Two-dimensional coupled fluid and electrodynamic calculations for a MHD DCW channel with slag layers
Liu, B. L.
1982-01-01
A fully coupled, two dimensional numerical method of modeling linear, coal-fired MHD generators is developed for the case of a plasma flow bounded by a slag layer on the channel walls. The governing partial differential equations for the plasma flow, slag layer and electrodynamics are presented and their coupling discussed. An iterative, numerical procedure employing non-uniform computational meshes and appropriate tridiagonal matrix solution schemes for the equations is presented. The method permits the investigation of the mutual plasma flow-slag layer development for prescribed wall temperatures, electrode geometry, slag properties and channel loading. In particular, the slag layer-plasma interface properties which require prior specification in an uncoupled analysis comprise part of the solution in the present approach. Results are presented for a short diagonally connected generator channel and include contour plots of the electric potential and current stream function as well as transverse and axial profiles of pertinent plasma properties. The results indicate that a thin electrode slag layer can be maintained in the presence of reasonable current density levels.
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D; Abdelhamid, H M; Morrison, P J
2016-01-01
A comprehensive study of a reduced version of Lust's equations, the extended magnetohydrodynamic (XMHD) model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality, is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way energy conservation along with four families of Casimir invariants are naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Structure and computation of two-dimensional incompressible extended MHD
Grasso, D.; Tassi, E.; Abdelhamid, H. M.; Morrison, P. J.
2017-01-01
A comprehensive study of the extended magnetohydrodynamic model obtained from the two-fluid theory for electrons and ions with the enforcement of quasineutrality is given. Starting from the Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional incompressible four-field model is derived. In this way, the energy conservation along with four families of Casimir invariants is naturally obtained. The construction facilitates various limits leading to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing are presented and interpreted using, in particular, normal fields, a product of the Hamiltonian theory that gives rise to simplified equations of motion.
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. ... Controlling of crystallization processes in metallurgy and influence of magnetic field on discrete chemical systems bring. MHD and heat ...... Nomenclature. B. [T].
Directory of Open Access Journals (Sweden)
Boričić Zoran
2009-01-01
Full Text Available This paper concerns with unsteady two-dimensional temperature laminar magnetohydrodynamic (MHD boundary layer of incompressible fluid. It is assumed that induction of outer magnetic field is function of longitudinal coordinate with force lines perpendicular to the body surface on which boundary layer forms. Outer electric filed is neglected and magnetic Reynolds number is significantly lower then one i.e. considered problem is in inductionless approximation. Characteristic properties of fluid are constant because velocity of flow is much lower than speed of light and temperature difference is small enough (under 50ºC . Introduced assumptions simplify considered problem in sake of mathematical solving, but adopted physical model is interesting from practical point of view, because its relation with large number of technically significant MHD flows. Obtained partial differential equations can be solved with modern numerical methods for every particular problem. Conclusions based on these solutions are related only with specific temperature MHD boundary layer problem. In this paper, quite different approach is used. First new variables are introduced and then sets of similarity parameters which transform equations on the form which don't contain inside and in corresponding boundary conditions characteristics of particular problems and in that sense equations are considered as universal. Obtained universal equations in appropriate approximation can be solved numerically once for all. So-called universal solutions of equations can be used to carry out general conclusions about temperature MHD boundary layer and for calculation of arbitrary particular problems. To calculate any particular problem it is necessary also to solve corresponding momentum integral equation.
Hamiltonian and action formalisms for two-dimensional gyroviscous MHD
Morrison, P J; Acevedo, R
2014-01-01
A general procedure for constructing action principles for continuum models via a generalization of Hamilton's principle of mechanics is described. Through the procedure, an action principle for a gyroviscous magnetohydrodynamics (MHD) model is constructed. The model is shown to agree with a reduced version of Braginskii's fluid equations. The construction reveals the origin of the gyromap, a device used to derive previous gyrofluid models. Also, a systematic reduction procedure is presented for obtaining the Hamiltonian structure in terms of the noncanonical Poisson bracket. The construction procedure yields a class of Casimir invariants, which are then used to variational principles for equilibrium equations with flow and gyroviscosity. The procedure for obtaining reduced fluid models with gyroviscosity is also described.
Two-dimensional MHD model of the Jovian magnetodisk
Kislov, R. A.; Malova, H. V.; Vasko, I. Y.
2015-09-01
A self-consistent stationary axially symmetric MHD model of the Jovian magnetodisk is constructed. This model is a generalization of the models of plane current sheets that have been proposed earlier in order to describe the structure of the current sheet in the magnetotail of the Earth [1, 2]. The model takes centrifugal force, which is induced by the corotation electric field, and the azimuthal magnetic field into account. The configurations of the magnetic field lines for the isothermic (plasma temperature assumed to be constant) and the isentropic (plasma entropy assumed to be constant) models of the magnetodisk are determined. The dependence of the thickness of the magnetodisk on the distance to Jupiter is obtained. The thickness of the magnetodisk and the magnetic field distribution in the isothermic and isentropic models are similar. The inclusion of a low background plasma pressure results in a considerable reduction in the thickness of the magnetodisk. This effect may be attributed to the fact that centrifugal force prevails over the pressure gradient at large distances from the planet. The mechanism of unipolar induction and the related large-scale current system are analyzed. The direct and return Birkeland currents are determined in the approximation of a weak azimuthal magnetic field. The modeling results agree with theoretical estimates from other studies and experimental data.
Two-dimensional MHD model of the reconnection diffusion region
Directory of Open Access Journals (Sweden)
N. V. Erkaev
2002-01-01
Full Text Available Magnetic reconnection is an important process providing a fast conversion of magnetic energy into thermal and kinetic plasma energy. In this concern, a key problem is that of the resistive diffusion region where the reconnection process is initiated. In this paper, the diffusion region is associated with a nonuniform conductivity localized to a small region. The nonsteady resistive incompressible MHD equations are solved numerically for the case of symmetric reconnection of antiparallel magnetic fields. A Petschek type steady-state solution is obtained as a result of time relaxation of the reconnection layer structure from an arbitrary initial stage. The structure of the diffusion region is studied for various ratios of maximum and minimum values of the plasma resistivity. The effective length of the diffusion region and the reconnection rate are determined as functions of the length scale and the maximum of the resistivity. For sufficiently small length scale of the resistivity, the reconnection rate is shown to be consistent with Petschek's formula. By increasing the resistivity length scale and decreasing the resistivity maximum, the reconnection layer tends to be wider, and correspondingly, the reconnection rate tends to be more consistent with that of the Parker-Sweet regime.
Linear Two-Dimensional MHD of Accretion Disks: Crystalline structure and Nernst coefficient
Montani, Giovanni
2009-01-01
We analyse the two-dimensional MHD configurations characterising the steady state of the accretion disk on a highly magnetised neutron star. The model we describe has a local character and represents the extension of the crystalline structure outlined in Coppi (2005), dealing with a local model too, when a specific accretion rate is taken into account. We limit our attention to the linearised MHD formulation of the electromagnetic back-reaction characterising the equilibrium, by fixing the structure of the radial, vertical and azimuthal profiles. Since we deal with toroidal currents only, the consistency of the model is ensured by the presence of a small collisional effect, phenomenologically described by a non-zero constant Nernst coefficient (thermal power of the plasma). Such an effect provides a proper balance of the electron force equation via non zero temperature gradients, related directly to the radial and vertical velocity components. We show that the obtained profile has the typical oscillating feat...
Kinetic cascade beyond MHD of solar wind turbulence in two-dimensional hybrid simulations
Verscharen, Daniel; Motschmann, Uwe; Müller, Joachim
2012-01-01
The nature of solar wind turbulence in the dissipation range at scales much smaller than the large MHD scales remains under debate. Here a two-dimensional model based on the hybrid code abbreviated as A.I.K.E.F. is presented, which treats massive ions as particles obeying the kinetic Vlasov equation and massless electrons as a neutralizing fluid. Up to a certain wavenumber in the MHD regime, the numerical system is initialized by assuming a superposition of isotropic Alfv\\'en waves with amplitudes that follow the empirically confirmed spectral law of Kolmogorov. Then turbulence develops and energy cascades into the dispersive spectral range, where also dissipative effects occur. Under typical solar wind conditions, weak turbulence develops as a superposition of normal modes in the kinetic regime. Spectral analysis in the direction parallel to the background magnetic field reveals a cascade of left-handed Alfv\\'en/ion-cyclotron waves up to wave vectors where their resonant absorption sets in, as well as a cont...
Resistive MHD reconstruction of two-dimensional coherent structures in space
Directory of Open Access Journals (Sweden)
W.-L. Teh
2010-11-01
Full Text Available We present a reconstruction technique to solve the steady resistive MHD equations in two dimensions with initial inputs of field and plasma data from a single spacecraft as it passes through a coherent structure in space. At least two components of directly measured electric fields (the spacecraft spin-plane components are required for the reconstruction, to produce two-dimensional (2-D field and plasma maps of the cross section of the structure. For convenience, the resistivity tensor η is assumed diagonal in the reconstruction coordinates, which allows its values to be estimated from Ohm's law, E+v×B=η·j. In the present paper, all three components of the electric field are used. We benchmark our numerical code by use of an exact, axi-symmetric solution of the resistive MHD equations and then apply it to synthetic data from a 3-D, resistive, MHD numerical simulation of reconnection in the geomagnetic tail, in a phase of the event where time dependence and deviations from 2-D are both weak. The resistivity used in the simulation is time-independent and localized around the reconnection site in an ellipsoidal region. For the magnetic field, plasma density, and pressure, we find very good agreement between the reconstruction results and the simulation, but the electric field and plasma velocity are not predicted with the same high accuracy.
The MHD Kelvin-Helmholtz instability a two-dimensional numerical study
Frank, A I; Ryu, D; Gaalaas, J B; Frank, Adam; Ryu, Dongsu; Gaalaas, Joseph B
1995-01-01
Using a new numerical code we have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. We considered two cases: a strong magnetic field (Alfven Mach number, M_a = 2.5) and a weak field (M_a =5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gasdynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of t...
A two-dimensional MHD global coronal model - Steady-state streamers
Wang, A.-H.; Wu, S. T.; Suess, S. T.; Poletto, G.
1992-01-01
A 2D, time-dependent, numerical, MHD model for the simulation of coronal streamers from the solar surface to 15 solar is presented. Three examples are given; for dipole, quadrupole and hexapole (Legendre polynomials P1, P2, and P3) initial field topologies. The computed properties are density, temperature, velocity, and magnetic field. The calculation is set up as an initial-boundary value problem wherein a relaxation in time produces the steady state solution. In addition to the properties of the solutions, their accuracy is discussed. Besides solutions for dipole, quadrupole, and hexapole geometries, the model use of realistic values for the density and Alfven speed while still meeting the requirement that the flow speed be super-Alfvenic at the outer boundary by extending the outer boundary to 15 solar radii.
Energy Technology Data Exchange (ETDEWEB)
Birzvalk, Yu.A.
1977-10-01
The peculiarities of averaging of a function with respect to one of its coordinates are studied, resulting in the formulation of two-dimensional MHD problems in the zero-induction approximation. The transition to the two-dimensional approximation is achieved by averaging all of the functions analyzed with respect to one of the coordinates. It is shown that when there is symmetry in the Poisson equation for the potential, components of the scalar product v.rot B appear, as a result of the fact that rot B = O. However, their appearance can also be explained by a clearer, though less strict, method. The importance of consideration of these components must be estimated in each specific problem. An elementary modeling problem is solved allowing the relative significance of the current density component in the direction with respect to which averaging is performed to be estimated. 2 references, 4 figures.
Energy Technology Data Exchange (ETDEWEB)
Lavrent' ev, I.V.; Sidorenkov, S.I.
1988-01-01
To establish the limits of applicability of two-dimensional mathematical models describing induced electromagnetic field distribution in an annular MHD channel, it is necessary to solve a three-dimensional problem. By reducing the number of dimensions of the problem (using, for example, the axial symmetry of MHD flow), the solution can be derived in some approximation. This paper proposes and demonstrates this method by studying the motion of a conducting medium in an annular channel with a two-pole ferromagnetic system under various assumptions for the field, channel and liquid, among them the superconductivity of the working medium. The work performed by the Lorentz force in the channel, equal to the Joule losses in the current-carrying boundary layer, was determined. It was concluded that the current-carrying boundary layer begins to develop at the wall of the channel when the flow enters the magnetic field and that its thickness grows with the length of the region of MHD interaction. The problem was solved numerically and asymptotically.
Newman, P. A.; Schoeberl, M. R.; Plumb, R. A.
1986-01-01
Calculations of the two-dimensional, species-independent mixing coefficients for two-dimensional chemical models for the troposphere and stratosphere are performed using quasi-geostrophic potential vorticity fluxes and gradients from 4 years of National Meteorological Center data for the four seasons in both hemispheres. Results show that the horizontal mixing coefficient values for the winter lower stratosphere are broadly consistent with those currently employed in two-dimensional models, but the horizontal mixing coefficient values in the northern winter upper stratosphere are much larger than those usually used.
Lepping, R. P.; Wu, C.-C.; McClernan, K.
2003-07-01
This study examines the degree of two-dimensional curvature of solar wind directional discontinuity (DD) surfaces at 1 AU using magnetic field, density, and velocity data from the WIND and IMP-8 spacecraft for a large number (N = 134) of carefully selected events having large "discontinuity angles" of 90° or greater. The discontinuity angle (ω) is measured in the DD's current sheet, the normal (n) to which is estimated by field variance analysis. The fundamental analysis depends on estimates of these DD surface normals at the two spacecraft and the DD's center-times and positions. On average, the transit time from one DD sighting to the other was 36 minutes, and the associated distance along the normal direction was 137 RE. The transition-interval lengths across the DDs are translated into thicknesses and examined for the amount of change between the two spacecraft observing points. The average thickness is relatively large, 14 RE.; the most probable thickness is ≈6 RE. All relevant quantities are examined statistically to establish their distributions, average, and degree of change. A weighted average of the radius of curvature is estimated to be 380 RE, but its most probable value is 290 RE. The average ω is 140° with a relatively large spread (σ = 28°). The average direction of propagation is: longitude (ϕn) = 194° and latitude (θn) = 7° (but = 27°), where ϕn = 0° is sunward and θn = 0° is the ecliptic plane. Various parameters are studied with respect to DD type, i.e., rotational or tangential discontinuity (RD or TD), defined in terms of the "ratio" (in percent) of speed of propagation to net speed of the DD surface, where the net speed is the sum of the convection velocity (along n) plus the propagation speed. The RD %-ratio is moderately small, but the TD ratio is very small or zero. The results by this definition of type are favorably compared to those from the more conventional method, which depends on the absolute strength of the normal
Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method
van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.
2013-01-01
We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this
A Direct Calculation of Critical Exponents of Two-Dimensional Anisotropic Ising Model
Institute of Scientific and Technical Information of China (English)
XIONG Gang; WANG Xiang-Rong
2006-01-01
Using an exact solution of the one-dimensional quantum transverse-field Ising model, we calculate the critical exponents of the two-dimensional anisotropic classicalIsing model (IM). We verify that the exponents are the same as those of isotropic classical IM. Our approach provides an alternative means of obtaining and verifying these well-known results.
Calculation of the electrical of induction heating coils in two dimensional axissymmetric geometry
Energy Technology Data Exchange (ETDEWEB)
Nerg, J.; Partanen, J. [Lappeenranta University of Technology (Finland). Department of Energy Technology, Laboratory of Electrical Engineering
1997-12-31
The effect of the workpiece temperature on the electrical parameters of a plane, spiral inductor is discussed. The effect of workpiece temperature on the electrical efficiency, power transfer to the workpiece and electromagnetic distortion are also presented. Calculation is performed in two dimensional axissymmetric geometry using a FEM program. (orig.) 5 refs.
Jansen, Thomas la Cour; Knoester, Jasper
2007-01-01
We combine numerical Langevin simulations with numerical integration of the Schrodinger equation to calculate two-dimensional infrared spectra of ultrafast chemical exchange. This provides a tool to model and interpret such spectra of molecules undergoing chemical processes, such as isomerization an
Calculating Two-Dimensional Spectra with the Mixed Quantum-Classical Ehrenfest Method
van der Vegte, C. P.; Dijkstra, A. G.; Knoester, J.; Jansen, T. L. C.
2013-01-01
We present a mixed quantum-classical simulation approach to calculate two-dimensional spectra of coupled two-level electronic model systems. We include the change in potential energy of the classical system due to transitions in the quantum system using the Ehrenfest method. We study how this feedba
Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket
Davidson, J. W.; Battat, M. E.; Dudziak, D. J.
A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinning copper first wall, a (6)Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis.
An efficient tool to calculate two-dimensional optical spectra for photoactive molecular complexes
Duan, Hong-Guang; Nalbach, Peter; Thorwart, Michael
2015-01-01
We combine the coherent modified Redfield theory (CMRT) with the equation of motion-phase matching approach (PMA) to calculate two-dimensional photon echo spectra for photoactive molecular complexes with an intermediate strength of the coupling to their environment. Both techniques are highly efficient, yet they involve approximations at different levels. By explicitly comparing with the numerically exact quasi-adiabatic path integral approach, we show for the Fenna-Matthews-Olson complex that the CMRT describes the decay rates in the population dynamics well, but final stationary populations and the oscillation frequencies differ slightly. In addition, we use the combined CMRT+PMA to calculate two-dimensional photon-echo spectra for a simple dimer model. We find excellent agreement with the exact path integral calculations at short waiting times where the dynamics is still coherent. For long waiting times, differences occur due to different final stationary states, specifically for strong system-bath couplin...
Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari
2001-01-01
We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...
Peng-Jen Chen; Horng-Tay Jeng
2016-01-01
A new semiconducting phase of two-dimensional phosphorous in the Kagome lattice is proposed from first-principles calculations. The band gaps of the monolayer (ML) and bulk Kagome phosphorous (Kagome-P) are 2.00 and 1.11 eV, respectively. The magnitude of the band gap is tunable by applying the in-plane strain and/or changing the number of stacking layers. High optical absorption coefficients at the visible light region are predicted for multilayer Kagome-P, indicating potential applications ...
Quasiparticle GW calculations for solids, molecules, and two-dimensional materials
DEFF Research Database (Denmark)
Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer
2013-01-01
We present a plane-wave implementation of the GW approximation within the projector augmented wave method code GPAW. The computed band gaps of ten bulk semiconductors and insulators deviate on average by 0.2eV (~5%) from the experimental values, the only exception being ZnO where the calculated...... band gap is around 1eV too low. Similar relative deviations are found for the ionization potentials of a test set of 32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies and Fermi velocities in supported two-dimensional (2D) materials...
Thornhill, J. W.; Giuliani, J. L.; Chong, Y. K.; Velikovich, A. L.; Dasgupta, A.; Apruzese, J. P.; Jones, B.; Ampleford, D. J.; Coverdale, C. A.; Jennings, C. A.; Waisman, E. M.; Lamppa, D. C.; McKenney, J. L.; Cuneo, M. E.; Krishnan, M.; Coleman, P. L.; Madden, R. E.; Elliott, K. W.
2012-09-01
Argon Z-pinch experiments are to be performed on the refurbished Z machine (which we will refer to as ZR here in order to distinguish between pre-refurbishment Z) at Sandia National Laboratories with a new 8 cm diameter double-annulus gas puff nozzle constructed by Alameda Applied Sciences Corporation (AASC). The gas exits the nozzle from an outer and inner annulus and a central jet. The amount of gas present in each region can be varied. Here a two-dimensional radiation MHD (2DRMHD) model, MACH2-TCRE, with tabular collisional radiative equilibrium atomic kinetics is used to theoretically investigate stability and K-shell emission properties of several measured (interferometry) initial gas distributions emanating from this new nozzle. Of particular interest is to facilitate that the distributions employed in future experiments have stability and K-shell emission properties that are at least as good as the Titan nozzle generated distribution that was successfully fielded in earlier experiments on the Z machine before it underwent refurbishment. The model incorporates a self-consistent calculation for non-local thermodynamic equilibrium kinetics and ray-trace based radiation transport. This level of detail is necessary in order to model opacity effects, non-local radiation effects, and the high temperature state of K-shell emitting Z-pinch loads. Comparisons of radiation properties and stability of measured AASC gas profiles are made with that of the distribution used in the pre-refurbished Z experiments. Based on these comparisons, an optimal K-shell emission producing initial gas distribution is determined from among the AASC nozzle measured distributions and predictions are made for K-shell yields attainable from future ZR experiments.
A Two-Dimensional Fem Code for Impedance Calculation in High Frequency Domain
Energy Technology Data Exchange (ETDEWEB)
Wang, Lanfa; /SLAC; Lee, Lie-Quan; /SLAC; Stupakov, Gennady; /SLAC
2010-08-25
A new method, using the parabolic equation (PE), for the calculation of both high-frequency impedances of small-angle taper (or collimator) is developed in [1]. One of the most important advantages of the PE approach is that it eliminates the spatial scale of the small wavelength from the problem. As a result, only coarser spatial meshes are needed in calculating the numerical solution of the PE. We developed a new code based on Finite Element Method (FEM) which can handle arbitrary profile of a transition and speed up the calculation by orders of magnitude. As a first step, we completed and benchmarked a two-dimensional code. It can be upgraded to three-dimensional geometry.
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
Casini, Horacio
2014-01-01
We study entanglement entropy (EE) for a Maxwell field in 2+1 dimensions. We do numerical calculations in two dimensional lattices. This gives a concrete example of the general results of our recent work on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: An "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a non standard way in which strong subaddi...
Michel, K. H.; ćakır, D.; Sevik, C.; Peeters, F. M.
2017-03-01
The elastic constant C11 and piezoelectric stress constant e1 ,11 of two-dimensional (2D) dielectric materials comprising h-BN, 2 H -MoS2 , and other transition-metal dichalcogenides and dioxides are calculated using lattice dynamical theory. The results are compared with corresponding quantities obtained with ab initio calculations. We identify the difference between clamped-ion and relaxed-ion contributions with the dependence on inner strains which are due to the relative displacements of the ions in the unit cell. Lattice dynamics allows us to express the inner-strain contributions in terms of microscopic quantities such as effective ionic charges and optoacoustical couplings, which allows us to clarify differences in the piezoelectric behavior between h-BN and MoS2. Trends in the different microscopic quantities as functions of atomic composition are discussed.
Brûlé, Yoann; Gralak, Boris
2015-01-01
Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.
Kwac, Kijeong; Lee, Chewook; Jung, Yousung; Han, Jaebeom; Kwak, Kyungwon; Zheng, Junrong; Fayer, M D; Cho, Minhaeng
2006-12-28
Molecular dynamics (MD) simulations and quantum mechanical electronic structure calculations are used to investigate the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal equilibrium conditions, the complexes are continuously dissociating and forming. The MD simulations are used to calculate the experimental observables related to the phenol hydroxyl stretching mode, i.e., the two dimensional infrared vibrational echo spectrum as a function of time, which directly displays the formation and dissociation of the complex through the growth of off-diagonal peaks, and the linear absorption spectrum, which displays two hydroxyl stretch peaks, one for the complex and one for the free phenol. The results of the simulations are compared to previously reported experimental data and are found to be in quite reasonable agreement. The electronic structure calculations show that the complex is T shaped. The classical potential used for the phenol-benzene interaction in the MD simulations is in good accord with the highest level of the electronic structure calculations. A variety of other features is extracted from the simulations including the relationship between the structure and the projection of the electric field on the hydroxyl group. The fluctuating electric field is used to determine the hydroxyl stretch frequency-frequency correlation function (FFCF). The simulations are also used to examine the number distribution of benzene and CCl4 molecules in the first solvent shell around the phenol. It is found that the distribution is not that of the solvent mole fraction of benzene. There are substantial probabilities of finding a phenol in either a pure benzene environment or a pure CCl4 environment. A conjecture is made that relates the FFCF to the local number of benzene molecules in phenol's first solvent shell.
Chen, Peng-Jen; Jeng, Horng-Tay
2016-03-16
A new semiconducting phase of two-dimensional phosphorous in the Kagome lattice is proposed from first-principles calculations. The band gaps of the monolayer (ML) and bulk Kagome phosphorous (Kagome-P) are 2.00 and 1.11 eV, respectively. The magnitude of the band gap is tunable by applying the in-plane strain and/or changing the number of stacking layers. High optical absorption coefficients at the visible light region are predicted for multilayer Kagome-P, indicating potential applications for solar cell devices. The nearly dispersionless top valence band of the ML Kagome-P with high density of states at the Fermi level leads to superconductivity with Tc of ~9 K under the optimal hole doping concentration. We also propose that the Kagome-P can be fabricated through the manipulation of the substrate-induced strain during the process of the sample growth. Our work demonstrates the high applicability of the Kagome-P in the fields of electronics, photovoltaics, and superconductivity.
Numerical Calculation of the Output Power of a MHD Generator
Directory of Open Access Journals (Sweden)
Adrian CARABINEANU
2014-12-01
Full Text Available Using Lazăr Dragoş’s analytic solution for the electric potential we perform some numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics (MHD power generator (total power, useful power and Joule dissipation power.
Gelfgat, Alexander
2015-01-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows...
Institute of Scientific and Technical Information of China (English)
何江平; 沈林放; 张全; 何赛灵
2002-01-01
A pseudospectral time-domain (PSTD) method is developed for calculating the band structure of a two-dimensional photonic crystal. Maxwell's equations are rewritten in terms of period fields by using the Bloch theorem. Instead of spatial finite differences, the fast Fourier transform is used to calculate the spatial derivatives. To reach a similar accuracy, fewer sample points are required in the present PSTD method as compared to the conventional finite-difference time-domain methods. Our numerical simulation shows that the present PSTD method is an efficient and accurate method for calculating the band structure of a photonic crystal.
Phonon transport properties of two-dimensional group-IV materials from ab initio calculations
Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan
2016-12-01
It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.
Du, Di; Toffoletto, Frank; Biswal, Sibani Lisa
2014-04-01
Typically the force between paramagnetic particles in a uniform magnetic field is described using the dipolar model, which is inaccurate when particles are in close proximity to each other. Instead, the exact force between paramagnetic particles can be determined by solving a three-dimensional Laplace's equation for magnetostatics under specified boundary conditions and calculating the Maxwell stress tensor. The analytical solution to this multi-boundary-condition Laplace's equation can be obtained by using a solid harmonics expansion in conjunction with the Hobson formula. However, for a multibody system, finite truncation of the Hobson formula does not lead to convergence of the expansion at all points, which makes the approximation physically unrealistic. Here we present a numerical method for solving this Laplace's equation for magnetostatics. This method uses a smoothed representation to replace all the boundary conditions. A two-step propagation is used to dramatically accelerate the calculation without losing accuracy. Using this method, we calculate the force between two paramagnetic particles in a uniform and a rotational external field and compare our results with other models. Furthermore, the many-body effects for three-particle, ten-particle, and 24-particle systems are examined using the same method. We also calculate the interaction between particles with different magnetic susceptibilities and particle diameters. The Laplace's equation solver method described in this article that is used to determine the force between paramagnetic particles is shown to be very useful for dynamic simulations for both two-particle systems and a large cluster of particles.
Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, P S; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1999-01-01
Multiplicity fluctuations in rings around the jet axis and in off-axis cones have been measured by the DELPHI collaboration in $e^+e^-$ annihilations into hadrons at LEP energies. The measurements are compared with analytical perturbative QCD calculations for the corresponding multiparton system, using the concept of Local Parton Hadron Duality. Some qualitative features are confirmed by the data but substantial quantitative deviations are observed.
Hermansson, Kersti; Probst, Michael M; Gajewski, Grzegorz; Mitev, Pavlin D
2009-12-28
A two-dimensional quantum-mechanical vibrational model has been used to calculate the anharmonic OH vibrational frequencies in the layered Mg(OH)(2) (brucite) crystal. The underlying potential energy surface was generated by density functional theory (DFT) calculations. The resulting OH frequencies are upshifted (blueshifted) by about +75 cm(-1) with respect to the gas-phase OH frequency (+120 cm(-1) in experiments; the discrepancy is mainly due to inadequacies in the DFT and pseudopotential models). The Raman-IR split is about 50 cm(-1), both in the calculations and in experiments. We find that the blueshift phenomenon in brucite can qualitatively be explained by a parabolalike "OH frequency versus electric field" correlation curve pertaining to an OH(-) ion exposed to an electric field. We also find that it is primarily the neighbors within the Mg(OH)(2) layer that induce the blueshift while the interlayer interaction gives a smaller (and redshifting) contribution.
Gelfgat, Alexander
2015-01-01
A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows for faster computations, and can be generalized for arbitrary curvilinear orthogonal coordinates. To illustrate the visualization method, examples of flow visualization in cylindrical and spherical coordinates, as well as post-processing of experimental 3D-PTV data are presented.
Samokhvalova, Ksenia R; Liang Qian, Bao
2005-01-01
Dielectric photonic band gap (PBG) structures have many promising applications in laser acceleration. For these applications, accurate determination of fundamental and high order band gaps is critical. We present the results of our recent work on analytical calculations of two-dimensional (2D) PBG structures in rectangular geometry. We compare the analytical results with computer simulation results from the MIT Photonic Band Gap Structure Simulator (PBGSS) code, and discuss the convergence of the computer simulation results to the analytical results. Using the accurate analytical results, we design a mode-selective 2D dielectric cylindrical PBG cavity with the first global band gap in the frequency range of 8.8812 THz to 9.2654 THz. In this frequency range, the TM01-like mode is shown to be well confined.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Antonio [AlbaNova University Center, Stockholm Center of Physics, Astronomy and Biotechnology (Sweden). Dept. of Physics; Sundstroem, Benny [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)
2003-12-01
Radionuclide releases from the near-field for the vaults of the SFR 1 repository are examined in this report. To model those releases we have developed four models, one for each of the vaults; 2BTF, 1BTF, BMA and BLA. The respective codes are based on the finite element method and are called FEMBTF2, FEMBTF1, FEMBMA and FEMBLA, respectively. These codes are two-dimensional representations of the cross sections of the vaults. The different barriers of the vaults have been modelled individually using the physical dimensions of the cross sections. The same conceptual model has been used to estimate the releases from the near-field. This conceptual model is implemented by four different FEM codes that solve the two-dimensional transport equation, e.g. the advective-diffusive-reactive equation that also includes radioactive decay. An interesting property of the codes is that they allow the use of time-dependent properties to represent for instance the evolution of water flow, porosities, distribution coefficients etc. This capability of the code has been used only in some cases because the FEM codes put heavy requirements on the computer's CPU. The nuclides studied here were chosen from a set representing the highest release rates from the near-field obtained by SKB during their project SAFE. Some of the results reported here are somewhat lower than SKBs, other higher. Uncertainties in the conceptual models and differences in the input data are the reasons for the numerical differences. For most cases, the differences between our results and those of SKB should be considered relatively small within present context of near-field calculations.
Korycansky, D. G.
1991-01-01
Two-dimensional nonlinear hydrodynamic calculations are presented which may help assess the effectiveness of the instability in transporting angular momentum in the equatorial zones of stars and planets which are stably stratified with respect to convection. The calculations were made by numerically integrating the 2D axisymmetric Navier-Stokes equations, including viscosity and heat conduction. The instability was followed into the nonlinear regime. The maximum rms velocity amplitude was found to correlate well with the product of the linear growth rate and radial length scale of the instability, consistent with the idea that the instability grows to an amplitude such that an eddy turnover time becomes equal to the growth time defined by the inverse of the growth rate. The time scale for angular momentum to be redistributed to a state of marginal stability was consistent with this picture. The results suggest that in physical situations a state of marginal stability will be maintained, since departures from such a state will be rapidly corrected.
Merkle Peterkin, Laurence D., Jr.
1997-11-01
The time-dependent location of the critical surface of laser absorption is studied numerically, using the general purpose two-dimensional finite-difference MHD software uc(Mach2.) This software, which is based on an arbitrary Lagrangian-Eulerian fluid algorithm, includes models for partial laser absorption in underdense plasmas via inverse brehmsstrahlung, as well as total laser absorption at a critical surface. The simulations conducted are of a laboratory experiment in which a plasma is generated by a mode-locked laser interacting with a solid copper target (G.K. Chawla and C.W. von Rosenberg, Jr., IEEE Conference Record --- Abstracts, 1997 IEEE International Conference on Plasma Science). The location of the critical surface is a function of the number density of free electrons. Consequently, calculations must carefully consider the energy budget. Because of large opacities in hot regions, a non-equilibrium radiation diffusion model is employed. Adequate energy conservation in such simulations is possible only with careful attention to numerical aspects, such as time steps and flux limits. Simulations are performed for both 90^circ and 45^circ incident beams. The former are carried out using both cylindrical and plane-parallel geometries, while the latter require a plane-parallel geometry.
On two-dimensional magnetic reconnection with nonuniform resistivity
Malyshkin, Leonid M.; Kulsrud, Russell M.
2010-12-01
In this paper, two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, 'global' equations approach, the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, 'local' equations approach, the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity.
Matsumoto, Takuma
2011-01-01
We report the results of the first two-dimensional self-consistent simulations directly covering from the photosphere to the interplanetary space. We carefully set up grid points with spherical coordinate to treat Alfv\\'enic waves in the atmosphere with the huge density contrast, and successfully simulate hot coronal wind streaming out as a result of surface convective motion. Footpoint motion excites upwardly propagating Alfv\\'enic waves along an open magnetic flux tube. These waves, traveling in non-uniform medium, suffer reflection, nonlinear mode conversion to compressive modes, and turbulent cascade. Combination of these mechanisms, the Alfv\\'enic waves eventually dissipate to accelerate the solar wind. While the shock heating by the dissipation of the compressive wave plays a primary role in the coronal heating, both turbulent cascade and shock heating contribute to drive the solar wind.
Meng, J. C. S.
1973-01-01
The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.
Szyniszewski, M.; Mostaani, E.; Drummond, N. D.; Fal'ko, V. I.
2017-02-01
Excitonic effects play a particularly important role in the optoelectronic behavior of two-dimensional (2D) semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra we provide statistically exact diffusion quantum Monte Carlo binding-energy data for Mott-Wannier models of excitons, trions, and biexcitons in 2D semiconductors. We also provide contact pair densities to allow a description of contact (exchange) interactions between charge carriers using first-order perturbation theory. Our data indicate that the binding energy of a trion is generally larger than that of a biexciton in 2D semiconductors. We provide interpolation formulas giving the binding energy and contact density of 2D semiconductors as functions of the electron and hole effective masses and the in-plane polarizability.
Do, V. Nam; Le, H. Anh; Vu, V. Thieu
2017-04-01
We propose a computational approach to combining the plane-wave method and the real-space treatment to describe the periodic variation in the material plane and the decay of wave functions from the material surfaces. The proposed approach is natural for two-dimensional material systems and thus may circumvent some intrinsic limitations involving the artificial replication of material layers in traditional supercell methods. In particular, we show that the proposed method is easy to implement and, especially, computationally effective since low-cost computational algorithms, such as iterative and recursive techniques, can be used to treat matrices with block tridiagonal structure. Using this approach we show first-principles features that supplement the current knowledge of some fundamental issues in bilayer graphene systems, including the coupling between the two graphene layers, the preservation of the σ band of monolayer graphene in the electronic structure of the bilayer system, and the differences in low-energy band structure between the AA- and AB-stacked configurations.
Energy Technology Data Exchange (ETDEWEB)
Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica
2014-04-15
In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)
Noguchi, Kyotaro; Tanikawa, Toko; Inagaki, Yoshiyuki; Ishizuka, Shigehiro
2017-06-01
Several recent studies have used the net sheet method to estimate fine root production rates in forest ecosystems, wherein net sheets are inserted into the soil and fine roots growing through them are observed. Although this method has advantages in terms of its easy handling and low cost, there are uncertainties in the estimates per unit soil volume or unit stand area, because the net sheet is a two-dimensional material. Therefore, this study aimed to establish calculation procedures for estimating fine root production rates from two-dimensional fine root data on net sheets. This study was conducted in a hinoki cypress (Chamaecyparis obtusa (Sieb. & Zucc.) Endl.) stand in western Japan. We estimated fine root production rates in length and volume from the number (RN) and cross-sectional area (RCSA) densities, respectively, for fine roots crossing the net sheets, which were then converted to dry mass values. For these calculations, we used empirical regression equations or theoretical equations between the RN or RCSA densities on the vertical walls of soil pits and fine root densities in length or volume, respectively, in the soil, wherein the theoretical equations assumed random orientation of the growing fine roots. The estimates of mean fine root (diameter sheets using these calculation procedures, with the empirical regression equations reflecting fine root orientation in the study site. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Energy Technology Data Exchange (ETDEWEB)
Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
Energy Technology Data Exchange (ETDEWEB)
Slater, C.O.
1990-07-01
Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.
Barnett, Alex H
2010-01-01
In this paper, we consider band-structure calculations governed by the Helmholtz or Maxwell equations in piecewise homogeneous periodic materials. Methods based on boundary integral equations are natural in this context, since they discretize the interface alone and can achieve high order accuracy in complicated geometries. In order to handle the quasi-periodic conditions which are imposed on the unit cell, the free-space Green's function is typically replaced by its quasi-periodic cousin. Unfortunately, the quasi-periodic Green's function diverges for families of parameter values that correspond to resonances of the empty unit cell. Here, we bypass this problem by means of a new integral representation that relies on the free-space Green's function alone, adding auxiliary layer potentials on the boundary of the unit cell itself. An important aspect of our method is that by carefully including a few neighboring images, the densities may be kept smooth and convergence rapid. This framework results in an integr...
Progress on accelerated calculation of 3D MHD equilibrium with the PIES code
Raburn, Daniel; Reiman, Allan; Monticello, Donald
2016-10-01
Continuing progress has been made in accelerating the 3D MHD equilibrium code, PIES, using an external numerical wrapper. The PIES code (Princeton Iterative Equilibrium Solver) is capable of calculating 3D MHD equilibria with islands. The numerical wrapper has been demonstrated to greatly improve the rate of convergence in numerous cases corresponding to equilibria in the TFTR device where magnetic islands are present; the numerical wrapper makes use of a Jacobian-free Newton-Krylov solver along with adaptive preconditioning and a sophisticated subspace-restricted Levenberg backtracking algorithm. The wrapper has recently been improved by automation which combines the preexisting backtracking algorithm with insights gained from the stability of the Picard algorithm traditionally used with PIES. Improved progress logging and stopping criteria have also been incorporated in to the numerical wrapper.
Li, Shenhui; Zheng, Anmin; Su, Yongchao; Fang, Hanjun; Shen, Wanling; Yu, Zhiwu; Chen, Lei; Deng, Feng
2010-04-21
Extra-framework aluminium (EFAL) species in hydrated dealuminated HY zeolite were thoroughly investigated by various two-dimensional solid-state NMR techniques as well as density functional theoretical calculations. (27)Al MQ MAS NMR experiments demonstrated that five-coordinated and four-coordinated extra-framework aluminium subsequently disappeared with the increase of water loading, and the quadrupole interaction of each aluminium species decreased gradually during the hydration process. (1)H double quantum MAS NMR revealed that the EFAL species in the hydrated zeolite consisted of three components: a hydroxyl AlOH group, and two types of water molecule (rigid and mobile water). (1)H-(27)Al LG-CP HETCOR experiments indicated that both the extra-framework and the framework Al atoms were in close proximity to the rigid water in the fully rehydrated zeolite. The experimental results were further confirmed by DFT theoretical calculations. Moreover, theoretical calculation results further demonstrated that the EFAL species in the hydrated zeolite consisted of the three components and the calculated (1)H NMR chemical shift for each component agreed well with our NMR observations. It is the rigid water that connects the extra-framework aluminium with the four-coordinated framework aluminium through strong hydrogen bonds.
Calculation of three-dimensional MHD equilibria with islands and stochastic regions
Energy Technology Data Exchange (ETDEWEB)
Reiman, A.; Greenside, H.
1986-08-01
A three-dimensional MHD equilibrium code is described that does not assume the existence of good surfaces. Given an initial guess for the magnetic field, the code proceeds by calculating the pressure-driven current and then by updating the field using Ampere's law. The numerical algorithm to solve the magnetic differential equation for the pressure-driven current is described, and demonstrated for model fields having islands and stochastic regions. The numerical algorithm which solves Ampere's law in three dimensions is also described. Finally, the convergence of the code is illustrated for a particular stellarator equilibrium with no large islands.
Energy Technology Data Exchange (ETDEWEB)
Muir, D.W.; Davidson, J.W.; Dudziak, D.J.; Davierwalla, D.M.; Higgs, C.E.; Stepanek, J.
1988-01-01
The lack of suitable benchmark problems makes it difficult to test sensitivity codes with a covariance library. A benchmark problem has therefore been defined for one- and two-dimensional sensitivity and uncertainity analysis codes and code systems. The problem, representative of a fusion reactor blanket, has a simple, three-zone )tau)-z geometry containing a D-T fusion neutron source distributed in a central void region surrounded by a thick /sup 6/LiH annulus. The response of interest is the /sup 6/Li tritium production per source neutron, T/sub 6/. The calculation has been performed with SENSIBL using other codes from the AARE code system as a test of both SENSIBL and the linked, modular system. The caluclation was performed using the code system in the standard manner with a covariance data library in the COVFILS-2 format but modified to contain specifically tailored covariance data for H and /sup 6/Li (Path A). The calculation was also performed by a second method which uses specially perturbed H and Li cross sections (Path B). This method bypasses SENSIBL and allows a hand calculation of the benchmark T/sub 6/ uncertainties. The results of Path A and Path B were total uncertainties in T/sub 6/ of 0.21% and 0.19%, respectively. The closeness of the results for this challenging test gives confidence that SENSIBL and the AARE system will perform well for realistic sensitivity and uncertainty analyses
2015-04-01
distribution is unlimited. i CONTENTS Page Introduction 1 Two-dimensional Material Geometry and Analogs with Close-packed Systems 1 Matching...distribution is unlimited. 1 INTRODUCTION Two-dimensional (2D) material heterostructures offer novel and compelling electronic and optical...methods have undoubtedly been created for matching lattice constants of dissimilar nanomaterials , very few are actually covered explicitly in literature
Su, Xiao-Xing; Wang, Yue-Sheng; Zhang, Chuanzeng
2017-05-01
A time-domain method for calculating the defect states of scalar waves in two-dimensional (2D) periodic structures is proposed. In the time-stepping process of the proposed method, the column vector containing the spatially sampled field values is updated by multiplying it with an iteration matrix, which is written in a matrix-exponential form. The matrix-exponential is first computed by using the Suzuki's decomposition based technique of the fourth order, in which the Floquet-Bloch boundary conditions are incorporated. The obtained iteration matrix is then squared to enlarge the time-step that can be used in the time-stepping process (namely, the squaring technique), and the small nonzero elements in the iteration matrix is finally pruned to improve the sparse structure of the matrix (namely, the pruning technique). The numerical examples of the super-cell calculations for 2D defect-containing phononic crystal structures show that, the fourth order decomposition based technique for the matrix-exponential computation is much more efficient than the frequently used precise integration technique (PIT) if the PIT is of an order greater than 2. Although it is not unconditionally stable, the proposed time-domain method is particularly efficient for the super-cell calculations of the defect states in a 2D periodic structure containing a defect with a wave speed much higher than those of the background materials. For this kind of defect-containing structures, the time-stepping process can run stably for a sufficiently large number of the time-steps with a time-step much larger than the Courant-Friedrichs-Lewy (CFL) upper limit, and consequently the overall efficiency of the proposed time-domain method can be significantly higher than that of the conventional finite-difference time-domain (FDTD) method. Some physical interpretations on the properties of the band structures and the defect states of the calculated periodic structures are also presented.
Betancourt, J.; Paudel, T. R.; Tsymbal, E. Y.; Velev, J. P.
2017-07-01
Two-dimensional electron gases (2DEGs) at oxide interfaces have been a topic of intensive research due to their high carrier mobility and strong confinement. Additionally, strong correlations in the oxide materials can give rise to new and interesting physics, such as magnetism and metal-insulator transitions at the interface. Using first-principles calculations based on density functional theory, we demonstrate the presence of a highly spin-polarized 2DEG at the interface between the Mott insulator GdTi O3 and a band insulator SrTi O3 . The strong correlations in the dopant cause ferromagnetic alignment of the interface Ti atoms and result in a fully spin-polarized 2DEG. The 2DEG consists of two types of carriers distinguished by their orbital character. The majority of the interface charge is strongly localized on the Ti dx y orbitals at the interface and a smaller fraction resides on the delocalized Ti dx z ,y z states.
Rasmussen, Filip A.; Schmidt, Per S.; Winther, Kirsten T.; Thygesen, Kristian S.
2016-10-01
Calculating the quasiparticle (QP) band structure of two-dimensional (2D) materials within the GW self-energy approximation has proven to be a rather demanding computational task. The main reason is the strong q dependence of the 2D dielectric function around q =0 that calls for a much denser sampling of the Brillouin zone (BZ) than is necessary for similar three-dimensional solids. Here, we use an analytical expression for the small q limit of the 2D response function to perform the BZ integral over the critical region around q =0 . This drastically reduces the requirements on the q -point mesh and implies a significant computational speedup. For example, in the case of monolayer MoS2, convergence of the G0W0 band gap to within ˜0.1 eV is achieved with 12 ×12 q points rather than the 36 ×36 mesh required with discrete BZ sampling techniques. We perform a critical assessment of the band gap of the three prototypical 2D semiconductors, MoS2, h -BN, and phosphorene, including the effect of self-consistency at the GW0 level. The method is implemented in the open source code gpaw.
Nonlocal bottleneck effect in two-dimensional turbulence
Biskamp, D; Schwarz, E
1998-01-01
The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
MHD Calculation of halo currents and vessel forces in NSTX VDEs
Breslau, J. A.; Strauss, H. R.; Paccagnella, R.
2012-10-01
Research tokamaks such as ITER must be designed to tolerate a limited number of disruptions without sustaining significant damage. It is therefore vital to have numerical tools that can accurately predict the effects of these events. The 3D nonlinear extended MHD code M3D [1] can be used to simulate disruptions and calculate the associated wall currents and forces. It has now been validated against halo current data from NSTX experiments in which vertical displacement events (VDEs) were deliberately induced by turning off vertical feedback control. The results of high-resolution numerical simulations at realistic Lundquist numbers show reasonable agreement with the data, supporting a model in which the most dangerously asymmetric currents and heat loads, and the largest horizontal forces, arise in situations where a fast-growing ideal 2,1 external kink mode is destabilized by the scraping-off of flux surfaces with safety factor q>2 during the course of the VDE. [4pt] [1] W. Park, et al., Phys. Plasmas 6 (1999) 1796.
Dellinger, T. C.; Hnat, J. G.; Marston, C. H.
1979-01-01
A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Mukhartova, Yulia; Krupenko, Alexandr; Levashova, Natalia; Olchev, Alexandr
2017-04-01
Within the framework of the study a two dimensional hydrodynamic model of turbulent transfer of greenhouse gases was developed and applied for calculating the CO2 and H2O turbulent fluxes within the atmospheric surface layer over the heterogeneous land surface with mosaic vegetation and complex topography. The vegetation cover in the model is represented as the two-phase medium containing the elements of vegetation and the air. The model is based on solving the system of averaged Navier-Stokes and continuity equations for the wind velocity components (⃗V = {V1,V2}), using the 1.5-order closure scheme (Wilcox 1998, Wyngaard 2010). The system of the main equations includes also the diffusion and advection equations for turbulent transfer of sensible heat, CO2 concentration (Cs) and specific humidity (q) at soil - vegetation -atmosphere interface (Sogachev, Panferov 2006, Mukhartova et al. 2015, Mamkin et al. 2016): ( ) { ( )} ∂Vi+ ⃗V,∇ V = -1ṡ-∂-δP -∂- 2δ ¯e- K ṡ ∂Vi-+ ∂Vj- +gṡδTv+F , i,j = 1,2, ∂t i ρ0 ∂xi ∂xj 3 ij ∂xj ∂xi T0 i div⃗V = 0, ∂T ( ) Tv γa ∂T 1 ( ) H ∂t-+ ⃗V ,∇ T+ γaṡT-ṡV2 = div (KT ṡ∇T )+ T-ṡKT ṡ∂x-+ρ-c- ⃗V,∇ δP -ρ-c-, 0 0 2 0 p 0 p ∂Cs- (⃗ ) ∂q- (⃗ ) E- ∂t + V ,∇ Cs = div(KC ṡ∇Cs )+FC, ∂t+ V ,∇ q = div(Kv ṡ∇q )+ ρ , where x1,x2 - horizontal and vertical coordinates respectively, ρ0 - the density of dry air, δP - the deviation of mean air pressure from the hydrostatic distribution, ¯e - the turbulent kinetic energy, T - the temperature of the air, δTv = T ṡ(1+ 0.61q) -T0 - the deviation of virtual temperature from the adiabatic temperature T0(x2) for dry air, Fi - the components of the viscous drag forces induced by the presence of vegetation, K,KT,KC,Kv - turbulent exchange coefficients for momentum, sensible heat, CO2and H2O respectively, γa = g/ cp, cp - the specific heat of the air at constant atmospheric pressure, FC - the sources/sinks of CO2in
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Simulated annealing for three-dimensional low-beta reduced MHD equilibria in cylindrical geometry
Furukawa, M
2016-01-01
Simulated annealing (SA) is applied for three-dimensional (3D) equilibrium calculation of ideal, low-beta reduced MHD in cylindrical geometry. The SA is based on the theory of Hamiltonian mechanics. The dynamical equation of the original system, low-beta reduced MHD in this study, is modified so that the energy changes monotonically while preserving the Casimir invariants in the artificial dynamics. An equilibrium of the system is given by an extremum of the energy, therefore SA can be used as a method for calculating ideal MHD equilibrium. Previous studies demonstrated that the SA succeeds to lead to various MHD equilibria in two dimensional rectangular domain. In this paper, the theory is applied to 3D equilibrium of ideal, low-beta reduced MHD. An example of equilibrium with magnetic islands, obtained as a lower energy state, is shown. Several versions of the artificial dynamics are developed that can effect smoothing.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Implementation of a 3-D nonlinear MHD calculation on the Intel hypercube
Energy Technology Data Exchange (ETDEWEB)
Drake, J.B.; Lawkins, W.F.; Carreras, B.A.; Hicks, H.R.
1987-08-01
As part of an exploratory study of the suitability of hypercube multiprocessors for scientific computations, the non-linear magnetohydrodynamics (MHD) code RSF was parallelized for use on an Intel iPSC hypercube. This report presents the numerical algorithm of RSF and the techniques used to obtain parallelism without sacrificing the numerical properties of the serial algorithm. Timing results are presented for a sample problem.
Institute of Scientific and Technical Information of China (English)
刘峰; 施展
2009-01-01
本文介绍了GPU并行计算的优越性,并对基于GPU平台的开发框架和编程环境CUDA给予概述;在CUDA环境中开发DCT算法代码,实现了DCT算法代码从CPU平台向GPU平台的移植;并通过对比两个计算平台上DCT算法的计算耗时,分析了GPU计算平台的优越性.%This paper mainly introduces the advantage of parallel computation based on GPU platform, and gives an introduction to the developing framework and programming environment based on GPU platform. Develop codes of DCT algorithm in CUDA environment to realize the algorithm transplant of DCT from DCT to CPU platform. By contrasting two calculation times on the different platforms, the advantage of the GPU calculating platform will be indicated.
Fuchs, L.; Schmeling, H.
2013-08-01
A key to understand many geodynamic processes is studying the associated large deformation fields. Finite deformation can be measured in the field by using geological strain markers giving the logarithmic strain f = log 10(R), where R is the ellipticity of the strain ellipse. It has been challenging to accurately quantify finite deformation of geodynamic models for inhomogeneous and time-dependent large deformation cases. We present a new formulation invoking a 2-D marker-in-cell approach. Mathematically, one can describe finite deformation by a coordinate transformation to a Lagrangian reference frame. For a known velocity field the deformation gradient tensor, F, can be calculated by integrating the differential equation DtFij = LikFkj, where L is the velocity gradient tensor and Dt the Lagrangian derivative. The tensor F contains all information about the minor and major semi-half axes and orientation of the strain ellipse and the rotation. To integrate the equation centrally in time and space along a particle's path, we use the numerical 2-D finite difference code FDCON in combination with a marker-in-cell approach. For a sufficiently high marker density we can accurately calculate F for any 2-D inhomogeneous and time-dependent creeping flow at any point for a deformation f up to 4. Comparison between the analytical and numerical solution for the finite deformation within a Poiseuille-Couette flow shows an error of less than 2 per cent for a deformation up to f = 1.7. Moreover, we determine the finite deformation and strain partitioning within Rayleigh-Taylor instabilities (RTIs) of different viscosity and layer thickness ratios. These models provide a finite strain complement to the RTI benchmark of van Keken et al. Large finite deformation of up to f = 4 accumulates in RTIs within the stem and near the compositional boundaries. Distinction between different stages of diapirism shows a strong correlation between a maximum occurring deformation of f = 1, 3 and
Chang, G. S.; Lillo, M. A.
2009-08-01
-Z mini-plate fuel model was developed. The Y-Z model divides each fuel plate into 30 equal intervals in both the Y and Z directions. The MCNP-calculated results and the detailed Y-Z fission power mapping were used to help design the AFIP fuel test assembly to demonstrate that the AFIP test assembly thermal-hydraulic limits will not exceed the ATR safety limits.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Energy Technology Data Exchange (ETDEWEB)
Takasao, Shinsuke; Nakamura, Naoki; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Matsumoto, Takuma, E-mail: takasao@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 (Japan)
2015-06-01
Solar flares are an explosive phenomenon where super-sonic flows and shocks are expected in and above the post-flare loops. To understand the dynamics of post-flare loops, a two-dimensional magnetohydrodynamic (2D MHD) simulation of a solar flare has been carried out. We found new shock structures in and above the post-flare loops, which were not resolved in the previous work by Yokoyama and Shibata. To study the dynamics of flows along the reconnected magnetic field, the kinematics and energetics of the plasma are investigated along selected field lines. It is found that shocks are crucial to determine the thermal and flow structures in the post-flare loops. On the basis of the 2D MHD simulation, we developed a new post-flare loop model, which we defined as the pseudo-2D MHD model. The model is based on the one-dimensional (1D) MHD equations, where all variables depend on one space dimension, and all the three components of the magnetic and velocity fields are considered. Our pseudo-2D model includes many features of the multi-dimensional MHD processes related to magnetic reconnection (particularly MHD shocks), which the previous 1D hydrodynamic models are not able to include. We compared the shock formation and energetics of a specific field line in the 2D calculation with those in our pseudo-2D MHD model, and found that they give similar results. This model will allow us to study the evolution of the post-flare loops in a wide parameter space without expensive computational cost or neglecting important physics associated with magnetic reconnection.
Energy Technology Data Exchange (ETDEWEB)
Aoki, Dai [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yamagami, Hiroshi [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Homma, Yoshiya [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Shiokawa, Yoshinobu [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yamamoto, Etsuji [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakamura, Akio [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Settai, Rikio [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Onuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)
2005-05-04
We succeeded in growing a high-quality single crystal of NpRhGa{sub 5} by the Ga-flux method and observed the de Haas-van Alphen oscillation in the antiferromagnetic state. Four kinds of nearly cylindrical Fermi surfaces, which correspond to main Fermi surfaces, were clearly detected. These quasi-two-dimensional Fermi surfaces are formed in the flat antiferromagnetic Brillouin zone and are well explained on the basis of spin- and orbital-polarized LAPW energy band calculations. The cyclotron masses are moderately enhanced, ranging from 8.1 to 11.7 m{sub 0}, which are approximately four times larger than the corresponding band masses. This is the first case where the 5f-itinerant band model is applicable to a neptunium magnetic compound. (letter to the editor)
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Zhilkin, A G; Mason, P A; 10.1134/S1063772912040087
2012-01-01
We performed 3D MHD calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary star possesses a strong and complex magnetic field. These calculations are motivated by observations of polars; cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. So an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarf, in some binaries, possesses a complex (non-dipolar) magnetic field. We perform simulations of 10 polars or equivalently one asynchronous polar at 10 different beat phases. Our models have an aligned dipole plus quadrupole magnetic field centered on the white dwarf primary. We find that for a sufficiently strong quadrupole component an accretion spot occurs near the magnetic equator for slightly less than half of our simulations while a polar accretion zone is active for most of the rest...
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
A numerical code for a three-dimensional magnetospheric MHD equilibrium model
Voigt, G.-H.
1992-01-01
Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.
A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence
Liang, Wenli Z.; Diamond, P. H.
1993-01-01
The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
The CHEASE code for toroidal MHD equilibria
Energy Technology Data Exchange (ETDEWEB)
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Two-dimensional equilibrium in coronal magnetostatic flux tubes: an accurate equilibrium solver
Belien, A. J. C.; Poedts, S.; Goedbloed, J. P.
1997-01-01
To study linearized magnetohydrodynamic (MHD) waves, continuous spectra, and instabilities in coronal magnetic flux tubes that are anchored in dense chromospheric and photospheric regions, a two-dimensional numerical code, called PARIS, has been developed. PARIS solves the pertinent nonlinear Grad-S
Continuous magnetohydrodynamic spectra of two-dimensional coronal magnetostatic flux tubes
Belien, A. J. C.; Poedts, S.; Goedbloed, J. P.
1997-01-01
In this paper we derive the equations for the continuous ideal magnetohydrodynamic (MHD) spectrum of two-dimensional coronal loops, including gravity and expansion, in general curvilinear coordinates. The equations clearly show the coupling between Alfven and slow magnetosonic continuum waves when b
MHD-effects in a turbulent medium of nonuniform density
Energy Technology Data Exchange (ETDEWEB)
Vaynshteyn, S.I.
1978-01-01
Turbulence in a medium of nonuniform density, such as the convective solar layer, is analyzed with the assumption that Del rho = rho lambda (exponential stratification). Considered are first the simplest case of a quasi-isotropic turbulence, then addition of a scalar factor such as the temperature, and finally anisotropic turbulence. The magnetic field and MHD-effects are then calculated without diffusion, and with two-dimensional turbulence as a special case. Also the values of the essential parameters in this problem are estimated. 7 references.
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
Averaged two-dimensional low-frequency wave spectrum of wind waves
Kimura, A.
1984-01-01
This report deals with second order, two-dimensional low frequency waves induced by the non-linear interactions of the first order component waves in a two-dimensional short wave field. The convolution to calculate the averaged two-dimensional low frequency wave spectrum is developed. Any given two-
Institute of Scientific and Technical Information of China (English)
杨素国; 章建全; 杨钰
2012-01-01
Objective To investigate the difference of volume calculation accuracy between three-dimensional volumetry and two dimensional formulization by using ultrasonography on experimental models. Methods A pare of 19 balloon models were set up in group A and group B. The balloons were filled in 19 different matching scales of amount, with saline in group A and with SonoVue micro-bubbles solution in group B. They were sealed and embedded in ultrasound gel container for ultrasound scanning. For three-dimensional data acquisition, an RAB 2-5-D probe available on Voluson-E8 ultrasound set (GE medical Co. , America) was used. The intrinsic VOCAL technique was applied for processing the volume data in a subtle rotation step of 6 degrees to yield the volume value of each balloon (i. e. 3D-volume) , and meanwhile multi-planar technique was used to produce three perpendicular planes for maximum length determinations. The three lengths for each balloon were citated for volume calculation based on spheroid formula (i. e. 2D-volume). Results 3D-volume and 2D-vol-ume were successfully calculated concomitantly for each balloon. 3D-volume value was highly close to the actual amount of filling liquid in each balloon, with superiority in group A. 2D-volume value was biased in over-estimation to the actual a-mount of filling liquid in each balloon, especially in group B. The bias of 2D volumetry was greater than that of 3D volumetry in a significant statistical difference ( t =5. 4913, P <0. 001). 3D volume values between group A and group B were proved in a mean difference of (12. 33 ± 7. 67) ml ( t =7. 008, P <0. 001) with the values greater in group B. Conclusion 3D-volumetry with VOCAL software can help achieve volumes much closer to the actual volume of object than 2D-volume-try. Proper and precise delineation along the inner border of region of interest is essential and critical while performing VOCAL processing.%目的 探讨三维超声重建法计算体积的
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Y.; Matsumoto, T.; Wakatani, M. [Kyoto Univ. (Japan). Plasma Physics Lab.; Galkin, S.A.; Drozdov, V.V.; Martynov, A.A.; Poshekhonov, Yu.Yu. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation); Ichiguchi, K. [National Institute for Fusion Science, Nagoya (Japan); Garcia, L. [Universidad Carlos III de Madrid (Spain); Carreras, B.A. [Oak Ridge National Lab., TN (United States)] [and others
1995-04-01
A particular configuration of the LHD stellarator with an unusually flat pressure profile has been chosen to be a test case for comparison of the MHD stability property predictions of different three-dimensional and averaged codes for the purpose of code comparison and validation. In particular, two relatively localized instabilities, the fastest growing modes with toroidal mode number n = 2 and n = 3 were studied using several different codes, with the good agreement that has been found providing justification for the use of any of them for equilibria of the type considered.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Quasinormal frequencies of asymptotically flat two-dimensional black holes
Lopez-Ortega, A
2011-01-01
We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.
Simulated annealing applied to two-dimensional low-beta reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Chikasue, Y., E-mail: chikasue@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Furukawa, M., E-mail: furukawa@damp.tottori-u.ac.jp [Graduate School of Engineering, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8552 (Japan)
2015-02-15
The simulated annealing (SA) method is applied to two-dimensional (2D) low-beta reduced magnetohydrodynamics (R-MHD). We have successfully obtained stationary states of the system numerically by the SA method with Casimir invariants preserved. Since the 2D low-beta R-MHD has two fields, the relaxation process becomes complex compared to a single field system such as 2D Euler flow. The obtained stationary state can have fine structure. We have found that the fine structure appears because the relaxation processes are different between kinetic energy and magnetic energy.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Dislocation climb in two-dimensional discrete dislocation dynamics
Davoudi, K.M.; Nicola, L.; Vlassak, J.J.
2012-01-01
In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r
Bhattacharjee, Suraka; Chaudhury, Ranjan
2016-11-01
The generalized spin stiffness constant for a doped quantum antiferromagnet has been investigated both analytically and numerically as a function of doping concentration at zero temperature, based on the strongly correlated t-J model on two-dimensional square lattice. The nature of the theoretical dependence of the stiffness constant on doping shows a striking similarity with that of the effective exchange constant, obtained from the combination of other theoretical and experimental techniques in the low doping region. This correspondence once again establishes that spin stiffness can very well play the role of an effective exchange constant even in the strongly correlated semi-itinerant systems. Our theoretical plot of the stiffness constant against doping concentration in the whole doping region exhibits the various characteristic features like a possible crossover in the higher doping regions and persistence of short range ordering even for very high doping with the complete vanishing of spin stiffness occurring only close to 100% doping. Our results receive very good support from various other theoretical approaches and also brings out a few limitations of some of them. Our detailed analysis highlights the crucial importance of the study of spin stiffness for the proper understanding of magnetic correlations in a semi-itinerant magnetic system described by the strongly correlated t-J model. Moreover, our basic formalism can also be utilized for determination of the effective exchange constant and magnetic correlations for itinerant magnetic systems, in general in a novel way.
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Institute of Scientific and Technical Information of China (English)
鲍自力; 朱爱平; 周安娜; 张小勇
2015-01-01
长江马鞍山段是马鞍山市最重要的水源，而又汇集全市工业废水和生活污水排放，因此建立适合此江段水域的水质评价和预测模型，预报排污对水质的影响就比较重要。本文通过建立适合长江马鞍山段内河水域的二维模拟预测模型，预报排污对水质的影响范围和程度，考察各排口污染物NH3－N、TP、F－在本江段的浓度分布。结果表明：姑溪河的影响较明显，但各污染物混合带宽度不超过100m，污染带对下游影响仅有2000 m范围，水质基本上能达到Ⅱ类水质要求；通过编制二维模拟预测模型计算软件，可应用于污染控制措施、突发污染事件的预测防范以及沿江产业结构、布局调整等。%The Ma'anshan section of the Yangtze River is the most important water source of Ma'anshan and the section still collect city's industrial wastewater and domestic sewage .Therefore , it is more impor-tant to establish the evaluation and prediction model of water quality which can predict the effect of pollu-tion discharge on water quality in Ma'anshan section of the river .The influence scope and extent of pollu-tion discharge on water quality could be forecasted through establishing the two dimensional simulation and prediction model of inland waters in Ma'anshan section of the Yangtze River .The concentration distri-bution of pollutants NH 3 -N, TP and F-in this section were investigated .The results showed that the influence of pollution discharge on Guxi river is obvious , but the mixing zone width of pollutants is less than 100 m.The pollution band has the impact scope of a thousand meters on overall water quality in downstream of the river .The water quality can basically reach the requirements of class II in Ma'anshan section of the Yangtze River .At the same time , the prediction model of two -dimensional simulation has certain guiding significance for the measure of pollution control ,forecast of
Institute of Scientific and Technical Information of China (English)
XIONG Lei; LI haijiao; ZHANG Lewen
2008-01-01
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field.
Alexakis, Alexandros
2011-11-01
The magnetohydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of nine runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two-dimensional (2D) (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three-dimensional (3D) MHD fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependences are demonstrated by the varying parameters of the simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes k(//)=0.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets
Energy Technology Data Exchange (ETDEWEB)
Soni, Himadri R., E-mail: himadri.soni@gmail.com; Jha, Prafulla K., E-mail: himadri.soni@gmail.com [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2014-04-24
Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Conductivity of a two-dimensional guiding center plasma.
Montgomery, D.; Tappert, F.
1972-01-01
The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.
Two-dimensional hydrogen negative ion in a magnetic field
Institute of Scientific and Technical Information of China (English)
Xie Wen-Fang
2004-01-01
Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.
THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.
Fault analysis of mid-channel power takeoff in DCW MHD generators
Ishikawa, M.; Wu, Y. C. L.; Scott, M. H.
1982-06-01
Analysis is presented of the effect of loading faults on the mid-channel power takeoff of a diagonal-conducting-wall MHD generator in special loading schemes. Two-dimensional calculations indicate that an open-circuit condition in the upstream load circuit results in a large current density at the power takeoff anode and drives a shorting current over the interframe insulators at the cathode side. A short-circuit condition in the upstream load circuit results in a large current density at the power takeoff cathode and a shorting current over the interframe insulators at the anode side.
Dynamical matrix of two-dimensional electron crystals
Côté, R.; Lemonde, M.-A.; Doiron, C. B.; Ettouhami, A. M.
2008-03-01
In a quantizing magnetic field, the two-dimensional electron gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to obtain the dynamical matrix of these crystals from a calculation of the density response function performed in the generalized random-phase approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Ring-shaped discharge structures in a closed cycle MHD disk generator
Energy Technology Data Exchange (ETDEWEB)
Fukuda, H.; Kabashima, S.
1987-06-01
Numerical simulations are carried out to study plasma properties in a nonequilibrium disk-type MHD generator. The analysis is based on a two-dimensional time-dependent MHD equation, and is performed in the r-z plane. From the r-z analysis, the current distributions in the boundary layer, electrode regions are obtained, as well as the channel main flow region. The two-state nature of plasma, i.e., the formation of streamers and their dynamical behavior in the channel is confirmed. The dependence of the streamer properties on the magnetic field strength and load resistance is examined. The calculations suggest the existence of an eddy current in the boundary layer for the high-loading parameter. Some enhanced eddy currents in the nozzle region and the intensive eddy current at the upper-stream edge of the cathode are obtained for some plasma parameters. 19 references.
Two-dimensional nonlinear nonequilibrium kinetic theory under steady heat conduction.
Hyeon-Deuk, Kim
2005-04-01
The two-dimensional steady-state Boltzmann equation for hard-disk molecules in the presence of a temperature gradient has been solved explicitly to second order in density and the temperature gradient. The two-dimensional equation of state and some physical quantities are calculated from it and compared with those for the two-dimensional steady-state Bhatnagar-Gross-Krook equation and information theory. We have found that the same kind of qualitative differences as the three-dimensional case among these theories still appear in the two-dimensional case.
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
Extension of modified power method to two-dimensional problems
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
Magnetization of two-dimensional superconductors with defects
Kashurnikov, V A; Zyubin, M V
2002-01-01
The new method for modeling the layered high-temperature superconductors magnetization with defects, based on the Monte-Carlo algorithm, is developed. Minimization of the free energy functional of the vortex two-dimensional system made it possible to obtain the equilibrium vortex density configurations and calculate the magnetization of the superconductor with the arbitrary defects distribution in the wide range of temperatures. The magnetic induction profiles and magnetic flux distribution inside the superconductor, proving the applicability of the Bean model, are calculated
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Marchand, Pierre; Chabrier, Gilles; Hennebelle, Patrick; Commerçon, Benoit; Vaytet, Neil
2016-01-01
We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Oh...
A Two-Dimensional MagnetoHydrodynamics Scheme for General Unstructured Grids
Livne, E; Burrows, A; Meakin, C A; Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-01-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation-hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALE). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of $div(\\bB)$ by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for...
Augmented reality simulator for training in two-dimensional echocardiography.
Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A
2000-02-01
In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.
Alfvén waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics.
Krstulovic, Giorgio; Brachet, Marc-Etienne; Pouquet, Annick
2011-07-01
We investigate numerically the dynamics of two-dimensional Euler and ideal magnetohydrodynamics (MHD) flows in systems with a finite number of modes, up to 4096(2), for which several quadratic invariants are preserved by the truncation and the statistical equilibria are known. Initial conditions are the Orszag-Tang vortex with a neutral X point centered on a stagnation point of the velocity field in the large scales. In MHD, we observe that the total energy spectra at intermediate times and intermediate scales correspond to the interactions of eddies and waves, E(T)(k)~k(-3/2). Moreover, no pseudodissipative range is visible for either Euler or ideal MHD in two dimensions. In the former case, this may be linked to the existence of a vanishing turbulent viscosity whereas in MHD, the numerical resolution employed may be insufficient. When imposing a uniform magnetic field to the flow, we observe a lack of saturation of the formation of small scales together with a significant slowing down of their equilibration, with however a cutoff independent partial thermalization being reached at intermediate scales.
A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows
Mininni, P D; Pouquet, A G
2004-01-01
We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...
A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics
Bard, Christopher M.; Dorelli, John C.
2014-02-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics
Bard, Christopher; Dorelli, John C.
2013-01-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
Analogue Kerr-like geometries in a MHD inflow
Noda, Sousuke; Takahashi, Masaaki
2016-01-01
We present a model of the analogue black hole in magnetohydrodynamic (MHD) flow. For a two dimensional axisymmetric stationary trans-magnetosonic inflow with a sink, using the dispersion relation of the MHD waves, we introduce the effective geometries for magnetoacoustic waves propagating in the MHD flow. Investigating the properties of the effective potentials for magnetoacoustic rays, we find that the effective geometries can be classified into five types which include analogue spacetimes of the Kerr black hole, ultra spinning stars with ergoregions and spinning stars without ergoregions. We address the effects of the magnetic pressure and the magnetic tension on each magnetoacoustic geometries.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
E and S hysteresis model for two-dimensional magnetic properties
Soda, N
2000-01-01
We define an effective hysteresis model of two-dimensional magnetic properties for the magnetic field analysis. Our hysteresis model is applicable to both alternating and rotating flux conditions. Moreover, we compare the calculated results with the measured ones, and verify the accuracy of this model. We can calculate iron losses in the magnetic materials exactly. As a result, it is shown that the hysteresis model is generally applicable to two-dimensional magnetic properties of some kinds of magnetic materials.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensionally confined topological edge states in photonic crystals
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-11-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Two-Dimensionally Confined Topological Edge States in Photonic Crystals
Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Wake-induced bending of two-dimensional plasma crystals
Energy Technology Data Exchange (ETDEWEB)
Röcker, T. B., E-mail: tbr@mpe.mpg.de; Ivlev, A. V., E-mail: ivlev@mpe.mpg.de; Zhdanov, S. K.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Couëdel, L. [CNRS, Aix-Marseille-Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille Cedex 20 (France)
2014-07-15
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Wake-induced bending of two-dimensional plasma crystals
Röcker, T B; Zhdanov, S K; Couëdel, L; Morfill, G E
2014-01-01
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Absolute band gaps in two-dimensional graphite photonic crystal
Institute of Scientific and Technical Information of China (English)
Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)
2003-01-01
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.
Kinetic analysis of two dimensional metallic grating Cerenkov maser
Energy Technology Data Exchange (ETDEWEB)
Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2011-08-15
The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.
Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies
Institute of Scientific and Technical Information of China (English)
NI Qing; CHENG Jian-Chun
2005-01-01
@@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.
Electronic Transmission Properties of Two-Dimensional Quasi-Lattice
Institute of Scientific and Technical Information of China (English)
侯志林; 傅秀军; 刘有延
2002-01-01
In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.
Two-dimensional conformal field theory and the butterfly effect
Roberts, Daniel A
2014-01-01
We study chaotic dynamics in two-dimensional conformal field theory through out-of-time order thermal correlators of the form $\\langle W(t)VW(t)V\\rangle$. We reproduce bulk calculations similar to those of [1], by studying the large $c$ Virasoro identity block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of $\\sim t_* - \\frac{\\beta}{2\\pi}\\log \\beta^2E_w E_v$, where $t_*$ is the scrambling time $\\frac{\\beta}{2\\pi}\\log c$, and $E_w,E_v$ are the energy scales of the $W,V$ operators.
Optimum high temperature strength of two-dimensional nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)
2013-11-01
High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhang, S B
2016-01-01
Band alignment in two-dimensional (2D) lateral heterostructures is fundamentally different from three-dimensional (3D), as Schottky barrier height is at the Schottky-Mott limit and band offset is at the Anderson limit, regardless interfacial conditions. This robustness arises because, in the asymptotic limit, effect of interfacial dipole vanishes. First-principles calculations of graphene/h-BN and MoS2/WS2 show that 2D junction width W is typically an order of magnitude longer than 3D. Therefore, heterostructures with dimension less than W can also be made, leading to tunable band alignment.
Elastic models of defects in two-dimensional crystals
Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.
2014-12-01
Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.
Optimum high temperature strength of two-dimensional nanocomposites
Directory of Open Access Journals (Sweden)
M. A. Monclús
2013-11-01
Full Text Available High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics
YD, Sumith
2016-01-01
Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Electronic structure of boron based single and multi-layer two dimensional materials
Miyazato, Itsuki; Takahashi, Keisuke
2017-09-01
Two dimensional nanosheets based on boron and Group VA elements are designed and characterized using first principles calculations. B-N, B-P, B-As, B-Sb, and B-Bi are found to possess honeycomb structures where formation energies indicate exothermic reactions. Contrary to B-N, the cases of B-P, B-As, B-Sb, and B-Bi nanosheets are calculated to possess narrow band gaps. In addition, calculations reveal that the electronegativity difference between B and Group VA elements in the designed materials is a good indicator to predict the charge transfer and band gap of the two dimensional materials. Hydrogen adsorption over defect-free B-Sb and B-Bi results in exothermic reactions, while defect-free B-N, B-P, and B-As result in endothermic reactions. The layerability of the designed two dimensional materials is also investigated where the electronic structure of two-layered two dimensional materials is strongly coupled with how the two dimensional materials are layered. Thus, one can consider that the properties of two dimensional materials can be controlled by the composition of two dimensional materials and the structure of layers.
Band structure of absorptive two-dimensional photonic crystals
van der Lem, Han; Tip, Adriaan; Moroz, Alexander
2003-06-01
The band structure for an absorptive two-dimensional photonic crystal made from cylinders consisting of a Drude material is calculated. Absorption causes the spectrum to become complex and form islands in the negative complex half-plane. The boundaries of these islands are not always formed by the eigenvalues calculated for Bloch vectors on the characteristic path, and we find a hole in the spectrum. For realistic parameter values, the real part of the spectrum is hardly influenced by absorption, typically less than 0.25%. The employed method uses a Korringa-Kohn-Rostoker procedure together with analytical continuation. This results in an efficient approach that allows these band-structure calculations to be done on a Pentium III personal computer.
Internetwork magnetic field as revealed by two-dimensional inversions
Danilovic, S.; van Noort, M.; Rempel, M.
2016-09-01
Context. Properties of magnetic field in the internetwork regions are still fairly unknown because of rather weak spectropolarimetric signals. Aims: We address the matter by using the two-dimensional (2D) inversion code, which is able to retrieve the information on smallest spatial scales up to the diffraction limit, while being less susceptible to noise than most of the previous methods used. Methods: Performance of the code and the impact of various effects on the retrieved field distribution is tested first on the realistic magneto-hydrodynamic (MHD) simulations. The best inversion scenario is then applied to the real data obtained by Spectropolarimeter (SP) on board Hinode. Results: Tests on simulations show that: (1) the best choice of node position ensures a decent retrieval of all parameters; (2) the code performs well for different configurations of magnetic field; (3) slightly different noise levels or slightly different defocus included in the spatial point spread function (PSF) produces no significant effect on the results; and (4) temporal integration shifts the field distribution to a stronger, more horizontally inclined field. Conclusions: Although the contribution of the weak field is slightly overestimated owing to noise, 2D inversions are able to recover well the overall distribution of the magnetic field strength. Application of the 2D inversion code on the Hinode SP internetwork observations reveals a monotonic field strength distribution. The mean field strength at optical depth unity is ~ 130 G. At higher layers, field strength drops as the field becomes more horizontal. Regarding the distribution of the field inclination, tests show that we cannot directly retrieve it with the observations and tools at hand, however, the obtained distributions are consistent with those expected from simulations with a quasi-isotropic field inclination after accounting for observational effects.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Method and system for determining a volume of an object from two-dimensional images
Abercrombie, Robert K [Knoxville, TN; Schlicher, Bob G [Portsmouth, NH
2010-08-10
The invention provides a method and a computer program stored in a tangible medium for automatically determining a volume of three-dimensional objects represented in two-dimensional images, by acquiring at two least two-dimensional digitized images, by analyzing the two-dimensional images to identify reference points and geometric patterns, by determining distances between the reference points and the component objects utilizing reference data provided for the three-dimensional object, and by calculating a volume for the three-dimensional object.
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Two-dimensional inflow-wind solution of black hole accretion with an evenly symmetric magnetic field
Mosallanezhad, Amin; Yuan, Feng
2015-01-01
We solve the two-dimensional magnetohydrodynamic (MHD) equations of black hole accretion with the presence of magnetic field. The field includes a turbulent component, whose role is represented by the viscosity, and a large-scale ordered component. The latter is further assumed to be evenly symmetric with the equatorial plane. The equations are solved in the $r-\\theta$ plane of a spherical coordinate by assuming time-steady and radially self-similar. An inflow-wind solution is found. Around the equatorial plane, the gas is inflowing; while above and below the equatorial plane at a certain critical $\\theta$ angle, $\\theta\\sim 47^{\\circ}$, the inflow changes its direction of radial motion and becomes wind. The driving forces are analyzed and found to be the centrifugal force and the gradient of gas and magnetic pressure. The properties of wind are also calculated. The specific angular momentum of wind is found to be significantly larger than that of inflow, thus wind can transfer angular momentum outward. These...
Patched Green's function techniques for two-dimensional systems
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Lin, Jun
2015-01-01
We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...... of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well...... as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations...
Polarons and molecules in a two-dimensional Fermi gas
DEFF Research Database (Denmark)
Zöllner, Sascha; Bruun, Georg Morten; Pethick, C. J.
2011-01-01
We study an impurity atom in a two-dimensional Fermi gas using variational wave functions for (i) an impurity dressed by particle-hole excitations (polaron) and (ii) a dimer consisting of the impurity and a majority atom. In contrast to three dimensions, where similar calculations predict a sharp...... transition to a dimer state with increasing interspecies attraction, we show that the polaron Ansatz always gives a lower energy. However, the exact solution for a heavy impurity reveals that both a two-body bound state and distortions of the Fermi sea are crucial. This reflects the importance of particle......-hole pairs in lower dimensions and makes simple variational calculations unreliable. We show that the energy of an impurity gives important information about its dressing cloud, for which both Ansätze give inaccurate results....
Reduced MHD in Astrophysical Applications: Two-dimensional or Three-dimensional?
Oughton, S.; Matthaeus, W. H.; Dmitruk, P.
2017-04-01
Originally proposed as an efficient approach to computation of nonlinear dynamics in tokamak fusion research devices, reduced magnetohydrodynamics (RMHD) has subsequently found application in studies of coronal heating, flux tube dynamics, charged particle transport, and, in general, as an approximation to describe plasma turbulence in space physics and astrophysics. Given the diverse set of derivations available in the literature, there has emerged some level of discussion and a lack of consensus regarding the completeness of RMHD as a turbulence model, and its applicability in contexts such as the solar wind. Some of the key issues in this discussion are examined here, emphasizing that RMHD is properly neither 2D nor fully 3D, being rather an incomplete representation that enforces at least one family of extraneous conservation laws.
Performance of Thomas-Fermi and linear response approaches in periodic two-dimensional systems
Energy Technology Data Exchange (ETDEWEB)
Calderin, L; Stott, M J [Department of Physics, Queen' s University, Kingston, Ontario, K7 L 3N6 (Canada)], E-mail: calderin@physics.queensu.ca, E-mail: stott@mjs.phy.queensu.ca
2010-04-16
A study of the performance of Thomas-Fermi and linear response theories in the case of a two-dimensional periodic model system is presented. The calculated density distribution and total energy per unit cell compare very well with exact results except when there is a small number of particles per cell, even though the potential has narrow tight-binding bands. The results supplement earlier findings of Koivisto and Stott for a localized impurity in a two-dimensional uniform gas.
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Mamatsashvili, G R; Gogichaishvili, D Z; Chagelishvili, G D; Horton, W
2014-04-01
We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number) plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of flow shear to Alfvén speed, kymagnetohydrodynamic (MHD) turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow; see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.
Commensurability oscillations in a two-dimensional lateral superlattice
Davies, John; Long, Andrew; Grant, David; Chowdhury, Suja
2000-03-01
We have calculated and measured conduction in a two-dimensional electron gas subject to a weak two-dimensional periodic potential and a normal magnetic field. Simulations with a potential Vx \\cos(2π x/a) + Vy \\cos(2π y/a) show the usual commensurability oscillations in ρ_xx(B) with Vx alone. The introduction of Vy suppresses these oscillations, rather than introducing the additional oscillations in ρ_yy(B) expected from previous perturbation theories. We explain this in terms of drift of the guiding center of cyclotron motion along contours of an effective potential: open orbits of the guiding center contribute to conduction but closed orbits do not. All orbits are closed in a symmetric superlattice with |V_x| = |V_y| and commensurability oscillations are therefore quenched. Experiments on etched superlattices confirm this picture. Conventional lattice-matched samples give a symmetric potential and weak oscillations; the symmetry is broken by the piezoelectric effect in stressed samples, leading to strong oscillations. Periodic modulation of the magnetic field can be treated in the same way, which explains previous experimental results.
Configuration of Shock Waves in Two-Dimensional Overexpanded Jets
Institute of Scientific and Technical Information of China (English)
Masashi Kashitani; Yutaka Yamaguchi; Yoshiaki Miyazato; Mitsuharu Masuda; Kazuyasu Matsuo
2003-01-01
An experimental and analytical study has been carried out to obtain the clear understanding of a shock wave transition associated with a steady two-dimensional overexpanded flow. Two-dimensional inviscid theory with respect to a shock wave reflection is used in the present study on the characteristic of shock waves. The results obtained from the flow analysis are compared with those obtained from flow visualizations. It is shown that in the region of regular reflection, the angle of an incident shock wave becomes lower than that calculated by two shock theory with an increment in the ratio pe/pb of the nozzle exit pressure pe to the back pressure pb. It is indicated that the configuration of shock waves in overexpanded jets is influenced by the divergent angle at the nozzle exit. Also it is shown from the flow visualization that a series of shock waves move into the nozzle inside with a decrease in pressure ratio pe/pb, even if the pe/pb is under overexpanded conditions.
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Fermionic boundary modes in two-dimensional noncentrosymmetric superconductors
Samokhin, K. V.; Mukherjee, S. P.
2016-09-01
We calculate the spectrum of the Andreev boundary modes in a two-dimensional superconductor formed at an interface between two different nonsuperconducting materials, e.g., insulating oxides. Inversion symmetry is absent in this system, and both the electron band structure and the superconducting pairing are strongly affected by the spin-orbit coupling of the Rashba type. We consider isotropic s -wave pairing states, both with and without time-reversal symmetry breaking, as well as various d -wave states. In all cases, there exist subgap Andreev boundary states, whose properties, in particular, the number and location of the zero-energy modes, qualitatively depend on the gap symmetry and the spin-orbit coupling strength.
Approaches to verification of two-dimensional water quality models
Energy Technology Data Exchange (ETDEWEB)
Butkus, S.R. (Tennessee Valley Authority, Chattanooga, TN (USA). Water Quality Dept.)
1990-11-01
The verification of a water quality model is the one procedure most needed by decision making evaluating a model predictions, but is often not adequate or done at all. The results of a properly conducted verification provide the decision makers with an estimate of the uncertainty associated with model predictions. Several statistical tests are available for quantifying of the performance of a model. Six methods of verification were evaluated using an application of the BETTER two-dimensional water quality model for Chickamauga reservoir. Model predictions for ten state variables were compared to observed conditions from 1989. Spatial distributions of the verification measures showed the model predictions were generally adequate, except at a few specific locations in the reservoir. The most useful statistics were the mean standard error of the residuals. Quantifiable measures of model performance should be calculated during calibration and verification of future applications of the BETTER model. 25 refs., 5 figs., 7 tabs.
Vibrational Properties of a Two-Dimensional Silica Kagome Lattice.
Björkman, Torbjörn; Skakalova, Viera; Kurasch, Simon; Kaiser, Ute; Meyer, Jannik C; Smet, Jurgen H; Krasheninnikov, Arkady V
2016-12-27
Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.
Emergent elemental two-dimensional materials beyond graphene
Zhang, Yuanbo; Rubio, Angel; Le Lay, Guy
2017-02-01
Two-dimensional (2D) materials may offer the ultimate scaling beyond the 5 nm gate length. The difficulty of reliably opening a band gap in graphene has led to the search for alternative, semiconducting 2D materials. Emerging classes of elemental 2D materials stand out for their compatibility with existing technologies and/or for their diverse, tunable electronic structures. Among this group, black phosphorene has recently shown superior semiconductor performances. Silicene and germanene feature Dirac-type band dispersions, much like graphene. Calculations show that most group IV and group V elements have one or more stable 2D allotropes, with properties potentially suitable for electronic and optoelectronic applications. Here, we review the advances in these fascinating elemental 2D materials and discuss progress and challenges in their applications in future opto- and nano-electronic devices.
Computationally Driven Two-Dimensional Materials Design: What Is Next?
Energy Technology Data Exchange (ETDEWEB)
Pan, Jie [Materials Science; Lany, Stephan [Materials Science; Qi, Yue [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
2017-07-17
Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. In addition, we discuss challenges and opportunities to boost the power of computation for the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs
Mannix, Andrew J.; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D.; Alducin, Diego; Myers, Benjamin D.; Liu, Xiaolong; Fisher, Brandon L.; Santiago, Ulises; Guest, Jeffrey R.; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R.; Hersam, Mark C.; Guisinger, Nathan P.
2016-01-01
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes.Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. PMID:26680195
Light transport and localization in two-dimensional correlated disorder
Conley, Gaurasundar M; Pratesi, Filippo; Vynck, Kevin; Wiersma, Diederik S
2013-01-01
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this article, we theoretically investigate the transport and localization of light in two-dimensional photonic structures with short-range correlated disorder. The problem is tackled semi-analytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.
Kinks in two-dimensional Anti-de Sitter Space
Barnes, J L; ter Veldhuis, T; Webster, M J
2009-01-01
Soliton solutions in scalar field theory defined on a two-dimensional Anti-de Sitter background space-time are investigated. It is shown that the lowest soliton excitation generically has frequency equal to the inverse radius of the space-time. Analytic and numerical soliton solutions are determined in "phi to the fourth" scalar field theory with a negative mass-squared. The classical soliton mass is calculated as a function of the ratio of the square of the mass scale of the field theory over the curvature of the space-time. For the case that this ratio equals unity, the soliton excitation spectrum is determined algebraically and the one-loop radiative correction to the soliton mass is computed in the semi-classical approximation.
Anisotropic electronic conduction in stacked two-dimensional titanium carbide
Hu, Tao; Zhang, Hui; Wang, Jiemin; Li, Zhaojin; Hu, Minmin; Tan, Jun; Hou, Pengxiang; Li, Feng; Wang, Xiaohui
2015-11-01
Stacked two-dimensional titanium carbide is an emerging conductive material for electrochemical energy storage which requires an understanding of the intrinsic electronic conduction. Here we report the electronic conduction properties of stacked Ti3C2T2 (T = OH, O, F) with two distinct stacking sequences (Bernal and simple hexagonal). On the basis of first-principles calculations and energy band theory analysis, both stacking sequences give rise to metallic conduction with Ti 3d electrons contributing most to the conduction. The conduction is also significantly anisotropic due to the fact that the effective masses of carriers including electrons and holes are remarkably direction-dependent. Such an anisotropic electronic conduction is evidenced by the I-V curves of an individual Ti3C2T2 particulate, which demonstrates that the in-plane electrical conduction is at least one order of magnitude higher than that vertical to the basal plane.
Diffusion in the two-dimensional nonoverlapping Lorentz gas
James, Corinne P.; Evans, Glenn T.
1987-10-01
The self-diffusion coefficient, velocity autocorrelation function, and distribution of collision times for a two-dimensional nonoverlapping Lorentz gas were calculated using molecular dynamics simulation. The systems studied covered a range of densities, from a packing fraction (πNr2/L2) of 0.01 to 0.8. Self-diffusion coefficients were found to agree to all densities with kinetic theory predictions [A. Weijland and J. M. J. van Leeuwen, Physica 38, 35 (1968)] if the radial distribution function (rdf) was taken into account. The density dependence of the decay of the velocity autocorrelation function was qualitatively different from that predicted by kinetic theory. The distribution of collision times was nearly exponential for all but the highest density studied.
Two-Dimensional Hexagonal Transition-Metal Oxide for Spintronics.
Kan, Erjun; Li, Ming; Hu, Shuanglin; Xiao, Chuanyun; Xiang, Hongjun; Deng, Kaiming
2013-04-04
Two-dimensional materials have been the hot subject of studies due to their great potential in applications. However, their applications in spintronics have been blocked by the difficulty in producing ordered spin structures in 2D structures. Here we demonstrated that the ultrathin films of recently experimentally realized wurtzite MnO can automatically transform into a stable graphitic structure with ordered spin arrangement via density functional calculation, and the stability of graphitic structure can be enhanced by external strain. Moreover, the antiferromagnetic ordering of graphitic MnO single layer can be switched into half-metallic ferromagnetism by small hole-doping, and the estimated Curie temperature is higher than 300 K. Thus, our results highlight a promising way toward 2D magnetic materials.
Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets
Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.
2016-11-01
We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.
The random discrete action for two-dimensional spacetime
Benincasa, Dionigi M. T.; Dowker, Fay; Schmitzer, Bernhard
2011-05-01
A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, {M}^2. When a causally convex region of {M}^2 is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.
Fan, Xiang; Diamond, P. H.; Chacón, L.; Li, Hui
2016-09-01
We study the fundamental physics of cascades and spectra in two-dimensional (2D) Cahn-Hilliard-Navier-Stokes (CHNS) turbulence, and compare and contrast this system with 2D magnetohydrodynamic (MHD) turbulence. The important similarities include basic equations, ideal quadratic invariants, cascades, and the role of linear elastic waves. Surface tension induces elasticity, and the balance between surface tension energy and turbulent kinetic energy determines a length scale (Hinze scale) of the system. The Hinze scale may be thought of as the scale of emergent critical balance between fluid straining and elastic restoring forces. The scales between the Hinze scale and dissipation scale constitute the elastic range of the 2D CHNS system. By direct numerical simulation, we find that in the elastic range, the mean square concentration spectrum Hkψ of the 2D CHNS system exhibits the same power law (-7 /3 ) as the mean square magnetic potential spectrum HkA in the inverse cascade regime of 2D MHD. This power law is consistent with an inverse cascade of Hψ, which is observed. The kinetic energy spectrum of the 2D CHNS system is EkK˜k-3 if forced at large scale, suggestive of the direct enstrophy cascade power law of 2D Navier-Stokes turbulence. The difference from the energy spectra of 2D MHD turbulence implies that the back reaction of the concentration field to fluid motion is limited. We suggest this is because the surface tension back reaction is significant only in the interfacial regions. The interfacial regions fill only a small portion of the 2D CHNS system, and their interface packing fraction is much smaller than that for 2D MHD.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Xi, Caiping; Zhang, Shunning; Xiong, Gang; Zhao, Huichang
2016-07-01
Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) algorithm have been established as two important methods to estimate the multifractal spectrum of the one-dimensional random fractal signal. They have been generalized to deal with two-dimensional and higher-dimensional fractal signals. This paper gives a brief introduction of the two-dimensional multifractal detrended fluctuation analysis (2D-MFDFA) and two-dimensional multifractal detrended moving average (2D-MFDMA) algorithm, and a detailed description of the application of the two-dimensional fractal signal processing by using the two methods. By applying the 2D-MFDFA and 2D-MFDMA to the series generated from the two-dimensional multiplicative cascading process, we systematically do the comparative analysis to get the advantages, disadvantages and the applicabilities of the two algorithms for the first time from six aspects such as the similarities and differences of the algorithm models, the statistical accuracy, the sensitivities of the sample size, the selection of scaling range, the choice of the q-orders and the calculation amount. The results provide a valuable reference on how to choose the algorithm from 2D-MFDFA and 2D-MFDMA, and how to make the schemes of the parameter settings of the two algorithms when dealing with specific signals in practical applications.
Compact triplexer in two-dimensional hexagonal lattice photonic crystals
Institute of Scientific and Technical Information of China (English)
Hongliang Ren; Jianping Ma; Hao Wen; Yali Qin; Zhefu Wu; Weisheng Hu; Chun Jiang; Yaohui Jin
2011-01-01
We design a contpact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs). A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides. Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained. The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finites-difference time-domain method. The footprint of the triplexer is about 12× 9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -4O dB for 1550 nm, making it a potentially essential device ii future fiber-to-the-home networks.%@@ We design a compact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs).A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides.Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained.The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finite-difference time-domain method.The footprint of the triplexer is about 12×9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -40 dB for 1550 nm, making it a potentially essential device in future fiber-to-the-home networks.
Density of states of Frenkel excitons in strongly disordered two-dimensional systems
Siemann, Robert; Boukahil, Abdelkrim
2014-03-01
We present the calculation of the density of states of Frenkel excitons in strongly disordered two-dimensional systems. A random distribution of transition frequencies with variance σ2 characterizes the disorder. The Coherent Potential Approximation (CPA) calculations show a strong dependence of the density of states (DOS) on the disorder parameter σ.
Principal characteristics of SFC type MHD generator
Energy Technology Data Exchange (ETDEWEB)
Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki
1988-02-01
This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator.
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
2006-09-01
Aerospace Applications, AIAA-Paper 96-2355, New Orleans, 1996 2. V.A.Bityurin, A.N.Bocharov, J.Lineberry, MHD Aerospace Applications, Invited Lecture ...Paper 2003- 4303, Orlando, FL 8. V.A.Bityurin, Prospective of MHD Interaction in Hypersonic and Propulsion Technologies, In: von Karman Series : Lectures ...Efforts in MHD AeoSpace Applications, In: von Karman Series : Lectures , Introduction of Magneto-Fluid Dynamics for AeroSpace Applications, von Karman
Effects of finite laser pulse width on two-dimensional electronic spectroscopy
Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang
2017-01-01
We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.
Further two-dimensional code development for Stirling space engine components
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
Elastic Wave Scattering by Two-Dimensional Periodical Array of Cylinders
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism, we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.
Quantum magnetotransport in a modulated two-dimensional electron gas
Park, Tae-ik; Gumbs, Godfrey
1997-09-01
Quantum mechanical calculations of the magnetotransport coefficients of a modulated two-dimensional electron gas in a perpendicular magnetic field are presented using the Kubo method. The model modulation potential used is such that the effect of the steepness of the potential and its strength on the band part of the longitudinal resistivity ρxxand the Hall resistivity ρxycould be studied. In the extreme limit of a very steep potential, a two-dimensional square array of antidots is simulated. Impurity scattering is included in the self-consistent t-matrix approximation. The results show that for a strong lateral superlattice potential, ρxyis quenched in the low magnetic field regime and as the magnetic field increases there is a large negative Hall resistivity. The intensity of this negative peak is suppressed as the strength of the modulation potential is decreased. It is also shown that the height of the negative peak depends on the steepness of the potential. The longitudinal resistivity also has some interesting features. There are Aharonov-Bohm oscillations and a double peak structure which depends on both the strength of the modulation potential as well as its slope. The numerical results show that the position and intensity of the lower peak is not very sensitive to a change in the strength of the lattice potential or its steepness. However, the upper peak is greatly reduced when the lattice potential is diminished in strength. The double peak feature in ρxxand the negative peak and quenching of the Hall effect at low magnetic fields have been observed experimentally for antidots in both the quasiclassical and quantum regimes.
Relativistic MHD and excision: formulation and initial tests
Energy Technology Data Exchange (ETDEWEB)
Neilsen, David; Hirschmann, Eric W; Millward, R Steven [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)
2006-08-21
A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids and elliptic and hyperbolic divergence cleaning.
Relativistic MHD and black hole excision: Formulation and initial tests
Neilsen, D; Millward, R S; Hirschmann, Eric W; Neilsen, David
2006-01-01
A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.
Simulation of laser bistatic two-dimensional scattering imaging about lambertian cylinders
Gong, Yanjun; Li, Lang; Wang, Mingjun; Gong, Lei
2016-10-01
This paper deals with the simulation of laser bi-static scattering imaging about lambertian cylinders. Two-dimensional imaging of a target can reflect the shape of the target and material property on the surface of the target. Two-dimensional imaging has important significance for target recognition. Simulations results of laser bi-static two-dimensional scattering imaging of some cylinders are given. The laser bi-static scattering imaging of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. The scattering direction of laser bi-static scattering imaging is arbitrary direction. The scattering direction of backward two-dimensional scattering imaging is at opposite direction of the incident direction of laser. The backward two-dimensional scattering imaging is special case of bi-static two dimensional scattering imaging. The scattering intensity of a micro-element on the target could be obtained based on the laser radar equation. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the surface of cylinder. According to the incident direction of incident laser and normal of infinitesimal area, the local incidence angle can be calculated. According to the scattering direction and normal of infinitesimal area, the local angle of scattering can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get mathematical model of bi-static laser two dimensional scattering imaging about lambert cylinder. From the results given, one can see that the simulation results of laser bi-static scattering about lambert cylinder is correct.
Extending models for two-dimensional constraints
DEFF Research Database (Denmark)
Forchhammer, Søren
2009-01-01
Random fields in two dimensions may be specified on 2 times 2 elements such that the probabilities of finite configurations and the entropy may be calculated explicitly. The Pickard random field is one example where probability of a new (non-boundary) element is conditioned on three previous...... elements. To extend the concept we consider extending such a field such that a vector or block of elements is conditioned on a larger set of previous elements. Given a stationary model defined on 2 times 2 elements, iterative scaling is used to define the extended model. The extended model may be used...
Grammatical complexity for two-dimensional maps
Energy Technology Data Exchange (ETDEWEB)
Hagiwara, Ryouichi; Shudo, Akira [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397 (Japan)
2004-11-05
We calculate the grammatical complexity of the symbol sequences generated from the Henon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.
Two-Dimensional Distributed Velocity Collision Avoidance
2014-02-11
trigonometry . For convex polygon agents, the tangents are found by iterating over each point, calculating the z-component of the cross product between a...the modifications to the basic VO to favor the source bot’s current velocity (i.e., encourage the bot to change course as little as possible). To...the source agent on a collision course . However, if ignore factors are used, then A2 is more important (i.e., has a lower ignore factor), and so the
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Grammatical complexity for two-dimensional maps
Hagiwara, Ryouichi; Shudo, Akira
2004-11-01
We calculate the grammatical complexity of the symbol sequences generated from the Hénon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.
Coding for Two Dimensional Constrained Fields
DEFF Research Database (Denmark)
Laursen, Torben Vaarbye
2006-01-01
for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower....... The important concept of entropy is introduced. In general, the entropy of a constrained field is not readily computable, but we give a series of upper and lower bounds based on one dimensional techniques. We discuss the use of a Pickard probability model for constrained fields. The novelty lies in using...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....
Stability and electronic properties of two-dimensional indium iodide
Wang, Jizhang; Dong, Baojuan; Guo, Huaihong; Yang, Teng; Zhu, Zhen; Hu, Gan; Saito, Riichiro; Zhang, Zhidong
2017-01-01
Based on ab initio density functional calculations, we studied the stability and electronic properties of two-dimensional indium iodide (InI). The calculated results show that monolayer and few-layer InI can be as stable as its bulk counterpart. The stability of the monolayer structure is further supported by examining the electronic and dynamic stability. The interlayer interaction is found to be fairly weak (˜160 meV/atom) and mechanical exfoliation to obtain monolayer and few-layer structures will be applicable. A direct band gap of 1.88 eV of the bulk structure is obtained from the hybrid functional method, and is comparable to the experimental one (˜2.00 eV). The electronic structure can be tuned by layer stacking and external strain. The size of the gap is a linear function of an inverse number of layers, suggesting that we can design few-layer structures for optoelectronic applications in the visible optical range. In-plane tensile or hydrostatic compressive stress is found to be useful not only in varying the gap size to cover the whole visible optical range, but also in inducing a semiconductor-metal transition with an experimentally accessible stress. The present result strongly supports the strategy of broadening the scope of group-V semiconductors by looking for isoelectronic III-VII atomic-layered materials.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Collisionless magnetic reconnection under anisotropic MHD approximation
Hirabayashi, Kota; Hoshino, Masahiro
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
Comment on "Thermal propagation in two-dimensional Josephson junction arrays"
De Leo, Cinzia
2009-01-01
In a recent paper, Filatrella et al. [Phys. Rev. B 75, 54510 (2007)] report results of numerical calculations of energy barriers for flux quanta propagation in two-dimensional arrays of Josephson junctions with finite self and mutual inductances. To avoid complex numerical calculations, they use an approximated inductance model to address the effects of the mutual couplings. Using a full inductance matrix model, we show that this approximated model cannot be used to calculate the energy barri...
Institute of Scientific and Technical Information of China (English)
何春山; 李志兵
2003-01-01
The correlation function of a two-dimensionalIsing model is calculated by the corner transfer matrix renormalization group method.We obtain the critical exponent η= 0.2496 with few computer resources.
Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders
DEFF Research Database (Denmark)
Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden
2010-01-01
for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...
Bounds on the Capacity of Weakly constrained two-dimensional Codes
DEFF Research Database (Denmark)
Forchhammer, Søren
2002-01-01
Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...
Numerical Studies of Collective Phenomena in Two-Dimensional Electron and Cold Atom Systems
Energy Technology Data Exchange (ETDEWEB)
Rezayi, Edward
2013-07-25
Numerical calculations were carried out to investigate a number of outstanding questions in both two-dimensional electron and cold atom systems. These projects aimed to increase our understanding of the properties of and prospects for non-Abelian states in quantum Hall matter.
Free energy and structure of dislocation cores in two-dimensional crystals
Bladon, P.B.; Frenkel, D.
2004-01-01
The nature of the melting transition in two dimensions is critically dependent on the core energy of dislocations. In this paper, we report calculations of the core free energy and the core size of dislocations in two-dimensional solids of systems interacting via square well, hard disk, and r-12
Dipolar fermions in a two-dimensional lattice at non-zero temperature
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.; Bruun, Georg
2012-01-01
We examine density-ordered and superfluid phases of fermionic dipoles in a two-dimensional square lattice at nonzero temperature. The critical temperature of the density-ordered phases is determined and is shown to be proportional to the coupling strength for strong coupling. We calculate...
Simple Two-Dimensional Corrections for One-Dimensional Pulse Tube Models
Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.
2004-01-01
One-dimensional oscillating flow models are very useful for designing pulse tubes. They are simple to use, not computationally intensive, and the physical relationship between temperature, pressure and mass flow are easy to understand when used in conjunction with phasor diagrams. They do not possess, however, the ability to directly calculate thermal and momentum diffusion in the direction transverse to the oscillating flow. To account for transverse effects, lumped parameter corrections, which are obtained though experiment, must be used. Or two-dimensional solutions of the differential fluid equations must be obtained. A linear two-dimensional solution to the fluid equations has been obtained. The solution provides lumped parameter corrections for one-dimensional models. The model accounts for heat transfer and shear flow between the gas and the tube. The complex Nusselt number and complex shear wall are useful in describing these corrections, with phase relations and amplitudes scaled with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional solution of the oscillating temperature and velocity and a one-dimensional solution for the same shows a scales linearly with Va for Va less than 30. In this region alpha less than 0.5, that is, the enthalpy flow calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. For Va greater than 250, alpha = 0.8, showing that diffusion is still important even when it is confined to a thing layer near the tube wall.
Liang, Chungwen; Jansen, Thomas L. C.
2012-01-01
In this paper, we develop and test a new approximate propagation scheme for calculating two-dimensional infrared and visible spectra. The new scheme scales one order more efficiently with the system size than the existing schemes. A Trotter type of approximation is used for the matrix exponent that
Signatures of beta-sheet secondary structures in linear and two-dimensional infrared spectroscopy
Cheatum, CM; Tokmakoff, A; Knoester, J
2004-01-01
Using idealized models for parallel and antiparallel beta sheets, we calculate the linear and two-dimensional infrared spectra of the amide I vibration as a function of size and secondary structure. The model assumes transition-dipole coupling between the amide I oscillators in the sheet and account
Quantum computing via defect states in two-dimensional antidot lattices.
Flindt, Christian; Mortensen, Niels Asger; Jauho, Antti-Pekka
2005-12-01
We propose a new structure suitable for quantum computing in a solid-state environment: designed defect states in antidot lattices superimposed on a two-dimensional electron gas at a semiconductor heterostructure. State manipulation can be obtained with gate control. Model calculations indicate that it is feasible to fabricate structures whose energy level structure is robust against thermal dephasing.
Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.
1983-07-01
A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method. 11 figs.
A two-dimensional global simulation study of inductive-dynamic magnetosphere-ionosphere coupling
Tu, Jiannan; Song, Paul
2016-12-01
We present the numerical methods and results of a global two-dimensional multifluid-collisional-Hall magnetohydrodynamic (MHD) simulation model of the ionosphere-thermosphere system, an extension of our one-dimensional three-fluid MHD model. The model solves, self-consistently, Maxwell's equations, continuity, momentum, and energy equations for multiple ion and neutral species incorporating photochemistry, collisions among the electron, ion and neutral species, and various heating sources in the energy equations. The inductive-dynamic approach (solving self-consistently Faraday's law and retaining inertia terms in the plasma momentum equations) used in the model retains all possible MHD waves, thus providing faithful physical explanation (not merely description) of the magnetosphere-ionosphere/thermosphere (M-IT) coupling. In the present study, we simulate the dawn-dusk cross-polar cap dynamic responses of the ionosphere to imposed magnetospheric convection. It is shown that the convection velocity at the top boundary launches velocity, magnetic, and electric perturbations propagating with the Alfvén speed toward the bottom of the ionosphere. Within the system, the waves experience reflection, penetration, and rereflection because of the inhomogeneity of the plasma conditions. The reflection of the Alfvén waves may cause overshoot (stronger than the imposed magnetospheric convection) of the plasma velocity in some regions. The simulation demonstrates dynamic propagation of the field-aligned currents and ionospheric electric field carried by the Alfvén waves, as well as formation of closure horizontal currents (Pedersen currents in the E region), indicating that in the dynamic stage the M-I coupling is via the Alfvén waves instead of field-aligned currents or electric field mapping as described in convectional M-I coupling models.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Magnetoconductivity of two-dimensional electron systems
Kuehnel, Frank Oliver
The conductivity sigmaxx(o) of a low-density nondegenerate 2D electron gas is investigated under conditions where hoc ≫ kBT ≫ hgamma (oc is the cyclotron frequency and hgamma is the disorder-induced width of the Landau level). Such conditions have been met for electrons on helium surface, and can also be achieved in ultra high quality heterostructures. Because of the random potential of defects, single-electron states of the lowest Landau level form a band of a width hgamma ≪ hoc. Almost all of these states are localized. Therefore, for ho c ≫ kBT ≫ hgamma, the static single-electron conductivity sigma xx(0) may be expected to be equal to zero. Since for o ≫ gamma the conductivity should decay, on the whole sigma xx(o) has a peak at a finite frequency. From scaling arguments, we show that in the single-electron approximation sigma xx(o) ∝ omu for o → 0, with the exponent mu in the range from 0.21 to 0.22, whereas the frequency dependence of the cyclotron resonance absorption peak is non-critical. The far tails of the conductivity peaks are obtained using the method of optimal fluctuation and are shown to be Gaussian. In order to investigate the shape of the low frequency peak and cyclotron resonance absorption peak, we use the method of moments (MOM). In MOM, the low-frequency conductivity is restored from its 14 spectral moments, whereas the cyclotron resonance absorption is restored from the calculated 10 spectral moments using the continuous fraction expansion. In combination with the analytical asymptotics, both expansions converge rapidly with increasing number of included moments, and give numerically accurate results throughout the region of interest. The effect of electron-electron interaction (EEI) on the low frequency conductivity is also investigated. EEI makes the static conductivity finite. For a low-density system, the effect can be described using the notion of a fluctuational field Efl which drives an electron because of electron
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
Directory of Open Access Journals (Sweden)
Andreev V.I.
2016-01-01
Full Text Available The article discusses the use of a numerical method the calculation of finite cylinders into account the dependence of physical and mechanical properties of the material on temperature. If we have two-dimensional temperature field characteristics of the material depends on two coordinates. - r and z from which follows that the problem of thermoelasticity is also a two-dimensional. Using the numerical method allows to solve the problem for any state of the cylinder (plane stress or plane strain and consider arbitrary boundary conditions at its ends.
Statics of the two-dimensional mixed state in hollow, type I superconductors
Holguin, E.; Robin, D.; Rothen, F.; Rinderer, L.; Posada, E.
1982-07-01
A theoretical and experimental study of the statics of the two-dimensional mixed state in hollow, type I superconductors of pure tin has been made without considering thermal or other effects. In the experiments, this state could be moved into the interior of the sample by a magnetic field produced by a current flowing in a coaxial wire placed in the hole. This study shows that the current-voltage characteristics can present horizontal segments as well as discontinuities accompanying the appearance or disappearance of the superconducting, normal, or two-dimensional mixed state domains. Within the experimental error, the agreement between the calculated values and the experimental results is quite good.
On the equivalence between stochastic baker's maps and two-dimensional spin systems
Lindgren, K.
2010-05-01
We show that there is a class of stochastic bakers transformations that is equivalent to the class of equilibrium solutions of two-dimensional spin systems with finite interaction. The construction is such that the equilibrium distribution of the spin lattice is identical to the invariant measure in the corresponding bakers transformation. We illustrate the equivalence by deriving two stochastic bakers maps representing the Ising model at a temperature above and below the critical temperature, respectively. A calculation of the invariant measure and the free energy in the baker system is then shown to be in agreement with analytic results of the two-dimensional Ising model.
A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus
DeZeeuw, Darren L.; Nagy, Andrew F.; Gombosi, Tamas I.; Powell, Kenneth G.; Luhmann, Janet G.
1996-01-01
A new two-dimensional axisymmetric MHD model is used to study the interaction of the solar wind with Venus under conditions where the interplanetary field is approximately aligned with the solar wind velocity. This numerical model solves the MHD transport equations for density, velocity, pressure, and magnetic field on an adaptively refined, unstructured grid system. This use of an adaptive grid allows high spatial resolution in regions of large density/velocity gradients and yet can be run on a workstation. The actual grid sizes vary from about 0.06 R(sub v) near the bowshock to 2 R(sub v) in the unperturbed solar wind. The results of the calculations are compared with observed magnetic field values obtained from the magnetometer on the Pioneer Venus Orbiter, at a time when the angle between the solar wind velocity vector and the interplanetary magnetic field (IMF) was only 7.6 deg. Good qualitative agreement between the observed and calculated field behavior is found. The overall results suggest that the induced magnetotail disappears when the IMF is radial for an extended time period and implies that it weakens when the field rotated through a near-radial orientation.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Thorneywork, Alice L; Roth, Roland; Aarts, Dirk G A L; Dullens, Roel P A
2014-04-28
Two-dimensional hard disks are a fundamentally important many-body model system in classical statistical mechanics. Despite their significance, a comprehensive experimental data set for two-dimensional single component and binary hard disks is lacking. Here, we present a direct comparison between the full set of radial distribution functions and the contact values of a two-dimensional binary colloidal hard sphere model system and those calculated using fundamental measure theory. We find excellent quantitative agreement between our experimental data and theoretical predictions for both single component and binary hard disk systems. Our results provide a unique and fully quantitative mapping between experiments and theory, which is crucial in establishing the fundamental link between structure and dynamics in simple liquids and glass forming systems.
Phthalo-carbonitride: an ab initio prediction of a stable two-dimensional material
Tsetseris, Leonidas
2016-06-01
Using density-functional theory calculations, we identify a stable two-dimensional carbonitride polymorph which resembles the core of phthalocyanine molecules. This so-called phthalo-carbonitride is found to be the lowest-energy polymer made of tetracyanoethylene molecules. It is a two-dimensional metal in its pristine form. Functionalization of the phthalo-cores with copper or iron atoms retains the metallic character of the material, but also adds magnetization to the system. Based on these properties and the established use of phthalocyanine molecules in various applications, the growth of phthalo-carbonitride sheets can add another multi-functional building block to the research and technology of two-dimensional materials.
WAVE PROPAGATION IN TWO-DIMENSIONAL DISORDERED PIEZOELECTRIC PHONONIC CRYSTALS
Institute of Scientific and Technical Information of China (English)
Jinqiang Li; Fengming Li; Yuesheng Wang; Kikuo Kishimoto
2008-01-01
The wave propagation is studied in two-dimensional disordered piezoelectric phononie crystals using the finite-difference time-domain (FDTD) method. For different eases of disorder,the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder.In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.
Curved Two-Dimensional Electron Systems in Semiconductor Nanoscrolls
Peters, Karen; Mendach, Stefan; Hansen, Wolfgang
The perfect control of strain and layer thickness in epitaxial semiconductor bilayers is employed to fabricate semiconductor nanoscrolls with precisely adjusted scroll diameter ranging between a few nanometers and several tens of microns. Furthermore, semiconductor heteroepitaxy allows us to incorporate quantum objects such as quantum wells, quantum dots, or modulation doped low-dimensional carrier systems into the nanoscrolls. In this review, we summarize techniques that we have developed to fabricate semiconductor nanoscrolls with well-defined location, orientation, geometry, and winding number. We focus on magneto-transport studies of curved two-dimensional electron systems in such nanoscrolls. An externally applied magnetic field results in a strongly modulated normal-to-surface component leading to magnetic barriers, reflection of edge channels, and local spin currents. The observations are compared to finite-element calculations and discussed on the basis of simple models taking into account the influence of a locally modulated state density on the conductivity. In particular, it is shown that the observations in high magnetic fields can be well described considering the transport in edge channels according to the Landauer-Büttiker model if additional magnetic field induced channels aligned along magnetic barriers are accounted for.
Two-dimensional collective Hamiltonian for chiral and wobbling modes
Chen, Q B; Zhao, P W; Jolos, R V; Meng, J
2016-01-01
A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor ($\\gamma=-30^\\circ$) coupling to one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobb...
Two-dimensional collective Hamiltonian for chiral and wobbling modes
Chen, Q. B.; Zhang, S. Q.; Zhao, P. W.; Jolos, R. V.; Meng, J.
2016-10-01
A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor (γ =-30∘ ) coupling to one h11 /2 proton particle and one h11 /2 neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobbling motion have been presented in the 2DCH.
DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS
Institute of Scientific and Technical Information of China (English)
Qicheng Sun
2003-01-01
Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.
Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.
Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G
2015-10-27
Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhao, Jijun; Zhang, Shengbai
2017-03-01
Recent experimental synthesis of two-dimensional (2D) heterostructures opens a door to new opportunities in tailoring the electronic properties for novel 2D devices. Here, we show that a wide range of lateral 2D heterostructures could have a prominent advantage over the traditional three-dimensional (3D) heterostructures, because their band alignments are insensitive to the interfacial conditions. They should be at the Schottky-Mott limits for semiconductor-metal junctions and at the Anderson limits for semiconductor junctions, respectively. This fundamental difference from the 3D heterostructures is rooted in the fact that, in the asymptotic limit of large distance, the effect of the interfacial dipole vanishes for 2D systems. Due to the slow decay of the dipole field and the dependence on the vacuum thickness, however, studies based on first-principles calculations often failed to reach such a conclusion. Taking graphene/hexagonal-BN and MoS2/WS2 lateral heterostructures as the respective prototypes, we show that the converged junction width can be order of magnitude longer than that for 3D junctions. The present results provide vital guidance to high-quality transport devices wherever a lateral 2D heterostructure is involved.
Two dimensional simulation of high power laser-surface interaction
Energy Technology Data Exchange (ETDEWEB)
Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P. [Los Alamos National Lab., NM (United States); Busch, G.E. [KMS Fusion, Inc., Ann Arbor, MI (United States)
1998-08-01
For laser intensities in the range of 10{sup 8}--10{sup 9} W/cm{sup 2}, and pulse lengths of order 10 {micro}sec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing.
Two-dimensional model for circulating fluidized-bed reactors
Energy Technology Data Exchange (ETDEWEB)
Schoenfelder, H.; Kruse, M.; Werther, J. [Technical Univ. Hamburg-Harburg, Hamburg (Germany). Dept. of Chemical Engineering
1996-07-01
Circulating fluidized bed reactors are widely used for the combustion of coal in power stations as well as for the cracking of heavy oil in the petroleum industry. A two-dimensional reactor model for circulating fluidized beds (CFB) was studied based on the assumption that at every location within the riser, a descending dense phase and a rising lean phase coexist. Fluid mechanical variables may be calculated from one measured radial solids flux profile (upward and downward). The internal mass-transfer behavior is described on the basis of tracer gas experiments. The CFB reactor model was tested against data from ozone decomposition experiments in a CFB cold flow model (15.6-m height, 0.4-m ID) operated in the ranges 2.5--4.5 m/s and 9--45 kg/(m{sup 2}{center_dot}s) of superficial gas velocity and solids mass flux, respectively. Based on effective reaction rate constants determined from the ozone exit concentration, the model was used to predict the spatial reactant distribution within the reactor. Model predictions agreed well with measurements.
The random discrete action for two-dimensional spacetime
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Dionigi M T; Dowker, Fay; Schmitzer, Bernhard, E-mail: db1808@ic.ac.uk [Theoretical Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ (United Kingdom)
2011-05-21
A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, M{sup 2}. When a causally convex region of M{sup 2} is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.
Lattice Boltzmann Large Eddy Simulation Model of MHD
Flint, Christopher
2016-01-01
The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
Decoherence in a Landau Quantized Two Dimensional Electron Gas
Directory of Open Access Journals (Sweden)
McGill Stephen A.
2013-03-01
Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A two-dimensional polymer prepared by organic synthesis.
Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji
2012-02-05
Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
S C Mishra; Roshan Lal; Veena Mishra
2003-10-01
Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.
Extreme paths in oriented two-dimensional percolation
Andjel, E. D.; Gray, L. F.
2016-01-01
International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT
Two-Dimensional Weak Pseudomanifolds on Eight Vertices
Indian Academy of Sciences (India)
Basudeb Datta; Nandini Nilakantan
2002-05-01
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.
Modeling of the optical properties of a two-dimensional system of small conductive particles.
Kondikov, A. A.; Tonkaev, P. A.; Chaldyshev, V. V.; Vartanyan, T. A.
2016-08-01
Software was developed for quick numerical calculations and graphic display of the absorption, reflection and transmittance spectra of two-dimensional systems of small conductive particles. It allowed us to make instant comparison of calculation results and experimental data. A lattice model was used to simulate nearly distributed particles, and the coherent-potential approximation was applied to obtain a solution to the problem of interacting particles. The Delphi programming environment was used.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Schnack, Dalton D.
In this lecture we will examine some simple examples of MHD equilibrium configurations. These will all be in cylindrical geometry. They form the basis for more complicated equilibrium states in toroidal geometry.
Passive stabilization in a linear MHD stability code
Energy Technology Data Exchange (ETDEWEB)
Todd, A.M.M.
1980-03-01
Utilizing a Galerkin procedure to calculate the vacuum contribution to the ideal MHD Lagrangian, the implementation of realistic boundary conditions are described in a linear stability code. The procedure permits calculation of the effect of arbitrary conducting structure on ideal MHD instabilities, as opposed to the prior use of an encircling shell. The passive stabilization of conducting coils on the tokamak vertical instability is calculated within the PEST code and gives excellent agreement with 2-D time dependent simulations of PDX.
Band Gap Computation of Two Dimensional Photonic Crystal for High Index Contrast Grating Application
Directory of Open Access Journals (Sweden)
Gagandeep Kaur
2014-05-01
Full Text Available Two Dimensional Photonic Crystal (PHc is convenient type of PHc, It refers to the fact that the dielectric is periodic in Two directions. The study of photonic structure by a simulation method is extremely momentous. At optical frequencies the optical density contained by two dimensional PHc changes periodically. They have the property to strong effect the propagation of light waves at these optical frequencies. A typical linearization method which solves the common nonlinear Eigen values difficulties has been used to achieve structures of the photonic band. There are two method plane wave expansion method (PWE and Finite Difference Time Domain method (FDTD. These Methods are most widely used for band gap calculation of PHc’s. FDTD Method has more smoothness and directness and can be explored effortlessly for simulation of the field circulation inside the photonic structure than PWE method so we have used FDTD Method for Two dimensional PHc’s calculation. In simulation of Two Dimensional band structures, silicon material has 0.543nm lattice constant and 1.46refractive index.
Sonnerup, Bengt U. Ö.; Denton, Richard E.; Hasegawa, Hiroshi; Swisdak, M.
2013-05-01
We re-examine the basic premises of a single-spacecraft data analysis method, developed by Sonnerup and Hasegawa (2005), for determining the axis orientation and proper frame velocity of quasi two-dimensional, quasi-steady structures of magnetic field and plasma. The method, which is based on Faraday's law, makes use of magnetic and electric field data measured by a single spacecraft traversing the structure, although in many circumstances the convection electric field, - v × B, can serve as a proxy for E. It has been used with success for flux ropes observed at the magnetopause but has usually failed to provide acceptable results when applied to real space data from reconnection events as well as to virtual data from numerical MHD simulations of such events. In the present paper, the reasons for these shortcomings are identified, analyzed, and discussed in detail. Certain basic properties of the method are presented in the form of five theorems, the last of which makes use of singular value decomposition to treat the special case where the magnetic variance matrix is non-invertible. These theorems are illustrated using data from analytical models of flux ropes and also from MHD simulations as well as a 2-D kinetic simulation of reconnection. The results make clear that the method requires the presence of a significant, non-removable electric field distribution in the plane transverse to the invariant direction and that it is sensitive to deviations from strict two-dimensionality and strict time stationarity.
Diamagnetic phase transitions in two-dimensional conductors
Energy Technology Data Exchange (ETDEWEB)
Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)
2014-11-15
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.
Two-dimensional superconductors with atomic-scale thickness
Uchihashi, Takashi
2017-01-01
Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Singular analysis of two-dimensional bifurcation system
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Vortices in the Two-Dimensional Simple Exclusion Process
Bodineau, T.; Derrida, B.; Lebowitz, Joel L.
2008-06-01
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
Self-assembly of two-dimensional DNA crystals
Institute of Scientific and Technical Information of China (English)
SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun
2004-01-01
Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Yang, Ren-jie; Yang, Yan-rong; Dong, Gui-mei; Du, Yan-hong; Shan, Hui-yong; Zhang, Wei-yu
2014-08-01
Based on Euclidian distances between synchronous two-dimensional infrared correlation spectra, in terms of the average Euclidian distances between unknown samples and "extreme samples", and average intra- and inter-Euclidian distances of samples in the calibration set, a new method for the discrimination of adulterated milk was proposed. Sixteen pure milk samples were collected and 16 adulterated milk samples with urea (0.01-0.3 g x L(-1)), and 16 adulterated milk samples with melamine (0.01-0.3 g x L(-1)) samples were prepared, respectively. The IR absorption spectra of all samples were measured at room temperature. The synchronous two-dimensional correlation spectra were generated from concentration-dependent spectral variation of adulterant in milk. The Euclidian distances were calculated between synchronous two-dimensional infrared correlation spectra of all samples. Then, the classification models were built respectively for adulterated milk with urea, and adiulterated milk with melamine. The "extreme samples", average intra- and inter-Euclidian distances were determined. Finally, the unknown samples in prediction set were predicted using constructed models in terms of classification rules of adulterated milk. The classification accuracy rates for pure milk and adulterated milk were 100%. The effectiveness of the proposed method was verified. The results obtained in this study revealed that synchronous two-dimensional infrared correlation spectra in combination with Euclidian distance has a feasible potential to discriminate adulterated milk and pure milk.
Laser bistatic two-dimensional scattering imaging simulation of lambert cone
Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei
2015-11-01
This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.
Estimating the hydraulic conductivity of two-dimensional fracture networks
Leung, C. T.; Zimmerman, R. W.
2010-12-01
Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.
Scaling dimensions of manifestly generally covariant operators in two-dimensional quantum gravity
Nishimura, J; Tsuchiya, A; Jun Nishimura; Shinya Tamura; Asato Tsuchiya
1994-01-01
Using (2+$\\epsilon$)-dimensional quantum gravity recently formulated by Kawai, Kitazawa and Ninomiya, we calculate the scaling dimensions of manifestly generally covariant operators in two-dimensional quantum gravity coupled to $(p,q)$ minimal conformal matter. In the spectrum appear all the scaling dimensions of the scaling operators in the matrix model except the boundary operators, while there are also many others which have no corresponding scaling dimensions in the matrix model.
EMC/FDTD/MD simulation of carrier transport and electrodynamics in two-dimensional electron systems
Sule, N.; Willis, K. J.; Hagness, S. C.; Knezevic, I.
2014-01-01
We present the implementation and application of a multiphysics simulation technique to carrier dynamics under electromagnetic excitation in supported two-dimensional electronic systems. The technique combines ensemble Monte Carlo (EMC) for carrier transport with finite-difference time-domain (FDTD) for electrodynamics and molecular dynamics (MD) for short-range Coulomb interactions among particles. We demonstrate the use of this EMC/FDTD/MD technique by calculating the room-temperature dc an...
Interaction of a Surface Acoustic Wave with a Two-dimensional Electron Gas
Institute of Scientific and Technical Information of China (English)
YANG Shi-Jie; ZHAO Hu; YU Yue
2005-01-01
When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-08-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
Moment-based method for computing the two-dimensional discrete Hartley transform
Dong, Zhifang; Wu, Jiasong; Shu, Huazhong
2009-10-01
In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.
TESHIMA, Koji; NAKATSUJI, Hiroyuki
1987-01-01
Flowfields resulted from interaction of two equivalent freejets issued from two parallel two-dimensional sonic nozzles at various nozzle distances and at various values of the stagnation to ambient pressure ratio are investigated numerically and by visualization. A strong shear flow region appears between the two jets, which is observed by visualization, is simulated well by the present calculation. Agreements of the parameters representing the whole structure of the flowfield, such as the lo...
STABILITY OF SYSTEM OF TWO-DIMENSIONAL NON-HYDROSTATIC REVOLVING FLUIDS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Applying the theory of stratification, it is proved that the system of the two-dimensional non-hydrostatic revolving fluids is unstable in the two-order continuous function class. The construction of solution space is given and the solution approach is offered. The sufficient and necessary conditions of the existence of formal solutions are expressed for some typical initial and boundary value problems and the calculating formulae to formal solutions are presented in detail.
Energy Spectrum of Helium Confined to a Two-Dimensional Space
Institute of Scientific and Technical Information of China (English)
XIEWen-Fang
2005-01-01
Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional helium in a magnetic field. The results show that the ground and low-excited states of helium in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.
Third order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation system
Lukácová-Medvid'ová, Maria; Warnecke, Gerald; Zahaykah, Yousef
2003-01-01
The subject of the paper is the derivation and analysis of third order finite volume evolution Galerkin schemes for the two-dimensional wave equation system. To achieve this the first order approximate evolution operator is considered. A recovery stage is carried out at each level to generate a piecewise polynomial approximation from the piecewise constants, to feed into the calculation of the fluxes. We estimate the truncation error and give numerical examples to demonstrate the higher order...
Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model.
Yamase, Hiroyuki; Eberlein, Andreas; Metzner, Walter
2016-03-04
We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Néel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Scaling and universality in the two-dimensional Ising model with a magnetic field.
Mangazeev, Vladimir V; Dudalev, Michael Yu; Bazhanov, Vladimir V; Batchelor, Murray T
2010-06-01
The scaling function of the two-dimensional Ising model on the square and triangular lattices is obtained numerically via Baxter's variational corner transfer-matrix approach. The use of Aharony-Fisher nonlinear scaling variables allowed us to perform calculations sufficiently away from the critical point and to confirm all predictions of the scaling and universality hypotheses. Our results are in excellent agreement with quantum field theory calculations of Fonseca and Zamolodchikov as well as with many previously known exact and numerical calculations, including susceptibility results by Barouch, McCoy, Tracy, and Wu.
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Two-Dimensional Electronic Spectroscopy of a Model Dimer System
Directory of Open Access Journals (Sweden)
Prokhorenko V.I.
2013-03-01
Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem
Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards
Fel, Leonid G.
2002-05-01
The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).
Specification of a Two-Dimensional Test Case
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....
Operator splitting for two-dimensional incompressible fluid equations
Holden, Helge; Karper, Trygve K
2011-01-01
We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.
Chaotic dynamics for two-dimensional tent maps
Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique
2015-02-01
For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...
Spin-orbit torques in two-dimensional Rashba ferromagnets
Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.
2015-01-01
Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent
Numerical blowup in two-dimensional Boussinesq equations
Yin, Zhaohua
2009-01-01
In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.
Exact two-dimensional superconformal R symmetry and c extremization.
Benini, Francesco; Bobev, Nikolay
2013-02-08
We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Thermodynamics of Two-Dimensional Black-Holes
Nappi, Chiara R.; Pasquinucci, Andrea
1992-01-01
We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the
Dynamical phase transitions in the two-dimensional ANNNI model
Energy Technology Data Exchange (ETDEWEB)
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Two-dimensional static black holes with pointlike sources
Melis, M
2004-01-01
We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r
Two-Dimensional Chirality in Three-Dimensional Chemistry.
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation
Indian Academy of Sciences (India)
N Sabu
2003-08-01
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
Two Dimensional F(R) Horava-Lifshitz Gravity
Kluson, J
2016-01-01
We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.
Localization of Tight Closure in Two-Dimensional Rings
Indian Academy of Sciences (India)
Kamran Divaani-Aazar; Massoud Tousi
2005-02-01
It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.
Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm
Directory of Open Access Journals (Sweden)
Bart Preneel
2005-07-01
Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.
New directions in science and technology: two-dimensional crystals
Energy Technology Data Exchange (ETDEWEB)
Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2011-08-15
Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.
Boundary-value problems for two-dimensional canonical systems
Hassi, Seppo; De Snoo, H; Winkler, Henrik
2000-01-01
The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess
SAR Processing Based On Two-Dimensional Transfer Function
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Confined two-dimensional fermions at finite density
De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M
1995-01-01
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.
Imperfect two-dimensional topological insulator field-effect transistors
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Miniature sensor for two-dimensional magnetic field distributions
Fluitman, J.H.J.; Krabbe, H.W.
1972-01-01
Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Spontaneous emission in two-dimensional photonic crystal microcavities
DEFF Research Database (Denmark)
Søndergaard, Thomas
2000-01-01
The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
Phase conjugated Andreev backscattering in two-dimensional ballistic cavities
Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.
1997-01-01
We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects
Two-dimensional manifold with point-like defects
Gani, Vakhid A; Rubin, Sergei G
2014-01-01
We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.
Instability of two-dimensional heterotic stringy black holes
Azreg-Ainou, M
1999-01-01
We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.
Institute of Scientific and Technical Information of China (English)
ZHANG Guo-yan; PENG Yan; ZHAO Ling-zhi; LI Ran; SHA Ci-wen
2007-01-01
A new method of recovering maritime oil-spill based on electromagnetic force, the so-called MHD oil-spill recovery method was proposed in the IEECAS. The operating process of MHD channel was described in this article. Numerical study was carried out using a two-dimensional water-air two-phase model and the VOF method. The agreement between the numerical and the experimental results was reached.
Growth and electronic properties of two-dimensional systems on (110) oriented GaAs
Energy Technology Data Exchange (ETDEWEB)
Fischer, F.
2005-07-01
As the only non-polar plane the (110) surface has a unique role in GaAs. Together with Silicon as a dopant it is an important substrate orientation for the growth of n-type or p-type heterostructures. As a consequence, this thesis will concentrate on growth and research on that surface. In the course of this work we were able to realize two-dimensional electron systems with the highest mobilities reported so far on this orientation. Therefore, we review the necessary growth conditions and the accompanying molecular process. The two-dimensional electron systems allowed the study of a new, intriguing transport anisotropy not explained by current theory. Moreover, we were the first growing a two-dimensional hole gas on (110) GaAs with Si as dopant. For this purpose we invented a new growth modulation technique necessary to retrieve high mobility systems. In addition, we discovered and studied the metal-insulator transition in thin bulk p-type layers on (110) GaAs. Besides we investigated the activation process related to the conduction in the valence band and a parallelly conducting hopping band. The new two-dimensional hole gases revealed interesting physics. We studied the zero B-field spin splitting in these systems and compared it with the known theory. Furthermore, we investigated the anisotropy of the mobility. As opposed to the expectations we observed a strong persistent photoconductivity in our samples. Landau levels for two dimensional hole systems are non-linear and can show anticrossings. For the first time we were able to resolve anticrossings in a transport experiment and study the corresponding activation process. Finally, we compared these striking results with theoretical calculations. (orig.)
Activation of MHD reconnection on ideal timescales
Landi, S; Del Zanna, L; Tenerani, A; Pucci, F
2016-01-01
Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number $S$, up to $10^7$. Results confirm that when the critical aspect ratio of $S^{1/3}$ is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfv\\'enic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be ro...
Resonant interactions of perturbations in MHD flows
Energy Technology Data Exchange (ETDEWEB)
Sagalakov, A.M.; Shtern, V.N.
1977-01-17
The nonlinear theory of hydrodynamic stability differentiates three types of interactions: deformation of the initial velocity profile by Reynolds stress pulsations, multiplication of harmonics, and the resonant interaction of harmonics with dissimilar wave numbers and frequencies. This article analyzes an approach considering the first and third of these non-linear mechanisms, producing an acceptable approximation of the averaged characteristics of a developing pulsation movement, particularly the averaged turbulent velocity profile. The approach consists in analysis of triharmonic oscillations, the parameters of which satisfy the resonant relationships. A model of a triharmonic pulsation mode is studied which is applicable to MHD flows. It is shown in particular how a magnetic field transverse to the flow plane suppresses the resonant interaction of three-dimensional perturbations. This agrees with experimental studies on two-dimensional turbulence conducted earlier. 11 references, 3 figures.
Error compensation of IQ modulator using two-dimensional DFT
Energy Technology Data Exchange (ETDEWEB)
Ohshima, Takashi, E-mail: ohshima@spring8.or.jp [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Maesaka, Hirokazu [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsubara, Shinichi [Japan Synchrotron Radiation Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Otake, Yuji [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)
2016-06-01
It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.
An advanced implicit solver for MHD
Udrea, Bogdan
A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel
Fission-gas release at extended burnups: effect of two-dimensional heat transfer
Energy Technology Data Exchange (ETDEWEB)
Tayal, M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Yu, S.D. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada); Lau, J.H.K
2000-09-01
To better simulate the performance of high-burnup CANDU fuel, a two-dimensional model for heat transfer between the pellet and the sheath has been added to the computer code ELESTRES. The model covers four relative orientations of the pellet and the sheath and their impacts on heat transfer and fission-gas release. The predictions of the code were compared to a database of 27 experimental irradiations involving extended burnups and normal burnups. The calculated values of fission gas release matched the measurements to an average of 94%. Thus, the two-dimensional heat transfer model increases the versatility of the ELESTRES code to better simulate fuels at normal as well as at extended burnups. (author)
Critical wetting transitions in two-dimensional systems subject to long-ranged boundary fields
Drzewiński, A.; Maciołek, A.; Barasiński, A.; Dietrich, S.
2009-04-01
Using the quasiexact density-matrix renormalization-group method and ground-state analysis we study interface delocalization transitions in wide two-dimensional Ising strips subject to long-ranged boundary fields with opposite signs at the two surfaces. Based on this approach, our explicit calculations demonstrate that critical wetting transitions do exist for semi-infinite two-dimensional systems even if the corresponding effective interface potentials decay asymptotically for large ℓ as slow as ℓ-δ with δinterface position from the one-dimensional surface. This supersedes opposite claims by Kroll and Lipowsky [Phys. Rev. B 28, 5273 (1983)] and by Privman and Švrakić [Phys. Rev. B 37, 5974 (1988)] obtained within effective interface models. The corresponding wetting phase diagram is determined, including the cases δ=2 and δ=49 with the latter mimicking short-ranged surface fields. Our analysis highlights the limits of reliability of effective interface models.
De Finetti's dividend problem and impulse control for a two-dimensional insurance risk process
Czarna, Irmina
2009-01-01
Consider two insurance companies (or two branches of the same company) that have the same claims and they divide premia in some specified proportions. We model the occurrence of claims according to a Poisson process. The ruin is achieved if the corresponding two-dimensional risk process first leave the positive quadrant. We consider different kinds of linear barriers. We will consider two scenarios of controlled process. In first one when two-dimensional risk process hits the barrier the minimal amount of dividends is payed out to keep the risk process within the region bounded by the barrier. In the second scenario whenever process hits horizontal line, the risk process is reduced by paying dividend to some fixed point in the positive quadrant and waits there for the first claim to arrive. In both models we calculate discounted cumulative dividend payments until the ruin time.
Two dimensional tunable photonic crystal defect based drop filter at communication wavelength
D'souza, Nirmala Maria; Mathew, Vincent
2017-07-01
We propose a two dimensional photonic crystal (PhC) based drop filter, at communication wavelength with more than 90% transmission. The filtering is achieved by introducing two line defects and three point defects in a two dimensional triangular array of ferroelectric rods in air. Using the electro-optic property of the ferroelectric, about 32 nm tuning in the resonance wavelength is obtained. For the calculation of transmission, finite difference time domain (FDTD) simulations were performed. The operating frequency range is explored via the band structure which is obtained by the implementation of plane wave expansion (PWE) method. The influence of the radius of various rods on the filter wavelength as well as efficiency is also analyzed. The different possible configurations of this filter are also considered.
Spherical-shell boundaries for two-dimensional compressible convection in a star
Pratt, J; Goffrey, T; Geroux, C; Viallet, M; Folini, D; Constantino, T; Popov, M; Walder, R
2016-01-01
Context: We study the impact of two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from a one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star. Methods: We perform hydrodynamic implicit large-eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: We evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional s...
Critical wetting transitions in two-dimensional systems subject to long-ranged boundary fields.
Drzewiński, A; Maciołek, A; Barasiński, A; Dietrich, S
2009-04-01
Using the quasiexact density-matrix renormalization-group method and ground-state analysis we study interface delocalization transitions in wide two-dimensional Ising strips subject to long-ranged boundary fields with opposite signs at the two surfaces. Based on this approach, our explicit calculations demonstrate that critical wetting transitions do exist for semi-infinite two-dimensional systems even if the corresponding effective interface potentials decay asymptotically for large l as slow as l(-delta) with deltainterface position from the one-dimensional surface. This supersedes opposite claims by Kroll and Lipowsky [Phys. Rev. B 28, 5273 (1983)] and by Privman and Svrakić [Phys. Rev. B 37, 5974 (1988)] obtained within effective interface models. The corresponding wetting phase diagram is determined, including the cases delta=2 and delta=49 with the latter mimicking short-ranged surface fields. Our analysis highlights the limits of reliability of effective interface models.
Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems
Cheng, Yingchun
2013-03-05
Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number of valence electrons is smaller or equal to that of Mo. Doping of atoms from the VIIB to IIB groups becomes energetically less and less favorable. Magnetism is observed for Mn, Fe, Co, Zn, Cd, and Hg doping, while for the other dopants from these groups it is suppressed by Jahn-Teller distortions. Analysis of the binding energies and magnetic properties indicates that (Mo,X)S2 (X=Mn, Fe, Co, and Zn) are promising systems to explore two-dimensional diluted magnetic semiconductors.
Terahertz magneto-optical spectroscopy of a two-dimensional hole gas
Energy Technology Data Exchange (ETDEWEB)
Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pan, W.; Reno, J. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Ekenberg, U. [Semiconsultants, Brunnsgrnd 12, SE-18773 Täby (Sweden); Gvozdić, D. M. [School of Electrical Engineering, University of Belgrade, Belgrade 11120 (Serbia); Boubanga-Tombet, S. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai (Japan); Upadhya, P. C. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Electro-Optics Systems, Indian Space Research Organization, Bangalore 560058 (India)
2015-01-19
Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, in contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.
Electrical transport across metal/two-dimensional carbon junctions: Edge versus side contacts
Directory of Open Access Journals (Sweden)
Yihong Wu
2012-03-01
Full Text Available Metal/two-dimensional carbon junctions are characterized by using a nanoprobe in an ultrahigh vacuum environment. Significant differences were found in bias voltage (V dependence of differential conductance (dI/dV between edge- and side-contact; the former exhibits a clear linear relationship (i.e., dI/dV ∝ V, whereas the latter is characterized by a nonlinear dependence, dI/dV ∝ V3/2. Theoretical calculations confirm the experimental results, which are due to the robust two-dimensional nature of the carbon materials under study. Our work demonstrates the importance of contact geometry in graphene-based electronic devices.
Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional non-Abelian spin models.
Borisenko, Oleg; Chelnokov, Volodymyr; Cuteri, Francesca; Papa, Alessandro
2016-07-01
It is argued that two-dimensional U(N) spin models for any N undergo a Berezinskii-Kosterlitz-Thouless (BKT)-like phase transition, similarly to the famous XY model. This conclusion follows from the Berezinskii-like calculation of the two-point correlation function in U(N) models, approximate renormalization group analysis, and numerical investigations of the U(2) model. It is shown, via Monte Carlo simulations, that the universality class of the U(2) model coincides with that of the XY model. Moreover, preliminary numerical results point out that two-dimensional SU(N) spin models with the fundamental and adjoint terms and N>4 exhibit two phase transitions of BKT type, similarly to Z(N) vector models.
Anisotropic States of Two-Dimensional Electrons in High Magnetic Fields
Ettouhami, A. M.; Doiron, C. B.; Klironomos, F. D.; Côté, R.; Dorsey, Alan T.
2006-05-01
We study the collective states formed by two-dimensional electrons in Landau levels of index n≥2 near half filling. By numerically solving the self-consistent Hartree-Fock (HF) equations for a set of oblique two-dimensional lattices, we find that the stripe state is an anisotropic Wigner crystal (AWC), and determine its precise structure for varying values of the filling factor. Calculating the elastic energy, we find that the shear modulus of the AWC is small but finite (nonzero) within the HF approximation. This implies, in particular, that the long-wavelength magnetophonon mode in the stripe state vanishes like q3/2 as in an ordinary Wigner crystal, and not like q5/2 as was found in previous studies where the energy of shear deformations was neglected.
Odkhuu, Dorj
2016-08-01
Exploring magnetism and magnetic anisotropy in otherwise nonmagnetic two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, using first-principles calculations we explore the possibility of reaching an atomic-scale perpendicular magnetic anisotropy by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice of a two-dimensional structure with transition metal adatoms. More specifically, we demonstrate perpendicular magnetic anisotropy energies up to an order of 100 meV per atom in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further propose a phenomenological model where a spin state transition that involves hybridization between molybdenum a1 and adatomic e' orbitals is a possible mechanism for magnetization reversal from an in-plane to perpendicular orientation.
Assessment of the Frank-Starling relationship by two-dimensional echocardiography.
Zipprich, D A; Owen, C H; Lewis, C W; Gall, S A; Davis, J W; Kisslo, J A; Glower, D D
1996-01-01
The Frank-Starling relationship between left ventricular stroke work and end-diastolic minor-axis cross-sectional area was evaluated as a load-insensitive measure of inotropic state by two-dimensional echocardiography in 10 conscious dogs. Stroke work was calculated as the product of systolic change in cross-sectional area and either (1) beat-to-beat mean arterial pressure or (2) initial systolic blood pressure. Both Frank-Starling relationships were highly linear during preload variation (mean r = 0.96), sensitive to the inotropic state (slope increase with calcium 51% +/- 43% and 62% +/- 53%, respectively), and insensitive to afterload (r < 0.4, slope or x intercept versus afterload). Thus the Frank-Starling relationships derived from two-dimensional echocardiographic images and peripheral arterial pressure may be a useful and practical means of assessing inotropic state with minimally invasive measurements.
The separation of whale myoglobins with two-dimensional electrophoresis.
Spicer, G S
1988-10-01
Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Topological defect motifs in two-dimensional Coulomb clusters
Radzvilavičius, A; 10.1088/0953-8984/23/38/385301
2012-01-01
The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...
The Persistence Problem in Two-Dimensional Fluid Turbulence
Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul
2010-01-01
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.
On Dirichlet eigenvectors for neutral two-dimensional Markov chains
Champagnat, Nicolas; Miclo, Laurent
2012-01-01
We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...
Analysis of one dimensional and two dimensional fuzzy controllers
Institute of Scientific and Technical Information of China (English)
Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao
2006-01-01
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
Transport behavior of water molecules through two-dimensional nanopores
Energy Technology Data Exchange (ETDEWEB)
Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Transport behavior of water molecules through two-dimensional nanopores
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
Topological states in two-dimensional hexagon lattice bilayers
Zhang, Ming-Ming; Xu, Lei; Zhang, Jun
2016-10-01
We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.
Two-dimensional magnetostriction under vector magnetic characteristic
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Phase separation under two-dimensional Poiseuille flow.
Kiwata, H
2001-05-01
The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.
Two-dimensional localized structures in harmonically forced oscillatory systems
Ma, Y.-P.; Knobloch, E.
2016-12-01
Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.
Enstrophy inertial range dynamics in generalized two-dimensional turbulence
Iwayama, Takahiro; Watanabe, Takeshi
2016-07-01
We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Tunneling in two-dimensional systems using a higher-order Herman-Kluk approximation.
Hochman, Gili; Kay, Kenneth G
2009-02-14
A principal weakness of the Herman-Kluk (HK) semiclassical approximation is its failure to provide a reliably accurate description of tunneling between different classically allowed regions. It was previously shown that semiclassical corrections significantly improve the HK treatment of tunneling for the particular case of the one-dimensional Eckart system. Calculations presented here demonstrate that the lowest-order correction also substantially improves the HK description of tunneling across barriers in two-dimensional systems. Numerical convergence issues either do not arise or are easily overcome, so that the calculations require only a moderate number of ordinary, real, classical trajectories.
Topological Invariants of Edge States for Periodic Two-Dimensional Models
Energy Technology Data Exchange (ETDEWEB)
Avila, Julio Cesar; Schulz-Baldes, Hermann, E-mail: schuba@mi.uni-erlangen.de; Villegas-Blas, Carlos [Instituto de Matematicas, UNAM (Mexico)
2013-06-15
Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z{sub 2} -invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.
Topological invariants of edge states for periodic two-dimensional models
Avila, Julio Cesar; Villegas-Blas, Carlos
2012-01-01
Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott-Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a Z_2-invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.
Configurational entropy of a set of dipoles placed on a two-dimensional lattice
Dammig Quiña, P. L.; Irurzun, I. M.; Mola, E. E.
2017-01-01
In the present work we calculate the configurational entropy of an arbitrary number of dipoles placed on a square lattice. We use a quasi-two-dimensional (Q2D) space to capture the main features determining the occupation statistics of this system. We show that our result is in agreement with both, lattice-gas predictions at low coverages and the exact value derived in the close-packed limit as well. Therefore our equation provides a substantial improvement to the most recent calculations based on semiempirical models and Monte Carlo simulations.
Institute of Scientific and Technical Information of China (English)
JI An-Chun; TIAN Guang-Shan
2006-01-01
In the present paper, we calculate the Gaussian correction to the critical value Jc⊥ caused by quantum spin fluctuation in a two-dimensional spatially anisotropic Heisenberg antiferromagnet with integer spin S. Previously, someauthors computed this quantity by the mean-field theory based on the Schwinger boson representation of spin operators.However, for S = 1, their result is much less than the one derived by numerical calculations. By taking the effect ofquantum spin fluctuation into consideration, we are able to produce a greatly improved result.
Two-dimensional model of elastically coupled molecular motors
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei
2012-01-01
A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.
Minor magnetization loops in two-dimensional dipolar Ising model
Energy Technology Data Exchange (ETDEWEB)
Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)
2011-05-15
The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.
Cryptography Using Multiple Two-Dimensional Chaotic Maps
Directory of Open Access Journals (Sweden)
Ibrahim S. I. Abuhaiba
2012-08-01
Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.
A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS
Institute of Scientific and Technical Information of China (English)
何吉欢
2001-01-01
A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Qing-Hai Wang
2009-08-01
Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.
Extraction of plant proteins for two-dimensional electrophoresis
Granier, Fabienne
1988-01-01
Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
J S Virdi; F Chand; C N Kumar; S C Mishra
2012-08-01
Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
Chronology Protection in Two-Dimensional Dilaton Gravity
Mishima, T; Mishima, Takashi; Nakamichi, Akika
1994-01-01
The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
SU(1,2) invariance in two-dimensional oscillator
Krivonos, Sergey
2016-01-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.
Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.
Multiple Potts models coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-07-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.
Colloidal interactions in two-dimensional nematic emulsions
Indian Academy of Sciences (India)
N M Silvestre; P Patrício; M M Telo Da Gama
2005-06-01
We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.
Thermal diode from two-dimensional asymmetrical Ising lattices.
Wang, Lei; Li, Baowen
2011-06-01
Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.
Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Spirals and Skyrmions in two dimensional oxide heterostructures.
Li, Xiaopeng; Liu, W Vincent; Balents, Leon
2014-02-14
We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Tricritical behavior in a two-dimensional field theory
Hamber, Herbert
1980-05-01
The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.
Quantum entanglement in a two-dimensional ion trap
Institute of Scientific and Technical Information of China (English)
王成志; 方卯发
2003-01-01
In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.
Coll Positioning systems: a two-dimensional approach
Ferrando, J J
2006-01-01
The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Interior design of a two-dimensional semiclassic black hole
Levanony, Dana; 10.1103/PhysRevD.80.084008
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.
Towards a two dimensional model of surface piezoelectricity
Monge Víllora, Oscar
2016-01-01
We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...
Velocity Statistics in the Two-Dimensional Granular Turbulence
Isobe, Masaharu
2003-01-01
We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...
Statistical study of approximations to two dimensional inviscid turbulence
Energy Technology Data Exchange (ETDEWEB)
Glaz, H.M.
1977-09-01
A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.
Static Structure of Two-Dimensional Granular Chain
Institute of Scientific and Technical Information of China (English)
WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan
2010-01-01
@@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.
Two-Dimensional Identification of Fetal Tooth Germs.
Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António
2017-03-01
To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology. Observational, descriptive, cross-sectional study. Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal. A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams. Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations. In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine. We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
a First Cryptosystem for Security of Two-Dimensional Data
Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen
In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.
Two-dimensional capillary electrophoresis using tangentially connected capillaries.
Sahlin, Eskil
2007-06-22
A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
A two-dimensional analytical model of petroleum vapor intrusion
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Experimental realization of two-dimensional boron sheets.
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.