Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu
1997-09-17
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Energy Technology Data Exchange (ETDEWEB)
Lo, C. C.; Lang, V.; George, R. E.; Morton, J. J. L.; Tyryshkin, A. M.; Lyon, A.; Bokor, J.; Schenkel, T.
2011-04-20
We have measured the electrically detected magnetic resonance of donor-doped silicon field-effect transistors in resonant X- (9.7 GHz) and W-band (94 GHz) microwave cavities. The two-dimensional electron gas (2DEG) resonance signal increases by two orders of magnitude from X- to W-band, while the donor resonance signals are enhanced by over one order of magnitude. Bolometric effects and spin-dependent scattering are inconsistent with the observations. We propose that polarization transfer from the donor to the 2DEG is the main mechanism giving rise to the spin resonance signals.
Energy Technology Data Exchange (ETDEWEB)
Khatib, Alfi [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Wilson, Erica G. [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Kim, Hye Kyong [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Lefeber, Alfons W.M. [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Erkelens, Cornelis [Division of NMR, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Choi, Young Hae [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)]. E-mail: y.choi@chem.leidenuniv.nl; Verpoorte, Robert [Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands)
2006-02-16
A number of ingredients in beer that directly or indirectly affect its quality require an unbiased wide-spectrum analytical method that allows for the determination of a wide array of compounds for its efficient control. {sup 1}H nuclear magnetic resonance (NMR) spectroscopy is a method that clearly meets this description as the broad range of compounds in beer is detectable. However, the resulting congestion of signals added to the low resolution of {sup 1}H NMR spectra makes the identification of individual components very difficult. Among two-dimensional (2D) NMR techniques that increase the resolution, J-resolved NMR spectra were successfully applied to the analysis of 2-butanol extracts of beer as overlapping signals in {sup 1}H NMR spectra were fully resolved by the additional axis of the coupling constant. Principal component analysis based on the projected J-resolved NMR spectra showed a clear separation between all of the six brands of pilsner beer evaluated in this study. The compounds responsible for the differentiation were identified by 2D NMR spectra including correlated spectroscopy and heteronuclear multiple bond correlation spectra together with J-resolved spectra. They were identified as nucleic acid derivatives (adenine, uridine and xanthine), amino acids (tyrosine and proline), organic acid (succinic and lactic acid), alcohol (tyrosol and isopropanol), cholines and carbohydrates.
Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey
2012-07-01
A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0lungs, tissue-air interfaces, surgical implants, etc., lead to fluctuations and losses of local homogeneity. A new method dubbed “long-lived-coherence correlation spectroscopy” (LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.
Students from an upper-division undergraduate spectroscopy class analyzed one- and two-dimensional 400 MHz NMR spectroscopic data from triclosan in CDCl3. Guided assignment of all proton and carbon signals was completed via 1D proton and carbon, nuclear Overhauser effect (nOe), distortionless enhanc...
One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy with a Diamond Quantum Sensor
Boss, J. M.; Chang, K.; Armijo, J.; Cujia, K.; Rosskopf, T.; Maze, J. R.; Degen, C. L.
2016-05-01
We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that, by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with up to five digits of precision. The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. Presented techniques will be useful for mapping nuclear coordinates in molecules deposited on diamond sensor chips, en route to imaging their atomic structure.
Wei, Feifei; Furihata, Kazuo; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru
2011-09-14
Coffee was characterized by proton and carbon nuclear magnetic resonance (NMR) spectroscopy. To identify the coffee components, a detailed and approximately 90% signal assignment was carried out using various two-dimensional NMR spectra and a spiking method, in which authentic compounds were added to the roasted coffee bean extract (RCBE) sample. A total of 24 coffee components, including 5 polysaccharide units, 3 stereoisomers of chlorogenic acids, and 2 stereoisomers of quinic acids, were identified with the NMR spectra of RCBE. On the basis of the signal assignment, state analyses were further launched for the metal ion-citrate complexes and caffeine-chlorogenate complexes. On the basis of the signal integration, the coffee components were successfully quantified. This NMR methodology yielded detailed information on RCBE using only a single observation and provides a systemic approach for the analysis of other complex mixtures.
Faux, D. A.; McDonald, P. J.; Howlett, N. C.
2017-03-01
Nuclear-magnetic-resonance (NMR) relaxation experimentation is an effective technique for nondestructively probing the dynamics of proton-bearing fluids in porous media. The frequency-dependent relaxation rate T1-1 can yield a wealth of information on the fluid dynamics within the pore provided data can be fit to a suitable spin diffusion model. A spin diffusion model yields the dipolar correlation function G (t ) describing the relative translational motion of pairs of 1H spins which then can be Fourier transformed to yield T1-1. G (t ) for spins confined to a quasi-two-dimensional (Q2D) pore of thickness h is determined using theoretical and Monte Carlo techniques. G (t ) shows a transition from three- to two-dimensional motion with the transition time proportional to h2. T1-1 is found to be independent of frequency over the range 0.01-100 MHz provided h ≳5 nm and increases with decreasing frequency and decreasing h for pores of thickness h <3 nm. T1-1 increases linearly with the bulk water diffusion correlation time τb allowing a simple and direct estimate of the bulk water diffusion coefficient from the high-frequency limit of T1-1 dispersion measurements in systems where the influence of paramagnetic impurities is negligible. Monte Carlo simulations of hydrated Q2D pores are executed for a range of surface-to-bulk desorption rates for a thin pore. G (t ) is found to decorrelate when spins move from the surface to the bulk, display three-dimensional properties at intermediate times, and finally show a bulk-mediated surface diffusion (Lévy) mechanism at longer times. The results may be used to interpret NMR relaxation rates in hydrated porous systems in which the paramagnetic impurity density is negligible.
Two-dimensional resonant magnetic soft X-ray scattering set-up for extreme sample environment.
Stanescu, Stefan; Mocuta, Cristian; Merlet, Frederic; Barbier, Antoine
2013-01-01
The newly built MagSAXS (magnetic small-angle X-ray scattering) set-up dedicated to the direct two-dimensional measurement of magnetic scattering using polarized synchrotron radiation in extreme sample environments is presented. Pure optical transport of the image is used to record the magnetic scattering with a two-dimensional CCD visible-light camera. The set-up is able to probe magnetic correlation lengths from the micrometer down to the nanometer scale. A detailed layout is presented along with preliminary results obtained at several beamlines at Synchrotron SOLEIL. The presented examples underline the wide range of possible applications spanning from correlation lengths determination to Fourier transform holography.
Orii, Makoto; Hirata, Kumiko; Tanimoto, Takashi; Shiono, Yasutsugu; Shimamura, Kunihiro; Yamano, Takashi; Ino, Yasushi; Yamaguchi, Tomoyuki; Kubo, Takashi; Tanaka, Atsushi; Imanishi, Toshio; Akasaka, Takashi
2015-06-01
The aim of this study was to determine whether two-dimensional speckle-tracking echocardiography can identify the myocardial damage detected by delayed enhancement (DE) magnetic resonance imaging via the differences in myocardial deformation in patients with extracardiac sarcoidosis who showed no structural and functional abnormalities in the heart. Forty-five patients with biopsy-proven extracardiac sarcoidosis were analyzed retrospectively. Patients with abnormal electrocardiographic and echocardiographic findings, including ventricular arrhythmias, heart block, regional wall motion abnormalities, valvular heart disease, and cardiomyopathy, were excluded. Ten age-matched healthy control subjects were recruited as a control group. Comprehensive echocardiography and DE magnetic resonance imaging were performed, and circumferential, longitudinal, and radial strain were consecutively assessed using two-dimensional speckle-tracking echocardiographic software in a 16-segment model of the left ventricle in accordance to the presence (DE+) or absence (DE-) of DE. Among the 45 patients, 36 segments in 13 patients showed DE. DE+ segments had lower peak circumferential strain than DE- and control segments (-14 ± 5% vs -28 ± 7% vs -30 ± 7%, P speckle-tracking echocardiography can identify the myocardial damage detected by DE magnetic resonance imaging in patients with extracardiac sarcoidosis. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Institute of Scientific and Technical Information of China (English)
Gang Guo; Yonggui Yang; Weiqun Yang
2011-01-01
The optimal velocity encoding of phase-contrast magnetic resonance angiography (PC MRA) in measuring cerebral blood flow volume (BFV) ranges from 60 to 80 cm/s. To verify the accuracy of two-dimensional (2D) PC MRA, the present study localized the region of interest at blood vessels of the neck using PC MRA based on three-dimensional time-of-flight sequences, and the velocity encodingwas set to 80 cm/s. Results of the measurements showed that the error rate was 7.0 ± 6.0%in the estimation of BFV in the internal carotid artery, the external carotid artery and the ipsilateralcommon carotid artery. There was no significant difference, and a significant correlation in BFV between internal carotid artery + external carotid artery and ipsilateral common carotid artery. Inaddition, the BFV of the common carotid artery was correlated with that of the ipsilateral internal carotid artery. The main error was attributed to the external carotid artery and its branches. Therefore,after selecting the appropriate scanning parameters and protocols, 2D PC MRA is more accuratein the determination of BFV in the carotid arteries.
Two-Dimensional Electron-Spin Resonance
Freed, Jack H.
2000-03-01
The extension of the concepts of 2D-NMR to ESR posed significant technological challenges, especially for liquids. ESR relaxation times are very short, as low as 10-15 ns. for T_2's. Spectral bandwidths are 100-250 MHz for nitroxide spin labels. Adequate coverage is obtained with 3-5 ns. π/2 (9-17 GHz) microwave pulses into a small low Q resonator. Dead-times are currently 25-30 ns. Additional requirements are rapid phase shifting for phase cycling, nsec. data acquisition, and fast repetition rates (10-100 kHz). 2D-ELDOR (electron-electron double resonance), which is a 3-pulse 2D-exchange experiment, takes about 30 minutes with just 0.5 nanomole spin-probe in solution (SNR 200). 2D-ELDOR is very useful in studies of molecular dynamics and local structure in complex fluids. For such media, the slow rotational dynamics requires a theory based upon the stochastic Liouville equation which enables quantitative interpretation of 2D-ELDOR experiments. In studies of spin-probes in a liquid crystal new insights could be obtained on the dynamic structure in different phases. One obtains, in addition to ordering and reorientation rates of the probes, details of the local dynamic cage: its orienting potential and (slow) relaxation rate. 2D-ELDOR overcomes the loss of resolution resulting from microscopically ordered but macroscopically disordered complex fluids. This is illustrated by studies of the dynamic structure of lipid membrane vesicles, and the effects of adding a peptide. The short dead times enable the observation of both the bulk lipids and the more immobilized lipids that coat (or are trapped) by the (aggregates of) peptides. Also, new developments of multi-quantum (2D) FT-ESR from nitroxide spin labels interacting by dipolar interactions show considerable promise in measuring distances of ca. 15-70A in macromolecules.
Institute of Scientific and Technical Information of China (English)
Chee Khoon LIEW; Kui Hian SIM; Rapaee ANNUAR; Tiong Kiam ONG; Sze Piaw CHIN; Tobias Seyfarth; Yean Yip FONG; Wei Ling CHAN; Choon Kiat ANG; Houng Bang LIEW
2006-01-01
Objectives To compare left ventricular ejection fraction (LVEF) determined from 64-row multi-detector computed tomography (64-row MDCT) with those determined from two dimensional echocardiography (2D echo) and cardiac magnetic resonance imaging (CMR). Methods Thirty-two patients with coronary artery disease underwent trans-thoracic 2D echo, CMR and contrast-enhanced 64-row MDCT for assessment of LVEF within 48 hours of each other. 64-row MDCT LVEF was derived using the Syngo Circulation software; CMR LVEF was by Area Length Ejection Fraction (ALEF) and Simpson method and 2D echo LVEF by Simpson method.Results The LVEF was 49.13 ± 15.91% by 2D echo, 50.72 ± 16.55% (ALEF method) and 47.65 ± 16.58%(Simpson method) by CMR and 50.00 ± 15.93% by 64-row MDCT. LVEF measurements by 64-row MDCT correlated well with LVEF measured with CMR using either the ALEF method (Pearson correlation r = 0.94, P ＜0.01) or Simpson method (r = 0.92, P＜0.01). It also correlated well with LVEF measured using 2D echo (r = 0.80, P ＜ 0.01). Conclusion LVEF measurements by 64-row MDCT correlated well with LVEF measured by CMR and 2D echo. The correlation between 64-row MDCT and CMR was better than the correlation between 2D echo with CMR. Standard data set from a 64-row MDCT coronary study can be reliably used to calculate the LVEF.
Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L
2015-11-03
Recent developments that have accelerated 2D NMR methods and improved quantitation have made these methods accessible analytical procedures, and the large signal dispersion allows for the analysis of complex samples. Few natural samples are as complex as wine, so the application to challenges in wine analysis look promising. The analysis of carbonyl compounds in wine, key oxidation products, is complicated by a multitude of kinetically reversible adducts, such as acetals and sulfonates, so that sample preparation steps can generate complex interferences. These challenges could be overcome if the compounds could be quantified in situ. Here, two-dimensional ((1)H-(1)H) homonuclear and heteronuclear ((13)C-(1)H) single quantum correlations (correlation spectroscopy, COSY, and heteronuclear single quantum coherence, HSQC) nuclear magnetic resonance spectra of undiluted wine samples were observed at natural abundance. These techniques achieve simultaneous direct identification and quantitation of acetaldehyde, pyruvic acid, acetoin, methylglyoxal, and α-ketoglutaric acid in wine with only a small addition of D2O. It was also possible to observe and sometimes quantify the sulfite, hydrate, and acetal forms of the carbonyl compounds. The accuracy of the method was tested in wine samples by spiking with a mixture of all analytes at different concentrations. The method was applied to 15 wine samples of various vintages and grape varieties. The application of this method could provide a powerful tool to better understand the development, evolution, and perception of wine oxidation and insight into the impact of these sulfite bound carbonyls on antimicrobial and antioxidant action by SO2.
Energy Technology Data Exchange (ETDEWEB)
Korkiakoski, A.; Niinimaeki, J.; Karppinen, J.; Korpelainen, R.; Haapea, M.; Natri, A.; Tervonen, O. (Inst. of Clinical Sciences, Dept. of Physical and Rehabilitation Medicine, Univ. of Oulu, Oulu (Finland))
2009-01-15
Background: Recent studies indicate that diminished blood flow may cause low back symptoms and intervertebral disc degeneration. Purpose: To explore the association between lumbar arterial stenosis as detected by two-dimensional time-of-flight magnetic resonance angiography (2D TOF-MRA) and lumbar pain symptoms in an occupational cohort of middle-aged Finnish males. Material and Methods: 228 male subjects aged 36 to 55 years (mean 47 years) were imaged with 2D TOF-MRA. Additionally, 20 randomly selected subjects were scanned with contrast-enhanced MRA (ceMRA). In each subject, the first (L1) to fourth (L4) segmental lumbar arteries were evaluated for lumbar artery stenosis using a dichotomic scale. One subject was excluded because of poor image quality, reducing the study population to 227 subjects. Logistic regression analysis was used to evaluate the association between arterial stenosis in 2D TOF-MRA and low back pain and sciatica symptoms (intensity, duration, frequency). Results: Comparing 2D TOF-MRA and ceMRA images, the kappa value (95% confidence interval) was 0.52 (0.31-0.73). The intraobserver reliability kappa value for 2D TOF-MRA was 0.85 (0.77-0.92), and interobserver kappa was 0.57 (0.49-0.65). The sensitivity of 2D TOF-MRA in detecting stenosis was 0.58, the accuracy 0.89, and the specificity 0.94. In 97 (43%) subjects all arteries were normal, whereas 130 (57%) had at least one stenosed artery. The left L4 artery was most often affected. The degree of arterial stenosis was associated with intensity of low back and sciatic pain, and sciatica pain duration during the past 3 months. Conclusion: 2D TOF-MRA is an acceptable imaging method for arterial stenosis compared to ceMRA. Arterial stenosis was associated with subjective pain symptoms, indicating a role of decreased nutrition in spinal disorders
Aurich, Matthias; Keller, Marius; Greiner, Sebastian; Steen, Henning; Aus dem Siepen, Fabian; Riffel, Johannes; Katus, Hugo A; Buss, Sebastian J; Mereles, Derliz
2016-12-01
Assessment of left ventricular (LV) systolic function plays a central role in cardiac imaging. Calculation of ejection fraction (EF) is the current method of choice; however, its limited intermodal comparability represents a major drawback. The assessment of myocardial mechanics by strain imaging may better reflect the complex myocardial contractility. We aimed to evaluate different methods for quantification of LV strain on global and regional levels with a focus on the new non-proprietary feature tracking (FT) algorithm. Measurements of LV deformation were performed by means of high-resolution two-dimensional (2D) speckle tracking echocardiography (STE) and compared with values obtained by 2D feature tracking echocardiography (FT-E) and feature tracking cardiac magnetic resonance imaging (FT-CMR). Assessments with echocardiography started within 30 min after CMR examination to minimize time-dependent variations in myocardial function. Forty-seven patients were included. Assessments by STE were -15.7 ± 5.0% for global longitudinal strain (GLS), -14.6 ± 4.5% for global circumferential strain (GCS), and 21.6 ± 13.3% for global radial strain (GRS), while values obtained with FT-E were -13.1 ± 4.0, -13.6 ± 4.0, 20.3 ± 9.5, and with FT-CMR -15.0 ± 4.0, -16.9 ± 5.4, and 35.0 ± 10.8, respectively. Linear regression and the Bland-Altman analysis showed the best intramodal association for STE GLS and FT-E GLS (r = 0.88, bias = -2.7%, LOA = ±4.7%). The correlation for GCS and GRS was weaker, and for regional strain was poor. In contrast to EF, GLS showed a better intermodal correlation between echocardiography and CMR (r = 0.81 by speckle tracking, r = 0.8 by FT, and r = 0.78 by EF). In our study, measurement of global longitudinal LV strain using the new FT algorithm with CMR and echocardiography was comparable with measurements obtained by high-resolution STE. Compared with echocardiographic EF determination, FT-E GLS shows a better reproducibility and a better
Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy
Harbison, Gerard S.; Slokenbergs, Andris
1990-04-01
We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
Two-dimensional magnetostriction under vector magnetic characteristic
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Acoustic resonances in two-dimensional radial sonic crystal shells
Torrent, Daniel; Sánchez-Dehesa, José
2010-07-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.
Institute of Scientific and Technical Information of China (English)
WANG Ru-Zhi; YAN Xiao-Hong
2000-01-01
By developing a transfer-matrix method, the resonant peaks splitting of ballistic conductance are investigated into the two-dimensional electron gas system with both electric and magnetic modulations of nanoscale periods. It is found that there exists the n-fold resonant peak splitting for ballistic conductance through n perpendicular magnetic barriers to n electric barriers. With a combination of m magnetic barriers and n electric barriers by increasing the amplitude of electric field, the folds of the splitting would shift from m － 1 to n － 1.
Miniature sensor for two-dimensional magnetic field distributions
Fluitman, J.H.J.; Krabbe, H.W.
1972-01-01
Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or
Minor magnetization loops in two-dimensional dipolar Ising model
Energy Technology Data Exchange (ETDEWEB)
Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)
2011-05-15
The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.
Acoustic resonances in two dimensional radial sonic crystals shells
Torrent, Daniel
2010-01-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction. They have been recently introduced and are only possible thanks to the anisotropy of specially designed acoustic metamaterials [see Phys. Rev. Lett. {\\bf 103} 064301 (2009)]. We present here a comprehensive analysis of two-dimensional RSC shells, which consist of a cavity defect centered at the origin of the crystal and a finite thickness crystal shell surrounded by a fluidlike background. We develop analytic expressions demonstrating that, like for other type of crystals (photonic or phononic) with defects, these shells contain Fabry-Perot like resonances and strongly localized modes. The results are completely general and can be extended to three dimensional acoustic structures and to their photonic counterparts, the radial photonic crystals.
Magnetization of two-dimensional superconductors with defects
Kashurnikov, V A; Zyubin, M V
2002-01-01
The new method for modeling the layered high-temperature superconductors magnetization with defects, based on the Monte-Carlo algorithm, is developed. Minimization of the free energy functional of the vortex two-dimensional system made it possible to obtain the equilibrium vortex density configurations and calculate the magnetization of the superconductor with the arbitrary defects distribution in the wide range of temperatures. The magnetic induction profiles and magnetic flux distribution inside the superconductor, proving the applicability of the Bean model, are calculated
Cyclotron resonance in two-dimensional electron system with self-organized antidots
Suchalkin, S D; Zundel, M; Nachtwei, G; Klitzing, K V; Eberl, K
2001-01-01
The data on the experimental study on the cyclotron resonance in the two-dimensional electron system with the random scattering potential, conditioned by the massif of the AlInAs self-organized quantum islands, formed in the AlGaAs/GaAs heterotransition plane, are presented. The sharp narrowing of the cyclotron resonance with increase in the magnetic field, explained by the charge scattering peculiarities in the given potential is established. The obtained results suggest the strongly correlated electron state in the strong magnetic fields by the carriers concentrations lesser than the antidots concentrations
Mao, J D; Xing, B; Schmidt-Rohr, K
2001-05-15
New information on the chemical structure of a peat humic acid has been obtained using a series of two-dimensional 1H-13C heteronuclear correlation solid-state NMR (HETCOR) experiments with different contact times and with spectral editing by dipolar dephasing and 13C transverse relaxation filtering. Carbon-bonded methyl groups (C-CH3) are found to be near both aliphatic and O-alkyl but not aromatic groups. The spectra prove that most OCH3 groups are connected directly with the aromatic rings, as is typical in lignin. As a result, about one-third of the aromatic C-O groups is not phenolic C-OH but C-OCH3. Both protonated and unprotonated anomeric O-C-O carbons are identified in the one- and two-dimensional spectra. COO groups are found predominantly in OCHn-COO environments, but some are also bonded to aromatic rings and aliphatic groups. All models of humic acids in the literature lack at least some of the features observed here. Compositional heterogeneity was studied by introducing 1H spin diffusion into the HETCOR experiment. Comparison with data for a synthetic polymer, polycarbonate, indicates that the separation between O-alkyl and aromatic groups in the humic acid is less than 1.5 nm. However, transverse 13C relaxation filtering under 1H decoupling reveals heterogeneity on a nanometer scale, with the slow-relaxing component being rich in lignin-like aromatic-C-O-CH3 moieties and poor in COO groups.
Magnetic quantum dot in two-dimensional topological insulators
Li, Guo; Zhu, Jia-Lin; Yang, Ning
2017-03-01
Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.
Two-dimensional hydrogen negative ion in a magnetic field
Institute of Scientific and Technical Information of China (English)
Xie Wen-Fang
2004-01-01
Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.
Two dimensional electron spin resonance: Structure and dynamics of biomolecules
Saxena, Sunil; Freed, Jack H.
1998-03-01
The potential of two dimensional (2D) electron spin resonance (ESR) for measuring the structural properties and slow dynamics of labeled biomolecules will be presented. Specifically, it will be shown how the recently developed method of double quantum (DQ) 2D ESR (S. Saxena and J. H. Freed, J. Chem. Phys. 107), 1317, (1997) can be used to measure large interelectron distances in bilabeled peptides. The need for DQ ESR spectroscopy, as well as the challenges and advantages of this method will be discussed. The elucidation of the slow reorientational dynamics of this peptide (S. Saxena and J. H. Freed, J. Phys. Chem. A, 101) 7998 (1997) in a glassy medium using COSY and 2D ELDOR ESR spectroscopy will be demonstrated. The contributions to the homogeneous relaxation time, T_2, from the overall and/or internal rotations of the nitroxide can be distinguished from the COSY spectrum. The growth of spectral diffusion cross-peaks^2 with mixing time in the 2D ELDOR spectra can be used to directly determine a correlation time from the experiment which can be related to the rotational correlation time.
Quantum skyrmions in two-dimensional chiral magnets
Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon
2016-10-01
We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.
Quasi-Two-Dimensional Magnetism in Co-Based Shandites
Kassem, Mohamed A.; Tabata, Yoshikazu; Waki, Takeshi; Nakamura, Hiroyuki
2016-06-01
We report quasi-two-dimensional (Q2D) itinerant electron magnetism in the layered Co-based shandites. Comprehensive magnetization measurements were performed using single crystals of Co3Sn2-xInxS2 (0 ≤ x ≤ 2) and Co3-yFeySn2S2 (0 ≤ y ≤ 0.5). The magnetic parameters of both systems; the Curie temperature TC, effective moment peff and spontaneous moment ps; exhibit almost identical variations against the In- and Fe-concentrations, indicating significance of the electron count on the magnetism in the Co-based shandite. The ferromagnetic-nonmagnetic quantum phase transition is found around xc ˜ 0.8. Analysis based on the extended Q2D spin fluctuation theory clearly reveals the highly Q2D itinerant electron character of the ferromagnetism in the Co-based shandites.
Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders
Bjørk, R; Smith, A; Pryds, N
2014-01-01
The Halbach cylinder is a construction of permanent magnets used in applications such as nuclear magnetic resonance apparatus, accelerator magnets and magnetic cooling devices. In this paper the analytical expression for the magnetic vector potential, magnetic flux density and magnetic field for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer $p$. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero except for the case where $p$ for the inner magnet is one minus $p$ for the outer magnet. Also the force is shown never to be balancing. The torque is shown to be zero unless the inner magnet $p$ is equal to minus the outer magnet $p$. Thus there can never be a force and a torque in the same system.
Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets
Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.
2016-11-01
We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P
2009-03-20
Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.
On two-dimensional magnetic reconnection with nonuniform resistivity
Malyshkin, Leonid M.; Kulsrud, Russell M.
2010-12-01
In this paper, two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, 'global' equations approach, the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, 'local' equations approach, the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity.
Two-dimensional magnetic ordering in a multilayer structure
Indian Academy of Sciences (India)
M K Mukhopadhyay; M K Sanyal
2006-07-01
The effect of confinement from one, two or from all three directions on magnetic ordering has remained an active field of research for almost 100 years. The role of dipolar interactions and anisotropy are important to obtain, the otherwise forbidden, ferromagnetic ordering at finite temperature for ions arranged in two-dimensional (2D) arrays (monolayers). We have demonstrated that conventional low-temperature magnetometry and polarized neutron scattering measurements can be performed to study short-range ferromagnetic ordering of in-plane spins in 2D systems using a multilayer stack of non-interacting monolayers of gadolinium ions formed by Langmuir–Blodgett (LB) technique. The spontaneous magnetization could not be detected in the heterogeneous magnetic phase observed here and the saturation value of the net magnetization was found to depend on the sample temperature and applied magnetic field. The net magnetization rises exponentially with lowering temperature and then reaches saturation following a ln( ) dependence. The ln( ) dependence of magnetization has been predicted from spin-wave theory of 2D in-plane spin system with ferromagnetic interaction. The experimental findings reported here could be explained by extending this theory to a temperature domain of < 1.
Cut-wire-pair structures as two-dimensional magnetic metamaterials.
Powell, David A; Shadrivov, Ilya V; Kivshar, Yuri S
2008-09-15
We study numerically and experimentally magnetic metamaterials based on cut-wire pairs instead of split-ring resonators. The cut-wire pair planar structure is extended in order to create a truly two-dimensional metamaterial suitable for scaling to optical frequencies. We fabricate the cut-wire metamaterial operating at microwave frequencies with lattice spacing around 10% of the free-space wavelength, and find good agreement with direct numerical simulations. Unlike the structures based on split-ring resonators, the nearest-neighbor coupling in cut-wire pairs can result in a magnetic stop-band with propagation in the transverse direction.
A SAW resonator with two-dimensional reflectors.
Solal, Marc; Gratier, Julien; Kook, Taeho
2010-01-01
It is known that a part of the loss of leaky SAW resonators is due to radiation of acoustic energy in the bus-bars. Many researchers are working on so-called phononic crystals. A 2-D grating of very strong reflectors allows these devices to fully reflect, for a given frequency band, any incoming wave. A new device based on the superposition of a regular SAW resonator and a 2-D periodic grating of reflectors is proposed. Several arrangements and geometries of the reflectors were studied and compared experimentally on 48 degrees rotated Y-cut lithium tantalate. In particular, a very narrow aperture (7.5 lambda) resonator was manufactured in the 900 MHz range. Because of its small size, this resonator has a resonance Q of only 575 when using the standard technology, whereas a resonance Q of 1100 was obtained for the new device without degradation of the other characteristics. Because of the narrow aperture, the admittance of the standard resonator showed a very strong parasitic above the resonance frequency, whereas this effect is drastically reduced for the new device. These results demonstrate the feasibility of the new approach.
Internetwork magnetic field as revealed by two-dimensional inversions
Danilovic, S.; van Noort, M.; Rempel, M.
2016-09-01
Context. Properties of magnetic field in the internetwork regions are still fairly unknown because of rather weak spectropolarimetric signals. Aims: We address the matter by using the two-dimensional (2D) inversion code, which is able to retrieve the information on smallest spatial scales up to the diffraction limit, while being less susceptible to noise than most of the previous methods used. Methods: Performance of the code and the impact of various effects on the retrieved field distribution is tested first on the realistic magneto-hydrodynamic (MHD) simulations. The best inversion scenario is then applied to the real data obtained by Spectropolarimeter (SP) on board Hinode. Results: Tests on simulations show that: (1) the best choice of node position ensures a decent retrieval of all parameters; (2) the code performs well for different configurations of magnetic field; (3) slightly different noise levels or slightly different defocus included in the spatial point spread function (PSF) produces no significant effect on the results; and (4) temporal integration shifts the field distribution to a stronger, more horizontally inclined field. Conclusions: Although the contribution of the weak field is slightly overestimated owing to noise, 2D inversions are able to recover well the overall distribution of the magnetic field strength. Application of the 2D inversion code on the Hinode SP internetwork observations reveals a monotonic field strength distribution. The mean field strength at optical depth unity is ~ 130 G. At higher layers, field strength drops as the field becomes more horizontal. Regarding the distribution of the field inclination, tests show that we cannot directly retrieve it with the observations and tools at hand, however, the obtained distributions are consistent with those expected from simulations with a quasi-isotropic field inclination after accounting for observational effects.
Resonant indirect exchange via spatially separated two-dimensional channel
Energy Technology Data Exchange (ETDEWEB)
Rozhansky, I. V., E-mail: rozhansky@gmail.com [Ioffe Institute, 194021 St. Petersburg (Russian Federation); Lappeenranta University of Technology, FI-53851 Lappeenranta (Finland); Peter the Great Saint-Petersburg Polytechnic University, 195251 St. Petersburg (Russian Federation); Krainov, I. V.; Averkiev, N. S. [Ioffe Institute, 194021 St. Petersburg (Russian Federation); Aronzon, B. A. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); National Research Centre “Kurchatov Institute,” 123182 Moscow (Russian Federation); Davydov, A. B. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Kugel, K. I. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Tripathi, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Lähderanta, E. [Lappeenranta University of Technology, FI-53851 Lappeenranta (Finland)
2015-06-22
We apply the resonant indirect exchange interaction theory to explain the ferromagnetic properties of the hybrid heterostructure consisting of a InGaAs-based quantum well (QW) sandwiched between GaAs barriers with spatially separated Mn δ-layer. The experimentally obtained dependence of the Curie temperature on the QW depth exhibits a peak related to the region of resonant indirect exchange. We suggest the theoretical explanation and a fit to this dependence as a result of the two contributions to ferromagnetism—the intralayer contribution and the resonant exchange contribution provided by the QW.
Energy Technology Data Exchange (ETDEWEB)
Serafin, Zbigniew; Strzesniewski, Piotr; Lasek, Wladyslaw [Nicolaus Copernicus University, Collegium Medicum, Department of Radiology and Diagnostic Imaging, Bydgoszcz (Poland); Beuth, Wojciech [Nicolaus Copernicus University, Collegium Medicum, Department of Neurosurgery and Neurotraumatology, Bydgoszcz (Poland)
2012-11-15
To prospectively compare of the diagnostic value of digital subtraction angiography (DSA) and time-of-flight magnetic resonance angiography (TOF-MRA) in the follow-up of intracranial aneurysms after endovascular treatment. Seventy-two consecutive patients were examined 3 months after the embolization. The index tests included: two-dimensional DSA (2D-DSA), three-dimensional DSA (3D-DSA), and TOF-MRA. The reference test was a retrospective consensus between 2D-DSA images, 3D-DSA images, and source rotational DSA images. The evaluation included: detection of the residual flow, quantification of the flow, and validity of the decision regarding retreatment. Intraobserver agreement and interobserver agreement were determined. The sensitivity and specificity of residual flow detection ranged from 84.6 % (2D-DSA and TOF-MRA) to 92.3 % (3D-DSA) and from 91.3 % (TOF-MRA) to 97.8 % (3D-DSA), respectively. The accuracy of occlusion degree evaluation ranged from 0.78 (2D-DSA) to 0.92 (3D-DSA, Cohen's kappa). The 2D-DSA method presented lower performance in the decision on retreatment than 3D-DSA (P < 0.05, ROC analysis). The intraobserver agreement was very good for all techniques ({kappa} = 0.80-0.97). The interobserver agreement was moderate for TOF-MRA and very good for 2D-DSA and 3D-DSA ({kappa} = 0.72-0.94). Considering the invasiveness of DSA and the minor difference in the diagnostic performance between 3D-DSA and TOF-MRA, the latter method should be the first-line modality for follow-up after aneurysm embolization. (orig.)
Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals
Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu
2017-03-01
Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.
Two-dimensional Tissue Image Reconstruction Based on Magnetic Field Data
Directory of Open Access Journals (Sweden)
J. Dedkova
2012-09-01
Full Text Available This paper introduces new possibilities within two-dimensional reconstruction of internal conductivity distribution. In addition to the electric field inside the given object, the injected current causes a magnetic field which can be measured either outside the object by means of a Hall probe or inside the object through magnetic resonance imaging. The Magnetic Resonance method, together with Electrical impedance tomography (MREIT, is well known as a bio-imaging modality providing cross-sectional conductivity images with a good spatial resolution from the measurements of internal magnetic flux density produced by externally injected currents. A new algorithm for the conductivity reconstruction, which utilizes the internal current information with respect to corresponding boundary conditions and the external magnetic field, was developed. A series of computer simulations has been conducted to assess the performance of the proposed algorithm within the process of estimating electrical conductivity changes in the lungs, heart, and brain tissues captured in two-dimensional piecewise homogeneous chest and head models. The reconstructed conductivity distribution using the proposed method is compared with that using a conventional method based on Electrical Impedance Tomography (EIT. The acquired experience is discussed and the direction of further research is proposed.
National Research Council Canada - National Science Library
黒田, 義弘; 藤原, 靖弘; 斉藤, 雅子; 新宮, 徹朗
1988-01-01
Advantages and disadvantages of a Lorentzian to Gaussian trans formation function, which has been commonly employed in enhancing the resolution of two-timensional nuclear magnetic resonance (2D NMR...
Institute of Scientific and Technical Information of China (English)
PING Yun-Xia; CHENG Ze
2006-01-01
We study theoretically transport properties of two-dimensional electron gases through antiparallel magnetic electric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the strength of the double δ-function in opposite directions is equal and the other is that the strength is unequal. Similarities and differences of electronic transports are presented. It is found that the transmission and the conductance depend strongly on the shape of the magnetic barrier and the height of the electric barrier. The results indicate that this system does not possess any spin filtering and spin polarization and electron gases can realize perfect resonant tunneling and wave-vector filtering properties. Moreover, the strength of the effect of the inhomogeneous magnetic field on the transport properties is discussed.
Electron spin resonance in a two-dimensional Fermi liquid with spin-orbit coupling
Maiti, Saurabh; Imran, Muhammad; Maslov, Dmitrii L.
2016-01-01
Electron spin resonance (ESR) is usually viewed as a single-particle phenomenon protected from the effect of many-body correlations. We show that this is not the case in a two-dimensional Fermi liquid (FL) with spin-orbit coupling (SOC). Depending on whether the in-plane magnetic field is below or above some critical value, ESR in such a system probes up to three chiral-spin collective modes, augmented by the spin mode in the presence of the field, or the Silin-Leggett mode. All the modes are affected by both SOC and FL renormalizations. We argue that ESR can be used as a probe not only for SOC but also for many-body physics.
Two-dimensional imaging of optical emission in a multicusp-ECR microwave resonant cavity
Energy Technology Data Exchange (ETDEWEB)
Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering
1996-02-01
Optical emission of the electron-cyclotron resonant (ECR) region of a multicusp microwave resonant cavity plasma source has been imaged onto a two-dimensional charge-coupled device (CCD) camera. The technique provides a real-time diagnostic of the plasma emission around the ECR region within a wavelength region defined by low-bandpass filters.
E and S hysteresis model for two-dimensional magnetic properties
Soda, N
2000-01-01
We define an effective hysteresis model of two-dimensional magnetic properties for the magnetic field analysis. Our hysteresis model is applicable to both alternating and rotating flux conditions. Moreover, we compare the calculated results with the measured ones, and verify the accuracy of this model. We can calculate iron losses in the magnetic materials exactly. As a result, it is shown that the hysteresis model is generally applicable to two-dimensional magnetic properties of some kinds of magnetic materials.
Two-dimensional inverted pendulum using repulsive magnetic levitation
Energy Technology Data Exchange (ETDEWEB)
Eirich, Max; Ishino, Yuji; Takasaki, Masaya; Mizuno, Takeshi [Saitama Univ. (Japan). Dept. of Mechanical Engineering
2010-07-01
The active control of two-degree-of-freedom motion of the repulsive levitated object (floator) is studied. In this system of permanent magnets, the vertical motions of the rotor are passively supported by repulsive forces between the permanent magnets. The inclination angle is actively stabilized using the motion control of additional magnets. (orig.)
Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures
Directory of Open Access Journals (Sweden)
P. Perna
2016-05-01
Full Text Available We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM/ antiferromagnetic (AFM bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR and giant magnetoresistance (GMR, chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.
Thermodynamic magnetization of a strongly interacting two-dimensional system
Teneh, N.; Kuntsevich, A. Yu.; Pudalov, V. M.; Klapwijk, T. M.; Reznikov, M.
2009-01-01
We report thermodynamic magnetization measurements of a 2-dimensional electron gas for several high mobility Si-MOSFETs. The low-temperature magnetization is shown to be strongly sub-linear function of the magnetic field. The susceptibility determined from the zero-field slope diverges as 1/T^{\\alpha}, with \\alpha=2.2-2.6 even at high electron densities, in apparent contradiction with the Fermi-liquid picture.
Küppersbusch, C.S.
2015-01-01
In the first part of the thesis I derive a full quantitative formula which describes the amplitude and frequency of magnetic oscillations in two-dimensional Dirac systems. The investigations are on the basis of graphene, but they generally also hold for other two-dimensional Dirac systems. Starting
The two-dimensional magnetic change process of grain-oriented silicon steel under tensile stress
Saito, Akihiko; Nakata, Kumi; Murashige, Shinichi
1996-07-01
The effect of tensile stress on the magnetization properties of silicon steel samples declined from the rolling direction has been investigated. The locus for the two-dimensional magnetization change was measured. The locus of magnetization due to magnetic field without stress was different from that under tension. The locus of magnetization with tension has two knees which correspond to the two knees of the hysteresis curve with tension. These results indicate the essential importance of investigations of the two-dimensional magnetization process.
Two dimensional model of a permanent magnet spur gear
DEFF Research Database (Denmark)
Jørgensen, Frank Thorleif; Andersen, Torben Ole; Rasmussen, Peter Omand
2005-01-01
This paper presents calculation and measurement results of a high-performance permanent-magnetic gear. The analyzed permanent-magnetic gear has a gear ratio of 5.5 and is able to deliver 27 N/spl middot/m. The analysis has shown that special attention needs to be paid to the system where the gear...... is to be installed because of a low natural torsion spring constant. The analyzed gear was also constructed in practice in order to validate the analysis and predict the efficiency. The measured torque from the magnetic gear was only 16 N/spl middot/m reduced by the large end-effects. A systematic analysis...... of the loss components in the magnetic gear is also performed in order to figure out why the efficiency for the actual construction was only 81%. A large magnetic loss component originated in the bearings, where an unplanned extra bearing was necessary due to mechanical problems. Without the losses...
Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets
Energy Technology Data Exchange (ETDEWEB)
Soni, Himadri R., E-mail: himadri.soni@gmail.com; Jha, Prafulla K., E-mail: himadri.soni@gmail.com [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2014-04-24
Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.
van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.
2015-12-01
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.
A New Class of Resonances at the Edge of the Two Dimensional Electron Gas
Zhitenev, N. B.; Brodsky, M; Ashoori, R. C.; Melloch, M. R.
1996-01-01
We measure the frequency dependent capacitance of a gate covering the edge and part of a two-dimensional electron gas in the quantum Hall regime. In applying a positive gate bias, we create a metallic puddle under the gate surrounded by an insulating region. Charging of the puddle occurs via electron tunneling from a metallic edge channel. Analysis of the data allows direct extraction of this tunneling conductance. Novel conductance resonances appear as a function of gate bias. Samples with g...
A discussion of $Bl$ conservation on a two dimensional magnetic field plane in watt balances
Li, Shisong; Huang, Songling
2015-01-01
The watt balance is an experiment being pursued in national metrology institutes for precision determination of the Planck constant $h$. In watt balances, the $1/r$ magnetic field, expected to generate a geometrical factor $Bl$ independent to any coil horizontal displacement, can be created by a strict two dimensional, symmetric (horizontal $r$ and vertical $z$) construction of the magnet system. In this paper, we present an analytical understanding of magnetic field distribution when the $r$ symmetry of the magnet is broken and the establishment of the $Bl$ conservation is shown. By using either Gauss's law on magnetism with monopoles or conformal transformations, we extend the $Bl$ conservation to arbitrary two dimensional magnetic planes where the vertical magnetic field component equals zero. The generalized $Bl$ conservation allows a relaxed physical alignment criteria for watt balance magnet systems.
Coexistence of Incommensurate Magnetism and Superconductivity in the Two-Dimensional Hubbard Model.
Yamase, Hiroyuki; Eberlein, Andreas; Metzner, Walter
2016-03-04
We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Néel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.
Short-range magnetic order in two-dimensional cobalt-ferrite nanoparticle assemblies
Georgescu, M; Viota, J.L.; Klokkenburg, M.; Erne, B.H.; Vanmaekelbergh, D.; Zeijlmans Van Emmichoven, P.A.
2008-01-01
Magnetic order in two-dimensional islands of spherical 21 nm cobalt-ferrite (CoFe2O4) nanoparticles is studied by magnetic force microscopy and spectroscopy. Images obtained at a temperature of 105 K clearly reveal the presence of repulsive and attractive areas on top of the islands. Monte Carlo
Odkhuu, Dorj
2016-08-01
Exploring magnetism and magnetic anisotropy in otherwise nonmagnetic two-dimensional materials, such as graphene and transition metal dichalcogenides, is at the heart of spintronics research. Herein, using first-principles calculations we explore the possibility of reaching an atomic-scale perpendicular magnetic anisotropy by carefully exploring the large spin-orbit coupling, orbital magnetism, and ligand field in a suitable choice of a two-dimensional structure with transition metal adatoms. More specifically, we demonstrate perpendicular magnetic anisotropy energies up to an order of 100 meV per atom in individual ruthenium and osmium adatoms at a monosulfur vacancy in molybdenum disulfide. We further propose a phenomenological model where a spin state transition that involves hybridization between molybdenum a1 and adatomic e' orbitals is a possible mechanism for magnetization reversal from an in-plane to perpendicular orientation.
Magnetic-field-induced suppression of tunnelling into a two-dimensional electron system
Energy Technology Data Exchange (ETDEWEB)
Reker, T.; Chung, Y.C.; Im, H.; Klipstein, P.C.; Nicholas, R.J. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford (United Kingdom); Shtrikman, Hadas [Braun Center for Submicron Research, Weizmann Institute of Science, Rehovot (Israel)
2002-06-10
Tunnelling between a three-dimensional emitter contact and a two-dimensional electron system (2DES) is studied in magnetic fields aligned perpendicular to the barriers of a double-barrier heterostructure. The differential conductance around the Fermi energy exhibits a magnetic-field-dependent pseudogap. This pseudogap is shown to be thermally activated and to depend on the two-dimensional electron density. We attribute this pseudogap to an extra energy that an electron tunnelling from the emitter into the 2DES has to overcome as a result of the correlated state of the 2DES. (author)
Energy Technology Data Exchange (ETDEWEB)
Campbell, J.A.; Linehan, J.C.; Robins, W.H. [Battelle Pacific Northwest Lab., Richland, WA (United States)
1992-07-01
Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.
Two-Dimensional Programmable Manipulation of Magnetic Nanoparticles on-Chip
DEFF Research Database (Denmark)
Sarella, Anandakumar; Torti, Andrea; Donolato, Marco
2014-01-01
A novel device is designed for on-chip selective trap and two-dimensional remote manipulation of single and multiple fluid-borne magnetic particles using field controlled magnetic domain walls in circular nanostructures. The combination of different ring-shaped nanostructures and field sequences...... allows for remote manipulation of magnetic particles with high-precision along any arbitrary pathway on a chip surface....
Widodo, Chomsin S.; Fujii, Muneaki
2012-12-01
NMR measurement have been made at low temperatures on the crystal structure of K2CuF4 and (C3H7NH3)2CuCl4 at zero applied magnetic field. 63Cu, 65Cu and 35Cl NMR have been used to measure spontaneous magnetization at the temperature range 2 K down to 30 mK. We have made the NMR experiments using a 3He-4He dilution refrigerator by conventional pulsed NMR method without external magnetic field. The magnetization at zero applied magnetic field in the nearly two-dimensional ferromagnet K2CuF4 of the experimental data is in a good agreement with Yamaji-Kondo theory and θc = 0.3, which is applied the double-time Green's function method incorporated with Tyablikov's decoupling. For temperature 1.1 K down to 0.26 K, the spontaneous magnetization of (C3H7NH3)2CuCl4 is support (t log t')-formalism from the spin wave theory.
Elucidation of Chemical Reactions by Two-Dimensional Resonance Raman Spectroscopy
Moran, Andrew
Two-dimensional (2D) Raman spectroscopies were proposed by Mukamel and Loring in1985 as a method for resolving line broadening mechanisms of vibrational motions in liquids. Significant technical issues challenged the development of both five- and seven-pulse 2D Raman spectroscopies. For this reason, 2D Raman experiments were largely abandoned in 2002 following the first demonstrations of 2D infrared spectroscopies (i.e., an alternate approach for obtaining similar information). We have recently shown that 2D Raman experiments conducted under electronically resonant conditions are much less susceptible to the problems encountered in the earlier 2D Raman work, which was carried out off-resonance. In effect, Franck-Condon activity obviates the problematic selection rules encountered under electronically off-resonant conditions. In this presentation, I will discuss applications of 2D resonance Raman spectroscopies to photodissocation reactions of triiodide and myoglobin. It will be shown that vibrational resonances of the reactants and products can be displayed in separate dimensions of a 2D resonance Raman spectrum when the photo-dissociation reaction is fast compared to the vibrational period. Such 2D spectra expose correlations between the nonequilibrium geometry of the reactant and the distribution of vibrational quanta in the product, thereby yielding insight in the photo-dissociation mechanism. Our results suggest that the ability of 2D resonance Raman spectroscopy to detect correlations between reactants and products will generalize to other ultrafast processes such as electron transfer and energy transfer.
Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures
Institute of Scientific and Technical Information of China (English)
Yu Dian-Long; Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Qiu Jing
2006-01-01
The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases. The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.
Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf
2014-01-01
Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and
Edge waves and resonances in two-dimensional phononic crystal plates
Hsu, Jin-Chen; Hsu, Chih-Hsun
2015-05-01
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.
Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders
DEFF Research Database (Denmark)
Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden
2010-01-01
for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...
Two-dimensional coupled electron-hole layers in high magnetic fields
Parlangeli, Andrea
2000-01-01
In solids, it is nowadays possible to create structures in which electrons are confined into a two-dimensional (2D) plane. The physics of a 2D electron gas (2DEG) has proved to be very rich, in particular in the presence of a transverse magnetic field. The Quantum Hall Effect, i.e. the quantization
A Two-Dimensional Analytic Thermal Model for a High-Speed PMSM Magnet
CSIR Research Space (South Africa)
Grobler, AJ
2015-11-01
Full Text Available TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 11, NOVEMBER 2015 A Two-Dimensional Analytic Thermal Model for a High-Speed PMSM Magnet Andries J. Groblera, Stanley Robert Holmb, and George van Schoorc a School of Electrical, Electronic...
Thermodynamics of Two-Dimensional Electron Gas in a Magnetic Field
Directory of Open Access Journals (Sweden)
V. I. Nizhankovskii
2011-01-01
Full Text Available Change of the chemical potential of electrons in a GaAs-AlGa1−As heterojunction was measured in magnetic fields up to 6.5 T at several temperatures from 2.17 to 12.3 K. A thermodynamic equation of state of two-dimensional electron gas well describes the experimental results.
Two new integrable cases of two-dimensional quantum mechanics with a magnetic field
Marikhin, V. G.
2016-04-01
Two integrable cases of two-dimensional Schrödinger equation with a magnetic field are proposed. Using the polar coordinates and the symmetrical gauge, we will obtain solutions of these equations through biconfluent and confluent Heun functions. The quantization rules will be derived for both systems under consideration.
Han, Sunwoo; Lee, Bong Jae
2016-01-25
In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.
Two-dimensional stress—magnetization effects of grain-oriented silicon steel sheets
Saito, Akihiko; Murashige, Shinichi; Uehara, Yuji
1994-05-01
Changes in the magnetization vector due to tensile stress under a constant magnetic field for grain-oriented silicon-iron sheet strip samples cut at various angles from the rolling direction have been investigated. In a low magnetic field, where the magnetization is less than 1.5 T, the magnetization vector lies in the direction of the sample length and the magnetization decreases with the application of tension. Beyond that magnetic field, the magnetization vector showed a two-dimensional hysteresis loop due to the application of tension. The maximum transverse magnetization change appeared in a 10° sample, where the rotation angle of the magnetization vector was 2.5°.
Cooperative resonances in light scattering from two-dimensional atomic arrays
Shahmoon, Ephraim; Lukin, Mikhail D; Yelin, Susanne F
2016-01-01
We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate that such arrays can operate as nearly perfect mirrors for a wide range of incident angles and frequencies close to the individual atomic resonance. These results can be understood in terms of the cooperative resonances of the surface modes supported by the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and nanomechanics.
Resonant state expansion applied to two-dimensional open optical systems
Doost, M B; Muljarov, E A
2013-01-01
The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is applied to two-dimensional open optical systems. The analytically solvable homogeneous dielectric cylinder is used as unperturbed system, and its Green's function is shown to contain a cut in the complex frequency plane, which is included in the RSE basis. The complex eigenfrequencies of modes are calculated using the RSE for a selection of perturbations which mix unperturbed modes of different orbital momentum, such as half-cylinder, thin-film and thin-wire perturbation, demonstrating the accuracy and convergency of the method. The resonant states for the thin-wire perturbation are shown to reproduce an approximative analytical solution.
Dynamics of two-dimensional complex plasmas in a magnetic field
Ott, T; Bonitz, M
2013-01-01
We consider a two-dimensional complex plasma layer containing charged dust particles in a perpendicular magnetic field. Computer simulations of both one-component and binary systems are used to explore the equilibrium particle dynamics in the fluid state. The mobility is found to scale with the inverse of the magnetic field strength (Bohm diffusion) for strong fields. For bidisperse mixtures, the magnetic field dependence of the long-time mobility depends on the particle species providing an external control of their mobility ratio. For large magnetic fields, even a two-dimensional model porous matrix can be realized composed by the almost immobilized high-charge particles which act as obstacles for the mobile low-charge particles.
Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems
Cheng, Yingchun
2013-03-05
Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number of valence electrons is smaller or equal to that of Mo. Doping of atoms from the VIIB to IIB groups becomes energetically less and less favorable. Magnetism is observed for Mn, Fe, Co, Zn, Cd, and Hg doping, while for the other dopants from these groups it is suppressed by Jahn-Teller distortions. Analysis of the binding energies and magnetic properties indicates that (Mo,X)S2 (X=Mn, Fe, Co, and Zn) are promising systems to explore two-dimensional diluted magnetic semiconductors.
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics
Fathi, Kambiz; Toonen, Silvia; Falcón-Barroso, Jesús; Beckman, John E.; Hernandez, Olivier; Daigle, Olivier; Carignan, Claude; de Zeeuw, Tim
2007-10-01
We study the two-dimensional kinematics of the Hα-emitting gas in the nearby barred Scd galaxy NGC 6946, in order to determine the pattern speed of the primary m=2 perturbation mode. The pattern speed is a crucial parameter for constraining the internal dynamics, estimating the impact velocities of the gravitational perturbation at the resonance radii, and setting up an evolutionary scenario for NGC 6946. Our data allow us to derive the best-fitting kinematic position angle and the geometry of the underlying gaseous disk, which we use to derive the pattern speed using the Tremaine-Weinberg method. We find a main pattern speed ΩPp=22+4-1 km s-1 kpc-1, but our data clearly reveal the presence of an additional pattern speed ΩSp=47+3-2 km s-1 kpc-1 in a zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we deduce the location of the resonance radii and confirm that inside the outer inner Lindblad resonance radius of the main oval, a primary bar has formed rotating at more than twice the outer pattern speed. We further confirm that a nuclear bar has formed inside the inner Lindblad resonance radius of the primary bar, coinciding with the inner inner Lindblad resonance radius of the large-scale m=2 mode oval.
Hoffmann, Rainer; Altiok, Ertunc; Friedman, Zvi; Becker, Michael; Frick, Michael
2014-10-01
Myocardial deformation analysis by speckle-tracking echocardiography (STE) has been used for analysis of myocardial viability and myocardial fibrosis. Patients with severe aortic stenosis are known to develop myocardial fibrosis. This study evaluated the association between myocardial fibrosis determined by late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) and 2-dimensional STE in patients with severe aortic stenosis. In 30 patients (78±7 years) with severe aortic stenosis (mean gradient 53±21 mm Hg), peak systolic circumferential strain based on 2-dimensional echocardiographic parasternal short-axis views and peak systolic longitudinal strain based on apical views were determined for analysis of regional function. LGE CMR was performed to define the amount of fibrosis in each segment within 24 hours of echocardiography. Relative amount of fibrosis was determined based on LGE CMR as gray-scale threshold 6 SDs above the mean signal intensity of the normal remote myocardium. There was a decrease in LGE from base to apex (14.4±8.7% for basal segments, 3.4±3.0% for midventricular segments, and 2.1±3.0% for apical segments; pmyocardial deformation expressed as peak systolic longitudinal strain from base to apex (-11.6±7.0% for basal segments, -16.9±6.5% for midventricular segments, and -17.4±7.7% for apical segments; p=0.001). There was a negative correlation between the amount of myocardial fibrosis determined by LGE CMR and peak systolic longitudinal strain for the total left ventricle (r=-0.538, p=0.007). Myocardial fibrosis defined as LGE>10% could be identified by peak systolic longitudinal strain less than -11.6%, with a sensitivity of 65% and a specificity of 75% (area under the receiver operating characteristic curve 0.69). In conclusion, myocardial fibrosis increases from apical to basal left ventricular segments in patients with severe aortic stenosis. There is an association between severity of myocardial fibrosis defined by LGE CMR
Yuan, Long; Li, Zhenyu; Yang, Jinlong
2013-01-14
Recently, a new kind of spintronics material, bipolar magnetic semiconductors (BMS), has been proposed. The spin polarization of BMS can be conveniently controlled by a gate voltage, which makes it very attractive in device engineering. Now, the main challenge is finding more BMS materials. In this article, we propose that hydrogenated wurtzite SiC nanofilm is a two-dimensional BMS material. Its BMS character is very robust under the effect of strain, substrate or even a strong electric field. The proposed two-dimensional BMS material paves the way to use this promising new material in an integrated circuit.
Hemmi, Akihide; Mizumura, Ryosuke; Kawanishi, Ryuta; Nakajima, Hizuru; Zeng, Hulie; Uchiyama, Katsumi; Kaneki, Noriaki; Imato, Toshihiko
2013-01-08
A novel two dimensional surface plasmon resonance (SPR) sensor system with a multi-point sensing region is described. The use of multiplied beam splitting optics, as a core technology, permitted multi-point sensing to be achieved. This system was capable of simultaneously measuring nine sensing points. Calibration curves for sucrose obtained on nine sensing points were linear in the range of 0-10% with a correlation factor of 0.996-0.998 with a relative standard deviation of 0.090-4.0%. The detection limits defined as S/N = 3 were 1.98 × 10(-6) - 3.91 × 10(-5) RIU. This sensitivity is comparable to that of conventional SPR sensors.
Directory of Open Access Journals (Sweden)
Akihide Hemmi
2013-01-01
Full Text Available A novel two dimensional surface plasmon resonance (SPR sensor system with a multi-point sensing region is described. The use of multiplied beam splitting optics, as a core technology, permitted multi-point sensing to be achieved. This system was capable of simultaneously measuring nine sensing points. Calibration curves for sucrose obtained on nine sensing points were linear in the range of 0–10% with a correlation factor of 0.996–0.998 with a relative standard deviation of 0.090–4.0%. The detection limits defined as S/N = 3 were 1.98 × 10−6–3.91 × 10−5 RIU. This sensitivity is comparable to that of conventional SPR sensors.
Institute of Scientific and Technical Information of China (English)
LUO Xiao-Bing; HAI Wen-Hua
2005-01-01
@@ We have studied the dynamics of two-dimensional (2D) trapped and untrapped Bose-Einstein condensates (BECs) with a rapid periodic modulation of the scattering length via a Feshbach resonance technique, a → ao + a1 sin(Ωt) with an attractive (negative) mean value and the large constants ao, a1 and Ω.Applying a variation approximation (VA), the critical threshold for the collapse of the 2D trapped vortex BEC is predicted and the collapse is prevented by causing the scattering length oscillating rapidly.On the other hand, with analytical calculation, we prove that the stabilization of a bright soliton in a 2D untrapped BEC is impossible for enough large interaction intensity and the upper limit of the intensity for the soliton stabilization is derived.
Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension
Lin, Qian; Xiao, Meng; Yuan, Luqi; Fan, Shanhui
2016-12-01
Weyl points, as a signature of 3D topological states, have been extensively studied in condensed matter systems. Recently, the physics of Weyl points has also been explored in electromagnetic structures such as photonic crystals and metamaterials. These structures typically have complex three-dimensional geometries, which limits the potential for exploring Weyl point physics in on-chip integrated systems. Here we show that Weyl point physics emerges in a system of two-dimensional arrays of resonators undergoing dynamic modulation of refractive index. In addition, the phase of modulation can be controlled to explore Weyl points under different symmetries. Furthermore, unlike static structures, in this system the non-trivial topology of the Weyl point manifests in terms of surface state arcs in the synthetic space that exhibit one-way frequency conversion. Our system therefore provides a versatile platform to explore and exploit Weyl point physics on chip.
Suppression method of low-frequency noise for two-dimensional integrated magnetic sensor
Kimura, Takayuki; Sakairi, Yusuke; Mori, Akihiro; Masuzawa, Toru
2017-04-01
A new correlated double sampling method for two-dimensional magnetic sensors was proposed. In this method, output from a magnetic sensor is controlled by adjusting the drain bias of a MOSFET used as a Hall element. The two-dimensional integrated magnetic sensor used for the demonstration of correlated double sampling was composed of a 64 × 64 array of Hall sensors and fabricated by a 0.18 µm CMOS standard process. The size of a Hall element was 2.7 × 2.7 µm2. The dimensions of one pixel in which a Hall element was embedded were 7 × 7 µm2. The magnitude of residual noise after correlated double sampling with drain bias control was 0.81 mVp–p. This value is 16% of the original low-frequency noise. From the experimental results, the proposed correlated double sampling method is found to be suitable for low-frequency noise suppression in the two-dimensional magnetic sensors.
Two-dimensional model of intrinsic magnetic flux losses in helical flux compression generators
Haurylavets, V V
2012-01-01
Helical Flux Compression Generators (HFCG) are used for generation of mega-amper current and high magnetic fields. We propose the two dimensional HFCG filament model based on the new description of the stator and armature contact point. The model developed enables one to quantitatively describe the intrinsic magnetic flux losses and predict the results of experiments with various types of HFCGs. We present the effective resistance calculations based on the non-linear magnetic diffusion effect describing HFCG performance under the strong conductor heating by currents.
Pelizzola, Alessandro
1994-11-01
An explicit formula for the boundary magnetization of a two-dimensional Ising model with a strip of inhomogeneous interactions is obtained by means of a transfer matrix mean-field method introduced by Lipowski and Suzuki. There is clear numerical evidence that the formula is exact By taking the limit where the width of the strip approaches infinity and the interactions have well defined bulk limits, I arrive at the boundary magnetization for a model which includes the Hilhorst-van Leeuwen model. The rich critical behavior of the latter magnetization is thereby rederived with little effort.
Quantifying Resonant Structure in NGC 6946 from Two-dimensional Kinematics
Fathi, Kambiz; Falcón-Barroso, Jesús; Beckman, John E; Hernandez, Olivier; Daigle, Olivier; Carignan, Claude; de Zeeuw, Tim
2007-01-01
We study the two-dimensional kinematics of the H-alpha-emitting gas in the nearby barred Scd galaxy, NGC 6946, in order to determine the pattern speed of the primary m=2 perturbation mode. The pattern speed is a crucial parameter for constraining the internal dynamics, estimating the impact velocities of the gravitational perturbation at the resonance radii, and to set up an evolutionary scenario for NGC 6946. Our data allows us to derive the best fitting kinematic position angle and the geometry of the underlying gaseous disk, which we use to derive the pattern speed using the Tremaine-Weinberg method. We find a main pattern speed Omega_p=22 km/s/kpc, but our data clearly reveal the presence of an additional pattern speed Omega_p=47 km/s/kpc in a zone within 1.25 kpc of the nucleus. Using the epicyclic approximation, we deduce the location of the resonance radii and confirm that inside the outer Inner Lindblad Resonance radius of the main oval, a primary bar has formed rotating at more than twice the outer p...
Magnetoresistance of a two-dimensional electron gas in a random magnetic field
DEFF Research Database (Denmark)
Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil
1994-01-01
We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surf...... on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation. © 1994 The American Physical Society...
Floating zone growth and magnetic properties of Y2C two-dimensional electride
Otani, Shigeki; Hirata, Kazuto; Adachi, Yutaka; Ohashi, Naoki
2016-11-01
The floating zone method was used to obtain single crystals several mm in size of the low-temperature rhombohedral form of Y2C rather than its typical rocksalt-type cubic form. This was achieved through optimization of the chemical compositions of the starting materials with the aim of producing a two-dimensional electride material. The crystals obtained exhibited a paramagnetic temperature-dependence at 1.8-300 K, with no trace of any obvious magnetic ordering.
2013-01-01
We present a code for solving the single-particle, time-independent Schr\\"odinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. ...
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Kolokolov, I. V.
2017-03-01
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.
Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system
Directory of Open Access Journals (Sweden)
Long LIU
2017-04-01
Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.
Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)
2016-08-15
Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.
Thermodynamic magnetization of two-dimensional electron gas measured over wide range of densities
Reznikov, M.; Kuntsevich, A. Yu.; Teneh, N.; Pudalov, V. M.
2011-01-01
We report measurements of dm/dn in Si MOSFET, where m is the magnetization of the two-dimensional electron gas and n is its density. We extended the density range of measurements from well in the metallic to deep in the insulating region. The paper discusses in detail the conditions under which this extension is justified, as well as the corrections one should make to extract dm/dn properly. At low temperatures, dm/dn was found to be strongly nonlinear already in weak magnetic fields, on a sc...
Luukko, P J J
2013-01-01
We present a code for solving the single-particle, time-independent Schr\\"odinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy.
Puntes, Victor F; Gorostiza, Pau; Aruguete, Deborah M; Bastus, Neus G; Alivisatos, A Paul
2004-04-01
The use of magnetic nanoparticles in the development of ultra-high-density recording media is the subject of intense research. Much of the attention of this research is devoted to the stability of magnetic moments, often neglecting the influence of dipolar interactions. Here, we explore the magnetic microstructure of different assemblies of monodisperse cobalt single-domain nanoparticles by magnetic force microscopy and magnetometric measurements. We observe that when the density of particles per unit area is higher than a determined threshold, the two-dimensional self-assemblies behave as a continuous ferromagnetic thin film. Correlated areas (similar to domains) of parallel magnetization roughly ten particles in diameter appear. As this magnetic percolation is mediated by dipolar interactions, the magnetic microstructure, its distribution and stability, is strongly dependent on the topological distribution of the dipoles. Thus, the magnetic structures of three-dimensional assemblies are magnetically soft, and an evolution of the magnetic microstructure is observed with consecutive scans of the microscope tip.
Experimentally determining the exchange parameters of quasi-two dimensional Heisenbert magnets
Energy Technology Data Exchange (ETDEWEB)
Singleton, John [Los Alamos National Laboratory; Sengupta, P [Los Alamos National Laboratory; Mcdonald, R D [Los Alamos National Laboratory; Cox, S [Los Alamos National Laboratory; Harrison, N [Los Alamos National Laboratory; Goddard, P A [UNIV OF OXFORD; Lancaster, T [UNIV OF OXFORD; Blundell, S J [UNIV OF OXFORD; Pratt, F L [RUTHERFORD APPLETON LAB; Manson, J L [EASTERN WASHINGTON UNIV; Southerland, H I [EASTERN WASHINGTON UNIV; Schlueter, J A [ANL
2008-01-01
Though long-range magnetic order cannot occur at temperatures T > 0 in a perfect two-dimensional (2D) Heisenberg magnet, real quasi-2D materials will invariably possess nonzero inter-plane coupling J{sub {perpendicular}} driving the system to order at elevated temperatures. This process can be studied using quantum Monte Carlo calculations. However, it is difficult to test the results of these calculations experimentally since for highly anisotropic materials in which the in-plane coupling is comparable with attainable magnetic fields J{sub {perpendicular}} is necessarily very small and inaccessible directly. In addition, because of the large anisotropy, the Neel temperatures are low and difficult to determine from thermodynamic measurements. Here, we present an elegant method of assessing the calculations via two independent experimental probes: pulsed-field magnetization in fields of up to 85 T, and muon-spin rotation.
Donor-bound electron states in a two-dimensional quantum ring under uniform magnetic field
Institute of Scientific and Technical Information of China (English)
Jia Bo-Yong; Yu Zhong-Yuan; Liu Yu-Min; Han Li-Hong; Yao Wen-Jie; Feng Hao; Ye Han
2011-01-01
The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring.The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.
Directory of Open Access Journals (Sweden)
Sameer M. Ikhdair
2013-01-01
Full Text Available The Klein-Gordon (KG equation for the two-dimensional scalar-vector harmonic oscillator plus Cornell potentials in the presence of external magnetic and Aharonov-Bohm (AB flux fields is solved using the wave function ansatz method. The exact energy eigenvalues and the wave functions are obtained in terms of potential parameters, magnetic field strength, AB flux field, and magnetic quantum number. The results obtained by using different Larmor frequencies are compared with the results in the absence of both magnetic field (ωL = 0 and AB flux field (ξ=0 cases. Effect of external fields on the nonrelativistic energy eigenvalues and wave function solutions is also precisely presented. Some special cases like harmonic oscillator and Coulombic fields are also studied.
MRI (Magnetic Resonance Imaging)
... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...
Chen, Qi; Li, Jian; Meng, Yin-Shan; Sun, Hao-Ling; Zhang, Yi-Quan; Sun, Jun-Liang; Gao, Song
2016-08-15
A novel two-dimensional dysprosium(III) complex, [Dy(L)(CH3COO)]·0.5DMF·H2O·2CH3OH (1), has been successfully synthesized from a new pyridine-N-oxide (PNO)-containing ligand, namely, N'-(2-hydroxy-3-methoxybenzylidene)pyridine-N-oxidecarbohydrazide (H2L). Single-crystal X-ray diffraction studies reveal that complex 1 is composed of a dinuclear dysprosium subunit, which is further extended by the PNO part of the ligand to form a two-dimensional layer. Magnetic studies indicate that complex 1 shows well-defined temperature- and frequency-dependent signals under a zero direct-current (dc) field, typical of slow magnetic relaxation with an effective energy barrier Ueff of 33.6 K under a zero dc field. Interestingly, powder X-ray diffraction and thermogravimetric analysis reveal that compound 1 undergoes a reversible phase transition that is induced by the desorption and absorption of methanol and water molecules. Moreover, the desolvated sample [Dy(L)(CH3COO)]·0.5DMF (1a) also exhibits slow magnetic relaxation but with a higher anisotropic barrier of 42.0 K, indicating the tuning effect of solvent molecules on slow magnetic relaxation.
Photonic-Crystal Band-pass Resonant Filters Design Using the Two-dimensional FDTD Method
Directory of Open Access Journals (Sweden)
Hadjira Badaoui
2011-05-01
Full Text Available Recently, band-pass photonic crystal filters have attracted great attention due to their important applications in the fields of optical interconnection network and ultrahigh speed information processing. In this paper we propose the design of a new type of photonic crystal band-pass resonant filters realized in one-missing-row waveguide by decreasing proper defects along the waveguide with broadband acceptable bandwidth. Two types of photonic crystal band-pass filters are utilized and optimized using the Two-dimensional finite-difference time-domain (FDTD technique. The first one is based on the Fabry-Perot cavities and in the second one a cavity is introduced in the middle by omitting two neighboring air holes in waveguide. Numerical results show that a band [1.47 and#956;m-1.57 and#956;m] around 1.55um is transmitted with a maximum transmission of about 68% and as a result wide band-pass filters are designed.
Transport properties of magnetic-codoped two-dimensional hole system
Energy Technology Data Exchange (ETDEWEB)
Knott, Stefan; Wurstbauer, Ursula; Hansen, Wolfgang [Institut fuer Angewandte Physik, Universitaet Hamburg (Germany)
2009-07-01
The interaction of localized magnetic moments with a two dimensional hole system (2DHS) is studied with low-temperature magneto-transport measurements on molecular beam epitaxially grown InAs or InAlGaAs quantum-well structures that are C-modulation and Mn co-doped. Measurements in magnetic fields applied perpendicular to the 2DHS reveal the typical transport behaviour of a two-dimensional charge carrier system indicated by Shubnikov-de Haas oscillations and quantum-Hall plateaus. Investigations at milli-Kelvin temperatures show a metal-insulator transition in the low field region. The fully spin-polarized quantum Hall state at filling factor {nu}=1 is very pronounced, i.e. over a field range of more than 4 T the longitudinal resistance vanishes and the Hall resistance is constant. Surprisingly, the {nu}=2 state seems to be fully suppressed whereas the {nu}=3 state is clearly resolved by an indistinct structure in the Hall resistance and a minimum in the longitudinal resistance. Transport measurements in tilted magnetic fields are carried out to resolve the nature of the observed quantum-Hall states.
Origin of anomalous magnetic breakdown frequencies in quasi-two-dimensional organic conductors
Sandhu, P. S.; Kim, Ju H.; Brooks, J. S.
1997-11-01
We investigate the origin of anomalous magnetic breakdown frequencies in the de Haas-van Alphen (dHvA) effect in quasi-two-dimensional organic conductors such as α-(BEDT-TTF)2KHg(SCN)4 and κ-(BEDT-TTF)2Cu(NCS)2. A tight-binding model based on their realistic band structure is constructed and solved numerically to compute the field dependence of the magnetization. The present model provides a natural description for the phenomenon of magnetic breakdown between coexisting closed and open Fermi surfaces and accounts for the experimentally observed frequencies that are forbidden in the semiclassical picture. We find that the appearance of these anomalous frequencies in the dHvA signal is a quantum-mechanical effect which arises from differences in field dependence of the states in the two partially occupied bands near the Fermi level.
Fermionic response from fractionalization in an insulating two-dimensional magnet
Nasu, J.; Knolle, J.; Kovrizhin, D. L.; Motome, Y.; Moessner, R.
2016-10-01
Conventionally ordered magnets possess bosonic elementary excitations, called magnons. By contrast, no magnetic insulators in more than one dimension are known whose excitations are not bosons but fermions. Theoretically, some quantum spin liquids (QSLs)--new topological phases that can occur when quantum fluctuations preclude an ordered state--are known to exhibit Majorana fermions as quasiparticles arising from fractionalization of spins. Alas, despite much searching, their experimental observation remains elusive. Here, we show that fermionic excitations are remarkably directly evident in experimental Raman scattering data across a broad energy and temperature range in the two-dimensional material α-RuCl3. This shows the importance of magnetic materials as hosts of Majorana fermions. In turn, this first systematic evaluation of the dynamics of a QSL at finite temperature emphasizes the role of excited states for detecting such exotic properties associated with otherwise hard-to-identify topological QSLs.
Two-dimensional convection and interchange motions in fluids and magnetized plasmas
DEFF Research Database (Denmark)
Garcia, O.E.; Bian, N.H.; Naulin, V.
2006-01-01
In this contribution some recent investigations of two- dimensional thermal convection relevant to ordinary fluids as well as magnetized plasmas are reviewed. An introductory discussion is given of the physical mechanism for baroclinic vorticity generation and convective motions in stratified...... fluids, emphasizing its relation to interchange motions of non- uniformly magnetized plasmas. This is followed by a review of the theories for the onset of convection and quasi-linear saturation in driven-dissipative systems. Non-linear numerical simulations which result in stationary convective states....... The global bursting is interpreted in terms of a predator-prey regulation from the point of view of energetics. Finally, a discussion is given of the relevance of these phenomena to a variety of magnetized plasma experiments....
Zero-differential resistance state of two-dimensional electron systems in strong magnetic fields.
Bykov, A A; Zhang, Jing-qiao; Vitkalov, Sergey; Kalagin, A K; Bakarov, A K
2007-09-14
We report the observation of a zero-differential resistance state (ZDRS) in response to a direct current above a threshold value I>I th applied to a two-dimensional system of electrons at low temperatures in a strong magnetic field. Entry into the ZDRS, which is not observable above several Kelvins, is accompanied by a sharp dip in the differential resistance. Additional analysis reveals an instability of the electrons for I>I th and an inhomogeneous, nonstationary pattern of the electric current. We suggest that the dominant mechanism leading to the new electron state is a redistribution of electrons in energy space induced by the direct current.
Parker, E. N.
1985-01-01
The dynamics of magnetic fibrils in the convective zone of a star is investigated analytically, deriving mean-field equations for the two-dimensional transverse motion of an incompressible fluid containing numerous small widely spaced circular cylinders. The equations of Parker (1982) are extended to account for the inertial effects of local flow around the cylinders. The linear field equation for the stream function at the onset of convection is then rewritten, neglecting large-scale heat transport, and used to construct a model of convective counterflow. The Kelvin impulse and fluid momentum, convective motion initiated by a horizontal impulse, and the effects of a viscous boundary layer are considered in appendices.
Chremmos, Ioannis; Giamalaki, Melpomeni; Yannopapas, Vassilios; Paspalakis, Emmanuel
2014-01-01
We present a formulation for deriving effective medium properties of infinitely periodic two-dimensional metamaterial lattice structures beyond the static and quasi-static limits. We utilize the multipole expansions, where the polarization currents associated with the supported Bloch modes are expressed via the electric dipole, magnetic dipole, and electric quadrupole moments per unit length. We then propose a method to calculate the Bloch modes based on the lattice geometry and individual unit element structure. The results revert to well-known formulas in the quasistatic limit and are useful for the homogenization of nanorod-type metamaterials which are frequently used in optical applications.
Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage
Kolokolov, Igor
2016-01-01
The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time what contradicts to the statements present in literature. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. These tensors demonstrate highly intermittent statistics of the field fluctuations both in space and time.
Energy Technology Data Exchange (ETDEWEB)
Dorozhkin, S. I., E-mail: dorozh@issp.ac.ru; Sychev, D. V.; Kapustin, A. A. [Institute of Solid State Physics RAS, 142432 Chernogolovka, Moscow district (Russian Federation)
2014-11-28
We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.
Three-dimensional magnetic interactions in quasi-two-dimensional PdAs2O6
Zhao, Z. Y.; Wu, Y.; Cao, H. B.; Zhou, H. D.; Yan, J.-Q.
2017-06-01
Millimeter-sized PdAs2O6 single crystals are grown using the vapor transport technique. The magnetic order at {{T}\\text{N}}=140 K is studied by measuring magnetic properties, specific heat, and neutron single crystal diffraction. The anisotropic magnetic susceptibility and a metamagnetic transition observed in magnetic fields above 20 kOe suggest that the magnetic moment lies in the ab plane, consistent with the magnetic structure determined by neutron single crystal diffraction. Below 140 K, Pd2+ ions order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is refined to be 2.09(2) {μ\\text{B}} /Pd2+ using the fitted magnetic form factor of Pd2+ . A weak λ-type anomaly around T N was observed in specific heat and the magnetic entropy change across T N is 1.72 J mol-1 K.This small entropy change and the temperature dependence of the magnetic susceptibility support the presence of short range correlations in a wide temperature range {{T}\\text{N}} 250 K. The comparison with SrRu2O6 suggests that the magnetic interactions in PdAs2O6 are dominated by Pd-(O-\\text{As}\\text{As} -O)-Pd super-superexchange and three dimensional despite the quasi-two-dimensional arrangement of magnetic ions. The comparison with NiAs2O6 suggests that increasing covalency of isostructural compounds is an effective approach to design and to discover new materials with higher magnetic order temperatures in the localized regime.
Mi, Jian; Wang, Jianli; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Zhang, Chi
2016-09-01
In our high mobility p -type AlGaAs/GaAs two-dimensional hole samples, we originally observe the B -periodic oscillation induced by microwave (MW) in photovoltage (PV) measurements. In the frequency range of our measurements (5-40 GHz), the period (Δ B ) is inversely proportional to the microwave frequency (f ). The distinct oscillations come from the edge magnetoplasmon (EMP) in the high quality heavy hole system. Simultaneously, we observe the giant plasmon resonance signals in our measurements on the shallow two-dimensional hole system (2DHS).
Axisymmetric Two-Dimensional Computation of Magnetic Field Dragging in Accretion Disks
Reyes-Ruiz, Mauricio; Stepinski, Tomasz F.
1996-01-01
In this paper we model a geometrically thin accretion disk interacting with an externally imposed, uniform, vertical magnetic field. The accretion flow in the disk drags and distorts field lines, amplifying the magnetic field in the process. Inside the disk the radial component of the field is sheared into a toroidal component. The aim of this work is to establish the character of the resultant magnetic field and its dependence on the disk's parameters. We concentrate on alpha-disks driven by turbulent viscosity. Axisymmetric, two-dimensional solutions are obtained without taking into account the back-reaction of the magnetic field on the structure of the disk. The character of the magnetic field depends strongly on the magnitude of the magnetic Prandtl number, P . We present two illustrative examples of viscous disks: a so-called 'standard' steady state model of a disk around a compact star (e.g., cataclysmic variable), and a steady state model of a proto-planetary disk. In both cases, P = 1, P = 10(sup -1), and P = 10(sup -2) scenarios are calculated. Significant bending and magnification of the magnetic field is possible only for disks characterized by P of the order of 10(sup -2). In such a case, the field lines are bent sufficiently to allow the development of a centrifugally driven wind. Inside the disk the field is dominated by its toroidal component. We also investigate the dragging of the magnetic field by a nonviscous protoplanetary disk described by a phenomenological model. This scenario leads to large distortion and magnification of the magnetic field.
Wierzbicki, Michał; Barnaś, Józef; Swirkowicz, Renata
2015-12-01
The effects of electron-electron and spin-orbit interactions on the ground-state magnetic configuration and on the corresponding thermoelectric and spin thermoelectric properties in zigzag nanoribbons of two-dimensional hexagonal crystals are analysed theoretically. The thermoelectric properties of quasi-stable magnetic states are also considered. Of particular interest is the influence of Coulomb and spin-orbit interactions on the topological edge states and on the transition between the topological insulator and conventional gap insulator states. It is shown that the interplay of both interactions also has a significant impact on the transport and thermoelectric characteristics of the nanoribbons. The spin-orbit interaction also determines the in-plane magnetic easy axis. The thermoelectric properties of nanoribbons with in-plane magnetic moments are compared to those of nanoribbons with edge magnetic moments oriented perpendicularly to their plane. Nanoribbons with ferromagnetic alignment of the edge moments are shown to reveal spin thermoelectricity in addition to the conventional one.
Evidence of two-dimensional quantum Wigner Crystal in a zero magnetic field
Huang, Jian; Pfeiffer, Loren; West, Ken
2014-03-01
In disorder-dominated cases, Anderson localization occurs as a result of destructive interference effects caused by (short-ranged) random disorders. On the other hand, in interaction-dominated scenarios, striking manifestations of quantum physics emerge in response to strong inter-particle Coulomb energy (EC). The most prominent interaction-driven effect is the Wigner crystallization (WC) of electrons, an electron solid made up with spatially separated charges settling in a form of a lattice. The classical version of the crystallization, with the Debye temperature ΘD
Zero-differential conductance of two-dimensional electrons in crossed electric and magnetic fields
Bykov, A. A.; Byrnes, Sean; Dietrich, Scott; Vitkalov, Sergey; Marchishin, I. V.; Dmitriev, D. V.
2013-02-01
An electronic state with zero-differential conductance is found in nonlinear response to an electric field E applied to two dimensional Corbino discs of highly mobile carriers placed in quantizing magnetic fields. The state occurs above a critical electric field E>Eth at low temperatures and is accompanied by an abrupt dip in the differential conductance. The proposed model considers a local instability of the electric field E as the origin of the observed phenomenon. Comparison between the observed electronic state and the state with zero differential resistance, occurring in Hall bar geometry, indicates that the nonlinear response of edge states and/or skipping orbits is not essential in the studied samples. The result confirms that quantal heating is the dominant nonlinear mechanism leading to electronic states with both zero differential resistance and conductance.
Two-dimensional mathematical model of a reciprocating room-temperature Active Magnetic Regenerator
DEFF Research Database (Denmark)
Petersen, Thomas Frank; Pryds, Nini; Smith, Anders;
2008-01-01
heat exchanger. The model simulates the different steps of the AMR refrigeration cycle and evaluates the performance in terms of refrigeration capacity and temperature span between the two heat exchangers. The model was used to perform an analysis of an AMR with a regenerator made of gadolinium...... and water as the heat transfer fluid. The results show that the AMR is able to obtain a no-load temperature span of 10.9 K in a 1 T magnetic field with a corresponding work input of 93.0 kJ m−3 of gadolinium per cycle. The model shows significant temperature differences between the regenerator and the heat...... transfer fluid during the AMR cycle. This indicates that it is necessary to use two-dimensional models when a parallel-plate regenerator geometry is used....
Gallet, Basile
2015-01-01
We investigate the behavior of flows, including turbulent flows, driven by a horizontal body-force and subject to a vertical magnetic field, with the following question in mind: for very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2D, with no dependence along the vertical? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number Rm << 1: we prove that the flow becomes exactly 2D asymptotically in time, regardless of the initial condition and provided the interaction parameter N is larger than a threshold value. We call this property "absolute two-dimensionalization": the attractor of the system is necessarily a (possibly turbulent) 2D flow. We then consider the full-magnetohydrodynamic equations and we prove that, for low enough Rm and large enough N, the flow becomes exactly two-dimensional in the long-time limit provided the initial vertically-de...
Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids
Lee, Sanghyuk; Budil, David E.; Freed, Jack H.
1994-10-01
A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It encompasses the full range of motional rates from fast through very slow motions, and it also provides for microscopic as well as macroscopic molecular ordering. In these respects it is as sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction decay (FID) or echo decay is sampled. Important distinctions are made among the sources of inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied to simulate experiments of nitroxide spin labels in complex fluids such as membrane vesicles, where the MOMD model applies and these distinctions are particularly relevant, in order to extract dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY experiments on complex fluids with significant inhomogeneous broadening is also described. The theory is applied to the ultraslow motional regime, and a simple method is developed to determine rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a
Hydrogen Bonding and Multiphonon Structure in One- and Two-Dimensional Polymeric Magnets
Musfeldt, J. L.; Brown, S.; Cao, J.; Conner, M. M.; McConnell, A. C.; Southerland, H. I.; Manson, J. L.; Schlueter, J. A.; Phillips, M. D.; Turnbull, M. M.; Landee, C. P.
2007-03-01
We report a systematic investigation of the temperature dependent infrared vibrational spectra of a family of chemically related coordination polymeric magnets based upon two different bridging anions, fluoride (F^-) and bifluoride (HF2^-), in copper-pyrazine complexes including Cu(HF2)(pyz)2BF4, Cu(HF2)(pyz)2ClO4, and CuF2(H2O)(pyz)). We compare our results with several one- and two-dimensional prototype materials including Cu(NO3)2(pyz) and Cu(ClO4)(pyz) 2. Unusual low temperature hydrogen bonding, local structural transitions associated with stronger low-temperature hydrogen bonding, and striking multiphonon effects that derive from coupling of an infrared-active fundamental with strong Raman-active modes of the pyrazine building-block molecule are observed. Based on the spectroscopic evidence, these interactions are common to this family of coordination polymers and work to stabilize the low temperature magnetic state. Similar interactions are likely to be present in other molecule-based magnets.
Energy Technology Data Exchange (ETDEWEB)
Jensen, P J; Pastor, G M [Laboratoire de Physique Quantique, Universite Paul Sabatier, Centre National de la Recherche Scientifique, 118 route de Narbonne, F-31062 Toulouse (France)
2003-06-01
The low-energy properties of two-dimensional ensembles of dipole-coupled magnetic nanoparticles are studied as a function of structural disorder and particle coverage. Already small deviations from a square particle arrangement lift the degeneracies of the microvortex (MV) magnetic configuration and result in a strongly inhomogeneous magnetic order of the particle ensemble. The energy distribution of metastable states is determined. For a low degree of disorder a strongly asymmetric shape with a pronounced peak of the ground-state energy results. In contrast, for a strong disorder a Gaussian-like distribution is obtained. The average dipole energy barE{sub dip} decreases with increasing structural disorder. Above a coverage-dependent degree of disorder barE{sub dip} resembles the average dipole energy of a random particle set-up, for which a simple scaling behaviour is derived. The role of vacancies has been studied for a square particle array by determining the angular distribution of the preferred MV angle as a function of the vacancy concentration. Preferred angles along the axial as well as along the diagonal directions of the square array are obtained. A corresponding investigation for disturbed square arrays yields preferred MV angles only along the axial directions. The effect of dipole-quadrupole corrections resulting from the finite size of the particles is quantified.
Excited states of two-dimensional hydrogen atom in tilted magnetic field: Quantum chaos
Koval, Eugene A.; Koval, Oksana A.
2017-09-01
The aim of the current work is the research of the influence of a tilted magnetic field direction on the spectrum and the energy level spacing distribution of a two-dimensional (2D) hydrogen atom and of an exciton in GaAs/Al0.33Ga0.67As quantum well. It was discovered that the quantum chaos (QC) is initiated with an increasing angle α between the magnetic field direction and the normal to the atomic plane. It is characterized by the repulsion of levels leading to the eliminating of the shell structure and by changing the spectrum statistical properties. The statement about the initiation of chaos and its dominance over regular motion with increasing angle α is confirmed by the results of our calculations of the classical dynamics presented in this paper. The evolution of the spatial distribution of the square of the absolute value of the wave function at an increasing angle α was observed. The differences of calculated dependencies of energies for various excited states on the tilt angle at a wide range of the magnetic field strength were described.
Anomalous behavior of a confined two-dimensional electron within an external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Rosas, R; Riera R; Marin, J. L. [Universidad de Sonora, Hermosillo, Sonora (Mexico); Leon, H. [Instituto Superior Jose Antonio Echeverria, La Habana (Cuba)
2001-10-01
An anomalous diamagnetic behavior of a confined two-dimensional electron within an external magnetic field (perpendicular to the confining plane) is discussed in this letter. Although this finding is consistent with the pioneering work of Robnik, it has not been previously reported. When this effect occurs, the ratio between the typical length of spatial and magnetic confinement is an integer number. This property leads also to a quantization of the magnetic flux across the confining circle. The possible consequences of the peculiar behavior of the electron within such a structure are discussed. [Spanish] Se estudia una posible anomalia en las propiedades diamagneticas de un electron bidimensional confinado en presencia de un campo magnetico externo perpendicular al plano de confinamiento. Aunque los resultados obtenidos son consistentes con el trabajo pionero de Robnik, no han sido reportados anteriormente, a pesar de sus posibles aplicaciones, ya que cuando ocurre, el cociente entre la longitud magnetica y el tamano de la region de confinamiento es un numero entero, propiedad que establece una cuantizacion del flujo magnetico que atraviesa el circulo confinante. Se discuten las posibles consecuencias del comportamiento peculiar del electron en este tipo de estructura.
Energy Technology Data Exchange (ETDEWEB)
Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.; Mistry, Divyang; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Cunningham, John E., E-mail: j.e.cunningham@leeds.ac.uk [School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Sydoruk, Oleksiy [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)
2016-02-29
We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.
Institute of Scientific and Technical Information of China (English)
ZHANG Xuan; CHEN Shu-Wen; LIAO Qing-Hua; YU Tian-Bao; LIU Nian-Hua; HUANG Yong-Zhen
2011-01-01
@@ We propose and analyze a novel ultra-compact polarization beam splitter based on a resonator cavity in a two-dimensional photonic crystal.The two polarizations can be separated efficientlyby the strong coupling between the microcavities and the waveguides occurring around the resonant frequency of the cavities.The transmittance of two polarized light around 1.55 iim can be more than 98.6%, and the size of the device is less than 15 μm x 13μm,so these features will play an important role in future integrated optical circuits.
Experimental study of two-dimensional quantum Wigner solid in zero magnetic field
Energy Technology Data Exchange (ETDEWEB)
Huang, Jian [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States)
2014-03-31
At temperatures T → 0, strongly interacting two-dimensional (2D) electron systems manifest characteristic insulating behaviors that are key for understanding the nature of the ground state in light of the interplay between disorder and electron-electron interaction. In contrast to the hopping conductance demonstrated in the insulating side of the metal-to-insulator transition, the ultra-high quality 2D systems exhibit nonactivated T-dependence of the conductivity even for dilute carrier concentrations down to 7×10{sup 8} cm{sup −2}. The apparent metal-to-insulator transition (MIT) occurs for a large r{sub s} value around 40 for which a Wigner Crystalllization is expected. The magnetoresistance for a series of carrier densities in the vicinity of the transition exhibits a characteristic sign change in weak perpendicular magnetic field. Within the Wigner Crystallization regime (with r{sub s} > 40), we report an experimental observation of a characteristic nonlinear threshold behavior from a high-resolution dc dynamical response as an evidence for aWigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under an increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. Moreover, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to quantum processes.
Experimental study of two-dimensional quantum Wigner solid in zero magnetic field
Huang, Jian; Pfeiffer, L. N.; West, K. W.
2014-03-01
At temperatures T → 0, strongly interacting two-dimensional (2D) electron systems manifest characteristic insulating behaviors that are key for understanding the nature of the ground state in light of the interplay between disorder and electron-electron interaction. In contrast to the hopping conductance demonstrated in the insulating side of the metal-to-insulator transition, the ultra-high quality 2D systems exhibit nonactivated T-dependence of the conductivity even for dilute carrier concentrations down to 7×108 cm-2. The apparent metal-to-insulator transition (MIT) occurs for a large rs value around 40 for which a Wigner Crystalllization is expected. The magnetoresistance for a series of carrier densities in the vicinity of the transition exhibits a characteristic sign change in weak perpendicular magnetic field. Within the Wigner Crystallization regime (with rs > 40), we report an experimental observation of a characteristic nonlinear threshold behavior from a high-resolution dc dynamical response as an evidence for aWigner crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The system under an increasing current drive exhibits voltage oscillations with negative differential resistance. They confirm the coexistence of a moving crystal along with striped edge states as observed for electrons on helium surfaces. Moreover, the threshold is well below the typical classical levels due to a different pinning and depinning mechanism that is possibly related to quantum processes.
Scaling behavior of the dipole-coupling energy in two-dimensional disordered magnetic nanostructures
Jensen, P. J.; Pastor, G. M.
2003-11-01
Numerical calculations of the average dipole-coupling energy Edip in two-dimensional disordered magnetic nanostructures are performed as a function of the particle coverage C. We observe that Edip scales as Edip∝Cα* with an unusually small exponent α*≃0.8 1.0 for coverages C≲20%. This behavior is shown to be primarily given by the contributions of particle pairs at short distances, which is intrinsically related to the presence of an appreciable degree of disorder. The value of α* is found to be sensitive to the magnetic arrangement within the nanostructure and to the degree of disorder. For large coverages C≳20% we obtain Edip∝Cα with α=3/2, in agreement with the straightforward scaling of the dipole coupling as in a periodic particle setup. Taking into account the effect of single-particle anisotropies, we show that the scaling exponent can be used as a criterion to distinguish between weakly interacting (α*≃1.0) and strongly interacting (α*≃0.8) particle ensembles as a function of coverage.
Ground State and Collective Modes of Magnetic Dipoles Fixed on Two-Dimensional Lattice Sites
Feldmann, John; Kalman, Gabor; Hartmann, Peter; Rosenberg, Marlene
2006-10-01
In complex (dusty) plasmas the grains may be endowed with intrinsic dipole moments. We present here our results of theoretical calculations accompanied by and Molecular Dynamics simulation findings on the ground state configuration and on the collective modes mode spectrum of a system of magnetic dipoles, interacting via the magnetic dipole pair-dipole potential, fixed on two-dimensional (2D) lattice sites. In particular, we We study a family of lattices that can be characterized by two parameters: (parallelogram)---the aspect ratio, c/a, and the rhombic angle, phi. The The new collective modes of in the system associated with the dipole-dipole interaction are the angular oscillations (or wobbling) of the direction of the dipoles about their equilibrium configurations. We identify in-plane and out-of-plane modes and display their dispersions. Orders of magnitudes of the parameters of the system relevant to possible future experiments will be discussed. JD Feldmann, G J Kalman and M Rosenberg, J. Phys. A: Math. Gen. 39 (2006) 4549-4553
Institute of Scientific and Technical Information of China (English)
Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Yu Dian-Long
2006-01-01
The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sanchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.
Institute of Scientific and Technical Information of China (English)
Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan
2012-01-01
We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs.In order to improve the filtering efficiency,a feedback method is introduced by closing the waveguide.It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency.Based on our analyses,two different types of filters are designed.The transmission spectra and scattering-light far-field patterns are measured,which agree well with theoretical prediction.In addition,the resonant filters are highly sensitive to the size of the resonant cavities,which are useful for practical applications.
Danila, Bogdan; Mocanu, Gabriela
2015-01-01
We investigate the transition to Self Organized Criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a Self Organized Critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one dimensional signatures in the magnetic two dimensional system, once the Self Organized Critical regime is established. The applications of the model for the study of Gamma Ray Bursts is briefly considered, and it is shown that some astrophysical paramet...
Luukko, P. J. J.; Räsänen, E.
2013-03-01
We present a code for solving the single-particle, time-independent Schrödinger equation in two dimensions. Our program utilizes the imaginary time propagation (ITP) algorithm, and it includes the most recent developments in the ITP method: the arbitrary order operator factorization and the exact inclusion of a (possibly very strong) magnetic field. Our program is able to solve thousands of eigenstates of a two-dimensional quantum system in reasonable time with commonly available hardware. The main motivation behind our work is to allow the study of highly excited states and energy spectra of two-dimensional quantum dots and billiard systems with a single versatile code, e.g., in quantum chaos research. In our implementation we emphasize a modern and easily extensible design, simple and user-friendly interfaces, and an open-source development philosophy. Catalogue identifier: AENR_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 11310 No. of bytes in distributed program, including test data, etc.: 97720 Distribution format: tar.gz Programming language: C++ and Python. Computer: Tested on x86 and x86-64 architectures. Operating system: Tested under Linux with the g++ compiler. Any POSIX-compliant OS with a C++ compiler and the required external routines should suffice. Has the code been vectorised or parallelized?: Yes, with OpenMP. RAM: 1 MB or more, depending on system size. Classification: 7.3. External routines: FFTW3 (http://www.fftw.org), CBLAS (http://netlib.org/blas), LAPACK (http://www.netlib.org/lapack), HDF5 (http://www.hdfgroup.org/HDF5), OpenMP (http://openmp.org), TCLAP (http://tclap.sourceforge.net), Python (http://python.org), Google Test (http://code.google.com/p/googletest/) Nature of problem: Numerical calculation
Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.
2016-07-01
The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself.
Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.
2017-06-01
A physical model describing the piezoelectric-effect-mediated influence of bending of a thin suspended cantilever with a two-dimensional electron gas on the conductivity is proposed. The model shows that the conductivity change is almost entirely caused by the rapid change in mechanical stress near the boundary of suspended and non-suspended areas, rather than by the stress itself. An experiment confirming that the electromechanical coupling is associated with the piezoelectric effect is performed. The experimentally measured conductance sensitivity to the cantilever’s vibrations agree with the developed physical model.
Resonance and Rectification in a Two-Dimensional Frenkel-Kontorova Model with Triangular Symmetry
Institute of Scientific and Technical Information of China (English)
YANG Yang; WANG Cang-Long; DUAN Wen-Shan; CHEN Jian-Min
2011-01-01
The mode-locking phenomena in the dc- and ac-driven overdamped two-dimensional Frenkel-Kontorova model with triangular symmetric structures are studied. The obtained results show that the transverse velocitylongitudinal velocity(vy) can occur when n is an odd number. It is also found in our simulations that the critical depinning force oscillates with the amplitude of ac-driven force, i.e., the system is dominated by the ac-driven force. The oscillatory behavior is strongly determined by the initial phase of ac force.
Energy Technology Data Exchange (ETDEWEB)
Votsish, A.D.; Kolesnikov, Yu.B.
1977-01-01
Results are given for an experimental study of two-dimensional turbulent flow with shifts in a plane duct in an azimuthal magnetic field. The turbulent flow was shown to become practically equal to zero in a sufficiently strong field whereas the intensity of the pulsation rate has a finite value. This is explained by the fact that the magnetic field transforms the structure of turbulence into a two-dimensional structure whose maintenance merely requires an insignificant portion of medium flow energy. 4 illustrations, 8 references.
Two-Dimensional Cavity Resonant Modes of Si Based Bragg Reflection Ridge Waveguide
Institute of Scientific and Technical Information of China (English)
CHEN San; Lu Hong-Yan; CHEN Kun-Ji; XU Jun; MA Zhong-Yuan; LI Wei; HUANG Xin-Fan
2011-01-01
@@ Si-based ridge-waveguides with Bragg reflectors are fabricated based on our method.Three resonant peaks could be obviously identified from the photoluminescence spectra, and field patterns of these resonant peaks, simulated by the finite difference time domain (FDTD) method, confirm that these peaks originate from cavity resonances.The resonant wavelengths and spatial angular distribution are given by the resonant models, which agree well with the experimental data.Experimentally, a simple method is proposed to testify the experimental and theoretical results.Such devices based on Bragg reflectors may have potential applications in light-emitting diodes, lasers and integrated photonic circuits.%Si-based ridge-waveguides with Bragg reflectors are fabricated based on our method. Three resonant peaks could be obviously identified from the photoluminescence spectra, and field patterns of these resonant peaks, simulated by the finite difference time domain (FDTD) method, confirm that these peaks originate from cavity resonances. The resonant wavelengths and spatial angular distribution are given by the resonant models, which agree well with the experimental data. Experimentally, a simple method is proposed to testify the experimental and theoretical results. Such devices based on Bragg reflectors may have potential applications in light-emitting diodes, lasers and integrated photonic circuits.
Jiang, Quan; Zhou, Xiao Yang; Chin, Jessie Yao; Cui, Tie Jun
2011-07-01
The two-dimensional (2D) spatial electric-field mapping apparatus [Opt. Express 14, 8694 (2006)] plays an important role in experiments involving metamaterials, such as the verification of free-space and ground-plane invisibility cloaks. However, such an apparatus is valid only for the transverse-electric (TE) mode and is invalid for the transverse-magnetic (TM) mode, as it requires perfectly magnetic conducting (PMC) planes, which do not exist in nature. In this paper, we propose a 2D spatial magnetic-field mapping apparatus based on artificial magnetic conductor (AMC) plates. The AMC structure is designed using periodically perfectly electrical conducting patches with a sub-wavelength size on a dielectric substrate backed with the ground plane, which can simulate a PMC plane. Using two parallel PMC plates to form a TM-wave planar waveguide, we realize the 2D spatial magnetic-field mapping apparatus in order to measure the external and internal magnetic fields of metamaterials. Two types of excitations, a plane-wave source and a magnetic dipole, are used to feed the system. In order to validate the performance of the magnetic-field mapper, two gradient-index metamaterial lenses are measured, and the experimental results are in good agreement with the full-wave simulations.
Resonant scattering and mode coupling in two-dimensional textured planar waveguides.
Cowan, A R; Paddon, P; Pacradouni, V; Young, J F
2001-05-01
A heuristic formalism is developed for efficiently determining the specular reflectivity spectrum of two-dimensionally textured planar waveguides. The formalism is based on a Green's function approach wherein the electric fields are assumed to vary little over the thickness of the textured part of the waveguide. Its accuracy, when the thickness of the textured region is much smaller than the wavelength of relevant radiation, is verified by comparison with a much less efficient, exact finite difference solution of Maxwell's equations. In addition to its numerical efficiency, the formalism provides an intuitive explanation of Fano-like features evident in the specular reflectivity spectrum when the incident radiation is phase matched to excite leaky electromagnetic modes attached to the waveguide. By associating various Fourier components of the scattered field with bare slab modes, the dispersion, unique polarization properties, and lifetimes of these Fano-like features are explained in terms of photonic eigenmodes that reveal the renormalization of the slab modes due to interaction with the two-dimensional grating. An application of the formalism, in the analysis of polarization-insensitive notch filters, is also discussed.
Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study.
Yu, Guodong; Jiang, Liwei; Zheng, Yisong
2015-07-01
By means of density functional theory calculations, we predict a new two-dimensional phosphorus allotrope with the Kagome-like lattice(Kagome-P). It is an indirect gap semiconductor with a band gap of 1.64 eV. The gap decreases sensitively with the compressive strain. In particular, shrinking the lattice beyond 13% can drive it into metallic state. In addition, both the AA and AB stacked Kagome-P multi-layer structures exhibit a bandgap much smaller than 1.64 eV. Edges in the Kagome-P monolayer probably suffer from the edge reconstruction. An isolated zigzag edge can induce antiferromagnetic (AF) ordering with a magnetic transition temperature of 23 K. More importantly, when applying a stretching strain beyond 4%, such an edge turns to possess a ferromagnetic ground state. A very narrow zigzag-edged Kagome-P ribbon displays the spin moment distribution similar to the zigzag-edged graphene nanoribbon because of the coupling between the opposites edges. But the inter-edge coupling in the Kagome-P ribbon vanishes more rapidly as the ribbon width increases. These properties make it a promising material in spintronics.
Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Li Xiaowei [Peking University, Center for Applied Physics and Technology, College of Engineering (China); Zhou Jian [Peking University, Department of Materials Science and Engineering (China); Wang Qian, E-mail: qianwang2@pku.edu.cn [Peking University, Center for Applied Physics and Technology, College of Engineering (China); Jena, Puru [Virginia Commonwealth University, Department of Physics (United States)
2012-08-15
Two-dimensional (2D) magnetic kagome lattices are constructed using silicon carbide triangular nanoflakes (SiC-TNFs). Two types of structures with alternating Si and C atoms are studied: the first one is constructed using the C-edged SiC-TNFs as the building blocks and C atoms as the linkers of kagome sites (TNF{sub N}-C-TNF{sub N}) while the second one is composed of the Si-edged SiC-TNFs with Si atoms as linkers (TNF{sub N}-Si-TNF{sub N}). Using density functional theory-based calculations, we show that the fully relaxed TNF{sub N}-C-TNF{sub N} retains the morphology of regular kagome lattice and is ferromagnetism. On the other hand, the TNF{sub N}-Si-TNF{sub N} structure is deformed and antiferromagnetic. However, the ground state of TNF{sub N}-Si-TNF{sub N} structure can be transformed from the antiferromagnetic to ferromagnetic state by applying tensile strain. Monte Carlo simulations indicate that the SiC-TNFs-based kagome lattices can be ferromagnetic at room temperature.
Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study
Yu, Guodong; Jiang, Liwei; Zheng, Yisong
2015-06-01
By means of density functional theory calculations, we predict a new two-dimensional phosphorus allotrope with the Kagome-like lattice(Kagome-P). It is an indirect gap semiconductor with a band gap of 1.64 eV. The gap decreases sensitively with the compressive strain. In particular, shrinking the lattice beyond 13% can drive it into metallic state. In addition, both the AA and AB stacked Kagome-P multi-layer structures exhibit a bandgap much smaller than 1.64 eV. Edges in the Kagome-P monolayer probably suffer from the edge reconstruction. An isolated zigzag edge can induce antiferromagnetic (AF) ordering with a magnetic transition temperature of 23 K. More importantly, when applying a stretching strain beyond 4%, such an edge turns to possess a ferromagnetic ground state. A very narrow zigzag-edged Kagome-P ribbon displays the spin moment distribution similar to the zigzag-edged graphene nanoribbon because of the coupling between the opposites edges. But the inter-edge coupling in the Kagome-P ribbon vanishes more rapidly as the ribbon width increases. These properties make it a promising material in spintronics.
Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions
Alves, G. A.; Vasconcelos, M. S.; Alves, T. F. A.
2016-04-01
We address the study of quasiperiodic interactions on a square lattice by using an Ising model with ferromagnetic and antiferromagnetic exchange interactions following a quasiperiodic Fibonacci sequence in both directions of a square lattice. We applied the Monte Carlo method, together with the Metropolis algorithm, to calculate the thermodynamic quantities of the system. We obtained the Edwards-Anderson order parameter qEA, the magnetic susceptibility χ , and the specific heat c in order to characterize the universality class of the phase transition. We also use the finite size scaling method to obtain the critical temperature of the system and the critical exponents β ,γ , and ν . In the low-temperature limit we obtained a spin-glass phase with critical temperature around Tc≈2.274 , and the critical exponents β ,γ , and ν , indicating that the quasiperiodic order induces a change in the universality class of the system. Also, we discovered a spin-glass ordering in a two-dimensional system which is rare and, as far as we know, the unique example is an under-frustrated Ising model.
Ionothermal Synthesis and Magnetic Studies of Novel Two-Dimensional Metal-Formate Frameworks
Energy Technology Data Exchange (ETDEWEB)
Calderone, P.; Feygenson, M.; Forster, P.M.; Borkowski, L.A.; Teat, S.J. Aronson, M.C.; Parise, J.B.
2011-03-21
Five novel two-dimensional frameworks containing formate-bridged metal-centered octahedra are synthesized ionothermally from two ionic liquids previously unused as solvents in hybrid synthesis, 2-hydroxyethylammonium (HEA) formate, and 1-hydroxy-3-proplyammonium (HPA) formate. Templating effects of the cation from each ionic liquid drive the formation of different structures. [NH{sub 3}C{sub 2}H{sub 4}OH]{sub 2}[M(CHO{sub 2}){sub 4}] (1: M = Co, 2: M = Ni) exhibit the same stoichiometry and connectivity as their manganese analogue (3: M = Mn), but the manganese form exhibits a different topology from 1 and 2. [NH{sub 3}C{sub 3}H6OH][M(CHO{sub 2}){sub 3}(H{sub 2}O)] (4: M = Co, 5: M = Mn) were synthesized using the HPA formate ionic liquid with a metal-formate connectivity related to those of 1-3. Canted antiferromagnetic ordering occurs at low temperatures (1: T{sub N} = 7.0 K, 2: T{sub N} = 4.6 K, 3: T{sub N} = 8.0 K, 4: T{sub N} = 7.0 K, 5: T{sub N} = 9.2 K), similar to the magnetic properties previously reported for other metal-formate hybrid materials.
Ionothermal synthesis and magnetic studies of novel two-dimensional metal-formate frameworks.
Calderone, Paul J; Forster, Paul M; Borkowski, Lauren A; Teat, Simon J; Feygenson, Mikhail; Aronson, Meigan C; Parise, John B
2011-03-21
Five novel two-dimensional frameworks containing formate-bridged metal-centered octahedra are synthesized ionothermally from two ionic liquids previously unused as solvents in hybrid synthesis, 2-hydroxyethylammonium (HEA) formate, and 1-hydroxy-3-proplyammonium (HPA) formate. Templating effects of the cation from each ionic liquid drive the formation of different structures. [NH(3)C(2)H(4)OH](2)[M(CHO(2))(4)] (1: M = Co, 2: M = Ni) exhibit the same stoichiometry and connectivity as their manganese analogue (3: M = Mn), but the manganese form exhibits a different topology from 1 and 2. [NH(3)C(3)H(6)OH][M(CHO(2))(3)(H(2)O)] (4: M = Co, 5: M = Mn) were synthesized using the HPA formate ionic liquid with a metal-formate connectivity related to those of 1-3. Canted antiferromagnetic ordering occurs at low temperatures (1: T(N) = 7.0 K, 2: T(N) = 4.6 K, 3: T(N) = 8.0 K, 4: T(N) = 7.0 K, 5: T(N) = 9.2 K), similar to the magnetic properties previously reported for other metal-formate hybrid materials.
National Research Council Canada - National Science Library
van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B
2015-01-01
...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...
1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy
Abidi, S.L.; Adams, B.R.
1987-01-01
Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.
2015-06-01
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
Energy Technology Data Exchange (ETDEWEB)
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H., E-mail: jhf3@cornell.edu [Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853 (United States)
2015-06-07
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
Landim, C.; Lemire, P.
2016-07-01
We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.
Müller, Kathrin; Osterman, Natan; Babič, Dušan; Likos, Christos N; Dobnikar, Jure; Nikoubashman, Arash
2014-05-13
We study the pattern formation in a two-dimensional system of superparamagnetic colloids interacting via spatially coherent induced interactions driven by an external precessing magnetic field. On the pair level, upon changing the opening angle of the external field, the interactions smoothly vary from purely repulsive (opening angle equal to zero) to purely attractive (time-averaged pair interactions at an opening angle of 90°). In the experiments, we observed ordered hexagonal crystals at the repulsive end and coarsening frothlike structures for purely attractive interactions. In both of these limiting cases, the dense colloidal systems can be sufficiently accurately described by assuming pairwise additivity of the interaction potentials. However, for a range of intermediate angles, pronounced many-body depolarization effects compete with the direct induced interactions, resulting in inherently anisotropic effective interactions. Under such conditions, we observed the decay of hexagonal order with the concomitant formation of short chains and percolated networks of chains coexisting with free colloids. In order to describe and investigate these systems theoretically, we developed a coarse-grained model of a binary mixture of patchy and nonpatchy particles with the ratio of patchy and nonpatchy colloids as the order parameter. Combining genetic algorithms with Monte Carlo simulations, we optimized the model parameters and quantitatively reproduced the experimentally observed sequence of colloidal structures. The results offer new insight into the anisotropy induced by the many-body effects. At the same time, they allow for a very efficient description of the system by means of a pairwise-additive Hamiltonian, whereupon the original, one-component system features a two-component mixture of isotropic and patchy colloids.
The band gap variation of a two dimensional binary locally resonant structure in thermal environment
Li, Zhen; Wang, Xian; Li, Yue-ming
2017-01-01
In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap). A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.
The band gap variation of a two dimensional binary locally resonant structure in thermal environment
Directory of Open Access Journals (Sweden)
Zhen Li
2017-01-01
Full Text Available In this study, the numerical investigation of thermal effect on band gap dynamical characteristic for a two-dimensional binary structure composed of aluminum plate periodically filled with nitrile rubber cylinder is presented. Initially, the band gap of the binary structure variation trend with increasing temperature is studied by taking the softening effect of thermal stress into account. A breakthrough is made which found the band gap being narrower and shifting to lower frequency in thermal environment. The complete band gap which in higher frequency is more sensitive to temperature that it disappears with temperature increasing. Then some new transformed models are created by changing the height of nitrile rubber cylinder from 1mm to 7mm. Simulations show that transformed model can produce a wider band gap (either flexure or complete band gap. A proper forbidden gap of elastic wave can be utilized in thermal environment although both flexure and complete band gaps become narrower with temperature. Besides that, there is a zero-frequency flat band appearing in the first flexure band, and it becomes broader with temperature increasing. The band gap width decreases trend in thermal environment, as well as the wider band gap induced by the transformed model with higher nitrile rubber cylinder is useful for the design and application of phononic crystal structures in thermal environment.
Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance
Liang, Zhichun; Crepeau, Richard H.; Freed, Jack H.
2005-12-01
Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
Analytic solution of a relativistic two-dimensional hydrogen-like atom in a constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Villalba, V.M. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica; Pino, R. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica]|[Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apdo 21827, Caracas 1020-A (Venezuela)
1998-01-26
We obtain exact solutions of the Klein-Gordon and Pauli-Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states. (orig.). 7 refs.
Sun, Xiankai; Poot, Menno; Wong, Chee Wei; Tang, Hong X
2012-01-01
We demonstrate a new optomechanical device system which allows highly efficient transduction of femtogram nanobeam resonators. Doubly clamped nanomechanical resonators with mass as small as 25 fg are embedded in a high-finesse two-dimensional photonic crystal nanocavity. Optical transduction of the fundamental flexural mode around 1 GHz was performed at room temperature and ambient conditions, with an observed displacement sensitivity of 0.94 fm/Hz^(1/2). Comparison of measurements from symmetric and asymmetric double-beam devices reveals hybridization of the mechanical modes where the structural symmetry is shown to be the key to obtain a high mechanical quality factor. Our novel configuration opens the way for a new category of "NEMS-in-cavity" devices based on optomechanical interaction at the nanoscale.
Fratila, R.M.; Gomez, M.V.; Sykora, S.; Velders, A.H.
2014-01-01
Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical technique, but its low sensitivity and highly sophisticated, costly, equipment severely constrain more widespread applications. Here we show that a non-resonant planar transceiver microcoil integrated in a microfluidic chip (dete
Energy Technology Data Exchange (ETDEWEB)
Lee, Jaesung; Feng, Philip X.-L., E-mail: philip.feng@case.edu [Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States); Krupcale, Matthew J. [Department of Electrical Engineering and Computer Science, Case School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States); Department of Physics, College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)
2016-01-11
We report on experimental investigation and analysis of γ-ray radiation effects on two-dimensional molybdenum disulfide (MoS{sub 2}) drumhead nanomechanical resonators vibrating at megahertz frequencies. Given calibrated dosages of γ-ray radiation of ∼5000 photons with energy at 662 keV, upon exposure over 24 or 12 h, all the MoS{sub 2} resonators exhibit ∼0.5–2.1% resonance frequency upshifts due to the ionizing γ-ray induced charges and their interactions. The devices show γ-ray photon responsivity of ∼30–82 Hz/photon, with an intrinsic γ-ray sensitivity (limit of detection) estimated to approach ∼0.02–0.05 photon. After exposure expires, resonance frequencies return to an ordinary tendency where the frequency variations are dominated by long-term drift. These γ-ray radiation induced frequency shifts are distinctive from those due to pressure variation or surface adsorption mechanisms. The measurements and analyses show that MoS{sub 2} resonators are robust yet sensitive to very low dosage γ-ray, demonstrating a potential for ultrasensitive detection and early alarm of radiation in the very low dosage regime.
Observation of spin diffusion in zero-field magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Suter, D.; Jarvie, T.P.; Sun, B.; Pines, A.
1987-07-06
We report the measurement of spin diffusion at zero field, observed by two-dimensional deuterium magnetic resonance of a polycrystalline sample. This demonstrates for the first time an appealing feature of pulsed zero-field magnetic resonance, namely the potential for structure determination in solids without the need for single crystals or oriented samples.
Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging
Wong, C. L.; Ho, H. P.; Yu, T. T.; Suen, Y. K.; Chow, Winnie W. Y.; Wu, S. Y.; Law, W. C.; Yuan, W.; Li, W. J.; Kong, S. K.; Lin, Chinlon
2007-04-01
We present a biosensor design based on capturing the two-dimenstional (2D) phase image of surface plasmon resonance (SPR). This 2D SPR imaging technique may enable parallel label-free detection of multiple analytes and is compatible with the microarray chip platform. This system uses our previously reported differential phase measurement approach, in which 2D phase maps obtained from the signal (P) and reference (S) polarizations are compared pixel by pixel. This technique greatly improves detection resolution as the subtraction step can eliminate measurement fluctuations caused by external disturbances as they essentially appear in both channels. Unlike conventional angular SPR systems, in which illumination from a range of angles must be used, phase measurement requires illumination from only one angle, thus making it well suited for 2D measurement. Also, phase-stepping introduced from a moving mirror provides the necessary modulation for accurate detection of the phase. In light of the rapidly increasing need for fast real-time detection, quantification, and identification of a range of proteins for various biomedical applications, our 2D SPR phase imaging technique should hold a promising future in the medical device market.
Semisuper Efimov Effect of Two-Dimensional Bosons at a Three-Body Resonance
Nishida, Yusuke
2017-06-01
Wave-particle duality in quantum mechanics allows for a halo bound state whose spatial extension far exceeds a range of the interaction potential. What is even more striking is that such quantum halos can be arbitrarily large on special occasions. The two examples known so far are the Efimov effect and the super Efimov effect, which predict that spatial extensions of higher excited states grow exponentially and double exponentially, respectively. Here, we establish yet another new class of arbitrarily large quantum halos formed by spinless bosons with short-range interactions in two dimensions. When the two-body interaction is absent but the three-body interaction is resonant, four bosons exhibit an infinite tower of bound states whose spatial extensions scale as Rn˜e(π n )2/27 for a large n . The emergent scaling law is universal and is termed a semisuper Efimov effect, which together with the Efimov and super Efimov effects constitutes a trio of few-body universality classes allowing for arbitrarily large quantum halos.
Anisotropic States of Two-Dimensional Electrons in High Magnetic Fields
Ettouhami, A. M.; Doiron, C. B.; Klironomos, F. D.; Côté, R.; Dorsey, Alan T.
2006-05-01
We study the collective states formed by two-dimensional electrons in Landau levels of index n≥2 near half filling. By numerically solving the self-consistent Hartree-Fock (HF) equations for a set of oblique two-dimensional lattices, we find that the stripe state is an anisotropic Wigner crystal (AWC), and determine its precise structure for varying values of the filling factor. Calculating the elastic energy, we find that the shear modulus of the AWC is small but finite (nonzero) within the HF approximation. This implies, in particular, that the long-wavelength magnetophonon mode in the stripe state vanishes like q3/2 as in an ordinary Wigner crystal, and not like q5/2 as was found in previous studies where the energy of shear deformations was neglected.
van Agthoven, Maria A; Delsuc, Marc-André; Bodenhausen, Geoffrey; Rolando, Christian
2013-01-01
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.
Resonantly excited exciton dynamics in two-dimensional MoSe2 monolayers
Scarpelli, L.; Masia, F.; Alexeev, E. M.; Withers, F.; Tartakovskii, A. I.; Novoselov, K. S.; Langbein, W.
2017-07-01
We report on the exciton and trion density dynamics in a single layer of MoSe2, resonantly excited and probed using three-pulse four-wave mixing (FWM), at temperatures from 300 K to 77 K. A multiexponential third-order response function for amplitude and phase of the heterodyne-detected FWM signal including four decay processes is used to model the data. We provide a consistent interpretation within the intrinsic band structure, not requiring the inclusion of extrinsic effects. We find an exciton radiative lifetime in the subpicosecond range consistent to what has been recently reported by Jakubczyk et al. [Nano Lett. 16, 5333 (2016), 10.1021/acs.nanolett.6b01060]. After the dominating radiative decay, the remaining exciton density, which has been scattered from the initially excited direct spin-allowed radiative state into dark states of different nature by exciton-phonon scattering or disorder scattering, shows a slower dynamics, covering 10-ps to 10-ns time scales. This includes direct spin-allowed transitions with larger in-plane momentum, as well as indirect and spin-forbidden exciton states. We find that exciton-exciton annihilation is not relevant in the observed dynamics, in variance from previous finding under nonresonant excitation. The trion density at 77 K reveals a decay of the order of 1 ps, similar to what is observed for the exciton. After few tens of picoseconds, the trion dynamics resembles the one of the exciton, indicating that trion ionization occurs on this time scale.
Studies of two-dimensional MoGe superconductors in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kapitulnik, A. (Stanford Univ., CA (United States). Dept. of Applied Physics); Yazdani, A. (Stanford Univ., CA (United States). Dept. of Applied Physics); Urbach, J.S. (Stanford Univ., CA (United States). Dept. of Applied Physics); White, W.R. (Stanford Univ., CA (United States). Dept. of Applied Physics); Beasley, M.R. (Stanford Univ., CA (United States). Dept. of Applied Physics)
1994-03-01
The H-T phase diagram of two-dimensional amorphous MoGe superconductors is studied near H[sub c2] and near the melting line of the vortex lattice. Good agreement with the lowest Landau level approximation is found for the broadening of the specific heat in a field. We also find that melting of the vortex lattice can be observed only on short enough length scales, shorter than the disorder-mediated lattice correlation length. (orig.)
Ogawa, Shinpei; Takagawa, Yousuke; Kimata, Masafumi
2016-11-01
The spectral discrimination function of uncooled infrared (IR) sensors has significant advantages for applications such as fire detection, gas analysis, and biological analysis. We have previously demonstrated wavelength-selective uncooled IR sensors using two-dimensional plasmonic absorbers (2-D PLAs) over a wide range spanning the middle- and long-wavelength IR regions. 2-D PLAs are highly promising in terms of practical application due to the ease of fabrication and robustness for structural fluctuations. However, dual-band operation based on this concept has not yet been investigated, even though the ability to absorb in two different wavelength bands is extremely important for object recognition. Thus, a dual-band uncooled IR sensor was developed that employs Fano resonance in the plasmonic structures. To achieve dual-band detection, asymmetric periods in the orthogonal x- and y-directions were introduced into 2-D PLAs. Theoretical investigations predicted an asymmetric absorbance line shape dependent on the polarization attributed to Fano resonance. The spectral responsivity of the developed sensor demonstrated that selective detection occurred in two different wavelength bands due to polarization-dependent Fano resonance. The results obtained in this study will be applicable to the development of advanced sensors capable of multiband detection in the IR region.
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses ... of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical ...
Wang, Xingzhi; Du, Kezhao; Liu, Yu Yang Fredrik; Hu, Peng; Zhang, Jun; Zhang, Qing; Owen, Man Hon Samuel; Lu, Xin; Gan, Chee Kwan; Sengupta, Pinaki; Kloc, Christian; Xiong, Qihua
2016-09-01
Metal phosphorous trichalcogenide is an important group of layered two-dimensional (2D) materials with potentially diverse applications in low-dimensional magnetic and spintronic devices. Herein we present a comprehensive investigation on the lattice dynamics and spin-phonon interactions of mechanically exfoliated atomically thin 2D magnetic material—iron phosphorus trisulfide (FePS3) by Raman spectroscopy and first principle calculations. Layer-number and temperature dependent Raman spectroscopy suggests a magnetic persistence in FePS3 even down to monolayer regime through the spin-phonon coupling, while the Néel temperature decreases from 117 K in bulk to 104 K in monolayer sample. Our studies advocate the intriguing magnetic properties in 2D crystals and suggest that FePS3 is a promising candidate material for future magnetic applications.
Zero modes of the Dirac operator on a noncompact two-dimensional surface in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sitenko, Y.A. (Institute of Theoretical Physics, Academy of Sciences, Ukrainian SSR (UA))
1989-09-01
We investigate zero modes of the two-dimensional Dirac operator on a noncompact singly connected surface in an external magnetic field. The number of square-integrable zero modes is shown to be determined by global characteristics of the external field and surface: the flux of the magnetic field through the surface and the Gauss curvature integrated over the surface. The equivalence of the square integrability condition for the noncompact surface to the conditions of the index theorem for a closed compact surface is discussed.
Arsenic-bridged magnetic interactions in an emerging two-dimensional FeAs nanostructure on MnAs
Helman, Christian; Ferrari, Valeria; Llois, Ana Maria
2015-08-01
The extreme case of an Fe monolayer deposited onto a manganese arsenide (MnAs) substrate is analyzed using density functional theory. We find that an FeAs quasi-two-dimensional antiferromagnetic surface nanostructure emerges. This nanostructure, which is magnetically nearly decoupled from the substrate, is due to bonding effects arising from the arsenic atoms bridging the Fe magnetic interactions. These interactions are studied and modeled using a Heisenberg-type Hamiltonian. They display an angular dependence which is characteristic of superexchange-like interactions, which are of the same order of magnitude as those appearing in Fe-based pnictides.
Magnetic Resonance Force Microscopy System
Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children and Radiation ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children and Radiation Safety ...
Dynamic effect of overhangs and islands at the depinning transition in two-dimensional magnets.
Zhou, N J; Zheng, B
2010-09-01
With the Monte Carlo methods, we systematically investigate the short-time dynamics of domain-wall motion in the two-dimensional random-field Ising model with a driving field (DRFIM). We accurately determine the depinning transition field and critical exponents. Through two different definitions of the domain interface, we examine the dynamics of overhangs and islands. At the depinning transition, the dynamic effect of overhangs and islands reaches maximum. We argue that this should be an important mechanism leading the DRFIM model to a different universality class from the Edwards-Wilkinson equation with quenched disorder.
Scaling and universality in the two-dimensional Ising model with a magnetic field.
Mangazeev, Vladimir V; Dudalev, Michael Yu; Bazhanov, Vladimir V; Batchelor, Murray T
2010-06-01
The scaling function of the two-dimensional Ising model on the square and triangular lattices is obtained numerically via Baxter's variational corner transfer-matrix approach. The use of Aharony-Fisher nonlinear scaling variables allowed us to perform calculations sufficiently away from the critical point and to confirm all predictions of the scaling and universality hypotheses. Our results are in excellent agreement with quantum field theory calculations of Fonseca and Zamolodchikov as well as with many previously known exact and numerical calculations, including susceptibility results by Barouch, McCoy, Tracy, and Wu.
Dubinskii, Alexander A.; Maresch, Günter G.; Spiess, Hans-Wolfgang
1994-02-01
The combination of concepts of two-dimensional (2D) spectroscopy with the well-known field step electron-electron double resonance (ELDOR) method offers a practical route to recording 2D ELDOR spectra covering the full spectral range needed for electron paramagnetic resonance (EPR) of nitroxide spin labels in the solid state. The 2D ELDOR pattern provides information about molecular reorientation measured in real time, the anisotropies of electron phase, and electron spin-lattice relaxation as well as nuclear spin-lattice relaxation all of which are connected with the detailed geometry of the molecular reorientation. Thus, in 2D ELDOR the same electron spin probes the motional behavior over a wide range of correlation times from 10-4 to 10-12 s. An efficient algorithm for simulating 2D ELDOR spectra is derived, based on analytical solutions of the spin relaxation behavior for small-angle fluctuations and offers a means of quantitatively analyzing experimental data. As an example, the motion of nitroxide spin labels in a liquid-crystalline side-group polymer well below its glass transition is determined as a β-relaxation process with a mean angular amplitude of 5° and a distribution of correlation times with a mean correlation time of 0.9×10-10 s and a width of 2.5 decades.
Two dimensional electron gas confined over a spherical surface: Magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Hernando, A; Crespo, P [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P. O. Box 155, Madrid 28230 (Spain) and Dpto. Fisica de Materiales, Universidad Complutense (Spain); Garcia, M A, E-mail: antonio.hernando@adif.es [Instituto de Ceramica y Vidrio, CSIC c/Kelsen, 5 Madrid 28049 (Spain)
2011-04-01
Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10{sup 2} or 10{sup 3} Bohr magnetons.
Directory of Open Access Journals (Sweden)
Robert H. Morris
2014-11-01
Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...
Chern, Li Ern; Hwang, Kyusung; Mizoguchi, Tomonari; Huh, Yejin; Kim, Yong Baek
2017-07-01
The Kagome-lattice-based material, volborthite, Cu3V2O7(OH) 2.2 H2O , has been considered as a promising platform for discovery of unusual quantum ground states due to the frustrated nature of spin interaction. We explore possible quantum spin liquid and magnetically ordered phases in a two-dimensional nonsymmorphic lattice, which is described by the plane group p 2 g g , consistent with the spatial anisotropy of the spin model derived from density functional theory (DFT) for volborthite. Using the projective symmetry group (PSG) analysis and Schwinger boson mean field theory, we classify possible spin liquid phases with bosonic spinons and investigate magnetically ordered phases connected to such states. It is shown, in general, that only translationally invariant mean field spin liquid ansatzes are allowed in two-dimensional nonsymmorphic lattices. We study the mean field phase diagram of the DFT-derived spin model and find that possible quantum spin liquid phases are connected to two types of magnetically ordered phases, a coplanar incommensurate (q ,0 ) spiral order as the ground state and a closely competing coplanar commensurate (π ,π ) spin density wave order. In addition, periodicity enhancement of the two-spinon continuum, a consequence of symmetry fractionalization, is found in the spin liquid state connected to the (π ,π ) spin density wave order. We discuss relevance of these results to recent and future experiments on volborthite.
Du, Juan; Xia, Congxin; Xiong, Wenqi; Zhao, Xu; Wang, Tianxing; Jia, Yu
2016-08-10
Based on first-principles calculations, the electronic structures and magnetism are investigated in 3d transition metal (TM)-embedded porous two-dimensional (2D) C2N monolayers. Numerical results indicate that except Mn and Co atoms, other TM atoms can be embedded stably in the 2D C2N monolayer. Moreover, the magnetic moments of the TM-embedded C2N monolayer depend highly on the atomic number of the TM atoms. The Sc, Ti, V, Cr, Mn, Fe, Co and Ni atom-embedded C2N monolayers possess a ferromagnetic ground state, while embedding Cu can induce paramagnetic characteristics in the 2D C2N monolayer. Meanwhile, the Zn-embedded C2N monolayer exhibits a nonmagnetic ground state. These results indicate that the magnetism of 2D C2N monolayers can be tuned via embedding TM atoms.
Energy Technology Data Exchange (ETDEWEB)
Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)
2013-05-15
The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.
Kong, Wei; Yang, Fang; Liu, Songfen; Shi, Feng
2016-10-01
A Langevin dynamics simulation method is used to study the two-dimensional (2D) equilibrium structure of complex plasmas while considering an external magnetic field. The traditional Yukawa potential and a modified Yukawa potential according to Shukla et al. [Phys. Lett. A 291, 413 (2001); Shukla and Mendonca, Phys. Scr. T113 82 (2004)] and Salimullah et al. [Phys. Plasmas 10, 3047 (2003)] respectively, are employed to account for the interaction of the charged dust particles. It is found that the collisions between neutral gas and charged dust particles have minor effects on the 2D equilibrium structure of the system. Based on the modified Yukawa potential, studies on the 2D equilibrium structure show that the traditional Yukawa potential is still suitable for describing the magnetized complex plasmas, even if the shielding distance of charged dust particles is affected by the strong external magnetic field.
Joe, Yong S; Lee, Sun H; Hedin, Eric R; Kim, Young D
2013-06-01
We utilize a two-dimensional four-channel DNA model, with a tight-binding (TB) Hamiltonian, and investigate the temperature and the magnetic field dependence of the transport behavior of a short DNA molecule. Random variation of the hopping integrals due to the thermal structural disorder, which partially destroy phase coherence of electrons and reduce quantum interference, leads to a reduction of the localization length and causes suppressed overall transmission. We also incorporate a variation of magnetic field flux density into the hopping integrals as a phase factor and observe Aharonov-Bohm (AB) oscillations in the transmission. It is shown that for non-zero magnetic flux, the transmission zero leaves the real-energy axis and moves up into the complex-energy plane. We also point out that the hydrogen bonds between the base pair with flux variations play a role to determine the periodicity of AB oscillations in the transmission.
Energy Technology Data Exchange (ETDEWEB)
Sousa, Griffith Mendonça A., E-mail: griffith_mas@hotmail.com; Pires, A.S.T.
2014-03-15
The Neel and collinear ordered phases of the two-dimensional S=1 antiferromagnet with next and next near neighbor exchange interactions and easy axis single ion anisotropy, on the square lattice, are studied at low temperature using a Modified Spin Wave Theory. We calculate the low-temperature quantities as a function of the temperature, frustration and anisotropy. We calculate also the phase diagram at T=0. We found a disordered phase separating the Neel and collinear phases. - Highlights: • The phase diagrams in zero temperature. • The critical temperature was studied as a function of frustration and D. • The sublattice magnetizations and the gap were studied.
Energy Technology Data Exchange (ETDEWEB)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)
2016-05-06
In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.
Particle in short-range potential in two dimensional structure in magnetic field
Andreev, S. P.; Pavlova, T. V.
2006-01-01
An exact solution is given for the problem of determining the ground state of a charge particle in a zero range force field located in a quantum well and in a magnetic field. The dependence of the electron's ground state on the potential depth and the magnetic field is investigated in a semiconducto
Two-dimensional electric current effects on a magnetized plasma in contact with a surface
Shumack, A. E.; de Blank, H. J.; Westerhout, J.; van Rooij, G. J.
2012-01-01
Significant electric fields both parallel and perpendicular to a magnetic field have been observed and modeled self-consistently in an ITER divertor relevant plasma–wall experiment. Due to magnetization, electric current is found to penetrate the plasma beam outside of the cascaded arc plasma source
Energy Technology Data Exchange (ETDEWEB)
Cardelli, E.; Faba, A. [Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Laudani, A.; Lozito, G.M.; Riganti Fulginei, F.; Salvini, A. [Department of Engineering, Roma Tre University, Via V. Volterra 62, 00146 Rome (Italy)
2016-04-01
This paper presents a hybrid neural network approach to model magnetic hysteresis at macro-magnetic scale. That approach aims to be coupled together with numerical treatments of magnetic hysteresis such as FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, allowing a complete computer simulation with acceptable run times. The proposed Hybrid Neural System consists of four inputs representing the magnetic induction and magnetic field components at each time step and it is trained by 2D and scalar measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the Hybrid Neural System returns the predicted value of the field H at the same time step. Within the Hybrid Neural System, a suitably trained neural network is used for predicting the hysteretic behavior of the material to be modeled. Validations with experimental tests and simulations for symmetric, non-symmetric and minor loops are presented.
A neural approach for the numerical modeling of two-dimensional magnetic hysteresis
Cardelli, E.; Faba, A.; Laudani, A.; Riganti Fulginei, F.; Salvini, A.
2015-05-01
This paper deals with a neural network approach to model magnetic hysteresis at macro-magnetic scale. Such approach to the problem seems promising in order to couple the numerical treatment of magnetic hysteresis to FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, making possible a full computer simulation in a reasonable time. The neural system proposed consists of four inputs representing the magnetic field and the magnetic inductions components at each time step and it is trained by 2-d measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the neural system returns the predicted value of the field H at the same time step. A suitable partitioning of the neural system, described in the paper, makes the computing process rather fast. Validations with experimental tests and simulations for non-symmetric and minor loops are presented.
Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal
Energy Technology Data Exchange (ETDEWEB)
Wosnitza, J; Ignatchik, O; Bergk, B [Hochfeld-Magnetlabor Dresden (HLD), Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Gvozdikov, V M [Max-Planck-Institut fuer Physik komplexer Systeme, D-01187 Dresden (Germany); Hagel, J [Institut fuer Festkoerperphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Meeson, P J [H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Schlueter, J A [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Davis, H; Winter, R W; Gard, G L [Department of Chemistry, Portland State University, Portland, OR 97207 (United States)], E-mail: J.Wosnitza@fzd.de
2008-08-15
We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas (SdH) signal follow the LK theory. We can explain this behavior of the dHvA signal by small chemical-potential (CP) oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA oscillations corroborates the existence of an oscillating CP. We discuss the absence of the above spin-zero effect in the SdH signal and argue that in {beta}-prime-(BEDT-TTF){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3} it can be explained by an incoherent variable range hopping interlayer transport which is insensitive to the small CP oscillations.
Spin-zero anomaly in the magnetic quantum oscillations of a two-dimensional metal.
Energy Technology Data Exchange (ETDEWEB)
Wosnitza, J.; Gvozdikov, V. M.; Hagel, J.; Meeson, P. J.; Schlueter, J. A.; Ignatchick, O.; Winter, R. W.; Gard, G. L.; Davis, H.; Bergk, B.; Materials Science Division; Technische Univ. Dresden; Max-Planck Inst. Phys. Complex Systems; Univ. Bristol; Portland State Univ.
2008-01-01
We report on an anomalous behavior of the spin-splitting zeros in the de Haas-van Alphen (dHvA) signal of a quasi-two-dimensional organic superconductor. The zeros as well as the angular dependence of the amplitude of the second harmonic deviate remarkably from the standard Lifshitz-Kosevich (LK) prediction. In contrast, the angular dependence of the fundamental dHvA amplitude as well as the spin-splitting zeros of the Shubnikov-de Haas (SdH) signal follow the LK theory. We can explain this behavior of the dHvA signal by small chemical-potential (CP) oscillations and find a very good agreement between theory and experiment. A detailed wave-shape analysis of the dHvA oscillations corroborates the existence of an oscillating CP. We discuss the absence of the above spin-zero effect in the SdH signal and argue that in {beta}{double_prime}-(BEDT-TTF){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3} it can be explained by an incoherent variable range hopping interlayer transport which is insensitive to the small CP oscillations.
Spin dynamics and magnetic correlation length in two-dimensional quantum heisenberg antiferromagnets
Carretta; Ciabattoni; Cuccoli; Mognaschi; Rigamonti; Tognetti; Verrucchi
2000-01-10
The correlated spin dynamics and temperature dependence of the correlation length xi(T) in two-dimensional quantum (S = 1/2) Heisenberg antiferromagnets (2DQHAF) on a square lattice are discussed in light of experimental results of proton spin lattice relaxation in copper formiate tetradeuterate. In this compound the exchange constant is much smaller than the one in recently studied 2DQHAF, such as La2CuO4 and Sr2CuO2Cl2. Thus the spin dynamics can be probed in detail over a wider temperature range. The NMR relaxation rates turn out to be in excellent agreement with a theoretical mode-coupling calculation. The deduced temperature behavior of xi(T) is in agreement with high-temperature expansions, quantum Monte Carlo simulations, and the pure quantum self-consistent harmonic approximation. Contrary to the predictions of the theories based on the nonlinear sigma model, no evidence of crossover between different quantum regimes is observed.
Su, Ying; Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.
2016-09-01
The one-parameter scaling theory of localization predicts that all states in a disordered two-dimensional system with broken time reversal symmetry are localized even in the presence of strong spin-orbit coupling. While at constant strong magnetic fields this paradigm fails (recall the quantum Hall effect), it is believed to hold at weak magnetic fields. Here we explore the nature of quantum states at weak magnetic field and strongly fluctuating spin-orbit coupling, employing highly accurate numerical procedure based on level spacing distribution and transfer matrix technique combined with one parameter finite-size scaling hypothesis. Remarkably, the metallic phase, (known to exist at zero magnetic field), persists also at finite (albeit weak) magnetic fields, and eventually crosses over into a critical phase, which has already been confirmed at high magnetic fields. A schematic phase diagram drawn in the energy-magnetic field plane elucidates the occurrence of localized, metallic and critical phases. In addition, it is shown that nearest-level statistics is determined solely by the symmetry parameter β and follows the Wigner surmise irrespective of whether states are metallic or critical.
Kim, Ju H.; Han, S. Y.; Brooks, J. S.
1999-08-01
We investigate the phenomenon of magnetic breakdown in quasi-two-dimensional organic conductors such as α-(ET)2KHg(SCN)4 and κ-(ET)2Cu(NCS)2 by constructing a tight-binding model based on a realistic band structure which is derived from the crystallographic data. We solve the model numerically to compute the magnetic field dependence of the magnetization and show that the present model accounts naturally for the experimentally observed magnetization oscillation frequencies that are forbidden in the semiclassical picture. The computed values of the fundamental and magnetic breakdown frequencies with no adjustable parameters are close to the experimentally measured values. For completeness, we carry out the computation for both canonical (fixed number of particles) and grand canonical (fixed chemical potential) ensembles, and show that the forbidden frequencies appear in both cases. Hence, the appearance of anomalous frequencies in the de Haas-van Alphen effect has a quantum-mechanical origin and arises from the interplay of electronic states from two partially occupied bands near the Fermi energy as a function of magnetic field. We also compute the temperature dependence of the magnetization and apply ad hoc the Lifshitz-Kosevich analysis to the amplitudes of the Fourier components at moderately high temperatures. This yields effective mass values for α-(ET)2KHg(SCN)4 in good agreement with experimental values.
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging ( ... if possible, or removed prior to the MRI scan. Because they can interfere with the magnetic field ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful magnetic field, radio ...
The two-dimensional 4-state Potts model in a magnetic field
Berche, Bertrand; Shchur, Lev
2013-01-01
We present a solution of the non-linear renormalization group equations leading to the dominant and subdominant singular behaviours of physical quantities (free energy density, correlation length, internal energy, specific heat, magnetization, susceptibility and magnetocaloric coefficient) at the critical temperature in a non- vanishing magnetic field. The solutions i) lead to exact cancellation of logarithmic corrections in universal amplitude ratios and ii) prove recently proposed relations among logarithmic exponents.
Two dimensional, electronic particle tracking in liquids with a graphene-based magnetic sensor array
Neumann, Rodrigo F.; Engel, Michael; Steiner, Mathias
2016-07-01
The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual nanoparticles in the liquid with high accuracy and (b) the reconstruction of a particle's flow-driven trajectory across the integrated sensor array with sub-pixel precision as a function of time, in what we call the ``Magnetic nanoparticle velocimetry'' technique. Since the method does not rely on optical detection, potential lab-on-chip applications include particle tracking and flow analysis in opaque media at the sub-micron scale.The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual
On the origin of magnetic anisotropy in two dimensional CrI3
Lado, J. L.; Fernández-Rossier, J.
2017-09-01
The observation of ferromagnetic order in a monolayer of CrI3 has been recently reported, with a Curie temperature of 45 K and off-plane easy axis. Here we study the origin of magnetic anisotropy, a necessary ingredient to have magnetic order in two dimensions, combining two levels of modeling, density functional calculations and spin model Hamiltonians. We find two different contributions to the magnetic anisotropy of the material, favoring off-plane magnetization and opening a gap in the spin wave spectrum. First, ferromagnetic super-exchange across the ≃90 degree Cr-I-Cr bonds, are anisotropic, due to the spin-orbit interaction of the ligand I atoms. Second, a much smaller contribution that comes from the single ion anisotropy of the S = 3/2 Cr atom. Our results permit to establish the XXZ Hamiltonian, with a very small single ion anisotropy, as the adequate spin model for this system. Using spin wave theory we estimate the Curie temperature and we highlight the essential role played by the gap that magnetic anisotropy induces on the magnon spectrum.
Hysteretic magnetoresistance and thermal bistability in a magnetic two-dimensional hole system
Wurstbauer, Ursula; Weiss, Dieter; Dietl, Tomasz; Wegscheider, Werner; 10.1038/nphys1782
2011-01-01
Colossal negative magnetoresistance and the associated field-induced insulator-to-metal transition, the most characteristic features of magnetic semiconductors, are observed in n-type rare earth oxides and chalcogenides, p-type manganites, n-type and p-type diluted magnetic semiconductors (DMS) as well as in quantum wells of n-type DMS. Here, we report on magnetostransport studies of Mn modulation-doped InAs quantum wells, which reveal a magnetic field driven and bias voltage dependent insulator-to-metal transition with abrupt and hysteretic changes of resistance over several orders of magnitude. These phenomena coexist with the quantised Hall effect in high magnetic fields. We show that the exchange coupling between a hole and the parent Mn acceptor produces a magnetic anisotropy barrier that shifts the spin relaxation time of the bound hole to a 100 s range in compressively strained quantum wells. This bistability of the individual Mn acceptors explains the hysteretic behaviour while opening prospects for i...
Energy Technology Data Exchange (ETDEWEB)
Zhang Guangjun [School of Aerospace, Xi' an Jiao Tong University, Xi' an (China) and School of Life and Science and Technology, Xi' an Jiao Tong University, Xi' an (China) and School of Science, Air Force Engineering University, Xi' an (China)], E-mail: Zhanggj3@126.com; Xu Jianxue [School of Aerospace, Xi' an Jiao Tong University, Xi' an (China)], E-mail: jxxu@mail.xjtu.edu.cn; Wang Jue [School of Life and Science and Technology, Xi' an Jiao Tong University, Xi' an (China); Yue Zhifeng; Zou Hailin [School of Aerospace, Xi' an Jiao Tong University, Xi' an (China)
2009-11-30
In this paper stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator is analyzed by moment method. This kind of novel transition refers to the one among three potential well on two sides of bifurcation point of original system at the presence of internal noise. Several conclusions are drawn. First, the semi-analytical result of stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator can be obtained, and the semi-analytical result is qualitatively compatible with the one of Monte Carlo simulation. Second, a bifurcation of double-branch fixed point curves occurs in the moment equations with noise intensity as their bifurcation parameter. Third, the bifurcation of moment equations corresponds to stochastic resonance of original system. Finally, the mechanism of stochastic resonance is presented from another viewpoint through analyzing the energy transfer induced by the bifurcation of moment equation.
Absorption induced modulation of magnetism in two-dimensional metal-phthalocyanine porous sheets.
Zhou, Jian; Sun, Qiang
2013-05-28
Metal-phthalocyanine porous sheets have uniformly dispersed metal sites in Pc framework, making absorption happen naturally. Here, we explore the effects of absorption of chlorine atoms on magnetism in transition metal embedded phthalocyanine (poly-TMPc) sheets with TM = Cr, Mn, and Fe. We show that when one Cl is absorbed on the TM, the strong square planar crystal field becomes weak in a square pyramidal configuration and the TM is in the +3 oxidized state, resulting in the magnetic moment of 3, 4, and 5 μB for Cr, Mn, and Fe, respectively, with weak antiferromagnetic couplings. When another Cl is introduced to the TM on the other side, it extracts one electron from the Pc framework making the substrate p-doped. The magnetic coupling is antiferromagnetic for poly-CrPc-2Cl and the poly-FePc-2Cl, while it becomes ferromagnetic for poly-MnPc-2Cl, suggesting that absorption can effectively modulate the bonding environment and tune the magnetic properties of the systems, and the controlled absorption can be used to tailor materials.
The effect of magnetic field on mean flow generation by rotating two-dimensional convection
Currie, Laura K
2016-01-01
Motivated by the significant interaction of convection, rotation and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilise a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organises them leading to stronger time-averaged flows. Further, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behaviour is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even ...
Neumann, Rodrigo F; Engel, Michael; Steiner, Mathias
2016-07-14
The investigation and control of liquid flow at the nanometer scale is a key area of applied research with high relevance to physics, chemistry, and biology. We introduce a method and a device that allows the spatial resolution of liquid flow by integrating an array of graphene-based magnetic (Hall) sensors that is used for tracking the movement of magnetic nanoparticles immersed in a liquid under investigation. With a novel device concept based on standard integration processes and experimentally verified material parameters, we numerically simulate the performance of a single sensor pixel, as well as the whole sensor array, for tracking magnetic nanoparticles having typical properties. The results demonstrate that the device enables (a) the detection of individual nanoparticles in the liquid with high accuracy and (b) the reconstruction of a particle's flow-driven trajectory across the integrated sensor array with sub-pixel precision as a function of time, in what we call the "Magnetic nanoparticle velocimetry" technique. Since the method does not rely on optical detection, potential lab-on-chip applications include particle tracking and flow analysis in opaque media at the sub-micron scale.
Gorcester, Jeff; Rananavare, Shankar B.; Freed, Jack H.
1989-05-01
Electron spin-echo (ESE) and two-dimensional electron-electron double resonance (2D ELDOR) experiments have been performed as a function of director orientation and temperature in the smectic A phase of the liquid crystal S2 for the spin-probe PD-tempone(2×10-3 M). Over the entire temperature range studied (288-323 K) we observe significant 2D ELDOR cross peaks only for ΔMI =±1 indicative of 14N spin-relaxation and negligible Heisenberg exchange. From the angular dependent 14N spin-relaxation rates we obtain the dipolar spectral densities at the hyperfine (hf) frequency, whereas from a combination of ESE and 2D ELDOR we obtain the dipolar and Zeeman-dipolar spectral densities at zero frequency. The angular dependent spectral densities were successfully decomposed into their basic components in accordance with theory. The angular dependent spectral densities at the hf frequency are not predicted by a model of anisotropic rotational diffusion in a nematic orienting potential, but are consistent with predictions of a model due to Moro and Nordio of solute rototranslational diffusion in a McMillan-type potential. The angular dependence also indicates that order director fluctuations in the smectic phase are suppressed at frequencies on the order of 10 MHz. An additional contribution to solute reorientation due to cooperative hydrocarbon chain fluctuations is suggested to account for the behavior of the observed spectral densities at zero frequency. An evaluation of the relevance of several other dynamical models to this experimental work is also presented.
Advances in magnetic resonance 10
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.
Ng, C S; Yasin, E
2011-01-01
Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region, and in association with shocks, turbulence, and magnetic reconnection. Due to potentially large amplitude of electric fields within these structures, their effects on particle heating, scattering, or acceleration can be important. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. BGK modes have been studied extensively for many decades, predominately in one dimension (1D), although there have been observations showing that some of these structures have clear 3D features. While there have been approximate solutions of higher dimensional BGK modes, an exact 3D BGK mode solution in a finite magnetic field has not been found yet. Recently we have constructed exact solutions of 2D B...
Microemulsion phases in one and two dimensional magnetic models with long-range interactions
Nielsen, Erik; Bhatt, R. N.; Huse, David
2007-03-01
Spivak and Kivelson have proposed that the first order phase transition between the Wigner crystal and Fermi liquid phases of the interacting electron gas in two dimensions is pre-empted by a series of microemulsion phases characterized by phase separation on the mesoscopic scale, which may be responsible for the anomalous conductivity. We have studied analogous classical magnetic models in one and two dimensions. In particular, we present an exact analytical solution of a one dimensional classical ferromagnetic Ising spin chain frustrated by a long range antiferromagnetic interaction, which clearly exhibits such phase separation in which the mesoscale varies continuously with applied magnetic field. We describe these phases in the 1D model and consider extensions to stripe and bubble phases in two dimensions. B. Spivak and S. A.Kivelson, Physical Review B, 70 155114 (2004) K. Ng and D. Vanderbilt, Physical Review B, 52 2177 (1995)
Unusual onset of p-element magnetization in a two dimensional structure
Matar, Samir F.
2016-10-01
Based on density functional theory electronic and magnetic structure characterizations an unusual onset of spin polarization of p states is demonstrated leading to a stable ferromagnetic order within a carbon layered honeycomb-like compound. Specifically structural relaxation of formerly studied C2N in 3D network and devised here in 2D layered AlB2-type derived structure shows that the resulting ordered compound maintains the hexagonal crystal symmetry with an exceptionally large c/a ratio leading to strong localization of N states along c and letting magnetization develop within N-pz orbitals with 1.1 μB per formula unit. Anisotropic antibonding interactions between C and N layers allow interpreting the results. The compound is energetically characterized in ferromagnetic ground state versus less stable anti-ferromagnetic order.
Two-dimensional nonstationary flow of a conducting fluid, induced by a rotating magnetic field
Energy Technology Data Exchange (ETDEWEB)
Kapusta, A.B.
1977-07-01
An examination is made of a full induction problem on the planar movement of a conducting fluid in a rotating magnetic field. The solution to this problem is sought by the method of degradation into Fourier series by harmonics of the rotating field. The initial system of partial differential equations is reduced to the system 2+1 of normal differential equations that bind the amplitudes of function harmonics and electrical vector potential. A solution to the problem for small anti ..omega.. was found with an accuracy up to the second approximation. The unsteadiness of flow was found to be manifested in a form of induced cross-sectional waves, traveling along the stream tubes of this flow at a speed that is equal to the phase velocity of the magnetic field. The appearance of wave effects is explained by considerations of symmetry. 5 references, 1 figure.
Second constant of motion for two-dimensional positronium in a magnetic field
Muñoz, G
2003-01-01
Recent numerical work indicates that the classical motion of positronium in a constant magnetic field does not exhibit chaotic behavior if the system is confined to two dimensions. One would therefore expect this system to possess a second constant of the motion in addition to the total energy. In this paper we construct a generalization of the Laplace-Runge-Lenz vector and show that a component of this vector is a constant of the motion.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Shunzu; Shi, Yang [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)
2017-03-26
Considering the magneto-mechanical coupling of magnetostrictive material, the tunability of in-plane wave propagation in two-dimensional Terfenol-D/epoxy phononic crystal (PC) plate is investigated theoretically by the plane wave expansion method. Two Schemes, i.e. magnetic field is rotated in x–y plane and x–z plane, are studied, respectively. The effects of amplitude and direction of magnetic field, pre-stress and geometric parameters are discussed. For Scheme-I, band gap reaches the maximum at an optimal angle 45° of magnetic field. However, the optimal angle is 0° for Scheme-II, because band gap decreases monotonically until disappears with the increasing angle. For both cases, higher-order band gaps generate and become stronger as magnetic field amplitude increases, while increasing compressive pre-stress has the opposite effect. Meanwhile, filling fraction plays a key role in controlling band gaps. These results provide possibility for intelligent regulation and optimal design of PC plates. - Highlights: • The in-plane wave propagation in phononic crystal thin plate is tuned theoretically. • Magnetostrictive material is introduced in the study. • The effects of magnetic field and pre-stress are considered. • The variations of band gaps with external stimuli are discussed.
Effective mass theory of a two-dimensional quantum dot in the presence of magnetic field
Indian Academy of Sciences (India)
Himanshu Asnani; Raghu Mahajan; Praveen Pathak; Vijay A Singh
2009-09-01
The effective mass of electrons in low-dimensional semiconductors is position-dependent. The standard kinetic energy operator of quantum mechanics for this position-dependent mass is non-Hermitian and needs to be modified. This is achieved by imposing the BenDaniel–Duke (BDD) boundary condition. We have investigated the role of this boundary condition for semiconductor quantum dots (QDs) in one, two and three dimensions. In these systems the effective mass m i inside the dot of size R is different from the mass m o outside. Hence a crucial factor in determining the electronic spectrum is the mass discontinuity factor = /} . We have proposed a novel quantum scale, , which is a dimensionless parameter proportional to 220, where 0 represents the barrier height. We show both by numerical calculations and asymptotic analysis that the ground state energy and the surface charge density, (ρ()), can be large and dependent on . We also show that the dependence of the ground state energy on the size of the dot is infraquadratic. We also study the system in the presence of magnetic field . The BDD condition introduces a magnetic length-dependent term $(\\sqrt{\\hbar /eB})$ into and hence the ground state energy. We demonstrate that the significance of BDD condition is pronounced at large and large magnetic fields. In many cases the results using the BDD condition is significantly different from the non-Hermitian treatment of the problem.
Malic, Lidija
The sensitive and specific detection of biomolecular interactions is at the heart of many routine analyses in fundamental research, medical diagnosis and environmental monitoring. In contrast to laborious and costly multiwell plate assays, recent years have witnessed a significant progress in miniaturized and integrated biosensors, such as surface plasmon resonance (SPR), tailored to these applications. While the design of various SPR biosensors has been described in literature, a robust, multichannel, low-cost and highly sensitive solution has not yet been presented. Specifically, an integrated system that can allow surface functionalization in array format, low-volume multichannel fluidic interfacing, and increased sensitivity is sought. This thesis describes a novel electro-wetting-on-dielectric (EWOD) digital microfluidic device with integrated nanostructured biosensor interface that addresses the aforementioned issues for enhanced surface plasmon resonance imaging (SPRi) detection. We have taken the opportunity of the most recent advances in microfabrication, nanotechnology and SPR technique to develop this integrated platform. EWOD device is employed for the dynamic immobilization of bioreceptors on SPRi biosensor surface in an array fashion from sub-muL volume solutions. Programmable EWOD electric interface allows the application of an electric field at the biosensor surface for active control of the immobilized probe density and orientation, enhancing SPRi detection. Two-dimensional SPRi detection is achieved by coupling the EWOD device to SPRi instrumentation. Parallel manipulation of individual droplets allows more efficient exploitation of the biosensor surface by separating different samples for simultaneous and selective SPRi detection. Periodic gold structures (nanoposts, nanogratings and nanogrooves) residing on a surface of glass and plastic substrates are investigated to improve the SPRi sensitivity. The corresponding electromagnetic field
Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles
DEFF Research Database (Denmark)
Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob
2015-01-01
taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...
Plasmon coupling of magnetic resonances in an asymmetric gold semishell
Ye, Jian; Kong, Yan; Liu, Cheng
2016-05-01
The generation of magnetic dipole resonances in metallic nanostructures is of great importance for constructing near-zero or even negative refractive index metamaterials. Commonly, planar two-dimensional (2D) split-ring resonators or relevant structures are basic elements of metamaterials. In this work, we introduce a three-dimensional (3D) asymmetric Au semishell composed of two nanocups with a face-to-face geometry and demonstrate two distinct magnetic resonances spontaneously in the visible-near infrared optical wavelength regime. These two magnetic resonances are from constructive and destructive hybridization of magnetic dipoles of individual nanocups in the asymmetric semishell. In contrast, complete cancellation of magnetic dipoles in the symmetric semishell leads to only a pronounced electric mode with near-zero magnetic dipole moment. These 3D asymmetric resonators provide new ways for engineering hybrid resonant modes and ultra-high near-field enhancement for the design of 3D metamaterials.
Energy Technology Data Exchange (ETDEWEB)
Zhou Chenggang [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States)], E-mail: zcf@ornl.gov; Bhatt, Ravin N. [Department of Electrical Engineering, Princeton Center for Theoretical Physics, and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544 (United States)
2008-04-01
We study the effect of mass anisotropy on the magnetic ordering of the Wigner crystal phase of low density electron systems in two dimensions at T=0. We apply the instanton approximation to various ring exchange processes, which includes the lowest order Gaussian fluctuations beyond the WKB approximation. The multi-particle exchange frequencies are calculated with effective mass anisotropy, both with and without ensuing lattice distortions. We find that when sufficient mass anisotropy is present, the two-spin exchange process between the nearest neighbors becomes more frequent than the three particle processes. Therefore, its corresponding antiferromagnetic exchange exceeds the ferromagnetic exchange from the three-spin process and becomes dominant. Numerical diagonalization of small clusters with two, three, and four-spin exchange terms shows a transition from a ferromagnetic to an antiferromagnetic ground state with increasing mass anisotropy.
Functional Magnetic Resonance Imaging
Voos, Avery; Pelphrey, Kevin
2013-01-01
Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…
Single spin magnetic resonance
Wrachtrup, Jörg; Finkler, Amit
2016-08-01
Different approaches have improved the sensitivity of either electron or nuclear magnetic resonance to the single spin level. For optical detection it has essentially become routine to observe a single electron spin or nuclear spin. Typically, the systems in use are carefully designed to allow for single spin detection and manipulation, and of those systems, diamond spin defects rank very high, being so robust that they can be addressed, read out and coherently controlled even under ambient conditions and in a versatile set of nanostructures. This renders them as a new type of sensor, which has been shown to detect single electron and nuclear spins among other quantities like force, pressure and temperature. Adapting pulse sequences from classic NMR and EPR, and combined with high resolution optical microscopy, proximity to the target sample and nanoscale size, the diamond sensors have the potential to constitute a new class of magnetic resonance detectors with single spin sensitivity. As diamond sensors can be operated under ambient conditions, they offer potential application across a multitude of disciplines. Here we review the different existing techniques for magnetic resonance, with a focus on diamond defect spin sensors, showing their potential as versatile sensors for ultra-sensitive magnetic resonance with nanoscale spatial resolution.
Functional Magnetic Resonance Imaging
Voos, Avery; Pelphrey, Kevin
2013-01-01
Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…
Multidimensionally encoded magnetic resonance imaging.
Lin, Fa-Hsuan
2013-07-01
Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled.
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... The teddy bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... to remain perfectly still and follow breath-holding instructions while the images are being recorded. If you ... Images related to Magnetic Resonance Imaging (MRI) - Head Videos related to Magnetic Resonance Imaging (MRI) - Head Sponsored ...
Magnetic resonance of phase transitions
Owens, Frank J; Farach, Horacio A
1979-01-01
Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also
Magnetic and Structural Studies on Two-Dimensional Antiferromagnets (MCl)LaNb2O7 (M = Mn, Co, Cr)
Kitada, Atsushi; Tsujimoto, Yoshihiro; Nishi, Masakazu; Matsuo, Akira; Kindo, Koichi; Ueda, Yutaka; Ajiro, Yoshitami; Kageyama, Hiroshi
2016-03-01
We report magnetic and structural studies on the two-dimensional antiferromagnets (MCl)LaNb2O7 (M = Mn, Cr, Co), prepared by topochemical reactions of a layered perovskite RbLaNb2O7. Electron diffraction of these oxyhalides revealed a superstructure with a √{2}a × √{2}a cell for M = Mn and Co, and a 2a × 2a cell for M = Cr, indicating that the MCl networks are distorted from an ideal square lattice. Neutron diffraction experiments showed that M = Mn and Co exhibit a (π 0 π ) antiferromagnetic order as observed for the S = 1/2 counterparts. (CoCl)LaNb2O7 with a strong spin anisotropy shows an antiferro to weak-ferromagnetic transition at low field, followed by novel two-step metamagnetic transitions likely associated with a 1/2 plateau for 27-54 T. Possible spin structures under magnetic field are discussed in terms of an Ising-type model. By contrast, (CrCl)LaNb2O7 exhibits a (π π π ) order, which is the first observation among related oxyhalides, and a spin-flop transition at 12 T due to a weak spin anisotropy. These results suggest that a slight difference in the MCl structure and spin anisotropy provides a crucial influence on the magnetic properties.
Surzhikov, S. T.
2017-08-01
The drift-diffusion model of a Penning discharge in molecular hydrogen under pressures of about 1 Torr with regard to the external electric circuit has been proposed. A two-dimensional axially symmetric discharge geometry with a cylindrical anode and flat cathodes perpendicular to the symmetry axis has been investigated. An external magnetic field of about 0.1 T is applied in the axial direction. Using the developed drift-diffusion model, the electrodynamic structure of a Penning discharge in the pressure range of 0.5-5 Torr at a current source voltage of 200-500 V is numerically simulated. The evolution of the discharge electrodynamic structure upon pressure variations in zero magnetic field (the classical glow discharge mode) and in the axial magnetic field (Penning discharge) has been studied using numerical experiments. The theoretical predictions of the existence of an averaged electron and ion motion in a Penning discharge both in the axial and radial directions and in the azimuthal direction have been confirmed by the calculations.
Cross, J O; Newville, M; Maranville, B B; Bordel, C; Hellman, F; Harris, V G
2010-04-14
The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt(3) alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt(3) films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt(3) alloy films, and establish a length scale on the order of 10 Å for the Co clusters.
Energy Technology Data Exchange (ETDEWEB)
Cross, J O [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Newville, M [Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 (United States); Maranville, B B; Hellman, F [Department of Physics, University of California at San Diego, La Jolla, CA 92093 (United States); Bordel, C [Department of Physics, University of California at Berkeley, CA 94720 (United States); Harris, V G, E-mail: cbordel@berkeley.ed [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)
2010-04-14
The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt{sub 3} alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt{sub 3} films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt{sub 3} alloy films, and establish a length scale on the order of 10 A for the Co clusters.
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive medical ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...
Parallel Magnetic Resonance Imaging
Uecker, Martin
2015-01-01
The main disadvantage of Magnetic Resonance Imaging (MRI) are its long scan times and, in consequence, its sensitivity to motion. Exploiting the complementary information from multiple receive coils, parallel imaging is able to recover images from under-sampled k-space data and to accelerate the measurement. Because parallel magnetic resonance imaging can be used to accelerate basically any imaging sequence it has many important applications. Parallel imaging brought a fundamental shift in image reconstruction: Image reconstruction changed from a simple direct Fourier transform to the solution of an ill-conditioned inverse problem. This work gives an overview of image reconstruction from the perspective of inverse problems. After introducing basic concepts such as regularization, discretization, and iterative reconstruction, advanced topics are discussed including algorithms for auto-calibration, the connection to approximation theory, and the combination with compressed sensing.
2008-01-01
The exact partition function of the two-dimensional nearest neighbour Ising model pertaining to square lattices is derived for N sites in the case of a non-vanishing magnetic field.When the magnetic field is zero,the partition functions estimated from the present analysis are identical with those arising from Onsager's exact solution.
Institute of Scientific and Technical Information of China (English)
Zhai Zhi-Yuan; Li Yu-Qi; Pan Xiao-Yin
2012-01-01
We investigate the effects due to anisotropy and magnetic field interaction for a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot.The specific heat is studied with varying temperature,anisotropy,and magnetic field strength.The cases without and with the inclusion of the spin Zeeman interaction are considered.
Institute of Scientific and Technical Information of China (English)
Liu Dang-Ting; Tian Ye; Chen Geng-Hua; Yang Qian-Sheng
2008-01-01
Based on the results of explicit forms of free energy density for each possible arrangement of magnetization fluxes in large-scale two-dimensional (2D) square Π-loop arrays given by Li et al [2007 Chin.Phys.16 1450],the field-cooled superconducting phase transition is further investigated by analysing the free energy of the arrays with a simplified symmetrical model.Our analytical result is exactly the same as that obtained in Li's paper by means of numerical calculations.It is shown that the phase transition splits into two branches with either ferromagnetic or anti-ferromagnetic flux ordering,which depends periodically on the strength of external magnetic flux φe through each loop and monotonically on the screen parameter β of the loops in the arrays.In principle,the diagram of the phase branches is similar to that of its one-dimensional counterpart.The influence of thermal fluctuation on the flux ordering during the transition from normal to superconducting states of the Π-loop arrays is also discussed.
Two-dimensional inflow-wind solution of black hole accretion with an evenly symmetric magnetic field
Mosallanezhad, Amin; Yuan, Feng
2015-01-01
We solve the two-dimensional magnetohydrodynamic (MHD) equations of black hole accretion with the presence of magnetic field. The field includes a turbulent component, whose role is represented by the viscosity, and a large-scale ordered component. The latter is further assumed to be evenly symmetric with the equatorial plane. The equations are solved in the $r-\\theta$ plane of a spherical coordinate by assuming time-steady and radially self-similar. An inflow-wind solution is found. Around the equatorial plane, the gas is inflowing; while above and below the equatorial plane at a certain critical $\\theta$ angle, $\\theta\\sim 47^{\\circ}$, the inflow changes its direction of radial motion and becomes wind. The driving forces are analyzed and found to be the centrifugal force and the gradient of gas and magnetic pressure. The properties of wind are also calculated. The specific angular momentum of wind is found to be significantly larger than that of inflow, thus wind can transfer angular momentum outward. These...
Ghosh, Samiran
2014-09-01
The propagation of a nonlinear low-frequency mode in two-dimensional (2D) monolayer hexagonal dusty plasma crystal in presence of external magnetic field and dust-neutral collision is investigated. The standard perturbative approach leads to a 2D Korteweg-de Vries (KdV) soliton for the well-known dust-lattice mode. However, the Coriolis force due to crystal rotation and Lorentz force due to magnetic field on dust particles introduce a linear forcing term, whereas dust-neutral drag introduce the usual damping term in the 2D KdV equation. This new nonlinear equation is solved both analytically and numerically to show the competition between the linear forcing and damping in the formation of quasilongitudinal soliton in a 2D strongly coupled complex (dusty) plasma. Numerical simulation on the basis of the typical experimental plasma parameters and the analytical solution reveal that the neutral drag force is responsible for the usual exponential decay of the soliton, whereas Coriolis and/or Lorentz force is responsible for the algebraic decay as well as the oscillating tail formation of the soliton. The results are discussed in the context of the plasma crystal experiment.
Shi, Zhiming
2016-07-12
Fluorination has been instrumental for tuning the properties of several two-dimensional (2D) materials, including graphene, h-BN, and MoS2. However, its potential application has not yet been explored in 2D silicon carbide (SiC), a promising material for nanoelectronic devices. We investigate the structural, electronic, and magnetic properties of fully and partially fluorinated 2D SiC sheets and nanoribbons by means of density functional theory combined with cluster expansion calculations. We find that fully fluorinated 2D SiC exhibits chair configurations and a nonmagnetic semiconducting behavior. Fluorination is shown to be an efficient approach for tuning the band gap. Four ground states of partially fluorinated SiC, SiCF2x with x = 0.0625, 0.25, 0.5, 0.75, are obtained by cluster expansion calculations. All of them exhibit nanoroad patterns, with the x = 0.5 structure identified as the most stable one. The x = 0.0625 structure is a nonmagnetic metal, while the other three are all ferromagnetic half-metals, whose properties are not affected by the edge states. We propose an effective approach for modulating the electronic and magnetic behavior of 2D SiC, paving the way to applications of SiC nanostructures in integrated multifunctional and spintronic nanodevices. © 2016 American Chemical Society.
Switlicka-Olszewska, Anna; Palion-Gazda, Joanna; Klemens, Tomasz; Machura, Barbara; Vallejo, Julia; Cano, Joan; Lloret, Francesc; Julve, Miguel
2016-06-21
Three cobalt(ii) complexes of formulae [Co(dca)2(bim)4] (), [Co(dca)2(bim)2]n () and [Co(dca)2(bmim)2]n () [dca = dicyanamide, bim = 1-benzylimidazole and bmim = 1-benzyl-2-methylimidazole] were prepared and structurally analyzed by single-crystal X-ray crystallography. Compound is a mononuclear species where the cobalt(ii) ion is six-coordinate with four bim molecules in the equatorial positions [Co-Nbim = 2.1546(15) and 2.1489(15) Å] and two trans-positioned dca ligands [Co-Ndca = 2.1575(18) Å] in the axial sites of a somewhat distorted octahedral surrounding. The structures of and consist of two-dimensional grids of cobalt(ii) ions where each metal atom is linked to the other four metal centres by single dca bridges exhibiting the μ1,5-dca coordination mode [Co-Ndca = 2.190(3)-2.220(3) () and 2.127(3)-2.153(3) Å ()]. Two trans-coordinated bim ()/bmim () molecules achieve the six-coordination around each cobalt(ii) ion [Co-Nbim = 2.128(3)-2.134(4) Å () and Co-Nbmim = 2.156(3)-2.163(39) Å ()]. The values of the cobalt-cobalt separation through the single dca bridges are 8.927(2) and 8.968(2) Å in and 8.7110(5) and 8.7158(5) Å in . Magnetic susceptibility measurements for in the temperature range of 2.0-300 K reveal that these compounds behave as magnetically isolated high-spin cobalt(ii) ions with a significant orbital contribution to the magnetic moment. Alternating current (ac) magnetic susceptibility measurements for show a frequency dependence of out-of-phase susceptibility under static applied fields in the range of 500-2500 G, a feature which is characteristic of the single-ion magnet behaviour (SIM) of the Co(ii) ion in them. The values of the energy barrier for the magnetic relaxation (Ea) are 5.45-7.74 (), 4.53-9.24 () and 11.48-15.44 cm(-1) (). They compare well with those previously reported for the analogous dca-bridged 2D compound [Co(dca)2(atz)2]n () (Ea = 5.1 cm(-1) under an applied static field of 1000 G), which was the subject of a
Energy Technology Data Exchange (ETDEWEB)
Yoo, Y.Z.; Chmaissem, O.; Kolesnik, S.; Ullah, A.; Lurio, L.B.; Brown, D.E.; Brady, J.; Dabrowski, B.; Kimball, C.W.; Haji-Sheikh, M.; Genis, A.P. (NIU)
2010-12-03
Geometrical anisotropy axes of diverse SrRuO{sub 3} (SRO) films grown by random and directional two-dimensional and step flow modes are determined and their characteristic angular magnetizations are understood in terms of growth mode induced structural effects. Two-dimensional SRO films possess single-crystal-like structural qualities. Angular magnetization measurements show sharp minima and indicate the films easy axis to be in the [310] direction. In contrast, examination of step flow SRO films shows the presence of degenerate multiple in-plane domains and the anisotropy axis in a direction close to [110] even though directional surface steps are clearly visible.
Nuclear Magnetic Resonance Gyroscope
Larsen, Michael; Griffith, Robert; Bulatowicz, Michael
2014-03-01
The navigation grade micro Nuclear Magnetic Resonance Gyroscope (micro-NMRG) being developed by the Northrop Grumman Corporation (NGC) has concluded the fourth and final phase of the DARPA Navigation Grade Integrated Micro Gyro (NGIMG) program. Traditional MEMS gyros utilize springs as an inherent part of the sensing mechanism, leading to bias and scale factor sensitivity to acceleration and vibration. As a result, they have not met performance expectations in real world environments and to date have been limited to tactical grade applications. The Nuclear Magnetic Resonance Gyroscope (NMRG) utilizes the fixed precession rate of a nuclear spin in a constant magnetic field as an inertial reference for determining rotation. The nuclear spin precession rate sensitivity to acceleration and vibration is negligible for most applications. Therefore, the application of new micro and batch fabrication methods to NMRG technology holds great promise for navigation grade performance in a low cost and compact gyro. This presentation will describe the operational principles, design basics, and demonstrated performance of the NMRG including an overview of the NGC designs developed and demonstrated in the DARPA gyro development program.
Benmansour, Samia; Abhervé, Alexandre; Gómez-Claramunt, Patricia; Vallés-García, Cristina; Gómez-García, Carlos J
2017-08-09
We report the synthesis, magnetic properties, electrical conductivity, and delamination into thin nanosheets of two anilato-based Fe(II)/Fe(III) mixed-valence two-dimensional metal-organic frameworks (MOFs). Compounds [(H3O)(H2O)(phenazine)3][Fe(II)Fe(III)(C6O4X2)3]·12H2O [X = Cl (1) and Br (2)] present a honeycomb layered structure with an eclipsed packing that generates hexagonal channels containing the water molecules. Both compounds show ferrimagnetic ordering at ca. 2 K coexisting with electrical conductivity (with room temperature conductivities of 0.03 and 0.003 S/cm). Changing the X group from Cl to Br leads to a decrease in the ordering temperature and room temperature conductivity that is correlated with the decrease of the electronegativity of X. Despite the ionic charge of the anilato-based layers, these MOFs can be easily delaminated in thin nanosheets with the thickness of a few monolayers.
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Us News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance ... if possible, or removed prior to the MRI scan. Because they can interfere with the magnetic field ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...
Rupper, Greg; Rudin, Sergey; Crowne, Frank J.
2012-12-01
In the Dyakonov-Shur terahertz detector the conduction channel of a heterostructure High Electron Mobility Transistor (HEMT) is used as a plasma wave resonator for density oscillations in electron gas. Nonlinearities in the plasma wave propagation lead to a constant source-to-drain voltage, providing the detector output. In this paper, we start with the quasi-classical Boltzmann equation and derive the hydrodynamic model with temperature dependent transport coefficients for a two-dimensional viscous flow. This derivation allows us to obtain the parameters for the hydrodynamic model from the band-structure of the HEMT channel. The treatment here also includes the energy balance equation into the analysis. By numerical solution of the hydrodynamic equations with a non-zero boundary current we evaluate the detector response function and obtain the temperature dependence of the plasma resonance. The present treatment extends the theory of Dyakonov-Shur plasma resonator and detector to account for the temperature dependence of viscosity, the effects of oblique wave propagation on detector response, and effects of boundary current in two-dimensional flow on quality of the plasma resonance. The numerical results are given for a GaN channel. We also investigated a stability of source to drain flow and formation of shock waves.
MRI (Magnetic Resonance Imager)
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Yoshinori [Toshiba Corp., Kawasaki, Kanagawa (Japan)
1995-05-01
MRI is a widely used diagnostic imaging modality because it has excellent diagnostic capabilities, is safe to use and generates images not affected by bone artifacts. Images are obtained by utilizing the phenomenon of Nuclear Magnetic Resonance (NMR) by which protons located in a static magnetic field absorb radio frequency (RF) pulses with a specific frequency and release a part of the energy as a NMR signal. Potentially MRI has the ability to provide functional and metabolic information (such as flow, temperature, diffusion, neuron activity) in addition to morphological information. This paper describes the imaging principles and provides a general outline of some applications: flow imaging, metabolite imaging and temperature imaging. (J.P.N.).
Energy Technology Data Exchange (ETDEWEB)
Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)
2013-08-15
Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: ... Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...
Cardiovascular Magnetic Resonance Imaging
Pelc, Norbert
2000-03-01
Cardiovascular diseases are a major source of morbidity and mortality in the United States. Early detection of disease can often be used to improved outcomes, either through direct interventions (e.g. surgical corrections) or by causing the patient to modify his or her behavior (e.g. smoking cessation or dietary changes). Ideally, the detection process should be noninvasive (i.e. it should not be associated with significant risk). Magnetic Resonance Imaging (MRI) refers to the formation of images by localizing NMR signals, typically from protons in the body. As in other applications of NMR, a homogeneous static magnetic field ( ~0.5 to 4 T) is used to create ``longitudinal" magnetization. A magnetic field rotating at the Larmor frequency (proportional to the static field) excites spins, converting longitudinal magnetization to ``transverse" magnetization and generating a signal. Localization is performed using pulsed gradients in the static field. MRI can produce images of 2-D slices, 3-D volumes, time-resolved images of pseudo-periodic phenomena such as heart function, and even real-time imaging. It is also possible to acquire spatially localized NMR spectra. MRI has a number of advantages, but perhaps the most fundamental is the richness of the contrast mechanisms. Tissues can be differentiated by differences in proton density, NMR properties, and even flow or motion. We also have the ability to introduce substances that alter NMR signals. These contrast agents can be used to enhance vascular structures and measure perfusion. Cardiovascular MRI allows the reliable diagnosis of important conditions. It is possible to image the blood vessel tree, quantitate flow and perfusion, and image cardiac contraction. Fundamentally, the power of MRI as a diagnostic tool stems from the richness of the contrast mechanisms and the flexibility in control of imaging parameters.
Advances in magnetic resonance 11
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.
Institute of Scientific and Technical Information of China (English)
符晓娟; 黄东军
2013-01-01
针对椎间盘手动建模主观耗时以及现有分割方法不够准确的问题,提出了一种二维自动主动形状模型(2D-AASM)方法,由基于最小描述长度的椎间盘自动统计形状建模、二维局部梯度建模和分割三部分组成.将25组脊柱核磁共振图像(MRI)的椎间盘专家分割结果作为训练集,采用基于最小描述长度的方法确定点对应关系,建立椎间盘T4-5的统计形状模型和二维局部梯度模型,生成形状模型的方差和目标函数值均小于手工和弧长参数方法.模型建立后,通过3组脊柱MRI数据测试提出的分割方法,与传统主动形状模型(ASM)和加入一维局部梯度模型的ASM方法相比,其分割结果具有更高的戴斯系数值,更低的过分割率和欠分割率.实验结果表明,所提方法建立的模型更准确,分割结果更精确.%In response to the issue that the intervertebral disk manual modeling was time-consuming and subjective,and the existing segmentation method was not accurate enough,a new method named two-diememsional Automatic Active Shape Model (2D-AASM) was proposed.It included three parts:automatic statistical shape modeling of intervertebral disk based on minimum description length,2D local gradient modeling and segmentation.Adopting the manual segmentation results of 25 sets of spinal MR images as the training set,the study used minimum description length method to determine the point correspondence,built statistical shape model and 2D local gradient model for intervertebral disk T4-5.The generated shape model had lower variance and the objective function value than the manual and arc length parameter method.After the model was built,three sets of Magnetic Resonance Image (MRI) images were used to test the proposed method.Compared with the traditional ASM and 1 D-ASM,the segmentation result of the proposed method had a higher Dice coefficient and lower oversegmentation and under-segmentation rate.The experiment results
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles ... Videos related to Magnetic Resonance Imaging (MRI) - Head Sponsored ...
Advances in magnetic resonance 6
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an
Kagesawa, Koichi; Nishimura, Yuki; Yoshida, Hiroki; Breedlove, Brian K; Yamashita, Masahiro; Miyasaka, Hitoshi
2017-03-07
Two-dimensional layered compounds with different counteranions, [{Mn(salen)}4C6](BF4)2·2(CH3OH) (1) and [{Mn(salen)}4C6](PF6)2·2(CH3OH) (2) (salen(2-) = N,N'-bis(salicylideneiminato), C6(2-) = C6H12(COO)2(2-)), were synthesized by assembling [Mn(salen)(H2O)]X (X(-) = BF4(-) and PF6(-)) and C6H12(CO2(-))2 (C6(2-)) in a methanol/2-propanol medium. The compounds have similar structures, which are composed of Mn(salen) out-of-plane dimers bridged by μ(4)-type C6(2-) ions, forming a brick-wall-type network of [-{Mn2}-OCO-] chains alternately connected via C6H12 linkers of C6(2-) moieties. The counteranions for 1 and 2, i.e., BF4(-) and PF6(-), respectively, are located between layers. Since the size of BF4(-) is smaller than that of PF6(-), intra-layer inter-chain and inter-plane nearest-neighbor MnMn distances are shorter in 1 than in 2. The zigzag chain moiety of [-{Mn2}-OCO-] leads to a canted S = 2 spin arrangement with ferromagnetic coupling in the Mn(III) out-of-plane dimer moiety and antiferromagnetic coupling through -OCO- bridges. Due to strong uniaxial anisotropy of the Mn(III) ion, the [-{Mn2}-OCO-] chains could behave as a single-chain magnet (SCM), which exhibits slow relaxation of magnetization at low temperatures. Nevertheless, these compounds fall into an antiferromagnetic ground state at higher temperatures of TN = 4.6 and 3.8 K for 1 and 2, respectively, than active temperatures for SCM behavior. The spin flip field at 1.8 K is 2.7 and 1.8 kOe for 1 and 2, respectively, which is attributed to the inter-chain interactions tuned by the size of the counteranions. The relaxation times of magnetization become longer at the boundary between the antiferromagnetic phase and the paramagnetic phase.
Partially orthogonal resonators for magnetic resonance imaging
Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.
2017-02-01
Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2016-06-01
In this paper, bandgap and dynamic effective properties of two-dimensional elastic metamaterials with a chiral comb-like interlayer are studied by using the finite element method. The effects of the geometrical parameters of the chiral comb-like interlayer on the band edges are investigated and discussed. Combined with the analysis of the vibration modes at the band edges, equivalent spring-mass/pendulum models are developed to investigate the mechanisms of the bandgap generation. The analytically predicted results of the band edges, including the frequency where the double negative properties appear, and the numerical ones are generally in good agreement. The research findings in this paper have relevant engineering applications of the elastic metamaterials in the low frequency range.
Trobo, Marta L; Albano, Ezequiel V
2016-03-31
Fixed vacancies (non-magnetic impurities) are placed along the centre of Ising strips in order to study the wetting behaviour in this confined system, by means of numerical simulations analysed with the aid of finite size scaling and thermodynamic integration methods. By considering strips of size L × M (L interface between magnetic domains of different orientation (driven by the corresponding surface fields), which are the precursors of the wetting transitions that occur in the thermodynamic limit. By placing vacancies or equivalently non-magnetic impurities along the centre of the sample, we found that for low vacancy densities the wetting transitions are of second order, while by increasing the concentration of vacancies the transitions become of first order. Second- and first-order lines meet in tricritical wetting points (H(tric)(SW), T(tric)(W)), where H(tric)(SW) and T(Tric)(W) are the magnitude of the surface field and the temperature, respectively. In the phase diagram, tricritical points shift from the high temperature and weak surface field regime at large vacancy densities to the T --> 0, H(tric)(SW) --> 1 limit for low vacancy densities. By comparing the locations of the tricritical points with those corresponding to the case of mobile impurities, we conclude that in order to observe similar effects, in the latter the required density of impurities is much smaller (e.g. by a factor 3-5). Furthermore, a proper density of non magnetic impurities placed along the centre of a strip can effectively pin rather flat magnetic interfaces for suitable values of the competing surface fields and temperature.
Lee, Ching-Ping; Komiyama, Susumu; Chen, Jeng-Chung
2015-03-01
High mobility two-dimensional electron gas (2DEG) formed in the interface of a GaAs/AlGaAs hetero-structure in high magnetic field (B) exhibits interring nonlinear response either under microwave radiation or to a dc electric field (E). It is general believed that this kind nonlinear behavior is closely related to the occurrence of negative-differential conductance (NDC) in the presence of strong B and E. We observe a new type NDC state driven by a direct current above a threshold value (Ith) applied to a 2DEG as a function of B at relatively high temperatures (T). A current instability is observed in 2DEG system at high B ~6-8 T and at high T ~ 20- 30 K while the applied current is over Ith. The longitudinal voltage Vxx shows sub-linear behavior with the increase of I. As the current exceed Ith, Vxx suddenly drops a ΔVxx and becomes irregular associated with the appearance of hysteresis with sweeping I. We find that Ith increases with the increase of B and of T; meanwhile, ΔVxx is larger at higher B but lower T. Data analysis suggest that the onset of voltage fluctuation can be described by a NDC model proposed by Kurosawa et al. in 1976. The general behaviors of T and B dependence of current instability are analog to those recently reported at lower both T and B. This consistence suggests the same genuine mechanism of NDC phenomena observed in 2DEG system.
2007-01-01
An explicit expression for the partition function of two-dimensional nearest neighbour Ising models in the presence of a magnetic field is derived by a systematic enumeration of all the spin configurations pertaining to a square lattice of sixteen sites. The critical temperature is shown to be in excellent agreement with the reported values while the corresponding dimensionless magnetic field is obtained as 0.004.
Leyendecker, John R; Gianini, John W
2009-07-01
Excellent contrast resolution and lack of ionizing radiation make magnetic resonance urography (MRU) a promising technique for noninvasively evaluating the entire urinary tract. While MRU currently lags behind CT urography (CTU) in spatial resolution and efficiency, new hardware and sequence developments have contributed to a resurgence of interest in MRU techniques. By combining unenhanced sequences with multiphase contrast-enhanced and excretory phase imaging, a comprehensive assessment of the kidneys, ureters, bladder, and surrounding structures is possible with image quality rivaling that obtained with other techniques. At the same time, formidable challenges remain to be overcome and further clinical validation is necessary before MRU can replace other forms of urography. In this article, we demonstrate the current potential of MRU to demonstrate a spectrum of urologic pathology involving the kidneys, ureters, and bladder while discussing the limitations and current status of this evolving technique.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Rui, E-mail: rzhu@scut.edu.cn; Dai, Jiao-Hua [Department of Physics, South China University of Technology, Guangzhou 510641 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2015-04-28
Interference between different quantum paths can generate Fano resonance. One of the examples is transport through a quasibound state driven by a time-dependent scattering potential. Previously it is found that Fano resonance occurs as a result of energy matching in one-dimensional systems. In this work, we demonstrate that when transverse motion is present, Fano resonance occurs precisely at the wavevector matching situation. Using the Floquet scattering theory, we considered the transport properties of a nonadiabatic time-dependent well both in a two-dimensional electron gas and monolayer graphene structure. Dispersion of the quasibound state of a static quantum well is obtained with transverse motion present. We found that Fano resonance occurs when the wavevector in the transport direction of one of the Floquet sidebands is exactly identical to that of the quasibound state in the well at equilibrium and follows the dispersion pattern of the latter. To observe the Fano resonance phenomenon in the transmission spectrum, we also considered the pumped shot noise properties when time and spatial symmetry secures vanishing current in the considered configuration. Prominent Fano resonance is found in the differential pumped shot noise with respect to the reservoir Fermi energy.
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging ( ...
Advances in magnetic resonance 12
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu
Energy Technology Data Exchange (ETDEWEB)
Campbell, Philip M., E-mail: philip.campbell@gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Tarasov, Alexey; Joiner, Corey A.; Vogel, Eric M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Ready, W. Jud [Electronic Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States)
2016-01-14
Since the invention of the Esaki diode, resonant tunneling devices have been of interest for applications including multi-valued logic and communication systems. These devices are characterized by the presence of negative differential resistance in the current-voltage characteristic, resulting from lateral momentum conservation during the tunneling process. While a large amount of research has focused on III-V material systems, such as the GaAs/AlGaAs system, for resonant tunneling devices, poor device performance and device-to-device variability have limited widespread adoption. Recently, the symmetric field-effect transistor (symFET) was proposed as a resonant tunneling device incorporating symmetric 2-D materials, such as transition metal dichalcogenides (TMDs), separated by an interlayer barrier, such as hexagonal boron-nitride. The achievable peak-to-valley ratio for TMD symFETs has been predicted to be higher than has been observed for III-V resonant tunneling devices. This work examines the effect that band structure differences between III-V devices and TMDs has on device performance. It is shown that tunneling between the quantized subbands in III-V devices increases the valley current and decreases device performance, while the interlayer barrier height has a negligible impact on performance for barrier heights greater than approximately 0.5 eV.
Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin
2017-03-01
Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies.
Pediatric magnetic resonance urography.
Jones, Richard A; Grattan-Smith, J Damien; Little, Stephen
2011-03-01
Magnetic resonance urography (MRU) is a powerful clinical tool that fuses anatomic information with functional data in a single test without the use of ionizing radiation. This article provides an overview of the technical aspects, as well as common clinical applications with an emphasis on the evaluation of hydronephrosis. A fluid challenge is an essential part of our MRU protocol and enables the definition of compensated or decompensated kidneys within the spectrum of hydronephrosis. This classification may have prognostic implications when surgery is being considered. In addition, underlying uropathy can be identified on the anatomical scans and renal scarring can be seen on both the anatomical and dynamic scans. MRU can identify and categorize dysmorphic kidneys in vivo and may provide insight into congenital abnormalities seen in conjunction with vesicoureteric reflux. MRU is still in its infancy and as the technique develops and becomes widely available, it seems likely that it will supplant renal scintigraphy in the evaluation of renal tract disorders in children. Copyright © 2011 Wiley-Liss, Inc.
Advances in magnetic resonance 1
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri
Advances in magnetic resonance 9
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion
... metallic objects from being attracted by the powerful magnet of the MR system, you will typically receive ... teeth with magnetic keepers Other implants that involve magnets Medication patch (i.e., transdermal patch) that contains ...
Shevchenko, O. S.; Kopeliovich, A. I.
2016-03-01
The energy spectrum of a quasi-two-dimensional electron gas in an in-plane magnetic field is studied using the perturbation theory and quasiclassical approach in the presence of the Rashba and Dresselhaus spin-orbit coupling. The existence of the intersection of energy sublevels in electron spectrum is demonstrated. The reciprocal mass tensor of electrons is analyzed. The heat capacity of the degenerate electron gas is examined, and its relations with the key features of the spectrum are shown.
Magnetic resonance energy and topological resonance energy.
Aihara, Jun-Ichi
2016-04-28
Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference.
Trobo, Marta L.; Albano, Ezequiel V.
2013-11-01
Wetting transitions are studied in the two-dimensional Ising ferromagnet confined between walls where competitive surface fields act. In our finite samples of size L×M, the walls are separated by a distance L, M being the length of the sample. The surface fields are taken to be short-range and nonuniform, i.e., of the form H1,δH1,H1,δH1,..., where the parameter -1≤δ≤1 allows us to control the nonuniformity of the fields. By performing Monte Carlo simulations we found that those competitive surface fields lead to the occurrence of an interface between magnetic domains of different orientation that runs parallel to the walls. In finite samples, such an interface undergoes a localization-delocalization transition, which is the precursor of a true wetting transition that takes place in the thermodynamic limit. By exactly working out the ground state (T=0), we found that besides the standard nonwet and wet phases, a surface antiferromagnetic-like state emerges for δ3), H1tr/J=3, δtr=-1/3,T=0, being a triple point where three phases coexist. By means of Monte Carlo simulations it is shown that these features of the phase diagram remain at higher temperatures; e.g., we examined in detail the case T=0.7×Tcb. Furthermore, we also recorded phase diagrams for fixed values of δ, i.e., plots of the critical field at the wetting transition (H1w) versus T showing, on the one hand, that the exact results of Abraham [Abraham, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.44.1165 44, 1165 (1980)] for δ=1 are recovered, and on the other hand, that extrapolations to T→0 are consistent with our exact results. Based on our numerical results we conjectured that the exact result for the phase diagram worked out by Abraham can be extended for the case of nonuniform fields. In fact, by considering a nonuniform surface field of some period λ, with λ≪M, e.g., [H1(x,λ)>0], one can obtain the effective field Heff at a λ coarse-grained level given by Heff=(1)/(λ)∑x=1
Trobo, Marta L; Albano, Ezequiel V
2013-11-01
Wetting transitions are studied in the two-dimensional Ising ferromagnet confined between walls where competitive surface fields act. In our finite samples of size L×M, the walls are separated by a distance L, M being the length of the sample. The surface fields are taken to be short-range and nonuniform, i.e., of the form H(1),δH(1),H(1),δH(1),..., where the parameter -1≤δ≤1 allows us to control the nonuniformity of the fields. By performing Monte Carlo simulations we found that those competitive surface fields lead to the occurrence of an interface between magnetic domains of different orientation that runs parallel to the walls. In finite samples, such an interface undergoes a localization-delocalization transition, which is the precursor of a true wetting transition that takes place in the thermodynamic limit. By exactly working out the ground state (T=0), we found that besides the standard nonwet and wet phases, a surface antiferromagnetic-like state emerges for δ3), H(1)(tr)/J=3, δ(tr)=-1/3,T=0, being a triple point where three phases coexist. By means of Monte Carlo simulations it is shown that these features of the phase diagram remain at higher temperatures; e.g., we examined in detail the case T=0.7×T(cb). Furthermore, we also recorded phase diagrams for fixed values of δ, i.e., plots of the critical field at the wetting transition (H(1w)) versus T showing, on the one hand, that the exact results of Abraham [Abraham, Phys. Rev. Lett. 44, 1165 (1980)] for δ=1 are recovered, and on the other hand, that extrapolations to T→0 are consistent with our exact results. Based on our numerical results we conjectured that the exact result for the phase diagram worked out by Abraham can be extended for the case of nonuniform fields. In fact, by considering a nonuniform surface field of some period λ, with λ0], one can obtain the effective field H(eff) at a λ coarse-grained level given by H(eff)=1/λ∑(x=1)(λ)H(1)(x,λ). Then we conjectured that the
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the head is performed ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) ... ray, CT and ultrasound. top of page How is the procedure performed? MRI examinations may be performed ...
Magnetic Resonance Imaging (MRI) Safety
... Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... the area being scanned include: Metallic spinal rod Plates, pins, screws, or metal mesh used to repair ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... bore which can be more comfortable for larger size patients or patients with claustrophobia. Other MRI machines ... Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests and ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... bore which can be more comfortable for larger size patients or patients with claustrophobia. Other MRI machines ... for magnetic resonance imaging (MRI) exam. View full size with caption Pediatric Content Some imaging tests and ...
Magnetic resonance imaging the basics
Constantinides, Christakis
2014-01-01
Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... data suggest that it is safe to continue breastfeeding after receiving intravenous contrast. For further information please ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... Brain Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...
Magnetic Resonance Imaging (MRI) -- Head
... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the head is performed ...
Advances in magnetic resonance 2
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.
Advances in magnetic resonance 4
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 4 deals with the relaxation, irradiation, and other dynamical effects that is specific to systems having resolved structure in their magnetic resonance spectra. This book discusses the anisotropic rotation of molecules in liquids by NMR quadrupolar relaxation; rotational diffusion constants; alternating linewidth effect; and theoretical formulations of the problem. The line shapes in high-resolution NMR; matrix representations of the equations of motion; matrix representations of the equations of motion; and intramolecular hydrogen bonds are also delibera
Intraoperative magnetic resonance imaging.
Hall, Walter A; Truwit, Charles L
2011-01-01
Neurosurgeons have become reliant on image-guidance to perform safe and successful surgery both time-efficiently and cost-effectively. Neuronavigation typically involves either rigid (frame-based) or skull-mounted (frameless) stereotactic guidance derived from computed tomography (CT) or magnetic resonance imaging (MRI) that is obtained days or immediately before the planned surgical procedure. These systems do not accommodate for brain shift that is unavoidable once the cranium is opened and cerebrospinal fluid is lost. Intraoperative MRI (ioMRI) systems ranging in strength from 0.12 to 3 Tesla (T) have been developed in part because they afford neurosurgeons the opportunity to accommodate for brain shift during surgery. Other distinct advantages of ioMRI include the excellent soft tissue discrimination, the ability to view the surgical site in three dimensions, and the ability to "see" tumor beyond the surface visualization of the surgeon's eye, either with or without a surgical microscope. The enhanced ability to view the tumor being biopsied or resected allows the surgeon to choose a safe surgical corridor that avoids critical structures, maximizes the extent of the tumor resection, and confirms that an intraoperative hemorrhage has not resulted from surgery. Although all ioMRI systems allow for basic T1- and T2-weighted imaging, only high-field (>1.5 T) MRI systems are capable of MR spectroscopy (MRS), MR angiography (MRA), MR venography (MRV), diffusion-weighted imaging (DWI), and brain activation studies. By identifying vascular structures with MRA and MRV, it may be possible to prevent their inadvertent injury during surgery. Biopsying those areas of elevated phosphocholine on MRS may improve the diagnostic yield for brain biopsy. Mapping out eloquent brain function may influence the surgical path to a tumor being resected or biopsied. The optimal field strength for an ioMRI-guided surgical system and the best configuration for that system are as yet
Energy Technology Data Exchange (ETDEWEB)
Soylu, A. [Department of Physics, Faculty of Arts and Sciences, Erciyes University, Kayseri (Turkey) and Department of Physics, Faculty of Arts and Sciences, Nigde University, Nigde (Turkey)]. E-mail: asimsoylu@gmail.com; Boztosun, I. [Department of Physics, Faculty of Arts and Sciences, Erciyes University, Kayseri (Turkey)
2007-06-15
In this paper, we present the energy eigenvalues of a two-dimensional hydrogenic donor in a magnetic field by using the asymptotic iteration method. The binding energy eigenvalues in the presence of weak and strong magnetic fields ({gamma}<>0) are obtained within the framework of this iterative approach for 1S, 2P{sup -} and 3D{sup -} levels. The energy eigenvalues for the non-magnetic field case ({gamma}=0) are also determined and the results are compared with the values in weak and strong magnetic fields. The effect of the magnetic field strength on the energy eigenvalues are determined explicitly and excellent agreement with the findings of other methods is obtained.
Belanger, R.; Venus, D.
2017-02-01
A two-dimensional (2D) percolation transition in Fe/W(110) ultrathin magnetic films occurs when islands in the second atomic layer percolate and resolve a frustrated magnetic state to produce long-range in-plane ferromagnetic order. Novel measurements of percolation using the magnetic susceptibility χ (θ ) as the films are deposited at a constant temperature, allow the long-range percolation transition to be observed as a sharp peak consistent with a critical phase transition. The measurements are used to trace the paramagnetic-to-ferromagnetic phase boundary between the T =0 percolation magnetic transition and the thermal Curie magnetic transition of the undiluted film. A quantitative comparison to critical scaling theory is made by fitting the functional form of the phase boundary. The fitted parameters are then used in theoretical expressions for χ (T ) in the critical region of the paramagnetic state to provide an excellent, independent representation of the experimental measurements.
Liu, Xiangyu; Sun, Lin; Zhou, Huiliang; Cen, Peipei; Jin, Xiaoyong; Xie, Gang; Chen, Sanping; Hu, Qilin
2015-09-21
A novel two-dimensional (2D) coordination polymer, [Co(ppad)2]n (1), resulted from the assembly of Co(II) ions based on a versatile ligand termed N(3)-(3-pyridoyl)-3-pyridinecarboxamidrazone. Alternating/direct-current magnetic studies of compound 1 indicate that the spatially separated high-spin Co(II) ions act as single-ion magnets (SIMs). The present work represents the first case of a 2D Co(II)-based SIM composed of a monocomponent organic spacer.
Kurilovich, P. D.; Kurilovich, V. D.; Burmistrov, I. S.
2016-10-01
We study indirect exchange interaction between magnetic impurities in the (001) CdTe/HgTe/CdTe symmetric quantum well. We consider low temperatures and the case of the chemical potential placed in the energy gap of the two-dimensional quasiparticle spectrum. We find that the indirect exchange interaction is suppressed exponentially with the distance between magnetic impurities. The presence of inversion asymmetry results in oscillations of the indirect exchange interaction with the distance and generates additional terms which are noninvariant under rotations in the (001) plane. The indirect exchange interaction matrix has complicated structure with some terms proportional to the sign of the energy gap.
Magnetic resonance imaging; Imagerie par resonance magnetique
Energy Technology Data Exchange (ETDEWEB)
Fontanel, F. [Centre Hospitalier, 40 - Mont-de -Marsan (France); Clerc, T. [Centre Hospitalier Universitaire, 76 - Rouen (France); Theolier, S. [Hospice Civils de Lyon, 69 - Lyon (France); Verdenet, J. [Centre Hospitalier Universitaire, 25 - Besancon (France)
1997-04-01
The last improvements in nuclear magnetic resonance imaging are detailed here, society by society with an expose of their different devices. In the future the different technological evolutions will be on a faster acquisition, allowing to reduce the examination time, on the development of a more acute cardiac imaging, of a functional neuro-imaging and an interactive imaging for intervention. With the contrast products, staying a longer time in the vascular area, the angiography will find its place. Finally, the studies on magnetic fields should allow to increase the volume to examine. (N.C.).
Li, Shi-You; Zhang, Shi-Feng; Deng, Xiao-Hua; Cai, Hong
2013-01-01
More than 300 electrostatic solitary waves (ESWs) with a large perpendicular component which is a bi-polar waveform structure are observed in the boundary layer within the magnetic reconnection diffusion region in the near-Earth magnetotail. Such ESWs are called two-dimensional ESWs. A Singe-reconnection-based-statistical study of two-dimensional ESWs shows that: (1) ESWs can be continuously observed in the plasma sheet boundary layer (PSBL) associated with the magnetic reconnection diffusion region, and their amplitude ranges are mainly from several tens to hundreds of μV/m (2) both one-dimension-like ESWs (very small magnitude on E⊥) and two-dimension-like ESWs (large magnitude on E⊥, which are even comparable to that in the E‖) are observed within a small time interval; (3) within the observation time spans, more than 61% of ESWs are regarded as two-dimensional ESWs for the I2D > 20%. We discuss the bi-polar structure in E⊥. The observation of ESWs with a large bi-polar structure in the perpendicular electric field gives evidence that the unique waveform differs from previous understanding from observations and simulations which suggests that it should be a uni-polar waveform structure in the E⊥ of ESWs.
Magnetic Resonance (MR) Defecography
... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...
Sikkenk, Tycho S.; Coester, Kris; Buhrandt, Stefan; Fritz, Lars; Schmidt, Kai P.
2017-02-01
The classical Ising model on the frustrated three-dimensional (3D) swedenborgite lattice has disordered spin liquid ground states for all ratios of inter- and intraplanar couplings. Quantum fluctuations due to a transverse field give rise to several exotic phenomena. In the limit of weakly coupled kagome layers we find a 3D version of disorder by disorder degeneracy lifting. For large out-of-plane couplings one-dimensional macrospins are formed, which realize a disordered macrospin liquid phase on an emerging two-dimensional triangular lattice. We speculate about a possibly exotic version of quantum criticality that connects the polarized phase to the macrospin liquid.
Chen, Xiao; Yang, Yang; Cai, Xiaoying; Auger, Daniel A; Meyer, Craig H; Salerno, Michael; Epstein, Frederick H
2016-06-14
Cine Displacement Encoding with Stimulated Echoes (DENSE) provides accurate quantitative imaging of cardiac mechanics with rapid displacement and strain analysis; however, image acquisition times are relatively long. Compressed sensing (CS) with parallel imaging (PI) can generally provide high-quality images recovered from data sampled below the Nyquist rate. The purposes of the present study were to develop CS-PI-accelerated acquisition and reconstruction methods for cine DENSE, to assess their accuracy for cardiac imaging using retrospective undersampling, and to demonstrate their feasibility for prospectively-accelerated 2D cine DENSE imaging in a single breathhold. An accelerated cine DENSE sequence with variable-density spiral k-space sampling and golden angle rotations through time was implemented. A CS method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was combined with sensitivity encoding (SENSE) for the reconstruction of under-sampled multi-coil spiral data. Seven healthy volunteers and 7 patients underwent 2D cine DENSE imaging with fully-sampled acquisitions (14-26 heartbeats in duration) and with prospectively rate-2 and rate-4 accelerated acquisitions (14 and 8 heartbeats in duration). Retrospectively- and prospectively-accelerated data were reconstructed using BLOSM-SENSE and SENSE. Image quality of retrospectively-undersampled data was quantified using the relative root mean square error (rRMSE). Myocardial displacement and circumferential strain were computed for functional assessment, and linear correlation and Bland-Altman analyses were used to compare accelerated acquisitions to fully-sampled reference datasets. For retrospectively-undersampled data, BLOSM-SENSE provided similar or lower rRMSE at rate-2 and lower rRMSE at rate-4 acceleration compared to SENSE (p cine DENSE provided good image quality and expected values of displacement and strain. BLOSM-SENSE-accelerated spiral cine DENSE imaging with 2D displacement encoding can be acquired in a single breathhold of 8-14 heartbeats with high image quality and accurate assessment of myocardial displacement and circumferential strain.
Advances in magnetic resonance 5
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 5 deals with the interpretation of ESR spectra and provides descriptions of experimental apparatus. This book discusses the halogen hyperfine interactions; organic radicals in single crystals; pulsed-Fourier-transform nuclear magnetic resonance spectrometer; and inhomogenizer and decoupler. The spectrometers for multiple-pulse NMR; weak collision theory of relaxation in the rotating frame; and spin Hamiltonian for the electron spin resonance of irradiated organic single crystals are also deliberated. This text likewise covers the NMR in helium three and m
Staton, Daniel Joseph
We describe the first, high-resolution magnetic images of applied currents and propagating action currents in slices of canine cardiac tissue. This tissue was maintained in vitro at 37^circC. Our main conclusions are summarized as follows: the action currents produce magnetic fields which are measurable; during the initial stages of the propagating action potential, small, expanding, quatrefoil loops of current develop; the magnetic fields produced by repolarization currents are larger than previously anticipated. Most of the current associated with the propagating action potential is confined within the wavefront and should be magnetically silent; however, differences in the intracellular and extracellular electrical conductivities, in both the longitudinal and transverse fiber directions, are great enough that expanding quatrefoil current densities are associated with the wavefront and produce measurable magnetic fields. Since action currents are affected by the electrical conductivities, it is of interest to determine their values, which depend not only upon the tissue characteristics, but also on the mathematical model used to interpret the measured data. In our analysis of current injection, we use the anisotropic bidomain model which incorporates a passive, linear membrane. We introduce theoretical techniques to calculate the anisotropic conductivities of a two-dimensional bidomain. To apply these techniques to magnetic fields resulting from current injection into cardiac tissue slices, we need to improve the higher spatial frequency content of our present measurements. This may be done by measuring the magnetic field closer to the cardiac slice (presently 2.5 mm), decreasing the sampling interval of the measurement, and increasing the sampling area of the field. Magnetic fields are produced by propagating action currents, which are in turn the result of the propagating action potential. From the magnetic field, we directly image isochronal transmembrane
Friedman, B J; Waters, J; Kwan, O L; DeMaria, A N
1985-06-01
No data exist regarding the ability of magnetic resonance imaging to assess cardiac size and performance in human beings. Therefore, measurements of cardiac dimensions by magnetic resonance imaging were compared with those obtained by two-dimensional echocardiography in 21 normal subjects. Magnetic resonance transverse cardiac sections were obtained during electrocardiographic gating using a spin echo pulse sequence. In normal subjects, magnetic resonance imaging yielded a range of values for cardiac dimensions having a similar standard deviation as that of two-dimensional echocardiography. Diastolic measurements of the aorta, left atrium, left ventricle and septum obtained by magnetic resonance imaging correlated well with those obtained by two-dimensional echocardiography (r = 0.82, 0.78, 0.81 and 0.75, respectively). The correlation coefficient of r = 0.35 observed for the posterior wall thickness was not surprising in view of the narrow range of normal values. Only a general correlation (r = 0.53) existed for the right ventricular diastolic dimension; this was probably related to the difficulty in obtaining representative measurements due to the complex geometry of this chamber. Failure of systolic dimension measurements by magnetic resonance imaging to correlate with those obtained by echocardiography is probably related to limitations of electrocardiographic gating, especially of determining the exact end-systolic frame. Although technically complex at present, magnetic resonance imaging does provide an additional noninvasive technique for measurement of cardiac size.
GHz nuclear magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Cross, T.A.; Drobny, G.; Trewhella, J.
1994-12-01
For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.
Energy Technology Data Exchange (ETDEWEB)
Hierro-Rodriguez, A., E-mail: ahierro@fc.up.pt; Alvarez-Prado, L. M.; Martín, J. I.; Alameda, J. M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain); Centro de Investigación en Nanomateriales y Nanotecnología—CINN (CSIC—Universidad de Oviedo—Principado de Asturias), Parque Tecnológico de Asturias, 33428 Llanera (Spain); Teixeira, J. M. [IN-IFIMUP, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto (Portugal); Vélez, M. [Departamento de Física, Universidad de Oviedo, C/Calvo Sotelo S/N, 33007 Oviedo (Spain)
2014-09-08
Patterned hard-soft 2D magnetic lateral composites have been fabricated by e-beam lithography plus dry etching techniques on sputter-deposited NdCo{sub 5} thin films with perpendicular magnetic anisotropy. Their magnetic behavior is strongly thickness dependent due to the interplay between out-of-plane anisotropy and magnetostatic energy. Thus, the spatial modulation of thicknesses leads to an exchange coupled system with hard/soft magnetic regions in which rotatable anisotropy of the thicker elements provides an extra tool to design the global magnetic behavior of the patterned lateral composite. Kerr microscopy studies (domain imaging and magneto-optical Kerr effect magnetometry) reveal that the resulting hysteresis loops exhibit a tunable exchange bias-like shift that can be switched on/off by the applied magnetic field.
A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field
吉田, 欣二郎; 松田, 茂雄; 松本, 洋和
2000-01-01
High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...
Vo, Tony; Pothérat, Alban; Sheard, Gregory J.
2017-03-01
This study considers the linear stability of Poiseuille-Rayleigh-Bénard flows subjected to a transverse magnetic field, to understand the instabilities that arise from the complex interaction between the effects of shear, thermal stratification, and magnetic damping. This fundamental study is motivated in part by the desire to enhance heat transfer in the blanket ducts of nuclear fusion reactors. In pure magnetohydrodynamic flows, the imposed transverse magnetic field causes the flow to become quasi-two-dimensional and exhibit disturbances that are localized to the horizontal walls. However, the vertical temperature stratification in Rayleigh-Bénard flows feature convection cells that occupy the interior region, and therefore the addition of this aspect provides an interesting point for investigation. The linearized governing equations are described by the quasi-two-dimensional model proposed by Sommeria and Moreau [J. Fluid Mech. 118, 507 (1982), 10.1017/S0022112082001177], which incorporates a Hartmann friction term, and the base flows are considered fully developed and one-dimensional. The neutral stability curves for critical Reynolds and Rayleigh numbers, Rec and Rac, respectively, as functions of Hartmann friction parameter H have been obtained over 10-2≤H ≤104 . Asymptotic trends are observed as H →∞ following Rec∝H1 /2 and Rac∝H . The linear stability analysis reveals multiple instabilities which alter the flow both within the Shercliff boundary layers and the interior flow, with structures consistent with features from plane Poiseuille and Rayleigh-Bénard flows.
Ostrovskaya, G. V.; Frank, A. G.
2012-04-01
An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10-4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.
Bifurcation magnetic resonance in films magnetized along hard magnetization axis
Energy Technology Data Exchange (ETDEWEB)
Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)
2012-09-15
We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.
Magnetic phases of the quasi-two-dimensional antiferromagnet CuCrO2 on a triangular lattice
Sakhratov, Yu. A.; Svistov, L. E.; Kuhns, P. L.; Zhou, H. D.; Reyes, A. P.
2016-09-01
We have carried out Cu,6563 NMR spectra measurements in a magnetic field up to about 45 T on a single crystal of a multiferroic triangular antiferromagnet CuCrO2. The measurements were performed for magnetic fields aligned along the crystal c axis. Field and temperature evolution of the spectral shape demonstrates a number of phase transitions. It was found that the 3D magnetic ordering takes place in the low field range (H ≲15 T). At higher fields magnetic structures form within individual triangular planes whereas the spin directions of the magnetic ions from neighboring planes are not correlated. It is established that the 2D-3D transition is hysteretic in field and temperature. Line-shape analysis reveals several possible magnetic structures existing within individual planes for different phases of CuCrO2. Within certain regions on the magnetic H -T phase diagram of CuCrO2 a 3D magnetic ordering with tensor order parameter is expected.
DEFF Research Database (Denmark)
Sarella, Anandakumar; Torti, Andrea; Donolato, Marco
2014-01-01
P. Vavassori and co-workers demonstrate on page 2384 that field-controlled displacement of magnetic domain walls in ferromagnetic nano-ring structures allows for capture and 2-dimensional remote manipulation of fluidborne magnetic nanoparticles over a chip surface....
Magnetic Torque Studies in Two-Dimensional Organic Conductor λ-(BETS)2FeCl4
Sugiura, Shiori; Shimada, Kazuo; Tajima, Naoya; Nishio, Yutaka; Terashima, Taichi; Isono, Takayuki; Kato, Reizo; Uji, Shinya
2017-01-01
Systematic measurements of the magnetic torque τ of the organic conductor λ-(BETS)2FeCl4 have been performed to investigate the magnetic properties. In the magnetic field dependence of τ, a very sharp structure is observed at ˜1.2 T, resulting from the spin-flop transition. A step-like behavior associated with small hysteresis appears at ˜10 T, which is caused by the antiferromagnetic insulator-paramagnetic metal (AFI-PM) transition. In the angular dependence of τ for magnetic fields in the b*-c plane, it is found that the zero-crossing angles significantly change with field and temperature. The changes provide reasonable evidence of the antiferromagnetic order of the π spins (not the Fe 3d spins) in the AFI phase. The AFI-PM transition field has a minimum when the magnetization of the 3d spins has a maximum as a function of field angle.
magnetic resonance imaging,etc.
Institute of Scientific and Technical Information of China (English)
张福基
1998-01-01
magnetic resonance imaging n.[1984] a noninvasive diagnostic technique that produces computerized images of internal body tissues and is based on nuclear magnetic resonance of atoms within he body induced by the application of radio waves磁共振成像(指一种非侵害 性诊断技术,能生成内部身体组织的计算机化影像,其依据是应用无线电波 感生体内原子并使之产磁共振)
Advances in magnetic resonance 8
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 8 describes the magnetic resonance in spin polarization and saturation transfer. This book discusses the theory of chemically induced dynamic spin polarization; basic results for the radical-pair mechanism; and optical spin polarization in molecular crystals. The theory of optical electronic polarization (OEP); NMR in flowing systems; and applications of NMR in a flowing liquid are also elaborated. This text likewise covers the saturation transfer spectroscopy; studies of spin labels in the intermediate and fast motion regions; and spin-density matrix and
Zero-energy states bound to a magnetic {pi}-flux vortex in a two-dimensional topological insulator
Energy Technology Data Exchange (ETDEWEB)
Mesaros, Andrej, E-mail: andrej.mesaros@bc.edu [Department of Physics, Boston College, Chestnut Hill, MA 02467 (United States); Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden (Netherlands); Slager, Robert-Jan; Zaanen, Jan; Juricic, Vladimir [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden (Netherlands)
2013-02-21
We show that the existence of a pair of zero-energy modes bound to a vortex carrying a {pi}-flux is a generic feature of the topologically non-trivial phase of the M-B model, which was introduced to describe the topological band insulator in HgTe quantum wells. We explicitly find the form of the zero-energy states of the corresponding Dirac equation, which contains a novel momentum-dependent mass term and describes a generic topological transition in a band insulator. The obtained modes are exponentially localized in the vortex-core, with the dependence of characteristic length on the parameters of the model matching the dependence extracted from a lattice version of the model. We consider in full generality the short-distance regularization of the vector potential of the vortex, and show that a particular choice yields the modes localized and simultaneously regular at the origin. Finally, we also discuss a realization of two-dimensional spin-charge separation through the vortex zero-modes.
Binek, Ch.
1998-01-01
In order to provide an experimental access to the statistical theory of Lee and Yang (1952) the density function g(theta) of zeros on the Lee-Yang circle has been determined for the first time by analyzing isothermal magnetization data, m(H), of the Ising ferromagnet FeCl2 in axial magnetic fields, H, at temperatures 34 < T < 99K. The validity of our approach is demonstrated by the perfect agreement of magnetic specific heat data as calculated from g(theta) and m(H) via Maxwells relation, res...
Energy Technology Data Exchange (ETDEWEB)
Tomita, Yukio; Ishibashi, Yukio; Saito, Eiji; Saito, Toshio
1988-02-25
For elucidation of the flow behavior of a magnetic fluid as a one-phase fluid, water base ferrofluids were introduced in a two-dimensional channel and the action of a uniform vertical magnetic field axial magnetic field, and both fields inclined at various angles to examine the laminar flow region. The ferrofluids used in the experiment were prepared by dispersing 17.5 weight % of Fe/sub 3/ O/sub 4/ fine particles of about 100A in diameter into ion-exchange water, and adding an anionic sodium oleate to stabilize the dispersion. Under no action of the magnetic fields, ferrofluids having a higher concentration than the above value exhibited plastic fluid. As the direction of the magnetic field acting on the fluid approached the vertical, so the pressure loss was increased. The pipe friction coefficient could be expressed by the empirical formula of which the variables are the ratios of inertia force/viscous force and magnetic force/viscous force, and the inclination of the magnetic poles. (15 figs, 14 refs)
Energy Technology Data Exchange (ETDEWEB)
Chen, Haijie; Narayan, Awadhesh; Fang, Lei; Calta, Nicholas P.; Shi, Fengyuan; Chung, Duck Young; Wagner, Lucas; Kwok, Wai-Kwong; Kanatzidis, Mercouri G.
2016-10-11
Competing orders widely exist in many material systems, such as superconductivity, magnetism, and ferroelectricity; LaCrSb3 is a highly anisotropic magnetic material in which the spins are aligned ferromagnetically in one direction and canted antiferromagnetically in another in the Cr-Sb chains. Hole doping with Sr2+ and Ca2+ in the La site suppresses the antiferromagnetic correlations and transforms the anisotropic magnetic order into a ferromagnetic lattice in all directions. First-principles density functional theory calculations show that the canted magnetic order becomes energetically less favorable compared to the FM order upon hole doping. Doping in the La site is an effective approach to modulate the competing orders in LaCrSb3.
Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro
2016-01-01
For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.
Hirose, S; Tanuma, S; Shibata, K; Takahashi, M; Tanigawa, T; Sasaqui, T; Noro, A; Uehara, K; Takahashi, K; Taniguchi, T
2003-01-01
The Kelvin-Helmholtz (KH) and tearing instabilities are likely to be important for the process of fast magnetic reconnection that is believed to explain the observed explosive energy release in solar flares. Theoretical studies of the instabilities, however, typically invoke simplified initial magnetic and velocity fields that are not solutions of the governing magnetohydrodynamic (MHD) equations. In the present study, the stability of a reconnecting current sheet is examined using a class of exact global MHD solutions for steady state incompressible magnetic reconnection (Craig & Henton 1995). Numerical simulation indicates that the outflow solutions where the current sheet is formed by strong shearing flows are subject to the KH instability. The inflow solutions where a fast and weakly sheared inflow leads to a strong magnetic field pile-up at the entrance to the sheet are shown to be tearing unstable. Although the observed instability of the solutions can be interpreted qualitatively by applying standa...
Institute of Scientific and Technical Information of China (English)
WEI Gao-Feng; LONG Chao-Yun; LONG Zheng-Wen; QIN Shui-Jie
2008-01-01
In this paper,the isotropic charged harmonic oscillator in uniform magnetic field is researched in the non-commutative phase space;the corresponding exact energy is obtained,and the analytic eigenfunction is presented in terms of the confluent hypergeometric function.It is shown that in the non-commutative space,the isotropic charged harmonic oscillator in uniform magnetic field has the similar behaviors to the Landau problem.
Energy Technology Data Exchange (ETDEWEB)
Bushong, S.C.
1988-01-01
This book introduces the fundamentals and principles of MRI, its capabilities and various techniques of application. Appropriate background for MRI is provided, including basic nuclear magnetic phenomena, modifications required for imaging, the current state of clinical knowledge and a survey of the future potential for in vivo MRI.
Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce
2015-03-01
HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.
Energy Technology Data Exchange (ETDEWEB)
Her, J L; Matsuda, Y H; Suga, K; Kindo, K; Takeyama, S [Institute for Solid State Physics, University of Tokyo (Japan); Berger, H [Institutes of Physics of Complex Matter, EPFL, Lausanne (Switzerland); Yang, H D [Department of Physics, Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China)
2009-10-28
The high-field magnetization, M(H), of Ni{sub 5}(TeO{sub 3}){sub 4}X{sub 2} (X = Br, Cl) was measured by using a pulse magnet. These compounds have a two-dimensional crystal structure and a distorted Kagome spin frustrated system which is built from the Ni{sup 2+} ions (S = 1). The Neel transition temperatures are T{sub N}approx28 and 23 K for X = Br and Cl, respectively. When T
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... this is the case, you will be given instructions for your child about not eating or drinking several hours prior ... MRI) Safety Contrast Materials Children and Radiation Safety Videos related to Children’s (Pediatric) Magnetic Resonance Imaging Sponsored by Please note ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... mail: Area code: Phone no: Thank you! ... Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... are the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is ... ray, CT and ultrasound. top of page How is the procedure performed? MRI examinations may be performed ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... E-mail: Area code: Phone no: Thank you! Images × Image Gallery Radiologist prepping patient for magnetic resonance imaging ( ... address): From (your name): Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... E-mail: Area code: Phone no: Thank you! Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View full ... address): From (your name): Your e-mail address: Personal message (optional): Bees: Wax: Notice: RadiologyInfo respects your ...
Magnetic Resonance Image Wavelet Enhancer
2007-11-02
1Departamento de Ingenieria Electrica, UAM Iztapalapa, Mexico−DF, 09340, Mexico email:arog@xanum.uam.mx. Magnetic Resonance Centre, School of Physics...Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Departamento de Ingenieria Electrica, UAM Iztapalapa, Mexico-DF
Evanescent Waves Nuclear Magnetic Resonance
DEFF Research Database (Denmark)
Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad
2016-01-01
Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance ... allergic reaction than iodinated contrast material. Tell your doctor about any health problems, recent surgeries or allergies ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose and treat medical ...
Okada, Makiko; Tanaka, Hidekazu; Kurita, Nobuyuki; Johmoto, Kohei; Uekusa, Hidehiro; Miyake, Atsushi; Tokunaga, Masashi; Nishimoto, Satoshi; Nakamura, Masaaki; Jaime, Marcelo; Radtke, Guillaume; Saúl, Andrés
2016-09-01
We synthesized single crystals of composition Ba2CuSi2O6Cl2 and investigated their quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi2O6 also known as Han purple. Ba2CuSi2O6Cl2 has a singlet ground state with an excitation gap of Δ /kB=20.8 K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the g factor except for a small jump anomaly for a magnetic field perpendicular to the c axis. The magnetization curve with a nonlinear slope above the critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. The magnetic-field-induced spin ordering in Ba2CuSi2O6Cl2 is described as the quasi-2D Bose-Einstein condensation of triplets.
Hu, Zhang-Hu; Song, Yuan-Hong; Wang, You-Nian
2010-08-01
A two-dimensional particle-in-cell (PIC) model is proposed to study the wake field and stopping power induced by a nonrelativistic charged particle moving perpendicular to the external magnetic field in two-component plasmas. The effects of the magnetic field on the wake potential and the stopping due to the polarization of both the plasma ions and electrons are discussed. The velocity fields of plasma ions and electrons are investigated, respectively, in the weak and strong magnetic field cases. Our simulation results show that in the case of weak magnetic field and high ion velocity, the wakes exhibit typical V-shaped cone structures and the opening cone angles decrease with the increasing ion velocity. As the magnetic field becomes strong, the wakes lose their typical V-shaped structures and become highly asymmetrical. Similar results can be obtained in the case of low ion velocity and strong magnetic field. In addition, stopping power is calculated and compared with previous one-dimensional and full three-dimensional PIC results.
Energy Technology Data Exchange (ETDEWEB)
Furtlehner, C. [Paris-6 Univ., 75 (France)
1997-09-24
This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of `strong` mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author) 78 refs.
Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari
2001-01-01
We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...
Design of a new two-dimensional diluted magnetic semiconductor: Mn-doped GaN monolayer
Zhao, Qian; Xiong, Zhihua; Luo, Lan; Sun, Zhenhui; Qin, Zhenzhen; Chen, Lanli; Wu, Ning
2017-02-01
To meet the need of low-dimensional spintronic devices, we investigate the electronic structure and magnetic properties of Mn-doped GaN monolayer using first-principles method. We find the nonmagnetic GaN monolayer exhibits half-metallic ferromagnetism by Mn doping due to double-exchange mechanism. Interestingly, the ferromagnetic coupling in Mn-doped GaN monolayer is enhanced with tensile strain and weakened with compressive strain. What is more, the ferromagnetic-antiferromagnetic transformation occurs under compressive strain of -9.5%. These results provide a feasible approach for fabrication of a new GaN monolayer based diluted magnetic semiconductor.
Yasuda, Chitoshi; Todo, Synge; Matsumoto, Munehisa; Takayama, Hajime
2002-01-01
Dilution effects on spin-1/2 quantum Heisenberg antiferromagnets with a non-magnetic spin-gapped ground state are studied by means of the qunatum Monte Carlo simulation. In the site-diluted system, an antiferromagnetic long-range order (AF-LRO) is induced at an infinitesimal concentration of dilution due to an effective coupling $\\tilde{J}_{mn}$ between induced magnetic moments. In the bond-diluted case, on the other hand, the AF-LRO is not induced up to a certain concentration of dilution du...
Energy Technology Data Exchange (ETDEWEB)
Grigoriev, P.D., E-mail: grigorev@itp.ac.ru [L. D. Landau Institute for Theoretical Physics, Chernogolovka (Russian Federation)
2012-06-01
It is shown that in rather strong magnetic field the interlayer electron conductivity is exponentially damped by the Coulomb barrier arising from the formation of polaron around each localized electron state. The theoretical model is developed to describe this effect, and the calculation of the temperature and field dependence of interlayer magnetoresistance is performed. The results obtained agree well with the experimental data in GaAs/AlGaAs heterostructures and in strongly anisotropic organic metals. The proposed theory allows to use the experiments on interlayer magnetoresistance to investigate the electron states, localized by magnetic field and disorder.
Luo, Jia; Xiang, Gang; Yu, Tian; Lan, Mu; Zhang, Xi
2016-09-01
By using first-principles calculations within the framework of density functional theory, the electronic and magnetic properties of 3d transitional metal (TM) atoms (from Sc to Zn) adsorbed monolayer GaAs nanosheets (GaAsNSs) are systematically investigated. Upon TM atom adsorption, GaAsNS, which is a nonmagnetic semiconductor, can be tuned into a magnetic semiconductor (Sc, V, and Fe adsorption), a half-metal (Mn adsorption), or a metal (Co and Cu adsorption). Our calculations show that the strong p-d hybridization between the 3d orbit of TM atoms and the 4p orbit of neighboring As atoms is responsible for the formation of chemical bonds and the origin of magnetism in the GaAsNSs with Sc, V, and Fe adsorption. However, the Mn 3d orbit with more unpaired electrons hybridizes not only with the As 4p orbit but also with the Ga 4p orbit, resulting in a stronger exchange interaction. Our results may be useful for electronic and magnetic applications of GaAsNS-based materials. Project supported by the National Natural Science Foundation of China (Grant No. 11174212).
DEFF Research Database (Denmark)
Gajula, Gnana Prakash; Neves Petersen, Teresa; Petersen, Steffen B.
2010-01-01
We hereby report a methodology that permits a quantitative investigation of the temporal self-organization of superparamagnetic nanoparticles in the presence of an external magnetic field. The kinetics of field-induced self-organization into linear chains, time-dependent chain-size distribution...
Advances in magnetic and optical resonance
Warren, Warren S
1997-01-01
Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.
Energy Technology Data Exchange (ETDEWEB)
Cornelius, A. L.; Arko, A. J.; Sarrao, J. L.; Hundley, M. F.; Fisk, Z.
2000-12-01
We have used high pulsed magnetic fields to 50 T to observe de Haas--van Alphen oscillations in the tetragonal antiferromagnet CeRhIn{sub 5}, which has an enhanced value of the electronic specific heat coefficient {gamma}{approx}>420 mJ/molK{sup 2}. For T
Resonant magnetic fields from inflation
Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R
2012-01-01
We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.
Suda, Tomoharu; Morinari, Takao
2016-11-01
Motivated by the rapid destruction of antiferromagnetic long-range order in hole-doped cuprate high-temperature superconductors, we study the effect of skyrmions on the magnetic long-range order (MLRO). Here we assume that either a skyrmion or antiskyrmion is introduced by a doped hole. Our numerical simulation indicates that in the case of isolated skyrmions, there is an abrupt disappearance of MLRO for doping concentration x < 1.0 × 10-4. In the case of skyrmion-antiskyrmion pairs, the critical doping concentration xc for the suppression of MLRO is given as a function of the separation of the pairs. For a moderate separation of 3-4 lattice constants, we find that the critical doping is consistent with the experimental value.
Magnetic resonance tomography in syringomyelia
Energy Technology Data Exchange (ETDEWEB)
Koehler, D.; Treisch, J.; Hertel, G.; Schoerner, W.; Fiegler, W.
1985-12-01
Thirteen patients with a clinical diagnosis of syringomyelia were examined by nuclear tomography (0.35 T magnet) in the spin-echo mode. In all thirteen patients, the T1 images (Se 400/35) showed a longitudinal cavity with a signal intensity of CSF. The shape and extent of the syrinx could be adequately demonstrated in 12 of the 13 examinations. Downward displacement of the cerebellar tonsils was seen in eight cases. The examination took between half and one hour. Advantages of magnetic resonance tomography (nuclear tomography) include the absence of artifacts, images in the line of the lesion and its non-invasiveness.
Ostrovskaya, G. V.; Frank, A. G.; Bogdanov, S. Yu.
2010-07-01
The effect of the initial plasma parameters on the structure of the plasma of the current sheets that form in two-dimensional magnetic fields with a null line is studied by holographic interferometry. The evolution of the plasma sheets that develop in an initial low-density plasma, where a gas is mainly ionized by a pulse current passing through the plasma and initiating the formation of a current sheet, has been comprehensively studied for the first time. At the early stage of evolution, the spatial structure of such a plasma sheet differs substantially from the classic current sheets forming in a dense plasma. Nevertheless, extended plasma sheets with similar parameters form eventually irrespective of the initial plasma density.
Magnetic ground state of quasi-two-dimensional organic conductor, τ-(EDO-S,S-DMEDT-TTF)2(AuCl2)1+y
Nakanishi, T.; Yasuzuka, S.; Yoshino, H.; Fujiwara, H.; Sugimoto, T.; Nishio, Y.; Kajita, K.; Anyfantis, G. A.; Papavassiliou, G. C.; Murata, K.
2006-11-01
To understand the interplay between transport and magnetic properties, quasi-two-dimensional (Q2D) organic conductor τ-(EDO-S,S-DMEDTTTF)2(AuCl2)1+y was studied by measurements of electric resistivity ( ρa, ρc), magnetoresistance (MR), susceptibility (χ) and specific heat (C) in the temperature region between 1 K and 300 K. In spite of the fact that the drastic changes were observed in ρa, ρc, MR and χ at TC = 20 K, no anomaly was seen in C. The concentration of spins estimated from M-H curve is about 360 ppm, which is difficult to detect anomaly in C. These data suggest that the number of spins is very small in the ground state like spin-glass system.
Evanescent Waves Nuclear Magnetic Resonance
DEFF Research Database (Denmark)
Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad
2016-01-01
Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order to char...... a new road to a better understanding of the evanescent waves component in NMR with the opportunity to perform localized spectroscopy and imaging....
Magnetic resonance and its applications
Chizhik, Vladimir I; Donets, Alexey V; Frolov, Vyacheslav V; Komolkin, Andrei V; Shelyapina, Marina G
2014-01-01
The book provides a basic understanding of the underlying theory, fundamentals and applications of magnetic resonance The book implies a few levels of the consideration (from simple to complex) of phenomena, that can be useful for different groups of readers The introductory chapter provides the necessary underpinning knowledge for newcomers to the methods The exposition of theoretical materials goes from initial to final formulas through detailed intermediate expressions.
Demonstration of coarctation of the aorta by magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Amparo, E.; Higgins, C.B.; Shafton, E.P.
1984-12-01
The physical findings in coarctation of the aorta are sufficiently characteristic to allow a reasonably accurate clinical diagnosis. The preoperative evaluation has been accomplished by catheterization, aortography, intravenous digital subtraction angiography, computed tomography (CT), and two-dimensional (2D) echocardiography. The authors report a case of coarctation of the aorta clinically suspected in a 29-year-old man. Magnetic resonance imaging (MRI) was the initial preoperative imaging technique. In retrospect, it provided sufficient information for preoperative evaluation so that other imaging techniques would not have been required.
Palma, G; Niedermayer, F; Rácz, Z; Riveros, A; Zambrano, D
2016-08-01
The zero-temperature, classical XY model on an L×L square lattice is studied by exploring the distribution Φ_{L}(y) of its centered and normalized magnetization y in the large-L limit. An integral representation of the cumulant generating function, known from earlier works, is used for the numerical evaluation of Φ_{L}(y), and the limit distribution Φ_{L→∞}(y)=Φ_{0}(y) is obtained with high precision. The two leading finite-size corrections Φ_{L}(y)-Φ_{0}(y)≈a_{1}(L)Φ_{1}(y)+a_{2}(L)Φ_{2}(y) are also extracted both from numerics and from analytic calculations. We find that the amplitude a_{1}(L) scales as ln(L/L_{0})/L^{2} and the shape correction function Φ_{1}(y) can be expressed through the low-order derivatives of the limit distribution, Φ_{1}(y)=[yΦ_{0}(y)+Φ_{0}^{'}(y)]^{'}. Thus, Φ_{1}(y) carries the same universal features as the limit distribution and can be used for consistency checks of universality claims based on finite-size systems. The second finite-size correction has an amplitude a_{2}(L)∝1/L^{2} and one finds that a_{2}Φ_{2}(y)≪a_{1}Φ_{1}(y) already for small system size (L>10). We illustrate the feasibility of observing the calculated finite-size corrections by performing simulations of the XY model at low temperatures, including T=0.
Directory of Open Access Journals (Sweden)
E Taghizdehsiskht
2013-09-01
Full Text Available In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding of quantum transport in narrow channels in different conditions of disorder and magnetic fields. We have used an approach that has proved to be very useful in describing mesoscopic transport. We have assumed zero temperature and phase coherent transport. By using the trick that a conductor connected to infinite leads can be replaced by a finite conductor with the effect of the leads incorporated through a 'self-energy' function, a convenient method was provided for evaluating the Green's function of the whole device numerically. Then, Fisher-Lee relations was used for calculating the transmission coefficients through coherent mesoscopic conductors. Our calculations were done in a model system with Hard-wall boundary conditions in the transverse direction, and the Anderson model of disorder was used in disordered samples. We have presented the results of quantum transport for different strengths of disorder and introduced magnetic fields. Our results confirmed the Landauer formalism for calculation of electronic transport. We observed that weak localization effect can be removed by application of a weak perpendicular magnetic field. Finally, we numerically showed the transition to the integral quantum Hall effect regime through the suppression of backscattering on a disordered model system by calculating the two terminal conductance of a quasi-one-dimensional quantum conductor as a strong magnetic field is applied. Our results showed that this regime is entered when there is a negligible overlap between electron edge states localized at opposite sides of
Advances in magnetic resonance 3
Waugh, John S
2013-01-01
Advances in Magnetic Resonance, Volume 3, describes a number of important developments which are finding increasing application by chemists. The book contains five chapters and begins with a discussion of how the properties of random molecular rotations reflect themselves in NMR and how they show up, often differently, in other kinds of experiments. This is followed by separate chapters on the Kubo method, showing its equivalence to the Redfield approach in the cases of most general interest; the current state of dynamic nuclear polarization measurements in solutions and what they tell us abou
Tunable Magnetic Resonance in Microwave Spintronics Devices
Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.
2015-01-01
Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Magnetic resonance imaging of hemochromatosis arthropathy
Energy Technology Data Exchange (ETDEWEB)
Eustace, S. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States); Buff, B. [Dept. of Radiology, Deaconess Hospital and Harvard Medical School, Boston, MA (United States); McCarthy, C. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); MacMathuana, P. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); Gilligan, P. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland); Ennis, J.T. [The Inst. of Radiological Sciences, Mater Hospital, Dublin (Ireland)
1994-10-01
This study was undertaken to compare plain film radiography and magnetic resonance imaging in the assessment of hemochromatosis arthropathy of the knees of ten patients with a biopsy-proven diagnosis. Both modalities enabled visualisation of bony degenerative changes; magnetic resonance imaging enabled additional visualization of deformity of both cartilage and menisci. Magnetic resonance imaging failed reliably to confirm the presence of intra-articular iron in the patients studied. No correlation was observed between synovial fluid magnetic resonance signal values, corresponding serum ferritin levels, or the severity of the observed degenerative changes. (orig.)
Miyasaka, Hitoshi; Ieda, Hidenori; Matsumoto, Naohide; Sugiura, Ken-ichi; Yamashita, Masahiro
2003-06-02
The title compound, (NEt(4))[[Mn(salen)](2)Fe(CN)(6)] (1), was synthesized via a 1:1 reaction of [Mn(salen)(H(2)O)]ClO(4) with (NEt(4))(3)[Fe(CN)(6)] in a methanol/ethanol medium (NEt(4)(+) = tetraethylammonium cation, salen(2)(-) = N,N'-ethylenebis(salicylidene)iminate). The two-dimensional layered structure of 1 was revealed by X-ray crystallographic analysis: 1 crystallizes in monoclinic space group P2(1)/c with cell dimensions of a = 12.3660(8) A, b = 15.311(1) A, c = 12.918(1) A, beta = 110.971(4) degrees, Z = 2 and is isostructural to the previously synthesized compound, (NEt(4))[[Mn(5-Clsalen)](2)Fe(CN)(6)] (5-Clsalen(2-) = N,N'-ethylenebis(5-chlorosalicylidene)iminate; Miyasaka, H.; Matsumoto, N.; Re, N.; Gallo, E.; Floriani, C. Inorg. Chem. 1997, 36, 670). The Mn ion is surrounded by an equatorial salen quadridentate ligand and two axial nitrogen atoms from the [Fe(CN)(6)](3-) unit, the four Fe[bond]CN groups of which coordinate to the Mn ions of [Mn(salen)](+) units, forming a two-dimensional network having [[bond]Mn[bond]NC[bond]Fe[bond]CN[bond
Ito, Miho; Uehara, Tomotaka; Taniguchi, Hiromi; Satoh, Kazuhiko; Ishii, Yasuyuki; Watanabe, Isao
2015-05-01
The zero-field magnetism of a two-dimensional noncollinear antiferromagnet, κ-(BEDT-TTF)2Cu[N(CN)2]Cl, has been investigated by magnetization and zero-field muon spin rotation (μSR) measurements. Low-field magnetization measurements enabled us to determine the magnetic transition temperature TN as 22.80 ± 0.02 K. Distinct muon spin precession signals appeared below 21.4 K. μSR spectra below 21.4 K were well described by two types of precession components and a relaxation one. The temperature dependence of internal field converted by μSR data was in good agreement with that of macroscopic residual magnetism. These results suggest that the tiny interlayer interaction, which has been suggested to be almost 106 times less than the intralayer exchange interaction, spontaneously causes the three-dimensional long-range order.
Institute of Scientific and Technical Information of China (English)
CHEN Hui; WANG Wen-Guo; MA Cheng-Bing; CHEN Chang-Neng; LIU Qiu-Tian; LIAO Dai-Zheng; LI Li-Cun
2007-01-01
A new two-dimensional polymeric manganese compound [Mn(PhCOO)2(4,4'-bipyridine)]n 1 has been prepared and structurally characterized by X-ray diffraction. The complex crystallizes in space group Pbcn with a = 18.7158(2), b = 11.6919(3), c = 9.4799(2)(A), V = 2074.42(7)(A)3, Z = 4, Mr = 453.34, Dc = 1.452 g/cm3, μ = 0.670 mm-1 and F(000) = 932. The final refinement gave R = 0.0458 and wR = 0.1439 for 1358 observed reflections with Ⅰ＞ 2σ(Ⅰ). The complex consists of repeating units of Mn(PhCOO)2(4,4'-bipyridine). Each Mn center is sixcoordinated by four carboxylate O atoms of four benzoate anions and two pyridyl N atoms from bipy ligands to furnish a slightly distorted octahedral geometry. The two adjacent Mn atoms are connected by a pair of μ1,3-carboxylate groups to form infinite chains, which are further interlinked by bipy to complete a 2D grid network. The magnetic property of the polymeric complex has also been investigated.
Institute of Scientific and Technical Information of China (English)
冷永刚; 赖志慧; 范胜波; 高毓璣
2012-01-01
In this paper, the stochastic resonance of two-dimensional Duffing oscillator under the adiabatic assumption is studied. For the large parameter condition, we propose the large parameter stochastic resonance of two-dimensional Duffing oscillator, and discuss the relationship between the scale transformation stochastic resonance and the parameter adjustment stochastic resonance. Then we reveal the mechanism of signal detection by Duffing oscillator stochastic resonance in large parameter condition, and extend its application to weak signal detection.%研究了二维Duffing振子在绝热近似条件下的随机共振特性，针对大参数条件，提出二维Duffing振子的大参数随机共振，并探讨二维Duffing振子变尺度随机共振和参数调节随机共振的关联性，揭示大参数条件下Duffing振子随机共振检测特征信号的机理，扩展其在微弱信号检测领域中的应用．
11B nuclear magnetic resonance in boron-doped diamond
Directory of Open Access Journals (Sweden)
Miwa Murakami, Tadashi Shimizu, Masataka Tansho and Yoshihiko Takano
2008-01-01
Full Text Available This review summarizes recent results obtained by 11B solid-state nuclear magnetic resonance (NMR on boron-doped diamond, grown by the high-pressure high-temperature (HPHT or chemical vapor deposition techniques. Simple single-pulse experiments as well as advanced two-dimensional NMR experiments were applied to the boron sites in diamond. It is shown that magic-angle spinning at magnetic fields above 10 T is suitable for observation of high-resolution 11B spectra of boron-doped diamond. For boron-doped HPHT diamonds, the existence of the excess boron that does not contribute to electrical conductivity was confirmed and its 11B NMR signal was characterized. The point-defect structures (B+H complexes and -B-B-/-B-C-B- clusters, postulated previously for the excess boron, were discarded and graphite-like structures were assigned instead.
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Dipeptide Structural Analysis Using Two-Dimensional NMR for the Undergraduate Advanced Laboratory
Gonzalez, Elizabeth; Dolino, Drew; Schwartzenburg, Danielle; Steiger, Michelle A.
2015-01-01
A laboratory experiment was developed to introduce students in either an organic chemistry or biochemistry lab course to two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy using simple biomolecules. The goal of this experiment is for students to understand and interpret the information provided by a 2D NMR spectrum. Students are…
Magnetic Resonance Imaging of Electrolysis.
Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris
2015-01-01
This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942
Functional Magnetic Resonance Imaging and Pediatric Anxiety
Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew
2008-01-01
The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…
Chemical Principles Revisited. Proton Magnetic Resonance Spectroscopy.
McQuarrie, Donald A.
1988-01-01
Discusses how to interpret nuclear magnetic resonance (NMR) spectra and how to use them to determine molecular structures. This discussion is limited to spectra that are a result of observation of only the protons in a molecule. This type is called proton magnetic resonance (PMR) spectra. (CW)
Enhancement of Magnetic Resonance Imaging with Metasurfaces
Slobozhanyuk, Alexey P; Poddubny, Alexander N; Raaijmakers, AJE; van den Berg, CAT; Kozachenko, Alexander V; Dubrovina, Irina A; Melchakova, Irina V; Kivshar, Yuri S; Belov, Pavel A
2016-01-01
It is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic
Functional Magnetic Resonance Imaging and Pediatric Anxiety
Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew
2008-01-01
The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…
Magnetic resonance imaging of the prostate
DEFF Research Database (Denmark)
Iversen, P; Kjaer, L; Thomsen, C
1988-01-01
Magnetic resonance imaging offers new possibilities in investigation of the prostate gland. Current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be useful in the staging of carcinoma of the prostate....
Magnetic resonance imaging of the prostate
DEFF Research Database (Denmark)
Iversen, P; Kjaer, L; Thomsen, C
1987-01-01
Magnetic resonance imaging offers new possibilities in the investigation of the prostate. The current results of imaging and tissue discrimination in the evaluation of prostatic disease are reviewed. Magnetic resonance imaging may be of value in the staging of carcinoma of the prostate....
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Yoshimura, Kazuyoshi; Michioka, Chishiro; Matsui, Mami; Ohta, Hiroto; Yang, Jinhu; Fang, Minghu
2011-06-01
Intrinsic spin susceptibility of the novel layered superconducting and magnetic system Fe1+δTe1-xSex was investigated by means of the magnetization measurements in comparing with the 125Te NMR Knight shift 125K. The macroscopic uniform susceptibility in Fe1+δTe1-xSex consists of the itinerant magnetization originated in the Fe(1) site, localized one in the Fe(2) site and the ferromagnetic-like impurity which is frequently sandwiched by the thin film-like single crystals. Unlike the macroscopic magnetization, Knight shift 125K is mainly attributed to the itinerant magnetism of the Fe(1) site, which is important for the superconductivity and the magnetism in the Fe1+δTe1-xSex system. The magnetic susceptibility estimated in the high-field region agrees well with 125K. The uniform susceptibility of the superconducting Fe1+δTe1-xSex gradually decreases with decreasing temperature in the normal state accompanied by the growth of antiferromagnetic spin afluctuations.
Energy Technology Data Exchange (ETDEWEB)
Ma, Ji; Sun, Shuangshuang; Wang, Tiantian; Chen, Kezheng, E-mail: kchen@qust.edu.cn [Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)
2015-08-21
In this study, abnormal hard-magnetic domains were discovered in Fe{sub 3}O{sub 4}@C composite material, in which well-ordered 16-nm-sized Fe{sub 3}O{sub 4} cubes were tightly embedded into carbon sheets of tens of nanometers thick. It was found that ca. 40 columns of Fe{sub 3}O{sub 4} nanocubes magnetically self-assembled into a single strip-type domain with perpendicular magnetic anisotropy. More strikingly, remarkable domain misalignments, which were very similar to common edge dislocations among atomic planes in crystal lattices, were clearly observed and termed as “domain dislocation” in this work. The hard-magnetic properties of Fe{sub 3}O{sub 4}@C material, including large coercivity of 2150 Oe, high M{sub R}/M{sub S} value of 0.9, and strong anisotropy energy of 3.772 × 10{sup 5} erg/cm{sup 3}, were further ascertained by carefully designed electromagnetic absorption contrast experiments. It is anticipated that the discovery of hard-magnetic domains and domain dislocations within 2-D arrays of soft-magnetic nanomaterials will shed new light on the development of high-density perpendicular magnetic recording industry.
Rusomarov, N; Ryabchikova, T; Piskunov, N
2014-01-01
Aims: We present a magnetic Doppler imaging study from all Stokes parameters of the cool, chemically peculiar star HD 24712. This is the very first such analysis performed at a resolving power exceeding 10^5. Methods: The analysis is performed on the basis of phase-resolved observations of line profiles in all four Stokes parameters obtained with the HARPSpol instrument attached at the 3.6-m ESO telescope. We use the magnetic Doppler imaging code, INVERS10, which allows us to derive the magnetic field geometry and surface chemical abundance distributions simultaneously. Results: We report magnetic maps of HD 24712 recovered from a selection of FeI, FeII, NdIII, and NaI lines with strong polarization signals in all Stokes parameters. Our magnetic maps successfully reproduce most of the details available from our observation data. We used these magnetic field maps to produce abundance distribution map of Ca. This new analysis shows that the surface magnetic field of HD 24712 has a dominant dipolar component wit...
Nuclear magnetic resonance. Tomography of tomorrow
Energy Technology Data Exchange (ETDEWEB)
Ethier, R.; Melanson, D.; Peters, T.M. (Montreal Neurological Inst., Quebec (Canada))
1983-10-01
Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography.
Use of magnetic resonance urography.
Klein, L T; Frager, D; Subramanium, A; Lowe, F C
1998-10-01
Magnetic resonance urography (MRU) is a new technique that uses heavily weighted T2 coronal images with fat suppression pulse. Urine appears white on MRU, resembling an intravenous urogram (IVU). Contrast agents are not necessary. This study describes the use of MRU in the diagnosis and treatment of patients with hematuria. One hundred six patients with microscopic or gross hematuria and 6 normal volunteers underwent MRU between 1992 and 1995. A modified, heavily weighted T2 technique with intravenous administration of furosemide and ureteral compression was used. Thirty-two patients had other imaging techniques as well for comparison. MRU provided high-resolution images in almost all cases; 73 (69%) had a normal MRU. Significant findings in the 33 patients with abnormalities included renal cysts in 17 (51%), renal cell carcinoma in 6 (18%), transitional cell carcinoma in 5 (15%), ureteropelvic junction obstruction in 3 (9%), and stones causing obstruction in 6 (18%). Five patients with renal failure also had good visualization of the entire urinary tract. MRU was comparable to other imaging modalities except in identifying nonobstructing calculi. MRU provides an alternative to conventional imaging of the urinary tract, especially in those patients who have contraindications to ionizing radiation and contrast agents. Improvements in resolution, technique, and cost have to be addressed before it can be used regularly in urologic practice.
Magnetic resonance images of hematospermia
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Norio; Miki, Kenta; Kato, Nobuki; Furuta, Nozomu; Ohishi, Yukihiko [Jikei Univ., Tokyo (Japan). School of Medicine; Kondo, Naoya; Tashiro, Kazuya
1998-12-01
We performed MRI (magnetic resonance imaging) in the pelvic region of 70 cases with hematospermia and conducted a study on the abnormal MRI findings to which hematospermia could be attributed. We conducted a study on the morphological anomaly and change in the signal intensity in the prostate gland and of the seminal vesicle as well as on the presence or absence of dilation in the plexus venous surrounding the deferent duct or the prostate gland out of the abnormal MRI findings. As for the seminal vesicle, the patients whose seminal vesicle was seen in higher intensity than the prostate gland in T1 weighted images were diagnosed as having hemorrhagic focus and the patients whose seminal vesicle was seen in low intensity both in T1 and T2 weighted images were diagnosed as having fibrosis caused by chronic inflammation. Abnormal MRI findings were seen in 40 out of the 70 cases (57%). Anomaly in the prostate gland was indicated in 6 (9%) cases. Abnormality in the seminal vesicle was indicated in 30 cases (43%) including hemorrhage of seminal vesicle in 25 cases, chronic inflammation in five cases and cyst of seminal vesicle in one case. In conducting an examination of the patients with hematospermia, MRI is the nonivasive and reproducible method and it is possible to identify the hemorrhagic region. Therefore, MRI is thought to be useful to identify the causal organs of hematospermia. (author)
Aortic dissection: magnetic resonance imaging.
Amparo, E G; Higgins, C B; Hricak, H; Sollitto, R
1985-05-01
Fifteen patients with suspected or known aortic dissection were imaged with magnetic resonance (MR). Thirteen of these patients were eventually shown to have dissection. In most instances the diagnosis was established by aortography and/or computed tomography (CT) prior to the MR study. Surgical proof (6/13) and/or aortographic proof (10/13) were available in 11/13 patients with aortic dissection. MR demonstrated the intimal flap and determined whether the dissection was type A or type B. In addition, MR: differentiated between the true and false lumens; determined the origins of the celiac, superior mesenteric, and renal arteries from the true or false lumen in the cases where the dissection extended into the abdominal aorta (8/12); allowed post-surgical surveillance of the dissection; and identified aortoannular ectasia in the three patients who had Marfan syndrome. In addition to the 13 cases with dissection, there were two cases in whom the diagnosis of dissection was excluded by MR. Our early experience suggests that MR can serve as the initial imaging test in clinically suspected cases of aortic dissection and that the information provided by MR is sufficient to manage many cases. Additionally, MR obviates the use of iodinated contrast media.
Magnetic resonance in Multiple Sclerosis
Energy Technology Data Exchange (ETDEWEB)
Scotti, G.; Scialfa, G.; Biondi, A.; Landoni, L.; Caputo, D.; Cazzullo, C.L.
1986-07-01
Magnetic Resonance Imaging was performed in more than 200 patients with clinical suspicion or knowledge of Multiple Sclerosis. One hundred and forty-seven (60 males and 87 females) had MR evidence of multiple sclerosis lesions. The MR signal of demyelinating plaques characteristically has prolonged T1 and T2 relaxation times and the T2-weighted spin-echo sequences are generally superior to the T1-weighted images because the lesions are better visualized as areas of increased signal intensity. MR is also able to detect plaques in the brainstem, cerebellum and within the cervical spinal cord. MR appears to be an important, non-invasive method for the diagnosis of Multiple Sclerosis and has proven to be diagnostically superior to CT, evoked potentials (EP) and CSF examination. In a selected group of 30 patients, with the whole battery of the relevant MS studies, MR was positive in 100%, CT in 33,3%, EP in 56% and CSF examination in 60%. In patients clinically presenting only with signs of spinal cord involvement or optic neuritis or when the clinical presentation is uncertain MR has proven to be a very useful diagnostic tool for diagnosis of MS by demonstrating unsuspected lesions in the cerebral hemispheres.
Magnetic resonance in ion-beam synthesized Fe{sub 3}Si films (computer simulation)
Energy Technology Data Exchange (ETDEWEB)
Balakirev, N.A.; Zhikharev, V.A. [Kazan National Research Technological University, Kazan (Russian Federation)
2015-01-01
High dose Fe{sup +} ion implantation into Si assisted by an external magnetic field parallel to silicon surface results in the formation of thin granular film with pronounced uniaxial magnetic anisotropy in the film plane. It was suggested that the anisotropy is caused by the growth of elongated clusters of magnetic silicide Fe{sub 3}Si. In the present work, the features of magnetic resonance spectra for two-dimensional array of elongated clusters are numerically studied. Absorption spectra reveal anisotropy when observed in the magnetic field lying in the film plane. In magnetic field perpendicular to the film the dipole-dipole interaction between the clusters results in a bimodal resonance signal at low level of the film filling. The dipolar field distribution over the (400x400) lattice for several values of the lattice filling is computer simulated. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Directory of Open Access Journals (Sweden)
K. Bartušek
2003-01-01
Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.
Spin-current resonances in a magnetically inhomogeneous 2D conducting system
Charkina, O. V.; Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.
2016-10-01
The high-frequency transport in a two-dimensional conducting ring having an inhomogeneous collinear magnetic structure has been considered in the hydrodynamic approximation. It is shown that the frequency dependence on the radial electric conductivity of the ring exhibits resonances corresponding to new hybrid oscillations in such systems. The oscillation frequencies are essentially dependent on the applied electromagnetic field and the spin state of the system.
Ding, Pei; He, Jinna; Fan, Chunzhen; Cai, Genwang; Liang, Erjun
2013-01-01
Two-dimensional double nanoparticles (DNPs) arrays are demonstrated theoretically supporting the interaction of out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay of the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement of magnetic field enhancement. Simultaneous electric field and magnetic field enhancements can be obtained in the gap regions between neighboring particles at two resonance frequencies as the interplay occurs, which present open cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmons interactions in periodic nanostructure or metamaterials comprising multiple element...
Institute of Scientific and Technical Information of China (English)
华晨辉; 李彦彦
2012-01-01
以基于二维简正模式的微机电系统(MEMS)超声分离器的结构模型为研究对象,首先根据声电类比原理,得到超声分离腔的二维等效电路模型,通过该模型分析计算二维简正模式的谐振频率；接着通过Ansys软件对MEMS超声分离器进行有限元的仿真分析,验证了等效电路模型的可行性,并得到了最佳激发频率；最后在实验中分别采用单片PZT激发(2,1)阶和双片反相位PZT激发(1,1)阶的简正模式,均取得了一定分离的效果.%A structure model of Micro Electro Mechanical System (MEMS) ultrasonic separator which based on the two-dimensional normal vibration modes was chosen as the research object in this paper. Firstly, in accordance with the theory of electricity-sound analogy.a two-dimensional equivalent circuit model of the rectangular section of the fluid cavity was figured out. According to this model, the resonance frequencies of the two-dimensional normal mode were listed. Secondly.Simulations using finite-element method with ANSYS software was used to demonstrate the validity of the model and helped to select the best exciting frequencies; in the end the frequencies of two-dimensional normal vibration modes(2,l) and (1,1) were chosen in this paper to excite the ultrasonic. The results showed good separation.
Reducing Field Distortion in Magnetic Resonance Imaging
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2010-01-01
A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T
Energy Technology Data Exchange (ETDEWEB)
Kellar, S.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.
1997-05-01
This thesis report the surface-structure determination of three, ultra-thin magnetic transition-metal films, Fe/Au(100), Mn/Ni(100), and Mn/Cu(100) using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and photoelectron holography. These structural studies are the first to use non-s initial states in the ARPEFS procedure. This thesis also reports an ARPEFS surface-structure determination of a two-dimensional transition-metal oxide, [(1 x 1)O/W(110)] x 12. The authors have analyzed the ARPFES signal from the Au 4f{sub 7/5} core level of the Au(1 ML)/Fe(15 ML)/Au(100) system. The analysis shows that the Fe grows layer by layer with one monolayer of gold, acting as a surfactant, remaining on top of the growing Fe layers. These surface gold atoms sit in the four-fold hollow site, 1.67 {+-} 0.02 A above the iron surface. The grown Fe layer is very much like the bulk, bcc iron, with an interlayer spacing of 1.43 {+-} 0.03 A. Analysis of the Mn 3p ARPEFS signals from c(2 x 2)Mn/Ni(100) and c(2 x 2)Mn/Cu(100) shows that the Mn forms highly corrugated surface alloys. The corrugation of the Mn/Ni(100) and Mn/Cu(100) systems are 0.24 {+-} 0.02 A and 0.30 {+-} 0.04 A respectively. In both cases the Mn is sticking above the plane of the surface substrate atoms. For the Mn/Ni(100) system the first layer Ni is contracted 4% from the bulk value. The Mn/Cu(100) system shows bulk spacing for the substrate Cu. Photoelectron holography shows that the Mn/Ni interface is very abrupt with very little Mn leaking into the second layer, while the Mn/Cu(100) case has a significant amount of Mn leaking into the second layer. A new, five-element electrostatic electron lens was developed for hemispherical electron-energy analyzers. This lens system can be operated at constant transverse or constants angular magnification, and has been optimized for use with the very small photon-spot sizes. Improvements to the hemispherical electron-energy analyzer are also discussed.
Nuclear magnetic resonance spectral analysis and molecular properties of berberine
Huang, Ming-Ju; Lee, Ken S.; Hurley, Sharon J.
An extensive theoretical study of berberine has been performed at the ab initio HF/6-31G**, HF/6-311G**, and B3LYP/6-311G** levels with and without solvent effects. The optimized structures are compared with X-ray data. We found that the optimized structures with solvent effects are in slightly better agreement with X-ray data than those without solvent effects. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of berberine were calculated by using the gauge-independent atomic orbital (GIAO) (with and without solvent effects), CSGT, and IGAIM methods. The calculated chemical shifts were compared with the two-dimensional NMR experimental data. Overall, the calculated chemical shifts show very good agreement with the experimental results. The harmonic vibrational frequencies for berberine were calculated at the B3LYP/6-311G** level.
Your Radiologist Explains Magnetic Resonance Angiography (MRA)
Full Text Available ... I-131 Therapy Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography ( ... pictures of the major blood vessels throughout your body. It may be performed with or without contrast ...
Your Radiologist Explains Magnetic Resonance Angiography (MRA)
Full Text Available ... with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA is a noninvasive test ... of the major blood vessels throughout your body. It may be performed with or without contrast material ...
single voxel magnetic resonance spectroscopy in distinguishing ...
African Journals Online (AJOL)
2011-03-03
Mar 3, 2011 ... magnetic resonance spectroscopy (MRI, MRS) in differentiating focal neoplastic lesions from focal non- ..... this study, it is important to note that there were distinct differences in the .... Applications of MRS in the. 13. evaluation ...
Your Radiologist Explains Magnetic Resonance Angiography (MRA)
Full Text Available ... with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA is a noninvasive test ... of the major blood vessels throughout your body. It may be performed with or without contrast material ...
Can magnetic resonance imaging differentiate undifferentiated arthritis?
DEFF Research Database (Denmark)
Østergaard, Mikkel; Duer, Anne; Hørslev-Petersen, K
2005-01-01
A high sensitivity for the detection of inflammatory and destructive changes in inflammatory joint diseases makes magnetic resonance imaging potentially useful for assigning specific diagnoses, such as rheumatoid arthritis and psoriatic arthritis in arthritides, that remain undifferentiated after...... conventional clinical, biochemical and radiographic examinations. With recent data as the starting point, the present paper describes the current knowledge on magnetic resonance imaging in the differential diagnosis of undifferentiated arthritis....
Enhancement of artificial magnetism via resonant bianisotropy
Markovich, Dmitry; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel
2015-01-01
All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here a new approach for increasing magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer nanoantenna. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of magnetic polarizability, tailoring the later in the dynamical range of 100 % and enhancement up to 36 % relative to performances of standalone spherical particles....
Torque-mixing Magnetic Resonance Spectroscopy
Losby, Joseph; Fani Sani, Fatemeh; Grandmont, Dylan; Diao, Zhu; Belov, Miro; Burgess, Jacob; Compton, Shawn; Hiebert, Wayne; Vick, Doug; Mohammad, Kaveh; Salimi, Elham; Bridges, Gregory; Thomson, Douglas; Freeman, Mark
A universal, mechanical torque method for magnetic resonance spectroscopy is presented. In analogy to resonance detection by induction, a signal proportional to the transverse component of a precessing dipole moment can be measured as a pure mechanical torque in broadband, frequency-swept spectroscopy. Comprehensive electron spin resonance of a single-crystal, mesoscopic yttrium iron garnet disk at room temperature are presented to demonstrate the method. The rich detail allows analysis of even complex 3D spin textures.
Magnetic Resonance Imaging (MRI) - Spine
... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the brain and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the inside of ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... a powerful magnetic field, radio waves and a computer to produce detailed pictures of the brain and ... powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures of organs, soft tissues, ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... help detect certain chronic diseases of the nervous system, such as multiple sclerosis diagnose problems with the ... the magnet. Some MRI units, called short-bore systems , are designed so that the magnet does not ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... of the head uses a powerful magnetic field, radio waves and a computer to produce detailed pictures ... medical conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... help detect certain chronic diseases of the nervous system, such as multiple sclerosis diagnose problems with the ... the magnet. Some MRI units, called short-bore systems , are designed so that the magnet does not ...
Magnetic nanoparticles in magnetic resonance imaging and diagnostics.
Rümenapp, Christine; Gleich, Bernhard; Haase, Axel
2012-05-01
Magnetic nanoparticles are useful as contrast agents for magnetic resonance imaging (MRI). Paramagnetic contrast agents have been used for a long time, but more recently superparamagnetic iron oxide nanoparticles (SPIOs) have been discovered to influence MRI contrast as well. In contrast to paramagnetic contrast agents, SPIOs can be functionalized and size-tailored in order to adapt to various kinds of soft tissues. Although both types of contrast agents have a inducible magnetization, their mechanisms of influence on spin-spin and spin-lattice relaxation of protons are different. A special emphasis on the basic magnetism of nanoparticles and their structures as well as on the principle of nuclear magnetic resonance is made. Examples of different contrast-enhanced magnetic resonance images are given. The potential use of magnetic nanoparticles as diagnostic tracers is explored. Additionally, SPIOs can be used in diagnostic magnetic resonance, since the spin relaxation time of water protons differs, whether magnetic nanoparticles are bound to a target or not.
Directory of Open Access Journals (Sweden)
Krishna Pratap Singh Senger
2016-12-01
Full Text Available Background: Mullerian duct anomalies (MDAs are a fascinating group of disorders that have varied clinical presentation from being asymptomatic to primary amenorrhea to inability to reproduce. Correct diagnosis of the condition plays a crucial role in management. Imaging plays a pivotal role in making correct diagnosis. This study aims to find the prevalence of MDAs amongst study population and their relation with infertility and also compares diagnostic utility of pelvic ultrasound with MRI. Methods: A randomized diagnostic test evaluation study was conducted in the Department of Radiodiagnosis and Imaging of a tertiary care teaching hospital over a period of 2 years. The patient first underwent pelvic 2D USG in multiple planes using curvilinear probe of 3MHz to 5 MHz. frequency and then MRI. Results: Most common MDA in total study sample and in primary infertility group is arcuate uterus while in recurrent abortions group it is unicornuate uterus. Out of total study sample of 75 patients 2D USG detected 18 cases of MDA while MRI detected 22 cases of MDA. So, 2D USG failed to detect 04 cases of MDA in total study population bringing overall sensitivity of 2D USG as 81.8%, specificity of 100%, PPV of 100%, NPV of 93.4% and accuracy of 94.6%. Conclusions: 2D USG has a few limitations but in view of relatively simple imaging procedure, ease of availability and cost effectiveness it should be utilized as an initial imaging modality in patients with suspicion of MDAs.
Energy Technology Data Exchange (ETDEWEB)
Palistrant, M. E., E-mail: mepalistrant@yandex.com; Ursu, V. A. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)
2013-04-15
A theory of thermodynamic properties of a spin density wave (SDW) in a quasi-two-dimensional system (with a preset impurity concentration x) is constructed. We choose an anisotropic dispersion relation for the electron energy and assume that external magnetic field H has an arbitrary direction relative to magnetic moment M{sub Q}. The system of equations defining order parameters M{sub Q}{sup z}, M{sub Q}{sup {sigma}}, M{sub z}, and M{sup {sigma}} is constructed and transformed with allowance for the Umklapp processes. Special cases when H Double-Vertical-Line M{sub Q} and H Up-Tack M{sub Q} (H{sub Z}H{sup {sigma}} = 0) are considered in detail as well as cases of weak fields H of arbitrary direction. The condition for the transition of the system to the commensurate and incommensurate states of the SDW is analyzed. The concentration dependence of magnetic transition temperature T{sub M} is calculated, and the components of the order parameter for the incommensurate phase are determined. The phase diagram (T,{approx}x) is constructed. The effect of the magnetic field on magnetic transition temperature T{sub M} is analyzed for H{sub Z}H{sup {sigma}} = 0, and longitudinal magnetic susceptibility {chi} Double-Vertical-Line is calculated; this quantity demonstrates the temperature dependence corresponding to a system with a gap for x < x{sub c} and to a gapless state for x > x{sub c}. In the immediate vicinity of the critical impurity concentration (x {approx} x{sub c}), the temperature dependence of the magnetic susceptibility acquires a local maximum. The effect of anisotropy of the electron energy spectrum on the investigated physical quantities is also analyzed.
Directory of Open Access Journals (Sweden)
van Rossum Albert C
2009-03-01
Full Text Available Abstract These reporting guidelines are recommended by the Society for Cardiovascular Magnetic Resonance (SCMR to provide a framework for healthcare delivery systems to disseminate cardiac and vascular imaging findings related to the performance of cardiovascular magnetic resonance (CMR examinations.
Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander
2016-04-01
Organo-metallic compounds Cu(en)(H2O)2SO4 (en=C2H8N2) and Cu(tn)Cl2 (tn=C3H10N2) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/kB≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H2O)2SO4 at TC=0.9 K while hidden in Cu(tn)Cl2. A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii-Kosterlitz-Thouless transition theoretically predicted for ideal two-dimensional magnets.
Magnetic resonance imaging of iliotibial band syndrome.
Ekman, E F; Pope, T; Martin, D F; Curl, W W
1994-01-01
Seven cases of iliotibial band syndrome and the pathoanatomic findings of each, as demonstrated by magnetic resonance imaging, are presented. These findings were compared with magnetic resonance imaging scans of 10 age- and sex-matched control knees without evidence of lateral knee pain. Magnetic resonance imaging signal consistent with fluid was seen deep to the iliotibial band in the region of the lateral femoral epicondyle in five of the seven cases. Additionally, when compared with the control group, patients with iliotibial band syndrome demonstrated a significantly thicker iliotibial band over the lateral femoral epicondyle (P iliotibial band in the disease group was 5.49 +/- 2.12 mm, as opposed to 2.52 +/- 1.56 mm in the control group. Cadaveric dissections were performed on 10 normal knees to further elucidate the exact nature of the area under the iliotibial band. A potential space, i.e., a bursa, was found between the iliotibial band and the knee capsule. This series suggests that magnetic resonance imaging demonstrates objective evidence of iliotibial band syndrome and can be helpful when a definitive diagnosis is essential. Furthermore, correlated with anatomic dissection, magnetic resonance imaging identifies this as a problem within a bursa beneath the iliotibial band and not a problem within the knee joint.
Embroidered Coils for Magnetic Resonance Sensors
Directory of Open Access Journals (Sweden)
Michael I. Newton
2013-04-01
Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.
Magnetic resonance of magnetic fluid and magnetoliposome preparations
Energy Technology Data Exchange (ETDEWEB)
Morais, Paulo C. [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil)]. E-mail: pcmor@unb.br; Santos, Judes G. [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil); Skeff Neto, K. [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil); Pelegrini, Fernando [Universidade Federal de Goias, Instituto de Fisica, 74001-970 Goiania-GO (Brazil); Cuyper, Marcel de [Katholieke Universiteit Leuven, Campus Kortrijk, Interdisciplinary Research Centre, B-8500 Kortrijk (Belgium)
2005-05-15
In this study, magnetic resonance was used to investigate lauric acid-coated magnetite-based magnetic fluid particles and particles which are surrounded by a double layer of phospholipid molecules (magnetoliposomes). The data reveal the presence of monomers and dimers in both samples. Whereas evidence for a thermally induced disruption of dimers is found in the magnetic fluid, apparently, the bilayer phospholipid envelop prevents the dissociation in the magnetoliposome samples.
Tutte polynomial in functional magnetic resonance imaging
García-Castillón, Marlly V.
2015-09-01
Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... if your child has any implanted medical or electronic devices. Inform your doctor and the technologist prior ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures ... with claustrophobia. Newer open MRI units provide very high quality images for many types of exams. Older ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures ... with claustrophobia. Newer open MRI units provide very high quality images for many types of exams; however, ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media MR Angiography ( ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... and extremities. Tell your doctor about your child’s health problems, medications, recent surgeries and allergies. The magnetic ... the radiologist if your child has any serious health problems or has recently had surgery. Some conditions, ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... the body being imaged, send and receive radio waves, producing signals that are detected by the coils. ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... the head uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... the body being imaged, send and receive radio waves, producing signals that are detected by the coils. ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... food, or the environment, or if you have asthma. The contrast material most commonly used for an ... also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... pregnant. The magnetic field is not harmful, but it may cause some medical devices to malfunction. Most ... number of abrupt onset or long-standing symptoms. It can help diagnose conditions such as: brain tumors ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... allergies. The magnetic field is not harmful, but it may cause some medical devices to malfunction. Most ... cord is needed, MRI is useful because of its ability to see through the skull and the ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... magnetic field is produced by passing an electric current through wire coils in most MRI units. Other ... that are detected by the coils. The electric current does not come in contact with the patient. ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... magnetic field is produced by passing an electric current through wire coils in most MRI units. Other ... that are detected by the coils. The electric current does not come in contact with the patient. ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... or potentially pose a risk, depending on their nature and the strength of the MRI magnet. Many ... of the body being studied. If a contrast material will be used in the MRI exam, a ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... or potentially pose a risk, depending on their nature and the strength of the MRI magnet. Many ... is positioned around the head. If a contrast material will be used in the MRI exam, a ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... intercom. Many MRI centers allow a friend or parent to stay in the room as long as they are also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... allergies and whether there’s a possibility you are pregnant. The magnetic field is not harmful, but it ... if there is any possibility that they are pregnant. MRI has been used for scanning patients since ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... as long as they are also screened for safety in the magnetic environment. Children will be given ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... as long as they are also screened for safety in the magnetic environment. Children will be given ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... your child’s health problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it ... the exam if your child has a known allergy to contrast material. Your child should wear loose, ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... evaluate infections assess blood flow to the heart muscle evaluate findings following cardiovascular surgery In the abdominal ... a risk, depending on their nature and the strength of the MRI magnet. Many implanted devices will ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... if your child has any implanted medical or electronic devices. Inform your doctor and the technologist prior ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... Tell your doctor about your child’s health problems, medications, recent surgeries and allergies. The magnetic field is ... routine and have him/her take food and medications as usual. Some MRI examinations may require your ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... doctor about your child’s health problems, medications, recent surgeries and allergies. The magnetic field is not harmful, ... to the heart muscle evaluate findings following cardiovascular surgery In the abdominal and pelvic region, MRI is ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... allergies. The magnetic field is not harmful, but it may cause some medical devices to malfunction. Most ... cord is needed, MRI is useful because of its ability to see through the skull and the ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... pregnant. The magnetic field is not harmful, but it may cause some medical devices to malfunction. Most ... number of abrupt onset or long-standing symptoms. It can help diagnose conditions such as: brain tumors ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... x-ray contrast material, drugs, food, or the environment, or if you have asthma. The contrast material ... are also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... x-ray contrast material, drugs, food, or the environment, or if your child has asthma. The contrast ... are also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or ...
Magnetic Resonance Imaging (MRI) -- Head
Full Text Available ... be examined on a computer monitor, transmitted electronically, printed or copied to a CD or uploaded to ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ...
Children's (Pediatric) Magnetic Resonance Imaging
Full Text Available ... be examined on a computer monitor, transmitted electronically, printed or copied to a CD or uploaded to ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ...
Liu, H. W.; Yang, K. F.; Mishima, T. D.; Santos, M. B.; Hirayama, Y.
2010-12-01
We present dynamic nuclear polarization (DNP) in the simplest pseudospin quantum Hall ferromagnet (QHF) of an InSb two-dimensional electron gas with a large g factor using tilted magnetic fields. The DNP-induced amplitude change in a resistance spike of the QHF at large current enables observation of the resistively detected nuclear magnetic resonance of the high nuclear spin isotope I115n with nine quadrupole splittings. Our results demonstrate the importance of domain structures in the DNP process. The nuclear spin relaxation time T1 in this QHF was relatively short (˜120s) and almost temperature independent.
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.
Magnetic resonance imaging of valvular heart disease
DEFF Research Database (Denmark)
Søndergaard, Lise; Ståhlberg, F; Thomsen, C
1999-01-01
The optimum management of patients with valvular heart diseases requires accurate and reproducible assessment of the valvular lesion and its hemodynamic consequences. Magnetic resonance imaging (MRI) techniques, such as volume measurements, signal-void phenomena, and velocity mapping, can be used...... the optimal timing for valvular surgery. This paper reviews the validation of these MRI techniques in assessing valvular heart disease and discusses some typical pitfalls of the techniques, including suggestions for solutions.J. Magn. Reson. Imaging 1999;10:627-638....
Diamagnetic phase transitions in two-dimensional conductors
Bakaleinikov, L. A.; Gordon, A.
2014-11-01
A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.
Energy Technology Data Exchange (ETDEWEB)
Schmidt-Rohr, K.; Fritzsching, K. J.; Liao, S. Y.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry and Ames Laboratory (United States)
2012-12-15
Several techniques for spectral editing of 2D {sup 13}C-{sup 13}C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N-CO peaks through {sup 13}C-{sup 15}N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH{sub 2}) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other {pi}-pulse is shifted from the center of a rotor period t{sub r} by about 0.15 t{sub r}. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled {sup 13}C-{sup 1}H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via {sup 13}C spin exchange. The efficiencies of these spectral editing techniques range from 60 % for the COO and dynamic selection experiments to 25 % for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.
Magnetic Microparticle Aggregation For Viscosity Determination By Magnetic Resonance
Hong, Rui; Cima, Michael J.; Weissleder, Ralph; Josephson, Lee
2009-01-01
Micron-sized magnetic particles were induced to aggregate when placed in homogeneous magnetic fields, like those of magnetic resonance (MR) imagers and relaxometers, and then spontaneously returned to their dispersed state when removed from the field. Associated with the aggregation and dispersion of the magnetic particles were time dependent increases and decreases in the spin-spin relaxation time (T2) of the water. Magnetic nanoparticles, with far smaller magnetic moments per particle, did not undergo magnetically induced aggregation, and exhibited time independent values of T2. The rate of T2 change associated with magnetic micro-particle aggregation was used to determine the viscosity of liquid samples, providing a method that can be of particular advantage for determining the viscosity of small volumes of potentially biohazardous samples of blood or blood plasma. PMID:18306403
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Near-zero-field nuclear magnetic resonance
Ledbetter, Micah; Theis, Thomas; Blanchard, John; Ring, Hattie; Ganssle, Paul; Appelt, Stephan; Bluemich, Bernhard; Pines, Alex; Budker, Dmitry
2011-01-01
We investigate nuclear magnetic resonance (NMR) in near-zero-field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J-coupling). This is in stark contrast to the high field case, where heteronuclear J-couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectr...
Your Radiologist Explains Magnetic Resonance Angiography (MRA)
Full Text Available ... Therapy November 8 is the International Day of Radiology (IDoR) Radiology and You Sponsored by Image/Video Gallery Your ... Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot org Hello, I’m Dr. Elliot ...
Functional Magnetic Resonance Imaging in Consumer Research
DEFF Research Database (Denmark)
Reimann, Martin; Schilke, Oliver; Weber, Bernd
2011-01-01
Although the field of psychology is undergoing an immense shift toward the use of functional magnetic resonance imaging (fMRI), the application of this methodology to consumer research is relatively new. To assist consumer researchers in understanding fMRI, this paper elaborates on the findings...
Modelling Strategies for Functional Magnetic Resonance Imaging
DEFF Research Database (Denmark)
Madsen, Kristoffer Hougaard
2009-01-01
This thesis collects research done on several models for the analysis of functional magnetic resonance neuroimaging (fMRI) data. Several extensions for unsupervised factor analysis type decompositions including explicit delay modelling as well as handling of spatial and temporal smoothness...
Automated Segmentation of Cardiac Magnetic Resonance Images
DEFF Research Database (Denmark)
Stegmann, Mikkel Bille; Nilsson, Jens Chr.; Grønning, Bjørn A.
2001-01-01
Magnetic resonance imaging (MRI) has been shown to be an accurate and precise technique to assess cardiac volumes and function in a non-invasive manner and is generally considered to be the current gold-standard for cardiac imaging [1]. Measurement of ventricular volumes, muscle mass and function...
Interactive Real-time Magnetic Resonance Imaging
DEFF Research Database (Denmark)
Brix, Lau
Real-time acquisition, reconstruction and interactively changing the slice position using magnetic resonance imaging (MRI) have been possible for years. However, the current clinical use of interactive real-time MRI is limited due to an inherent low spatial and temporal resolution. This PhD proje...
Pituitary magnetic resonance imaging in Cushing's disease.
Vitale, Giovanni; Tortora, Fabio; Baldelli, Roberto; Cocchiara, Francesco; Paragliola, Rosa Maria; Sbardella, Emilia; Simeoli, Chiara; Caranci, Ferdinando; Pivonello, Rosario; Colao, Annamaria
2017-03-01
Adrenocorticotropin-secreting pituitary tumor represents about 10 % of pituitary adenomas and at the time of diagnosis most of them are microadenomas. Transsphenoidal surgery is the first-line treatment of Cushing's disease and accurate localization of the tumor within the gland is essential for selectively removing the lesion and preserving normal pituitary function. Magnetic resonance imaging is the best imaging modality for the detection of pituitary tumors, but adrenocorticotropin-secreting pituitary microadenomas are not correctly identified in 30-50 % of cases, because of their size, location, and enhancing characteristics. Several recent studies were performed with the purpose of better localizing the adrenocorticotropin-secreting microadenomas through the use in magnetic resonance imaging of specific sequences, reduced contrast medium dose and high-field technology. Therefore, an improved imaging technique for pituitary disease is mandatory in the suspect of Cushing's disease. The aims of this paper are to present an overview of pituitary magnetic resonance imaging in the diagnosis of Cushing's disease and to provide a magnetic resonance imaging protocol to be followed in case of suspicion adrenocorticotropin-secreting pituitary adenoma.
Magnetic resonance imaging in acute tendon ruptures
Energy Technology Data Exchange (ETDEWEB)
Daffner, R.H.; Lupetin, A.R.; Dash, N.; Riemer, B.L.
1986-11-01
The diagnosis of acute tendon ruptures of the extensor mechanism of the knee or the Achilles tendon of the ankle may usually be made by clinical means. Massive soft tissue swelling accompanying these injuries often obscures the findings, however. Magnetic resonance imaging (MRI) can rapidly demonstrate these tendon ruptures. Examples of the use of MRI for quadriceps tendon, and Achilles tendon rupture are presented.
Cardiovascular magnetic resonance: physics and terminology.
Rodgers, Christopher T; Robson, Matthew D
2011-01-01
Cardiovascular magnetic resonance (CMR) is the branch of magnetic resonance imaging (MRI) whose acquisition methods are adapted to surmount the particular challenges caused by motion of the heart and blood in vivo. Magnetic resonance imaging is supremely flexible; it can produce images showing the spatial distribution of diverse tissue characteristics, for example, proton density, T(1), T(2), T(2)(⁎), fat concentration, flow rate, and diffusion parameters. The image contrast may usefully be modified by intravenous infusion of contrast agents. Magnetic resonance imaging permits 2-dimensional or 3-dimensional acquisitions with arbitrary slice orientation. Unfortunately, MRI's flexibility is matched by a remarkable complexity not only in its fundamental principles but also in the optimization of applications in the clinic. This article attempts to demystify the basic principles of CMR and provides a primer on the terminology used in CMR. Complete confidence in the principles of CMR is not essential to use the technology. Nevertheless, knowledge of the principal terminology of MRI is a valuable first step when seeking to understand and apply modern methods in a clinical or research setting. Thus, the article closes with a glossary of terminology and references to high-quality educational resources. Copyright © 2011 Elsevier Inc. All rights reserved.
Breast magnetic resonance imaging guided biopsy
Energy Technology Data Exchange (ETDEWEB)
Yun, Bo La; Kim, Sun Mi; Jang, Mi Jung [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Cho, Nariya; Moon, Woo Kyung [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Hak Hee [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)
2016-06-15
Despite the high sensitivity of breast magnetic resonance imaging (MRI), pathologic confirmation by biopsy is essential because of limited specificity. MRI-guided biopsy is required in patients with lesions only seen on MRI. We review preprocedural considerations and the technique of MRI-guided biopsy, challenging situations and trouble-shooting, and correlation of radiologic and pathologic findings.
Was magnetic resonance imaging scan contraindicated?
Rafiq, Muhammad Khizar
2010-01-01
An intravenous drug abuser with a retained needle posed a management problem at a neurosurgical unit, having declined magnetic resonance imaging (MRI) on safety grounds. However, later, having been assessed by the senior radiologist, she went though the MRI scan safely.
Brain Morphometry Using Anatomical Magnetic Resonance Imaging
Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.
2008-01-01
The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…
Biliary ascariasis on magnetic resonance cholangiopancreatography
Directory of Open Access Journals (Sweden)
Mohammad A Hashmi
2009-01-01
Full Text Available A 17-year-old girl presented with features of biliary obstruction. Magnetic resonance cholangi-pancreatography revealed typical linear signals in common bile duct, which appears like Ascaris lumbricoides. The diagnosis was confirmed by endoscopic removal of the worm.
Sports health magnetic resonance imaging challenge.
Howell, Gary A; Stadnick, Michael E; Awh, Mark H
2010-11-01
Injuries to the Lisfranc ligament complex are often suspected, particularly in the setting of midfoot pain without radiographic abnormality. Knowledge of the anatomy and magnetic resonance imaging findings of injuries to this region is helpful for the diagnosing and treating physicians.
Magnetic Resonance Imaging in Biomedical Engineering
Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel
2007-11-01
The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.
Magnetic resonance imaging in radiotherapy treatment planning
Moerland, Marinus Adriaan
2001-01-01
From its inception in the early 1970's up to the present, magnetic resonance imaging (MRI) has evolved into a sophisticated technique, which has aroused considerable interest in var- ious subelds of medicine including radiotherapy. MRI is capable of imaging in any plane and does not use ionizing rad
Magnetic Resonance Angiography: Principles and Applications.
Dyke, Lara M
2013-12-01
Magnetic Resonance Angiography: Principles and Applications. Carr J. C., Carroll T. J., Springer-Verlag, Heidelberg/New York, 2012. 412 pp. Price $179.00. ISBN 978-1-4419-1685-3 (hardcover). © 2013 American Association of Physicists in Medicine.
Magnetic resonance imaging (MRI) in syringomyelia
H.L.J. Tanghe (Hervé)
1995-01-01
textabstractBased on an own material of 19 patients with syringomyelia and on the related literature a survey is given on the diagnosis, differential diagnosis, postoperative evaluation and the dynamics of CSF and cyst fluids, using magnetic resonance imaging (MRI). The following conclusions can be
Evaluation of nuclear magnetic resonance spectroscopy variability
Energy Technology Data Exchange (ETDEWEB)
Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia
2014-11-01
Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)
Interactive Real-time Magnetic Resonance Imaging
DEFF Research Database (Denmark)
Brix, Lau
Real-time acquisition, reconstruction and interactively changing the slice position using magnetic resonance imaging (MRI) have been possible for years. However, the current clinical use of interactive real-time MRI is limited due to an inherent low spatial and temporal resolution. This PhD proje...
Numerical methods in electron magnetic resonance
Energy Technology Data Exchange (ETDEWEB)
Soernes, A.R
1998-07-01
The focal point of the thesis is the development and use of numerical methods in the analysis, simulation and interpretation of Electron Magnetic Resonance experiments on free radicals in solids to uncover the structure, the dynamics and the environment of the system.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Magnetic resonance spectroscopy in patients with Fabry and Gaucher disease
Energy Technology Data Exchange (ETDEWEB)
Gruber, S., E-mail: stephan@nmr.at [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bogner, W. [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Stadlbauer, A. [MR Physics Group, Department of Radiology, Landesklinikum St. Poelten (Austria); Krssak, M. [Department of Radiology, MR-Centre of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bodamer, O. [Department of Pediatrics, Medical University of Vienna (Austria)
2011-08-15
Objective: Fabry and Gaucher diseases are rare progressive inherited disorders of glycosphingolipid metabolism that affect multiple organ systems. The aim of this study was to investigate evidence for metabolic changes in the central nervous system involvement using proton magnetic resonance spectroscopic imaging. Methods: Seven Fabry and eight Gaucher patients were included into this study. A two-dimensional, spectroscopic imaging method with an ultra-short echo-time of 11 ms was used at a 3 T whole body magnet. Absolute metabolic values were retrieved using internal water scaling. Results were compared, with sex- and age-matched controls. Results: In contrast to previous findings, absolute and relative metabolite values of N-acetyl-aspartate (NAA) or NAA/Creatine (Cr), Cr, Choline (Cho) or Cho/Cr and myo-Inositol (mI) or mI/Cr revealed no, differences between Fabry and Gaucher Type 1 (GD1) patients and controls. Average values were, 10.22, 6.32, 2.15 and 5.39 mMol/kg wet weight for NAA, Cr, Cho and mI, respectively. In this study, we found significantly decreasing NAA/Cho with increasing age in all three groups (Fabry, GD1, patients and healthy controls) (between 5 and 8% per decade). Conclusions: There were no changes of the quantified metabolites detected by MRS in normal appearing white matter. This study shows the importance of sex- and age-matched controls.
Interaction of magnetic resonators studied by the magnetic field enhancement
Hou, Yumin
2013-12-01
It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters-shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.
Interaction of magnetic resonators studied by the magnetic field enhancement
Energy Technology Data Exchange (ETDEWEB)
Hou, Yumin, E-mail: ymhou@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)
2013-12-15
It is the first time that the magnetic field enhancement (MFE) is used to study the interaction of magnetic resonators (MRs), which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.
Interaction of magnetic resonators studied by the magnetic field enhancement
Directory of Open Access Journals (Sweden)
Yumin Hou
2013-12-01
Full Text Available It is the first time that the magnetic field enhancement (MFE is used to study the interaction of magnetic resonators (MRs, which is more sensitive than previous parameters–shift and damping of resonance frequency. To avoid the coherence of lattice and the effect of Bloch wave, the interaction is simulated between two MRs with same primary phase when the distance is changed in the range of several resonance wavelengths, which is also compared with periodic structure. The calculated MFE oscillating and decaying with distance with the period equal to resonance wavelength directly shows the retardation effect. Simulation also shows that the interaction at normal incidence is sensitive to the phase correlation which is related with retardation effect and is ultra-long-distance interaction when the two MRs are strongly localized. When the distance is very short, the amplitude of magnetic resonance is oppressed by the strong interaction and thus the MFE can be much lower than that of single MR. This study provides the design rules of metamaterials for engineering resonant properties of MRs.
Magnetic resonance imaging of infectious myositis
Energy Technology Data Exchange (ETDEWEB)
Yun, Ji Young; Kim, Jee Young; Kim, Sang Heum; Jung, Youn Ju; Cha, Eun Suk; Park, Joung Mi; Park, Young Ha [The Catholic Univ., College of Medicine, Suwon (Korea, Republic of)
1998-09-01
To describe the findings of magnetic resonance imaging in infectious myositis and to determine their value for differentiation between ruberculous and bacterial myositis. Magnetic resonance images of ten proven cases of infectious myositis (five tuberculous and five bacterial) were retrospectively reviewed in the light of clinical and laboratory findings. On the basis of magnetic resonance images, signal intensity of the mass, the presence or absence of an abscess, signal intensity of the peripheral wall, patterns of contrast enhancement, and associated findings were evaluated. Compared with those of bacterial myositis, the symptoms of tuberculous myositis lasted longer but there were no difinite local inflammatory signs. In three of five cases of bacterial myositis there were specific medical records;trauma in two cases and systemic lupus erythematosus in one. All tuberculous myositis cases involved a single muscle, but bacterial myositis affected multipe muscles in three cases(60%). All but one case showed a mass in the involved muscles. In one bacterial case, there was diffuse swelling in the involved muscle. On T1-weighted images, eight infectious cases showed low signal intensity;two, of the bactrerial type, showed subtle increased signal intensity. all cases demonstrated high signal intensity on t2-weighted images. The signal intensity of peripheral wall was slightly increased on T1-weighted images, but low on T2-weighted. In four cases there was associated cellulitis, and in one case each, adjacent joint effusion and deep vein thrombosis were seen. After gadolinium infusion, peripheral rim enhancement was noted in nine cases and heterogeneous enhancement in one. After magnetic resonance imaging of infectious myositis, the characteristic finding was an abscessed lesion, with the peripheral wall showing high signal intensity on T1-weighted images and low signal intensity on T2 weighted. Although we found it difficult to differentiate bacterial from tuberculous
Magnetic resonance imaging of aneurysmal subarachnoid hemorrhage
Energy Technology Data Exchange (ETDEWEB)
Ogawa, Toshihide; Shimosegawa, Eku; Inugami, Atsushi; Shishido, Fumio; Fujita, Hideaki; Ito, Hiroshi; Uemura, Kazuo; Yasui, Nobuyuki (Research Inst. of Brain and Blood Vessels, Akita (Japan))
1991-11-01
Magnetic resonance imaging of subarachnoid hemorrhage (SAH) due to aneurysm rupture was evaluated in relation to CT findings in nine patients. Six patients were studied within 3 days and the other three patients were studied 4 to 6 days from the ictus of SAH using a 0.5 Tesla superconducting unit. In all of the patients, hematoma in the subarachnoid space and ventricles was demonstrated by the proton density-weighted spin echo sequence, which showed that bloody cerebrospinal fluid (CSF) had a higher signal intensity than brain tissue or normal CSF. Magnetic resonance imaging was more sensitive in detecting SAH and more informative as to the site of the ruptured aneurysm than CT. Despite some limitations in applying it to patients with acute SAH, magnetic resonace imaging has clear advantages in the diagnosis of SAH. (author).
The working principle of magnetic resonance therapy
Brizhik, Larissa; Fermi, Enrico
2015-01-01
In this paper we describe briefly the basic aspects of magnetic resonance therapy, registered as TMR therapy. Clinical studies have shown that application of this therapy significantly accelerates wound healing and, in particular, healing of the diabetic foot disease. To understand the working principle of this therapy, we analyze relevant to it biological effects produced by magnetic fields. Based on these data, we show that there is a hierarchy of the possible physical mechanisms, which can produce such effects. The mutual interplay between the mechanisms can lead to a synergetic outcome delayed in time, which can affect the physiological state of the organism. In particular, we show that soliton mediated charge transport during the redox processes in living organisms is sensitive to magnetic fields, so that such fields can facilitate redox processes in particular, and can stimulate the healing effect of the organism in general. This and other non-thermal resonant mechanisms of the biological effects of mag...