carried out to validate the methodology. The accuracy of the proposed approach is assessed using a statistical framework to perform an error analysis and numerical simulations with a state-of-the-art computational code that solves the Richards' equation. Comparison of the cumulative mass leaving and entering the flow tank and water content maps produced by the photographic measurement technique and the numerical simulations demonstrate the efficiency and high accuracy of the proposed method for investigating vadose zone flow processes. Finally, the photometric procedure has been developed expressly for its extension to heterogeneous media. Other processes may be investigated through different laboratory experiments which will serve as benchmark for numerical codes validation.
Growth of two-dimensional KGd(WO 4) 2 nanorods by modified sol-gel Pechini method
Thangaraju, D.; Samuel, P.; Moorthy Babu, S.
2010-08-01
KGd (WO 4) 2 nanocrystalline powder was obtained by modified sol-gel Pechini method. The synthesis procedure was optimized with TGA and DTA analyses. Synthesized polymeric resin was calcinated at 550 and 700 °C using resistive furnace in an open atmosphere. Crystallinity of annealed powder was confirmed using X-ray diffraction. Absorption peaks of FT-IR for gel and the annealed samples, at two different temperatures show the decomposition of citrate-ethylene glycol complex and formation of KGW particles. Raman analysis confirms that the derived particles have well constructed bridges of W-O-O-W. External morphology of the particles was analysed through SEM.
Tietz, Dietmar
2009-12-25
This article provides an overview of a 2D agarose electrophoretic procedure for the characterization of semi-synthetic Haemophilus influenzae type b meningitis vaccines that were prepared for the immunization of small children. The analysis of such vaccines has been particularly challenging because the vaccine particles (i) are highly negatively charged, (ii) are as large as or even larger than intact viruses, and (iii) have a continuous (polydisperse) size distribution because of randomizing steps in the vaccine production (sonification and crosslinking). As a result of these characteristics, 1D electrophoresis of the vaccines produced smears without discernable peaks, but with a second dimension of separation a characteristic vaccine fingerprint was obtained. Whereas O'Farrell gels can accomplish a 2D separation according to size and charge for samples with protein-sized particles, nondenaturing 2D agarose electrophoresis achieves a similar result for much larger virus-sized particles. The separation principle, however, is different. Even though the 2D electrophoretic method was developed from 1983 to 1995, it remains a promising tool for vaccine quality control and for predicting vaccine effectiveness. Modern technology makes the analysis significantly more practical and affordable than it was more than 10 years ago, and the method is applicable to a variety of conjugated vaccines and complex mixtures of virus-sized particles.
Cheng, Jianlin; Saigo, Hiroto; Baldi, Pierre
2006-03-15
The formation of disulphide bridges between cysteines plays an important role in protein folding, structure, function, and evolution. Here, we develop new methods for predicting disulphide bridges in proteins. We first build a large curated data set of proteins containing disulphide bridges to extract relevant statistics. We then use kernel methods to predict whether a given protein chain contains intrachain disulphide bridges or not, and recursive neural networks to predict the bonding probabilities of each pair of cysteines in the chain. These probabilities in turn lead to an accurate estimation of the total number of disulphide bridges and to a weighted graph matching problem that can be addressed efficiently to infer the global disulphide bridge connectivity pattern. This approach can be applied both in situations where the bonded state of each cysteine is known, or in ab initio mode where the state is unknown. Furthermore, it can easily cope with chains containing an arbitrary number of disulphide bridges, overcoming one of the major limitations of previous approaches. It can classify individual cysteine residues as bonded or nonbonded with 87% specificity and 89% sensitivity. The estimate for the total number of bridges in each chain is correct 71% of the times, and within one from the true value over 94% of the times. The prediction of the overall disulphide connectivity pattern is exact in about 51% of the chains. In addition to using profiles in the input to leverage evolutionary information, including true (but not predicted) secondary structure and solvent accessibility information yields small but noticeable improvements. Finally, once the system is trained, predictions can be computed rapidly on a proteomic or protein-engineering scale. The disulphide bridge prediction server (DIpro), software, and datasets are available through www.igb.uci.edu/servers/psss.html.
Everhart, J. L.
1983-01-01
The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.
Mahya, M. J.; Sanny, T. A.
2017-04-01
Lembang and Cimandiri fault are active faults in West Java that thread people near the faults with earthquake and surface deformation risk. To determine the deformation, GPS measurements around Lembang and Cimandiri fault was conducted then the data was processed to get the horizontal velocity at each GPS stations by Graduate Research of Earthquake and Active Tectonics (GREAT) Department of Geodesy and Geomatics Engineering Study Program, ITB. The purpose of this study is to model the displacement distribution as deformation parameter in the area along Lembang and Cimandiri fault using 2-dimensional boundary element method (BEM) using the horizontal velocity that has been corrected by the effect of Sunda plate horizontal movement as the input. The assumptions that used at the modeling stage are the deformation occurs in homogeneous and isotropic medium, and the stresses that acted on faults are in elastostatic condition. The results of modeling show that Lembang fault had left-lateral slip component and divided into two segments. A lineament oriented in southwest-northeast direction is observed near Tangkuban Perahu Mountain separating the eastern and the western segments of Lembang fault. The displacement pattern of Cimandiri fault shows that Cimandiri fault is divided into the eastern segment with right-lateral slip component and the western segment with left-lateral slip component separated by a northwest-southeast oriented lineament at the western part of Gede Pangrango Mountain. The displacement value between Lembang and Cimandiri fault is nearly zero indicating that Lembang and Cimandiri fault are not connected each other and this area is relatively safe for infrastructure development.
Two-dimensional NQR using ultra-broadband electronics
Mandal, S.; Song, Y.-Q.
2014-03-01
We have recently developed an ultra-broadband instrument that can effectively excite and detect NMR and NQR signals over a wide frequency range. Our current system operates between 100 kHz and 3.2 MHz using an un-tuned sample coil. The major benefits of this instrument compared to conventional NQR/NMR systems include increased robustness, ease of use (in particular for multi-frequency experiments), and elimination of the need for tuning adjustments in the hardware. Here we describe its use for performing two-dimensional (2D) scans, which allow improved interpretation of complex NQR spectra by detecting the connected resonances. Our method relies on population transfers between the three energy levels of spin-1 nuclei (such as 14N) by using multi-frequency excitation and a single RF coil. Experimental results on pure samples and mixtures are also presented.
Directory of Open Access Journals (Sweden)
Sung-Hye You
2017-01-01
Full Text Available Purpose The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL, for measuring the volume of parathyroid glands. Methods Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D and three-dimensional (3D methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. Results The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. Conclusion The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.
2017-01-01
Purpose The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Methods Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. Results The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. Conclusion The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism. PMID:27457337
NMR and MRI apparatus and method
Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas
2007-03-06
Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.
Sibley, David N; Kalliadasis, Serafim
2012-01-01
We consider the spreading of a thin two-dimensional droplet on a planar substrate as a prototype system to compare the contemporary model for contact line motion based on interface formation of Shikhmurzaev [Int. J. Multiphas. Flow 19, 589 (1993)], to the more commonly used continuum fluid dynamical equations augmented with the Navier-slip condition. Considering quasistatic droplet evolution and using the method of matched asymptotics, we find that the evolution of the droplet radius using the interface formation model reduces to an equivalent expression for a slip model, where the prescribed microscopic dynamic contact angle has a velocity dependent correction to its static value. This result is found for both the original interface formation model formulation and for a more recent version, where mass transfer from bulk to surface layers is accounted for through the boundary conditions. Various features of the model, such as the pressure behaviour and rolling motion at the contact line, and their relevance, ...
Huang, Ching-Yu; Wei, Tzu-Chieh
2016-04-01
Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry-breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices to study transitions in a few families of two-dimensional (2D) wave functions which are ZN (N =2 and3 ) symmetric. We find that in addition to the topologically ordered phases, the modular matrices can be used to identify nontrivial SPT phases and detect transitions between different SPT phases as well as between symmetric and symmetry-breaking phases. Therefore modular matrices can be used to characterize various types of gapped phases in a unifying way.
Energy Technology Data Exchange (ETDEWEB)
You, Sung Hye; Son, Gyu Ri; Lee, Nam Joon [Dept. of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Suh, Sangil; Ryoo, In Seon; Seol, Hae Young [Dept. of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Dept. of Radiology, Korea University Ansan Hospital, Ansan (Korea, Republic of)
2017-01-15
The purpose of this study was to investigate the accuracy and reliability of the semi-automated ultrasonographic volume measurement tool, virtual organ computer-aided analysis (VOCAL), for measuring the volume of parathyroid glands. Volume measurements for 40 parathyroid glands were performed in patients with secondary hyperparathyroidism caused by chronic renal failure. The volume of the parathyroid glands was measured twice by experienced radiologists by two-dimensional (2D) and three-dimensional (3D) methods using conventional sonograms and the VOCAL with 30°angle increments before parathyroidectomy. The specimen volume was also measured postoperatively. Intraclass correlation coefficients (ICCs) and the absolute percentage error were used for estimating the reproducibility and accuracy of the two different methods. The ICC value between two measurements of the 2D method and the 3D method was 0.956 and 0.999, respectively. The mean absolute percentage error of the 2D method and the 3D VOCAL technique was 29.56% and 5.78%, respectively. For accuracy and reliability, the plots of the 3D method showed a more compact distribution than those of the 2D method on the Bland-Altman graph. The rotational VOCAL method for measuring the parathyroid gland is more accurate and reliable than the conventional 2D measurement. This VOCAL method could be used as a more reliable follow-up imaging modality in a patient with hyperparathyroidism.
Development of a method for reconstruction of crowded NMR spectra from undersampled time-domain data
Energy Technology Data Exchange (ETDEWEB)
Ueda, Takumi; Yoshiura, Chie; Matsumoto, Masahiko; Kofuku, Yutaka; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan); Takeuchi, Koh [Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (Japan); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan)
2015-05-15
NMR is a unique methodology for obtaining information about the conformational dynamics of proteins in heterogeneous biomolecular systems. In various NMR methods, such as transferred cross-saturation, relaxation dispersion, and paramagnetic relaxation enhancement experiments, fast determination of the signal intensity ratios in the NMR spectra with high accuracy is required for analyses of targets with low yields and stabilities. However, conventional methods for the reconstruction of spectra from undersampled time-domain data, such as linear prediction, spectroscopy with integration of frequency and time domain, and analysis of Fourier, and compressed sensing were not effective for the accurate determination of the signal intensity ratios of the crowded two-dimensional spectra of proteins. Here, we developed an NMR spectra reconstruction method, “conservation of experimental data in analysis of Fourier” (Co-ANAFOR), to reconstruct the crowded spectra from the undersampled time-domain data. The number of sampling points required for the transferred cross-saturation experiments between membrane proteins, photosystem I and cytochrome b{sub 6}f, and their ligand, plastocyanin, with Co-ANAFOR was half of that needed for linear prediction, and the peak height reduction ratios of the spectra reconstructed from truncated time-domain data by Co-ANAFOR were more accurate than those reconstructed from non-uniformly sampled data by compressed sensing.
Law, A D; Buzza, D M A
2009-09-07
The structure and stability of colloidal monolayers depend crucially on the effective pair potential u(r) between colloidal particles. In this paper, we develop a two-dimensional (2D) predictor-corrector method for extracting u(r) from the pair correlation function g(r) of dense colloidal monolayers. The method is based on an extension of the three-dimensional scheme of Rajagopalan and Rao [Phys. Rev. E 55, 4423 (1997)] to 2D by replacing the unknown bridge function B(r) with the hard-disk bridge function B(d)(r); the unknown hard-disk diameter d is then determined using an iterative scheme. We compare the accuracy of our predictor-corrector method to the conventional one-step inversion schemes of hypernetted chain closure (HNC) and Percus-Yevick (PY) closure. Specifically we benchmark all three schemes against g(r) data generated from Monte Carlo simulation for a range of 2D potentials: exponential decay, Stillinger-Hurd, Lennard-Jones, and Derjaguin-Landau-Verwey-Overbeek. We find that for all these potentials, the predictor-corrector method is at least as good as the most accurate one-step method for any given potential, and in most cases it is significantly better. In contrast the accuracy of the HNC and PY methods relative to each other depends on the potential studied. The proposed predictor-corrector scheme is therefore a robust and more accurate alternative to these conventional one-step inversion schemes.
Institute of Scientific and Technical Information of China (English)
XIANG Xiao-liang; NING Shu-ju; JIANG Xia; GONG Xiao-gui; ZHU Ren-lei; WEI Dao-zhi
2010-01-01
Protein extraction is a critical step for two-dimensional electrophoresis (2-DE). Different plant samples require different and adaptive protein extraction protocols. The leaves of medicinal plant, Baphicacanthus cusia (Nees) Bremek are notoriously recalcitrant to common protein extraction methods due to high levels of interfering compounds (especially the secondary metabolites and pigments). This study was aimed to establish a routine procedure for the proteomic analysis of B. cusia leaves, and a new protocol for the protein extraction was developed by optimizing tfichloroacetic acid (TCA)/acetone extraction method. The efficiency of this protocol was demonstrated by comparison with 3 published protein extraction methods (chloroform/acetone, Mg/NP-40, Tris-base/acetone). The results showed that the optimized TCA/acetone precipitation extraction method gave a relatively high protein yield (9.263 mg g fresh weight), high-resolution separation, clear protein profiles, the highest proteins spots (1 311 protein spots), and displayed less contamination in 2DE gels. Therefore, the results suggested that the optimized TCA/acetone method was the most effective among the 4 methods for B. cusia leaves.
Shackman, Jonathan G; Kleintop, Brent L
2014-10-01
Pharmaceutical formulations containing multiple active components challenge the development of analytical methods, especially as the individual active ingredients diverge in their physicochemical properties. Establishing specificity, especially peak purity, is one of the major evaluation criteria when developing a related substances method for drug substances or products. Fixed-dose combination products may not be amenable to common strategies for assessing peak purity, such as performing orthogonal separations, due to the complexity of the separation and/or diversity of the active ingredients. An alternate approach to evaluating peak purity is demonstrated for a triple-active component fixed-dose combination product under development. A commercially available automated two-dimensional liquid chromatography system was used to perform a selective comprehensive multidimensional separation of an active ingredient peak. The first dimension performed the drug product impurity/degradant profiling method; the second dimension assayed these fractions using the drug substance profiling method, which was pseudo-orthogonal to the first dimension. A total of 14 targeted fractions were sampled across the first dimension main peak, with 11 containing detectable analytes and the remaining fractions bracketing the main peak. This degree of sampling allowed profiling of a coeluting degradant present at a 0.2% w/w level throughout the main peak.
Directory of Open Access Journals (Sweden)
Hożejowska Sylwia
2014-03-01
Full Text Available The paper presents application of the nodeless Trefftz method to calculate temperature of the heating foil and the insulating glass pane during continuous flow of a refrigerant along a vertical minichannel. Numerical computations refer to an experiment in which the refrigerant (FC-72 enters under controlled pressure and temperature a rectangular minichannel. Initially its temperature is below the boiling point. During the flow it is heated by a heating foil. The thermosensitive liquid crystals allow to obtain twodimensional temperature field in the foil. Since the nodeless Trefftz method has very good performance for providing solutions to such problems, it was chosen as a numerical method to approximate two-dimensional temperature distribution in the protecting glass and the heating foil. Due to known temperature of the refrigerant it was also possible to evaluate the heat transfer coefficient at the foil-refrigerant interface. For expected improvement of the numerical results the nodeless Trefftz method was combined with adjustment calculus. Adjustment calculus allowed to smooth the measurements and to decrease the measurement errors. As in the case of the measurement errors, the error of the heat transfer coefficient decreased.
Directory of Open Access Journals (Sweden)
Ruijie Hao
Full Text Available Longissimus dorsi muscle (LD proteomics provides a novel opportunity to reveal the molecular mechanism behind intramuscular fat deposition. Unfortunately, the vast amounts of lipids and nucleic acids in this tissue hampered LD proteomics analysis. Trichloroacetic acid (TCA/acetone precipitation is a widely used method to remove contaminants from protein samples. However, the high speed centrifugation employed in this method produces hard precipitates, which restrict contaminant elimination and protein re-dissolution. To address the problem, the centrifugation precipitates were first grinded with a glass tissue grinder and then washed with 90% acetone (TCA/acetone-G-W in the present study. According to our result, the treatment for solid precipitate facilitated non-protein contaminant removal and protein re-dissolution, ultimately improving two-dimensional gel electrophoresis (2-DE analysis. Additionally, we also evaluated the effect of sample drying on 2-DE profile as well as protein yield. It was found that 30 min air-drying did not result in significant protein loss, but reduced horizontal streaking and smearing on 2-DE gel compared to 10 min. In summary, we developed an optimized TCA/acetone precipitation method for protein extraction of LD, in which the modifications improved the effectiveness of TCA/acetone method.
Hou, Peng-Fei; Zhang, Yang
2017-09-01
Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.
Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B
2011-05-01
Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Energy Technology Data Exchange (ETDEWEB)
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)
2015-09-28
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.
Directory of Open Access Journals (Sweden)
Sjögren Magnus
2004-11-01
Full Text Available Abstract Background The aim of this study was firstly, to improve and validate a cerebrospinal fluid (CSF prefractionation method followed by two-dimensional electrophoresis (2-DE and secondly, using this strategy to investigate differences between the CSF proteome of frontotemporal dementia (FTD patients and controls. From each subject three ml of CSF was prefractionated using liquid phase isoelectric focusing prior to 2-DE. Results With respect to protein recovery and purification potential, ethanol precipitation of the prefractionated CSF sample was found superior, after testing several sample preparation methods. The reproducibility of prefractionated CSF analyzed on 2-D gels was comparable to direct 2-DE analysis of CSF. The protein spots on the prefractionated 2-D gels had an increased intensity, indicating a higher protein concentration, compared to direct 2-D gels. Prefractionated 2-DE analysis of FTD and control CSF showed that 26 protein spots were changed at least two fold. Using mass spectrometry, 13 of these protein spots were identified, including retinol-binding protein, Zn-α-2-glycoprotein, proapolipoproteinA1, β-2-microglobulin, transthyretin, albumin and alloalbumin. Conclusion The results suggest that the prefractionated 2-DE method can be useful for enrichment of CSF proteins and may provide a new tool to investigate the pathology of neurodegenerative diseases. This study confirmed reduced levels of retinol-binding protein and revealed some new biomarker candidates for FTD.
Automated analysis of protein NMR assignments using methods from artificial intelligence.
Zimmerman, D E; Kulikowski, C A; Huang, Y; Feng, W; Tashiro, M; Shimotakahara, S; Chien, C; Powers, R; Montelione, G T
1997-06-20
An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional 15N-1H heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed.
Asllanaj, Fatmir; Fumeron, Sebastien
2012-07-01
Optical tomography is a medical imaging technique based on light propagation in the near infrared (NIR) part of the spectrum. We present a new way of predicting the short-pulsed NIR light propagation using a time-dependent two-dimensional-global radiative transfer equation in an absorbing and strongly anisotropically scattering medium. A cell-vertex finite-volume method is proposed for the discretization of the spatial domain. The closure relation based on the exponential scheme and linear interpolations was applied for the first time in the context of time-dependent radiative heat transfer problems. Details are given about the application of the original method on unstructured triangular meshes. The angular space (4πSr) is uniformly subdivided into discrete directions and a finite-differences discretization of the time domain is used. Numerical simulations for media with physical properties analogous to healthy and metastatic human liver subjected to a collimated short-pulsed NIR light are presented and discussed. As expected, discrepancies between the two kinds of tissues were found. In particular, the level of light flux was found to be weaker (inside the medium and at boundaries) in the healthy medium than in the metastatic one.
Nahar, Limon Khatun; Andrews, Rebecca; Paterson, Sue
2015-09-01
A highly sensitive and fully validated method was developed for the quantification of buprenorphine in postmortem blood. After a two-step protein precipitation process using acetonitrile, buprenorphine was purified using mixed-mode (C8/cation exchange) solid-phase extraction cartridges. Endogenous water-soluble compounds and lipids were removed from the cartridges before the samples were eluted, concentrated and derivatized using N-methyl-N-trimethylsilyltrifluoroacetamide. The samples were analyzed using two-dimensional gas chromatography-mass spectrometry (2D GC-MS) in selective ion-monitoring mode. A low polarity Rxi(®)-5MS (30 m × 0.25 mm I.D. × 0.25 µm) was used as the primary column and the secondary column was a mid-polarity Rxi(®) -17Sil MS (15 m × 0.32 mm I.D. × 0.25 µm). The assay was linear from 1.0 to 50.0 ng/mL (r(2) > 0.99; n = 6). Intraday (n = 6) and interday (n = 9) imprecisions (percentage relative standard deviation, % RSD) were selective with no interference from endogenous compounds or from 62 commonly encountered drugs. To prove method applicability to forensic postmortem cases, 14 authentic postmortem blood samples were analyzed.
Energy Technology Data Exchange (ETDEWEB)
Guo, En-Yu [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Chawla, Nikhilesh [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Jing, Tao [Key Laboratory for Advanced Materials Processing Technology, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Torquato, Salvatore [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States); Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States); Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544 (United States); Jiao, Yang, E-mail: yang.jiao.2@asu.edu [Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States)
2014-03-01
Heterogeneous materials are ubiquitous in nature and synthetic situations and have a wide range of important engineering applications. Accurate modeling and reconstructing three-dimensional (3D) microstructure of topologically complex materials from limited morphological information such as a two-dimensional (2D) micrograph is crucial to the assessment and prediction of effective material properties and performance under extreme conditions. Here, we extend a recently developed dilation–erosion method and employ the Yeong–Torquato stochastic reconstruction procedure to model and generate 3D austenitic–ferritic cast duplex stainless steel microstructure containing percolating filamentary ferrite phase from 2D optical micrographs of the material sample. Specifically, the ferrite phase is dilated to produce a modified target 2D microstructure and the resulting 3D reconstruction is eroded to recover the percolating ferrite filaments. The dilation–erosion reconstruction is compared with the actual 3D microstructure, obtained from serial sectioning (polishing), as well as the standard stochastic reconstructions incorporating topological connectedness information. The fact that the former can achieve the same level of accuracy as the latter suggests that the dilation–erosion procedure is tantamount to incorporating appreciably more topological and geometrical information into the reconstruction while being much more computationally efficient. - Highlights: • Spatial correlation functions used to characterize filamentary ferrite phase • Clustering information assessed from 3D experimental structure via serial sectioning • Stochastic reconstruction used to generate 3D virtual structure 2D micrograph • Dilation–erosion method to improve accuracy of 3D reconstruction.
Directory of Open Access Journals (Sweden)
Hai-Feng Zhang
2016-08-01
Full Text Available In this paper, the properties of photonic band gaps (PBGs in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.
Zhang, Hai-Feng; Liu, Shao-Bin
2016-08-01
In this paper, the properties of photonic band gaps (PBGs) in two types of two-dimensional plasma-dielectric photonic crystals (2D PPCs) under a transverse-magnetic (TM) wave are theoretically investigated by a modified plane wave expansion (PWE) method where Monte Carlo method is introduced. The proposed PWE method can be used to calculate the band structures of 2D PPCs which possess arbitrary-shaped filler and any lattice. The efficiency and convergence of the present method are discussed by a numerical example. The configuration of 2D PPCs is the square lattices with fractal Sierpinski gasket structure whose constituents are homogeneous and isotropic. The type-1 PPCs is filled with the dielectric cylinders in the plasma background, while its complementary structure is called type-2 PPCs, in which plasma cylinders behave as the fillers in the dielectric background. The calculated results reveal that the enough accuracy and good convergence can be obtained, if the number of random sampling points of Monte Carlo method is large enough. The band structures of two types of PPCs with different fractal orders of Sierpinski gasket structure also are theoretically computed for a comparison. It is demonstrate that the PBGs in higher frequency region are more easily produced in the type-1 PPCs rather than in the type-2 PPCs. Sierpinski gasket structure introduced in the 2D PPCs leads to a larger cutoff frequency, enhances and induces more PBGs in high frequency region. The effects of configurational parameters of two types of PPCs on the PBGs are also investigated in detail. The results show that the PBGs of the PPCs can be easily manipulated by tuning those parameters. The present type-1 PPCs are more suitable to design the tunable compacted devices.
Su, Xiao-Xing; Wang, Yue-Sheng; Zhang, Chuanzeng
2017-05-01
A time-domain method for calculating the defect states of scalar waves in two-dimensional (2D) periodic structures is proposed. In the time-stepping process of the proposed method, the column vector containing the spatially sampled field values is updated by multiplying it with an iteration matrix, which is written in a matrix-exponential form. The matrix-exponential is first computed by using the Suzuki's decomposition based technique of the fourth order, in which the Floquet-Bloch boundary conditions are incorporated. The obtained iteration matrix is then squared to enlarge the time-step that can be used in the time-stepping process (namely, the squaring technique), and the small nonzero elements in the iteration matrix is finally pruned to improve the sparse structure of the matrix (namely, the pruning technique). The numerical examples of the super-cell calculations for 2D defect-containing phononic crystal structures show that, the fourth order decomposition based technique for the matrix-exponential computation is much more efficient than the frequently used precise integration technique (PIT) if the PIT is of an order greater than 2. Although it is not unconditionally stable, the proposed time-domain method is particularly efficient for the super-cell calculations of the defect states in a 2D periodic structure containing a defect with a wave speed much higher than those of the background materials. For this kind of defect-containing structures, the time-stepping process can run stably for a sufficiently large number of the time-steps with a time-step much larger than the Courant-Friedrichs-Lewy (CFL) upper limit, and consequently the overall efficiency of the proposed time-domain method can be significantly higher than that of the conventional finite-difference time-domain (FDTD) method. Some physical interpretations on the properties of the band structures and the defect states of the calculated periodic structures are also presented.
Santiago, Juan Agustin Calama; Utrilla, Miguel Angel Infante; Rodriguez, Maria Elisa Lavado
2015-01-01
This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC) positions and used as input to the treatment planning system (TPS) to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D) phantom gamma test (3% local dose - 3 mm) for all of the treatment verifications, but in some dose–volume histogram (DVH) comparisons, we note sensitive differences for the planning target volume (PTV) coverage and for the maximum doses in at-risk organs (up to 3.5%). In dose–distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data. PMID:26150681
Directory of Open Access Journals (Sweden)
Juan Agustin Calama Santiago
2015-01-01
Full Text Available This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC positions and used as input to the treatment planning system (TPS to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D phantom gamma test (3% local dose - 3 mm for all of the treatment verifications, but in some dose-volume histogram (DVH comparisons, we note sensitive differences for the planning target volume (PTV coverage and for the maximum doses in at-risk organs (up to 3.5%. In dose-distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data.
Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat
2017-06-01
Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.
Chen, Yantian; Sonnaert, Maarten; Roberts, Scott J; Luyten, Frank P; Schrooten, Jan
2012-06-01
DNA measurement and RNA extraction are two frequently used methods for cell characterization. In the conventional protocols, they require similar, but separate samples and in most cases, different pretreatments. The few combined protocols that exist still include time-consuming steps. Hence, to establish an efficient combined RNA extraction and DNA measurement protocol for two-dimensional (2D) and three-dimensional (3D) cell cultures, a PicoGreen-based DNA measurement was integrated in an existing RNA extraction protocol. It was validated by analysis of the influence of different lysis buffers, RLT, RA1, or Trizol, used for RNA extraction on the measured DNA concentration. The DNA cell yield was evaluated both in cell suspensions (2D) and on 3D cell-seeded scaffolds. Results showed that the different RNA lysis buffers caused a concentration-dependent perturbation of the PicoGreen signal. The measured DNA concentrations in 2D and 3D using RLT and RA1 buffer were comparable, also to the positive control. We, therefore, concluded that RNA extraction protocols using RA1 or RLT buffer allow the integration of a DNA quantification step without the buffer influencing the results. Hence, the combined DNA measurement and RNA extraction offer an alternative for DNA measurement techniques that is time and sample saving, for both 2D cell cultures and specific 3D constructs.
Lee, KiBeom
2008-06-01
One method of improving the protein profiling of complex mammalian proteomes is the use of prefractionation followed by application of narrow pH range two dimensional (2-D) gels. The success of this strategy relies on sample solubilization; poor solubilization has been associated with missing protein fractions and diffuse, streaked, and/or trailing protein spots. In this study, I sought to optimize the solubilization of prefractionated human cancer cell samples using isoelectric focusing (IEF) rehydration buffers containing a variety of commercially available reducing agents, detergents, chaotropes, and carrier ampholytes. The solubilized proteins were resolved on 2-D gels and compared. Among five tested IEF rehydration buffers, those containing 3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS) and dithiothreitol (DTT) provided superior resolution, while that containing Nonidet P-40 (NP-40) did not significantly affect protein resolution, and the tributyl phosphine (TBP)-containing buffer yielded consistently poor results. In addition, I found that buffers containing typically high urea and ampholyte levels generated sharper 2-D gels. Using these optimized conditions, I was able to apply 2-D gel analysis successfully to fractionated proteins from human breast cancer tissue MCF-7, across a pH range of 4-6.7.
Gauchotte-Lindsay, C; Richards, P; McGregor, L A; Thomas, R; Kalin, R M
2012-08-31
A dense non-aqueous phase liquid sample formed by release of coal tar into the environment was derivatised by trimethylsilylation using the reagent N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and extracted in hexane using accelerated solvent extraction. This procedure enables comprehensive extraction of an extensive suite of organic compounds from tar, which has not previously been described. Comprehensive two dimensional gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS) was used for the analysis of the sample for concurrent evaluation of -OH functional group-containing compounds along with aliphatics, polycyclic aromatic hydrocarbons and other typical tar compounds normally determined via classic gas chromatography. Using statistically designed experiments, a range of conditions were tested for complete recovery of four different surrogates. The robustness and repeatability of the optimised derivatisation/extraction method was demonstrated. Finally, more than a hundred and fifty derivatised compounds were identified using mass spectra elucidation and GC×GC logical order of elution. Copyright © 2012 Elsevier B.V. All rights reserved.
In, Hai-Jung; Kwon, Oh-Kyong
2012-03-01
A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.
Energy Technology Data Exchange (ETDEWEB)
Shimada, Kotaro, E-mail: kotaro@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Isoda, Hiroyoshi, E-mail: sayuki@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Okada, Tomohisa, E-mail: tomokada@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kamae, Toshikazu, E-mail: toshi13@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Arizono, Shigeki, E-mail: arizono@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Hirokawa, Yuusuke, E-mail: yuusuke@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Shibata, Toshiya, E-mail: ksj@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Togashi, Kaori, E-mail: ktogashi@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan)
2011-01-15
Objective: To study whether shortening the acquisition time for selective hepatic artery visualization is feasible without image quality deterioration by adopting two-dimensional (2D) parallel imaging (PI) and short tau inversion recovery (STIR) methods. Materials and methods: Twenty-four healthy volunteers were enrolled. 3D true steady-state free-precession imaging with a time spatial labeling inversion pulse was conducted using 1D or 2D-PI and fat suppression by chemical shift selective (CHESS) or STIR methods. Three groups of different scan conditions were assigned and compared: group A (1D-PI factor 2 and CHESS), group B (2D-PI factor 2 x 2 and CHESS), and group C (2D-PI factor 2 x 2 and STIR). The artery-to-liver contrast was quantified, and the quality of artery visualization and overall image quality were scored. Results: The mean scan time was 9.5 {+-} 1.0 min (mean {+-} standard deviation), 5.9 {+-} 0.8 min, and 5.8 {+-} 0.5 min in groups A, B, and C, respectively, and was significantly shorter in groups B and C than in group A (P < 0.01). The artery-to-liver contrast was significantly better in group C than in groups A and B (P < 0.01). The scores for artery visualization and overall image quality were worse in group B than in groups A and C. The differences were statistically significant (P < 0.05) regarding the arterial branches of segments 4 and 8. Between group A and group C, which had similar scores, there were no statistically significant differences. Conclusion: Shortening the acquisition time for selective hepatic artery visualization was feasible without deterioration of the image quality by the combination of 2D-PI and STIR methods. It will facilitate using non-contrast-enhanced MRA in clinical practice.
Depth Map Generation Method of Two-dimensional Image Sequence%一种二维图像序列的深度图像生成方法
Institute of Scientific and Technical Information of China (English)
罗莎莎; 郭太良
2012-01-01
This paper proposes a depth map generation method based on motion object. First, the paper uses improved cumulative mean square deviation algorithm to extract background model, then background subtraction method is used to obtain motion object figure. After artificially drawing the depth map of the background model, with motion object figure of each frame, the depth maps of the image sequence are automatically synthesized, which can be directly used in two-dimensional (2D) to three-dimensional (3D) conversion. Experimental results show that compared with conventional depth map generation methods, depth map obtained by this method is true and reliable, thus more comfortable for 3D visualization.%针对二维图像序列提出一种基于运动对象的深度图像生成方法.采用改进的均方差累加算法提取背景模型,并利用背景差分法提取运动对象图形,将人工绘制的背景模型的深度图像,结合每帧运动对象图形深度赋值,自动合成用于二维视频到三维视频转换的图像序列的深度图像.实验结果证明,相对于传统的仅仅依靠计算机视觉获取深度图像的方法,它获得的深度图像,不仅画面的深度信息真实、可靠,而且转换后的三维场景更立体化.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Energy Technology Data Exchange (ETDEWEB)
Schunert, Sebastian; Azmy, Yousry Y., E-mail: snschune@ncsu.edu, E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC (United States)
2011-07-01
The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally ne mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite rst eliminates the aforementioned limitation of ne mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme. (author)
Energy Technology Data Exchange (ETDEWEB)
Sebastian Schunert; Yousry Y. Azmy
2011-05-01
The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally fine mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite first eliminates the aforementioned limitation of fine mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme.
Pripdeevech, Patcharee; Wongpornchai, Sugunya; Marriott, Philip J
2010-01-01
Vetiver root oil is known as one of the finest fixatives used in perfumery. This highly complex oil contains more than 200 components, which are mainly sesquiterpene hydrocarbons and their oxygenated derivatives. Since conventional GC-MS has limitation in terms of separation efficiency, the comprehensive two-dimensional GC-MS (GC x GC-MS) was proposed in this study as an alternative technique for the analysis of vetiver oil constituents. To evaluate efficiency of the hyphenated GC x GC-MS technique in terms of separation power and sensitivity prior to identification and quantitation of the volatile constituents in a variety of vetiver root oil samples. METHODOLOGY. Dried roots of Vetiveria zizanioides were subjected to extraction using various conditions of four different methods; simultaneous steam distillation, supercritical fluid, microwave-assisted, and Soxhlet extraction. Volatile components in all vetiver root oil samples were separated and identified by GC-MS and GC x GC-MS. The relative contents of volatile constituents in each vetiver oil sample were calculated using the peak volume normalization method. Different techniques of extraction had diverse effects on yield, physical and chemical properties of the vetiver root oils obtained. Overall, 64 volatile constituents were identified by GC-MS. Among the 245 well-resolved individual components obtained by GC x GC-MS, the additional identification of 43 more volatiles was achieved. In comparison with GC-MS, GC x GC-MS showed greater ability to differentiate the quality of essential oils obtained from diverse extraction conditions in terms of their volatile compositions and contents.
Wee, Tae-Kwon; Kuo, Ying-Hwa; Lee, Dong-Kyou
2010-12-01
A two-dimensional curved ray tracer (CRT) is developed to study the propagation path of radio signals across a heterogeneous planetary atmosphere. The method, designed to achieve improvements in both computational efficiency and accuracy over conventional straight-line methods, takes rays' first-order bending into account to better describe curved raypaths in the stratified atmosphere. CRT is then used to simulate the phase path from GPS radio occultation (RO). The merit of the ray tracing approach in GPS RO is explicit consideration of horizontal variation in the atmosphere, which may lead to a sizable error but is disregarded in traditional retrieval schemes. In addition, direct modeling of the phase path takes advantage of simple error characteristics in the measurement. With provision of ionospheric and neutral atmospheric refractive indices, in this effort, rays are traced along the full range of GPS-low Earth orbiting (LEO) radio links just as the measurements are made in real life. Here, ray shooting is employed to realize the observed radio links with controlled accuracy. CRT largely reproduces the very measured characteristics of GPS signals. When compared, the measured and simulated phases show remarkable agreement. The cross validation between CRT and GPS RO has confirmed not only the strength of CRT but also the high accuracy of GPS RO measurements. The primary motivation for this study is enabling effective quality control for GPS RO data, overcoming a complicated error structure in the high-level data. CRT has also shown a great deal of potential for improved utilization of GPS RO data for geophysical research.
Energy Technology Data Exchange (ETDEWEB)
Afchain, St
2005-02-15
The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Directory of Open Access Journals (Sweden)
Maryam Khoroushi
2016-05-01
Full Text Available Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D and three dimensional (3D dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc., using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05. Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002. The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively. The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003. The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001. The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique.
NMR methods for beer characterization and quality control.
Rodrigues, J E; Gil, A M
2011-12-01
The use of high-resolution NMR spectroscopy in the brewing industry is described; most studies having aimed at assessing the composition of beer and its raw materials and correlating it to a variety of quality parameters. First, the application of NMR to the qualitative characterization of beer is reviewed, addressing both targeted and untargeted methods and focusing on both beer extracts and direct beer analysis. A subsequent chapter addresses the NMR studies, which envisage the development of new rapid methods for beer analysis and quality control, such as site-specific natural fractionation-NMR and multivariate data analysis methods for marker search or rapid compound quantification. Finally, possible future perspectives toward a deeper and more complete understanding of beer and its brewing process are discussed. Copyright © 2012 John Wiley & Sons, Ltd.
Knowns and unknowns in metabolomics identified by multidimensional NMR and hybrid MS/NMR methods
Energy Technology Data Exchange (ETDEWEB)
Bingol, Kerem; Brüschweiler, Rafael
2017-02-01
Metabolomics continues to make rapid progress through the development of new and better methods and their applications to gain insight into the metabolism of a wide range of different biological systems from a systems biology perspective. Customization of NMR databases and search tools allows the faster and more accurate identification of known metabolites, whereas the identification of unknowns, without a need for extensive purification, requires new strategies to integrate NMR with mass spectrometry, cheminformatics, and computational methods. For some applications, the use of covalent and non-covalent attachments in the form of labeled tags or nanoparticles can significantly reduce the complexity of these tasks.
Directory of Open Access Journals (Sweden)
XiaoWan GUO
2014-04-01
Full Text Available Background and objective Software oriented three-dimensional (3D volumetric measurement of pulmonary nodules has been feasible in the follow-up of indeterminate pulmonary nodules, however, its value need a further validation. The purpose of this study is to retrospectively analyze the chest CT data of patients with pulmonary nodules to compare the intra-observer variability of 3D and two-dimensional (2D volumetric measurement. Methods Eighty-six pulmonary nodules in chest CT scans of 79 subjects were retrospectively analyzed. One radiologist measured the nodules twice with a 7 days interval using 2D and 3D methods respectively. The maximal diameter (X, the perpendicular diameter (Y on maximal cross sectional area of the nodule and the caudo-cranial diameter (Z were measured and the volume was calculated by two models: spherical and elliptical model. The 3D measurements were acquired with semi-automated software with manual adjustment on unsatisfied nodule segmentation. Logistic regression analysis was performed to evaluate the effect of nodule location and morphology on 3D nodule segmentation. ANOVA and correlation test were used to evaluate the difference among three methods. Bland-Altman method was applied to quantify the intra-observer variability. Results Software achieved satisfied segmentation for 86.4% nodules. The irregular and juxtavacular nodules have significantly high odds rations (OR of unsatisfied segmentation as 4.0, 4.5, respectively. The volume measured by three method was significantly different (F=6.5, P=0.012, while the repeated measurements did not led to significant difference (F=1.813, P=0.182. The Spearman correlation efficient between 3D volume and 2D volume with sphere and ellipsoid model was 0.97, 0.88. The 95% limits of agreement of RD between two repeated measurements were -14%-11.6%, -37.7%-39.9% and -39.8%-45.8% for 3D, 2D with elliptical model and spherical model, respectively. Conclusion The 3D volume measurement
Institute of Scientific and Technical Information of China (English)
莫则尧; 符尚武
2003-01-01
Two dimensional three temperatures energy equation is a kind of very impor-tant partial differential equation. In general, we discrete such equation with full implicit nine points stencil on Lagrange structured grid and generate a non-linear sparse algebraic equation including nine diagonal lines. This paper will discuss the iterative solver for such non-linear equations. We linearize the equations by fixing the coefficient matrix, and iteratively solve the linearized algebraic equation with Krylov subspace iterative method. We have applied the iterative method presented in this paper to the code Lared-Ⅰ for numerical simulation of two dimensional threetemperatures radial fluid dynamics, and have obtained efficient results.
Energy Technology Data Exchange (ETDEWEB)
Yan, Dongming [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Hou, Peipei; Liu, Chang [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chai, Wenxiang [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuerong [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Luodong [School of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310058 (China); Zhi, Mingjia; Zhou, Chunmei [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Yi, E-mail: liuyimse@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)
2016-09-15
Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides. - Graphical abstract: Two new quaternary thioarsenates(III) NaAg{sub 2}AsS{sub 3}·H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) with high yields have been successfully prepared through a facile surfactant-thermal method. X-ray single crystal diffraction analyses demonstrate that Na{sup +} and K{sup +} cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Display Omitted - Highlights: • NaAg{sub 2}AsS{sub 3}⋅H{sub 2}O (1) and KAg{sub 2}AsS{sub 3} (2) were prepared through surfactant-thermal method. • Crystal structures show Na{sup ±} and K{sup ±} have different structure directing effects. • The weak basicity of solvent is benefit to the growth of 2 compared with 1. • Experimental and theoretical studies confirm 1 and 2 are semiconductors.
NMR methods for the investigation of structure and transport
Energy Technology Data Exchange (ETDEWEB)
Hardy, Edme H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Mechanische Verfahrenstechnik und Mechanik
2012-07-01
Extensive derivations of required fundamental relations for readers with engineering background New applications based on MRI, PGSE-NMR, and low-field NMR New concepts in quantitative data evaluation and image analysis Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating, emulsions). Magnetic Resonance Imaging (MRI) as well as low-field NMR are covered with notes on hardware. Emphasis is placed on quantitative data analysis and image processing. (orig.)
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Yenn Chong, See; Lee, Jung-Ryul; Yik Park, Chan
2013-03-01
Conventional threshold crossing technique generally encounters the difficulty in setting a common threshold level in the extraction of the respective time-of-flights (ToFs) and amplitudes from the guided waves obtained at many different points by spatial scanning. Therefore, we propose a statistical threshold determination method through noise map generation to automatically process numerous guided waves having different propagation distances. First, a two-dimensional (2-D) noise map is generated using one-dimensional (1-D) WT magnitudes at time zero of the acquired waves. Then, the probability density functions (PDFs) of Gamma distribution, Weibull distribution and exponential distribution are used to model the measured 2-D noise map. Graphical goodness-of-fit measurements are used to find the best fit among the three theoretical distributions. Then, the threshold level is automatically determined by selecting the desired confidence level of the noise rejection in the cumulative distribution function of the best fit PDF. Based on this threshold level, the amplitudes and ToFs are extracted and mapped into a 2-D matrix array form. The threshold level determined by the noise statistics may cross the noise signal after time zero. These crossings are represented as salt-and-pepper noise in the ToF and amplitude maps but finally removed by the 1-D median filter. This proposed method was verified in a thick stainless steel hollow cylinder where guided waves were acquired in an area of 180 mm×126 mm of the cylinder by using a laser ultrasonic scanning system and an ultrasonic sensor. The Gamma distribution was estimated as the best fit to the verification experimental data by the proposed algorithm. The statistical parameters of the Gamma distribution were used to determine the threshold level appropriate for most of the guided waves. The ToFs and amplitudes of the first arrival mode were mapped into a 2-D matrix array form. Each map included 447 noisy points out of 90
Energy Technology Data Exchange (ETDEWEB)
Khatib, Alfi [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Wilson, Erica G. [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Kim, Hye Kyong [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Lefeber, Alfons W.M. [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Erkelens, Cornelis [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Choi, Young Hae [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)]. E-mail: y.choi@chem.leidenuniv.nl; Verpoorte, Robert [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)
2006-02-16
A number of ingredients in beer that directly or indirectly affect its quality require an unbiased wide-spectrum analytical method that allows for the determination of a wide array of compounds for its efficient control. {sup 1}H nuclear magnetic resonance (NMR) spectroscopy is a method that clearly meets this description as the broad range of compounds in beer is detectable. However, the resulting congestion of signals added to the low resolution of {sup 1}H NMR spectra makes the identification of individual components very difficult. Among two-dimensional (2D) NMR techniques that increase the resolution, J-resolved NMR spectra were successfully applied to the analysis of 2-butanol extracts of beer as overlapping signals in {sup 1}H NMR spectra were fully resolved by the additional axis of the coupling constant. Principal component analysis based on the projected J-resolved NMR spectra showed a clear separation between all of the six brands of pilsner beer evaluated in this study. The compounds responsible for the differentiation were identified by 2D NMR spectra including correlated spectroscopy and heteronuclear multiple bond correlation spectra together with J-resolved spectra. They were identified as nucleic acid derivatives (adenine, uridine and xanthine), amino acids (tyrosine and proline), organic acid (succinic and lactic acid), alcohol (tyrosol and isopropanol), cholines and carbohydrates.
L型阵列的二维DOA估计方法%Method of two-dimensional DOA estimation for L-shaped array
Institute of Scientific and Technical Information of China (English)
景小荣; 刘雪峰
2016-01-01
低信噪比（signal-to-noise ratio，SNR）或小接收快拍数条件下，经典的二维（two-dimensional，2D）波达方向（direction of arrival，DOA）算法存在估计精度低的缺点。针对该问题，充分利用 L 型阵列接收数据的自、互相关信息，提出一种适用于低 SNR 及小接收快拍数环境下的2D DOA 估计新方法。该方法首先通过解析优化2D 谱峰搜索问题，获得方位角与仰角之间的特定约束关系，进而将包含2D 角度参量的目标函数转化为只包含一维（one-di-mensional，1 D）角度参量，即可通过1 D 谱峰搜索获得方位角（或仰角）估计值，最后再次利用该约束关系求得与之对应的仰角（或方位角）估计值。该方法只需1 D 谱峰搜索，而且所得2D 角度估计参数可自动实现配对。计算机仿真验证了该方法在低 SNR 及小接收快拍数情况下的有效性。%Under low SNR region or with the small number of the snapshots,the classic two-dimensional (2D)direction-of-arrival (DOA)algorithms have the drawback of low estimation accuracy.To resolve the problem,the paper presents a new method of 2D DOA estimation suitable for low signal-to-noise (SNR)region and small number of the snapshots by fully tak-ing advantage of the autocorrelation and cross-correlation information of the received snapshots of L-shape sensor arrays. Analytically optimizing the problem of 2D spectrum peak search,we obtain the specific constraint relationship between the azimuth and elevation.On the basis of it,the method firstly converts the objective function with 2D angle parameter into the one with one-dimensional (1 D)angle parameter.Then the azimuth (or elevation)is obtained by 1 D searching.Finally, the elevation (or azimuth)can be estimated according to the specific constraint relationship between the azimuth and eleva-tion.The method only needs 1 D spectrum peak searching,and the estimated azimuth and elevation can be
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Galimskaia, V A; Donchenko, I A; Romanovskaia, E M; Oleĭnikov, V É
2014-01-01
Aim of this study was to assess qualitative and quantitative features of deformation parameters of left ventricular myocardium in patients with ischemic heart disease (IHD) with and without history of myocardial infarction (MI) using two-dimensional strain imaging. We examined 30 patients with clinical IHD with (group 1, n = 15) and without (group 2, n = 15) history of MI and 20 healthy volunteers. Compared with healthy subjects IHD patients of both groups had reduced longitudinal and circular myocardial deformation. There were no significant differences between patients with IHD and controls in parameters of radial, global, and regional deformation.
Application of Multi-Exponential Inversion Method to NMR Measurements
Institute of Scientific and Technical Information of China (English)
XiaoLizhi; WangZhongdong; LiuTangyan
2004-01-01
A new multi-exponential inversion method for NMR relaxation signals is presented and tested, which is based on a solid iteration rebuild technique (SIRT). The T2 spectra inversed by the new method are compared with MAP-Ⅱ results. The T1 and T2 inversion results with different pre-assigned relaxation times and different SNR show that 16 to 64 logarithm equal spaced time constants is better obviously than MAP-Ⅱ. And in particular, it can ensure the relaxation time distribution when the SNR of the measured signal is very low. The new algorithm has been applied in rock core NMR analysis and NMR logging data process and interpretation.
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Bandoli, Giuliano; Nicolini, Marino; Pappalardo, Giuseppe C.; Grassi, Antonio; Perly, Bruno
1987-04-01
The crystal and molecular structure of the nootropic agent N-[2-( N,N-diisopropyl-amino)ethyl]-2-oxo-1-pyrrolidinacetamide sulphate was determined by X-ray analysis. The conformational properties in the solution state were deduced from the 1H-NMR spectrum run in 2H 2O at 500 MHz. Spectral assignments were made with the aid of the COSY 45 shift correlation experiment. Crystals were triclinic with unit cell dimensions a = 13.410(10), b = 11.382(8), c = 6.697(4) », α = 83.80(3), β = 88.61(3)and γ = 72.25(6)° ; space group Poverline1. The structure was determined from 1047 three-dimensional counter data and refined to a value of 7.5% for the conventional discrepancy factor R. One molecule of the solvent acetonitrile is incorporated per two of the (C 14H 28N 3O 2) +-(HSO 4) -. The five-membered heterocyclic ring is in an envelope ( Cs) conformation and the "flap" atom deviates by 0.31 » from the plane of the other four. This plane forms a dihedral angle of 71.4° with the amide group, with the CO fragment directed toward the ring. All bond angles and distances are in good agreement with expected standard values. A strong OH⋯O intermolecular bond (2.61 ») links the cation of the hydrogen-sulphate anion, while the loosely held MeCN molecule is trapped in the polar pockets. The molecular conformation in the solid was compared with results from 1H NMR spectral analysis which showed that in solution wide torsional oscillations can occur about the bonds of the chain bonded to the N(1) atom.
Two-dimensional crystallization of integral membrane proteins for electron crystallography.
Stokes, David L; Rice, William J; Hu, Minghui; Kim, Changki; Ubarretxena-Belandia, Iban
2010-01-01
Although membrane proteins make up 30% of the proteome and are a common target for therapeutic drugs, determination of their atomic structure remains a technical challenge. Electron crystallography represents an alternative to the conventional methods of X-ray diffraction and NMR and relies on the formation of two-dimensional crystals. These crystals are produced by reconstituting purified, detergent-solubilized membrane proteins back into the native environment of a lipid bilayer. This chapter reviews methods for producing two-dimensional crystals and for screening them by negative stain electron microscopy. In addition, we show examples of the different morphologies that are commonly obtained and describe basic image analysis procedures that can be used to evaluate their promise for structure determination by cryoelectron microscopy.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
NMR methods for the investigation of structure and transport
Hardy, Edme H
2011-01-01
Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating
Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai
2013-02-01
For efficient inversion code, the forward modeling routine, the sensitivity calculation, and the inversion algorithm must be efficient. Here, the hybrid finite difference-finite element algorithm, which is fast and accurate even when the slope of the topography is greater than 45°, is used as the forward modeling routine to calculate the responses. The sensitivity calculation is adapted from the most efficient adjoint Green's function technique. Both of these algorithms are then driven with the data space Occam's inversion. This combination of modules makes it possible to obtain an efficient inversion code based on MATLAB for two-dimensional direct current (DC) resistivity data. To demonstrate its efficiency, numerical experiments with our code and with commercial software are performed on synthetic data and real field data collected in the western part of Thailand where limestone and cavities dominate the region. In general, our code takes substantially longer than the commercial code to run but converges to a solution with a lower misfit. The result shows that the efficiency of our code makes it practical for real field surveys.
Saalmueller, J. W.; Long, H. W.; Maresch, G. G.; Spiess, H. W.
A practical route for obtaining two-dimensional electron double-resonance spectra of radicals in disordered solids is presented in detail. It involves narrow-band pulse excitation during a magnetic field step combined with echo detection after a mixing time. The equipment and experimental procedures are described, and factors affecting the performance of the field-jump coil, spectral resolution, and sensitivity are thoroughly discussed. Simulated spectra, which take into account distributions of correlation times, show the spectral features that can be observed with this technique. These simulations have been improved over previous work by taking into account g-tensor fluctuations, which is the dominant effect in determining the anisotropy of the electron spin-lattice relaxation. Data for nitroxide radicals in polycarbonate at 110 K are analyzed and an orientation averaged nuclear spin-lattice relaxation time of 82 ± 13 μs and an electron spin-lattice relaxation time for radicals oriented along the zdirection (slowest relaxation) of 23 ± 4 μs are measured. Simulations show that this relaxation is caused by highly restricted liberational motion with a distribution of correlation times having mean of 0.1 μs and a width of about 0.8 decades in combination with a very narrow mode having a correlation time of 10 ps.
A frequency determination method for digitized NMR signals
Yan, H; Khatiwada, R; Smith, E; Snow, W M; Fu, C B; Chu, P -H; Gao, H; Zheng, W
2013-01-01
We present a high precision frequency determination method for digitized NMR FID signals. The method employs high precision numerical integration rather than simple summation as in many other techniques. With no independent knowledge of the other parameters of a NMR FID signal (phase $\\phi$, amplitude $A$, and transverse relaxation time $T_{2}$) this method can determine the signal frequency $f_{0}$ with a precision of $1/(8\\pi^{2}f_{0}^{2}T_{2}^{2})$ if the observation time $T$ is long enough. The method is especially convenient when the detailed shape of the observed FT NMR spectrum is not well defined. When $T_{2}$ is $+\\infty$ and the signal becomes pure sinusoidal, the precision of the method is $3/(2\\pi^{2}f_{0}^{2}T^{2})$ which is one order more precise than a typical frequency counter. Analysis of this method shows that the integration reduces the noise by bandwidth narrowing as in a lock-in amplifier, and no extra signal filters are needed. For a pure sinusoidal signal we find from numerical simulati...
Hasei, Tomohiro; Nakanishi, Haruka; Toda, Yumiko; Watanabe, Tetsushi
2012-08-31
3-Nitrobenzanthrone (3-NBA) is an extremely strong mutagen and carcinogen in rats inducing squamous cell carcinoma and adenocarcinoma. We developed a new sensitive analytical method, a two-dimensional HPLC system coupled with on-line reduction, to quantify non-fluorescent 3-NBA as fluorescent 3-aminobenzanthrone (3-ABA). The two-dimensional HPLC system consisted of reversed-phase HPLC and normal-phase HPLC, which were connected with a switch valve. 3-NBA was purified by reversed-phase HPLC and reduced to 3-ABA with a catalyst column, packed with alumina coated with platinum, in ethanol. An alcoholic solvent is necessary for reduction of 3-NBA, but 3-ABA is not fluorescent in the alcoholic solvent. Therefore, 3-ABA was separated from alcohol and impurities by normal-phase HPLC and detected with a fluorescence detector. Extracts from surface soil, airborne particles, classified airborne particles, and incinerator dust were applied to the two-dimensional HPLC system after clean-up with a silica gel column. 3-NBA, detected as 3-ABA, in the extracts was found as a single peak on the chromatograms without any interfering peaks. 3-NBA was detected in 4 incinerator dust samples (n=5). When classified airborne particles, that is, those 7.0 μm in size, were applied to the two-dimensional HPLC system after purified using a silica gel column, 3-NBA was detected in those particles with particle sizes NBA in airborne particles and the detection of 3-NBA in incinerator dust. Copyright © 2012 Elsevier B.V. All rights reserved.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Energy Technology Data Exchange (ETDEWEB)
Bian, Liang, E-mail: bianliang@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Fa-qin; Song, Mian-xin [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Dong, Hai-liang [Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056 (United States); Li, Wei-Min [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Duan, Tao; Xu, Jin-bao [Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China); Zhang, Xiao-yan [Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, Xinjiang (China); Laboratory for Extreme Conditions Matter Properties, South West University of Science and Technology, Mianyang 621010, Sichuan (China)
2015-08-30
Highlights: • Effect of Pu f-shell electron on the electronic property of zircon is calculated via DFT and 2D-CA techniques. • Reasons of Pu f-shell electron influencing on electronic properties are systematically discussed. • Phase transitions are found at two point 2.8 mol% and 7.5 mol%. - Abstract: Understanding how plutonium (Pu) doping affects the crystalline zircon structure is very important for risk management. However, so far, there have been only a very limited number of reports of the quantitative simulation of the effects of the Pu charge and concentration on the phase transition. In this study, we used density functional theory (DFT), virtual crystal approximation (VCA), and two-dimensional correlation analysis (2D-CA) techniques to calculate the origins of the structural and electronic transitions of Zr{sub 1−c}Pu{sub c}SiO{sub 4} over a wide range of Pu doping concentrations (c = 0–10 mol%). The calculations indicated that the low-angular-momentum Pu-f{sub xy}-shell electron excites an inner-shell O-2s{sup 2} orbital to create an oxygen defect (V{sub O-s}) below c = 2.8 mol%. This oxygen defect then captures a low-angular-momentum Zr-5p{sup 6}5s{sup 2} electron to form an sp hybrid orbital, which exhibits a stable phase structure. When c > 2.8 mol%, each accumulated V{sub O-p} defect captures a high-angular-momentum Zr-4d{sub z} electron and two Si-p{sub z} electrons to create delocalized Si{sup 4+} → Si{sup 2+} charge disproportionation. Therefore, we suggest that the optimal amount of Pu cannot exceed 7.5 mol% because of the formation of a mixture of ZrO{sub 8} polyhedral and SiO{sub 4} tetrahedral phases with the orientation (10-1). This study offers new perspective on the development of highly stable zircon-based solid solution materials.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Gradient-Diffusion Methods for Simulating Decoherence by NMR Spectroscopy
Havel, T F; Viola, L; Cory, D G; Havel, Timothy F.; Sharf, Yehuda; Viola, Lorenza; Cory, David G.
2001-01-01
Theoretical techniques are developed for designing nuclear magnetic resonance (NMR) experiments to simulate a variety of adiabatic decoherence (aka T_2 relaxation) processes, using sequences of pulsed field gradients and diffusion periods. To this end an efficient Hadamard product formalism is introduced and used to derive Lindblad master equations from NMR pulse sequences for both collective and independent phase damping on any number of spins. The Kraus operator sum form is shown to be related to the Hadamard form by diagonalization, and explicit Lindblad and Kraus operators given for arbitrary correlations between two spins. Finally, gradient-diffusion methods are outlined for more complex forms of decoherence, including the three-axis collective model.
Institute of Scientific and Technical Information of China (English)
LIU Xue-Hui; LIN Dong-Hai
2007-01-01
This paper describes an amide-exchange-rate-edited (AERE) NMR method that can effectively alleviate the problem of resonance overlap for proteins and peptides. This method exploits the diversity of amide proton exchange rates and consists of two complementary experiments: (1) SEA (solvent exposed amide)-type NMR experiments to map exchangeable surface residues whose amides are not involved in hydrogen bonding, and (2) presat-type NMR experiments to map solvent inaccessibly buried residues or nonexchangeable residues located in hydrogen-bonded secondary structures with properly controlled saturation transfer via amide proton exchanges with the solvent. This method separates overlapping resonances in a spectrum into two complementary spectra. The AERE-NMR method was demonstrated with a sample of 15N/13C/2H(70%) labeled ribosome-inactivating protein trichosanthin of 247 residues.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2009-01-01
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.
Slangen, J.L.; Woestenburg, J.C.; Verbaten, M.N.
1984-01-01
A method for calibration, orthogonalization and standardization of eye movements is described. The method is based on linear transformation of the horizontal and vertical EOG. With this method it is possible to measure the locus of eye fixation on a TV screen and its associated fixation time.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Wright, William B.
1988-01-01
Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Widodo, Chomsin S.; Fujii, Muneaki
2012-12-01
NMR measurement have been made at low temperatures on the crystal structure of K2CuF4 and (C3H7NH3)2CuCl4 at zero applied magnetic field. 63Cu, 65Cu and 35Cl NMR have been used to measure spontaneous magnetization at the temperature range 2 K down to 30 mK. We have made the NMR experiments using a 3He-4He dilution refrigerator by conventional pulsed NMR method without external magnetic field. The magnetization at zero applied magnetic field in the nearly two-dimensional ferromagnet K2CuF4 of the experimental data is in a good agreement with Yamaji-Kondo theory and θc = 0.3, which is applied the double-time Green's function method incorporated with Tyablikov's decoupling. For temperature 1.1 K down to 0.26 K, the spontaneous magnetization of (C3H7NH3)2CuCl4 is support (t log t')-formalism from the spin wave theory.
Messaris, G. T.; Papastavrou, C. A.; Loukopoulos, V. C.; Karahalios, G. T.
2009-08-01
A new finite-difference method is presented for the numerical solution of the Navier-Stokes equations of motion of a viscous incompressible fluid in two (or three) dimensions and in the primitive-variable formulation. Introducing two auxiliary functions of the coordinate system and considering the form of the initial equation on lines passing through the nodal point (x0, y0) and parallel to the coordinate axes, we can separate it into two parts that are finally reduced to ordinary differential equations, one for each dimension. The final system of linear equations in n-unknowns is solved by an iterative technique and the method converges rapidly giving satisfactory results. For the pressure variable we consider a pressure Poisson equation with suitable Neumann boundary conditions. Numerical results, confirming the accuracy of the proposed method, are presented for configurations of interest, like Poiseuille flow and the flow between two parallel plates with step under the presence of a pressure gradient.
Institute of Scientific and Technical Information of China (English)
YANG Yan; Wu Guan-Hao; YU Yong-Liang; TONG Bing-Gang
2008-01-01
We present(1)the dynamical equations of deforming body and(2)an integrated method for deforming body dynamics and unsteady fluid dynamics,to investigate a modelled freely serf-propelled fish.The theoretical model and practical method is applicable for studies on the general mechanics of animal locomotion such as flying in air and swimming in water,particularly of free self-propulsion.The present results behave more credibly than the previous numerical studies and are close to the experimental results,and the aligned vortices pattern is discovered in cruising swimming.
Energy Technology Data Exchange (ETDEWEB)
Deckers, Elke [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Claeys, Claus; Atak, Onur [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium); Groby, Jean-Philippe; Dazel, Olivier [Laboratiore d' Acoustique de l' Universiteé du Maine, L' Université Nantes Angers Le Mans, Université du Maine, CNRS, UMR-6613 CNRS, Avenue Olivier Messiaen, 72085 Le Mans (France); Desmet, Wim [Department of Mechanical Engineering, Katholieke Universiteit Leuven, 3001 Heverlee (Belgium)
2016-05-01
This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.
Crouseilles, Nicolas; Lemou, Mohammed; Méhats, Florian; Zhao, Xiaofei
2017-10-01
In this work, we focus on the numerical resolution of the four dimensional phase space Vlasov-Poisson system subject to a uniform strong external magnetic field. To do so, we consider a Particle-in-Cell based method, for which the characteristics are reformulated by means of the two-scale formalism, which is well-adapted to handle highly-oscillatory equations. Then, a numerical scheme is derived for the two-scale equations. The so-obtained scheme enjoys a uniform accuracy property, meaning that its accuracy does not depend on the small parameter. Several numerical results illustrate the capabilities of the method.
Cui, Xiongwei; Yao, Xiongliang; Wang, Zhikai; Liu, Minghao
2017-03-01
A second generation wavelet-based adaptive finite-difference Lattice Boltzmann method (FD-LBM) is developed in this paper. In this approach, the adaptive wavelet collocation method (AWCM) is firstly, to the best of our knowledge, incorporated into the FD-LBM. According to the grid refinement criterion based on the wavelet amplitudes of density distribution functions, an adaptive sparse grid is generated by the omission and addition of collocation points. On the sparse grid, the finite differences are used to approximate the derivatives. To eliminate the special treatments in using the FD-based derivative approximation near boundaries, the immersed boundary method (IBM) is also introduced into FD-LBM. By using the adaptive technique, the adaptive code requires much less grid points as compared to the uniform-mesh code. As a consequence, the computational efficiency can be improved. To justify the proposed method, a series of test cases, including fixed boundary cases and moving boundary cases, are invested. A good agreement between the present results and the data in previous literatures is obtained, which demonstrates the accuracy and effectiveness of the present AWCM-IB-LBM.
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
Fitz, Brian D; Synovec, Robert E
2016-03-24
Implementation of a data reduction and visualization method for use with high-speed gas chromatography and time-of-flight mass spectrometry (GC-TOFMS) is reported. The method, called the "2D m/z cluster method" facilitates analyte detection, deconvolution, and identification, by accurately measuring peak widths and retention times using a fast TOFMS sampling frequency (500 Hz). Characteristics and requirements for high speed GC are taken into consideration: fast separations with narrow peak widths and high peak capacity, rapid data collection rate, and effective peak deconvolution. Transitioning from standard GC (10-60+ minute separations) to fast GC (1-10 min separations) required consideration of how to properly analyze the data. This report validates use of the 2D m/z cluster method with newly developed GC technology that produces ultra-fast separations (∼1 min) with narrow analyte peak widths. Low thermal mass gas chromatography (LTM-GC) operated at a heating rate of 250 °C/min coupled to a LECO Pegasus III TOFMS analyzed a 115 component test mixture in 120 s with peak widths-at-base, wb (4σ), of 350 ms (average) to produce a separation with a high peak capacity, nc ∼ 340 (at unit resolution Rs = 1). The 2D m/z cluster method is shown to separate overlapped analytes to a limiting Rs ∼ 0.03, so the effective peak capacity was increased nearly 30-fold to nc ∼10,000 in the 120 s separation. The method, when coupled with LTM-GC-TOFMS, is demonstrated to provide unambiguous peak rank (i.e. the number of analytes per overlapped peak in the total ion current (TIC)), by visualizing locations of pure and chromatographically overlapped m/z. Hence, peak deconvolution and identification using MCR-ALS (multivariate curve resolution - alternating least squares) is demonstrated.
van Ngoc, Huynh; Qian, Yongteng; Han, Suk Kil; Kang, Dae Joon
2016-09-01
We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol (PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with minimum contamination. We applied this method to transfer various 2D materials grown on different rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on SiO2/Si. This facile transfer technique has great potential for future research towards the application of 2D materials in high performance optical, mechanical and electronic devices.
Priimak, Dmitri
2014-01-01
We present finite differences numerical algorithm for solving 2D spatially homogeneous Boltzmann transport equation for semiconductor superlattices (SL) subject to time dependant electric field along SL axis and constant perpendicular magnetic field. Algorithm is implemented in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPUs. We compare performance and merits of one implementation versus another and discuss various methods of optimization.
Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen
1994-01-01
A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.
Cieśla, Lukasz; Bogucka-Kocka, Anna; Hajnos, Michał; Petruczynik, Anna; Waksmundzka-Hajnos, Monika
2008-10-17
There are a lot of taxonomic classifications of the genus Heracleum, and many authors indicate they need revision. Morphological identification is difficult to perform, as there are only few characteristic differences between each Heracleum species, varieties and forms. Furanocoumarins are characteristic compounds for the Apiaceae family, and they can be found in the whole genus in large quantities. Despite this fact, it is difficult to use the furanocoumarin profiles of plants, for their discrimination, as furanocoumarins are difficult to separate, due to their similar chemical structures and physicochemical properties. In this paper, a new, simple method is proposed for the discrimination of selected species, varieties and forms of the genus Heracleum. Thin-layer chromatography (TLC) with an adsorbent gradient (unmodified silica gel+octadecylsilica wettable with water) enables complete separation of the structural analogues. The proposed method gives the possibility to distinguish selected species, varieties and forms of the Heracleum genus, as they produce distinctive furanocoumarin fingerprints. The method is characterised by high specificity, precision, reproducibility and stability values. It is for the first time that graft TLC is used for constructing fingerprints of herbs. The complete separation of ten structural analogues, by combining gradient TLC with the unidimensional multiple development technique, has not been reported yet.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Ryczek, Robert; Krzesiński, Paweł; Krzywicki, Paweł; Smurzyński, Paweł; Cwetsch, Andrzej
2011-01-01
The evaluation of the left ventricular (LV) function is one of the most important elements of diagnosis in patients with cardiovascular (CV) diseases. A low LV ejection fraction (LVEF) is a strong and independent predictor of CV events. Traditionally, echocardiography characterises the LV systolic function by the estimation of LVEF with use of the Simpson method, supported by the wall motion score index (WMSI). Speckle tracking imaging is a new method of LV function imaging based on the estimation of longitudinal peak systolic strain (LPSS), by tracing of the automatically detected myocardial speckles. To evaluate the usefulness of global longitudinal peak systolic strain (GLPSS) and regional longitudinal peak systolic strain (r-LPSS) in LV systolic function assessment and to compare LPSS with conventional parameters such as LVEF, WMSI and regional wall motion score index (r-WMSI). The study was performed in a group of 44 patients with a clinical diagnosis of acute coronary syndrome (mean age 63.6 ± 12.2 years). The LVEF, WMSI, r-WMSI were estimated by echocardiography (VIVID 7 Dimension, GE Healthcare, USA). Moreover, LPSS (GLPSS and r-LPSS) with use of automated function imaging (AFI) were also estimated. In the study group mean LVEF was 43.1 ± 12.7%, mean WMSI: 1.68 ± 0.52, and GLPSS: -13.8 ± 5.6%. A very strong linear correlation between the conventional and new parameters was observed - for GLPSS and LVEF: r = -0.86 (p < 0.00001), for GLPSS and WMSI: r = 0.88 (p < 0.00001). The results of the regional myocardial contractility assessment (r-LPSS and r-WMSI) were also in agreement, especially for LV anterior wall (r = 0.87, p < 0.00001). These results suggest a considerable usefulness of LPSS - a new method of echocardiographical imaging - in the estimation of global and regional LV function in patients with acute coronary syndrome and its agreement with conventional parameters such as LVEF and WMSI.
Institute of Scientific and Technical Information of China (English)
Chai Zhen-Hua; Shi Bao-Chang; Zheng Lin
2006-01-01
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
Buras, R; Janka, H T; Kifonidis, K
2005-01-01
Supernova models with a full spectral treatment of the neutrino transport are presented, employing the Prometheus/Vertex neutrino-hydrodynamics code with a ``ray-by-ray plus'' approximation for treating two- (or three-) dimensional problems. The method is described in detail and critically assessed with respect to its capabilities, limitations, and inaccuracies in the context of supernova simulations. In this first paper of a series, 1D and 2D core-collapse calculations for a (nonrotating) 15 M_sun star are discussed, uncertainties in the treatment of the equation of state -- numerical and physical -- are tested, Newtonian results are compared with simulations using a general relativistic potential, bremsstrahlung and interactions of neutrinos of different flavors are investigated, and the standard approximation in neutrino-nucleon interactions with zero energy transfer is replaced by rates that include corrections due to nucleon recoil, thermal motions, weak magnetism, and nucleon correlations. Models with t...
Sharma, Divakar; Bisht, Deepa
2016-05-01
Lipophilic proteome profiling is crucial because they have an anticipated role in biological processes and pathogenesis of Mycobacterium tuberculosis. These lipophilic proteins might be used as potential targets for the development of newer diagnostic markers and drug targets due to their association with membranes and drugs. We developed an efficient and rapid method to enrich the lipophilic proteins extraction from M. tuberculosis H37Rv for 2DE. In the extraction of lipophilic proteins, nonionic detergent (Triton X-100) was added in sonication buffer that augmented the solubilization of the proteins at the time of sonication. Enriched whole cell lysate was subjected to direct phase separation using Triton X-114, without the need for preisolation of membranes. In this study, we report that our optimized extraction buffer increased the lipophilic proteins extraction and their improved resolution on 2D gel up to two- to threefolds (quantitatively and qualitatively) as compared to standard extraction buffer. Some proteins were identified by MALDI-TOF/MS. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Bjelić Mišo B.
2016-01-01
Full Text Available Simulation models of welding processes allow us to predict influence of welding parameters on the temperature field during welding and by means of temperature field and the influence to the weld geometry and microstructure. This article presents a numerical, finite-difference based model of heat transfer during welding of thin sheets. Unfortunately, accuracy of the model depends on many parameters, which cannot be accurately prescribed. In order to solve this problem, we have used simulated annealing optimization method in combination with presented numerical model. This way, we were able to determine uncertain values of heat source parameters, arc efficiency, emissivity and enhanced conductivity. The calibration procedure was made using thermocouple measurements of temperatures during welding for P355GH steel. The obtained results were used as input for simulation run. The results of simulation showed that represented calibration procedure could significantly improve reliability of heat transfer model. [National CEEPUS Office of Czech Republic (project CIII-HR-0108-07-1314 and to the Ministry of Education and Science of the Republic of Serbia (project TR37020
Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.
2015-12-01
The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) combines real-time differential Laser Absorption Spectroscopy (LAS) measurements with a lightweight web-based data acquisition and product generation system to provide autonomous 24/7 monitoring of CO2. The current GreenLITE system is comprised of two transceivers and a series of retro-reflectors that continuously measure the differential transmission over a user-defined set of intersecting line-of-site paths or "chords" that form the plane of interest. These observations are first combined with in situ surface measurements of temperature (T), pressure (P) and relative humidity (RH) to compute the integrated CO2 mixing ratios based on an iterative radiative transfer modeling approach. The retrieved CO2 mixing ratios are then grouped based on observation time and employed in a sparse sample reconstruction method to provide a tomographic- like representation of the 2-D distribution of CO2 over the field of interest. This reconstruction technique defines the field of interest as a set of idealized plumes whose integrated values best match the observations. The GreenLITE system has been deployed at two primary locations; 1) the Zero Emissions Research and Technology (ZERT) center in Bozeman, Montana, in Aug-Sept 2014, where more than 200 hours of data were collected over a wide range of environmental conditions while utilizing a controlled release of CO2 into a segmented underground pipe, and 2) continuously at a carbon sequestration test facility in Feb-Aug 2015. The system demonstrated the ability to identify persistent CO2 sources at the ZERT test facility and showed strong correlation with an independent measurement using a LI-COR based system. Here we describe the measurement approach, algorithm design and extended study results.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)
Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.
2011-01-01
Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…
Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY)
Li, Weibin; Kagan, Gerald; Hopson, Russell; Williard, Paul G.
2011-01-01
Increasingly, the undergraduate chemistry curriculum includes nuclear magnetic resonance (NMR) spectroscopy. Advanced NMR techniques are often taught including two-dimensional gradient-based experiments. An investigation of intermolecular forces including viscosity, by a variety of methods, is often integrated in the undergraduate physical and…
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Institute of Scientific and Technical Information of China (English)
XIONG Lei; LI haijiao; ZHANG Lewen
2008-01-01
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
American Society for Testing and Materials. Philadelphia
2001-01-01
Standard Test Method for Measuring the Curved Beam Strength of a Fiber-Reinforced Polymer-Matrix Composite - (View Full Text) D6416/D6416M-01(2007) Standard Test Method for Two-Dimensional Flexural Properties of Simply Supported Sandwich Composite Plates Subjected to a Distributed Load
Institute of Scientific and Technical Information of China (English)
赵东东; 张钱江; 戴世坤; 陈龙伟; 李昆
2015-01-01
从二维线源问题出发，对二维直流电阻率法高效、高精度正反演方法进行研究。在正演数值模拟中，引入直接解法求解器求解线性方程组，既保证了起伏地形条件下有限元法正演数值模拟的计算精度和计算效率，又为反演算法中“拟正演”快速回代求解提供了条件。结合高效、高精度的正演算法，采用高斯牛顿法对电阻率进行反演成像。在弱非均匀介质前提下，基于近似海森矩阵主对角线元素严格占优的特点，采用舍弃海森矩阵非对角线元素的策略，提高整个反演计算的效率。最后，利用合成数据对反演算法的有效性进行检验。结果表明：给出的反演算法稳定、快速，结合偶极−偶极装置和三极装置，能有效地反演出异常体的形状、大小和位置。%Fast and high-precision inversion method for two-dimensional line source problem was studied. In the forward numerical simulation, linear equations solver was applied for direct solution, which not only improved the precision and the speed of numerical simulation of finite element method in the case of rugged topography, but also provided conditions for the “quasi forward” fast back substitution solution in the inversion algorithm. Combined with high efficient simulation method, Gauss-Newton method was adopted for inversion of resistivity. In the case of low inhomogeneity, the main diagonal elements of the approximated Hessen matrix possessed priority than others. Based on this, non-diagonal elements were deleted when Gauss-Newton iterative equations were solved. The whole process of inversion was made more efficient by this scheme. Finally, synthetic data were used to test the validity of the presented inversion method. The results show that the inversion method is stable and fast. Combine with dipole-dipole and pole-dipole arrays, the shape, size and the location of the anomalous body can be reflected
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
A new method for multi-exponential inversion of NMR relaxation measurements
Institute of Scientific and Technical Information of China (English)
WANG; Zhongdong; XIAO; Lizhi; LIU; Tangyan
2004-01-01
A new method for multi-exponential inversion to NMR T1 and T2 relaxation time distributions is suggested and tested. Inversion results are compared with MAP-II which is based on SVD algorithm and widely accepted in the industry. Inversed NMR relaxation spectra that have different pre-assigned relaxation times from echo trains with different SNR confirm that the new method with 16 to 64 equally spaced time constants in logarithm scale will ensure the relaxation distribution. Testing results show that the new inversion algorithm is a valuable tool for rock core NMR experimental analysis and NMR logging data process and interpretation.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Li, Xiu-Mei; Luo, Xue-Gang; Zhang, Chao-Zheng; Wang, Nan; Zhang, Tong-Cun
2015-02-01
In this paper, a heart-cutting two-dimensional high-performance liquid chromatography coupled with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was established for controlling the quality of different batches of Hypericum ascyron extract for the first time. In comparison with the common one-dimensional fingerprint, the second-dimensional fingerprint compiled additional spectral data and was hence more informative. The quality of H. ascyron extract was further evaluated by similarity measures and the same results were achieved, the correlation coefficients of the similarity of ten batches of H. ascyron extract were ＞0.99. Furthermore, we also evaluated the quality of the ten batches of H. ascyron extract by antibacterial activity. The result demonstrated that the quality of the ten batches of H. ascyron extract was not significantly different by MTT. Finally, we demonstrated that the second-dimensional fingerprint coupled with the MTT method was a more powerful tool to characterize the quality of samples of batch to batch. Therefore the proposed method could be used to comprehensively conduct the quality control of traditional Chinese medicines.
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
Institute of Scientific and Technical Information of China (English)
杜政东; 魏平; 赵菲; 尹文禄
2015-01-01
针对二维波达方向估计时 MUSIC 谱的快速计算问题，研究了均匀圆阵变换到虚拟线阵的 MUSIC 算法（UCA-ULA-MUSIC）、流形分离 MUSIC 算法（MS-MUSIC）、傅立叶域线性求根 MUSIC 算法（FD-Line-Search-MU-SIC）、基于 FFT 的2n 元均匀圆阵 MUSIC 算法（2n-UCA-FFT-MUSIC）与基于 FFT 的任意圆阵 MUSIC 算法（ACA-FFT-MUSIC）。对各种算法快速计算二维 MUSIC 谱的实现步骤进行了总结。在此基础上，给出了各算法计算二维MUSIC 谱的计算复杂度表达式，并以传统方法为参考，对比了各种快速算法相对于传统方法的计算复杂度比值；同时，针对不同的阵列形式，对适用的快速算法的测向性能进行了仿真对比。根据分析和对比的结果，指出 MS-MUSIC 算法与 ACA-FFT-MUSIC 算法具有更高的工程应用价值，由具体的情况单独或分频段联合使用 MS-MUSIC算法与 ACA-FFT-MUSIC 算法，可以使测向系统较好的兼顾测向性能与时效性。%According to the fast computation problem of MUSIC spectrum in two dimensional direction of arrival estimation, the fast algorithms by manifold transformation or spectrum function transformation are studied.The implementation steps of computation method for two dimensional MUSIC spectrum by these algorithms are summarized.Furthermore,expressions for computational complexity of discussed algorithms in computing two dimensional MUSIC spectrum are presented.With refer-ence to the conventional method,the ratio of computational complexity of discussed algorithms is compared.Meanwhile,for different circular arrays,the direction finding performance of applicable algorithms is compared by simulation.It is proved that the MUSIC algorithm based on Manifold Separation (MS-MUSIC)and Fast Fourier Transformation (FFT)which suits to arbitrary circular array (ACA-FFT-MUSIC)have higher engineering value according to the results of analysis and com-parison.The performance and
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Operator splitting for two-dimensional incompressible fluid equations
Holden, Helge; Karper, Trygve K
2011-01-01
We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...
Thermodynamics of Two-Dimensional Black-Holes
Nappi, Chiara R.; Pasquinucci, Andrea
1992-01-01
We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Miniature sensor for two-dimensional magnetic field distributions
Fluitman, J.H.J.; Krabbe, H.W.
1972-01-01
Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or
Institute of Scientific and Technical Information of China (English)
朱卫东; 张洪涛; 张晨; 王东鹏
2012-01-01
To overcome the disadvantages of existing evaluation methods for scientific fund project selection, a new evaluation approach based on two-dimensional semantics information was proposed. To handle the valuable linguistic information and the incomplete information in peer reviews adequately, the two-dimensional semantics information of the degree of familiarity and the evaluation grade were transformed into pieces of evidence, where the peer reviews can be expressed by evaluation grades with belief. Then the experts' weights were given by the degree of familiarity and the difference between evaluation grades given by peers. And then, the peer reviews were integrated by the evidence reasoning combination rules, and the evaluations of scientific fund projects were quantified and selected. Finally, an example was given to check the utility of this approach.%针对现行科学基金立项评估方法中存在的不足,提出基于两维语义的科学基金立项评估方法.将科学基金立项评估的同行评议表中专家提供的“熟悉程度”和“综合评价等级”作为两维语义评价信息,并将其转化为证据体,用评价等级和信度表示专家的评审意见,从而既能充分整合评审中有价值的信息,又能方便描述专家评价中的不完全信息；利用专家的“熟悉程度”和群体专家评价信息的差异性对专家进行组合赋权；然后利用证据推理算子将专家评估信息集结,并将不同项目进行量化排序择优；最后结合实例来检验该方法的有效性.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
NMR system and method having a permanent magnet providing a rotating magnetic field
Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA
2009-05-19
Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.
Institute of Scientific and Technical Information of China (English)
陈昌国; 张明明; 刘渝萍
2011-01-01
采用二维扩散排序(DOSY)核磁共振法研究了萘普生与β-环糊精的相互作用,考察了不同包合因素对主客体自扩散系数及平衡常数的影响,并对萘普生与β-环糊精包合反应进行了热力学分析,以揭示萘普生与β-环糊精的包合反应机理.实验结果表明,温度、水含量、溶液pH值、离子强度等对客体萘普生的自扩散系数影响较大,但对主体环糊精自扩散系数的影响甚微；以上参数的增加均会使得平衡常数增大,有利于包合反应的进行,且在pH9.0时包合作用最强；热力学参数进一步表明萘普生与环糊精的包合反应为自发吸热的熵驱动过程,主要作用为疏水力.%The interaction between naproxen and cyclodextrin was studied by two-dimensional diffusion ordered ( 2D-DOSY) NMR spectroscopy. Influences of different factors on the self-diffusion coefficient and the equilibrium constant were investigated. The results showed that the increase of temperature , water content, pH and ionic strength had more influence on the self-diffusion coefficient of the guest than that of the host, which could increase the equilibrium constants. The inclusion interaction was the strongest in a solution of pH 9. 0. The results of thermodynamic analysis showed that the inclusion process was spontaneous and endothermic entropy-driven process, and the main active force was the hydrophobic force.
HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R
2007-08-01
We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic
Students from an upper-division undergraduate spectroscopy class analyzed one- and two-dimensional 400 MHz NMR spectroscopic data from triclosan in CDCl3. Guided assignment of all proton and carbon signals was completed via 1D proton and carbon, nuclear Overhauser effect (nOe), distortionless enhanc...
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-12-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-08-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Recent Advances in Solution NMR: Fast Methods and Heteronuclear Direct Detection
Energy Technology Data Exchange (ETDEWEB)
Felli, I.C. [CERM and Depatment of Chemistry, University of Florence, 50019 (Italy); Brutscher, B. [DSV-IBS, 38027 Grenoble (France)
2009-07-01
Today, NMR spectroscopy is the technique of choice to investigate molecular structure, dynamics, and interactions in solution at atomic resolution. A major limitation of NMR spectroscopy for the study of biological macromolecules such as proteins, nucleic acids, and their complexes, has always been its low sensitivity, a consequence of the weak magnetic spin interactions. Therefore many efforts have been invested in the last decade to improve NMR instrumentation in terms of experimental sensitivity. As a result of these efforts, the availability of high-field magnets, cryogenically cooled probes, and probably in the near future hyper-polarization techniques, the intrinsic NMR sensitivity has increased by at least one order of magnitude. Stimulated by new challenges in the life sciences, these technical improvements have triggered the development of new NMR methods for the study of molecular systems of increasing size and complexity. Herein, we focus on two examples of recently developed NMR methodologies. First, advanced multidimensional data acquisition schemes provide a speed increase of several orders of magnitude. Second, NMR methods based on the direct detection of low-gamma nuclei present a new spectroscopic tool, highly complementary to conventional NMR techniques. These new methods provide powerful new NMR tools for the study of short-lived molecules, large and intrinsically unstructured proteins, paramagnetic systems, as well as for the characterization of molecular kinetic processes at atomic resolution. These examples illustrate how NMR is continuously adapting to the new challenges in the life sciences, with the focus shifting from the characterization of single biomolecules to an integrated view of interacting molecular networks observed at varying levels of biological organization. (authors)
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Institute of Scientific and Technical Information of China (English)
李俊杰; 严家斌
2015-01-01
径向基点插值法(RPIM)作为一种插值型无网格方法，为改善无网格点插值法(PIM)在形函数构造过程中可能出现的矩阵奇异性问题而提出的一种方法，该算法支持域无量纲尺寸的选择区间大，能更好地处理各类工程与科学计算问题。介绍了RPIM的近似原理，给出了径向基函数形状参数的推荐值；从大地电磁二维变分问题出发利用Galerkin法结合高斯积分公式推导出相应的系统矩阵离散表达式；为提高RPIM的计算效率，将RPIM与有限元法(FEM)耦合，提出了有限元－径向基点插值法(FE-RPIM)，多个模型的数值计算验证了RPIM精度高、处理复杂模型便利及耦合法计算复杂模型高效的特点。%Polynomial basis interpolation method (RPIM), as a kind of typical interpolation meshfree method, was proposed to overcome the defects of point interpolation method (PIM) that the construction process of the shape function involves the matrix inverse operation. This method overcomes the matrix inverse problem, and supports the wider domain dimensionless size interval to better deal with all kinds of engineering and scientific computing problems. The approximate principle of RPIM was introduced in detail, and the discrete system matrix expression corresponding to the magnetotelluric two-dimensional variational problem by combining the Galerkin method and the gauss integral formula was deduced. In order to overcome the defects of low computational efficiency of RPIM, the finite element−radial point interpolation method (FE−RPIM) based on coupling the FEM and RPIM was proposed. The conclusions were verified by the numerical calculation of several models. The results show that RPIM has the advantage of high precision and convenience to calculate complex models, and FE-RPIM has the characteristics of high calculation efficiency for complex models.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Institute of Scientific and Technical Information of China (English)
王囡囡; 侯友夫
2013-01-01
In order to suppress flutter for aircraft wing effectively, research on the application of recep-tance method was conducted on a two-dimensional wing with a tailing-edge control surface. The open and closed-loop receptance model was established based on quasi-steady aerodynamics force; The pole assignment was achieved by using PD controller. In addition, the experimental rig was introduced detailed-ly before carrying out the wind tunnel test. The result of the experiment indicates that there being no requirement at all for the mass, stiffness and damping matrices, the active flutter suppression was successfully achieved by using measured receptance, and the dynamic characteristics and strong robustness of system were expressed by processing the test.%为了实现机翼的振动主动控制,以带后缘控制面的NACA0018型二元机翼为研究对象,研究了动柔度法在振动主动控制中的应用.基于准定常气动力理论建立二元机翼的开环和闭环动柔度模型,采用PD控制器实现系统的极点配置目标.介绍了风洞振动试验的系统组成及试验装置.试验结果表明,基于动柔度法的极点配置理论在无需确实系统的质量、阻尼和刚度特性的前提下能够有效地实现二元机翼系统的振动主动控制,获得期望的动态特征,且系统具有良好的鲁棒性.
Liu, Baocang; Huo, Lili; Si, Rui; Liu, Jian; Zhang, Jun
2016-07-27
We constructed a series of two-dimensional (2D) layered mesoporous mono- and binary-transition-metal nitride/graphene nanocomposites (TMN/G, TM = Ti, Cr, W, Mo, TiCr, TiW, and TiMo) via an efficient and versatile nanocasting strategy for the first time. The 2D layered mesoporous TMN/G is constituted of small TMN nanoparticles composited with graphene nanosheets and has a large surface area with high porosity. Through decoration with well-dispersed Pt nanoparticles, 2D layered mesoporous Pt/TMN/G catalysts can be obtained that display excellent catalytic activity and stability for methanol electro-oxidation reactions (MOR) and oxygen reduction reactions (ORR) in both acidic and alkaline media. The 2D layered mesoporous binary-Pt/TMN/G catalysts possess catalytic activity superior to that of mono-Pt/TMN/G, graphene free Pt/TMN, Pt/G, and Pt/C catalysts. Encouragingly, the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst exhibits the best electrocatalytic performance for both MOR and ORR. The outstanding electrocatalytic performance of the Pt/Ti0.5Cr0.5N/G catalyst is rooted in its large surface area, high porosity, strong interaction among Pt, Ti0.5Cr0.5N, and graphene, an excellent electron transfer property facilitated by N-doped graphene, and the small size of Pt and Ti0.5Cr0.5N nanocrystals. The outstanding catalytic performance provides the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst with a wide range of application prospects in direct methanol fuel cells in both acidic and alkaline media. The synthetic method may be available for constructing other 2D layered mesoporous metal nitrides, carbides, and phosphides.
Ballesteros-Gómez, Ana; de Boer, Jacob; Leonards, Pim E G
2013-10-15
In this study, we assess the applicability of different analytical techniques, namely, direct probe (DP), gas chromatography (GC), and comprehensive two-dimensional gas chromatography (GC × GC) coupled to atmospheric pressure chemical ionization (APCI) with a high resolution (HR)-time-of-flight (TOF)-mass spectrometry (MS) for the analysis of flame retardants and plasticizers in electronic waste and car interiors. APCI-HRTOFMS is a combination scarcely exploited yet with GC or with a direct probe for screening purposes and to the best of our knowledge, never with GC × GC to provide comprehensive information. Because of the increasing number of flame retardants and questions about their environmental fate, there is a need for the development of wider target and untargeted screening techniques to assess human exposure to these compounds. With the use of the APCI source, we took the advantage of using a soft ionization technique that provides mainly molecular ions, in addition to the accuracy of HRMS for identification. The direct probe provided a very easy and inexpensive method for the identification of flame retardants without any sample preparation. This technique seems extremely useful for the screening of solid materials such as electrical devices, electronics and other waste. GC-APCI-HRTOF-MS appeared to be more sensitive compared to liquid chromatography (LC)-APCI/atmospheric pressure photoionization (APPI)-HRTOF-MS for a wider range of flame retardants with absolute detection limits in the range of 0.5-25 pg. A variety of tri- to decabromodiphenyl ethers, phosphorus flame retardants and new flame retardants were found in the samples at levels from microgram per gram to milligram per gram levels.
Institute of Scientific and Technical Information of China (English)
宜晨虹; 慕青松; 苗天德
2009-01-01
The discrete element method is used to research the distribution of forces within the two-dimensional granular system under gravity. The force chains among the particles are generated according to the magnitudes of the forces. Then the simulation results are compared with the well-known q-model, a-model and experimental results obtained through the photoelastic test under the same conditions. According to the computational solution, we conclude that the simulation results are similar to the experimental results are some what different from the two probability models. In addition, we also obtained that the probability distribution of the force is very uneven. The probability of the large force decays exponentially and the distribution of the force chains takes on a fraetal character.%用离散元的方法模拟了仅有重力作用的二维颗粒系统内部力的分布情况,并根据力的大小得到颗粒之间的应力链.模拟结果与颗粒介质研究中的两个著名模型q模型和a模型作了对比,并与光弹实验的结果作了比较.对比结果表明,模拟结果与实验相似,而与两个概率模型有一定的差异.另外计算结果还表明,颗粒介质中力大小的概率分布极为不均匀,较大的力概率呈指数衰减,应力链的分布具有分形特征.
Two-dimensional magnetostriction under vector magnetic characteristic
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Results from laboratory tests of the two-dimensional Time-Encoded Imaging System.
Energy Technology Data Exchange (ETDEWEB)
Marleau, Peter; Brennan, James S.; Brubaker, Erik; Gerling, Mark D; Le Galloudec, Nathalie Joelle
2014-09-01
A series of laboratory experiments were undertaken to demonstrate the feasibility of two dimensional time-encoded imaging. A prototype two-dimensional time encoded imaging system was designed and constructed. Results from imaging measurements of single and multiple point sources as well as extended source distributions are presented. Time encoded imaging has proven to be a simple method for achieving high resolution two-dimensional imaging with potential to be used in future arms control and treaty verification applications.
Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.
Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique
2014-01-01
Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.
Institute of Scientific and Technical Information of China (English)
许莹; 李晋斌
2012-01-01
采用随机级数展开的量子蒙特卡罗方法研究二维硬核的玻色-赫伯德模型的热力学性质.首先通过算符变换将模型映射成为二维反铁磁准海森伯模型.变换后的模型比通常的海森伯模型多一项,该项正比于系统的格点总数N,对于大粒子数的系统,该项使模拟耗时指数增加,所以难以计算大粒子数系统.采用非局域操作循环更新后,这个困难可以得到很好的解决,可使粒子数总数增大到几千个.研究结果表明,粒子数密度在0—0.5范围内增大时,能量呈递减趋势,并趋于某一定值,随着正方晶格系统尺度增大,能量也随之增大;正方晶格系统尺度一定时,能量和磁化强度随着温度的升高而增大,化学势的变化对能量和磁化强度没有影响,能量随着正方晶格系统尺度增大而增大,磁化强度却随之减小;正方晶格系统尺度一定时,化学势的增大对比热没有影响,随着温度的升高比热出现先增大后减小的趋势,最后趋于某个值,达到平衡,而正方晶格系统尺度越大,比热曲线增大部分的趋势越大,减小部分的趋势也更明显,参照朗道超流理论,本文模拟的能量和比热曲线趋势与朗道二流体模型下HeⅡ的理论研究一致;不同正方晶格系统尺度的影响不大,均匀磁化率倒数在0—0.5（J/k_B）的低温范围内有很小的波动,J为耦合能,k_B为玻尔兹曼常数,温度在0.5—2（J/k_B）的范围内,均匀磁化率的倒数随着温度的升高而增大,且曲线的趋势显示了一种类似近藤行为.%In this paper,the stochastic series expansion quantum Monte Carlo method is employed to investigate the thermodynamic properties of hardcore Bose-Hubbard model in two-dimensional space.The two-dimensional hardcore Bose-Hubbard model can be mapped into the two-dimensional antiferromagnetic quasi-Heisenberg model under transform of bosonic operators.There is an additional term which is proportional
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Diamagnetic phase transitions in two-dimensional conductors
Bakaleinikov, L. A.; Gordon, A.
2014-11-01
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.
Tunable states of interlayer cations in two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)
2014-03-31
The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.
The two-dimensional Godunov scheme and what it means for macroscopic pedestrian flow models
Van Wageningen-Kessels, F.L.M.; Daamen, W.; Hoogendoorn, S.P.
2015-01-01
An efficient simulation method for two-dimensional continuum pedestrian flow models is introduced. It is a two-dimensional and multi-class extension of the Go-dunov scheme for one-dimensional road traffic flow models introduced in the mid 1990’s. The method can be applied to continuum pedestrian flo
Conductivity of a two-dimensional guiding center plasma.
Montgomery, D.; Tappert, F.
1972-01-01
The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.
A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS
Institute of Scientific and Technical Information of China (English)
何吉欢
2001-01-01
A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Qing-Hai Wang
2009-08-01
Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
J S Virdi; F Chand; C N Kumar; S C Mishra
2012-08-01
Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Statistical study of approximations to two dimensional inviscid turbulence
Energy Technology Data Exchange (ETDEWEB)
Glaz, H.M.
1977-09-01
A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.
Energy Technology Data Exchange (ETDEWEB)
Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas
2012-07-01
The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)
Directory of Open Access Journals (Sweden)
Maiara S. Santos
2012-01-01
Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Directory of Open Access Journals (Sweden)
C. Chen
2011-06-01
Full Text Available Two dimensional gas chromatography (GC × GC with detection by time-of-flight mass spectrometry (TOFMS was applied in the rapid analysis of air samples containing highly complex mixtures of volatilizable biogenic organic compounds (VBOCs. VBOC analytical methodologies are briefly reviewed, and optimal conditions are discussed for sampling with both adsorption/thermal desorption (ATD cartridges and solid-phase microextraction (SPME fibers. Air samples containing VBOC emissions from leaves of two tree species (Cedrus atlantica and Calycolpus moritzianus were obtained by both ATD and SPME. The optimized gas chromatographic conditions utilized a 45 m, 0.25 mm I.D. low-polarity primary column (DB-VRX, 1.4 μm film and a 1.5 m, 0.25 mm I.D. polar secondary column (Stabilwax® 0.25 μm film. Excellent separation was achieved in a 36 min temperature programmed GC × GC chromatogram. Thousands of VBOC peaks were present in the sample chromatograms; hundreds of tentative identifications by NIST mass spectral matching are provided. Very few of the tentatively identified compounds are currently available as authentic standards. Method detection limit values for a 5 l ATD sample were 3.5 pptv (10 ng m−3 for isoprene, methyl vinyl ketone, and methacrolein, and ~1.5 pptv (~10 ng m−3 for monoterpenes and sesquiterpenes. Kovats-type chromatographic retention index values on the primary column and relative retention time values on the secondary column are provided for 21 standard compounds and for 417 tentatively identified VBOCs. 19 of the 21 authentic standard compounds were found in one of the Cedrus atlantica SPME samples. In addition, easily quantifiable levels of at least 13 sesquiterpenes were found in an ATD sample obtained from a branch enclosure of Calycolpus moritzianus. Overall, the results obtained via GC × GC-TOFMS highlight an extreme, and largely uncharacterized diversity of VBOCs, consistent with the hypothesis that sesquiterpenes and other
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
A method for simultaneous quantification of phospholipid species by routine ^{31}P NMR
DEFF Research Database (Denmark)
Brinkmann-Trettenes, Ulla; Stein, Paul C.; Klösgen, Beate Maria;
2012-01-01
We report a 31P NMR assay for quantification of aqueous phospholipid samples. Using a capillary with trimethylphosphate as internal standard, the limit of quantification is 1.30mM. Comparison of the 31P NMR quantification method in aqueous buffer and in organic solvent revealed that the two metho...... fast results of a limited number of samples are requested. © 2012 Elsevier B.V.....
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Institute of Scientific and Technical Information of China (English)
叶璋; 王婧辰; 陈禹锡; 高玉魁
2016-01-01
目的 通过二维面探X射线衍射法测试高温合金GH4169的残余应力.方法 由于GH4169是Ni基高温合金,Ni合金在Cr靶下有较强衍射峰,因此采用Cr靶来测试GH4169合金的残余应力.二维面探仪有500个探测头,均匀分布在一个面上,根据每一个探测器测得的衍射角变化,就能得到500个方向上的应变值,再根据应力与应变之间的关系,就可以计算出材料的残余应力.结果 GH4169合金的德拜环只有一个衍射峰,而且衍射峰的强度随着角度α的变化而变化.这说明该材料的应力取向不均匀,存在较为明显的织构.该材料表面主应力方向上的残余应力测试值为-968 MPa,误差为62 MPa;切向上的残余应力测试值为24 MPa,误差为43 MPa.由于测试的GH4169合金是经过喷丸处理的,主应力方向上受残余压应力,而其测试结果 确为负值,说明此次测试结果 可信.结论 通过二维面探X射线衍射方法 测试材料残余应力从原理和实际操作上都是可行的,并成功测试出GH4169合金的残余应力.经喷丸处理后的GH4169材料受残余压应力的作用,且应力分布不均匀,存在较为明显的织构.%Objective To measure the residual stress of GH4169, a kind of high temperature alloy, using two-dimensional de-tector method. Methods Because GH4169 is a high temperature nickel base alloy which has a strong diffraction peak under the Cr target, this paper used Cr target to obtain the residual stress of GH4169 alloy. Using 500 detection heads uniformly distributed on a surface to measure diffraction angle changes, the portable X-ray machine could get the values of strain in 500 directions. Accord-ing to the relationship between stress and strain, the residual stress of the material could be calculated. Results The Debye ring of GH4169 alloy hasd only one diffraction peak and its intensity changed with the changes of angle alpha. This result showed that the stress orientation of the material
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
A simple method for NMR t1 noise suppression
Mo, Huaping; Harwood, John S.; Yang, Danzhou; Post, Carol Beth
2017-03-01
t1 noise appears as random or semi-random spurious streaks along the indirect t1 (F1) dimension of a 2D or nD NMR spectrum. It can significantly downgrade spectral quality, especially for spectra with strong diagonal signals such as NOESY, because useful and weak cross-peaks can be easily buried under t1 noise. One of the significant contributing factors to t1 noise is unwanted and semi-random F2 signal modulation during t1 acquisition. As such, t1 noise from different acquisitions is unlikely to correlate with each other strongly. In the case of NOESY, co-addition of multiple spectra significantly reduces t1 noise compared with conventional acquisition with the same amount of total acquisition time and resolution.
Institute of Scientific and Technical Information of China (English)
A.S.J.AL-SAIF; 朱正佑
2003-01-01
The traditional differential quadrature method was improved by using the upwind difference scheme for the convectiveterms to solve the coupled two-dimensional incompressible Navier-stokes equations and heat equation. The new method was comparedwith the conventional differential quadrature method in the aspects of convergence and accuracy. The results show that the newmethod is more accurate, and has better convergence than the conventional differential quadrature method for numerically computingthe steady-state solution.
Two-Dimensional Identification of Fetal Tooth Germs.
Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António
2017-03-01
To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology. Observational, descriptive, cross-sectional study. Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal. A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams. Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations. In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine. We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Two-dimensional oxides: multifunctional materials for advanced technologies.
Pacchioni, Gianfranco
2012-08-13
The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics
YD, Sumith
2016-01-01
Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Diffusion NMR methods applied to xenon gas for materials study
Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.
2002-01-01
We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.
NMR quantum computing: applying theoretical methods to designing enhanced systems.
Mawhinney, Robert C; Schreckenbach, Georg
2004-10-01
Density functional theory results for chemical shifts and spin-spin coupling constants are presented for compounds currently used in NMR quantum computing experiments. Specific design criteria were examined and numerical guidelines were assessed. Using a field strength of 7.0 T, protons require a coupling constant of 4 Hz with a chemical shift separation of 0.3 ppm, whereas carbon needs a coupling constant of 25 Hz for a chemical shift difference of 10 ppm, based on the minimal coupling approximation. Using these guidelines, it was determined that 2,3-dibromothiophene is limited to only two qubits; the three qubit system bromotrifluoroethene could be expanded to five qubits and the three qubit system 2,3-dibromopropanoic acid could also be used as a six qubit system. An examination of substituent effects showed that judiciously choosing specific groups could increase the number of available qubits by removing rotational degeneracies in addition to introducing specific conformational preferences that could increase (or decrease) the magnitude of the couplings. The introduction of one site of unsaturation can lead to a marked improvement in spectroscopic properties, even increasing the number of active nuclei.
Spectral fitting of NMR spectra using an alternating optimization method with a priori knowledge.
Bi, Z; Bruner, A P; Li, J; Scott, K N; Liu, Z S; Stopka, C B; Kim, H W; Wilson, D C
1999-09-01
As alternatives to the fast Fourier transform, advanced parametric methods based on the damped sinusoidal data model have been devised to better quantify the nuclear magnetic resonance (NMR) spectroscopy time-domain data. Previously, linear prediction (LP) fitting methods using Householder triangularization and singular value decomposition (SVD) techniques have been applied to the NMR spectroscopy data analysis. In this paper, we propose an alternating optimization method to quantify the time-domain NMR spectroscopy data. The proposed algorithm uses the a priori knowledge of the possible frequency intervals of the damped sinusoids to obtain more accurate parameter estimates when the NMR spectroscopy data are obtained under low signal-to-noise ratio conditions and the peaks are close together. None of the LP and SVD type of methods can use such approximate a priori knowledge. We have shown with measured NMR spectroscopy data that the proposed algorithm can be used to obtain accurate parameter estimates of frequencies, amplitudes, and damping ratios of the damped sinusoids and therefore the ultimate fit of the spectrum by using the a priori knowledge about the possible frequency intervals of the damped sinusoids. Copyright 1999 Academic Press.
Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis
2014-01-01
Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559
Field analysis of two-dimensional integrated optical gratings
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.
Dynamical matrix of two-dimensional electron crystals
Côté, R.; Lemonde, M.-A.; Doiron, C. B.; Ettouhami, A. M.
2008-03-01
In a quantizing magnetic field, the two-dimensional electron gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to obtain the dynamical matrix of these crystals from a calculation of the density response function performed in the generalized random-phase approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Quantification of organic acids in beer by nuclear magnetic resonance (NMR)-based methods
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, J.E.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Erny, G.L. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNAA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Esteves, V.I. [CESAM - Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Brandao, T.; Ferreira, A.A. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955 S. Mamede de Infesta (Portugal); Cabrita, E. [Department of Chemistry, New University of Lisbon, 2825-114 Caparica (Portugal); Gil, A.M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)
2010-08-03
The organic acids present in beer provide important information on the product's quality and history, determining organoleptic properties and being useful indicators of fermentation performance. NMR spectroscopy may be used for rapid quantification of organic acids in beer and different NMR-based methodologies are hereby compared for the six main acids found in beer (acetic, citric, lactic, malic, pyruvic and succinic). The use of partial least squares (PLS) regression enables faster quantification, compared to traditional integration methods, and the performance of PLS models built using different reference methods (capillary electrophoresis (CE), both with direct and indirect UV detection, and enzymatic essays) was investigated. The best multivariate models were obtained using CE/indirect detection and enzymatic essays as reference and their response was compared with NMR integration, either using an internal reference or an electrical reference signal (Electronic REference To access In vivo Concentrations, ERETIC). NMR integration results generally agree with those obtained by PLS, with some overestimation for malic and pyruvic acids, probably due to peak overlap and subsequent integral errors, and an apparent relative underestimation for citric acid. Overall, these results make the PLS-NMR method an interesting choice for organic acid quantification in beer.
Energy Technology Data Exchange (ETDEWEB)
Smolinska, Agnieszka, E-mail: A.Smolinska@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Blanchet, Lionel [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands); Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Buydens, Lutgarde M.C.; Wijmenga, Sybren S. [Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen (Netherlands)
2012-10-31
Highlights: Black-Right-Pointing-Pointer Procedures for acquisition of different biofluids by NMR. Black-Right-Pointing-Pointer Recent developments in metabolic profiling of different biofluids by NMR are presented. Black-Right-Pointing-Pointer The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. Black-Right-Pointing-Pointer Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).
Diamagnetic phase transitions in two-dimensional conductors
Energy Technology Data Exchange (ETDEWEB)
Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)
2014-11-15
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.
Fast method of NMR imaging based on trains of spin echoes
Energy Technology Data Exchange (ETDEWEB)
Hennel, F.
1993-12-31
A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Nonlinear acoustic propagation in two-dimensional ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;
2016-01-01
BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...
Absolute band gaps in two-dimensional graphite photonic crystal
Institute of Scientific and Technical Information of China (English)
Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)
2003-01-01
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.