WorldWideScience

Sample records for two-dimensional magic numbers

  1. The magic of numbers

    CERN Document Server

    Bell, Eric Temple

    1991-01-01

    From one of the foremost interpreters for lay readers of the history and meaning of mathematics: a stimulating account of the origins of mathematical thought and the development of numerical theory. It probes the work of Pythagoras, Galileo, Berkeley, Einstein, and others, exploring how ""number magic"" has influenced religion, philosophy, science, and mathematics

  2. Disappearance of neutron magic numbers and deformation coexistence

    International Nuclear Information System (INIS)

    Kimura, Masaaki

    2014-01-01

    The disappearance of N=8, 20 and 28 magic numbers in the neutron excess nuclei is a representative example of the special features of the unstable nuclei. In this lecture of summer school, the problems of the magic number disappearance are presented. And the appearance of the deformation coexistence and the anomalous cluster structure come into the problem with them. At the begging the Antisymmetrized Molecular Dynamic (AMD) framework is explained with finite range two body central force and Gorgny DIS force composed of the zero range spin-orbit force and saturability. Island of inversion is explained in the nuclear chart shown in the figure and energy curves of the nuclei near 32 Mg and the excitation level schemes of 32 Mg are shown in the serial figures. As one of the extreme example of the nuclear structure the deformation of 19 F is picked up. The level schemes and structures of 21 F are shown as well. The molecule-like structure in the island of inversion is clear. The rotational band energy of fluorine isotopes are shown up to 29 F. As a new deformation area, disappearance of N=28 magic number is in the spotlight recently. In this case it is characteristic properties that the parities of the orbits to form the gap must be the same but the angular momenta should be different by 2. According to the AMD research, it is shown that deformations of prolate, three-axis asymmetric and oblate characters coexist in the very low excitation energy region accompanying the disappearance of N=28 gap. The concept of magic numbers has been very fundamental in nuclear physics since the success of shell model. At present its disappearance in the unstable nuclei is one of the most challenging problems in the understanding of the nuclear many body problems. (S. Funahashi)

  3. Formation and magic number characteristics of clusters formed during solidification processes

    International Nuclear Information System (INIS)

    Liu Rangsu; Dong Kejun; Tian Zean; Liu Hairong; Peng Ping; Yu Aibing

    2007-01-01

    A molecular dynamics simulation study has been performed for a large-sized system consisting of 10 6 liquid metal Al atoms to investigate the formation and magic number characteristics of various clusters formed during solidification processes. The cluster-type index method (CTIM) is adopted to describe various types of cluster by basic clusters. It is demonstrated that the icosahedral cluster (12 0 12 0) is the most important basic cluster, and that it plays a critical role in the microstructure transition. A new statistical method has been proposed to classify the clusters as some group levels according to the numbers of basic clusters contained in each cluster. The magic numbers can be determined by the respective peak value positions of different group levels of clusters, and the magic number sequence in the system is 13, 19, 25(27), 31(33), 38(40), 42(45), 48(51), 55(59), 61(65), 67,... the numbers in the brackets are the second magic number of the corresponding group levels of clusters. This magic number sequence is in good agreement with the experimental results obtained by Schriver and Harris et al, and the experimental results can be reasonably well explained

  4. Hamilton's Marbles or Jevon's Beans: A Demonstration of Miller's Magical Number Seven.

    Science.gov (United States)

    Shaffer, Leigh S.

    1982-01-01

    Describes a demonstration for college-level cognitive psychology classes of Miller's "Magical Number Seven" concept of the limitation of sensory capacity for processing information. Students report on the number of pennies they observed in a box after viewing the coins for two seconds. Demonstration results consistently support Miller's…

  5. Mayer–Jensen Shell Model and Magic Numbers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Mayer-Jensen Shell Model and Magic Numbers - An Independent Nucleon Model with Spin-Orbit Coupling. R Velusamy. General Article Volume 12 Issue 12 December 2007 pp 12-24 ...

  6. New magic angle bumps and magic translation bumps

    International Nuclear Information System (INIS)

    Seeman, J.

    1983-01-01

    SLC beams of opposite charge can be transversely deflected in the same direction by RF fields in the accelerating cavities caused by girder tilts, coupler-asymmetries, or manufacturing errors. A symmetric deflection can be corrected by a magic angle bump if the deflection is located adjacent to one of the linac quadrupoles. However, if the deflection is located between quadrupoles, two magic angle bumps or a magic angle bump and a magic translation bump are needed for the correction. Several examples of translation bumps are included. A new magic angle bump is also presented which is longitudinally compressed and has significantly reduced particle excursions. Finally, if new correctors are added midway along the girders so that the number of correctors are doubled, then the longitudinal extent and the maximum particle excursion of these new magic bumps can be further reduced

  7. Magical thinking and memory: distinctiveness effect for tv commercials with magical content.

    Science.gov (United States)

    Subbotsky, Eugene; Mathews, Jayne

    2011-10-01

    The aim of this study was to examine whether memorizing advertised products of television advertisements with magical effects (i.e., talking animals, inanimate objects which turn into humans, objects that appear from thin air or instantly turn into other objects) is easier than memorizing products of advertisements without such effects, by testing immediate and delayed retention. Adolescents and adults viewed two films containing television advertisements and were asked to recall and recognize the films' characters, events, and advertised products. Film 1 included magical effects, but Film 2 did not. On a free-recall test, no differences in the number of items recalled were noted for the two films. On the immediate recognition test, adolescents, but not adults, showed significantly better recognition for the magical than the nonmagical film. When this test was repeated two weeks later, results were reversed: adults, but not adolescents, recognized a significantly larger number of items from the magical film than the nonmagical one. These results are interpreted to accentuate the role of magical thinking in cognitive processes.

  8. MAGIC MOORE-PENROSE INVERSES AND PHILATELIC MAGIC SQUARES WITH SPECIAL EMPHASIS ON THE DANIELS–ZLOBEC MAGIC SQUARE

    Directory of Open Access Journals (Sweden)

    Ka Lok Chu

    2011-02-01

    Full Text Available We study singular magic matrices in which the numbers in the rows and columns and in the two main diagonals all add up to the same sum. Our interest focuses on such magic matrices for which the Moore–Penrose inverse is also magic. Special attention is given to the “Daniels–Zlobec magic square’’ introduced by the British magician and television performer Paul Daniels (b. 1938 and considered by Zlobec (2001; see also Murray (1989, pp. 30–32. We introduce the concept of a “philatelic magic square” as a square arrangement of images of postage stamps so that the associated nominal values form a magic square. Three philatelic magic squares with stamps especially chosen for Sanjo Zlobec are presented in celebration of his 70th birthday; most helpful in identifying these stamps was an Excel checklist by Männikkö (2009.

  9. Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes.

    Science.gov (United States)

    Tran, D T; Ong, H J; Hagen, G; Morris, T D; Aoi, N; Suzuki, T; Kanada-En'yo, Y; Geng, L S; Terashima, S; Tanihata, I; Nguyen, T T; Ayyad, Y; Chan, P Y; Fukuda, M; Geissel, H; Harakeh, M N; Hashimoto, T; Hoang, T H; Ideguchi, E; Inoue, A; Jansen, G R; Kanungo, R; Kawabata, T; Khiem, L H; Lin, W P; Matsuta, K; Mihara, M; Momota, S; Nagae, D; Nguyen, N D; Nishimura, D; Otsuka, T; Ozawa, A; Ren, P P; Sakaguchi, H; Scheidenberger, C; Tanaka, J; Takechi, M; Wada, R; Yamamoto, T

    2018-04-23

    The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20 C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15 C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

  10. What's Magic about Magic Numbers? Chunking and Data Compression in Short-Term Memory

    Science.gov (United States)

    Mathy, Fabien; Feldman, Jacob

    2012-01-01

    Short term memory is famously limited in capacity to Miller's (1956) magic number 7 plus or minus 2--or, in many more recent studies, about 4 plus or minus 1 "chunks" of information. But the definition of "chunk" in this context has never been clear, referring only to a set of items that are treated collectively as a single unit. We propose a new…

  11. Magic numbers and isotopic effect of ion clusters

    International Nuclear Information System (INIS)

    Wang Guanghou

    1989-04-01

    The magic numbers and isotopic effect as well as stable configurations in relation to the charge state of the clusters are discussed. Ionic (atomic) clusters are small atomic aggregates, a physical state between gas and solid states, and have many interesting properties, some of them are more or less similar to those in nuclei

  12. The feasibility study and characterization of a two-dimensional diode array in “magic phantom” for high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Espinoza, A.; Beeksma, B.; Petasecca, M.; Fuduli, I.; Porumb, C.; Cutajar, D.; Lerch, M. L. F.; Rosenfeld, A. B.; Corde, S.; Jackson, M.

    2013-01-01

    Purpose: High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly 192 Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 μGy m 2 /h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the functionality of the remote afterloader. This paper describes the feasibility study of a QA system for HDR brachytherapy using a phantom based two-dimensional 11 × 11 epitaxial diode array, named “magic phantom.”Methods: The HDR brachytherapy treatment plan is translated to the phantom with two rows of 10 (20 in total) HDR source flexible catheters, arranged above and below the diode array “magic plate” (MP). Four-dimensional source tracking in each catheter is based upon a developed fast iterative algorithm, utilizing the response of the diodes in close proximity to the 192 Ir source, sampled at 100 ms intervals by a fast data acquisition (DAQ) system. Using a 192 Ir source in a solid water phantom, the angular response of the developed epitaxial diodes utilized in the MP and also the variation of the MP response as a function of the source-to-detector distance (SDD) were investigated. These response data are then used by an iterative algorithm for source dwelling position determination. A measurement of the average transit speed between dwell positions was performed using the diodes and a fast DAQ.Results: The angular response of the epitaxial diode showed a variation of 15% within 360°, with two flat regions above and below the detector face with less than 5% variation. For SDD distances of between 5 and 30 mm the relative response of

  13. Qutrit magic state distillation

    International Nuclear Information System (INIS)

    Anwar, Hussain; Browne, Dan E; Campbell, Earl T

    2012-01-01

    Magic state distillation (MSD) is a purification protocol that plays an important role in fault-tolerant quantum computation. Repeated iteration of the steps of an MSD protocol generates pure single non-stabilizer states, or magic states, from multiple copies of a mixed resource state using stabilizer operations only. Thus mixed resource states promote the stabilizer operations to full universality. MSD was introduced for qubit-based quantum computation, but little has been known concerning MSD in higher-dimensional qudit-based computation. Here, we describe a general approach for studying MSD in higher dimensions. We use it to investigate the features of a qutrit MSD protocol based on the five-qutrit stabilizer code. We show that this protocol distils non-stabilizer magic states, and identify two types of states that are attractors of this iteration map. Finally, we show how these states may be converted, via stabilizer circuits alone, into a state suitable for state-injected implementation of a non-Clifford phase gate, enabling non-Clifford unitary computation. (paper)

  14. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Multimedia

    Schweikhard, L C; Herfurth, F; Boehm, C; Manea, V; Blaum, K; Beck, D; Kowalska, M; Kreim, K D; Stanja, J; Audi, G; Rosenbusch, M; Wienholtz, F; Litvinov, Y

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disappearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measurements of N = 34 isotones $^{58}$Cr (Z = 24), $^{55}$Sc (Z = 21) and $^{54}$Ca (Z = 20), as well as the N = 32 isotones $^{53}$Sc and $^{52}$Ca. We also propose measuring the mass of $^{60}$Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-reflection time-of-flight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  15. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Document Server

    Kreim, S; Blaum, K; Bohm, Ch; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; Herfurth, F; Kowalska, M; Litvinov, Y; Lunney, D; Manea, V; Naimi, S; Neidherr, D; Rosenbusch, M; Schweikhard, L; Stanja, J; Stora, Th; Wienholtz, F; Wolf, R N; Zuber, K

    2011-01-01

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies o er a clear signature for the presence (or dis- appearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measure- ments of N = 34 isotones 58 Cr ( Z = 24), 55 Sc ( Z = 21) and 54 Ca ( Z = 20), as well as the N = 32 isotones 53 Sc and 52 Ca. We also propose measuring the mass of 60 Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-re ection time-of- ight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  16. CdTe magic-sized clusters and the use as building blocks for assembling two-dimensional nanoplatelets

    Science.gov (United States)

    Xu, Hu; Hou, Yumei; Zhang, Hua

    2017-06-01

    A facile one-pot noninjection synthesis of CdTe magic-sized clusters (MSCs) and their use as building blocks for assembling two-dimensional (2D) quantum confined nanoplatelets (NPLs) are reported. Four distinct MSC families, with the first exciton absorption peaks at 447 nm (F447), 485 nm (F485), 535 nm (F535), and 555 nm (F555), are synthesized by the reaction between cadmium oleate and trioctylphosphine tellurium (TOP-Te) in octadecene media containing primary amine and TOP at appropriate intermediate temperatures. Especially, F447 is obtained in pure form and can self-assemble in situ into 2D NPLs in the reaction solution. The formation, growth, and transformation of CdTe MSCs are monitored mainly by UV-Vis absorption spectroscopy. The pure F447 and its assembled 2D NPLs are further characterized using transmission electron microscopy. The influence of various experimental variables, including reaction temperature, the nature, and amount of capping ligands, on the stability and growth kinetics of the obtained MSC families has been systematically investigated. Experimental results indicate that the appropriate reaction temperature and the presence of long hydrocarbon chain primary amines play a crucial role in the formation of MSCs and the subsequent assembly into 2D NPLs. Primary amines can also promote ultra-small sized CdTe regular nanocrystals to transform into MSCs, and therefore, CdTe MSCs can be obtained indirectly from regularly sized nanocrystals. [Figure not available: see fulltext.

  17. Cluster growing process and a sequence of magic numbers

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2003-01-01

    demonstrate that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms......We present a new theoretical framework for modeling the cluster growing process. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system, and absorbing its energy at each step, we find cluster growing paths up to the cluster sizes of more than 100 atoms. We...

  18. Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, M R; Milosevic, M V; Bending, S J [Department of Physics, University of Bath - Claverton Down, Bath, BA2 7AY (United Kingdom); Clem, J R [Ames Laboratory Department of Physics and Astronomy - Iowa State University, Ames, IA 50011-3160 (United States); Tamegai, T, E-mail: mrc61@cam.ac.u [Department of Applied Physics, University of Tokyo - Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)

    2009-03-01

    The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+delta} disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.

  19. Magijos ritualas Senekos Medėjoje | Magic Ritual in Seneca’s Medea

    Directory of Open Access Journals (Sweden)

    Jovita Dikmonienė

    2013-12-01

    Full Text Available Magic Ritual in Seneca’s Medea Jovita Dikmonienė Summary The present article deals with the magic ritual in Seneca’s Medea. Seneca, following Ovid’s Metamorphoses, created in the tragedy a witchcraft scene which describes magic numbers, herbs, and rituals dedicated to Hecate. Unlike Ovid, Seneca focuses on rituals involving snakes, conjuring up the dead, and supernatural performative utterances, and emphasises the feeling of anger, which inspired Medea to practise infernal magic. In magic, Romans gave particular importance to the number “three” and the numbers that can be divided by three. Seneca also mentions these numbers. During the performance of the ritual by Medea, Hecate barks three times, a dragon with a trident tongue appears, and tripods play during the ritual. Medea sends to Creusa not two, as in Euripides’ tragedy, but three poisoned gifts: a robe, a necklace, and a crown. Seneca’s Medea makes a wreath to Hecate from nine snakes. Magical, hallucinogenic herbs play an important role in magic. Seneca, like Ovid in his Metamorphoses, describes Medea’s ritual whereby she prepares a magical blend of herbs to poison Creusa. Prometheus’ grass used by Medea is probably mandrake. However, Seneca, like Ovid, does not provide the exact names of the herbs used in magic. Some researchers argue that Seneca described the magic ritual in order to highlight Medea’s desire to control the environment. According to the author of the present article, this claim is only partially true. Magic was necessary for Medea not only to control the environment, but also to control herself. The magic ritual helped her to prepare herself for revenge by transforming her consciousness. With the help of magic her sorrow and pity were transformed into aggression, she overcame her fear and prepared herself to kill her children. Medea’s ritual can be described as the magic of the fight, because it allowed her to transform her consciousness into the

  20. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample selection by random number... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square... area created in accordance with paragraph (a) of this section, select two random numbers: one each for...

  1. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  2. Nuclear physics: Unexpected doubly-magic nucleus

    International Nuclear Information System (INIS)

    Janssens, R.V.F.

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope 24 O has been found to be one such nucleus - yet it lies just at the limit of stability

  3. Creating Magic Squares.

    Science.gov (United States)

    Lyon, Betty Clayton

    1990-01-01

    One method of making magic squares using a prolongated square is illustrated. Discussed are third-order magic squares, fractional magic squares, fifth-order magic squares, decimal magic squares, and even magic squares. (CW)

  4. Theory of boundary-free two-dimensional dust clusters

    International Nuclear Information System (INIS)

    Tsytovich, V.N.; Gousein-zade, N.G.; Morfill, G.E.

    2006-01-01

    It is shown theoretically that a stable two-dimensional (2D) grain cluster can exist in plasmas without external confinement if the shadow attraction of grains is taken into account. These are considered as boundary-free clusters. The equilibrium radius of the clusters is investigated numerically. It is found that it is rapidly decreasing with an increase of the attraction coefficient and with an increase of the number of grains N in the cluster. Comparison of energies of one shell cluster containing N grains with the energies of a cluster with N-1 grains in the shell and an additional one grain in the center as functions of the attraction coefficient is used to find the magic numbers for new shell creation. It is demonstrated that a dissociation of the cluster in several smaller clusters requires less energy than a removal of one of the grains from the cluster. The computations were performed for the Debye screening and for the nonlinear screening models and show that the structure of the clusters is sensitive to the type of screening. Frequencies of all collective modes of the 2D boundary-free clusters are calculated up to N=7 grains in the cluster for the case where all grains form one shell cluster and for the case where N=6 grains form one shell cluster and one of the grains is located at the center of the cluster. The frequencies of the modes increase with a decrease of the cluster radius. Stable and unstable modes are investigated as a function of the attraction coefficient. The presence of instability indicates that this type of equilibrium cluster does not correspond to the minimum energy in all directions and will be converted into another stable configuration. The universal magic number N m of grains in one shell cluster, such that for N=N m +1 the modes of the shell start to be unstable and the cluster converts to the cluster with N m grains in the shell and one grain in the center, is found for both the Yukawa screening and for the nonlinear screening

  5. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  6. RMF+BCS description of some traditional neutron magic isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.; Kaushik, M.

    2014-01-01

    The traditional neutron magic nuclei with N = 8, 20, 28, 50, 82 and 126, and those with neutron sub-magic number N = 40 are investigated within the relativistic mean-field plus BCS (RMF+BCS) approach. The results indicate appearance of new proton magic numbers as well as the disappearance of conventional magic numbers for nuclei with extreme isospin values. The calculated energies and densities do not indicate any tendency for the proton halo formations in any of the proton rich isotones due to Coulomb interaction and different single particle spectra. However, the potential barrier provided by the Coulomb interaction and that due to the centrifugal force may cause a long delay in the actual decay of proton rich nucleus resulting in the extended drip line. (authors)

  7. Modification of AMD wave functions and application to the breaking of the N=20 magic number

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Horiuchi, Hisashi

    2001-01-01

    By using the deformed Gaussian instead of the spherical one, we have modified the AMD (Antisymmetrized Molecular Dynamics) wave functions. The calculation results with this modified AMD shows the drastic improvement of the deformation properties of Mg isotopes. This improvement means that this new version of AMD can treat the deformation of mean field properly than before and the deformation of mean field is important in Mg isotopes. With this new version of AMD, we have also calculated 32Mg in which the breaking of magic number N=20 is experimentally known. In this nucleus, β-energy surface is also drastically changed by the modification AMD wave function. Our results show that this nucleus is indeed deformed and neutron's 2p2h state is dominant in its ground state. This ground state reproduces the experimental data and shows the breaking of the magic number N=20 clearly. Additionally, near the ground state, there is also very interesting state which has neutron's 4p4h structure and shows parity violating density distribution and cluster-like nature. (author)

  8. Modification of AMD wave functions and application to the breaking of the N=20 magic number

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masaaki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics

    2001-09-01

    By using the deformed Gaussian instead of the spherical one, we have modified the AMD (Antisymmetrized Molecular Dynamics) wave functions. The calculation results with this modified AMD shows the drastic improvement of the deformation properties of Mg isotopes. This improvement means that this new version of AMD can treat the deformation of mean field properly than before and the deformation of mean field is important in Mg isotopes. With this new version of AMD, we have also calculated 32Mg in which the breaking of magic number N=20 is experimentally known. In this nucleus, {beta}-energy surface is also drastically changed by the modification AMD wave function. Our results show that this nucleus is indeed deformed and neutron's 2p2h state is dominant in its ground state. This ground state reproduces the experimental data and shows the breaking of the magic number N=20 clearly. Additionally, near the ground state, there is also very interesting state which has neutron's 4p4h structure and shows parity violating density distribution and cluster-like nature. (author)

  9. Algebra Magic Tricks: Algecadabra! Volume 1.

    Science.gov (United States)

    Edwards, Ronald

    This resource book contains 20 magic tricks based on the properties of whole numbers that are intended to spark the interest and imagination of students. Following each activity, students are asked to write about their discoveries and to create their own magic tricks. A matrix of skills for all the activities and lists of the materials required…

  10. Algebra Magic Tricks: Algecadabra! Volume 2.

    Science.gov (United States)

    Edwards, Ronald

    This resource book contains 15 magic tricks based on the properties of whole numbers that are intended to spark the interest and imagination of students. Following each activity, students are asked to write about their discoveries and to create their own magic tricks. A matrix of skills for all the activities and lists of the materials required…

  11. Penggunaan magic dalam politik lokal di Banten

    Directory of Open Access Journals (Sweden)

    Ayatullah Humaeni

    2014-01-01

    Full Text Available Village-head elections frequently become unhealthy competitions among the candidate. They employ various ways to win the election, including using magical means. This article aims to explain social phenomena occur in local politics in the use of magic village-head elections in rural Banten; particularly in two sub-districts, Ciomas and Padarincang. It tries to answer several main research questions: (1 why do the candidates make use of magic during the village election process?; (2 what kinds of magic used by the candidates; (3 How does magic influence the winning chance of village head elections? (4 and how is the process of the magic usage during the village election process?. This article is the result of a field research using ethnographical method based on anthropological perspective. To analyze the data, the researcher uses structural-functional approach. Library research, participant-observation, and depth-interview are methods used to collect the data. Based on the result of field research, it can be concluded that almost all of the candidates in these two sub-districts made use of magic in order to win the village head elections. They visit several magicians and made use of their super natural powers for their own purposes. They believed that magical power possessed by these magicians could influence their winning chance in the village-head elections. Various fundamental reasons also become an important consideration why the candidates need to use magic in local politics process.

  12. Use of Magic polymer gels for dosimetry of unsealed source of yttrium 90

    International Nuclear Information System (INIS)

    Meynard, K.; Bordage, M.C.; Cassol, E.; Courbon, F.; Ravel, P.

    2007-01-01

    Polymer gels are relative chemical dosimeters. They allow to access to three-dimensional dose distribution. The aim of this study has been to investigate the preparation and the use of a polymer gel with a tissue equivalent density known as MAGIC gel from magnetic resonance imaging and x-ray computed tomography for non-sealed source dosimetry. This kind of gel is 'normoxic' because it can be manufactured and used in normal room atmosphere. In the first part of this study, its accuracy and sensibility were studied using external beam irradiation by photons. Spin-spin relaxation rate (R 2 ) and Computed Tomography (CT) number had been used to record gel responses. Using the same manufacture process. radiolabelled gels composed of 95% MAGIC gel and 5% of 90 Y termed 90 Y-MAGIC 95 with varying activity ranged from 0 to 30 MBq were made. In case of photon external beam irradiation, a linear response is observed whatever the calibration method and the imaging system used (the correlation coefficient r 2 > 0.98 in all cases). 90 Y-MAGIC 95 radiolabelled gel responses were recorded after 28. 76 and 124 h. The R 2 /dose curves are not linear: three phases can be described. the first being linear with a slow slope (0.14 s -1 Gy -1 instead of 0.41 s -1 Gy -1 for external beam irradiation of the same gel batch). This study shows safety of radiolabelled MAGIC gels manufacturing process and their large dosimetric feasibility. 90 Y-MAGIC 95 gel response appears to be reproducible and related to the absorbed dose, thus this gel is a promising tool for non-sealed source dosimetry. (authors)

  13. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  14. A Magic Book Out of Magic Language

    Institute of Scientific and Technical Information of China (English)

    宋媛

    2007-01-01

    Harry Potter books are great successes, enjoyed by readers' all over the world. Harry Potter and the Philosopher's Stone is the debut of the sequel books,which is about magic and the magical life a little boy- Harry Potter, a born wizard.People are always curious and eager to discover the secrets of magic, to meet the end of the heroes' fates, but not many of them pay attention to the book's language. Actually, I think it is the skillful use and application of language that make the book outstanding. Therefore, this paper mainly discusses the language features of Harry Potter and Philosopher's Stone from these four aspects: speech sounds, choice of vocabulary, sentence structures and figures of speech, aiming at exploring and revealing the charms of the magic book.

  15. Overview of MAGIC results

    Science.gov (United States)

    Rico, Javier; MAGIC Collaboration

    2016-04-01

    MAGIC is a system of two 17-m diameter Cherenkov telescopes, located at the Observatorio del Roque de los Muchachos, in the Canary island La Palma (Spain). MAGIC performs astronomical observations of gamma-ray sources in the energy range between 50 GeV and 10 TeV. The first MAGIC telescope has been operating since 2004, and in 2009 the system was completed with the second one. During 2011 and 2012 the electronics for the readout system were fully upgraded, and the camera of the first telescope replaced. After that, no major hardware interventions are foreseen in the next years, and the experiment has undertaken a final period of steady astronomical observations. MAGIC studies particle acceleration in the most violent cosmic environments, such as active galactic nuclei, gamma-ray bursts, pulsars, supernova remnants or binary systems. In addition, it addresses some fundamental questions of Physics, such as the origin of Galactic cosmic rays and the nature of dark matter. Moreover, by observing the gamma-ray emission from sources at cosmological distances, we measure the intensity and evolution of the extragalactic background radiation, and perform tests of Lorentz Invariance. In this paper I present the status and some of the latest results of the MAGIC gamma-ray telescopes.

  16. Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk

    International Nuclear Information System (INIS)

    Milinazzo, F.; Saffman, P.G.

    1977-01-01

    The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster

  17. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A. [University of Missouri, Columbia, MO (United States); Hora, H. [University of New South Wales, Sydney (Australia); Miley, G.H. [University of Illinois, Urbana-Champaign (United States)

    2014-07-04

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q{sub α}, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus {sup 310}X{sub 126} was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing.

  18. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    International Nuclear Information System (INIS)

    Prelas, M.A.; Hora, H.; Miley, G.H.

    2014-01-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q α , arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus 310 X 126 was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing

  19. Analytic theory for the selection of a two-dimensional needle crystal at arbitrary Peclet number

    Science.gov (United States)

    Tanveer, S.

    1989-01-01

    An accurate analytic theory is presented for the velocity selection of a two-dimensional needle crystal for arbitrary Peclet number for small values of the surface tension parameter. The velocity selection is caused by the effect of transcendentally small terms which are determined by analytic continuation to the complex plane and analysis of nonlinear equations. The work supports the general conclusion of previous small Peclet number analytical results of other investigators, though there are some discrepancies in details. It also addresses questions raised on the validity of selection theory owing to assumptions made on shape corrections at large distances from the tip.

  20. Mathematical card magic fifty-two new effects

    CERN Document Server

    Mulcahy, Colm

    2013-01-01

    Mathematical card effects offer both beginning and experienced magicians an opportunity to entertain with a minimum of props. Featuring mostly original creations, Mathematical Card Magic: Fifty-Two New Effects presents an entertaining look at new mathematically based card tricks. Each chapter contains four card effects, generally starting with simple applications of a particular mathematical principle and ending with more complex ones. Practice a handful of the introductory effects and, in no time, you'll establish your reputation as a "mathemagician." Delve a little deeper into each chapter and the mathematics gets more interesting. The author explains the mathematics as needed in an easy-to-follow way. He also provides additional details, background, and suggestions for further explorations.Suitable for recreational math buffs and amateur card lovers or as a text in a first-year seminar, this color book offers a diverse collection of new mathemagic principles and effects.

  1. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  2. Professional Expertise in Magic – Reflecting on professional expertise in magic:An interview study

    Directory of Open Access Journals (Sweden)

    Olli eRissanen

    2014-12-01

    Full Text Available The purpose of the present investigation was to analyse interviews of highly regarded Finnish magicians. Social network analysis (N=120 was used to identify Finland’s most highly regarded magicians (N=16. The selected participants’ careers in professional magic and various aspects of their professional conduct were examined by relying on semi-structured interviews. The results revealed that cultivation of professional level competence in magic usually requires an extensive period of time compared with other domains of expertise. Magic is a unique performing art and it differs from other professions focusing on deceiving the audience. A distinctive feature of magical expertise is that the process takes place entirely through informal training supported by communities of magical practitioners. Three interrelated aspects of magical activity were distinguished: magic tricks, performance, and audience. Although magic tricks constitute a central aspect of magic activity, the participants did not talk about their tricks extensively; this is in accordance with the secretive nature of magic culture.The interviews revealed that a core aspect of the magicians’ activity is performance in front of an audience that repeatedly validates competence cultivated through years of practice. The interviewees reported investing a great deal of effort in planning, orchestrating, and reflecting on their performances. Close interaction with the audience plays an important role in most interviewees’ activity. Many participants put a great deal of effort in developing novel magic tricks. It is common to borrow magic effects from fellow magicians and develop novel methods of implementation. Because magic tricks or programs are not copyrighted, many interviewees considered stealing an unacceptable and unethical aspect of magical activity. The interviewees highlighted the importance of personality and charisma in the successful pursuit of magic activity.

  3. Abject Magic: Reasoning Madness in Justine Larbalestier's "Magic or Madness" Trilogy

    Science.gov (United States)

    Potter, Troy

    2013-01-01

    This paper explores the representation of magic and madness in Justine Larbalestier's "Magic or Madness" trilogy (2005-2007). Throughout the series, magic is constructed as an abject and disabling force that threatens to disable magic-wielders, either through madness or death. Despite being represented as a ubiquitous force, the…

  4. Historical perspective of the relation between IBA and VMI at the magic limit: two opposing views

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1984-01-01

    The two-parameter rotational VMI equations ascribe the observed abrupt change in yrast bands at the magic limit to a first order phase transition. In contrast, two three-parameter anharmonic vibrator models recently suggested yield two limits of validity, neither of which is supported by data. 15 references

  5. Historical perspective of the relation between IBA and VMI at the magic limit: two opposing views

    Energy Technology Data Exchange (ETDEWEB)

    Scharff-Goldhaber, G.

    1984-01-01

    The two-parameter rotational VMI equations ascribe the observed abrupt change in yrast bands at the magic limit to a first order phase transition. In contrast, two three-parameter anharmonic vibrator models recently suggested yield two limits of validity, neither of which is supported by data. 15 references.

  6. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Science.gov (United States)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  7. A Magic-Real Gap in Architecture

    DEFF Research Database (Denmark)

    Dayer, Carolina

    2016-01-01

    In 1925, German art critic Franz Roh formalized the notion of Magic Realism (magischer Realismus) as a celebration of everyday life. In Italian literature, the same notion was explored in the works of Massimo Bontempelli. But it was the architect Friedrich Kiesler who imported the notion...... into architecture, stating that ‘Magic Architecture ... holds the balance between the two extremes of man’, his ‘desire for the machine’ and technology on the one hand, his ‘denial of science’ on the other. This paper follows the development of the notion of Magic Realism throughout the twentieth century...

  8. Pulsar observations with the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Jezabel R.; Dazzi, F.; Idec, W.; Moretti, E.; Schweizer, T. [Max-Planck-Institut fuer Physik, Munich (Germany); Bonnefoy, S.; Carreto-Fidalgo, D.; Lopez, M. [Universitad Compultense, Madrid (Spain); Galindo, D.; Zanin, R. [Universitat de Barcelona, ICC/IEEC-UB, Barcelona (Spain); Ona Wilhelmi, E. de [Institute for Space Sciences (CSIC/IEEC), Barcelona (Spain); Reichardt, I. [Istituto Nazionale di Fisica Nucleare (INFN), Padova (Italy); Saito, T. [Kyoto University, Hakubi Center (Japan); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is a stereoscopic system of two IACTs, located at the ORM (Spain). Since 2008, MAGIC has played a big role in Pulsar physics due to the discovery of the first VHE gamma-ray emission from the Crab pulsar. Such a discovery was possible thanks to a revolutionary trigger technique used in the initial MAGIC mono system, the Sum-Trigger, that provided a 25 GeV energy threshold. The study of the Crab keeps providing numerous important results for the understanding of pulsar physics. The most recent ones are the bridge emission at VHE and the detection of the Crab pulsations at TeV energies. MAGIC has been also searching for new pulsars, providing recently interesting results about the Geminga pulsar and nebula. This talk reviews the essential MAGIC results about VHE pulsars and their implications for pulsar physics.Also we discuss the development of a new stereo trigger system, the Sum-Trigger-II, and the importance of the observation windows that this system opens for the study of VHE pulsars.

  9. Magic Physics?

    Science.gov (United States)

    Featonby, David

    2010-01-01

    This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)

  10. Priming psychic and conjuring abilities of a magic demonstration influences event interpretation and random number generation biases

    Science.gov (United States)

    Mohr, Christine; Koutrakis, Nikolaos; Kuhn, Gustav

    2015-01-01

    Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events. PMID:25653626

  11. Priming psychic and conjuring abilities of a magic demonstration influences event interpretation and random number generation biases

    Directory of Open Access Journals (Sweden)

    Christine eMohr

    2015-01-01

    Full Text Available Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn sceptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgements of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious and non-traditional (e.g. paranormal beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g. repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group or a psychic (psychic group. The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.

  12. Magic While They are Young

    Science.gov (United States)

    Cox, Anne Mae

    1974-01-01

    Magic squares are used both as a vehicle for arithmetic drill and the development of mathematical concepts for second-grade students. By searching for patterns within the squares, additional number concepts are developed along with the concept of symmetry. (JP)

  13. Watching films with magical content facilitates creativity in children.

    Science.gov (United States)

    Subbotsky, Eugene; Hysted, Claire; Jones, Nicola

    2010-08-01

    Two experiments examined the possible link between magical thinking and creativity in preschool children. In Exp. 1, 4- and 6-yr.-old children were shown a film with either a magical or nonmagical theme. Results indicated that the mean scores of children shown the magical film was significantly higher than that of children watching the nonmagical film on the majority of subsequent creativity tests for both age groups. This trend was also found for 6-yr.-olds' drawings of impossible items. In Exp. 2, Exp. 1 was replicated successfully with 6- and 8-yr.-old children. Exposing children to a film with a magical theme did not affect their beliefs about magic. The results were interpreted to accentuate the role of magical thinking in children's cognitive development. Classroom implications of the results were also discussed.

  14. Enhanced 29Si spin-lattice relaxation and observation of three-dimensional lattice connectivity in zeolites by two-dimensional 29Si MASS NMR

    International Nuclear Information System (INIS)

    Sivadinarayana, C.; Choudhary, V.R.; Ganapathy, S.

    1994-01-01

    It is shown that considerable sensitivity enhancement is achieved in the 29 Si magic angle sample spinning (MASS) NMR spectra of highly siliceous zeolites by pre treating the material with oxygen. The presence of adsorbed molecular oxygen in zeolite channels promotes an efficient 29 Si spin-lattice relaxation via a paramagnetic interaction between the lattice 29 Si T-site and the adsorbed oxygen on zeolite channels. This affords an efficient 2-D data collection and leads to increased sensitivity. The utility of this method is demonstrated in a two-dimensional COSY-45 NMR experiment of a high silica zeolite ZSM-5. (author). 20 refs., 3 figs., 1 tab

  15. Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing.

    Science.gov (United States)

    Howard, Mark; Campbell, Earl

    2017-03-03

    Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas-the most general synthesis scenario-then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis.

  16. Perception, Illusion, and Magic.

    Science.gov (United States)

    Solomon, Paul R.

    1980-01-01

    Describes a psychology course in which magical illusions were used for teaching the principles of sensation and perception. Students read psychological, philosophical, historical, and magical literature on illusion, performed a magical illusion, and analyzed the illusion in terms of the psychological principles involved. (Author/KC)

  17. Status of the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Pierre; Carmona, Emiliano; Schweizer, Thomas; Sitarek, Julian [Max-Planck-Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)

    2010-07-01

    MAGIC is a system of two 17-m Cherenkov telescopes located on La Palma (Canary islands),sensitive to gamma-rays above 30 GeV. It has been recently upgraded by a second telescope which strongly improves the sensitivity, particularly at low energy. Here we present the status of the MAGIC telescopes and an overview of the recent results obtained in single or stereoscopic mode. We also discuss the real performance of the new stereoscopic system based on Crab Nebula observations.

  18. Magical attachment: Children in magical relations with hospital clowns

    Directory of Open Access Journals (Sweden)

    Lotta Linge

    2012-02-01

    Full Text Available The aim of the present study was to achieve a theoretical understanding of several different-age children's experiences of magic relations with hospital clowns in the context of medical care, and to do so using psychological theory and a child perspective. The method used was qualitative and focused on nine children. The results showed that age was important to consider in better understanding how the children experienced the relation with the hospital clowns, how they described the magical aspects of the encounter and how they viewed the importance of clown encounters to their own well-being. The present theoretical interpretation characterized the encounter with hospital clowns as a magical safe area, an intermediate area between fantasy and reality. The discussion presented a line of reasoning concerning a magical attachment between the child and the hospital clowns, stating that this attachment: a comprised a temporary relation; b gave anonymity; c entailed reversed roles; and d created an emotional experience of boundary-transcending opportunities.

  19. Magic among the Trobrianders

    DEFF Research Database (Denmark)

    Sørensen, Jesper

    2008-01-01

    to a classic area of research on magic, namely the Trobriand garden magic, as described by anthropologist Bronislaw Malinowski. In the conclusion, results from this analysis will be related to long-standing problems and theoretical positions in the study of magic outlined in the introduction to the paper....

  20. Computation of drag and lift coefficients for simple two-dimensional objects with Reynolds number Re = 420 000

    Directory of Open Access Journals (Sweden)

    Matas Richard

    2012-04-01

    Full Text Available The article deals with comparison of drag and lift coefficients for simple two-dimensional objects, which are often discussed in fluid mechanics fundamentals books. The commercial CFD software ANSYS/FLUENT 13 was used for computation of flow fields around the objects and determination of the drag and lift coefficients. The flow fields of the two-dimensional objects were computed for velocity up to 160 km per hour and Reynolds number Re = 420 000. Main purpose was to verify the suggested computational domain and model settings for further more complex objects geometries. The more complex profiles are used to stabilize asymmetrical ('z'-shaped pantographs of high-speed trains. The trains are used in two-way traffic where the pantographs have to operate with the same characteristics in both directions. Results of the CFD computations show oscillation of the drag and lift coefficients over time. The results are compared with theoretical and experimental data and discussed. Some examples are presented in the paper.

  1. Toward two-dimensional search engines

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)

  2. MAGIC NUCLEI: Tin-100 turns up

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the same way as the Periodic Table of chemical elements reflects the successive filling of orbital electron shells, in nuclear physics the socalled 'magic' numbers correspond to closed shells of 2, 8, 20, 28, 50, 82, 126,... neutrons and/or protons. More tightly bound than other nuclei, these are the nuclear analogues of the inert gases. 'Doubly magic' nuclei have closed shells of both neutrons and protons. Examples in nature are helium-4 (2 protons and 2 neutrons), oxygen-16 (8 and 8), calcium-40 (20 and 20) and calcium-48 (20 and 28). Radioactive tin-132 (50+82) has been widely studied

  3. Magic informationally complete POVMs with permutations

    Science.gov (United States)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  4. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  5. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    International Nuclear Information System (INIS)

    Shukla, Anil; Bogdanov, Bogdan

    2015-01-01

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N 2 ). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi) n Li + , (HCOOLi) n Li m m+ , (HCOOLi) n HCOO − , and (HCOOLi) n (HCOO) m m− . Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi) 3 Li + being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi) 2 ) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi) 3 Li + as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability

  6. Development and Performances of the Magic Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Dazzi, F.; Mariotti, M.; Moralejo, A.; Peruzzo, L.; Saggion, A.; Tonello, N.

    2002-11-01

    The MAGIC Collaboration is building an imaging Čerenkov telescope at La Palma site (2200 m a.s.l.), in the Canary Islands, to observe gamma rays in the hundred-GeV region. The MAGIC telescope, with its reflecting parabolic dish, 17 m in diameter, and a two-level pattern trigger designed to cope with severe trigger rates, is the Čerenkov telescope with the lowest envisaged energy threshold. Due to its lightweight alto-azimuthal mounting, MAGIC can be repositioned in less than 30 seconds, becoming the only detector, with an adequate effective area, capable to observe GRB phenomena above 30 GeV. MAGIC telescope is characterised by a 30 GeV energy threshold and a sensitivity of 6×l0-11 cm-2s-1 for a 5σ-detection in 50-hours of observation. In this report, some future scientific goals for MAGIC will be highlighted and the technical development for the main elements of the telescope will be detailed. Special emphasis will be given to the construction of the individual metallic mirrors which form the reflecting surface and the development of the fast pattern-recognition trigger.

  7. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    -dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...

  8. Atmospheric monitoring in MAGIC and data corrections

    Directory of Open Access Journals (Sweden)

    Fruck Christian

    2015-01-01

    Full Text Available A method for analyzing returns of a custom-made “micro”-LIDAR system, operated alongside the two MAGIC telescopes is presented. This method allows for calculating the transmission through the atmospheric boundary layer as well as thin cloud layers. This is achieved by applying exponential fits to regions of the back-scattering signal that are dominated by Rayleigh scattering. Making this real-time transmission information available for the MAGIC data stream allows to apply atmospheric corrections later on in the analysis. Such corrections allow for extending the effective observation time of MAGIC by including data taken under adverse atmospheric conditions. In the future they will help reducing the systematic uncertainties of energy and flux.

  9. A new approach to magic

    Directory of Open Access Journals (Sweden)

    Čvorović Jelena

    2006-01-01

    Full Text Available This paper uses the example of traditional practices of magic to suggest ways to incorporate cultural behaviors within the evolutionary paradigm. The first suggestion is to restrict hypotheses to only identifiable variables. This means avoiding the temptation of following the nonevolutionary social sciences in the practice of basing explanations on unverifiable guesses about what beliefs (or memes in evolutionary jargon may or may not inhabit people's brains. In contrast with previous explanations that magical practices result from beliefs and memes whose primarily purpose is to reduce anxiety, we propose that magic is a form of communication that promotes cooperation and often avoids anti-social behavior. This effect of increased cooperation could explain why traditional forms of magic have probably existed and had significant positive consequences for the participants. To be effective as a means of communication, magical rituals must specify both the content of the message and the receiver of the message. Although the content of the communicative message differs with different types of magic, all magical acts serve a purpose to influence the behavior of the party involved and that is the most significant identifiable effect of such behavior. An advantage of this approach over many previous explanations of magic is that because it focuses on identifiable phenomena, the definitions and explanations used in this approach can be falsified.

  10. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    Science.gov (United States)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  11. Unit Reynolds number, Mach number and pressure gradient effects on laminar-turbulent transition in two-dimensional boundary layers

    Science.gov (United States)

    Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian

    2018-05-01

    The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to

  12. Magic in the machine: a computational magician's assistant

    Directory of Open Access Journals (Sweden)

    Howard eWilliams

    2014-11-01

    Full Text Available A human magician blends science, psychology and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximise the magical effect required. The complexity is often caused by interacting and often conflicting physical and psychological constraints that need to be optimally balanced. Normally this tuning is done by trial and error, combined with human intuitions. Here we focus on applying Artificial Intelligence methods to the creation and optimisation of magic tricks exploiting mathematical principles. We use experimentally derived data about particular perceptual and cognitive features, combined with a model of the underlying mathematical process to provide a psychologically valid metric to allow optimisation of magical impact. In the paper we introduce our optimisation methodology and describe how it can be flexibly applied to a range of different types of mathematics based tricks. We also provide two case studies as exemplars of the methodology at work: a magical jigsaw, and a mind reading card trick effect. We evaluate each trick created through testing in laboratory and public performances, and further demonstrate the real world efficacy of our approach for professional performers through sales of the tricks in a reputable magic shop in London.

  13. Magic in the machine: a computational magician's assistant.

    Science.gov (United States)

    Williams, Howard; McOwan, Peter W

    2014-01-01

    A human magician blends science, psychology, and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific, or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximize the magical effect required. The complexity is often caused by interacting and often conflicting physical and psychological constraints that need to be optimally balanced. Normally this tuning is done by trial and error, combined with human intuitions. Here we focus on applying Artificial Intelligence methods to the creation and optimization of magic tricks exploiting mathematical principles. We use experimentally derived data about particular perceptual and cognitive features, combined with a model of the underlying mathematical process to provide a psychologically valid metric to allow optimization of magical impact. In the paper we introduce our optimization methodology and describe how it can be flexibly applied to a range of different types of mathematics based tricks. We also provide two case studies as exemplars of the methodology at work: a magical jigsaw, and a mind reading card trick effect. We evaluate each trick created through testing in laboratory and public performances, and further demonstrate the real world efficacy of our approach for professional performers through sales of the tricks in a reputable magic shop in London.

  14. Marine Ice Nuclei Collections – MAGIC (MAGIC-IN) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    DeMott, Paul J. [Colorado State Univ., Fort Collins, CO (United States); Hill, Thomas C. J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-02-01

    This campaign augmented measurements obtained via deployment of the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Mobile Facility (AMF) in the Marine ARM GPCI1 Investigation of Clouds (MAGIC) field campaign. The measurements, comprised of shipboard aerosol collections obtained during the five legs of the summer 2013 cruises, were sent for offline processing to measure ice nucleating particle (INP) number concentrations. The forty-three sample periods each represented, nominally, 24-hour segments during outbound and inbound transits of the Horizon Spirit. The samples were collected at locations between Los Angeles and Hawaii. Eight samples have been analyzed for immersion freezing temperature spectra thus far, using funding from other grants. Remaining samples are being frozen until support for further processing is obtained. Future analyses will investigate the inorganic/organic proportions of ice nuclei, in addition to determining the genetic composition of the overall biological community associated with INPs. Resulting correlations will be compared with other archived aerosol quantities, meteorological and ocean data (e.g., temperature, wind speed, sea surface temperature, etc…) and satellite ocean color products. These findings will ultimately aid in parameterizing oceanic (e.g., sea spray) INP emissions in regional and global scale models, when illustrating aerosol connections to cloud phases and properties. Independent future analyses of frozen filter samples, as proposed by collaborating investigators at the time of this report, will include single particle analyses of marine boundary layer aerosol compositions and morphology. The MAGIC-IN data are considered representative of the oligotrophic, low Chlorophyll-a (with the exception of near-shore) ocean regions, which exist along the MAGIC transect. Current analyses suggest that INP numbers in the marine boundary layer over this region are typically low, compared to existing

  15. Magic and Magical Worlds

    DEFF Research Database (Denmark)

    Børch, Marianne

    2013-01-01

    The article argues that where as Harry POtter lacks the " sense of the numinous" found in Tolkien and Pratchett, it has a special magic that plays upon the fantastic potential of language. Everyday language is full of metaphors, personifications, and strata of archaic beliefs; it has diversified...

  16. The presence of magical thinking in obsessive compulsive disorder.

    Science.gov (United States)

    Einstein, Danielle A; Menzies, Ross G

    2004-05-01

    Two research groups have raised the possibility that magical ideation may be a fundamental feature of obsessive-compulsive disorder. It has been proposed to underlie thought action fusion and superstitious beliefs. In this study, the Magical Ideation scale, the Lucky Behaviours and Lucky Beliefs scales, the Thought Action Fusion-Revised scale, the Padua Inventory, and the Obsessive Compulsive Inventory-Short Version were completed by 60 obsessive compulsive patients at a hospital clinic. Of all the measures, the Magical Ideation (MI) scale was found to be the most strongly related to obsessive compulsive symptoms. Large and significant relationships between MI scores and the measures of OCD were obtained even when alternative constructs (Lucky Behaviours, Lucky Beliefs, Thought Action Fusion-Revised scales) were held constant. No other variable remained significantly related to the Obsessive Compulsive Inventory-Short Version when magical ideation scores were held constant. The findings suggest that a general magical thinking tendency may underpin previous observed links between superstitiousness, thought action fusion and OCD severity.

  17. MAGIC: A Tool for Combining, Interpolating, and Processing Magnetograms

    Science.gov (United States)

    Allred, Joel

    2012-01-01

    Transients in the solar coronal magnetic field are ultimately the source of space weather. Models which seek to track the evolution of the coronal field require magnetogram images to be used as boundary conditions. These magnetograms are obtained by numerous instruments with different cadences and resolutions. A tool is required which allows modelers to fmd all available data and use them to craft accurate and physically consistent boundary conditions for their models. We have developed a software tool, MAGIC (MAGnetogram Interpolation and Composition), to perform exactly this function. MAGIC can manage the acquisition of magneto gram data, cast it into a source-independent format, and then perform the necessary spatial and temporal interpolation to provide magnetic field values as requested onto model-defined grids. MAGIC has the ability to patch magneto grams from different sources together providing a more complete picture of the Sun's field than is possible from single magneto grams. In doing this, care must be taken so as not to introduce nonphysical current densities along the seam between magnetograms. We have designed a method which minimizes these spurious current densities. MAGIC also includes a number of post-processing tools which can provide additional information to models. For example, MAGIC includes an interface to the DA VE4VM tool which derives surface flow velocities from the time evolution of surface magnetic field. MAGIC has been developed as an application of the KAMELEON data formatting toolkit which has been developed by the CCMC.

  18. Feminine Magic

    Directory of Open Access Journals (Sweden)

    Kelly, Lynne

    2014-12-01

    Full Text Available Having been introduced to magic by my father, I have adapted the classic methods to work in my role as a mature female teacher. Using performance and mysterious narrative, intriguing props and playing on my femininity, the classic magician routines have served me well when performing for teenagers. Reworking the classic routines in this way ensures that a school magic club for teenagers serves the various needs of both male and female students.

  19. Magical Realism and its European Essence

    Directory of Open Access Journals (Sweden)

    Maryam Ebadi Asayesh

    2017-04-01

    Full Text Available Magical realism is known with its oxymoronic characteristic, magic plus realism. It became known with the boom of the magical realist novel in the 1960s in Latin America and became globally recognized from 1980 onwards. However, it is mostly forgotten that it had started its journey from Europe. The term “magic realism” first appeared in German philosophy in 1798 in Novalis’ notebook. Then, it entered art criticism in 1925 through Roh’s essay and developed in Italy through by Bontempelli. Later, after transformation and formation, magical realism appeared in the novels as a popular mode first in Latin America and then worldwide. The present study charts the path and discusses the development of magical realism from its commencement in Europe. In addition to presenting the views of Novalis, Roh and Bontempelli on initiating the term, it compares their views to show what characteristic in their views inspires today’s magic realism.

  20. Densis. Densimetric representation of two-dimensional matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.

    1978-01-01

    Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)

  1. Tunable states of interlayer cations in two-dimensional materials

    International Nuclear Information System (INIS)

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-01-01

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed

  2. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  3. The Versatile Magic Square.

    Science.gov (United States)

    Watson, Gale A.

    2003-01-01

    Demonstrates the transformations that are possible to construct a variety of magic squares, including modifications to challenge students from elementary grades through algebra. Presents an example of using magic squares with students who have special needs. (YDS)

  4. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  5. The magic circle and the puzzle piece

    OpenAIRE

    Juul, Jesper

    2008-01-01

    In a common description, to play a game is to step inside a concrete or metaphorical magic circle where special rules apply. In video game studies, this description has received an inordinate amount of criticism which the paper argues has two primary sources: 1. a misreading of the basic concept of the magic circle and 2. a somewhat rushed application of traditional theoretical concerns onto games. The paper argues that games studies must move beyond conventional criticisms of binary distinct...

  6. Science meets magic: photonic metamaterials

    Science.gov (United States)

    Ozbay, Ekmel

    2012-05-01

    The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.

  7. Status, performance and scientific highlights from the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Doert, Marlene [Technische Universitaet Dortmund (Germany); Ruhr-Universitaet Bochum (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The MAGIC telescopes are a system of two 17 m Imaging Air Cherenkov Telescopes, which are located at 2200 m above sea level at the Roque de Los Muchachos Observatory on the Canary Island of La Palma. In this presentation, we report on recent scientific highlights gained from MAGIC observations in the galactic and the extragalactic regime. We also present the current status and performance of the MAGIC system after major hardware upgrades in the years 2011 to 2014 and give an overview of future plans.

  8. Magical thinking decreases across adulthood.

    Science.gov (United States)

    Brashier, Nadia M; Multhaup, Kristi S

    2017-12-01

    Magical thinking, or illogical causal reasoning such as superstitions, decreases across childhood, but almost no data speak to whether this developmental trajectory continues across the life span. In four experiments, magical thinking decreased across adulthood. This pattern replicated across two judgment domains and could not be explained by age-related differences in tolerance of ambiguity, domain-specific knowledge, or search for meaning. These data complement and extend findings that experience, accumulated over decades, guides older adults' judgments so that they match, or even exceed, young adults' performance. They also counter participants' expectations, and cultural sayings (e.g., "old wives' tales"), that suggest that older adults are especially superstitious. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Freudental magic square and its dimensional implication for α-bar0≅137 and high energy physics

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    Modern theories of high energy physics are based in one way or another on Lie symmetry group's considerations. In particular the exceptional family plays a pivotal role in superstring and E-infinity theory. For a long time the very existence of the famous 5 exceptional Lie groups G 2 , F 4 , E 6 , E 7 and E 8 with dimensions 14; 52, 78, 133 and 248 was bizarre. Freudental magic square gives some reasons to believe that the exceptional groups are not that exceptional. In the present work we elaborate this point further still and show that the sum of the dimension of E 8 , E 7 and E 6 when adding the dimensions of the two grand unification groups SO(10) and SU(4) to them amounts to the number of states in Witten's p = 5 Brane model, namely 528. Furthermore when taking the standard model SU(3) SU(2) U(1) and an eight degrees of freedom Higgs field into account, the number rises to 4 multiplied with 137 of the inverse electromagnetic fine structure constant 528+12+8=4α-bar 0 =(4)(137)=548. The general implications of these results for high energy physics are briefly discussed

  10. Warranty menu design for a two-dimensional warranty

    International Nuclear Information System (INIS)

    Ye, Zhi-Sheng; Murthy, D.N. Pra

    2016-01-01

    Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.

  11. Note on sideband intensities in one-dimensional magic angle spinning nuclear magnetic resonance

    NARCIS (Netherlands)

    Well, van H.F.J.M.; Vankan, J.M.J.; Janssen, A.J.E.M.

    1991-01-01

    It is well known that in the NMR spectra of solid samples spinning at the magic angle centrebands and sidebands occur. The centrebands are found at the isotropic value of the chemical shift and the sidebands are found at integral multiples of the spinning frequency as long as the spinning frequency

  12. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  13. MAGIC Database and Interfaces: An Integrated Package for Gene Discovery and Expression

    Directory of Open Access Journals (Sweden)

    Lee H. Pratt

    2006-03-01

    Full Text Available The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs, and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.

  14. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer

  15. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    Rego Monteiro, M.A. do.

    1985-01-01

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt

  16. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  17. Evidences for magicity in superdeformed shapes

    Indian Academy of Sciences (India)

    inertia (0) and nuclear softness parameter (σ) for the SD bands in all the mass regions ... to a good understanding of the observed SD bands and fission isomers. .... to the positions of least level density, we expect the. SD bands near magic nucleon numbers to be more close to exact rigid rotor. The usual. 30 40. 50. 60. 70.

  18. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...

  19. Biomolecular solid state NMR with magic-angle spinning at 25K.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2008-12-01

    A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.

  20. When "Holiday Magic" Hurts.

    Science.gov (United States)

    Goldstein, Karen

    2001-01-01

    Claims that religious messages in public school are not acceptable and are hurtful to kids who do not subscribe to the beliefs expressed in those messages. Describes the author's personal experience in helping a teacher transform the script for "Christmas Magic" into the more inclusive "Holiday Magic." (RS)

  1. Quasi-integrability and two-dimensional QCD

    International Nuclear Information System (INIS)

    Abdalla, E.; Mohayaee, R.

    1996-10-01

    The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab

  2. It's magic: a unique practice management strategy.

    Science.gov (United States)

    Schwartz, Steven

    2003-11-15

    For thousands of years prior to the advent of modern dentistry, magic has been used to entertain, impress, and motivate individuals. Today's dental professionals are using the concept of The Magic of a Healthy Smile through their use of modern clinical techniques and as a means for practice marketing, patient education, and the reduction of patient stress and fear. This article describes how dentists/magicians have incorporated magic into their practices and the benefits of this useful patient management strategy. A script of the "Happy Tooth Magic Show" and resources for dentists to create their own dental magic show are provided.

  3. Tailor-made ultrathin manganese oxide nanostripes: ‘magic widths’ on Pd(1 1 N) terraces

    Science.gov (United States)

    Franchini, C.; Li, F.; Surnev, S.; Podloucky, R.; Allegretti, F.; Netzer, F. P.

    2012-02-01

    The growth of ultrathin two-dimensional manganese oxide nanostripes on vicinal Pd(1 1 N) surfaces leads to particular stable configurations for certain combinations of oxide stripe and substrate terrace widths. Scanning tunneling microscopy and high-resolution low-energy electron diffraction measurements reveal highly ordered nanostructured surfaces with excellent local and long-range order. Density functional theory calculations provide the physical origin of the stabilization mechanism of ‘magic width’ stripes in terms of a finite-size effect, caused by the significant relaxations observed at the stripe boundaries.

  4. MAGIC: THE GATHERING APUSOVELLUS ANDROIDILLE

    OpenAIRE

    Isopahkala, Ville

    2017-01-01

    Opinnäytetyönä oli omavalintainen android-sovellus Magic: The Gathering –korttipelille. Tavoitteena oli toteuttaa akkuystävällinen apusovellus kyseistä peliä pelaaville käyttäen android studiota. Työssä tutustutaan javaan, androidiin sekä android studioon, niiden historiaan sekä ominaisuuksiin. Magic: The Gathering:iin tutustutaan perustasolla. Opinnäytetyö keskittyy sovellukseen, sen luomiseen, koodauskieleen sekä alustaan. Tarkoituksena ei ole opettaa pelaamaan Magic: The Gatheringiä. Th...

  5. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  6. Quantum Communication Through a Two-Dimensional Spin Network

    International Nuclear Information System (INIS)

    Wang Zhaoming; Gu Yongjian

    2012-01-01

    We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.

  7. Two-dimensional QCD in the Coulomb gauge

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefed'ev, A.V.

    2002-01-01

    Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru

  8. Magic state parity-checker with pre-distilled components

    Directory of Open Access Journals (Sweden)

    Earl T. Campbell

    2018-03-01

    Full Text Available Magic states are eigenstates of non-Pauli operators. One way of suppressing errors present in magic states is to perform parity measurements in their non-Pauli eigenbasis and postselect on even parity. Here we develop new protocols based on non-Pauli parity checking, where the measurements are implemented with the aid of pre-distilled multiqubit resource states. This leads to a two step process: pre-distillation of multiqubit resource states, followed by implementation of the parity check. These protocols can prepare single-qubit magic states that enable direct injection of single-qubit axial rotations without subsequent gate-synthesis and its associated overhead. We show our protocols are more efficient than all previous comparable protocols with quadratic error reduction, including the protocols of Bravyi and Haah.

  9. A Note on Magic Squares

    Science.gov (United States)

    Williams, Horace E.

    1974-01-01

    A method for generating 3x3 magic squares is developed. A series of questions relating to these magic squares is posed. An invesitgation using matrix methods is suggested with some questions for consideration. (LS)

  10. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    International Nuclear Information System (INIS)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O.

    2012-01-01

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  11. Tomotherapy dose distribution verification using MAGIC-f polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J. F.; Pike, T. L.; Snow, J.; DeWerd, L.; Baffa, O. [Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil); Medical Radiation Research Center, Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, B1002 WIMR, Madison, Wisconsin 53705-2275 (United States); Departamento de Fisica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto-Universidade de Sao Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 - Bairro Monte Alegre - Ribeirao Preto, SP (Brazil)

    2012-05-15

    Purpose: This paper presents the application of MAGIC-f gel in a three-dimensional dose distribution measurement and its ability to accurately measure the dose distribution from a tomotherapy unit. Methods: A prostate intensity-modulated radiation therapy (IMRT) irradiation was simulated in the gel phantom and the treatment was delivered by a TomoTherapy equipment. Dose distribution was evaluated by the R2 distribution measured in magnetic resonance imaging. Results: A high similarity was found by overlapping of isodoses of the dose distribution measured with the gel and expected by the treatment planning system (TPS). Another analysis was done by comparing the relative absorbed dose profiles in the measured and in the expected dose distributions extracted along indicated lines of the volume and the results were also in agreement. The gamma index analysis was also applied to the data and a high pass rate was achieved (88.4% for analysis using 3%/3 mm and of 96.5% using 4%/4 mm). The real three-dimensional analysis compared the dose-volume histograms measured for the planning volumes and expected by the treatment planning, being the results also in good agreement by the overlapping of the curves. Conclusions: These results show that MAGIC-f gel is a promise for tridimensional dose distribution measurements.

  12. Transition from two-dimensional to three-dimensional melting in Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Mukhopadhyay, M.K.; Sanyal, M.K.; Datta, A.; Mukherjee, M.; Geue, Th.; Grenzer, J.; Pietsch, U.

    2004-01-01

    Results of energy-dispersive x-ray reflectivity and grazing incidence diffraction studies of Langmuir-Blodgett films exhibited evolution of conventional three-dimensional melting from continuous melting, characteristic of two-dimensional systems, as a function of deposited monolayers. Continuous expansion followed by a sharp phase transition of the in-plane lattice was observed before the melting point and found to be independent of number of deposited layers. Evolution of conventional melting with an increase in the number of monolayers could be quantified by measuring stiffness against tilting of the vertical stack of molecules, which are kept together by an internal field. The internal field as defined in this model reduces as the in-plane lattice expands and the sample temperature approaches melting point. The sharpness of the melting transition, which has been approximated by a Langevin function, increases with the number of deposited monolayers

  13. Linear negative magnetoresistance in two-dimensional Lorentz gases

    Science.gov (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.

    2018-03-01

    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  14. Origins of magic: review of genetic and epigenetic effects.

    Science.gov (United States)

    Ramagopalan, Sreeram V; Knight, Marian; Ebers, George C; Knight, Julian C

    2007-12-22

    To assess the evidence for a genetic basis to magic. Literature review. Harry Potter novels of J K Rowling. Muggles, witches, wizards, and squibs. Limited. Family and twin studies, magical ability, and specific magical skills. Magic shows strong evidence of heritability, with familial aggregation and concordance in twins. Evidence suggests magical ability to be a quantitative trait. Specific magical skills, notably being able to speak to snakes, predict the future, and change hair colour, all seem heritable. A multilocus model with a dominant gene for magic might exist, controlled epistatically by one or more loci, possibly recessive in nature. Magical enhancers regulating gene expressionmay be involved, combined with mutations at specific genes implicated in speech and hair colour such as FOXP2 and MCR1.

  15. Recent results on galactic sources with MAGIC telescope

    International Nuclear Information System (INIS)

    De los Reyes, R.

    2009-01-01

    Located at the Canary island of La Palma, the single-dish MAGIC telescope currently has the lowest energy threshold achieved by any Cherenkov telescope, which can be as low as 25 GeV. In the last two years, the MAGIC telescope has detected a significant amount of galactic sources that emit at very high energies (up to several TeV). Here we present the most recent results that have yielded important scientific highlights in astrophysics, which include the first detection of gamma-ray emission from a pulsar, an X-ray binary system and a stellar-mass black hole. We also make a review of the latest results of the MAGIC observations on galactic sources, which will include also γ-ray unidentified sources (TeV J2032+4130), the Galactic Centre, X-ray binaries (LSI +61 303), pulsars (Crab pulsar) and SNRs (IC443).

  16. Study of two-dimensional interchange turbulence

    International Nuclear Information System (INIS)

    Sugama, Hideo; Wakatani, Masahiro.

    1990-04-01

    An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)

  17. Magical Realism in the Holocaust Literature of the Postwar Generations

    DEFF Research Database (Denmark)

    Ortner, Jessica

    2014-01-01

    This article investigates the use of magical realism in two Holocaust novels written by the contemporary Austrian writers Doron Rabinovici and Robert Schindel, who both are descendants of Holocaust survivors. I will argue that Rabinovici and Schindel not only use the narrative technique of magic...... Schindel’s novel Born-Where (Gebürtig, 1994) visualize the situation of being torn between two contradictory perceptions of the world: on the one hand, the “normal” perception of the world, based on the present norms of society, and on the other hand, a perception of the traumatic world bestowed by family...... history, which clearly subverts those present norms. Whereas the magical element in The Search for M. is inherent in the contradictions of the story line, it is shown in a bewildering narrative structure in Born-Where (Genette, 1980)....

  18. Magic and reality in the literature of the Cuban revolution

    Directory of Open Access Journals (Sweden)

    María Jesús Martín Sastre

    2013-12-01

    Full Text Available There is no innocent literature. Literature is made by love, by hate, by a woman, by an idea, by an injustice, by a hope, to praise or to criticize, but I think literature has never been isolated, pure, detached. [...] Literature cannot escape life and history (Manuel Cofiño Lopez, 1985: 9697. Cofiño Lopezs own literature is no exception. The clear contrast that he presents in The Last Woman and the upcoming battle between magic and reality, ignorance and culture, past and present has a purpose. The author raises the need to end with the old beliefs in order to progress.This inextricable link between magic and reality of the Revolution is present in several novels of the Cuban Revolution. It shows how the two interact, as well as how past and present intermingle. Moreover, we find that magic is present throughout, and is fully compatible with the Revolution. This does not make it erroneous to believe in the stories of Magic Realism. It is a mistake on the part of the revolution and those who write about it for attempting to deny people the magic of their superstitions and beliefs, since magic is not the enemy of progress. They are part of their lives and their culture, and are something that should be respected.

  19. Magic Breakfast: Evaluation Report and Executive Summary

    Science.gov (United States)

    Crawford, Claire; Edwards, Amy; Farquharson, Christine; Greaves, Ellen; Trevelyan, Grace; Wallace, Emma; White, Clarissa

    2016-01-01

    The Magic Breakfast project provided 106 schools with support and resources to offer a free, universal, before-school breakfast club, including to all Year 2 and Year 6 pupils. The aim of the project was to improve attainment outcomes by increasing the number of children who ate a healthy breakfast. The schools in the project were schools in…

  20. Business, Anthropology, and Magical Systems

    DEFF Research Database (Denmark)

    Moeran, Brian

    2014-01-01

    —encompassing related concepts of alchemy, animism, and enchantmen—is reflected in other business practices, which have developed their own parallel and interlocking systems of magic. Certain forms of capitalism, the—fashion, for example, or finance—may be analysed as a field of magical systems....

  1. Elucidation of impact of tensor force on the β decay of magic and semi-magic nuclei

    International Nuclear Information System (INIS)

    Minato, Futoshi

    2016-01-01

    The authors theoretically examined the β decay of neutron-rich nuclei with a magic number and semi-magic number, using a proton-neutron random phase approximation method. The tensor force previously believed to have a significant impact on the development of the structure of unstable nuclei was found to potentially have an impact on β decay, too. This paper introduces how β decay half-life is reproduced by the tensor force, with a focus on its microscopic mechanism. It was found that the tensor force plays an important role in the β decay of 34 Si, 68,78 Ni, and 132 Sn. Although the calculation of Gamow-Teller transition (GT transition) leaves room for theoretical confirmation, it is clear that the tensor force has a large impact on the 1+ excited state of GT transition. Therefore, for the reliable prediction of the β decay half-life of unknown nuclei, it is necessary to take into account the impact of tensor force. β decay, along with the mass, radius, and excited state, is one of the characteristics possessed by unstable nuclei, and it is important to increase the knowledge of nuclear structure theory so as to be able to systematically predict the probability of β decay. (A.O.)

  2. Magical Realism in Ahmad Sa'dawiy's Frankenstein fi Bagdad

    Directory of Open Access Journals (Sweden)

    Mahmudah Mahmudah

    2016-11-01

    Full Text Available This article discusses the use of magic realism as a literary device in the Iraqi novel Frankenstein fī Bagdād written by Aḥmad Sa‘dāwiy. The novel is set in the period of inter-ethnic conflict which arose after the American invasion of 2003. Hādī, the main character of the novel, ‘creates a monster’ namely Syismah from the corpses of the many bomb victims in Baghdad. The writer combines setting of the novel with belief of the Iraq people, horoscope practice, and magic, in mystical and illogical atmosphere. Given its magic realist qualities, the analysis draws on the approach of Wendy B. Faris. The article identifies five key elements from magic realism present in the novel, and discusses the relationship between these elements in order to better understand the social, ideological, and political context of the novel. The analysis shows that there are relationships between two worlds: death and life, human and ghost, physical and metaphysical, natural and supernatural.

  3. The magic of television: Thinking through magical realism in recent TV [symposium

    Directory of Open Access Journals (Sweden)

    Lynne Joyrich

    2009-11-01

    Full Text Available After decades in which television has been marked as more banal than bewitching, recalling the "magic of television" is more likely to evoke a sense of wonder for the perceived innocence of an earlier televisual audience than for television itself. With TV offered on demand, captured with DVRs, downloaded or watched streaming on the Web, purchased as DVD sets, miniaturized for private screenings, jumbo-sized for public spectacles, monitored in closed circuits, and accessed for open forums, once-mysterious television flows have flowed to new media forms, giving TV an appearing/disappearing, now-you-see-it/now-you-don't magical act of its own. Has TV disappeared, or has it multiplied—redoubled each time it's sawed in half, replicating like rabbits pulled out of a hat? Is it still TV or something else when programs are screened (as if through a magic curtain via today's delivery systems?

  4. People Interview: The science behind the 'magic'

    Science.gov (United States)

    2010-01-01

    INTERVIEW The science behind the 'magic' Grand Illusions is a website dedicated to science-based phenomena, fun and games, and optical illusions. David Smith speaks to two of its key members—Hendrik Ball and Tim Rowett.

  5. Magical Realities in Interaction Design

    DEFF Research Database (Denmark)

    Rasmussen, Majken

    2013-01-01

    The field of interaction design is littered with examples of artefacts, which seemingly do not adhere to well-known physical causalities and our innate expectations of how artefacts should behave in the world, thereby creating the impression of a magic reality; where things can float in mid-air, ...... to reflect upon the magical realities constructed by technological artefacts......The field of interaction design is littered with examples of artefacts, which seemingly do not adhere to well-known physical causalities and our innate expectations of how artefacts should behave in the world, thereby creating the impression of a magic reality; where things can float in mid...

  6. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks

    Science.gov (United States)

    Schönauer, Monika; Brodt, Svenja; Pöhlchen, Dorothee; Breßmer, Anja; Danek, Amory H.; Gais, Steffen

    2018-01-01

    During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving. PMID:29535620

  7. Sexual selection and magic traits in speciation with gene flow

    Directory of Open Access Journals (Sweden)

    Maria R. SERVEDIO, Michael KOPP

    2012-06-01

    Full Text Available The extent to which sexual selection is involved in speciation with gene flow remains an open question and the subject of much research. Here, we propose that some insight can be gained from considering the concept of magic traits (i.e., traits involved in both reproductive isolation and ecological divergence. Both magic traits and other, “non-magic”, traits can contribute to speciation via a number of specific mechanisms. We argue that many of these mechanisms are likely to differ widely in the extent to which they involve sexual selection. Furthermore, in some cases where sexual selection is present, it may be prone to inhibit rather than drive speciation. Finally, there are a priori reasons to believe that certain categories of traits are much more effective than others in driving speciation. The combination of these points suggests a classification of traits that may shed light on the broader role of sexual selection in speciation with gene flow. In particular, we suggest that sexual selection can act as a driver of speciation in some scenarios, but may play a negligible role in potentially common categories of magic traits, and may be likely to inhibit speciation in common categories of non-magic traits [Current Zoology 58 (3: 507–513, 2012].

  8. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  9. MAGIC user's group software

    International Nuclear Information System (INIS)

    Warren, G.; Ludeking, L.; McDonald, J.; Nguyen, K.; Goplen, B.

    1990-01-01

    The MAGIC User's Group has been established to facilitate the use of electromagnetic particle-in-cell software by universities, government agencies, and industrial firms. The software consists of a series of independent executables that are capable of inter-communication. MAGIC, SOS, μ SOS are used to perform electromagnetic simulations while POSTER is used to provide post-processing capabilities. Each is described in the paper. Use of the codes for Klystrode simulation is discussed

  10. The 'Magic Light': A Discussion on Laser Ethics.

    Science.gov (United States)

    Stylianou, Andreas; Talias, Michael A

    2015-08-01

    Innovations in technology and science form novel fields that, although beneficial, introduce new bio-ethical issues. In their short history, lasers have greatly influenced our everyday lives, especially in medicine. This paper focuses particularly on medical and para-medical laser ethics and their origins, and presents the complex relationships within laser ethics through a three-dimensional matrix model. The term 'laser' and the myth of the 'magic light' can be identified as landmarks for laser related ethical issues. These ethical issues are divided into five major groups: (1) media, marketing, and advertising; (2) economic outcomes; (3) user training; (4) the user-patient/client relationship; and (5) other issues. In addition, issues arising from two of the most common applications of lasers, laser eye surgery and laser tattoo removal, are discussed. The aim of this paper is to demonstrate that the use of medical and para-medical lasers has so greatly influenced our lives that the scientific community must initiate an earnest discussion of medical laser ethics.

  11. [Incorporation of an organic MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using independent data sources]. [MAGIC Model

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.

    1992-09-01

    A project was initiated in March, 1992 to (1) incorporate a rigorous organic acid representation, based on empirical data and geochemical considerations, into the MAGIC model of acidification response, and (2) test the revised model using three sets of independent data. After six months of performance, the project is on schedule and the majority of the tasks outlined for Year 1 have been successfully completed. Major accomplishments to data include development of the organic acid modeling approach, using data from the Adirondack Lakes Survey Corporation (ALSC), and coupling the organic acid model with MAGIC for chemical hindcast comparisons. The incorporation of an organic acid representation into MAGIC can account for much of the discrepancy earlier observed between MAGIC hindcasts and paleolimnological reconstructions of preindustrial pH and alkalinity for 33 statistically-selected Adirondack lakes. Additional work is on-going for model calibration and testing with data from two whole-catchment artificial acidification projects. Results obtained thus far are being prepared as manuscripts for submission to the peer-reviewed scientific literature.

  12. Two-dimensional Semiconductor-Superconductor Hybrids

    DEFF Research Database (Denmark)

    Suominen, Henri Juhani

    This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...

  13. Shell stabilization of super- and hyperheavy nuclei without magic gaps

    International Nuclear Information System (INIS)

    Bender, M.; Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.; Reinhard, P.G.; Oak Ridge National Lab., TN

    2001-05-01

    Quantum stabilization of superheavy elements is quantified in terms of the shell-correction energy. We compute the shell correction using self-consistent nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the relativistic mean-field model, for a number of parametrizations. All the forces applied predict a broad valley of shell stabilization around Z = 120 and N = 172-184. We also predict two broad regions of shell stabilization in hyperheavy elements with N ∼ 258 and N ∼ 308. Due to the large single-particle level density, shell corrections in the superheavy elements differ markedly from those in lighter nuclei. With increasing proton and neutron numbers, the regions of nuclei stabilized by shell effects become poorly localized in particle number, and the familiar pattern of shells separated by magic gaps is basically gone. (orig.)

  14. The Belief in Magic in the Age of Science

    Directory of Open Access Journals (Sweden)

    Eugene Subbotsky

    2014-01-01

    Full Text Available The widely spread view on magical beliefs in modern industrial cultures contends that magical beliefs are a bunch of curious phenomena that persist today as an unnecessary addition to a much more important set of rational beliefs. Contrary to this view, in this article, the view is presented, which suggests that the belief in magic is a fundamental property of the human mind. Individuals can consciously consider themselves to be completely rational people and deny that they believe in magic or God despite harboring a subconscious belief in the supernatural. Research also shows how engagement in magical thinking can enhance cognitive functioning, such as creative thinking, perception and memory. Moreover, this article suggests that certain forms of social compliance and obedience to authority historically evolved from magical practices of mind control and are still powered by the implicit belief in magic. Finally, the article outlines areas of life, such as education, religion, political influence, commerce, military and political terror, and entertainment, in which magical thinking and beliefs of modern people can find practical applications.

  15. Aplikasi Augmented Reality Magic Book Pengenalan Binatang Untuk Siswa TK

    Directory of Open Access Journals (Sweden)

    I Dewa Gede Wahya Dhiyatmika

    2015-11-01

    Full Text Available Augmented Reality is a technology combining 2 or 3 dimensional virtual objects into a real 3 dimensional environment and projected real time. Children at 5 to 7 years old, are in their golden age where they are getting more sensitive to stimulus and easier on learning new things, that they are easier on receiving new and interesting things. So, it seems to be important for children at this age to learn about living creature around them, one of it is learning about animals. Media about animal introduction for kindergarten students, such as book with 2 dimensional animal form, seems like incapable yet to excite children on learning about animal species. This Augmented Reality Magic Book Animals Introduction Application for Kindergarten Students has been developed using Android base with marker that identified 3 dimensional animal objects, their voices, and the informations about the animals using Augmented Reality Technology. Augmented Reality technology makes animal introduction to children become easier and more interesting, this application shows 3 dimensional form of animals and their voices with more innovative interface using Smartphone.

  16. Garden Gnomes: Magical or Tacky?

    Science.gov (United States)

    Flynt, Deborah

    2012-01-01

    Garden gnomes: magical or tacky? Well, art is in the eye of the beholder, and for the author's advanced seventh-grade art class, garden gnomes are magical. Gnomes have a very long history, dating back to medieval times. A fairytale describes them as brownie-like creatures that are nocturnal helpers. In this article, the author describes how her…

  17. Three-dimensional study of flow past a square cylinder at low Reynolds numbers

    International Nuclear Information System (INIS)

    Saha, A.K.; Biswas, G.; Muralidhar, K.

    2003-01-01

    The spatial evolution of vortices and transition to three-dimensionality in the wake of a square cylinder have been numerically studied. A Reynolds number range between 150 and 500 has been considered. Starting from the two-dimensional Karman vortex street, the transition to three-dimensionality is found to take place at a Reynolds number between 150 and 175. The three-dimensional wake of the square cylinder has been characterized using indicators appropriate for the wake of a bluff body as described by the earlier workers. In these terms, the secondary vortices of Mode-A are seen to persist over the Reynolds number range of 175-240. At about a Reynolds number of 250, Mode-B secondary vortices are present, these having predominantly small-scale structures. The transitional flow around a square cylinder exhibits an intermittent low frequency modulation due to the formation of a large-scale irregularity in the near-wake, called vortex dislocation. The superposition of vortex dislocation and the Mode-A vortices leads to a new pattern, labelled as Mode-A with dislocations. The results for the square cylinder are in good accordance with the three-dimensional modes of transition that are well-known in the circular cylinder wake. In the case of a circular cylinder, the transition from periodic vortex shedding to Mode-A is characterized by a discontinuity in the Strouhal number-Reynolds number relationship at about a Reynolds of 190. The transition from Mode-A to Mode-B is characterized by a second discontinuity in the frequency law at a Reynolds number of ∼250. The numerical computations of the present study with a square cylinder show that the values of the Strouhal number and the time-averaged drag-coefficient are closely associated with each other over the range of Reynolds numbers of interest and reflect the spatial structure of the wake

  18. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  19. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  20. The blind student’s interpretation of two-dimensional shapes in geometry

    Science.gov (United States)

    Andriyani; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The blind student’s interpretation of two-dimensional shapes represents the blind student’s mental image of two-dimensional shapes that they can’t visualize directly, which is related to illustration of the characteristics and number of edges and angles. The objective of this research is to identify the blind student’s interpretation of two-dimensional shapes. This research was an exploratory study with qualitative approach. A subject of this research is a sixth-grade student who experiencing total blind from the fifth grade of elementary school. Researchers interviewed the subject about his interpretation of two-dimensional shapes according to his thinking.The findings of this study show the uniqueness of blind students, who have been totally blind since school age, in knowing and illustrating the characteristics of edges and angles of two-dimensional shapes by utilizing visual experiences that were previously obtained before the blind. The result can inspire teachers to design further learning for development of blind student geometry concepts.

  1. Prospects of studying magical realism in Nigerian literature ...

    African Journals Online (AJOL)

    This paper exposes some of the reasons why magical realism is an interesting topic in literary studies today. It is a brief review of some notable magic realist writers and their popular works. It draws attention to the possibility of studying magical realism in Nigerian literature using the novels of some Nigerian authors who ...

  2. Destroy The Castle: A 3D Magic Carpet-like Game

    OpenAIRE

    Ondrčková, Simona

    2017-01-01

    Title: Destroy the Castle: A 3D Magic Carpet-like Game Author: Simona Ondrčková Department: Department of Distributed and Dependable Systems Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable Systems Abstract: The goal of the thesis is to create a computer game based on a game called Magic Carpet. The game has two main interesting aspects from the programming point of view: artificial intelligence and an editor. The artificial intelligence uses different approaches ...

  3. Performance of the MAGIC telescopes under moonlight

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2017-09-01

    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to ∼40% in total with only moderate performance degradation.

  4. Two-dimensional profiling of Xanthomonas campestris pv. viticola ...

    African Journals Online (AJOL)

    However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).

  5. Babad Banyumas Wirjaatmadjan: Magical-Religious Values in Banyumas Society

    Directory of Open Access Journals (Sweden)

    Ali Ma'ruf

    2018-04-01

    Full Text Available This research explains the describing of magical-religious values in Banyumas society that contain in Babad Banyumas Wirjaatmajan. Banyumas society as one part of Javanese has trust to something that magical. A Belief system or religion in Javanese has a connection that related to the ancestors. Trust to Magical power in the Banyumas society that grows until now. Words or ancestral discourse are claimed important by Java and Banyumas society that still uphold the traditional values.  Traditional values in Java and Banyumas society always identified with something magical. This research tries to give the knowledge about custom, habit, and the mindset of Banyumas and Javanese society to the magical-religious values that grow in the society through Babad Banyumas Wirjaatmadjan. Magical-Religious values in the research are taken from an ancestral discourse of Banyumas are Raden Baribin, Adipati Wargautama I, and Joko Kaiman that written in Babad Banyumas Wirjaatmadjan. Magical-Religious in Banyumas society, they are pepali of Sabtu Pahing, pepali of eat white cucumber, pepali persecute partridge that all of that is the command of Banyumas society ancestors.

  6. Magical mathematics the mathematical ideas that animate great magic tricks

    CERN Document Server

    Diaconis, Persi

    2012-01-01

    Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath Principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem.

  7. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  8. Conservation laws for two (2 + 1)-dimensional differential-difference systems

    International Nuclear Information System (INIS)

    Yu Guofu; Tam, H.-W.

    2006-01-01

    Two integrable differential-difference equations are considered. One is derived from the discrete BKP equation and the other is a symmetric (2 + 1)-dimensional Lotka-Volterra equation. An infinite number of conservation laws for the two differential-difference equations are deduced

  9. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  10. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  11. The Illusory Beliefs Inventory: a new measure of magical thinking and its relationship with obsessive compulsive disorder.

    Science.gov (United States)

    Kingdon, Bianca L; Egan, Sarah J; Rees, Clare S

    2012-01-01

    Magical thinking has been proposed to have an aetiological role in obsessive compulsive disorder (OCD). To address the limitations of existing measures of magical thinking we developed and validated a new 24-item measure of magical thinking, the Illusory Beliefs Inventory (IBI). The validation sample comprised a total of 1194 individuals across two samples recruited via an Internet based survey. Factor analysis identified three subscales representing domains relevant to the construct of magical thinking: Magical Beliefs, Spirituality, and Internal State and Thought Action Fusion. The scale had excellent internal consistency and evidence of convergent and discriminant validity. Evidence of criterion-related concurrent validity confirmed that magical thinking is a cognitive domain associated with OCD and is largely relevant to neutralizing, obsessing and hoarding symptoms. It is important for future studies to extend the evidence of the psychometric properties of the IBI in new populations and to conduct longitudinal studies to examine the aetiological role of magical thinking.

  12. Magic and the aesthetic illusion.

    Science.gov (United States)

    Balter, Leon

    2002-01-01

    The aesthetic illusion is the subjective experience that the content of a work of art is reality. It has an intrinsic relation to magic, an intrapsychic maneuver oriented toward modification and control of the extraspyschic world, principally through ego functioning. Magic is ontogenetically and culturally archaic, expresses the omnipotence inherent in primary narcissism, and operates according to the logic of the primary process. Magic is a constituent of all ego functioning, usually latent in later development. It may persist as an archaic feature or may be evoked regressively in global or circumscribed ways. It causes a general disinhibition of instincts and impulses attended by a sense of confidence, exhiliration, and exuberance. The aesthetic illusion is a combination of illusions: (1) that the daydream embodied by the work of art is the beholder's own, the artist being ignored, and (2) that the artistically described protagonist is a real person with a real "world." The first illusion arises through the beholder's emotional-instinctual gratification from his or her own fantasy-memory constellations; the second comes about because the beholder, by taking the protagonist as proxy, mobilizes the subjective experience of the imaginary protagonist's "reality." The first illusion is necessary for the second to take place; the second establishes the aesthetic illusion proper. Both illusions are instances of magic. Accordingly, the aesthetic illusion is accompanied by a heady experience of excitement and euphoria. The relation among the aesthetic illusion, magic, and enthusiasm is illustrated by an analytic case, J. D. Salinger's "The Laughing Man," Woody Allen's Play It Again, Sam, Don Quixote, and the medieval Cult of the Saints.

  13. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  14. Distance Magic-Type and Distance Antimagic-Type Labelings of Graphs

    Science.gov (United States)

    Freyberg, Bryan J.

    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection l from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G = ( V,E) of order n is a bijection l from V to the set {1,2,...,n} with induced weight function [special characters omitted]. such that l(xi) = i and the sequence of weights w(x 1),w(x2),...,w (xn) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d ) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i + 1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n.. In Chapter 2 we provide general constructions for every d for large classes of both n and k, providing breadfth and depth to the catalog of known H(n,k,d)'s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order

  15. An infinite number of stationary soliton solutions to the five-dimensional vacuum Einstein equation

    International Nuclear Information System (INIS)

    Azuma, Takahiro; Koikawa, Takao

    2006-01-01

    We obtain an infinite number of soliton solutions to the five-dimensional stationary Einstein equation with axial symmetry by using the inverse scattering method. We start with the five-dimensional Minkowski space as a seed metric to obtain these solutions. The solutions are characterized by two soliton numbers and a constant appearing in the normalization factor which is related to a coordinate condition. We show that the (2, 0)-soliton solution is identical to the Myers-Perry solution with one angular momentum variable by imposing a condition on the relation between parameters. We also show that the (2, 2)-soliton solution is different from the black ring solution discovered by Emparan and Reall, although one component of the two metrics can be identical. (author)

  16. Finding All Solutions to the Magic Hexagram

    Science.gov (United States)

    Holland, Jason; Karabegov, Alexander

    2008-01-01

    In this article, a systematic approach is given for solving a magic star puzzle that usually is accomplished by trial and error or "brute force." A connection is made to the symmetries of a cube, thus the name Magic Hexahedron.

  17. The Determination of Neutron-Induced Reaction Cross Section Data on Even-Even, Magic- Number Nuclide Chromium 52 Using EXIFON Code

    International Nuclear Information System (INIS)

    Jonah, S.A.

    2013-01-01

    The EXIFON code version 2.0 is a calculational tool, which is based on both many-body theory and random matrix physics. In this work, it has been used to calculate neutron induced reaction cross section data from 0 to 20 MeV on an even-even, magic number nuclide 52 Cr with neutron number, N=28. Specifically, the (n,p), (n,α) and (n,2n) reaction cross section data were calculated as functions of incident energy of neutrons. Data obtained from the experimental data in the IAEA, EXFOR data Library and recommended data libraries around the globe, JENDL, ENDF and JEFF were used to validate the calculated data. The data indicate that the calculated data without shell corrections are in good agreement with experimental data as well as the recommended data from the evaluated data libraries. The calculated results could provide useful insight into the choice of some input parameters near closed shells using the EXIFON code.

  18. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction

    Science.gov (United States)

    Sid, S.; Terrapon, V. E.; Dubief, Y.

    2018-02-01

    The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed

  19. The magic of a number system

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; Jensen, Claus; Katajainen, Jyrki

    2010-01-01

    We introduce a new number system that supports increments with a constant number of digit changes. We also give a simple method that extends any number system supporting increments to support decrements using the same number of digit changes. In the new number system the weight of the ith digit i...... is 2 i-1, and hence we can implement a priority queue as a forest of heap-ordered complete binary trees. The resulting data structure guarantees O(1) worst-case cost per insert and O(lg n) worst-case cost per delete, where n is the number of elements stored....

  20. Two-dimensional theory of ionization waves in the contracted discharge of noble gases

    International Nuclear Information System (INIS)

    Golubovskij, Ju.B.; Kolobov, V.I.; Tsendin, L.D.

    1985-01-01

    The mechanism of instability generating ionization waves in contracted neon and argon discharges is connected to its two-dimensional structure. The two-dimensional perturbations of sausage-type may have the most increment. The numerical solution of the ambipolar diffusion equation and qualitative asymptotic solutions showed that the situation differs greatly from diffuse discharges at low pressure, where the waves of large wave number are instable. In the case discussed, there is a wave number interval of unstable waves. (D.Gy.)

  1. Mummies & Magic.

    Science.gov (United States)

    Casey, Jeanne E.

    1989-01-01

    Covers the cultural and aesthetic significance of Egyptian mummies, as explained in an exhibition at Boston's Museum of Fine Arts. The display, "Mummies & Magic: The Funerary Arts of Ancient Egypt," allowed for restoration work which did much to advance modern knowledge of Egyptian culture and funerary art. (LS)

  2. Controlling the magic and normal sizes of white CdSe quantum dots

    Science.gov (United States)

    Su, Yu-Sheng; Chung, Shu-Ru

    2017-08-01

    In this study, we have demonstrated a facile chemical route to prepare CdSe QDs with white light emission, and the performance of white CdSe-based white light emitting diode (WLED) is also exploded. An organic oleic acid (OA) is used to form Cd-OA complex first and hexadecylamine (HDA) and 1-octadecene (ODE) is used as surfactants. Meanwhile, by varying the reaction time from 1 s to 60 min, CdSe QDs with white light can be obtained. The result shows that the luminescence spectra compose two obvious emission peaks and entire visible light from 400 to 700 nm, when the reaction time less than 10 min. The wide emission wavelength combine two particle sizes of CdSe, magic and normal, and the magic-CdSe has band-edge and surface-state emission, while normal size only possess band-edge emission. The TEM characterization shows that the two different sizes with diameter of 1.5 nm and 2.7 nm for magic and normal size CdSe QDs can be obtained when the reaction time is 4 min. We can find that the magic size of CdSe is produced when the reaction time is less than 3 min. In the time ranges from 3 to 10 min, two sizes of CdSe QDs are formed, and with QY from 20 to 60 %. Prolong the reaction time to 60 min, only normal size of CdSe QD can be observed due to the Ostwald repining, and its QYs is 8 %. Based on the results we can conclude that the two emission peaks are generated from the coexistence of magic size and normal size CdSe to form the white light QDs, and the QY and emission wavelength of CdSe QDs can be increased with prolonging reaction time. The sample reacts for 2 (QY 30 %), 4 (QY 32 %) and 60 min (QY 8 %) are choosing to mixes with transparent acrylic-based UV curable resin for WLED fabrication. The Commission International d'Eclairage (CIE) chromaticity, color rendering index (CRI), and luminous efficacy for magic, mix, and normal size CdSe are (0.49, 0.44), 81, 1.5 lm/W, (0.35, 0.30), 86, 1.9 lm/W, and (0.39, 0.25), 40, 0.3 lm/W, respectively.

  3. Magic in the machine: a computational magician's assistant

    OpenAIRE

    Williams, Howard; McOwan, Peter W.

    2014-01-01

    A human magician blends science, psychology, and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific, or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximize the magical effect required. The complexity is often caused by inter...

  4. Magic in the machine: a computational magician's assistant

    OpenAIRE

    Howard eWilliams; Peter eMcOwan

    2014-01-01

    A human magician blends science, psychology and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximise the magical effect required. The complexity is often caused by interac...

  5. Two-dimensional transport of tokamak plasmas

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Jardin, S.C.

    1979-01-01

    A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape

  6. Decay of homogeneous two-dimensional quantum turbulence

    Science.gov (United States)

    Baggaley, Andrew W.; Barenghi, Carlo F.

    2018-03-01

    We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.

  7. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...

  8. Predicting transition in two- and three-dimensional separated flows

    International Nuclear Information System (INIS)

    Cutrone, L.; De Palma, P.; Pascazio, G.; Napolitano, M.

    2008-01-01

    This paper is concerned with the numerical prediction of two- and three-dimensional transitional separated flows of turbomachinery interest. The recently proposed single-point transition model based on the use of a laminar kinetic energy transport equation is considered, insofar as it does not require to evaluate any integral parameter, such as boundary-layer thickness, and is thus directly applicable to three-dimensional flows. A well established model, combining a transition-onset correlation with an intermittency transport equation, is also used for comparison. Both models are implemented within a Reynolds-averaged Navier-Stokes solver employing a low-Reynolds-number k-ω turbulence model. The performance of the transition models have been evaluated and tested versus well-documented incompressible flows past a flat plate with semi-circular leading edge, namely: tests T3L2, T3L3, T3L5, and T3LA1 of ERCOFTAC, with different Reynolds numbers and free-stream conditions, the last one being characterized by a non-zero pressure gradient. In all computations, the first model has proven as adequate as or superior to the second one and has been then applied with success to two more complex test cases, for which detailed experimental data are available in the literature, namely: the two- and three-dimensional flows through the T106 linear turbine cascade

  9. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  10. Z3 -vertex magic total labeling and Z3 -edge magic total labelingfor the extended duplicate graph of quadrilateral snake

    Science.gov (United States)

    Indira, P.; Selvam, B.; Thirusangu, K.

    2018-04-01

    Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.

  11. On the two-dimensional Saigo-Maeda fractional calculus asociated with two-dimensional Aleph TRANSFORM

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2013-11-01

    Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.

  12. Upgrade of the MAGIC telescopes single wavelength micro power LIDAR system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dominik [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    Since 2011 a single wavelength LIDAR system is operated alongside the observations of the MAGIC telescopes. It is used for real-time monitoring of the atmospheric transmission and for detecting cloud layers within the field of view of MAGIC. The system uses a pulsed Nd:YAG laser with 532 nm wavelength and a pulse energy of 5 μJ as transmitter. The receiver is mounted to a 60 cm spherical single mirror telescope with a F/D ratio of 2.5. To compensate for the low light intensities a sensitive detector with the capability of single photon detection as well as charge integration is needed. For this purpose, a hybrid photo diode with a peak quantum efficiency of 55% an a pulse width of 2.5ns is used in a custom designed detector. The analog signal is recorded by a computer mounted 8-bit FADC with 200 MS/s. A signal analysis algorithm converts the LIDAR return signal into a number of single photoelectron counts per range bin. The atmospheric transmission is calculated by fitting a Rayleigh back-scattering model with a sliding window. The resulting transmission profile is used to correct the MAGIC gamma ray data for adverse weather conditions. After five years of data taking the MAGIC LIDAR system is upgraded with a stronger laser and a new detector unit in order to extend the measurement range and to optimize the operation.

  13. Mathematical Construction of Magic Squares Utilizing Base-N Arithmetic

    Science.gov (United States)

    O'Brien, Thomas D.

    2006-01-01

    Magic squares have been of interest as a source of recreation for over 4,500 years. A magic square consists of a square array of n[squared] positive and distinct integers arranged so that the sum of any column, row, or main diagonal is the same. In particular, an array of consecutive integers from 1 to n[squared] forming an nxn magic square is…

  14. Magic squares in the tenth century twoAarabic treatises by Anṭākī and Būzjānī

    CERN Document Server

    Sesiano, Jacques

    2017-01-01

    This volume contains the texts and translations of two Arabic treatises on magic squares, which are undoubtedly the most important testimonies on the early history of that science. It is divided into the three parts: the first and most extensive is on tenth-century construction methods, the second is the translations of the texts, and the third contains the original Arabic texts, which date back to the tenth century. .

  15. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    Energy Technology Data Exchange (ETDEWEB)

    Schultheis, M. [Université de Nice Sophia-Antipolis, CNRS, Observatoire de Côte d' Azur, Laboratoire Lagrange, 06304 Nice Cedex 4 (France); Zasowski, G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Allende Prieto, C. [Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife (Spain); Anders, F.; Chiappini, C. [Leibniz-Institut für Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Beaton, R. L.; García Pérez, A. E.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Beers, T. C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, D. [Apache Point Observatory, Sunspot, NM 88349 (United States); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Ge, J. [Astronomy Department, University of Florida, Gainesville, FL 32611 (United States); Hearty, F.; Schneider, D. P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Muna, D. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shetrone, M., E-mail: mathias.schultheis@oca.eu, E-mail: gail.zasowski@gmail.com [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States)

    2014-07-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  16. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    International Nuclear Information System (INIS)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.; Anders, F.; Chiappini, C.; Beaton, R. L.; García Pérez, A. E.; Majewski, S. R.; Beers, T. C.; Bizyaev, D.; Frinchaboy, P. M.; Ge, J.; Hearty, F.; Schneider, D. P.; Holtzman, J.; Muna, D.; Nidever, D.; Shetrone, M.

    2014-01-01

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmospheric parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.

  17. Reynolds number dependency in equilibrium two-dimensional turbulence

    Science.gov (United States)

    Bracco, A.; McWilliams, J.

    2009-04-01

    We use the Navier-Stokes equations for barotropic turbulence as a zero-order approximation of chaotic space-time patterns and equilibrium distributions that mimic turbulence in geophysical flows. In this overly-simplified set-up for which smooth-solutions exist, we investigate if is possible to bound the uncertainty associated with the numerical domain discretization, i.e. with the limitation imposed by the Reynolds number range we can explore. To do so we analyze a series of stationary barotropic turbulence simulations spanning a large range of Reynolds numbers and run over a three year period for over 300,000 CPU hours. We find a persistent Reynolds number dependency in the energy power spectra and second order vorticity structure function, while distributions of dynamical quantities such as velocity, vorticity, dissipation rates and others are invariant in shape and have variances scaling with the viscosity coefficient according to simple power-laws. The relevance to this work to the possibility of conceptually reducing uncertainties in climate models will be discussed.

  18. Maximum nonlocality and minimum uncertainty using magic states

    Science.gov (United States)

    Howard, Mark

    2015-04-01

    We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks, stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states. These magic states have an appealingly simple form, and our proof shows that they are "balanced" with respect to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that may have implications for cryptography.

  19. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  20. The influence of flip angle on the magic angle effect

    International Nuclear Information System (INIS)

    Zurlo, J.V.; Blacksin, M.F.; Karimi, S.

    2000-01-01

    Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)

  1. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  2. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  3. A low-cost alternative to the optical experiment commercially known as “Magic Hologram – 3D Mirage”

    Directory of Open Access Journals (Sweden)

    Osmar Henrique Moura Silva

    2014-09-01

    Full Text Available This work presents a low-cost alternative to the commercialized experiment called “Magic Hologram – Mirage 3D”, which reproduces the real image of an object that is seen three-dimensionally in the air. An analysis of this alternative is carried out, indicating educational aspects of its use in the classroom in quantitative terms.

  4. Computer simulation of structures and distributions of particles in MAGIC fluid

    International Nuclear Information System (INIS)

    Zhu Yongsheng; Umehara, Noritsugu; Ido, Yasushi; Sato, Atsushi

    2006-01-01

    MAGIC (MAG-netic Intelligent Compound) is a solidified magnetic ferrofluid (MF) containing both magnetic particles (MPs) and abrasive particles (APs, nonmagnetic) of micron size. The distribution of APs in MAGIC can be controlled by applying a magnetic field during cooling process of MAGIC fluid. In this paper, the influences of magnetic field, size and concentration of particles on the final structures of MPs and the distributions of APs in MAGIC fluid are preliminarily investigated using Stokesian dynamic (SD) simulation method. Simulation results show that MPs prefer to form strip-like structures in MAGIC fluid, the reason for this phenomenon is mainly attributed to the strong dipolar interactions between them. It is also found that MPs prefer to form big agglomerations in weak magnetic field while chains and strip-like structures in strong magnetic field; no long chains or strip-like structures of MPs are observed in low-concentration MAGIC fluid; and for big-size MPs, pure wall-like structures are formed. Evaluation on the distribution of APs with uniformity coefficient shows that strong magnetic field, high concentration and small-size particles can induce more uniform distribution of APs in MAGIC fluid, the uniformity of APs in MAGIC is about 10% higher than that in normal grinding tools

  5. Framing Performance Magic: The Role of Contract, Discourse and Effect

    Directory of Open Access Journals (Sweden)

    Landman, Todd

    2013-10-01

    Full Text Available A wide continuum of genres in performance magic has developed since the Victorian period, including stage magic, street magic, close-up magic, comedy magic, mentalism, bizarre and mystery entertainment. Each of these genres frames its performance on a different contract between the performer and the audience, the discourse used during performance and the effect on the audience both in terms of its perception of what has transpired and the personal meaning attached to the effect. This article examines this interplay between contract, discourse and effect in theory and practice. The article constructs a typology of performance magic which is then explored through an examination of audience perception and feedback from a drama workshop and focus group conducted at the University of Huddersfield in October 2012. The group experienced three performances framed around the idea of the magician, the mentalist, and the mystic, and the ensuing discussion revealed a wide range of insights into these different framings of performance. The reactions and ensuing discussions involved different understandings of trust, plausibility, explanation, authority, and dynamic interaction.

  6. Multi-dimensional two-fluid flow computation. An overview

    International Nuclear Information System (INIS)

    Carver, M.B.

    1992-01-01

    This paper discusses a repertoire of three-dimensional computer programs developed to perform critical analysis of single-phase, two-phase and multi-fluid flow in reactor components. The basic numerical approach to solving the governing equations common to all the codes is presented and the additional constitutive relationships required for closure are discussed. Particular applications are presented for a number of computer codes. (author). 12 refs

  7. Progressive Propaganda Critics and the Magic Bullet Myth.

    Science.gov (United States)

    Sproule, J. Michael

    1989-01-01

    Examines the development and historical inaccuracies of the "magic bullet" interpretation of American propaganda studies, which asserts that propaganda critics between the world wars treated messages as "magic bullets" directly and powerfully infused into passive receivers. Considers why this misconception of the progressive…

  8. Status of the new Sum-Trigger system for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Jezabel; Schweizer, Thomas; Nakajima, Daisuke [Max Planck Institute for Physics, Muenchen (Germany); Dazzi, Francesco [Dipartimento di Fisica dell' Universita di Udine (Italy); INFN, sez. di Trieste (Italy)

    2013-07-01

    MAGIC is a stereoscopic system of two 17 meters Imaging Air Cherenkov Telescopes for gamma-ray astronomy operating in stereo mode. The telescopes are located at about 2.200 metres above sea level in the Observatorio del Roque de los Muchachos (ORM), in the Canary island of La Palma. Lowering the energy threshold of Cherenkov Telescopes is crucial for the observation of Pulsars, High redshift AGNs and GRBs. The Sum-Trigger, based on the analogue sum of a patch of pixels has a lower threshold compared to conventional digital triggers. The Sum-Trigger principle has been proven experimentally in 2007 by decreasing the energy threshold of the first Magic telescope (Back then operating in mono mode) from 55 GeV down to 25 GeV. The first VHE detection for the Crab Pulsar was achieved due to this low threshold. After the upgrade of the MAGIC I and MAGIC II cameras and readout systems, we are planning to install a new Sum-Trigger system in both telescopes in Summer 2013. This trigger system will be operated for the first time in stereo mode. At the conference we report about the status and the performance of the new Sum-Trigger-II system.

  9. Advances/applications of MAGIC and SOS

    Science.gov (United States)

    Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce

    1993-12-01

    MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.

  10. Maruhn-Greiner Maximum for Confirmation of Low Energy Nuclear Reactions (LENR) via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, Heinrich; Miley, George

    2007-03-01

    One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)

  11. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  12. Magic gamma rays, extra-atmospheric source

    International Nuclear Information System (INIS)

    Bolufer, P.

    2010-01-01

    Without the atmospheric layer, the cosmos radiation would kill every living, our planet would be like the moon. The cosmic gamma ray to collide with gases in land cover, as it is disintegrated. They are harmless, they form a cone of light that points to the cosmic source comes from. On April 25, 2009 was born on the island of Palma Magic II and Magic I the best observer of atmospheric gamma rays of low intensity. (Author)

  13. Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal

    International Nuclear Information System (INIS)

    Konno, R; Hatayama, N; Takahashi, Y; Nakano, H

    2009-01-01

    Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.

  14. Performing Fabulous Monsters: Re-inventing the Gothic Personae in Bizarre Magic

    OpenAIRE

    Taylor, Nik; Nolan, Stuart

    2015-01-01

    Bizarre magick is a form of performance magic that favours theatrical character, storytelling, overt allegory, symbolism and metaphor, and themes of the supernatural, fantastic, amazing and weird. While the form has its roots in Victorian stage magic, it realised itself as a movement in the 1970s through a counter-cultural reaction against the big boxes and card flourishes of a disenchanted, contemporary, mainstream stage magic. Bizarre magicians sought to re-enchant performance magic with th...

  15. Equivalency of two-dimensional algebras

    International Nuclear Information System (INIS)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.

    2011-01-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  16. Status, first results and prospects for MAGIC

    International Nuclear Information System (INIS)

    Rico, Javier

    2006-01-01

    MAGIC is the world-largest Imaging Air Cherenkov Telescope (IACT) for Very High Energy (VHE) γ-ray astronomy and operates in the range from ∼50 GeV to ∼10 TeV. In this paper we will briefly summarize the status of the project, including the construction of a second (MAGIC-II) telescope, and review the results obtained from the first observations

  17. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  18. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    Science.gov (United States)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  19. A framework for using magic to study the mind.

    Science.gov (United States)

    Rensink, Ronald A; Kuhn, Gustav

    2014-01-01

    Over the centuries, magicians have developed extensive knowledge about the manipulation of the human mind-knowledge that has been largely ignored by psychology. It has recently been argued that this knowledge could help improve our understanding of human cognition and consciousness. But how might this be done? And how much could it ultimately contribute to the exploration of the human mind? We propose here a framework outlining how knowledge about magic can be used to help us understand the human mind. Various approaches-both old and new-are surveyed, in terms of four different levels. The first focuses on the methods in magic, using these to suggest new approaches to existing issues in psychology. The second focuses on the effects that magic can produce, such as the sense of wonder induced by seeing an apparently impossible event. Third is the consideration of magic tricks-methods and effects together-as phenomena of scientific interest in their own right. Finally, there is the organization of knowledge about magic into an informative whole, including the possibility of a science centered around the experience of wonder.

  20. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  1. Magic cards: a new augmented-reality approach.

    Science.gov (United States)

    Demuynck, Olivier; Menendez, José Manuel

    2013-01-01

    Augmented reality (AR) commonly uses markers for detection and tracking. Such multimedia applications associate each marker with a virtual 3D model stored in the memory of the camera-equipped device running the application. Application users are limited in their interactions, which require knowing how to design and program 3D objects. This generally prevents them from developing their own entertainment AR applications. The Magic Cards application solves this problem by offering an easy way to create and manage an unlimited number of virtual objects that are encoded on special markers.

  2. The Magnetics Information Consortium (MagIC) Online Database: Uploading, Searching and Visualizing Paleomagnetic and Rock Magnetic Data

    Science.gov (United States)

    Minnett, R.; Koppers, A.; Tauxe, L.; Constable, C.; Pisarevsky, S. A.; Jackson, M.; Solheid, P.; Banerjee, S.; Johnson, C.

    2006-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by both rock and paleomagnetic data. The goal of MagIC is to archive all measurements and the derived properties for studies of paleomagnetic directions (inclination, declination) and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). MagIC is hosted under EarthRef.org at http://earthref.org/MAGIC/ and has two search nodes, one for paleomagnetism and one for rock magnetism. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual map interface to browse and select locations. The query result set is displayed in a digestible tabular format allowing the user to descend through hierarchical levels such as from locations to sites, samples, specimens, and measurements. At each stage, the result set can be saved and, if supported by the data, can be visualized by plotting global location maps, equal area plots, or typical Zijderveld, hysteresis, and various magnetization and remanence diagrams. User contributions to the MagIC database are critical to achieving a useful research tool. We have developed a standard data and metadata template (Version 2.1) that can be used to format and upload all data at the time of publication in Earth Science journals. Software tools are provided to facilitate population of these templates within Microsoft Excel. These tools allow for the import/export of text files and provide advanced functionality to manage and edit the data, and to perform various internal checks to maintain data integrity and prepare for uploading. The MagIC Contribution Wizard at http://earthref.org/MAGIC/upload.htm executes the upload and takes only a few minutes to process several thousand data records. The standardized MagIC template files are stored in the digital archives of EarthRef.org where they

  3. Role of magical thinking in obsessive-compulsive symptoms in an undergraduate sample.

    Science.gov (United States)

    Einstein, Danielle A; Menzies, Ross G

    2004-01-01

    Thought action fusion (TAF) is an important presenting feature of many individuals with obsessive-compulsive disorder (OCD). "Magical thinking" is a similar construct (developed within the literature on schizotypy) that may provide a more accurate depiction of difficulties encountered by individuals with OCD. This study seeks to examine relationships between components of magical thinking, TAF, and superstitiousness; establish the extent to which these constructs are independently related to OCD proneness; and establish the extent to which these biased reasoning styles are related to each of the major OCD symptom clusters (e.g., washing, checking). The Padua Inventory (PI), the Maudsley Obsessional-Compulsive Inventory (MOCI), the Magical Ideation Scale (MI), the Lucky Behaviours (Lbeh) and Lucky Beliefs (Lbel) Scales, and the Thought Action Fusion-Revised scale (TAF-R) were given to a cohort of 86 undergraduate students. Of all the measures, the MI scale was found to be the most strongly related to obsessive-compulsive symptoms. Large and significant relationships between MI scores and the two measures of OCD (i.e., MOCI and PI) were obtained even when alternative mediators (i.e., Lbeh, Lbel, TAF-R) were held constant. No other variable remained significantly related to the MOCI or PI when magical ideation scores were held constant. The findings suggest that a general magical thinking tendency may underpin previous observed links between superstitiousness, thought action fusion, and OCD severity. Copyright 2004 Wiley-Liss, Inc.

  4. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  5. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  6. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  7. Traditional Semiconductors in the Two-Dimensional Limit.

    Science.gov (United States)

    Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B

    2018-02-23

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  8. Runes, magic and religion : a sourcebook.

    OpenAIRE

    McKinnell, J.; Simek, R.; Düwel, K.

    2004-01-01

    The present source book offers a survey of all types of runic inscriptions with religious or magical connotations from the earliest periods to the late Middle Ages, from Rune on weapons and jewellery to runic gravestones and Christian runic amulets. It is intended as a scholarly answer against the common misconception of the supposedly dominant use of runes in magic. The present volume is structured in 15 units which enable its use as an aid to teaching without being excessively comprehensive.

  9. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  10. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  11. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  12. Engineering two-photon high-dimensional states through quantum interference

    Science.gov (United States)

    Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew

    2016-01-01

    Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685

  13. Overview of galactic results obtained by MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Roberta

    2013-06-15

    MAGIC is a system of two atmospheric Cherenkov telescopes which explores the very-high-energy sky, from some tens of GeV up to tens of TeV. Located in the Canary island of La Palma, MAGIC has the lowest energy threshold among the instruments of its kind, well suited to study the still poorly explored energy band below 100 GeV. Although the space-borne gamma-ray telescope Fermi/LAT is sensitive up to 300 GeV, gamma-ray rates drop fast with increasing energy, so γ-ray collection areas larger than 10{sup 4}m{sup 2}, as those provided by grounds-based instruments, are crucial above a few GeV. The combination of MAGIC and Fermi/LAT observations have provided the first astrophysical spectra sampled in the inverse Compton peak region, resulting in a complete coverage from MeV up to TeV energies, as well as the discovery of a pulsed emission in the very-high-energy band. This paper focuses on the latest results on Galactic sources obtained by MAGIC which are highlighted by the detection of the pulsed gamma-ray emission from the Crab pulsar up to 400 GeV. In addition, we will present the morphological study on the W51 complex which allowed to pinpoint the location of the majority of the emission around the interaction point between the supernova remnant W51C and the star forming region W51B, but also to find a possible contribution from the associated pulsar wind nebula. Other important scientific achievements involve the Crab Nebula with an unprecedented spectrum covering three decades in energy starting from 50 GeV and a morphological study of the unidentified source HESS J1857+026 which supports the pulsar wind nebula scenario. Finally we will report on the searches of very-high-energy signals from gamma-ray binaries, mainly LS I 303+ and HESS J0632+057.

  14. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  15. Experimental two-dimensional quantum walk on a photonic chip.

    Science.gov (United States)

    Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min

    2018-05-01

    Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.

  16. Do you believe in magic? Computer games in everyday life

    OpenAIRE

    Pargman, Daniel; Jakobsson, Peter

    2008-01-01

    Abstract Huizinga's concept of a 'magic circle' has been used to depict computer games and gaming activities as something separate from ordinary life. In this view, games are special (magical) and they only come to life within temporal and spatial borders that are enacted and performed by the participants. This article discusses the concept of a 'magic circle' and finds that it lacks specificity. Attempts t...

  17. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Butt, Imran A; Wattis, Jonathan A D

    2006-01-01

    Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2 + 1)-dimensional cubic nonlinear Schroedinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalized (2 + 1)-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does not go to zero with the amplitude; we find that the energy threshold is maximized by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached

  18. An fMRI investigation of expectation violation in magic tricks

    Directory of Open Access Journals (Sweden)

    Amory H. Danek

    2015-02-01

    Full Text Available Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic – control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician’s brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the caudate nucleus in processing changes in the contingency between action and outcome, even in the absence of reward or feedback.

  19. MAGIC highlights

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The present generation of Imaging Air Cherenkov Telescopes (IACTs has greatly improved our knowledge on the Very High Energy (VHE side of our Universe. The MAGIC IACTs operate since 2004 with one telescope and since 2009 as a two telescope stereoscopic system. I will outline a few of our latest and most relevant results: the discovery of pulsed emission from the Crab pulsar at VHE, recently found to extend up to 400 GeV and along the “bridge” of the light curve, the measurement of the Crab nebula spectrum over three decades of energy, the discovery of VHE γ-ray emission from the PWN 3C 58, the very rapid emission of IC 310, in addition to dark matter studies. The results that will be described here and the planned deep observations in the next years will pave the path for the future generation of IACTs.

  20. Extragalactic observations with the MAGIC telescopes

    International Nuclear Information System (INIS)

    Shore, S.N.

    2014-01-01

    The MAGIC imaging atmospheric Cherenkov telescopes, both as a single detector and now used in stereo mode, have been observing a variety of active galaxies and galactic clusters for almost a decade. This review provides a brief summary of some of the most recent results for blazars observed in the energy range > 50 GeV to tens of TeV. The very high energy emission observed with MAGIC is essential for disentangling the various contributions and timescales to the observed spectra and variability. (author)

  1. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  2. Self-organized defect strings in two-dimensional crystals.

    Science.gov (United States)

    Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph

    2013-12-01

    Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.

  3. Interacting-fermion approximation in the two-dimensional ANNNI model

    International Nuclear Information System (INIS)

    Grynberg, M.D.; Ceva, H.

    1990-12-01

    We investigate the effect of including domain-walls interactions in the two-dimensional axial next-nearest-neighbor Ising or ANNNI model. At low temperatures this problem is reduced to a one-dimensional system of interacting fermions which can be treated exactly. It is found that the critical boundaries of the low-temperature phases are in good agreement with those obtained using a free-fermion approximation. In contrast with the monotonic behavior derived from the free-fermion approach, the wall density or wave number displays reentrant phenomena when the ratio of the next-nearest-neighbor and nearest-neighbor interactions is greater than one-half. (author). 17 refs, 2 figs

  4. Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2013-04-01

    In this paper, we introduce a numerical solution of the problem of two-phase immiscible flow in porous media. In the first part of this work, we present the general conservation laws for multiphase flows in porous media as outlined in the literature for the sake of completion where we emphasize the difficulties associated with these equations in their primitive form and the fact that they are, generally, unclosed. The second part concerns the 1D computation for dimensional and non-dimensional cases and a theoretical analysis of the problem under consideration. A time-scale based on the characteristic velocity is used to transform the macroscopic governing equations into a non-dimensional form. The resulting dimensionless governing equations involved some important dimensionless physical parameters such as Bond number Bo, capillary number Ca and Darcy number Da. Numerical experiments on the Bond number effect is performed for two cases, gravity opposing and assisting. The theoretical analysis illustrates that common formulations of the time-scale forces the coefficient Da12Ca to be equal to one, while formulation of dimensionless time based on a characteristic velocity allows the capillary and Darcy numbers to appear in the dimensionless governing equation which leads to a wide range of scales and physical properties of fluids and rocks. The results indicate that the buoyancy effects due to gravity force take place depending on the location of the open boundary. © 2012 Elsevier B.V. All rights reserved.

  5. Magical Realism in Neil Gaiman’s Coraline

    Directory of Open Access Journals (Sweden)

    Hosseinpour Saeede

    2016-07-01

    Full Text Available Magical realism, as a narrative mode or genre in adults’ literature, has been in vogue since its revivifying with the publication of Gabriel Garcia Marquez’s One Hundred Years of Solitude (1967. However, the depiction of the genre in children’s and juvenile literature is a new trend; the presence of its elements have been traced and proved feasibly applicable in the interpretation of recent children’s fiction such as David Almond’s Skelling (1998. In this regard, the main concern of the present article is to sift the characteristic features of magical realism within Neil Gaiman’s Coraline (2002 through the application of Wendy B. Faris’s theoretical framework of the genre therewith Tzvetan Todorov’s definition of the fantastic in order to introduce the novel as an exemplar of magical realism in the domain of children’s literature.

  6. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  7. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  8. Geometrical aspects of solvable two dimensional models

    International Nuclear Information System (INIS)

    Tanaka, K.

    1989-01-01

    It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs

  9. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  10. The magic of universal quantum computing with permutations

    OpenAIRE

    Planat, Michel; Rukhsan-Ul-Haq

    2017-01-01

    The role of permutation gates for universal quantum computing is investigated. The \\lq magic' of computation is clarified in the permutation gates, their eigenstates, the Wootters discrete Wigner function and state-dependent contextuality (following many contributions on this subject). A first classification of main types of resulting magic states in low dimensions $d \\le 9$ is performed.

  11. Magic-factor 1, a partial agonist of Met, induces muscle hypertrophy by protecting myogenic progenitors from apoptosis.

    Directory of Open Access Journals (Sweden)

    Marco Cassano

    2008-09-01

    Full Text Available Hepatocyte Growth Factor (HGF is a pleiotropic cytokine of mesenchymal origin that mediates a characteristic array of biological activities including cell proliferation, survival, motility and morphogenesis. Its high affinity receptor, the tyrosine kinase Met, is expressed by a wide range of tissues and can be activated by either paracrine or autocrine stimulation. Adult myogenic precursor cells, the so called satellite cells, express both HGF and Met. Following muscle injury, autocrine HGF-Met stimulation plays a key role in promoting activation and early division of satellite cells, but is shut off in a second phase to allow myogenic differentiation. In culture, HGF stimulation promotes proliferation of muscle precursors thereby inhibiting their differentiation.Magic-Factor 1 (Met-Activating Genetically Improved Chimeric Factor-1 or Magic-F1 is an HGF-derived, engineered protein that contains two Met-binding domains repeated in tandem. It has a reduced affinity for Met and, in contrast to HGF it elicits activation of the AKT but not the ERK signaling pathway. As a result, Magic-F1 is not mitogenic but conserves the ability to promote cell survival. Here we show that Magic-F1 protects myogenic precursors against apoptosis, thus increasing their fusion ability and enhancing muscular differentiation. Electrotransfer of Magic-F1 gene into adult mice promoted muscular hypertrophy and decreased myocyte apoptosis. Magic-F1 transgenic mice displayed constitutive muscular hypertrophy, improved running performance and accelerated muscle regeneration following injury. Crossing of Magic-F1 transgenic mice with alpha-sarcoglycan knock-out mice -a mouse model of muscular dystrophy- or adenovirus-mediated Magic-F1 gene delivery resulted in amelioration of the dystrophic phenotype as measured by both anatomical/histological analysis and functional tests.Because of these features Magic-F1 represents a novel molecular tool to counteract muscle wasting in major

  12. Structure of ground status in magic nuclei and description of their electric transition probabilities

    International Nuclear Information System (INIS)

    Savane, Y.Sy.

    1996-11-01

    The structure of the low-lying states in the even-even semi-magic nuclei ( 106-114 50 Sn) and the reduced transition probabilities B(E2, 6 + 1 → 4 = 1 ) for E2-transition have been investigated in the frame of the quasiparticle-phonon nuclear model. The model wave function includes a quasiparticle + two phonons components. It is shown that the small values of the transitions are connected with the non collective structure of the states. The calculated values are in agreement with the observed property of decreasing of the transition with increasing of mass number. (author). 16 refs, 6 tabs

  13. The LocaL Tradition of Magical Practices in Banten society

    Directory of Open Access Journals (Sweden)

    Ayatullah Humaeni

    2012-12-01

    Full Text Available This article aims to discuss the cultural phenomenon of magical practices in the Muslim society of Banten which still exists up to the present. It is a part of my MA thesis research that has been combined with my recent field research using ethnography method based on the anthropological approach. Magical practices becomes cultural identity for Bantenese society.  Several sources on Banten mention that Banten as a central spot for magical sciences, besides it is also well- known as a religious area. The magical practices are still regarded important for Bantenese people, especially who live in the villages to solve their practical problems in their social life. Magic is a socio-religious phenomenon which has long, well-established roots in Banten society. It  is  traceable from many literatures that describes the uniqueness of Bantenese’s culture. Besides other magical practices debus is the most noticeable appearance of the magical tradition in Banten since the sultanate period until nowadays. The existence of debus Banten and other kinds of magical practices in Banten has strengthened the reputation of Banten as if ‘a haven of magical sciences’.   Tulisan ini mencoba mendiskusikan tentang fenomena kultural mengenai praktek magis pada masyarakat Muslim Banten yang masih ada hingga saat ini. Artikel ini merupakan bagian dari tesis Master saya yang sudah dikombinasikan dengan penelitian lapangan baru-baru ini dengan menggunakan metode etnografi berdasarkan pendekatan antropologis. Praktek magis sudah menjadi identitas kultural bagi masyarakat Banten. Beberapa sumber menyebut Banten sebagai pusat ilmu-ilmu gaib, di samping dikenal sebagai daerah yang religius. Praktek magis masih dianggap penting bagi masyarakat Banten, khususnya yang tinggal di pedesaan untuk menyelesaikan masalah-masalah praktis dalam kehidupan sosial mereka. Magis adalah sebuah fenomena sosio-kultural yang memiliki akar yang cukup lama dan sudah berakar kuat dalam

  14. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  15. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  16. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  17. Phase transitions in two-dimensional uniformly frustrated XY models. II. General scheme

    International Nuclear Information System (INIS)

    Korshunov, S.E.

    1986-01-01

    For two-dimensional uniformly frustrated XY models the group of symmetry spontaneously broken in the ground state is a cross product of the group of two-dimensional rotations by some discrete group of finite order. Different possibilities of phase transitions in such systems are investigated. The transition to the Coulomb gas with noninteger charges is widely used when analyzing the properties of relevant topological excitations. The number of these excitations includes not only domain walls and traditional (integer) vortices, but also vortices with a fractional number of circulation quanta which are to be localized at bends and intersections of domain walls. The types of possible phase transitions prove to be dependent on their relative sequence: in the case the vanishing of domain wall free energy occurs earlier (at increasing temperature) than the dissociation of pairs of ordinary vortices, the second phase transition is to be associated with dissociation of pairs of fractional vortices. The general statements are illustrated with a number of examples

  18. Decaying Two-Dimensional Turbulence in a Circular Container

    OpenAIRE

    Schneider, Kai; Farge, Marie

    2005-01-01

    We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...

  19. Hybrid magic state distillation for universal fault-tolerant quantum computation

    OpenAIRE

    Zheng, Wenqiang; Yu, Yafei; Pan, Jian; Zhang, Jingfu; Li, Jun; Li, Zhaokai; Suter, Dieter; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2014-01-01

    A set of stabilizer operations augmented by some special initial states known as 'magic states', gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introduce noise. The most common method to eliminate the noise is magic state distillation (MSD) by stabilizer operations. Here we propose a hybrid MSD protocol by connecting a four-qubit H-type MSD with a five-qubit T-type MSD, in order to overcome s...

  20. Analysis of two dimensional signals via curvelet transform

    Science.gov (United States)

    Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.

    2007-04-01

    This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.

  1. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  2. Magical Music in Old Norse Literature

    Directory of Open Access Journals (Sweden)

    Britt-Mari Näsström

    1996-01-01

    Full Text Available No society ever existed without performing music, and most cultures display many variants of music. Music also played and still plays an important part in different religious rites. From the days of yore, music has been intimately connected with the cult, whether it is performed as epic or lyric expressions. The Old Norse society was no exception to this statement and early finds from as far back as the Bronze Age reveal that different instrument were used in daily life. The most conspicuous specimens from this time are the bronze lures, which probably are depicted on the rock-carvings. All these examples emphasise the character of music in Old Norse literature as connected with the magic aspect of religion, and particularly with divination. This does not mean that all music in the Viking Age was performed with a magic purpose, but what has survived in the sources is the conspicuous role of music as something that affected the human mind to the extent that it was experienced as a magic feeling, even able to reveal the future.

  3. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    Science.gov (United States)

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  4. MAGIC biomarkers predict long term outcomes for steroid-resistant acute GVHD.

    Science.gov (United States)

    Major-Monfried, Hannah; Renteria, Anne S; Pawarode, Attaphol; Reddy, Pavan; Ayuk, Francis; Holler, Ernst; Efebera, Yvonne A; Hogan, William J; Wölfl, Matthias; Qayed, Muna; Hexner, Elizabeth O; Wudhikarn, Kitsada; Ordemann, Rainer; Young, Rachel; Shah, Jay; Hartwell, Matthew J; Chaudhry, Mohammed; Aziz, Mina; Etra, Aaron; Yanik, Gregory A; Kröger, Nicolaus; Weber, Daniela; Chen, Yi-Bin; Nakamura, Ryotaro; Rösler, Wolf; Kitko, Carrie L; Harris, Andrew C; Pulsipher, Michael; Reshef, Ran; Kowalyk, Steven; Morales, George; Torres, Ivan; Özbek, Umut; Ferrara, James L M; Levine, John E

    2018-03-15

    Acute graft versus host disease (GVHD) is treated with systemic corticosteroid immunosuppression. Clinical response after one week of therapy often guides further treatment decisions, but long term outcomes vary widely between centers and more accurate predictive tests are urgently needed. We analyzed clinical data and blood samples taken after one week of systemic treatment for GVHD from 507 patients from 17 centers of the Mount Sinai Acute GVHD International Consortium (MAGIC), dividing them into test (n=236) and two validation cohorts separated in time (n = 142 and 129, respectively). Initial response to systemic steroids correlated with response at four weeks, one-year non-relapse mortality (NRM) and overall survival (OS). A previously validated algorithm of two MAGIC biomarkers (ST2 and REG3α) consistently separated steroid resistant patients into two groups with dramatically different NRM and OS (p<0.001 for all three cohorts). High biomarker probability, resistance to steroids and GVHD severity (Minnesota risk) were all significant predictors of NRM in multivariate analysis. A direct comparison of receiver operating curves showed the area under the curve for biomarker probability (0.82) was significantly greater than that for steroid response (0.68, p=0.004) and for Minnesota risk (0.72, p=0.005). In conclusion, MAGIC biomarker probabilities generated after one week of systemic treatment for GVHD predict long term outcomes in steroid resistant GVHD better than clinical criteria and should prove useful in developing better treatment strategies. Copyright © 2018 American Society of Hematology.

  5. Does magical thinking produce neutralising behaviour? An experimental investigation.

    Science.gov (United States)

    Bocci, Laura; Gordon, P Kenneth

    2007-08-01

    Magical thinking is of relevance to obsessive compulsive disorder (OCD), and has been most widely investigated in relation to the cognitive bias known as thought-action fusion (TAF). This is seen as playing a role in the formation of fears about responsibility for harm. We suggest that magical thinking may also characterise some types of neutralising behaviour, which arise in response to those fears, and are a hallmark of the disorder. In an experimental study of 51 undergraduate students, we assessed whether the use of neutralising behaviours in response to an induction of fears of increasing likelihood for harm is related to a propensity for magical thinking. The 75.5% of participants demonstrated at least one form of neutralising behaviour in response to a TAF-induction task. Neutralising was associated with stronger and more persistent responses to the task, and with questionnaire measures of magical ideation. Those who neutralised did not report higher levels of OCD symptoms. It appears that neutralising is a common response in circumstances that provoke a sense of responsibility for harm. Its occurrence may be linked to magical thinking, however, the results from this experimental investigation suggested that this process may not be specific to OCD.

  6. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Science.gov (United States)

    Hahn, A.; Mazin, D.; Bangale, P.; Dettlaff, A.; Fink, D.; Grundner, F.; Haberer, W.; Maier, R.; Mirzoyan, R.; Podkladkin, S.; Teshima, M.; Wetteskind, H.

    2017-02-01

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges.

  7. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    International Nuclear Information System (INIS)

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896

  9. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  10. Understanding the Magic of the Bicycle; Basic scientific explanations to the two-wheeler's mysterious and fascinating behavior

    Science.gov (United States)

    Connolly, Joseph W.

    The bicycle is a common, yet unique mechanical contraption in our world. In spite of this, the bike's physical and mechanical principles are understood by a select few. You do not have to be a genius to join this small group of people who understand the physics of cycling. This is your guide to fundamental principles (such as Newton's laws) and the book provides intuitive, basic explanations for the bicycle's behaviour. Each concept is introduced and illustrated with simple, everyday examples. Although cycling is viewed by most as a fun activity, and almost everyone acquires the basic skills at a young age, few understand the laws of nature that give magic to the ride. This is a closer look at some of these fun, exhilarating, and magical aspects of cycling. In the reading, you will also understand other physical principles such as motion, force, energy, power, heat, and temperature.

  11. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  12. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  13. A totally magic cordial labeling of one-point union of n copies of a graph

    Directory of Open Access Journals (Sweden)

    P. Jeyanthi

    2014-01-01

    Full Text Available A graph \\(G\\ is said to have a totally magic cordial (TMC labeling with constant \\(C\\ if there exists a mapping \\(f: V(G\\cup E(G\\rightarrow \\left\\{0,1\\right\\}\\ such that \\(f(a + f(b + f(ab \\equiv C(\\mbox{mod 2}\\ for all \\(ab\\in E(G\\ and \\(\\left|n_f(0-n_f(1\\right|\\leq1\\, where \\(n_f(i\\ \\((i = 0, 1\\ is the sum of the number of vertices and edges with label \\(i\\. In this paper, we establish the totally magic cordial labeling of one-point union of \\(n\\-copies of cycles, complete graphs and wheels.

  14. Observations of VHE γ-Ray Sources with the MAGIC Telescope

    Science.gov (United States)

    Bartko, H.

    2008-10-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results for individual sources. An outlook to the construction of the second MAGIC telescope is given.

  15. Probing the semi-magicity of $^{68}$Ni via the $^{66}$Ni(t,p)$^{68}$Ni two-neutron transfer reaction in inverse kinematics

    CERN Document Server

    AUTHOR|(CDS)2079390; Van Duppen, Piet

    The region around the nucleus $^{68}$Ni, with a shell closure for its protons at Z=28 and a harmonic oscillator shell gap for its neutrons at N=40, has drawn considerable interest over the past decades. $^{68}$Ni has properties that are typical for a doubly-magic nucleus, such as a high excitation energy and low B($E2:2^{+} \\rightarrow 0^{+}$) transition probability for the first excited 2$^{+}$ level and a 0$^{+}$ level as the first excited state. However, it has been suggested that the magic properties of $^{68}$Ni arise due to the fact that the N=40 separates the negative parity $pf$-shell from the positive parity 1$g_{9/2}$ orbital, and indeed, recent mass measurements have not revealed a clear N = 40 energy gap. Despite all additional information that was acquired over the last decade the specific role of the N=40 is not yet understood and a new experimental approach to study $^{68}$Ni was proposed. Namely, a two-neutron transfer reaction on $^{66}$Ni to characterize and disentangle the structure of the ...

  16. Self-censorship in Massimo Bontempelli’s Magical Realism

    Directory of Open Access Journals (Sweden)

    Wissia Fiorucci

    2015-05-01

    Full Text Available This article aims to investigate the interplay between censorship, self-censorship and the narrative strategies of magical realism in Il figlio di due madri by Italian author Massimo Bontempelli (1878–1960. Having been head of the National Fascist Writers Union from the mid- to late-1920s, critics have noted that Bontempelli’s detachment from the Fascist credo emerges in his work from the mid- to late-1930s. I intend to problematise this perspective, by recognising the significance of Il figlio di due madri (1929 in the development of Bontempelli’s anti-Fascist sentiment. This work preceded (by several years Bontempelli’s official break with Fascism in 1936, when he published an article against the political control of the arts and caesarianism in La gazzetta del popolo. An anti-Fascist sentiment had, however, in my view already been expressed in Bontempelli’s works of magical realism Il figlio di due madri (1929 and Vita e morte di Adria e dei suoi figli (1930. These two novels deal with controversial topics that, I would claim, refute some of Fascism’s foremost principles, an appraisal that was disguised through deliberate acts of self-censorship. More precisely, it is through his deconstruction of mimetic writing that Bontempelli’s critique of the regime comes into existence, as the narrative strategies I deem instrumental to his self-censorship (e.g. authorial reticence, metaphor, mythopoiesis reflect the poetics of magical realism in «its inherent transgressive and subversive qualities» (Bowers 2004: 63. By conveying a rejection of the systematised understanding of literature that Bontempelli associates with literary realisms, at the same time he conveys his ideological refusal of dogmatic views of reality. Thus, in his mystifying realism, magic acts as both a tool for concealing his ideology—a tool for self-censorship, that is—and as the very means by which this ideology can be generated.

  17. Versatile two-dimensional transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max

    ), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...

  18. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  19. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  20. Novel target design algorithm for two-dimensional optical storage (TwoDOS)

    NARCIS (Netherlands)

    Huang, Li; Chong, T.C.; Vijaya Kumar, B.V.K.; Kobori, H.

    2004-01-01

    In this paper we introduce the Hankel transform based channel model of Two-Dimensional Optical Storage (TwoDOS) system. Based on this model, the two-dimensional (2D) minimum mean-square error (MMSE) equalizer has been derived and applied to some simple but common cases. The performance of the 2D

  1. Magical Ideation and Schizophrenia.

    Science.gov (United States)

    George, Leonard; Neufeld, Richard W. J.

    1987-01-01

    Administered the Eckblad and Chapman (1983) Magical Ideation Scale to groups of paranoid and nonparanoid schizophrenics and control subjects. Schizophrenics scored significantly higher than nonschizophrenic patients (mainly cases of affective disorder) and normal control subjects. Discusses theoretical and prognostic utility of this finding.…

  2. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  3. Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.

    Science.gov (United States)

    Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun

    2016-04-15

    Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Two-dimensional sparse wavenumber recovery for guided wavefields

    Science.gov (United States)

    Sabeti, Soroosh; Harley, Joel B.

    2018-04-01

    The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.

  5. MAGIC: conoscere i mari italiani e individuarne i geo-rischi

    Directory of Open Access Journals (Sweden)

    Alessandro Bosman

    2010-03-01

    Full Text Available MAGIC project: Marine Geohazard along the Italian Coasts MAGIC Project is funded by the Italian Civil Protection  Department (DPC to produce a bathymetric database as reference for compiling maps (1:50.000 of marine geo-hazard. During its 5-year life span (2007-2012, MAGIC will allow the acquisition of high-resolution multibeam bathymetry along the Italian continental margins and will involve the entire Italian scientific community currently active in the field of Marine Geology. More than 73.000 nautical miles of multibeam data will be analyzed, allowing comparison of geological features produced by sedimentary and tectonic processes (i.e. volcanic events, submarine landslide, active faulting. The main objective of MAGIC is to furnish the DPC  accurate depiction of superficial geology and relatedgeo-hazard on the most sensitive and hazard-prone areas.

  6. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  7. Magic neutrino mass matrix and the Bjorken-Harrison-Scott parameterization

    International Nuclear Information System (INIS)

    Lam, C.S.

    2006-01-01

    Observed neutrino mixing can be described by a tribimaximal MNS matrix. The resulting neutrino mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3 symmetric and magic. By a magic matrix, I mean one whose row sums and column sums are all identical. I study what happens if 2-3 symmetry is broken but the magic symmetry is kept intact. In that case, the mixing matrix is parameterized by a single complex parameter U e3 , in a form discussed recently by Bjorken, Harrison, and Scott

  8. Evidence for two-dimensional ising structure in atomic nuclei

    International Nuclear Information System (INIS)

    MacGregor, M.H.

    1976-01-01

    Although the unpaired nucleons in an atomic nucleus exhibit pronounced shell-model-like behavior, the situation with respect to the paired-off ''core region'' nucleons is considerably more obscure. Several recent ''multi-alpha knockout'' and ''quasi-fission'' experiments indicate that nucleon clustering is prevalent throughout the core region of the nucleus; this same conclusion is suggested by nuclear-binding-energy systematics, by the evidence for a ''neutron halo'' in heavy nuclei and by the magnetic-moment systematics of low-mass odd-A nuclei. A number of arguments suggests, in turn, that this nucleon clustering is not spherical or spheroidal in shape, as has generally been assumed, but instead is in the form of two-dimensional Ising-like layers, with the layers arrayed perpendicular to the symmetry axis of the nucleus. The effects of this two-dimensional layering are observed most clearly in low-energy-induced fission, where nuclei with an even (odd) number of Ising layers fission symmetrically (asymmetrically). This picture of the nucleus gives an immediate quantitative explanation for the observed asymmetry in the fission of uranium, and also for the transition from symmetric to asymmetric and back to symmetric fission as the atomic number of the fissioning nuclues increase from A = 197 up to A = 258. These results suggest that, in the shell model formulation of the atomic nucleus, the basis states for the paired-off nucleon core region should be modified so as to contain laminar nucleon cluster correlations

  9. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  10. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise.

    Science.gov (United States)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-05-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ~0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. © 2012 International Union of Crystallography

  11. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  12. The magic metal uranium

    International Nuclear Information System (INIS)

    1985-01-01

    ''Magic Metal'' was the first in a range of programmes for the younger secondary student. It is a very simple explanation of how a nuclear reactor works, of the basics of fission and compares nuclear with other fuels. The concepts employed were developed using classroom trials. (author)

  13. Early Childhood Corner: Take the Magic Out of Your Classroom!

    Science.gov (United States)

    Andrews, Angela Giglio

    1995-01-01

    Students are often as mystified by mathematical procedures as they are by magic tricks. This article suggests ways of making the estimation of how many jelly beans in a jar and the 20-questions game less magical and more understandable. (MKR)

  14. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  15. Lighting up: magical realism and resistance to dictatorships in Latin America

    Directory of Open Access Journals (Sweden)

    Gretha Leite Maia

    2017-01-01

    Full Text Available This is a study that articulates the literary genre magical realism and the movement of resistance to military dictatorships in Latin America during the twentieth century. For that, the definition of the fantastic literary genre from T. Todorov is examined. The reasons for using fantastic fiction after the development of a realistic literature are investigated below. Finally, two works representative of Latin American fantastic realism are analyzed: Incident in Antares, by the Brazilian writer Erico Verissimo, and The House of the Spirits, by the Chilean writer Isabel Allende. This path allowed us to conclude that magical realism collaborated with the resistance to the military dictatorships in Latin America and fulfills the function of constructing and preserving the collective memory of this historical period.

  16. Two-dimensional materials for ultrafast lasers

    International Nuclear Information System (INIS)

    Wang Fengqiu

    2017-01-01

    As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)

  17. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  18. Image Encryption Scheme Based on Balanced Two-Dimensional Cellular Automata

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-01-01

    Full Text Available Cellular automata (CA are simple models of computation which exhibit fascinatingly complex behavior. Due to the universality of CA model, it has been widely applied in traditional cryptography and image processing. The aim of this paper is to present a new image encryption scheme based on balanced two-dimensional cellular automata. In this scheme, a random image with the same size of the plain image to be encrypted is first generated by a pseudo-random number generator with a seed. Then, the random image is evoluted alternately with two balanced two-dimensional CA rules. At last, the cipher image is obtained by operating bitwise XOR on the final evolution image and the plain image. This proposed scheme possesses some advantages such as very large key space, high randomness, complex cryptographic structure, and pretty fast encryption/decryption speed. Simulation results obtained from some classical images at the USC-SIPI database demonstrate the strong performance of the proposed image encryption scheme.

  19. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    International Nuclear Information System (INIS)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule

  20. Spontaneous creation of nonzero-angular-momentum modes in tunnel-coupled two-dimensional degenerate Bose gases

    International Nuclear Information System (INIS)

    Montgomery, T. W. A.; Scott, R. G.; Lesanovsky, I.; Fromhold, T. M.

    2010-01-01

    We investigate the dynamics of two tunnel-coupled two-dimensional degenerate Bose gases. The reduced dimensionality of the clouds enables us to excite specific angular momentum modes by tuning the coupling strength, thereby creating striking patterns in the atom density profile. The extreme sensitivity of the system to the coupling and initial phase difference results in a rich variety of subsequent dynamics, including vortex production, complex oscillations in relative atom number, and chiral symmetry breaking due to counter-rotation of the two clouds.

  1. Pattern formation in two-dimensional square-shoulder systems

    International Nuclear Information System (INIS)

    Fornleitner, Julia; Kahl, Gerhard

    2010-01-01

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  2. Pattern formation in two-dimensional square-shoulder systems

    Energy Technology Data Exchange (ETDEWEB)

    Fornleitner, Julia [Institut fuer Festkoerperforschung, Forschungsszentrum Juelich, D-52425 Juelich (Germany); Kahl, Gerhard, E-mail: fornleitner@cmt.tuwien.ac.a [Institut fuer Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitaet Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)

    2010-03-17

    Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.

  3. Absence of vortex condensation in a two dimensional fermionic XY model

    International Nuclear Information System (INIS)

    Cecile, D. J.; Chandrasekharan, Shailesh

    2008-01-01

    Motivated by a puzzle in the study of two-dimensional lattice quantum electrodynamics with staggered fermions, we construct a two-dimensional fermionic model with a global U(1) symmetry. Our model can be mapped into a model of closed packed dimers and plaquettes. Although the model has the same symmetries as the XY model, we show numerically that the model lacks the well-known Kosterlitz-Thouless phase transition. The model is always in the gapless phase showing the absence of a phase with vortex condensation. In other words the low energy physics is described by a noncompact U(1) field theory. We show that by introducing an even number of layers one can introduce vortex condensation within the model and thus also induce a Kosterlitz-Thouless transition.

  4. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  5. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  6. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  7. How Has the Emergence of Digital Culture Affected Professional Magic?

    Directory of Open Access Journals (Sweden)

    Olli Rissanen

    2017-10-01

    Full Text Available We examined how the emerging digital culture has affected magicians’ careers, the development of their expertise and the general practices of their professions. We used social network analysis (n=120 to identify Finland’s most highly regarded magicians (n=16 representing different generations. The participants were theme interviewed and also collected self-report questionnaire data. The results revealed that digital transformations have strongly affected the magical profession in terms of changing their career paths and entry into the profession. Magic used to be a secretive culture, where access to advanced knowledge was controlled by highly regarded gatekeepers who shared their knowledge with a selected group of committed newcomers as a function of their extended efforts. Openly sharing magical knowledge on the Internet has diminished the traditionally strong role of these gatekeepers. Although online tutorials have made magical know-how more accessible to newcomers, professional communities and networks play a crucial role in the cultivation of advanced professional competences.

  8. MAGIC: Model and Graphic Information Converter

    Science.gov (United States)

    Herbert, W. C.

    2009-01-01

    MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.

  9. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  10. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Mannoor, Madhusoodanan; Maniyeri, Ranjith Maniyeri

    2016-01-01

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re cr ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  11. Effects of the Reynolds number on two-dimensional dielectrophoretic motions of a pair of particles under a uniform electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Mo; Mannoor, Madhusoodanan [Dong-A University, Busan (Korea, Republic of); Maniyeri, Ranjith Maniyeri [National Institute of Technology Karnataka, Mangalore (India)

    2016-07-15

    This paper presents two-dimensional direct numerical simulations to explore the effect of the Reynolds number on the Dielectrophoretic (DEP) motion of a pair of freely suspended particles in an unbounded viscous fluid under an external uniform electric field. Accordingly, the electric potential is obtained by solving the Maxwell'00s equation with a great sudden change in the electric conductivity at the particle-fluid interface and then the Maxwell stress tensor is integrated to determine the DEP force exerted on each particle. The fluid flow and particle movement, on the other hand, are predicted by solving the continuity and Navier-Stokes equations together with the kinetic equations. Numerical simulations are carried out using a finite volume approach, composed of a sharp interface method for the electric potential and a direct-forcing immersed-boundary method for the fluid flow. Through the simulations, it is found that both particles with the same sign of the conductivity revolve and eventually align themselves in a line with the electric field. With different signs, to the contrary, they revolve in the reverse way and eventually become lined up at a right angle with the electric field. The DEP motion also depends significantly on the Reynolds number defined based on the external electric field for all the combinations of the conductivity signs. When the Reynolds number is approximately below Re{sub cr} ≈ 0.1, the DEP motion becomes independent of the Reynolds number and thus can be exactly predicted by the no-inertia solver that neglects all the inertial and convective effects. With increasing Reynolds number above the critical number, on the other hand, the particles trace larger trajectories and thus take longer time during their revolution to the eventual in-line alignment.

  12. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  13. Magical Formulae for Market Futures

    DEFF Research Database (Denmark)

    Garsten, Christina; Sörbom, Adrienne

    2016-01-01

    Markets are often portrayed as being organized by way of rationalized knowledge, objective reasoning, and the fluctuations of demand and supply. In parallel, and often mixed with this modality of knowledge, magical beliefs and practices are prevalent. Business leaders, management consultants......, and financial advisors are often savvy in the art of creatively blending the ‘objective facts’ of markets with magical formulae, rites, and imaginaries of the future. This article looks at the World Economic Forum's yearly Davos meeting as a large-scale ritual that engages senior executives of global...... corporations, top-level politicians, and civil society leaders to contribute to the overall aim of ‘improving the world’. The Davos gathering has become a vital part of the business calendar, just as much for the intensity of its networking as for the declarations of action from the speakers’ podiums...

  14. Using magic to improve Physics classes

    Directory of Open Access Journals (Sweden)

    Anderson Coser Gaudio

    2015-03-01

    Full Text Available The videos posted on YouTube can be very helpful to teach any subject in the classroom. In Physics, there is a wealth of material just waiting for the teachers to know what to do with them. In this study, we present a report on how we used videos of magic performances as a teaching aid to supplement Physics classes. Since the goal of magic is to challenge a principle or a natural law, it is interesting to use it in order to try to unravel its secret in a scientific way. To illustrate the application of this strategy, we used a performance of the magician Dynamo, held in London, where he quietly walks on the water of the River Thames. Having overcome the surprise of illusion, students are led by the teacher to try to get a physically plausible explanation for the secret of the magic. To carry out this task, we followed the paths of so-called scientific method in their traditionally defined form in schoolbooks. The results are very positive as and clearly point out the engagement of students in the search for the correct explanation. This strategy is recommended for use in high school Physics classes and in the initial semesters in College courses.

  15. γ astrophysics above 10-30 GeV with the MAGIC telescope

    International Nuclear Information System (INIS)

    Mirzoyan, Razmick

    1999-01-01

    The project on the 17 m oe telescope, dubbed MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), is dedicated for γ astrophysics in the energy range from 10-30 GeV till 50-100 TeV. MAGIC will for the first time allow to explore with very high sensitivity the energy range 10-300 GeV and to bridge the existing energy gap between satellite and ground-based air Cherenkov measurements. We believe MAGIC will serve as a prototype for future multi-telescope γ ray observatories

  16. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun; Guo, Z. B.; Mi, W. B.; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2013-01-01

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number

  17. Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Hsu Kimberly K

    2005-06-01

    Full Text Available Abstract Background The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids. Results After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine, showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyldimethylammonio]-1-propanesulfonate. Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed. Conclusion This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis.

  18. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  19. The relationship between magical thinking, inferential confusion and obsessive-compulsive symptoms.

    Science.gov (United States)

    Goods, N A R; Rees, C S; Egan, S J; Kane, R T

    2014-01-01

    Inferential confusion is an under-researched faulty reasoning process in obsessive-compulsive disorder (OCD). Based on an overreliance on imagined possibilities, it shares similarities with the extensively researched construct of thought-action fusion (TAF). While TAF has been proposed as a specific subset of the broader construct of magical thinking, the relationship between inferential confusion and magical thinking is unexplored. The present study investigated this relationship, and hypothesised that magical thinking would partially mediate the relationship between inferential confusion and obsessive-compulsive symptoms. A non-clinical sample of 201 participants (M = 34.94, SD = 15.88) were recruited via convenience sampling. Regression analyses found the hypothesised mediating relationship was supported, as magical thinking did partially mediate the relationship between inferential confusion and OC symptoms. Interestingly, inferential confusion had the stronger relationship with OC symptoms in comparison to the other predictor variables. Results suggest that inferential confusion can both directly and indirectly (via magical thinking) impact on OC symptoms. Future studies with clinical samples should further investigate these constructs to determine whether similar patterns emerge, as this may eventually inform which cognitive errors to target in treatment of OCD.

  20. Chaotic dynamics in two-dimensional noninvertible maps

    CERN Document Server

    Mira, Christian; Cathala, Jean-Claude; Gardini, Laura

    1996-01-01

    This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea

  1. Comparison of one-, two-, and three-dimensional models for mass transport of radionuclides

    International Nuclear Information System (INIS)

    Prickett, T.A.; Voorhees, M.L.; Herzog, B.L.

    1980-02-01

    This technical memorandum compares one-, two-, and three-dimensional models for studying regional mass transport of radionuclides in groundwater associated with deep repository disposal of high-level radioactive wastes. In addition, this report outlines the general conditions for which a one- or two-dimensional model could be used as an alternate to a three-dimensional model analysis. The investigation includes a review of analytical and numerical models in addition to consideration of such conditions as rock and fluid heterogeneity, anisotropy, boundary and initial conditions, and various geometric shapes of repository sources and sinks. Based upon current hydrologic practice, each review is taken separately and discussed to the extent that the researcher can match his problem conditions with the minimum number of model dimensions necessary for an accurate solution

  2. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  3. Chemical profile of beans cultivars (Phaseolus vulgaris) by 1H NMR - high resolution magic angle spinning (HR-MAS);Perfil quimico de cultivares de feijao (Phaseolus vulgaris) pela tecnica de high resolution magic angle spinning (HR-MAS)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Luciano Morais; Choze, Rafael; Cavalcante, Pedro Paulo Araujo; Santos, Suzana da Costa; Ferri, Pedro Henrique, E-mail: luciano@quimica.ufg.b [Universidade Federal de Goias (UFG), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio Gilberto [Universidade Federal de Sao Carlos (UFScar), SP (Brazil). Dept. de Quimica

    2010-07-01

    The application of one-dimensional proton high-resolution magic angle spinning ({sup 1}H HR-MAS) NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris) developed and in development by EMBRAPA - Arroz e Feijao were analyzed by {sup 1}H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques. (author)

  4. The gematrical numbers in dimensions of the "Melencolia I" engraving

    Directory of Open Access Journals (Sweden)

    Tine Kurent

    1998-12-01

    Full Text Available The Melancholy engraving by Dürer and Agrippa is hiding its gematrical messages not only in the numbers of its magic square but also in the numbers forming its modular dimensions. If the sphere on the lower left side of the composition is 10 modules in diameter, the magic square measures 8 by 8 modules, and the print is 70 by 55 modules large. The circumference of the etching equals 250 and its diagonal 89 modules. In the numbers 55, 70, 250 and 89 are hidden gematrical messages, prayers, cursing, the name of the Melancholia itself and the names of its authors.

  5. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Directory of Open Access Journals (Sweden)

    Leoni S.

    2016-01-01

    Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  6. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Science.gov (United States)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  7. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  8. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    Science.gov (United States)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  9. Conformal algebras of two-dimensional disordered systems

    International Nuclear Information System (INIS)

    Gurarie, Victor; Ludwig, Andreas W.W.

    2002-01-01

    We discuss the structure of two-dimensional conformal field theories at a central charge c=0 describing critical disordered systems, polymers and percolation. We construct a novel extension of the c=0 Virasoro algebra, characterized by a number b measuring the effective number of massless degrees of freedom, and by a logarithmic partner of the stress tensor. It is argued to be present at a generic random critical point, lacking super Kac-Moody, or other higher symmetries, and is a tool to describe and classify such theories. Interestingly, this algebra is not only consistent with, but indeed naturally accommodates in general an underlying global supersymmetry. Polymers and percolation realize this algebra. Unexpectedly, we find that the c=0 Kac table of the degenerate fields contains two distinct theories with b=5/6 and b=-5/8 which we conjecture to correspond to percolation and polymers, respectively. A given Kac-table field can be degenerate only in one of them. Remarkably, we also find this algebra, and thereby an ensuing hidden supersymmetry, realized at general replica-averaged critical points, for which we derive an explicit formula for b. (author). Letter-to-the-editor

  10. Magic, Morals and Health

    Science.gov (United States)

    Johnson, Warren R.

    2010-01-01

    Magic has to do with the supernatural and the unnatural. It is indifferent to natural law and science and is aloof from scientific inquiry. Its existence depends upon unquestioning faith. Granted such faith, it is extraordinarily potent. If it does not move mountains, it convinces the faithful that it can. It can damage health and perhaps, restore…

  11. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  12. Two-dimensional divertor modeling and scaling laws

    International Nuclear Information System (INIS)

    Catto, P.J.; Connor, J.W.; Knoll, D.A.

    1996-01-01

    Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)

  13. 78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team

    Science.gov (United States)

    2013-11-22

    ... projects. The MAGIC Team reports to the Large Scale Networking (LSN) Coordinating Group (CG). Public... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00 p.m., at the National...

  14. Mean flow characteristics of two-dimensional wings in ground effect

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-06-01

    Full Text Available The present study numerically investigates the aerodynamic characteristics of two-dimensional wings in the vicinity of the ground by solving two-dimensional steady incompressible Navier-Stokes equations with the turbulence closure model of the realizable k-ε model. Numerical simulations are performed at a wide range of the normalized ground clearance by the chord length (0.1≤h/C ≤ 1.25 for the angles of attack (0° ≤ α ≤ 10° in the pre-stall regime at a Reynolds number (Re of 2×106 based on free stream velocity U∞ and the chord length. As the physical model of this study, a cambered airfoil of NACA 4406 has been selected by a performance test for various airfoils. The maximum lift-to-drag ratio is achieved at α = 4° and h/C = 0.1. Under the conditions of α = 4° and h/C = 0.1, the effect of the Reynolds number on the aerodynamic characteristics of NACA 4406 is investigated in the range of 2× 10 5 ≤ Re ≤ 2× 109. As Re increases, Cl and Cd augments and decreases, respectively, and the lift-to-drag ratio increases linearly.

  15. Evaporation effect on two-dimensional wicking in porous media.

    Science.gov (United States)

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The Rhetorical Goddess: A Feminist Perspective on Women in Magic

    Directory of Open Access Journals (Sweden)

    Bruns, Laura C.

    2014-12-01

    Full Text Available Although female magicians have existed since the rise of entertainment magic, women have faced difficulty in entering the “fraternity” of the magic community. As an art form largely based around persuasion, it is useful to study the performance of magic as a text. It is additionally useful to study female magicians within this context of rhetoric. Not only will examining the rhetoric of female magicians provide insights on the rhetoric of women in this unique arena, but also of women in a historically gendered and underrepresented field. Research into this area may disclose other details regarding the communicative differences between women and men and how communication is adapted within a gendered communication paradigm.

  17. Functional inks and printing of two-dimensional materials.

    Science.gov (United States)

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  18. How to be Brilliant at Numbers

    CERN Document Server

    Webber, Beryl

    2010-01-01

    How to be Brilliant at Numbers will help students to develop an understanding of numbers, place value, fractions and decimals. They will develop the language of number, and of the relationships between numbers. They will also use mathematics to solve problems and will develop mathematical reasoning. Using the worksheets in this book, pupils will learn about: ancient Greek numbers; coins; digits; consecutive numbers; magic ladders; fractions; matching pairs; multiples of 10; rounding; decimal un

  19. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, A., E-mail: ahahn@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Mazin, D., E-mail: mazin@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277–8582 (Japan); Bangale, P., E-mail: priya@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Dettlaff, A., E-mail: todettl@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Fink, D., E-mail: fink@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Grundner, F., E-mail: grundner@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Haberer, W., E-mail: haberer@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); Maier, R., E-mail: rma@mpp.mpg.de [Max Planck Institute for Physics (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany); and others

    2017-02-11

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges. - Highlights: • The design of the first SiPM large-size IACT pixel is described. • The simulation of the light concentrators is presented. • The temperature stability of the detector module is demonstrated. • The calibration procedure of SiPM device in the field is described.

  20. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  1. 77 FR 58416 - Large Scale Networking (LSN); Middleware and Grid Interagency Coordination (MAGIC) Team

    Science.gov (United States)

    2012-09-20

    ..., Grid, and cloud projects. The MAGIC Team reports to the Large Scale Networking (LSN) Coordinating Group... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD.... Dates/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00pm, at...

  2. Semilogarithmic Nonuniform Vector Quantization of Two-Dimensional Laplacean Source for Small Variance Dynamics

    Directory of Open Access Journals (Sweden)

    Z. Peric

    2012-04-01

    Full Text Available In this paper high dynamic range nonuniform two-dimensional vector quantization model for Laplacean source was provided. Semilogarithmic A-law compression characteristic was used as radial scalar compression characteristic of two-dimensional vector quantization. Optimal number value of concentric quantization domains (amplitude levels is expressed in the function of parameter A. Exact distortion analysis with obtained closed form expressions is provided. It has been shown that proposed model provides high SQNR values in wide range of variances, and overachieves quality obtained by scalar A-law quantization at same bit rate, so it can be used in various switching and adaptation implementations for realization of high quality signal compression.

  3. Two-dimensional readout system for radiation detector

    International Nuclear Information System (INIS)

    Lee, L.Y.

    1975-01-01

    A two dimensional readout system has been provided for reading out locations of scintillations produced in a scintillation type radiation detector array wherein strips of scintillator material are arranged in a parallel planar array. Two sets of light guides are placed perpendicular to the scintillator strips, one on the top and one on the bottom to extend in alignment across the strips. Both the top and bottom guides are composed of a number of 90 0 triangular prisms with the lateral side forming the hypotenuse equal to twice the width of a scintillator strip. The prism system reflects light from a scintillation along one of the strips back and forth through adjacent strips to light pipes coupled to the outermost strips of the detector array which transmit light pulses to appropriate detectors to determine the scintillation along one axis. Other light pipes are connected to the end portions of the strips to transmit light from the individual strips to appropriate light detectors to indicate the particular strip activated, thereby determining the position of a scintillation along the other axis. The number of light guide pairs may be equal the number of the scintillation strips when equal spatial resolution for each of the two coordinates is desired. When the scintillator array detects an event which produces a scintillation along one of the strips, the emitted light travels along four different paths, two of which are along the strip, and two of which are through the light guide pair perpendicular to the strips until all four beams reach the outer edges of the array where they may be transmitted to light detectors by means of light pipes connected therebetween according to a binary code for direct digital readout. (U.S.)

  4. Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC Population of Sorghum (Sorghum bicolor (L. Moench

    Directory of Open Access Journals (Sweden)

    Patrick O. Ongom

    2018-01-01

    Full Text Available Multi-parent advanced generation intercross (MAGIC populations are powerful next-generation mapping resources. We describe here the mating design and structure of the first MAGIC population in sorghum, and test its utility for mapping. The population was developed by intercrossing 19 diverse founder lines through a series of paired crosses with a genetic male sterile (MS source, followed by 10 generations of random mating. At the final stage of random mating, 1000 random fertile plants in the population were identified and subjected to six generations of selfing to produce 1000 immortal MAGIC inbred lines. The development of this sorghum MAGIC population took over 15 yr. Genotyping-by-sequencing (GBS of a subset of 200 MAGIC lines identified 79,728 SNPs, spanning high gene-rich regions. Proportion of SNPs per chromosome ranged from 6 to 15%. Structure analyses produced no evidence of population stratification, portraying the desirability of this population for genome-wide association studies (GWAS. The 19 founders formed three clusters, each with considerable genetic diversity. Further analysis showed that 73% of founder alleles segregated in the MAGIC population. Linkage disequilibrium (LD patterns depicted the MAGIC population to be highly recombined, with LD decaying to r2 ≤ 0.2 at 40 kb and down to r2 ≤ 0.1 at 220 kb. GWAS detected two known plant height genes, DWARF1 (chromosome 9 and DWARF3 (chromosome 7, and a potentially new plant height quantitative trait locus (QTL (QTL-6 on chromosome 6. The MAGIC population was found to be rich in allelic content with high fragmentation of its genome, making it fit for both gene mapping and effective marker-assisted breeding.

  5. Correlation based method for comparing and reconstructing quasi-identical two-dimensional structures

    International Nuclear Information System (INIS)

    Mejia-Barbosa, Y.

    2000-03-01

    We show a method for comparing and reconstructing two similar amplitude-only structures, which are composed by the same number of identical apertures. The structures are two-dimensional and differ only in the location of one of the apertures. The method is based on a subtraction algorithm, which involves the auto-correlations and cross-correlation functions of the compared structures. Experimental results illustrate the feasibility of the method. (author)

  6. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  7. The one-particle scenario for the metal-insulator transition in two-dimensional systems at T = 0

    CERN Document Server

    Tarasov, Y V

    2003-01-01

    The conductance of bounded disordered electron systems is calculated by reducing the original dynamic problem of arbitrary dimensionality to a set of strictly one-dimensional problems for one-particle mode propagators. The metallic ground state of a two-dimensional conductor, which is considered as a limiting case of three-dimensional quantum waveguide, is shown to result from its multi-modeness. As the waveguide thickness is reduced, e.g., by applying a 'pressing' potential, the electron system undergoes a set of continuous phase transitions related to discrete variations of the number of extended modes. The closing of the last current carrying mode is regarded as a phase transition of the electron system from metallic to dielectric state. The obtained results agree qualitatively with the observed 'anomalies' of resistivity of different two-dimensional electron and hole systems.

  8. Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations

    Science.gov (United States)

    Abdulwahhab, Muhammad Alim

    2016-10-01

    Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.

  9. "You Will": Technology, Magic, and the Cultural Contexts of Technical Communication.

    Science.gov (United States)

    Kitalong, Karla Saari

    2000-01-01

    Provides some background on the use of magical language in technical contexts, gives examples of magical discourse in technology advertisements and newsmagazine articles, and proposes a technical communication pedagogy of media analysis. Notes that the proposed pedagogy involves students conducting diagnostic critiques of media texts and affords…

  10. Uploading, Searching and Visualizing of Paleomagnetic and Rock Magnetic Data in the Online MagIC Database

    Science.gov (United States)

    Minnett, R.; Koppers, A.; Tauxe, L.; Constable, C.; Donadini, F.

    2007-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by both rock and paleomagnetic data. The goal of MagIC is to archive all available measurements and derived properties from paleomagnetic studies of directions and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). MagIC is hosted under EarthRef.org at http://earthref.org/MAGIC/ and will soon implement two search nodes, one for paleomagnetism and one for rock magnetism. Currently the PMAG node is operational. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual map interface to browse and select locations. Users can also browse the database by data type or by data compilation to view all contributions associated with well known earlier collections like PINT, GMPDB or PSVRL. The query result set is displayed in a digestible tabular format allowing the user to descend from locations to sites, samples, specimens and measurements. At each stage, the result set can be saved and, where appropriate, can be visualized by plotting global location maps, equal area, XY, age, and depth plots, or typical Zijderveld, hysteresis, magnetization and remanence diagrams. User contributions to the MagIC database are critical to achieving a useful research tool. We have developed a standard data and metadata template (version 2.3) that can be used to format and upload all data at the time of publication in Earth Science journals. Software tools are provided to facilitate population of these templates within Microsoft Excel. These tools allow for the import/export of text files and provide advanced functionality to manage and edit the data, and to perform various internal checks to maintain data integrity and prepare for uploading. The MagIC Contribution Wizard at http://earthref.org/MAGIC/upload.htm executes the upload

  11. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  12. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  13. Boundary effects in a quasi-two-dimensional driven granular fluid.

    Science.gov (United States)

    Smith, N D; Smith, M I

    2017-12-01

    The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.

  14. The Falcon and Female Cat in Egyptian Magic and The Petese Stories

    DEFF Research Database (Denmark)

    Ryholt, Kim

    2016-01-01

    A recently published spell concerning the prevention of miscarriages, where a falcon and a female cat are invoked against Seth/Apophis, provides a clue to the understanding of an episode in The Petese Stories, where the same two animals are summoned through magic and directed against an enemy who...

  15. Some contributions of MAGIC to the physics ofcosmic rays

    Directory of Open Access Journals (Sweden)

    Gozzini S.R.

    2013-06-01

    Full Text Available Cosmic ray interactions can be investigated indirectly in γ ray astronomy, with the observation of spectral and morphological features of certain classes of sources. MAGIC is a stereoscopic system of two γ ray telescopes, located at La Palma (Canaries, with access to the energy window between 50 GeV and 30 TeV. Sources of high relevance for the study of very high energy hadronic interactions are active galactic nuclei, as blazars and radio galaxies. MAGIC has detectedabout fifty such extragalactic objects; we will present some where theemission is explained with accelerated hadrons in interaction with ambient photons. We will also mention cosmic ray acceleration in galaxy clusters. Other than that, hadron-hadron interactions are supposed to take place in some supernova remnants in interaction with surrounding molecular clouds; we will show some results, in connection with cosmic rays of galactic origin. Finally, about other possible components, wewill mention the measurement of the diffuse electron and positron spectrum. Trustingly, the close connection between particle physics and astrophysics will contribute in future years to many new interesting observations.

  16. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  17. Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol

    NARCIS (Netherlands)

    Sugiyama, K.; Calzavarini, E.; Grossmann, S.; Lohse, Detlef

    2007-01-01

    We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number Ra up to 108 (for fixed temperature difference �

  18. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; van Heijst, G.J.F.

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  19. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; Heijst, van G.J.F.

    2009-01-01

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  20. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  1. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Sanshui; He Sailing

    2002-12-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k{sub z} although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k{sub z} is founded.

  2. FDTD method for computing the off-plane band structure in a two-dimensional photonic crystal consisting of nearly free-electron metals

    International Nuclear Information System (INIS)

    Xiao Sanshui; He Sailing

    2002-01-01

    An FDTD numerical method for computing the off-plane band structure of a two-dimensional photonic crystal consisting of nearly free-electron metals is presented. The method requires only a two-dimensional discretization mesh for a given off-plane wave number k z although the off-plane propagation is a three-dimensional problem. The off-plane band structures of a square lattice of metallic rods with the high-frequency metallic model in the air are studied, and a complete band gap for some nonzero off-plane wave number k z is founded

  3. Treatment of dynamical processes in two-dimensional models of the troposphere and stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1980-07-01

    The physical structure of the troposphere and stratosphere is the result of an intricate interplay among a large number of radiative, chemical, and dynamical processes. Because it is not possible to model the global environment in the laboratory, theoretical models must be relied on, subject to observational verification, to simulate atmospheric processes. Of particular concern in recent years has been the modeling of those processes affecting the structure of ozone and other trace species in the stratosphere and troposphere. Zonally averaged two-dimensional models with spatial resolution in the vertical and meridional directions can provide a much more realistic representation of tracer transport than one-dimensional models, yet are capable of the detailed representation of chemical and radiative processes contained in the one-dimensional models. The purpose of this study is to describe and analyze existing approaches to representing global atmospheric transport processes in two-dimensional models and to discuss possible alternatives to these approaches. A general description of the processes controlling the transport of trace constituents in the troposphere and stratosphere is given

  4. Solution of the two-dimensional spectral factorization problem

    Science.gov (United States)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  5. Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to unidirectional shear flow

    Science.gov (United States)

    Bhateja, Ashish; Khakhar, Devang V.

    2018-06-01

    We consider the rheology of steady two-dimensional granular flows, in different geometries, using discrete element method-based simulations of soft spheres. The flow classification parameter (ψ ), which defines the local flow type (ranging from pure rotation to simple shear to pure extension), varies spatially, to a significant extent, in the flows. We find that the material behaves as a generalized Newtonian fluid. The μ -I scaling proposed by Jop et al. [Nature (London) 441, 727 (2006), 10.1038/nature04801] is found to be valid in both two-dimensional and unidirectional flows, as observed in previous studies; however, the data for each flow geometry fall on a different curve. The results for the two-dimensional silo flow indicate that the viscosity does not depend directly on the flow type parameter, ψ . We find that the scaling based on "granular fluidity" [Zhang and Kamrin, Phys. Rev. Lett. 118, 058001 (2017), 10.1103/PhysRevLett.118.058001] gives good collapse of the data to a single curve for all the geometries. The data for the variation of the solid faction with inertial number show a reasonable collapse for the different geometries.

  6. Autocorrelation based reconstruction of two-dimensional binary objects

    International Nuclear Information System (INIS)

    Mejia-Barbosa, Y.; Castaneda, R.

    2005-10-01

    A method for reconstructing two-dimensional binary objects from its autocorrelation function is discussed. The objects consist of a finite set of identical elements. The reconstruction algorithm is based on the concept of class of element pairs, defined as the set of element pairs with the same separation vector. This concept allows to solve the redundancy introduced by the element pairs of each class. It is also shown that different objects, consisting of an equal number of elements and the same classes of pairs, provide Fraunhofer diffraction patterns with identical intensity distributions. However, the method predicts all the possible objects that produce the same Fraunhofer pattern. (author)

  7. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...

  8. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    OpenAIRE

    Nikola Stefanović

    2007-01-01

    In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic ...

  9. Derivation of the low Mach number diphasic system. Numerical simulation in mono-dimensional geometry

    International Nuclear Information System (INIS)

    Dellacherie, St.

    2004-01-01

    This work deals with the derivation of a diphasic low Mach number model obtained through a Mach number asymptotic expansion applied to the compressible diphasic Navier Stokes system, expansion which filters out the acoustic waves. This approach is inspired from the work of Andrew Majda giving the equations of low Mach number combustion for thin flame and for perfect gases. When the equations of state verify some thermodynamic hypothesis, we show that the low Mach number diphasic system predicts in a good way the dilatation or the compression of a bubble and has equilibrium convergence properties. Then, we propose an entropic and convergent Lagrangian scheme in mono-dimensional geometry when the fluids are perfect gases and we propose a first approach in Eulerian variables where the interface between the two fluids is captured with a level set technique. (author)

  10. TYPE Ia SUPERNOVAE AS SITES OF THE p-PROCESS: TWO-DIMENSIONAL MODELS COUPLED TO NUCLEOSYNTHESIS

    International Nuclear Information System (INIS)

    Travaglio, C.; Gallino, R.; Roepke, F. K.; Hillebrandt, W.

    2011-01-01

    Beyond Fe, there is a class of 35 proton-rich nuclides, between 74 Se and 196 Hg, called p-nuclei. They are bypassed by the s and r neutron capture processes and are typically 10-1000 times less abundant than the s- and/or r-isotopes in the solar system. The bulk of p-isotopes is created in the 'gamma processes' by sequences of photodisintegrations and beta decays in explosive conditions in both core collapse supernovae (SNe II) and in Type Ia supernovae (SNe Ia). SNe II contribute to the production of p-nuclei through explosive neon and oxygen burning. However, the major problem in SN II ejecta is a general underproduction of the light p-nuclei for A 209 Bi. We select tracers within the typical temperature range for p-process production, (1.5-3.7) x 10 9 K, and analyze in detail their behavior, exploring the influence of different s-process distributions on the p-process nucleosynthesis. In addition, we discuss the sensitivity of p-process production to parameters of the explosion mechanism, taking into account the consequences on Fe and alpha elements. We find that SNe Ia can produce a large amount of p-nuclei, both the light p-nuclei below A = 120 and the heavy-p nuclei, at quite flat average production factors, tightly related to the s-process seed distribution. For the first time, we find a stellar source able to produce both light and heavy p-nuclei almost at the same level as 56 Fe, including the debated neutron magic 92, 94 Mo and 96, 98 Ru. We also find that there is an important contribution from the p-process nucleosynthesis to the s-only nuclei 80 Kr, 86 Sr, to the neutron magic 90 Zr, and to the neutron-rich 96 Zr. Finally, we investigate the metallicity effect on p-process production in our models. Starting with different s-process seed distributions for two metallicities Z = 0.02 and Z = 0.001, running two-dimensional SN Ia models with different initial composition, we estimate that SNe Ia can contribute to at least 50% of the solar p

  11. Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Orlita, M., E-mail: milan.orlita@lncmi.cnrs.fr [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Faugeras, C.; Barra, A.-L.; Martinez, G.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 38042 Grenoble (France); Basko, D. M. [LPMMC UMR 5493, Université Grenoble 1/CNRS, B.P. 166, 38042 Grenoble (France); Zholudev, M. S. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Université Montpellier II, 34095 Montpellier (France); Gavrilenko, V. I. [Institute for Physics of Microstructures, RAS, Nizhny Novgorod GSP-105 603950 (Russian Federation); Mikhailov, N. N.; Dvoretskii, S. A. [A.V. Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Neugebauer, P. [Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, C. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Institut Néel/CNRS-UJF BP 166, F-38042 Grenoble Cedex 9 (France); Heer, W. A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-21

    Here, we report on a magneto-optical study of two distinct systems hosting massless fermions—two-dimensional graphene and three-dimensional HgCdTe tuned to the zero band gap condition at the point of the semiconductor-to-semimetal topological transition. Both materials exhibit, in the quantum regime, a fairly rich magneto-optical response, which is composed from a series of intra- and interband inter-Landau level resonances with for massless fermions typical √(B) dependence. The impact of the system's dimensionality and of the strength of the spin-orbit interaction on the optical response is also discussed.

  12. Maruhn-Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions LENR via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, H.; Miley, G. H.

    2007-12-01

    One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.

  13. One-dimensional versus two-dimensional electronic states in vicinal surfaces

    International Nuclear Information System (INIS)

    Ortega, J E; Ruiz-Oses, M; Cordon, J; Mugarza, A; Kuntze, J; Schiller, F

    2005-01-01

    Vicinal surfaces with periodic arrays of steps are among the simplest lateral nanostructures. In particular, noble metal surfaces vicinal to the (1 1 1) plane are excellent test systems to explore the basic electronic properties in one-dimensional superlattices by means of angular photoemission. These surfaces are characterized by strong emissions from free-electron-like surface states that scatter at step edges. Thereby, the two-dimensional surface state displays superlattice band folding and, depending on the step lattice constant d, it splits into one-dimensional quantum well levels. Here we use high-resolution, angle-resolved photoemission to analyse surface states in a variety of samples, in trying to illustrate the changes in surface state bands as a function of d

  14. Approximate solutions for the two-dimensional integral transport equation. The critically mixed methods of resolution

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr

  15. The Cultural Work of Magical Realism in Three Young Adult Novels

    Science.gov (United States)

    Latham, Don

    2007-01-01

    Magical realism as a literary mode is often subversive and transgressive, questioning the values and assumptions of the dominant society that it depicts. Young adult literature, by contrast, is typically thought to serve a socializing function, helping to integrate young readers into adult society. What then is the cultural work of magical realism…

  16. Gesture Recognition for Educational Games: Magic Touch Math

    Science.gov (United States)

    Kye, Neo Wen; Mustapha, Aida; Azah Samsudin, Noor

    2017-08-01

    Children nowadays are having problem learning and understanding basic mathematical operations because they are not interested in studying or learning mathematics. This project proposes an educational game called Magic Touch Math that focuses on basic mathematical operations targeted to children between the age of three to five years old using gesture recognition to interact with the game. Magic Touch Math was developed in accordance to the Game Development Life Cycle (GDLC) methodology. The prototype developed has helped children to learn basic mathematical operations via intuitive gestures. It is hoped that the application is able to get the children motivated and interested in mathematics.

  17. Resonance fluorescence based two- and three-dimensional atom localization

    Science.gov (United States)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  18. Tracer dispersion in two-dimensional rough fractures.

    Science.gov (United States)

    Drazer, G; Koplik, J

    2001-05-01

    Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.

  19. Subjective figure reversal in two- and three-dimensional perceptual space.

    Science.gov (United States)

    Radilová, J; Radil-Weiss, T

    1984-08-01

    A permanently illuminated pattern of Mach's truncated pyramid can be perceived according to the experimental instruction given, either as a three-dimensional reversible figure with spontaneously changing convex and concave interpretation (in one experiment), or as a two-dimensional reversible figure-ground pattern (in another experiment). The reversal rate was about twice as slow, without the subjects being aware of it, if it was perceived as a three-dimensional figure compared to the situation when it was perceived as two-dimensional. It may be hypothetized that in the three-dimensional case, the process of perception requires more sequential steps than in the two-dimensional one.

  20. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  1. Two multi-dimensional uncertainty relations

    International Nuclear Information System (INIS)

    Skala, L; Kapsa, V

    2008-01-01

    Two multi-dimensional uncertainty relations, one related to the probability density and the other one related to the probability density current, are derived and discussed. Both relations are stronger than the usual uncertainty relations for the coordinates and momentum

  2. Mechanical exfoliation of two-dimensional materials

    Science.gov (United States)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  3. Dimensionally regularized Tsallis' statistical mechanics and two-body Newton's gravitation

    Science.gov (United States)

    Zamora, J. D.; Rocca, M. C.; Plastino, A.; Ferri, G. L.

    2018-05-01

    Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy 〈 U 〉 . The poles appear for distinctive values of Tsallis' characteristic real parameter q, at a numerable set of rational numbers of the q-line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.

  4. Western aeronautical test range real-time graphics software package MAGIC

    Science.gov (United States)

    Malone, Jacqueline C.; Moore, Archie L.

    1988-01-01

    The master graphics interactive console (MAGIC) software package used on the Western Aeronautical Test Range (WATR) of the NASA Ames Research Center is described. MAGIC is a resident real-time research tool available to flight researchers-scientists in the NASA mission control centers of the WATR at the Dryden Flight Research Facility at Edwards, California. The hardware configuration and capabilities of the real-time software package are also discussed.

  5. A game magically circling

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine

    2011-01-01

    This chapter analyses the relationship between players, the game world, and the ordinary world in alternative reality games (ARGs) and location-based games (LBGs). These games use technology to create a game world in the everyday scene. The topic of this chapter is the concept of the 'magic circle......', which defines the relationship between play and the ordinary world, and how this concept relates to a new kind of game....

  6. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  7. Magic vs. Science in the Historiography of Science: The Social-Historical Construction of Rationality

    Directory of Open Access Journals (Sweden)

    Carlos Alvarez Maia

    2017-12-01

    Full Text Available The historiography of scientific studies has suffered from a great impact, that is rarely referred to, from anthropological analyses of magic in so-called primitive societies. The emphasis brought by criticism during the 1950/1960’s of Evans-Pritchard’s 1937 classic, Witchcraft, Oracles and Magic among the Azande, brought a fresh look at certainties already consolidated in Western thought, especially those relating to rational human characteristics and science. For the history, these criticisms were interesting because they were presented science as a historically situated activity, in the same way as magic. It favours, therefore, the proximity of historians tout court with the history of the sciences that resists its absences even today. This renewal helped to create a scenario that would enable David Bloor to develop the strong program of Sociology of Knowledge in the 1970s. Such a program indicates the analogous process that involves both the social production of beliefs and that of scientific truths. The comparison between magic and science usually presents them in a hierarchy. As if there were an evolutionary process in which magical thinking necessarily preceded scientific thought. The one, more precarious, would belong to the prehistory of the scientific thought, which would be the climax of modern rational action. In this paper I evaluate the proximity of magic-science from the point of view of contemporary studies about scientific activity, questioning the concepts of rationality and logic as if they were exclusive qualities of scientific activity. A kind of metaphysical gift that would show the superiority of individuals over others, as much as of science over magic. I give special emphasis to the exposition of how rationality and logic are socio-historical characteristics acquired throughout history by human subjects in their experiential practices, and which are present both in magic and technical activities; these, an embryo of

  8. Two-dimensional mapping of three-dimensional SPECT data: a preliminary step to the quantitation of thallium myocardial perfusion single photon emission tomography

    International Nuclear Information System (INIS)

    Goris, M.L.; Boudier, S.; Briandet, P.A.

    1987-01-01

    A method is presented by which tomographic myocardial perfusion data are prepared for quantitative analysis. The method is characterized by an interrogation of the original data, which results in a size and shape normalization. The method is analogous to the circumferential profile methods used in planar scintigraphy but requires a polar-to-cartesian transformation from three to two dimensions. As was the case in the planar situation, centering and reorientation are explicit. The degree of data reduction is evaluated by reconstructing idealized three-dimensional data from the two-dimensional sampling vectors. The method differs from previously described approaches by the absence in the resulting vector of a coordinate reflecting cartesian coordinate in the original data (slice number)

  9. Two-dimensional model of a freely expanding plasma

    International Nuclear Information System (INIS)

    Khalid, Q.

    1975-01-01

    The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good

  10. Need for cognition moderates paranormal beliefs and magical ideation in inconsistent-handers.

    Science.gov (United States)

    Prichard, Eric C; Christman, Stephen D

    2016-01-01

    A growing literature suggests that degree of handedness predicts gullibility and magical ideation. Inconsistent-handers (people who use their non-dominant hand for at least one common manual activity) report more magical ideation and are more gullible. The current study tested whether this effect is moderated by need for cognition. One hundred eighteen university students completed questionnaires assessing handedness, self-reported paranormal beliefs, and self-reported need for cognition. Handedness (Inconsistent vs. Consistent Right) and Need for Cognition (High vs. Low) were treated as categorical predictors. Both paranormal beliefs and magical ideation served as dependent variable's in separate analyses. Neither set of tests yielded main effects for handedness or need for cognition. However, there were a significant handedness by need for cognition interactions. Post-hoc comparisons revealed that low, but not high, need for cognition inconsistent-handers reported relatively elevated levels of paranormal belief and magical ideation. A secondary set of tests treating the predictor variables as continuous instead of categorical obtained the same overall pattern.

  11. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  12. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  13. Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction

    International Nuclear Information System (INIS)

    Mihalache, Dumitru; Mazilu, Dumitru; Malomed, Boris A.; Lederer, Falk

    2006-01-01

    We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ('pancake-shaped') trapped Bose-Einstein condensate with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S=1 are stable in a third of their existence region, 0 max (S=1) , where N is the number of atoms, and N max (S=1) is the corresponding collapse threshold. Stable vortices easily self-trap from arbitrary initial configurations with embedded vorticity. In an adjacent interval, (1/3)N max (S=1) max (S=1) , the unstable vortex periodically splits in two fragments and recombines. At N>0.43N max (S=1) , the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full three-dimensional (3D) Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio √(10), the stability interval of the S=1 vortices occupies ≅40% of their existence region, hence the two-dimensional (2D) limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S≥2 are unstable

  14. Magical arts: the poetics of play.

    Science.gov (United States)

    Jacobus, Mary

    2005-01-01

    The paper argues that links between play and magic in British Object Relations point to the persistence of aesthetic concerns within psychoanalysis. Magical thinking is present in British Object Relations psychoanalysis from its beginnings in Klein's play technique and early aesthetic writings, surfacing elsewhere in Susan Isaac's educational experiments and her theories of metaphor. Marion Milner's clinical account of the overlapping areas of illusion and symbol-formation in a boy's war-games link the primitive rituals of Frazer's "The Golden Bough" with her patient's creativity. In Winnicott's concept of the transitional object, the theory of play achieves its apotheosis as a diffusive theory of culture or "private madness," and as a paradigm for psychoanalysis itself. Tracing the non-positivistic, mystical, and poetical elements in British Object Relations underlines the extent to which aesthetics is not just entangled with psychoanalysis, but constitutive of it in its mid-twentieth century manifestations.

  15. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  16. Quantum oscillations in quasi-two-dimensional conductors

    CERN Document Server

    Galbova, O

    2002-01-01

    The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...

  17. Third sound in one and two dimensional modulated structures

    International Nuclear Information System (INIS)

    Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.

    1996-01-01

    An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction

  18. Two-dimensional membranes in motion

    NARCIS (Netherlands)

    Davidovikj, D.

    2018-01-01

    This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research

  19. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun

    2013-03-05

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number of valence electrons is smaller or equal to that of Mo. Doping of atoms from the VIIB to IIB groups becomes energetically less and less favorable. Magnetism is observed for Mn, Fe, Co, Zn, Cd, and Hg doping, while for the other dopants from these groups it is suppressed by Jahn-Teller distortions. Analysis of the binding energies and magnetic properties indicates that (Mo,X)S2 (X=Mn, Fe, Co, and Zn) are promising systems to explore two-dimensional diluted magnetic semiconductors.

  20. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    Science.gov (United States)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  1. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  2. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  3. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  4. Incorrectness of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional circular composite pipes

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.

    2008-01-01

    This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned

  5. A two-dimensional Zn coordination polymer with a three-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Fuhong Liu

    2017-10-01

    Full Text Available The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-ylmethyl]biphenyl-κ2N4:N4′}bis(nitrato-κOzinc(II], [Zn(NO32(C18H16N62]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132 plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.

  6. Velocity and Dispersion for a Two-Dimensional Random Walk

    International Nuclear Information System (INIS)

    Li Jinghui

    2009-01-01

    In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)

  7. Managing Rock and Paleomagnetic Data Flow with the MagIC Database: from Measurement and Analysis to Comprehensive Archive and Visualization

    Science.gov (United States)

    Koppers, A. A.; Minnett, R. C.; Tauxe, L.; Constable, C.; Donadini, F.

    2008-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by rock and paleomagnetic data. The goal of MagIC is to archive all measurements and derived properties for studies of paleomagnetic directions (inclination, declination) and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Organizing data for presentation in peer-reviewed publications or for ingestion into databases is a time-consuming task, and to facilitate these activities, three tightly integrated tools have been developed: MagIC-PY, the MagIC Console Software, and the MagIC Online Database. A suite of Python scripts is available to help users port their data into the MagIC data format. They allow the user to add important metadata, perform basic interpretations, and average results at the specimen, sample and site levels. These scripts have been validated for use as Open Source software under the UNIX, Linux, PC and Macintosh© operating systems. We have also developed the MagIC Console Software program to assist in collating rock and paleomagnetic data for upload to the MagIC database. The program runs in Microsoft Excel© on both Macintosh© computers and PCs. It performs routine consistency checks on data entries, and assists users in preparing data for uploading into the online MagIC database. The MagIC website is hosted under EarthRef.org at http://earthref.org/MAGIC/ and has two search nodes, one for paleomagnetism and one for rock magnetism. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual FlashMap interface to browse and select locations. Users can also browse the database by data type (inclination, intensity, VGP, hysteresis, susceptibility) or by data compilation to view all contributions associated with previous databases, such as PINT, GMPDB or TAFI or other user

  8. Theory of the one- and two-dimensional electron gas

    International Nuclear Information System (INIS)

    Emery, V.J.

    1987-01-01

    Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides

  9. Comment on 'Magic strains in face-centered and body-centered cubic lattices'

    Energy Technology Data Exchange (ETDEWEB)

    Waal, B.W. van de (Technische Hogeschool Twente, Enschede (Netherlands). Dept. of Physics)

    1990-03-01

    The six symmetry-related so-called magic strain tensors that transform a f.c.c. lattice (or a b.c.c. lattice) into itself, which have been reported recently by Boyer are not unique: An infinite number of displacement tensors can be constructed that transform one lattice into another, or into itself. There is no connection with fivefold symmetry, other than that in any f.c.c. crystal. (orig.).

  10. Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes

    Science.gov (United States)

    Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275

  11. The inaccuracy of conventional one-dimensional parallel thermal resistance circuit model for two-dimensional composite walls

    International Nuclear Information System (INIS)

    Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.

    2008-01-01

    This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model

  12. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    Science.gov (United States)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  13. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  14. Topological aspect of disclinations in two-dimensional crystals

    International Nuclear Information System (INIS)

    Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)

  15. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  16. Finding two-dimensional peaks

    International Nuclear Information System (INIS)

    Silagadze, Z.K.

    2007-01-01

    Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems

  17. Evolution of two-dimensional soap froth with a single defect

    International Nuclear Information System (INIS)

    Levitan, B.

    1994-01-01

    The temporal evolution of two-dimensional soap froth, starting from a particle initial state, is studied. The initial state is a hexagonal array of bubbles in which a single defect is introduced. A cluster of transformed bubbles grows; the time dependence of the number of bubbles in this cluster in investigated and the distribution of the topological classes in the evolving part of the system is calculated. The distribution appears to approach a fixed limiting one, which differs from that obtained for the usual scaling state of the froth

  18. Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Ernie R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    The Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, which deployed the second ARM Mobile Facility (AMF2) aboard the Horizon Lines cargo container ship Spirit as it ran its regular route between Los Angeles, California and Honolulu, Hawaii, measured properties of clouds and precipitation, aerosols, radiation, and atmospheric, meteorological, and oceanic conditions with the goal of obtaining statistics of these properties to achieve better understanding of the transition between stratocumulus and cumulus cloud regimes that occur in that region. This Sc-Cu transition is poorly represented in models, and a major reason for this is the lack of high-quality and comprehensive data that can be used to constrain, validate, and improve model representation of the transition. MAGIC consisted of 20 round trips between Los Angeles and Honolulu, and thus over three dozen transects through the transition, totaling nearly 200 days at sea between September, 2012 and October, 2013. During this time MAGIC collected a unique and unprecedented data set, including more than 550 successful radiosonde launches. An Intensive Observational Period (IOP) occurred in July, 2013 during which more detailed measurements of the atmospheric structure were made. MAGIC was very successful in its operations and overcame numerous logistical and technological challenges, clearly demonstrating the feasibility of a marine AMF2 deployment and the ability to make accurate measurements of clouds and precipitation, aerosols, and radiation while at sea.

  19. Rigidity of the magic pentagram game

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A.

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  20. Rigidity of the magic pentagram game.

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  1. 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Planat, M.; Pracna, Petr; Levay, P.

    2012-01-01

    Roč. 8, č. 2012 (2012), 083 ISSN 1815-0659 Institutional support: RVO:61388955 Keywords : 'magic' configurations of observables * three-qubit Pauli group * split Cayley hexagon of order two Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.243, year: 2012

  2. The consensus in the two-feature two-state one-dimensional Axelrod model revisited

    International Nuclear Information System (INIS)

    Biral, Elias J P; Tilles, Paulo F C; Fontanari, José F

    2015-01-01

    The Axelrod model for the dissemination of culture exhibits a rich spatial distribution of cultural domains, which depends on the values of the two model parameters: F, the number of cultural features and q, the common number of states each feature can assume. In the one-dimensional model with F = q = 2, which is closely related to the constrained voter model, Monte Carlo simulations indicate the existence of multicultural absorbing configurations in which at least one macroscopic domain coexist with a multitude of microscopic ones in the thermodynamic limit. However, rigorous analytical results for the infinite system starting from the configuration where all cultures are equally likely show convergence to only monocultural or consensus configurations. Here we show that this disagreement is due simply to the order that the time-asymptotic limit and the thermodynamic limit are taken in the simulations. In addition, we show how the consensus-only result can be derived using Monte Carlo simulations of finite chains. (paper)

  3. The consensus in the two-feature two-state one-dimensional Axelrod model revisited

    Science.gov (United States)

    Biral, Elias J. P.; Tilles, Paulo F. C.; Fontanari, José F.

    2015-04-01

    The Axelrod model for the dissemination of culture exhibits a rich spatial distribution of cultural domains, which depends on the values of the two model parameters: F, the number of cultural features and q, the common number of states each feature can assume. In the one-dimensional model with F = q = 2, which is closely related to the constrained voter model, Monte Carlo simulations indicate the existence of multicultural absorbing configurations in which at least one macroscopic domain coexist with a multitude of microscopic ones in the thermodynamic limit. However, rigorous analytical results for the infinite system starting from the configuration where all cultures are equally likely show convergence to only monocultural or consensus configurations. Here we show that this disagreement is due simply to the order that the time-asymptotic limit and the thermodynamic limit are taken in the simulations. In addition, we show how the consensus-only result can be derived using Monte Carlo simulations of finite chains.

  4. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel

    2014-09-16

    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  5. Data Mining for New Two- and One-Dimensional Weakly Bonded Solids and Lattice-Commensurate Heterostructures.

    Science.gov (United States)

    Cheon, Gowoon; Duerloo, Karel-Alexander N; Sendek, Austin D; Porter, Chase; Chen, Yuan; Reed, Evan J

    2017-03-08

    Layered materials held together by weak interactions including van der Waals forces, such as graphite, have attracted interest for both technological applications and fundamental physics in their layered form and as an isolated single-layer. Only a few dozen single-layer van der Waals solids have been subject to considerable research focus, although there are likely to be many more that could have superior properties. To identify a broad spectrum of layered materials, we present a novel data mining algorithm that determines the dimensionality of weakly bonded subcomponents based on the atomic positions of bulk, three-dimensional crystal structures. By applying this algorithm to the Materials Project database of over 50,000 inorganic crystals, we identify 1173 two-dimensional layered materials and 487 materials that consist of weakly bonded one-dimensional molecular chains. This is an order of magnitude increase in the number of identified materials with most materials not known as two- or one-dimensional materials. Moreover, we discover 98 weakly bonded heterostructures of two-dimensional and one-dimensional subcomponents that are found within bulk materials, opening new possibilities for much-studied assembly of van der Waals heterostructures. Chemical families of materials, band gaps, and point groups for the materials identified in this work are presented. Point group and piezoelectricity in layered materials are also evaluated in single-layer forms. Three hundred and twenty-five of these materials are expected to have piezoelectric monolayers with a variety of forms of the piezoelectric tensor. This work significantly extends the scope of potential low-dimensional weakly bonded solids to be investigated.

  6. 'Magic coins' and 'magic squares': the discovery of astrological sigils in the Oldenburg Letters.

    Science.gov (United States)

    Roos, Anna Marie

    2008-09-20

    Enclosed in a 1673 letter to Henry Oldenburg were two drawings of a series of astrological sigils, coins and amulets from the collection of Strasbourg mathematician Julius Reichelt (1637-1719). As portrayals of particular medieval and early modern sigils are relatively rare, this paper will analyse the role of these medals in medieval and early modern medicine, the logic behind their perceived efficacy, and their significance in early modern astrological and cabalistic practice. I shall also demonstrate their change in status in the late seventeenth century from potent magical healing amulets tied to the mysteries of the heavens to objects kept in a cabinet for curiosos. The evolving perception of the purpose of sigils mirrored changing early modem beliefs in the occult influences of the heavens upon the body and the natural world, as well as the growing interests among virtuosi in collecting, numismatics and antiquities.

  7. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  8. Solution-Based Processing and Applications of Two-Dimensional Heterostructures

    Science.gov (United States)

    Hersam, Mark

    Two-dimensional materials have emerged as promising candidates for next-generation electronics and optoelectronics, but advances in scalable nanomanufacturing are required to exploit this potential in real-world technology. This talk will explore methods for improving the uniformity of solution-processed two-dimensional materials with an eye toward realizing dispersions and inks that can be deposited into large-area thin-films. In particular, density gradient ultracentrifugation allows the solution-based isolation of graphene, boron nitride, montmorillonite, and transition metal dichalcogenides (e.g., MoS2, WS2, ReS2, MoSe2, WSe2) with homogeneous thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in organic solvents or deoxygenated aqueous surfactant solutions with the resulting phosphorene nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional material inks that are compatible with a range of additive manufacturing methods including inkjet, gravure, screen, and 3D printing. The resulting solution-processed two-dimensional heterostructures show promise in several device applications including photodiodes, anti-ambipolar transistors, gate-tunable memristors, and heterojunction photovoltaics.

  9. Status and recent results of the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is an instrument for pointed ground-based observations of the gamma-ray sky in the 50 GeV to 80 TeV regime. The two 17 m diameter Imaging Air Cherenkov Telescopes are located on 2200 m a.s.l. at the Roque de los Muchachos Observatory on the Canary island La Palma. We will report the status and recent technical developments of the instrument, highlight the most important scientific results obtained with observations of Galactic and extragalactic objects, and will summarize future plans.

  10. On spectroscopic factors of magic and semimagic nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Gnezdilov, N. V.; Tolokonnikov, S. V.

    2014-01-01

    Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator Σ is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic 208 Pb nucleus and semimagic lead isotopes are presented

  11. Inter-layer Cooper pairing of two-dimensional electrons

    International Nuclear Information System (INIS)

    Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo

    1987-01-01

    The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)

  12. Magic turtle dans le canton du Jura: concept marketing

    OpenAIRE

    Hauser, Magali; Perruchoud-Massy, Marie-Françoise

    2012-01-01

    Depuis juin 2009, Saint-Ursanne/Clos du Doubs est une région pilote du Projet Enjoy Switzerland/ASM ayant pour but d’intervenir sur le développement et la sensibilisation du tourisme dans la région. En parallèle, la Maison du Tourisme, entreprise proposant principalement des offres touristiques dans la région, a ouvert ses portes l’année dernière. Ces deux entités ont travaillé ensemble afin de développer une nouvelle offre touristique intitulée « Magic turtle ». Le Magic turtle, pensé par de...

  13. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  14. Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers

    KAUST Repository

    RICHTER, DAVID

    2010-03-29

    The results from a numerical investigation of inertial viscoelastic flow past a circular cylinder are presented which illustrate the significant effect that dilute concentrations of polymer additives have on complex flows. In particular, effects of polymer extensibility are studied as well as the role of viscoelasticity during three-dimensional cylinder wake transition. Simulations at two distinct Reynolds numbers (Re = 100 and Re = 300) revealed dramatic differences based on the choice of the polymer extensibility (L2 in the FENE-P model), as well as a stabilizing tendency of viscoelasticity. For the Re = 100 case, attention was focused on the effects of increasing polymer extensibility, which included a lengthening of the recirculation region immediately behind the cylinder and a sharp increase in average drag when compared to both the low extensibility and Newtonian cases. For Re = 300, a suppression of the three-dimensional Newtonian mode B instability was observed. This effect is more pronounced for higher polymer extensibilities where all three-dimensional structure is eliminated, and mechanisms for this stabilization are described in the context of roll-up instability inhibition in a viscoelastic shear layer. © 2010 Cambridge University Press.

  15. A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions

    CERN Document Server

    Che Hsin, Lin; Lung Ming, Fu; 10.1088/0960-1317/15/5/006

    2005-01-01

    This paper proposes a novel three-dimensional (3D) vortex micromixer for micro-total-analysis-systems ( mu TAS) applications which utilizes self-rotation effects to mix fluids in a circular chamber at low Reynolds numbers (Re). The microfluidic mixer is fabricated in a three-layer glass structure for delivering fluid samples in parallel. The fluids are driven into the circular mixing chamber by means of hydrodynamic pumps from two fluid inlet ports. The two inlet channels divide into eight individual channels tangent to a 3D circular chamber for the purpose of mixing. Numerical simulation of the microfluidic dynamics is employed to predict the self-rotation phenomenon and to estimate the mixing performance under various Reynolds number conditions. Experimental flow visualization by mixing dye samples is performed in order to verify the numerical simulation results. A good agreement is found to exist between the two sets of results. The numerical results indicate that the mixing performance can be as high as 9...

  16. Pulsating strings from two-dimensional CFT on (T4N/S(N

    Directory of Open Access Journals (Sweden)

    Carlos Cardona

    2015-04-01

    Full Text Available We propose a state from the two-dimensional conformal field theory on the orbifold (T4N/S(N as a dual description for a pulsating string moving in AdS3. We show that, up to first order in the deforming parameter, the energy in both descriptions has the same dependence on the mode number, but with a non-trivial function of the coupling.

  17. Surface representations of two- and three-dimensional fluid flow topology

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  18. Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials

    DEFF Research Database (Denmark)

    Boll, Mads; Lotz, Mikkel Rønne; Hansen, Ole

    2014-01-01

    We demonstrate that the quasi-one-dimensional (1D) current transport, experimentally observed in graphene as measured by a collinear four-point probe in two electrode configurations A and B, can be interpreted using the sensitivity functions of the two electrode configurations (configurations...... A and B represents different pairs of electrodes chosen for current sources and potential measurements). The measured sheet resistance in a four-point probe measurement is averaged over an area determined by the sensitivity function. For a two-dimensional conductor, the sensitivity functions for electrode...... configurations A and B are different. But when the current is forced to flow through a percolation network, e.g., graphene with high density of extended defects, the two sensitivity functions become identical. This is equivalent to a four-point measurement on a line resistor, hence quasi-1D transport...

  19. Noise-induced drift in two-dimensional anisotropic systems

    Science.gov (United States)

    Farago, Oded

    2017-10-01

    We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.

  20. Three-dimensional echocardiography of normal and pathologic mitral valve: a comparison with two-dimensional transesophageal echocardiography

    NARCIS (Netherlands)

    Salustri, A.; Becker, A. E.; van Herwerden, L.; Vletter, W. B.; ten Cate, F. J.; Roelandt, J. R.

    1996-01-01

    This study was done to ascertain whether three-dimensional echocardiography can facilitate the diagnosis of mitral valve abnormalities. The value of the additional information provided by three-dimensional echocardiography compared with two-dimensional multiplane transesophageal echocardiography for

  1. Mg isotopes and the disappearance of magic N=20 - Laser and beta-NMR studies

    CERN Document Server

    Kowalska, M

    2006-01-01

    Collinear laser spectroscopy and beta-NMR spectroscopy with optical pumping were applied at ISOLDE/CERN to measure for the first time the magnetic moments of neutron-rich 27Mg, 29Mg, 31Mg and 33Mg, along with the spins of the two latter. The magnetic moment of 27Mg was derived from its hyperfine structure detected in UV fluorescent light, whereas the nuclear magnetic resonance observed in beta-decay asymmetry from a polarised ensemble of nuclei gave the magnetic moment of 29Mg. For 31Mg and 33Mg, the hyperfine structure and nuclear magnetic resonance gave the spin and the magnetic moment. The preliminary results for 27Mg and 29Mg are consistent with a large neutron shell gap at N=20, whereas data on 31Mg show that for this nucleus N=20 is not a magic number, which is also the case for 33Mg, based on preliminary analysis. Thus, the two latter isotopes belong to the island of inversion.

  2. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  3. Stress distribution in two-dimensional silos

    Science.gov (United States)

    Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel

    2018-01-01

    Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.

  4. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  5. $\\gamma$ and fast-timing spectroscopy of the doubly magic $^{132}$Sn and its one- and two-neutron particle/hole neighbours

    CERN Multimedia

    We propose to use fast-timing and spectroscopy to study five nuclei including the doubly magic $^{132}$Sn and its four neighbours: two-neutron hole $^{130}$Sn, one-neutron hole $^{131}$Sn, one-neutron particle $^{133}$Sn and two-neutron particle $^{134}$Sn. There is an increasing interest in these nuclei since they serve to test nuclear models using state-of-the-art interactions and many body approaches, and they provide information relevant to deduce single particle states. In addition properties of these nuclei are very important to model the astrophysical $\\textit{r-process}$. The present ISOLDE facility provides unique capabilities to study these Sn nuclei populated in the $\\beta$-decay of In isomers, produced from a UCx target unit equipped with neutron converter and ionized with RILIS, capable of selective isomer ionization. The increased production yields for $^{132}$In are estimated to be 200 larger than in the previous work done at OSIRIS. We will use the recently commissioned Isolde Decay Station (I...

  6. Effects of friction on forced two-dimensional Navier-Stokes turbulence.

    Science.gov (United States)

    Blackbourn, Luke A K; Tran, Chuong V

    2011-10-01

    Large-scale dissipation mechanisms have been routinely employed in numerical simulations of two-dimensional turbulence to absorb energy at large scales, presumably mimicking the quasisteady picture of Kraichnan in an unbounded fluid. Here, "side effects" of such a mechanism--mechanical friction--on the small-scale dynamics of forced two-dimensional Navier-Stokes turbulence are elaborated by both theoretical and numerical analysis. Given a positive friction coefficient α, viscous dissipation of enstrophy has been known to vanish in the inviscid limit ν→0. This effectively renders the scale-neutral friction the only mechanism responsible for enstrophy dissipation in that limit. The resulting dynamical picture is that the classical enstrophy inertial range becomes a dissipation range in which the dissipation of enstrophy by friction mainly occurs. For each α>0, there exists a critical viscosity ν(c), which depends on physical parameters, separating the regimes of predominant viscous and frictional dissipation of enstrophy. It is found that ν(c)=[η'(1/3)/(Ck(f)(2))]exp[-η'(1/3)/(Cα)], where η' is half the enstrophy injection rate, k(f) is the forcing wave number, and C is a nondimensional constant (the Kraichnan-Batchelor constant). The present results have important theoretical and practical implications. Apparently, mechanical friction is a poor choice in numerical attempts to address fundamental issues concerning the direct enstrophy transfer in two-dimensional Navier-Stokes turbulence. Furthermore, as relatively strong friction naturally occurs on the surfaces and at lateral boundaries of experimental fluids as well as at the interfaces of shallow layers in geophysical fluid models, the frictional effects discussed in this study are crucial in understanding the dynamics of these systems.

  7. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  8. Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner

    Science.gov (United States)

    Miyazaki, Daisuke; Kawanishi, Tsuyoshi; Nishimura, Yasuhiro; Matsushita, Kenji

    2001-11-01

    A new three-dimensional display system based on a volume-scanning method is demonstrated. To form a three-dimensional real image, an inclined two-dimensional image is rapidly moved with a mirror scanner while the cross-section patterns of a three-dimensional object are displayed sequentially. A vector-scan CRT display unit is used to obtain a high-resolution image. An optical scanning system is constructed with concave mirrors and a galvanometer mirror. It is confirmed that three-dimensional images, formed by the experimental system, satisfy all the criteria for human stereoscopic vision.

  9. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  10. Two-Dimensional Steady-State Boundary Shape Inversion of CGM-SPSO Algorithm on Temperature Information

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available Addressing the problem of two-dimensional steady-state thermal boundary recognition, a hybrid algorithm of conjugate gradient method and social particle swarm optimization (CGM-SPSO algorithm is proposed. The global search ability of particle swarm optimization algorithm and local search ability of gradient algorithm are effectively combined, which overcomes the shortcoming that the conjugate gradient method tends to converge to the local solution and relies heavily on the initial approximation of the iterative process. The hybrid algorithm also avoids the problem that the particle swarm optimization algorithm requires a large number of iterative steps and a lot of time. The experimental results show that the proposed algorithm is feasible and effective in solving the problem of two-dimensional steady-state thermal boundary shape.

  11. A two-stage preventive maintenance optimization model incorporating two-dimensional extended warranty

    International Nuclear Information System (INIS)

    Su, Chun; Wang, Xiaolin

    2016-01-01

    In practice, customers can decide whether to buy an extended warranty or not, at the time of item sale or at the end of the basic warranty. In this paper, by taking into account the moments of customers purchasing two-dimensional extended warranty, the optimization of imperfect preventive maintenance for repairable items is investigated from the manufacturer's perspective. A two-dimensional preventive maintenance strategy is proposed, under which the item is preventively maintained according to a specified age interval or usage interval, whichever occurs first. It is highlighted that when the extended warranty is purchased upon the expiration of the basic warranty, the manufacturer faces a two-stage preventive maintenance optimization problem. Moreover, in the second stage, the possibility of reducing the servicing cost over the extended warranty period is explored by classifying customers on the basis of their usage rates and then providing them with customized preventive maintenance programs. Numerical examples show that offering customized preventive maintenance programs can reduce the manufacturer's warranty cost, while a larger saving in warranty cost comes from encouraging customers to buy the extended warranty at the time of item sale. - Highlights: • A two-dimensional PM strategy is investigated. • Imperfect PM strategy is optimized by considering both two-dimensional BW and EW. • Customers are categorized based on their usage rates throughout the BW period. • Servicing cost of the EW is reduced by offering customized PM programs. • Customers buying the EW at the time of sale is preferred for the manufacturer.

  12. Promoting Reasoning through the Magic V Task

    Science.gov (United States)

    Bragg, Leicha A.; Widjaja, Wanty; Loong, Esther Yook-Kin; Vale, Colleen; Herbert, Sandra

    2015-01-01

    Reasoning in mathematics plays a critical role in developing mathematical understandings. In this article, Bragg, Loong, Widjaja, Vale & Herbert explore an adaptation of the Magic V Task and how it was used in several classrooms to promote and develop reasoning skills.

  13. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...

  14. Two-dimensional turbulent flows on a bounded domain

    NARCIS (Netherlands)

    Kramer, W.

    2006-01-01

    Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures

  15. Intrinsic two-dimensional states on the pristine surface of tellurium

    Science.gov (United States)

    Li, Pengke; Appelbaum, Ian

    2018-05-01

    Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.

  16. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.; Aarts, D. G. A. L.; Howell, P. D.; Majumdar, A.

    2017-01-01

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  17. Nematic Equilibria on a Two-Dimensional Annulus

    KAUST Repository

    Lewis, A. H.

    2017-01-16

    We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.

  18. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  19. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  20. Construction of two-dimensional quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, S.; Kondracki, W.

    1987-12-01

    We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.

  1. A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.

    Science.gov (United States)

    Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping

    2017-10-01

    The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.

  2. Elemental magic, v.2 the technique of special effects animation

    CERN Document Server

    Gilland, Joseph

    2012-01-01

    Design beautiful, professional-level animated effects with these detailed step-by-step tutorials from former Disney animator and animated effects expert Joseph Gilland. Filled with beautiful, full-color artwork, Elemental Magic, Volume II, breaks down the animated effect process from beginning to end-including booming explosions, gusting winds, magical incantations, and raging fires. He also breaks down the process of effects ""clean-up,"" as well as timing and frame rates. The companion website includes real-time footage of the author lecturing as he animates the drawings from the

  3. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  4. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  5. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  6. Two-Dimensional Variable Property Conjugate Heat Transfer Simulation of Nanofluids in Microchannels

    International Nuclear Information System (INIS)

    Ramiar, A.; Ranjbar, A.A.

    2013-01-01

    Laminar two-dimensional forced convective heat transfer of CuO-water and Al 2 O 3 -water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.

  7. The magic lens box: Simplifying the development of mixed reality games

    OpenAIRE

    Wetzel, R.; Lindt, I.; Waern, A.; Johnson, S.

    2008-01-01

    Mixed Reality games are becoming more and more popular these days and offer unique experiences to the players. However, development of such games typically still requires expert knowledge and access to Mixed Reality toolkits or frameworks. In this paper, we present the so-called Magic Lens Box that follows a different approach. Based on standard hardware The Magic Lens Box enables game designers with little technological background to create their own Mixed Reality games in a simple yet power...

  8. Extended Polymorphism of Two-Dimensional Material

    NARCIS (Netherlands)

    Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro

    When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from

  9. Converting Panax ginseng DNA and chemical fingerprints into two-dimensional barcode.

    Science.gov (United States)

    Cai, Yong; Li, Peng; Li, Xi-Wen; Zhao, Jing; Chen, Hai; Yang, Qing; Hu, Hao

    2017-07-01

    In this study, we investigated how to convert the Panax ginseng DNA sequence code and chemical fingerprints into a two-dimensional code. In order to improve the compression efficiency, GATC2Bytes and digital merger compression algorithms are proposed. HPLC chemical fingerprint data of 10 groups of P. ginseng from Northeast China and the internal transcribed spacer 2 (ITS2) sequence code as the DNA sequence code were ready for conversion. In order to convert such data into a two-dimensional code, the following six steps were performed: First, the chemical fingerprint characteristic data sets were obtained through the inflection filtering algorithm. Second, precompression processing of such data sets is undertaken. Third, precompression processing was undertaken with the P. ginseng DNA (ITS2) sequence codes. Fourth, the precompressed chemical fingerprint data and the DNA (ITS2) sequence code were combined in accordance with the set data format. Such combined data can be compressed by Zlib, an open source data compression algorithm. Finally, the compressed data generated a two-dimensional code called a quick response code (QR code). Through the abovementioned converting process, it can be found that the number of bytes needed for storing P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can be greatly reduced. After GTCA2Bytes algorithm processing, the ITS2 compression rate reaches 75% and the chemical fingerprint compression rate exceeds 99.65% via filtration and digital merger compression algorithm processing. Therefore, the overall compression ratio even exceeds 99.36%. The capacity of the formed QR code is around 0.5k, which can easily and successfully be read and identified by any smartphone. P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can form a QR code after data processing, and therefore the QR code can be a perfect carrier of the authenticity and quality of P. ginseng information. This study provides a theoretical

  10. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  11. Suspension and simple optical characterization of two-dimensional membranes

    Science.gov (United States)

    Northeast, David B.; Knobel, Robert G.

    2018-03-01

    We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.

  12. Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research.

    Science.gov (United States)

    Mychaskiw, George

    2011-09-06

    Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology"Any sufficiently advanced technology is indistinguishable from magic".-Arthur C. Clarke.

  13. Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research

    OpenAIRE

    Mychaskiw George

    2011-01-01

    Abstract Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology "Any sufficiently advanced technology is indistinguishable from magic". -Arthur C. Clarke

  14. Superintegrability on the two dimensional hyperboloid

    International Nuclear Information System (INIS)

    Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr

    1998-01-01

    This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out

  15. Few helium atoms in quasi two-dimensional space

    International Nuclear Information System (INIS)

    Kilic, Srecko; Vranjes, Leandra

    2003-01-01

    Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established

  16. Multichannel scattering amplitudes of microparticles in a quantum well with two-dimensional -potential

    International Nuclear Information System (INIS)

    Sedrakian, D.M.; Badalyan, D.H.; Sedrakian, L.R.

    2015-01-01

    Quasi-one-dimensional quantum particle scattering on two-dimensional δ-potential is considered. Analytical expressions for the amplitudes of the multi-channel transmission and reflection are given. The problem for the case when the number of channels is finite and equal N, and the particle falls on the potential moving through the channel l is solved. The case of a three channel scattering is studied in details. It is shown that under conditions k 2 → 0 and k 3 → 0 'overpopulation' of particles on the second and third channels occurs. The points of δ-potential location which provide a full 'overpopulation' of particles is also found

  17. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    Science.gov (United States)

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  18. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-07

    The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

  19. A two-dimensional, TVD numerical scheme for inviscid, high Mach number flows in chemical equilibrium

    Science.gov (United States)

    Eberhardt, S.; Palmer, G.

    1986-01-01

    A new algorithm has been developed for hypervelocity flows in chemical equilibrium. Solutions have been achieved for Mach numbers up to 15 with no adverse effect on convergence. Two methods of coupling an equilibrium chemistry package have been tested, with the simpler method proving to be more robust. Improvements in boundary conditions are still required for a production-quality code.

  20. Two-dimensional time dependent Riemann solvers for neutron transport

    International Nuclear Information System (INIS)

    Brunner, Thomas A.; Holloway, James Paul

    2005-01-01

    A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem

  1. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  2. Two dimensional MHD flows between porous boundaries

    International Nuclear Information System (INIS)

    Gratton, F.T.

    1994-01-01

    Similarity solutions of dissipative MHD equations representing conducting fluids injected through porous walls and flowing out in both directions from the center of the channel, are studied as a function of four non dimensional parameters, Reynolds number R e , magnetic Reynolds number R m , Alfvenic Mach number, M A , and pressure gradient coefficient, C. The effluence is restrained by an external magnetic field normal to the walls. When R m m >>1, the solution may model a collision of plasmas of astrophysical interest. In this case the magnetic field lines help to drive the outflow acting jointly with the pressure gradient. The law for C as a function of the other parameters is given for several asymptotic limits. (author). 3 refs, 6 figs

  3. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    International Nuclear Information System (INIS)

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  4. Two-dimensional condensation of physi-sorbed methane on layer-like halides

    International Nuclear Information System (INIS)

    Nardon, Yves

    1972-01-01

    Two-dimensional condensation of methane in physi-sorbed layers has been studied from sets of stepped isotherms of methane on the cleavage plane of layer-like halides (FeCl 2 , CdCl 2 , NiBr 2 , CdBr 2 , FeI 2 , CaI 2 , CaI 2 and PbI 2 ) in most cases prepared by sublimation in a rapid current of inert gas. The vertical parts of the steps of adsorption isotherms correspond to the formation of successive monomolecular layers by two-dimensional condensation. Thermodynamic analysis of experimental results, has mainly emphasized the important effect of the potential relief of adsorbent surfaces, on both the structure of the physi-sorbed layers and the two-dimensional critical temperature. From its entropy, we conclude that the first layer is a (111) plane of f.c.c.: methane which becomes more loosely packed as the dimensional compatibility of the lattices of the adsorbent and adsorbate becomes poorer. Experimental values of the two-dimensional critical temperatures in the first, second and third layers have been determined, and interpreted on the following basis. An expansion of the layer induces a lowering of the two-dimensional critical temperature by decreasing the lateral interaction energy, while a localisation of the adsorbed molecules in potential wells, when possible, induces a rise of the two-dimensional critical temperature. (author) [fr

  5. Conformal invariance and two-dimensional physics

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1993-01-01

    Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness

  6. Multisoliton formula for completely integrable two-dimensional systems

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Chudnovsky, G.V.

    1979-01-01

    For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations

  7. Realistic nuclear shell theory and the doubly-magic 132Sn region

    International Nuclear Information System (INIS)

    Vary, J.P.

    1978-01-01

    After an introduction discussing the motivation and interest in results obtained with isotope separators, the fundamental problem in realistic nuclear shell theory is posed in the context of renormalization theory. Then some of the important developments that have occurred over the last fifteen years in the derivation of the effective Hamiltonian and application of realistic nuclear shell theory are briefly reviewed. Doubly magic regions of the periodic table and the unique advantages of the 132 Sn region are described. Then results are shown for the ground-state properties of 132 Sn as calculated from the density-dependent Hartree-Fock approach with the Skyrme Hamiltonian. A single theoretical Hamiltonian for all nuclei from doubly magic 132 Sn to doubly magic 208 Pb is presented; single-particle energies are graphed. Finally, predictions of shell-model level-density distributions obtained with spectral distribution methods are discussed; calculated level densities are shown for 136 Xe. 10 figures

  8. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  9. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    Science.gov (United States)

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  10. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    Science.gov (United States)

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  11. Two-dimensional neutron scattering in a floating heavy water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Baroni, Patrick; Noirez, Laurence; Bitschnau, Brigitte

    2010-01-01

    When a high voltage is applied to pure water in two filled beakers kept close to each other, a connection forms spontaneously, giving the impression of a floating water bridge. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first two-dimensional structural study of a floating heavy water bridge is presented as a function of the azimuthal angle. A small anisotropy in the angular distribution of the intensity of the first structural peak was observed, indicating a preferred orientation of a part of the D 2 O molecules along the electric field lines without breaking the local tetrahedral symmetry. The experiment is carried out by neutron scattering on a D 2 O bridge.

  12. Two-dimensional neutron scattering in a floating heavy water bridge

    Science.gov (United States)

    Fuchs, Elmar C.; Baroni, Patrick; Bitschnau, Brigitte; Noirez, Laurence

    2010-03-01

    When a high voltage is applied to pure water in two filled beakers kept close to each other, a connection forms spontaneously, giving the impression of a floating water bridge. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first two-dimensional structural study of a floating heavy water bridge is presented as a function of the azimuthal angle. A small anisotropy in the angular distribution of the intensity of the first structural peak was observed, indicating a preferred orientation of a part of the D2O molecules along the electric field lines without breaking the local tetrahedral symmetry. The experiment is carried out by neutron scattering on a D2O bridge.

  13. Rational solutions to two- and one-dimensional multicomponent Yajima–Oikawa systems

    International Nuclear Information System (INIS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-01-01

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima–Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints. - Highlights: • Exact explicit rational solutions of two-and one-dimensional multicomponent Yajima–Oikawa systems. • Two-dimensional rogue wave contains three different patterns: bright, intermediate and dark states. • Multi- and higher-order rogue waves exhibit distinct dynamic behaviors in two-dimensional case

  14. Effective forces in near-magic nuclei

    International Nuclear Information System (INIS)

    Artamonov, S.A.; Isakov, V.I.; Ogloblin, S.G.

    1984-01-01

    Characteristics of 146 Gd, 206 Hg, sup(206, 208)Tl, sup(206, 208, 210)Pb, sup(208, 210)Bi, 210 Po nuclei are calculated on the base of representations on universal effective interaction of finite range. Discrepancy with the experiment for 210 Bi nucleus disappears if the method of ''penalty'' functions is used for search of optimum parameters. New parameters of effective interaction common for all the considered two-quasi-particle nuclei are determined. Parameters of tensor forces undergo most noticeable danges as compared with other calculations. Descriptions of lowest levels not only 210 Bi but also 206 Tl as well as collective states of 208 Pb and a new magic nucleus 146 Gd are improved. The calculated probabilities of electric transitions between ground and one-phonon states in core nuclei also agree with the experiment

  15. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  16. Invitation to number theory

    CERN Document Server

    Ore, Oystein

    2017-01-01

    Number theory is the branch of mathematics concerned with the counting numbers, 1, 2, 3, … and their multiples and factors. Of particular importance are odd and even numbers, squares and cubes, and prime numbers. But in spite of their simplicity, you will meet a multitude of topics in this book: magic squares, cryptarithms, finding the day of the week for a given date, constructing regular polygons, pythagorean triples, and many more. In this revised edition, John Watkins and Robin Wilson have updated the text to bring it in line with contemporary developments. They have added new material on Fermat's Last Theorem, the role of computers in number theory, and the use of number theory in cryptography, and have made numerous minor changes in the presentation and layout of the text and the exercises.

  17. The permanence of mental objects: testing magical thinking on perceived and imaginary realities.

    Science.gov (United States)

    Subbotsky, Eugene

    2005-03-01

    This study tested participants' preparedness to acknowledge that an object could change as a result of magical intervention. Six- and 9-year-old children and adults treated perceived and imagined objects as being equally permanent. Adults treated a fantastic object as significantly less permanent than either perceived or imagined objects. Results were similar when a different type of mental-physical causality--a participant's own wish--was examined. Adults were also tested on the permanence of personally significant imagined objects (participants' images of their future lives). Although almost all participants claimed that they did not believe in magic, in test trials they were not prepared to rule out the possibility that their future lives could be affected by a magical curse. Copyright 2005 APA, all rights reserved.

  18. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  19. Penentuan Nilai Motorik Halus Anak Dengan Game Magic Maze Menggunakan Metode Mamdani

    OpenAIRE

    Fadly, Muhammad

    2015-01-01

    Motor development is a very important factor in the development of the whole child. fine motor skills are very important because it affects the other terms of learning in early childhood. Therefore, it made the game Magic Maze to assess motor skills early childhood. Game Magic Maze in this study using Mamdani method in determining the values to a child's fine motor skills. Maze game will be made on the PC. 081402045

  20. An off-line two-dimensional analytical procedure for determination of polcyclic aromatic hydrocarbons in smoke aerosol

    NARCIS (Netherlands)

    Claessens, H.A.; Lammerts van Bueren, L.G.D.

    1987-01-01

    Smoke aerosol from stoves consists of a wide variety of chemical substances of which a number have toxic properties. To study the impact of aerosol emissions on health and environment reliable analytical procedures must be available for these samples. An off-line two-dimensional HPLC method is

  1. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  2. Epirubicin, oxaliplatin, and capectabine is just as "MAGIC"al as epirubicin, cisplatin, and fluorouracil perioperative chemotherapy for resectable locally advanced gastro-oesophageal cancer

    Directory of Open Access Journals (Sweden)

    Bhawna Sirohi

    2014-01-01

    Full Text Available Background: The perioperative use of epirubicin, cisplatin, and fluorouracil (ECF significantly improves outcomes in patients with gastric and gastro-oesophageal (GO cancers but is cumbersome to administer. Given the equivalence of epirubicin, oxaliplatin, and capectabine (EOX with ECF in advanced setting, we analyzed the compliance, efficacy, and toxicity of perioperative EOX in resectable but locally advanced cancers. Methods: This is a retrospective analysis of prospectively maintained database of patients treated between January 2012 and September 2013 at Tata Memorial Centre. Patients were planned to receive 3# of neoadjuvant (NA and 3# of adjuvant EOX (intravenous epirubicin 50 mg/m 2 D1, oxaliplatin 130 mg/m 2 , on D1, capecitabiine 1250 mg/m 2 D1-21 every 21 days. On completion of NA therapy, patients were planned to undergo gastrectomy and D2 lymphadenectomy. Results: A total of 99 patients (76% males, median age 51 years were treated with perioperative EOX. Preoperatively, 93% patients completed EOX. Post-NA chemotherapy, 4 patients progressed, 1 patient died and 94 were taken up for surgery. Of these, 9 were inoperable and 85 patients underwent radical surgery. Of these, 71% (60/85 were able to complete three cycles of adjuvant EOX. The compliance to complete all 6 cycles of perioperative chemotherapy was 64%. Grade 3 and 4 toxicities were comparable to the MAGIC dataset apart from higher number of diarrhea in our patients. Conclusions: In patients with resectable GO adenocarcinoma, it is possible to deliver the MAGIC-type perioperative chemotherapy with EOX with better compliance, toxicity, and efficacy rates.

  3. Universality of modular symmetries in two-dimensional magnetotransport

    Science.gov (United States)

    Olsen, K. S.; Limseth, H. S.; Lütken, C. A.

    2018-01-01

    We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.

  4. Temperature maxima in stable two-dimensional shock waves

    International Nuclear Information System (INIS)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-01-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society

  5. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  6. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  7. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering.

    Science.gov (United States)

    Malarski, Anna; Schürer, Benedikt; Schmitz, Ingo; Zigan, Lars; Flügel, Alexandre; Leipertz, Alfred

    2009-04-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements.

  8. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering

    International Nuclear Information System (INIS)

    Malarski, Anna; Schuerer, Benedikt; Schmitz, Ingo; Zigan, Lars; Fluegel, Alexandre; Leipertz, Alfred

    2009-01-01

    The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements

  9. Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem

    Science.gov (United States)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Vygornitskii, Nikolai V.

    2018-02-01

    The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi, and solvent evaporation rates, u . For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x , and vertical, y , directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi and u .

  10. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems

    Science.gov (United States)

    Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu

    2018-05-01

    We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.

  11. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  12. Dispersion in two dimensional channels—the Fick-Jacobs approximation revisited

    Science.gov (United States)

    Mangeat, M.; Guérin, T.; Dean, D. S.

    2017-12-01

    We examine the dispersion of Brownian particles in a symmetric two dimensional channel, this classical problem has been widely studied in the literature using the so called Fick-Jacobs’ approximation and its various improvements. Most studies rely on the reduction to an effective one dimensional diffusion equation, here we derive an explicit formula for the diffusion constant which avoids this reduction. Using this formula the effective diffusion constant can be evaluated numerically without resorting to Brownian simulations. In addition, a perturbation theory can be developed in \\varepsilon = h_0/L where h 0 is the characteristic channel height and L the period. This perturbation theory confirms the results of Kalinay and Percus (2006 Phys. Rev. E 74 041203), based on the reduction, to one dimensional diffusion are exact at least to {{ O}}(\\varepsilon^6) . Furthermore, we show how the Kalinay and Percus pseudo-linear approximation can be straightforwardly recovered. The approach proposed here can also be exploited to yield exact results in the limit \\varepsilon \\to ∞ , we show that here the diffusion constant remains finite and show how the result can be obtained with a simple physical argument. Moreover, we show that the correction to the effective diffusion constant is of order 1/\\varepsilon and remarkably has some universal characteristics. Numerically we compare the analytic results obtained with exact numerical calculations for a number of interesting channel geometries.

  13. Automated Processing of Two-Dimensional Correlation Spectra

    Science.gov (United States)

    Sengstschmid; Sterk; Freeman

    1998-04-01

    An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.

  14. The paddle move commonly used in magic tricks as a means for analysing the perceptual limits of combined motion trajectories.

    Science.gov (United States)

    Hergovich, Andreas; Gröbl, Kristian; Carbon, Claus-Christian

    2011-01-01

    Following Gustav Kuhn's inspiring technique of using magicians' acts as a source of insight into cognitive sciences, we used the 'paddle move' for testing the psychophysics of combined movement trajectories. The paddle move is a standard technique in magic consisting of a combined rotating and tilting movement. Careful control of the mutual speed parameters of the two movements makes it possible to inhibit the perception of the rotation, letting the 'magic' effect emerge--a sudden change of the tilted object. By using 3-D animated computer graphics we analysed the interaction of different angular speeds and the object shape/size parameters in evoking this motion disappearance effect. An angular speed of 540 degrees s(-1) (1.5 rev. s(-1)) sufficed to inhibit the perception of the rotary movement with the smallest object showing the strongest effect. 90.7% of the 172 participants were not able to perceive the rotary movement at an angular speed of 1125 degrees s(-1) (3.125 rev. s(-1)). Further analysis by multiple linear regression revealed major influences on the effectiveness of the magic trick of object height and object area, demonstrating the applicability of analysing key factors of magic tricks to reveal limits of the perceptual system.

  15. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...

  16. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  17. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  18. Pair Interaction of Dislocations in Two-Dimensional Crystals

    Science.gov (United States)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.

    2005-10-01

    The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.

  19. Self-focusing instability of two-dimensional solitons and vortices

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Juul Rasmussen, J.

    1995-01-01

    The instability of two-dimensional solitons and vortices is demonstrated in the framework of the three-dimensional nonlinear Schrodinger equation (NLSE). The instability can be regarded as the analog of the Kadomtsev-Petviashvili instability [B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl...

  20. [Medical practice, magic and religion - conjunction and development before and after Reformation].

    Science.gov (United States)

    Thorvardardottir, Olina Kjerulf

    2017-12-01

    The conjunction between medical practice, religion and magic becomes rather visible when one peers into old scripts and ancient literature. Before the foundation and diffusion of universities of the continent, the european convents and cloisters were the centers of medical knowl-edge and -practice for centuries. Alongside the scholarly development of medical science, driven from the roots of the eldest scholarly medicial practice, the practice of folk-medicin flourished and thrived all over Europe, not least the herbal-medicine which is the original form and foundation for modern pharmacy. This article deals with the conjunction of religion, magic and medical practice in ancient Icelandic sources such as the Old-Norse literature, medical-scripts from the 12th - 15th century Iceland, and not least the Icelandic magical-scripts (galdrakver) of the 17th century. The last mentioned documents were used as evidence in several witch-trials that led convicted witches to suffer executions at the stake once the wave of European witch-persecutions had rushed ashore in 17th century Iceland. These sources indicate a decline of medical knowledge and science in the 16th and 17th century Iceland, the medical practice being rather undeveloped at the time - in Iceland as in other parts of Europe - there-fore a rather unclear margin between "the learned and the laymen". While common people and folk-healers were convicted as witches to suffer at the stake for possession of magical scripts and healing-books, some scholars of the state of Danmark were practicing healing-methods that deserve to be compared to the activities of the former ones. That comparison raises an inevitable question of where to draw the line between the learned medical man and the magician of 17th century Iceland, that is between Magic and Science.