Cooperative resonances in light scattering from two-dimensional atomic arrays
Shahmoon, Ephraim; Lukin, Mikhail D; Yelin, Susanne F
2016-01-01
We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate that such arrays can operate as nearly perfect mirrors for a wide range of incident angles and frequencies close to the individual atomic resonance. These results can be understood in terms of the cooperative resonances of the surface modes supported by the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and nanomechanics.
Herran Cuspinera, Roxana M.; Hore, Dennis K.
2016-11-01
We highlight the potential of generalized two-dimensional correlation analysis for the fingerprinting of cell growth in solution monitored by light scattering, where the synchronous and asynchronous responses serve as a sensitive marker for the effect of growth conditions on the distribution of cell morphologies. The polarization of the scattered light varies according to the cell size distribution, and so the changes in the polarization over time are an excellent indicator of the dynamic growth conditions. However, direct comparison of the polarization-, time-, and angle-resolved signals between different experiments is hindered by the subtle changes in the data, and the inability to easily adapt models to account for these differences. Using Mie scattering simulations of different growth conditions, and some preliminary experimental data for a single set of conditions, we illustrate that correlation analysis provides rapid and sensitive qualitative markers of growth characteristics.
Hetland, Øyvind S; Nordam, Tor; Simonsen, Ingve
2016-01-01
The scattering of polarized light incident from one dielectric medium on its two-dimensional randomly rough interface with a second dielectric medium is studied. A reduced Rayleigh equation for the scattering amplitudes is derived for the case where p- or s-polarized light is incident on this interface, with no assumptions being made regarding the dielectric functions of the media. Rigorous, purely numerical, nonperturbative solutions of this equation are obtained. They are used to calculate the reflectivity and reflectance of the interface, the mean differential reflection coefficient, and the full angular distribution of the intensity of the scattered light. These results are obtained for both the case where the medium of incidence is the optically less dense medium, and in the case where it is the optically more dense medium. Optical analogues of the Yoneda peaks observed in the scattering of x-rays from metal surfaces are present in the results obtained in the latter case. Brewster scattering angles for d...
Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain
2014-01-01
We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.
Simonsen, Ingve; Kryvi, Jacob B; Maradudin, Alexei A
2015-01-01
An expression is obtained on the basis of phase perturbation theory for the contribution to the mean differential reflection coefficient from the in-plane co-polarized component of the light scattered diffusely from a two-dimensional randomly rough dielectric surface when the latter is illuminated by s-polarized light. This result forms the basis for an approach to inverting experimental light scattering data to obtain the normalized surface height autocorrelation function of the surface. Several parametrized forms of this correlation function, and the minimization of a cost function with respect to the parameters defining these representations, are used in the inversion scheme. This approach also yields the rms height of the surface roughness, and the dielectric constant of the dielectric substrate if it is not known in advance. The input data used in validating this inversion consists of computer simulation results for surfaces defined by exponential and Gaussian surface height correlation functions, withou...
Kamataki, K.; Morita, Y.; Shiratani, M.; Koga, K.; Uchida, G.; Itagaki, N.
2012-04-01
We have developed a simple in-situ method for measuring the size distribution (the mean size (mean diameter) and size dispersion) of nano-particles generated in reactive plasmas using the 2 dimensional laser light scattering (2DLLS) method. The principle of the method is based on thermal coagulation of the nano-particles, which occurs after the discharge is turned off, and the size and density of the nano-particles can then be deduced. We first determined the 2D spatial distribution of the density and size of the nano-particles in smaller particle size (a few nm) range than ones deduced from the conventional 2DLLS method. From this 2D dataset, we have for the first time been able to determine the size distribution of nano-particles generated in a reactive plasma without ex-situ measurements.
Klift, van der E.J.C.; Vivó-Truyols, G.; Claassen, F.W.; Holthoon, van F.L.; Beek, van T.A.
2008-01-01
An improved comprehensive two-dimensional (LC × LC) HPLC system for the analysis of triacylglycerols was developed. In the first-dimension, a Ag(I)-coated cation exchanger (250 mm × 2.1 mm, 5 ¿m) was employed with a gradient from 100% MeOH to 6% MeCN in MeOH at 20 ¿L/min. Using a 10-way valve with t
Kryvi, J. B.; Simonsen, I.; Maradudin, A. A.
2016-09-01
The contribution to the mean differential reflection coefficient from the in-plane, co-polarized scattering of p- polarized light from a two-dimensional randomly rough dielectric surface is used to invert scattering data to obtain the normalized surface height autocorrelation function of the surface. Within phase perturbation theory this contribution to the mean differential reflection coefficient possesses singularities (poles) when the polar scattering angle θs equals +/-θB= +/- tan-1√E, where E is the dielectric constant of the dielectric medium and θB is the Brewster angle. Nevertheless, we show in this paper that if the mean differential reflection coefficient is measured only in the angular range |θs| inversion scheme. This approach also yields the rms height of the surface roughness, and the dielectric constant of the scattering medium if it is not known in advance. The input data used in this minimization procedure consist of computer simulation results for surfaces defined by exponential and Gaussian surface height correlation functions, without and with the addition of multiplicative noise. The proposed inversion scheme is computationally efficient.
Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering
Hoffman, D.; Münch, K.-U.; Leipertz, A.
1996-04-01
We present what to our knowledge are the first filtered Rayleigh scattering temperature measurements and use them in sooting flame. This new technique for two-dimensional thermography in gas combustion overcomes some of the major disadvantages of the standard Rayleigh technique. It suppresses scattered background light from walls or windows and permits detection of two-dimensional Rayleigh intensity distributions of the gas phase in the presence of small particles by spectral filtering of the scattered light.
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Light transport and localization in two-dimensional correlated disorder
Conley, Gaurasundar M; Pratesi, Filippo; Vynck, Kevin; Wiersma, Diederik S
2013-01-01
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this article, we theoretically investigate the transport and localization of light in two-dimensional photonic structures with short-range correlated disorder. The problem is tackled semi-analytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
Holler, Stephen; Fuerstenau, Stephen D.; Skelsey, Charles R.
2016-07-01
Light scattering from non-spherical particles and aggregates exhibits complex structure that is revealed only when observed in two angular dimensions (θ, ϕ). However, due to variations in shape, packing, and orientation of such aerosols, the structure of two-dimensional angular optical scattering (TAOS) patterns varies among particles. The spectral dependence of scattering contributes further to the observed complexity, but offers another facet to consider. By leveraging multispectral TAOS data from flowing aerosols, we have identified novel morphological descriptors that may be employed in multivariate statistical algorithms for "unknown" particle classification.
Simulation of laser bistatic two-dimensional scattering imaging about lambertian cylinders
Gong, Yanjun; Li, Lang; Wang, Mingjun; Gong, Lei
2016-10-01
This paper deals with the simulation of laser bi-static scattering imaging about lambertian cylinders. Two-dimensional imaging of a target can reflect the shape of the target and material property on the surface of the target. Two-dimensional imaging has important significance for target recognition. Simulations results of laser bi-static two-dimensional scattering imaging of some cylinders are given. The laser bi-static scattering imaging of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. The scattering direction of laser bi-static scattering imaging is arbitrary direction. The scattering direction of backward two-dimensional scattering imaging is at opposite direction of the incident direction of laser. The backward two-dimensional scattering imaging is special case of bi-static two dimensional scattering imaging. The scattering intensity of a micro-element on the target could be obtained based on the laser radar equation. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the surface of cylinder. According to the incident direction of incident laser and normal of infinitesimal area, the local incidence angle can be calculated. According to the scattering direction and normal of infinitesimal area, the local angle of scattering can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get mathematical model of bi-static laser two dimensional scattering imaging about lambert cylinder. From the results given, one can see that the simulation results of laser bi-static scattering about lambert cylinder is correct.
Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media
Hao Jin Bo
2003-01-01
Effect of scattering on radiative heat transfer in two-dimensional rectangular media by the finite-volume method has been studied. Compared with the existing solutions, it shows that the result obtained by the finite-volume method is reliable. Furthermore, relative errors caused by the approximation that linear and nonlinear anisotropic scattering media is simplified to isotropic scattering media have been studied.
Optical properties of two-dimensional magnetoelectric point scattering lattices
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Sersic, Ivana; Koenderink, A. Femius
2013-01-01
of split ring resonators and provide a quantitative comparison of measured and calculated transmission spectra at normal incidence as a function of lattice density, showing excellent agreement. We further show angle-dependent transmission calculations for circularly polarized light and compare...
Laser bistatic two-dimensional scattering imaging simulation of lambert cone
Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei
2015-11-01
This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.
Two-dimensional resonant magnetic soft X-ray scattering set-up for extreme sample environment.
Stanescu, Stefan; Mocuta, Cristian; Merlet, Frederic; Barbier, Antoine
2013-01-01
The newly built MagSAXS (magnetic small-angle X-ray scattering) set-up dedicated to the direct two-dimensional measurement of magnetic scattering using polarized synchrotron radiation in extreme sample environments is presented. Pure optical transport of the image is used to record the magnetic scattering with a two-dimensional CCD visible-light camera. The set-up is able to probe magnetic correlation lengths from the micrometer down to the nanometer scale. A detailed layout is presented along with preliminary results obtained at several beamlines at Synchrotron SOLEIL. The presented examples underline the wide range of possible applications spanning from correlation lengths determination to Fourier transform holography.
Elastic Wave Scattering by Two-Dimensional Periodical Array of Cylinders
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism, we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.
Two-dimensional protonic percolation on lightly hydrated purple membrane.
Rupley, J A; Siemankowski, L; Careri, G; Bruni, F
1988-12-01
The capacitance and dielectric loss factor were measured for a sample of purple membrane of Halobacterium halobium as a function of hydration level (0.017 to >0.2 g of water/g of membrane) and frequency (10 kHz to 10 MHz). The capacitance and the derived conductivity show explosive growth above a threshold hydration level, h(c) approximately 0.0456. The conductivity shows a deuterium isotope effect, H/(2)H = 1.38, in close agreement with expectation for a protonic process. The level h(c) is frequency independent and shows no deuterium isotope effect. These properties are analogous to those found for lysozyme in a related study. Protonic conduction for the purple membrane can be considered, as for lysozyme, within the framework of a percolation model. The critical exponent, t, which describes the conductivity of a percolative system near the threshold, has the value 1.23. This number is in close agreement with expectation from theory for a two-dimensional percolative process. The dielectric properties of the purple membrane are more complex than those of lysozyme, seen in the value of h(c) and in the frequency and hydration dependence of the loss factor. There appear to be preferred regions of proton conduction. The percolation model is based upon stochastic behavior of a system partially populated with conducting elements. This model suggests that ion transport in membranes and its control can be based on pathways formed of randomly connected conducting elements and that a fixed geometry (a proton wire) is not the only possible basis for a mechanism of conduction.
Short-pulsed laser transport in two-dimensional scattering media by natural element method.
Zhang, Yong; Yi, Hong-Liang; Xie, Ming; Tan, He-Ping
2014-04-01
The natural element method (NEM) is extended to solve transient radiative transfer (TRT) in two-dimensional semitransparent media subjected to a collimated short laser irradiation. The least-squares (LS) weighted residuals approach is employed to spatially discretize the transient radiative heat transfer equation. First, for the case of the refractive index matched boundary, LSNEM solutions to TRT are validated by comparison with results reported in the literature. Effects of the incident angle on time-resolved signals of transmittance and reflectance are investigated. Afterward, the accuracy of this algorithm for the case of the refractive index mismatched boundary is studied. Finally, the LSNEM is extended to study the TRT in a two-dimensional semitransparent medium with refractive index discontinuity irradiated by the short pulse laser. The effects of scattering albedo, optical thickness, scattering phase function, and refractive index on transmittance and reflectance signals are investigated. Several interesting trends on the time-resolved signals are observed and analyzed.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Using a polarization method, the scattering problem for a two-dimensional inclusion embedded in infinite piezoelectric/piezomagnetic matrices is investigated. To achieve the purpose, the polarization method for a two-dimensional piezoelectric/piezo-magnetic "comparison body" is formulated. For simple harmonic motion, kernel of the polarization method reduces to a 2-D time-harmonic Green's function, which is ob-tained using the Radon transform. The expression is further simplified under condi-tions of low frequency of the incident wave and small diameter of the inclusion. Some analytical expressions are obtained. The analytical solutions for generalized piezoelec-tric/piezomagnetic anisotropic composites are given followed by simplified results for piezoelectric composites. Based on the latter results, two numerical results are provided for an elliptical cylindrical inclusion in a PZT-5H-matrix, showing the effect of different factors including size, shape, material properties, and piezoelectricity on the scattering cross-section.
Scattering of Fexural Gravity Waves by a Two-Dimensional Thin Plate
Directory of Open Access Journals (Sweden)
Sudeshna Banerjee
2017-01-01
Full Text Available An approximate analysis based on standard perturbation technique together with an application of Green’s integral theorem is used in this paper to study the problem of scattering of water waves by a two dimensional thin plate submerged in deep ocean with ice cover. The reﬂection and transmission coefﬁcients upto ﬁrst order are obtained in terms of the shape function describing the plate and are studied graphically for different shapes of the plate.
On t-local solvability of inverse scattering problems in two-dimensional layered media
Baev, A. V.
2015-06-01
The solvability of two-dimensional inverse scattering problems for the Klein-Gordon equation and the Dirac system in a time-local formulation is analyzed in the framework of the Galerkin method. A necessary and sufficient condition for the unique solvability of these problems is obtained in the form of an energy conservation law. It is shown that the inverse problems are solvable only in the class of potentials for which the stationary Navier-Stokes equation is solvable.
Slow Light by Two-Dimensional Photonic Crystal Waveguides
Institute of Scientific and Technical Information of China (English)
ZHANG Chao; HUANG Yan; MAO Xiao-Yu; CUI Kai-Yu; HUANG Yi-Dong; ZHANG Wei; PENG Jiang-De
2009-01-01
A simple and effective way to measure the group velocity of photonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated.
A Convergent Method of Auxiliary Sources for Two-Dimensional Impedance Scatterers With Edges
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2001-01-01
A modification to the Method of Auxiliary Sources (MAS) is introduced which renders the method operational for two-dimensional impedance scatterers with edges. The modification consists in letting the auxiliary surface converge to the scatterer physical surface for increasing number of auxiliary...... sources, whereby MAS approaches a surface integral equation (IE) method. Hereby, a systematic procedure for selecting the number and locations of the auxiliary sources is provided, and convergence of numerical results is obtained. The new method resulting from this modification thus combines the desirable...
A two-dimensionally focusing, quasi-optical antenna for millimeter-wave scattering in plasmas
Energy Technology Data Exchange (ETDEWEB)
Idehara, T.; Tatsukawa, T. (Faculty of Engineering, Fukui University, Fukui 910, Japan (JP)); Brand, G.F.; Fekete, P.W.; Moore, K.J. (School of Physics, University of Sydney, NSW 2006 (Australia))
1990-06-01
A two-dimensionally focusing, quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for use with a tunable gyrotron in order to carry out millimeter-wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. The advantages of this antenna are the following: (1) The elliptical reflector focuses the radiation beam in the toroidal direction, while the parabolic reflector focuses in the direction of major radius. This gives excellent two-dimensional focusing in the plasma region, and consequently excellent spatial resolution. (2) The focal point can be easily swept along the direction of major radius in the whole plasma region, simply by changing the angle of the parabolic reflector by a small amount. These features have been demonstrated experimentally using the tunable gyrotron source, GYROTRON III, and in computations of the radiated fields.
Fiber-optic interferometric two-dimensional scattering-measurement system.
Zhu, Yizheng; Giacomelli, Michael G; Wax, Adam
2010-05-15
We present a fiber-optic interferometric system for measuring depth-resolved scattering in two angular dimensions using Fourier-domain low-coherence interferometry. The system is a unique hybrid of the Michelson and Sagnac interferometer topologies. The collection arm of the interferometer is scanned in two dimensions to detect angular scattering from the sample, which can then be analyzed to determine the structure of the scatterers. A key feature of the system is the full control of polarization of both the illumination and the collection fields, allowing for polarization-sensitive detection, which is essential for two-dimensional angular measurements. System performance is demonstrated using a double-layer microsphere phantom. Experimental data from samples with different sizes and acquired with different polarizations show excellent agreement with Mie theory, producing structural measurements with subwavelength accuracy.
Directory of Open Access Journals (Sweden)
Hong Qi
2015-01-01
Full Text Available A maximum a posteriori (MAP estimation based on Bayesian framework is applied to image reconstruction of two-dimensional highly scattering inhomogeneous medium. The finite difference method (FDM and conjugate gradient (CG algorithm serve as the forward and inverse solving models, respectively. The generalized Gaussian Markov random field model (GGMRF is treated as the regularization, and finally the influence of the measurement errors and initial distributions is investigated. Through the test cases, the MAP estimate algorithm is demonstrated to greatly improve the reconstruction results of the optical coefficients.
Nonlinear kinetic modeling and simulations of Raman scattering in a two-dimensional geometry
Directory of Open Access Journals (Sweden)
Bénisti Didier
2013-11-01
Full Text Available In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering (SRS by the means of envelope equations, whose coefficients have been derived using a mixture of perturbative and adiabatic calculations. First examples of the numerical resolution of these envelope equations in a two-dimensional homogeneous plasma are given, and the results are compared against those of particle-in-cell (PIC simulations. These preliminary comparisons are encouraging since our envelope code provides threshold intensities consistent with those of PIC simulations while requiring computational resources reduced by 4 to 5 orders of magnitude compared to full-kinetic codes.
Ulanowski, Z.; Hirst, E.; Kaye, P. H.; Greenaway, R.
2012-12-01
Scattered intensity measurement is a commonly used method for determining the size of small particles. However, it requires calibration and is subject to errors due to changes in incident irradiance or detector sensitivity. Analysis of two-dimensional scattering patterns offers an alternative approach. We test morphological image processing operations on patterns from a diverse range of particles with rough surfaces and/or complex structure, including mineral dust, spores, pollen, ice analogs and sphere clusters from 4 to 88 μm in size. It is found that the median surface area of intensity peaks is the most robust measure, and it is inversely proportional to particle size. The trend holds well for most particle types, as long as substantial roughness or complexity is present. One important application of this technique is the sizing of atmospheric particles, such as ice crystals.
Institute of Scientific and Technical Information of China (English)
张德悦; 马富明
2004-01-01
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.
|m| Partial wave treatment for two-dimensional Coulomb-scattering and Regge pole
Institute of Scientific and Technical Information of China (English)
WANG; Jing; ZENG; Jinyan
2004-01-01
The symmetry and |m| partial-wave analysis for two-dimensional (2D) Coulomb-scattering is investigated. As a function of energy E, the |m| partial-wave scattering amplitude f|m|(θ) is analytically continuated to the negative E (complex k) plane, and it is found that the bound state energy eigenvalues (E<0) are just located at the poles of f|m|(θ) on the positive imaginary k axis as is expected. In addition, as a function of |m|, f|m|(θ) is analytically continuated to the complex |m| plane, the bound state energy eigenvalues are just located at the poles of f|m|(θ) on the positive real |m| axis.
Yeom, Jiwoon; Hong, Jisoo; Park, Soon-gi; Min, Sung-Wook; Lee, Byoungho
2012-10-01
A bi-directional 2D/3D convertible integral imaging system is proposed. Two optical modules composed of a scattering polarizer and a linear polarizer are adopted, and 2D or 3D mode operation is easily changed by converting polarization states of the projected images. In the 2D mode, the incident light is scattered at the scattering polarizer and the scattered light facing the lens-array is blocked, a 2D image is observable only at the same side as the projector. In the 3D mode, the incident light with the transmission polarization is directly projected onto a lens-array, and the 3D images are integrated. Our proposed system is able to display the 3D images as well as the 2D images for the observers who are placed in front and rear side of the system.
Resonant scattering and mode coupling in two-dimensional textured planar waveguides.
Cowan, A R; Paddon, P; Pacradouni, V; Young, J F
2001-05-01
A heuristic formalism is developed for efficiently determining the specular reflectivity spectrum of two-dimensionally textured planar waveguides. The formalism is based on a Green's function approach wherein the electric fields are assumed to vary little over the thickness of the textured part of the waveguide. Its accuracy, when the thickness of the textured region is much smaller than the wavelength of relevant radiation, is verified by comparison with a much less efficient, exact finite difference solution of Maxwell's equations. In addition to its numerical efficiency, the formalism provides an intuitive explanation of Fano-like features evident in the specular reflectivity spectrum when the incident radiation is phase matched to excite leaky electromagnetic modes attached to the waveguide. By associating various Fourier components of the scattered field with bare slab modes, the dispersion, unique polarization properties, and lifetimes of these Fano-like features are explained in terms of photonic eigenmodes that reveal the renormalization of the slab modes due to interaction with the two-dimensional grating. An application of the formalism, in the analysis of polarization-insensitive notch filters, is also discussed.
Path integral approach to two-dimensional QCD in the light-front frame
Energy Technology Data Exchange (ETDEWEB)
Gaete, P. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, BR-21945, Rio de Janeiro (Brazil)); Gamboa, J. (Fachbereich 7 Physik, Universitaet Siegen, Siegen, D-57068 (Germany)); Schmidt, I. (Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile))
1994-05-15
Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu--Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing directly the constraints in the path integral.
Coding/decoding two-dimensional images with orbital angular momentum of light.
Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping
2016-04-01
We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.
Li, Yanyan
2006-07-01
In recent years, comprehensive two-dimensional gas chromatography (GC x GC) have been used widely, and the applications of this technique to many fields have already been reported. In the standard method of oil analysis, the concentrations of aromatics and naphthalene hydrocarbons in light petroleum products must be detected by more than two methods. Mono-aromatics, di-aromatics etc. in light petroleum products were detected only by comprehensive two-dimensional gas chromatography. After the proper selection of column system and optimization of chromatographic conditions, the method can achieve the group separations of paraffins, olefins, naphthenes, aromatics with 1 to 2 rings and some target components in light petroleum products with good reproducibility and good precision. The recoveries of standard compounds were 89.5% - 106.1%, and the relative standard deviations of repeatedly detecting the components were all lower than 5.8%. It took only 30 min to finish a determination.
Zhang, Mei; Wu, Juanxia; Zhu, Yiming; Dumcenco, Dumitru O; Hong, Jinhua; Mao, Nannan; Deng, Shibin; Chen, Yanfeng; Yang, Yanlian; Jin, Chuanhong; Chaki, Sunil H; Huang, Ying-Sheng; Zhang, Jin; Xie, Liming
2014-07-22
Two-dimensional transition-metal dichalcogenide alloys have attracted intense attention due to their tunable band gaps. In the present work, photoluminescence, Raman scattering, and electrical transport properties of monolayer and few-layer molybdenum tungsten diselenide alloys (Mo1-xWxSe2, 0 ≤ x ≤ 1) are systematically investigated. The strong photoluminescence emissions from Mo1-xWxSe2 monolayers indicate composition-tunable direct band gaps (from 1.56 to 1.65 eV), while weak and broad emissions from the bilayers indicate indirect band gaps. The first-order Raman modes are assigned by polarized Raman spectroscopy. Second-order Raman modes are assigned according to its frequencies. As composition changes in Mo1-xWxSe2 monolayers and few layers, the out-of-plane A1g mode showed one-mode behavior, while B2g(1) (only observed in few layers), in-plane E2g(1), and all observed second-order Raman modes showed two-mode behaviors. Electrical transport measurement revealed n-type semiconducting transport behavior with a high on/off ratio (>10(5)) for Mo1-xWxSe2 monolayers.
Direct observation of strong localization of quasi-two-dimensional light waves
DEFF Research Database (Denmark)
Bozhevolnyi, Sergey I.
1999-01-01
Scattering of surface plasmon polaritons on rough metal surfaces is investigated by using scanning near-field optical microscopy. Different scattering regimes, i.e. single, double and multiple scattering, are observed and related to the spatial Fourier spectra of the corresponding near......-field optical images. For the regime of strong multiple scattering, the near-field optical images exhibit spatially localized (within 150-250 nm) intensity enhancement by 10-50 times. This feature is attributed to strong localization of surface polaritons due to interference effects in multiple scattering...... caused by surface roughness. Similar bright light spots are observed with light scattering by silver colloid clusters deposited on glass substrates. Differences and similarities in these scattering phenomena are discussed....
Energy Technology Data Exchange (ETDEWEB)
Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald, E-mail: xrzhu@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)
2015-07-30
Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively
Ultrashort light bullets described by the two-dimensional sine-Gordon equation
Leblond, Hervé; 10.1103/PHYSREVA.81.063815
2011-01-01
By using a reductive perturbation technique applied to a two-level model, this study puts forward a generic two-dimensional sine-Gordon evolution equation governing the propagation of femtosecond spatiotemporal optical solitons in Kerr media beyond the slowly varying envelope approximation. Direct numerical simulations show that, in contrast to the long-wave approximation, no collapse occurs, and that robust (2+1)-dimensional ultrashort light bullets may form from adequately chosen few-cycle input spatiotemporal wave forms. In contrast to the case of quadratic nonlinearity, the light bullets oscillate in both space and time and are therefore not steady-state lumps.
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Strong light-matter coupling in two-dimensional atomic crystals
Liu, Xiaoze; Sun, Zheng; Xia, Fengnian; Lin, Erh-chen; Lee, Yi-Hsien; Kéna-Cohen, Stéphane; Menon, Vinod M
2014-01-01
Two dimensional (2D) atomic crystals of graphene, and transition metal dichalcogenides have emerged as a class of materials that show strong light-matter interaction. This interaction can be further controlled by embedding such materials into optical microcavities. When the interaction is engineered to be stronger than the dissipation of light and matter entities, one approaches the strong coupling regime resulting in the formation of half-light half-matter bosonic quasiparticles called microcavity polaritons. Here we report the evidence of strong light-matter coupling and formation of microcavity polaritons in a two dimensional atomic crystal of molybdenum disulphide (MoS2) embedded inside a dielectric microcavity at room temperature. A Rabi splitting of 46 meV and highly directional emission is observed from the MoS2 microcavity owing to the coupling between the 2D excitons and the cavity photons. Realizing strong coupling effects at room temperature in a disorder free potential landscape is central to the ...
Tongay, Sefaattin; Zhou, Jian; Ataca, Can; Liu, Jonathan; Kang, Jeong Seuk; Matthews, Tyler S; You, Long; Li, Jingbo; Grossman, Jeffrey C; Wu, Junqiao
2013-06-12
In the monolayer limit, transition metal dichalcogenides become direct-bandgap, light-emitting semiconductors. The quantum yield of light emission is low and extremely sensitive to the substrate used, while the underlying physics remains elusive. In this work, we report over 100 times modulation of light emission efficiency of these two-dimensional semiconductors by physical adsorption of O2 and/or H2O molecules, while inert gases do not cause such effect. The O2 and/or H2O pressure acts quantitatively as an instantaneously reversible "molecular gating" force, providing orders of magnitude broader control of carrier density and light emission than conventional electric field gating. Physi-sorbed O2 and/or H2O molecules electronically deplete n-type materials such as MoS2 and MoSe2, which weakens electrostatic screening that would otherwise destabilize excitons, leading to the drastic enhancement in photoluminescence. In p-type materials such as WSe2, the molecular physisorption results in the opposite effect. Unique and universal in two-dimensional semiconductors, the effect offers a new mechanism for modulating electronic interactions and implementing optical devices.
Steering light into logic patterns with two-dimensional cascaded multimode waveguide
Institute of Scientific and Technical Information of China (English)
Zhou Hai-Feng; Yang Jian-Yi; Wang Ming-Hua; Jiang Xiao-Qing
2007-01-01
Steering light into logic patterns with two-dimensional cascaded multimode waveguide is demonstrated.By employing the imaging properties of 2D multimode interference (MMI) and partial phase modulation method,the design ideas and the implementing methods of the 2(2×2) bits type spatial logic steering are discussed;therefore the structure of logical pattern is proposed.Numerical simulation is carried out to verify the design in detail by using the beam propagation method.It is expected to realize logic coders by using the integrated optical methods and exploit their potential applications in the field of optical logic.
Institute of Scientific and Technical Information of China (English)
YANG YongHong; WANG YongGang; LIU Mei; WANG Jin
2002-01-01
Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.
Liu, Yang; Michielssen, Eric
2016-01-01
A butterfly-based fast direct integral equation solver for analyzing high-frequency scattering from two-dimensional objects is presented. The solver leverages a randomized butterfly scheme to compress blocks corresponding to near- and far-field interactions in the discretized forward and inverse electric field integral operators. The observed memory requirements and computational cost of the proposed solver scale as O(Nlog^2N) and O(N^1.5 logN), respectively. The solver is applied to the analysis of scattering from electrically large objects spanning over ten thousand of wavelengths and modeled in terms of five million unknowns.
Hybrid two-dimensional electronic systems and other applications of sp-2 bonded light elements
Kessler, Brian Maxwell
The field-effect is a cornerstone of modern technology lying at the heart of transistors in consumer electronics. Experimentally, it allows one to continuously vary the carrier concentration in a material while studying its properties. The recent isolation of graphene, the first truly two-dimensional crystal, allows application of the field effect to a much wider range of physical situations. In the first part of the thesis, we investigate hybrid materials formed by coupling metals to the two-dimensional electron gas (2DEG) in graphene. We couple superconducting materials to the graphene sheet by cluster deposition. This material displays a superconducting phase whose properties are tuned by the carrier density via the field effect. The transition temperature is well-described by Berezinskii-Kosterlitz-Thouless vortex unbinding. The ground state properties show interesting effects due to the distribution of cluster spacings. Observations related to other hybrid electronic systems including ferromagnets and normal metals are presented. The second part of this thesis involves energy applications of light element materials. The mechanisms affecting coating of carbon nanotubes using atomic layer deposition is developed and applied to photovoltaic systems. The gas adsorption properties of activated boron nitride are investigated and the relative influence of surface area and hydrogen binding affinity is elaborated. The third part of this thesis explores electromechanical properties of suspended graphene membranes. We investigate buckling and strain in exfoliated graphene membranes as well as their deformation under an applied gate potential.
Mehlenbacher, Randy D.; McDonough, Thomas J.; Grechko, Maksim; Wu, Meng-Yin; Arnold, Michael S.; Zanni, Martin T.
2015-04-01
Thin film networks of highly purified semiconducting carbon nanotubes (CNTs) are being explored for energy harvesting and optoelectronic devices because of their exceptional transport and optical properties. The nanotubes in these films are in close contact, which permits energy to flow through the films, although the pathways and mechanisms for energy transfer are largely unknown. Here we use a broadband continuum to collect femtosecond two-dimensional white-light spectra. The continuum spans 500 to 1,300 nm, resolving energy transfer between all combinations of bandgap (S1) and higher (S2) transitions. We observe ultrafast energy redistribution on the S2 states, non-Förster energy transfer on the S1 states and anti-correlated energy levels. The two-dimensional spectra reveal competing pathways for energy transfer, with S2 excitons taking routes depending on the bandgap separation, whereas S1 excitons relax independent of the bandgap. These observations provide a basis for understanding and ultimately controlling the photophysics of energy flow in CNT-based devices.
Yang, Lei; Zhao, Xiao-Fang
2017-07-01
Chinese Spallation Neutron Source (CSNS) project will use numerous two-dimensional (2D) neutron detectors whose ZnS (Ag) scintillator is doped with 6Li. To ensure the consistency of all neutron detectors, a calibration system for the performance of 2D neutron detectors is designed. For radiation protection, the state control of the radiation source gets more and more strict. It is impossible to directly carry out experiments with massive radioactive particles. Thus, the following scheme has been designed. The controlled pulsed laser light source on a 2D mobile platform is used to replace the neutron bombardment to generate the photon. The pulse signal drives the laser diode to generate pulse light. The pulse light source located on the 2D platform is controlled by the core controller, and goes to the wavelength shift fiber through the optical fiber. The host computer (PC) receives the signal from the electronics system, processes data, and automatically calibrates the performance parameters. As shown by the experimental results, the pulse light source can perfectly meet all requirements of 2D neutron detector calibration system.
Design of two-dimensional signal constellations for visible light communication
Huang, Nuo; Wang, Jun-Bo; Zheng, Beixiong; Guan, Rui; Chen, Ming
2017-02-01
This paper investigates a two-dimensional signal space for visible light communication (VLC) by taking into account some practical constraints. We first present the relationship between the signal space and basis functions, and then find the basis function yielding the largest signal space. Besides, to improve the symbol error rate (SER) performance of the system, we design the constellations by maximizing the minimum Euclidean distance among all constellation pairs. The original optimization problem is non-convex and relaxed to a convex one through a linear approximation method. Simulation results show that the optimized design provides significant signal-to-noise ratio gain (up to 6 dB at the SER of 10-4 for half-illumination target) over the heuristic design.
Institute of Scientific and Technical Information of China (English)
Feng Shuai; Wang Yi-Quan
2011-01-01
Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method.Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters.It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects.The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied.This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters.
Two-dimensional mapping of the asymmetric lateral coherence of thermal light.
Paroli, B; Potenza, M A C
2016-10-31
We report in this work the first experimental verification of the asymmetric lateral coherence which is a measurement of the spatio-temporal coherence by using a wide-band Young interference experiment with a fixed off-axis slit. We demonstrate the coherence properties through the measurement of the real part of the coherence factor of thermal light. We extend our recent results obtained for betatron and undulator radiations providing a robust experimental method for the two-dimensional mapping of the two-point correlation function of broadband radiation preserving the phase information. The proposed method can be used as a high-sensitivity alternative to traditional interferometry with quasi-monochromatic radiation.
Inelastic Light Scattering Processes
Fouche, Daniel G.; Chang, Richard K.
1973-01-01
Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.
Directory of Open Access Journals (Sweden)
Pengju Yang
2016-01-01
Full Text Available Based on the polarimetric scattering model of second-order small-slope approximation (SSA-II with tapered wave incidence for reducing the edge effect caused by limited surface size, monostatic and bistatic polarimetric scattering signatures of two-dimensional dielectric rough sea surface with a ship-induced Kelvin wake is investigated in detail by comparison with those of sea surface without ship wake. The emphasis of this paper is on an investigation of depolarized scattering and enhanced backscattering of sea surface with a ship wake that changes the sea surface geometric structure especially for low wind conditions. Numerical simulations show that in the plane of incidence rough sea surface scattering is dominated by copolarized scattering rather than cross-polarized scattering and that under low wind conditions a larger ship speed gives rise to stronger enhanced backscattering and enhanced depolarized scattering. For both monostatic and bistatic configuration, simulation results indicate that electromagnetic scattering signatures in the presence of a ship wake dramatically differ from those without ship wake, which may serve as a basis for the detection of ships in marine environment.
Enhancement of light extraction efficiency in OLED with two-dimensional photonic crystal slabs
Institute of Scientific and Technical Information of China (English)
Rongjin Yan; Qingkang Wang
2006-01-01
Light extraction efficiency of organic light emitting diode (OLED) based on various photonic crystal slab (PCS) structures was studied. By using the finite-difference time-domain (FDTD) method, we investigated the effect of several parameters, including filling factor and lattice constant, on the enhancement of light extraction efficiency of three basic PCSs, and got the most effective one. Two novel designs of "interlaced"and "double-interlaced" PCS structures based on the most effective basic PCS structure were introduced,and the "interlaced" one was proved to be even more efficient than its prototype. Large enhancement of light extraction efficiency resulted from the coupling to leaky modes in the expended light cone of a band structure, the diffraction in the space between columns, as well as the strong scattering at indium-tinoxide/glass interfaces.
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J.; Novoderezhkin, Vladimir I.; Scholes, Gregory D.; van Grondelle, Rienk
2016-02-01
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.
Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy.
Ferretti, Marco; Hendrikx, Ruud; Romero, Elisabet; Southall, June; Cogdell, Richard J; Novoderezhkin, Vladimir I; Scholes, Gregory D; van Grondelle, Rienk
2016-02-09
Energy transfer and trapping in the light harvesting antennae of purple photosynthetic bacteria is an ultrafast process, which occurs with a quantum efficiency close to unity. However the mechanisms behind this process have not yet been fully understood. Recently it was proposed that low-lying energy dark states, such as charge transfer states and polaron pairs, play an important role in the dynamics and directionality of energy transfer. However, it is difficult to directly detect those states because of their small transition dipole moment and overlap with the B850/B870 exciton bands. Here we present a new experimental approach, which combines the selectivity of two-dimensional electronic spectroscopy with the availability of genetically modified light harvesting complexes, to reveal the presence of those dark states in both the genetically modified and the wild-type light harvesting 2 complexes of Rhodopseudomonas palustris. We suggest that Nature has used the unavoidable charge transfer processes that occur when LH pigments are concentrated to enhance and direct the flow of energy.
Two-dimensional time-dependent quantum-mechanical scattering event
Energy Technology Data Exchange (ETDEWEB)
Galbraith, I.; Ching, Y.S.; Abraham, E.
1984-01-01
Nonrelativistic quantum-mechanical scattering in two dimensions is studied numerically by integrating the time-dependent Schroedinger equation. A partial-wave analysis is used to discuss the numerical results. A potential barrier, a square well and a single slit are considered as the scattering potentials.
Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Wasielewski, Michael R; Kanatzidis, Mercouri G
2017-03-29
Hybrid inorganic-organic perovskites are developing rapidly as high performance semiconductors. Recently, two-dimensional (2D) perovskites were found to have white-light, broadband emission in the visible range that was attributed mainly to the role of self-trapped excitons (STEs). Here, we describe three new 2D lead bromide perovskites incorporating a series of bifunctional ammonium dications as templates which also emit white light: (1) α-(DMEN)PbBr4 (DMEN = 2-(dimethylamino)ethylamine), which adopts a unique corrugated layered structure in space group Pbca with unit cell a = 18.901(4) Å, b = 11.782(2) Å, and c = 23.680(5) Å; (2) (DMAPA)PbBr4 (DMAPA = 3-(dimethylamino)-1-propylamine), which crystallizes in P21/c with a = 10.717(2) Å, b = 11.735(2) Å, c = 12.127(2) Å, and β = 111.53(3)°; and (3) (DMABA)PbBr4 (DMABA = 4-dimethylaminobutylamine), which adopts Aba2 with a = 41.685(8) Å, b = 23.962(5) Å, and c = 12.000(2) Å. Photoluminescence (PL) studies show a correlation between the distortion of the "PbBr6" octahedron in the 2D layer and the broadening of PL emission, with the most distorted structure having the broadest emission (183 nm full width at half-maximum) and longest lifetime (τavg = 1.39 ns). The most distorted member α-(DMEN)PbBr4 exhibits white-light emission with a color rendering index (CRI) of 73 which is similar to a fluorescent light source and correlated color temperature (CCT) of 7863 K, producing "cold" white light.
Energy Technology Data Exchange (ETDEWEB)
Quaglioni, S; Navratil, P; Roth, R
2009-12-15
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.
Light scattering reviews 8 radiative transfer and light scattering
Kokhanovsky, Alexander A
2013-01-01
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Energy Technology Data Exchange (ETDEWEB)
Schlau-Cohen, Gabriela S.; Ishizaki, Akihito [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2011-07-28
Graphical abstract: 2D electronic spectroscopy, when combined with theoretical approaches, can investigate structure-function relationships in photosynthetic complexes by probing electronic energy transfer and excited state orientations. Display Omitted Highlights: {yields} We review theoretical principles and experimental implementation of 2D spectroscopy. {yields} 2DES monitors energy transfer, observes coherence, determines excited state geometry, and compares to homology models. {yields} 2DES reveals structure-function relationships in the Photosystem II supercomplex. - Abstract: In natural light harvesting systems, pigment-protein complexes are able to harvest sunlight with near unity quantum efficiency. These complexes exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this perspective, we focus on how two-dimensional electronic spectroscopy (2DES) can provide an incisive tool to probe the electronic, energetic, and spatial landscapes that must be understood to describe photosynthetic light-harvesting. We review the theoretical and experimental principles of 2DES, and demonstrate its application to the study of the Photosystem II supercomplex of green plants. We illustrate several capabilities of 2DES, including monitoring energy transfer pathways, observing excitonic coherence, determining excitonic geometry, and informing on the atomic structure.
Bloch waves in an arbitrary two-dimensional lattice of subwavelength Dirichlet scatterers
Schnitzer, Ory
2016-01-01
We study waves governed by the planar Helmholtz equation, propagating in an infinite lattice of subwavelength Dirichlet scatterers, the periodicity being comparable to the wavelength. Applying the method of matched asymptotic expansions, the scatterers are effectively replaced by asymptotic point constraints. The resulting coarse-grained Bloch-wave dispersion problem is solved by a generalised Fourier series, whose singular asymptotics in the vicinities of scatterers yield the dispersion relation governing modes that are strongly perturbed from plane-wave solutions existing in the absence of the scatterers; there are also empty-lattice waves that are only weakly perturbed. Characterising the latter is useful in interpreting and potentially designing the dispersion diagrams of such lattices. The method presented, that simplifies and expands on Krynkin & McIver [Waves Random Complex, 19 347 2009], could be applied in the future to study more sophisticated designs entailing resonant subwavelength elements di...
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Energy Technology Data Exchange (ETDEWEB)
Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Drótos, G; Jung, C; Tél, T
2012-11-01
We demonstrate how the area of the enveloping surface of the scattering singularities in a three-degrees-of-freedom (3-dof) system depends on a perturbation parameter controlling the distance from a reducible case. This dependence is monotonic and approximately linear. Therefore it serves as a measure for this distance, which can be extracted from an investigation of the fractal structure. These features are a consequence of the dynamics being governed by normally hyperbolic invariant manifolds. We conclude that typical n-dof chaotic scattering exhibits either structures developing out of a stack of chaotic structures of 2-dof type or hardly any chaotic effects.
Electron-electron scattering in linear transport in two-dimensional systems
DEFF Research Database (Denmark)
Hu, Ben Yu-Kuang; Flensberg, Karsten
1996-01-01
We describe a method for numerically incorporating electron-electron scattering in quantum wells for small deviations of the distribution function from equilibrium, within the framework of the Boltzmann equation. For a given temperature T and density n, a symmetric matrix needs to be evaluated only...... once, and henceforth it can be used to describe electron-electron scattering in any Boltzmann equation linear-response calculation for that particular T and n. Using this method, we calculate the distribution function and mobility for electrons in a quantum well, including full finite...
Institute of Scientific and Technical Information of China (English)
Feng shuai; Wang Yi-Quan
2011-01-01
This paper studies the propagating characteristics of the electromagnetic waves through the coupled-resonator optical waveguides based on the two-dimensional square-lattice photonic crystals by the finite-difference time-domain method. When the traditional circular rods adjacent to the centre of the cavities are replaced by the oval rods, the simulated results show that the waveguide mode region can be adjusted only by the alteration of the oval rods' obliquity.When the obliquity of the oval rods around one cavity is different from the obliquity of that around the adjacent cavities,the group velocities of the waveguide modes can be greatly reduced and the information of different frequencies can be shared and chosen at the same time by the waveguide branches with different structures. If the obliquities of the oval rods around two adjacent cavities are equal and they alternate between two values, the group velocities can be further reduced and a maximum value of 0.0008c (c is the light velocity in vacuum) can be acquired.
Liu, Y. W.; Song, Y. M.; Mei, K. K.
2001-03-01
In this paper, a novel matrix-thinning technique, matrix sparse decomposition (MSD) [Liu et al., 1998, 1999], has been implemented to solve the scattering of waves by two-dimensional (2-D) homogeneous dielectric cylinders for the first time. The MSD technique is a further development of the integral equation formulation of the measured equation of invariance (MEI) (IE-MEI) [Rius et al., 1996a; Hirose et al., 1999a]. The MSD describes the local relationship between total currents and scattered fields rather than that between the scattered electric fields and the scattered magnetic fields in the IE-MEI. The MSD directly thins a dense matrix from singular integral equations, such as method of moments (MOM), into two sparse matrices. The IE-MEI method has difficulty in solving thin wire or thin plate structure problems. However, the MSD can do it without a hitch. Numerical examples for the scattering of 2-D homogeneous dielectric circular and rectangular cylinders under both transverse magnetic and transverse electric plane wave incidences show that the MSD is a simple and effective technique to thin the MOM dense matrix.
Three disks in a row a two-dimensional scattering analog of the double-well problem
Wirzba, A; Wirzba, Andreas; Rosenqvist, Per E
1996-01-01
We investigate the scattering off three non-overlapping disks equidistantly spaced along a line in the two-dimensional plane with the radii of the outer disks equal and the radius of the inner disk varied. This system is a two-dimensional scattering analog to the double-well-potential (bound state) problem in one dimension. In both systems the symmetry-splittings between symmetric and anti-symmetric states or resonances, respectively, have to be traced back to tunneling effects, as semiclassically the geometrical periodic orbits have no contact with the vertical symmetry axis. We construct the leading semiclassical ``creeping'' orbits which are responsible for the symmetry-splitting of the resonances in this system. The collinear three-disk-system is not only one of the simplest but also one of the most effective systems for detecting creeping phenomena. While in symmetrically placed n-disk systems creeping corrections affect the sub-leading resonances, they here alone determine the symmetry splitting of the ...
Two-dimensional position-sensitive detectors for small-angle neutron scattering
Energy Technology Data Exchange (ETDEWEB)
McElhaney, S.A.; Vandermolen, R.I.
1990-05-01
In this paper, various detectors available for small angle neutron scattering (SANS) are discussed, along with some current developments being actively pursued. A section has been included to outline the various methodologies of position encoding/decoding with discussions on trends and limitations. Computer software/hardware vary greatly from institute and experiment and only a general discussion is given to this area. 85 refs., 33 figs.
2006-06-01
sech2 wave form is used because the amplitude and horizontal displacement are solutions of the Korteweg de Vries ( KdV ) non linear wave equation which...a solution to the KDV wave equation . After making the frozen field approximation, the soliton can be represented by the following mathematical...scattering. 3. The Gaussian Soliton As discussed, the sech2 form of a soliton is chosen because it is an exact solution to the KDV wave equation . For
A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem
2013-02-01
present an efficient block Gauss– Seidel method , which may be written as follows: given ðuð0Þ1 ; ;u ð0Þ n Þ>, define ðuðkÞ1 ; . . . ;u ðkÞ n Þ>; k P...well-posed single cavity scattering problems (5.5)–(5.7) for the block Gauss– Seidel method at each iteration. 5.2. Transparent boundary condition... Seidel method for two consecutive approx- imations again the number of iterations for all three types of cavities. It can be seen from Fig. 10 that
Wang, Ping; Guo, Lixin; Song, Zhenjie; Yang, Yintang; Shang, Tao; Li, Jing; Huang, Feng; Zheng, Qinghong
2013-12-01
Quantum transport properties of two-dimensional electron gas (2DEG) in undoped MgZnO/ZnO heterostructures with polarization charge effect have been investigated theoretically. Polarization roughness scattering (PRS) combining polarization charge and interface roughness scattering was proposed as a new scattering mechanism. It was found that the carriers confined in the heterostructures (HSs) would be scattered from polarization charges when they were moving along the in-plane and PRS played a very important role for the low-temperature electron mobility when the electron density Ns exceeded 1.0e11 cm-2, especially in a higher electron density region. With PRS, the experimental data on the density dependence of 2DEG mobility in the MgZnO/ZnO HSs under study can be well reproduced. The study indicates that the improved processing techniques providing a smooth interface and a good separation between the 2DEG electrons and the polarization charges should be significant for the quantum device’s performance.
Light scattering studies of an electrorheological fluid
Energy Technology Data Exchange (ETDEWEB)
Martin, J.E.; Odinek, J.
1993-08-01
We report real-time, two-dimensional light scattering studies of the evolution of structure in an electrorheological fluid in the quiescent state and under shear. We find that when an electric field is applied to the quiescent fluid, particles chain along the electric field lines and cause strong light scattering lobes to appear at a finite scattering wavevector q orthogonal to the field lines. These lobes then brighten as they move to q=O, indicating the existence of an unstable concentration fluctuation that signifies the segregation of chains into columns. In fact, the observed power law growth kinetics of the characteristic length, as well as the form of the structure factor, are qualitatively similar to two-dimensional spinodal decomposition in a system with a conserved order parameter. When the sample is subjected to shear, we find that the scattering pattern approaches a steady state, with lobes that are rotated in the direction of fluid vorticity. The angle of rotation is found to increase as the cube root of the shear rate, in agreement with a theoretical prediction of the steady state structure of fragmenting particle chains.
Esumi, Y; Kabir, M D; Kannari, F
2009-10-12
A novel non-interferometric vector pulse-shaping scheme is developed for femtosecond laser pulses using a two-dimensional spatial light modulator (2D-SLM). By utilizing spatiotemporal pulse shaping obtainable by the 2D-SLM, we demonstrate spatiotemporal vector pulse shaping for the first time.
Efremov, MA; Petropavlovsky, SV; Fedorov, MV; Schleich, WP; Yakovlev, VP
2005-01-01
The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid deca
Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin
2016-09-01
Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen.
Institute of Scientific and Technical Information of China (English)
HOU Jing-Min
2009-01-01
We investigate the energy spectrum of ultracold atoms on the two-dimensional Kagome optical lattice under an effective magnetic field,which can be realized with laser beams.We derive the generalized Harper's equations from the Schr(o)dinger equation.The energy spectrum with a fractal band structure is obtained by numerically solving the generalized Harper's equations.We analyze the properties of the Hofstadter's butterfly spectrum and discuss its observability.
Sarkar, Subhajit; Chaudhury, Ranjan; Paul, Samir K.
2017-01-01
The available results from the inelastic neutron scattering experiment performed on the quasi-two dimensional spin 1/2 anti-ferromagnetic material La2CuO4 have been analysed theoretically. The formalism of ours is based on a semi-classical like treatment involving a model of an ideal gas of mobile vortices and anti-vortices built on the background of the Néel state, using the bipartite classical spin configuration corresponding to an XY-anisotropic Heisenberg anti-ferromagnet on a square lattice. The results for the integrated intensities for our spin 1/2 model corresponding to different temperatures, show occurrence of vigorous unphysical oscillations, when convoluted with a realistic spectral window function. These results indicate failure of the conventional semi-classical theoretical model of ideal vortex/anti-vortex gas arising in the Berezinskii-Kosterlitz-Thouless theory for the low spin magnetic systems. A full fledged quantum mechanical formalism and calculations seem crucial for the understanding of topological excitations in such low spin systems. Furthermore, a severe disagreement is found to occur at finite values of energy transfer between the integrated intensities obtained theoretically from the conventional formalism and those obtained experimentally. This further suggests strongly that the full quantum treatment should also incorporate the interaction between the fragile-magnons and the topological excitations. This is quite plausible in view of the recent work establishing such a process in XXZ quantum ferromagnet on 2D lattice. The high spin XXZ quasi-two dimensional antiferromagnet like MnPS3 however follows the conventional theory quite well.
7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source.
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S; Zatsepin, Nadia A; Barty, Anton; Benner, W Henry; Boutet, Sébastien; Feld, Geoffrey K; Hau-Riege, Stefan P; Kirian, Richard A; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I; Pardini, Tommaso; Segelke, Brent; Williams, Garth J; Spence, John C H; Abela, Rafael; Coleman, Matthew; Evans, James E; Schertler, Gebhard F X; Frank, Matthias; Li, Xiao-Dan
2014-07-17
Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump-probe experiments at subpicosecond time resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Light scattering by small particles
Hulst, H C van de
1981-01-01
""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties
Kumar, Manish
2016-01-01
We propose a simple and straightforward method to generate a spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90{\\deg} bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable and could be extended to other kind of lattices as well.
Energy Technology Data Exchange (ETDEWEB)
Kumar, Manish, E-mail: manishk@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in [Photonics Research Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)
2014-08-04
We propose a simple and straightforward method to generate spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90° bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable, and could be extended to other kind of lattices as well.
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs. PMID:28134315
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs.
Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab
Institute of Scientific and Technical Information of China (English)
LIU Hong-Wei; KAN Qiang; WANG Chun-Xia; HU Hai-Yang; XU Xing-Sheng; CHEN Hong-Da
2011-01-01
Light extraction effects of a photonic crystal slab with a micrometer scale lattice constant are studied. A GaN light emitting diode (LED) with a photonic crystal slab is fabricated. The light extraction effects and the enhancement mechanism are investigated. From theoretical analysis, it is found that the characteristics of LED light emission are modulated by the photonic crystal slab. Experimental results show that the LED light emission intensity is enhanced by 38％ due to guide mode extracting by the photonic crystal.%@@ Light extraction effects ora photonic crystal slab with a micrometer scale lattice constant are studied.A GaN light emitting diode(LED) with a photonic crystal slab is fabricated.The light extraction effects and the enhancement mechanism are investigated.From theoretical analysis,it is found that the characteristics of LED light emission are modulated by the photonic crystal slab.Experimental results show that the LED light emission intensity is enhanced by 38% due to guide mode extracting by the photonic crystal.
Light scattering reviews 9 light scattering and radiative transfer
Kokhanovsky, Alexander A
2014-01-01
This book details modern methods of the radiative transfer theory. It presents recent advances in light scattering (measurements and theory) and highlights the newest developments in remote sensing of aerosol and cloud properties.
Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S
2013-10-21
Excitation energy transfer events in the photosynthetic light harvesting complex 2 (LH2) of Rhodobacter sphaeroides are investigated with polarization controlled two-dimensional electronic spectroscopy. A spectrally broadened pulse allows simultaneous measurement of the energy transfer within and between the two absorption bands at 800 nm and 850 nm. The phased all-parallel polarization two-dimensional spectra resolve the initial events of energy transfer by separating the intra-band and inter-band relaxation processes across the two-dimensional map. The internal dynamics of the 800 nm region of the spectra are resolved as a cross peak that grows in on an ultrafast time scale, reflecting energy transfer between higher lying excitations of the B850 chromophores into the B800 states. We utilize a polarization sequence designed to highlight the initial excited state dynamics which uncovers an ultrafast transfer component between the two bands that was not observed in the all-parallel polarization data. We attribute the ultrafast transfer component to energy transfer from higher energy exciton states to lower energy states of the strongly coupled B850 chromophores. Connecting the spectroscopic signature to the molecular structure, we reveal multiple relaxation pathways including a cyclic transfer of energy between the two rings of the complex.
Institute of Scientific and Technical Information of China (English)
HUANG Yin; LU Yan-Wu
2009-01-01
@@ Light propagation through a coupled-defect waveguide with a 63.5°bend in a two-dimensional (2D) photonic crystal is investigated. The waveguide modes are non-degenerate monopole state and dipole defect state of a square lattice for two different branches. To increase the transmission in the bending waveguide, we propose a method to rotate the localized state by introducing a new type defect with a sheared square rod into coupled cavity. The higher coupling efficiency and transmission in the bending waveguide are obtained with proper shear shift.
Scattering of light by crystals
Hayes, William
2012-01-01
This authoritative graduate-level text describes inelastic light scattering by crystals and its use in the investigation of solid-state excitation, with experimental techniques common to all types of excitation. 1978 edition.
Interaction between Two-Dimensional White-Light Photovoltaic Dark Spatial Solitons
Institute of Scientific and Technical Information of China (English)
LIU Zhao-Hong; LIU Si-Min; GUO Ru; GAO Yuan-Mei; SONG Tao; ZHU Nan; QU Di
2007-01-01
Using fully incoherent white light emitted from an incandescent bulb (a line source) and amplitude mask, we study experimentally the interaction between two 2D white-light photovoltaic dark spatial solitons with three different separations (40 μm, 50 μm and 60 μm) and arrangement directions (parallel to, perpendicular to and tilted at 45° with respect to the crystalline c axis) propagating in parallel in close proximity in self-defocusing LiNbO3:Fe crystal. Experimental results reveal that a 2D white-light dark soliton pair only experiences attractive forces when their mutual separation is sufficiently small (＜ 60 μm), and the degree of the attraction depends on their mutual separation and their arrangement direction. When the separation is larger than 60 μm, the interaction is not evident.
Two-Dimensional GaAs/AlGaAs Multiple Quantum Well Spatial Light Modulators
Institute of Scientific and Technical Information of China (English)
Qin Wang; Jan Borglind; Smilja Becanovic; Stéphane Junique; Daniel (A)gren; Bertrand Noharet; Linda H(o)glund; Olof (O)berg; Erik Petrini; Jan Y. Andersson; Hedda Malm
2003-01-01
Multiple quantum well spatial light modulators with 128x128 array in 38μm pitch are fabricated using two pproaches, one with an attachment of an optical substrate and another one without. These two fabrication processes are described and compared.
Cardona, Manuel
2007-01-01
This is the ninth volume of a well-established series in which expert practitioners discuss topical aspects of light scattering in solids. It reviews recent developments concerning mainly semiconductor nanostructures and inelastic x-ray scattering, including both coherent time-domain and spontaneous scattering studies. In the past few years, light scattering has become one of the most important research and characterization methods for studying carbon nanotubes and semiconducting quantum dots, and a crucial tool for exploring the coupled exciton--photon system in semiconductor cavities. Among the novel techniques discussed in this volume are pump--probe ultrafast measurements and those which use synchrotron radiation as light source. The book addresses improvements in the intensity, beam quality and time synchronization of modern synchrotron sources, which made it possible to measure the phonon dispersion in very small samples and to determine electronic energy bands as well as enabling real-time observations...
Molecular-scale dynamics of light-induced spin cross-over in a two-dimensional layer
Bairagi, Kaushik; Iasco, Olga; Bellec, Amandine; Kartsev, Alexey; Li, Dongzhe; Lagoute, Jérôme; Chacon, Cyril; Girard, Yann; Rousset, Sylvie; Miserque, Frédéric; Dappe, Yannick J; Smogunov, Alexander; Barreteau, Cyrille; Boillot, Marie-Laure; Mallah, Talal; Repain, Vincent
2016-01-01
Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers. PMID:27425776
Energy Technology Data Exchange (ETDEWEB)
Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR
2016-10-05
Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.
Energy Technology Data Exchange (ETDEWEB)
Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)
2014-04-07
We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.
Light repolarization by scattering media
Sorrentini, Jacques; Soriano, Gabriel; Amra, Claude
2011-01-01
The polarization of a coherent depolarized incident light beam passing through a disordered medium is investigated. The local polarization of the scattered far field and the probability density function are calculated and show an excellent agreement with experiment. It is demonstrated that complex media may confer high degree of polarization (0.75 DOP average) to the incident unpolarized light.
High-resolution two-dimensional image upconversion of incoherent light
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2010-01-01
We consider a technique for high-resolution image upconversion of thermal light. Experimentally, we demonstrate cw upconversion with a resolution of more than 200 × 1000 pixels of thermally illuminated objects. This is the first demonstration (to our knowledge) of high-resolution cw image...... upconversion. The upconversion method promises an alternative route to high-quantum-efficiency all-optical imaging in the mid-IR wavelength region and beyond using standard CCD cameras. A particular advantage of CCD cameras compared to state-of-the-art thermal cameras is the possibility to tailor and tune...
Two-dimensional light-front $\\phi^4$ theory in a symmetric polynomial basis
Burkardt, M; Hiller, J R
2016-01-01
We study the lowest-mass eigenstates of $\\phi^4_{1+1}$ theory with both odd and even numbers of constituents. The calculation is carried out as a diagonalization of the light-front Hamiltonian in a Fock-space representation. In each Fock sector a fully symmetric polynomial basis is used to represent the Fock wave function. Convergence is investigated with respect to the number of basis polynomials in each sector and with respect to the number of sectors. The dependence of the spectrum on the coupling strength is used to estimate the critical coupling for the positive-mass-squared case. An apparent discrepancy with equal-time calculations of the critical coupling is resolved by an appropriate mass renormalization.
den Hartog, Sander; Wees, B.J. van; Nazarov, Yu.V.; Klapwijk, T.M.; Borghs, G.
1998-01-01
We first present the bias-voltage dependence of the superconducting phase-dependent reduction in the differential resistance of a disordered T-shaped two-dimensional electron gas (2DEG) coupled to two superconductors. This reduction exhibits a reentrant behavior, since it first increases upon loweri
Light scattering studies of an electrorheological fluid in oscillatory shear
Energy Technology Data Exchange (ETDEWEB)
Martin, J.E.; Odinek, J.
1995-12-31
We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.
Laser light scattering basic principles and practice
Chu, Benjamin
1994-01-01
Geared toward upper-level undergraduate and graduate students, this text introduces the interdisciplinary area of laser light scattering, focusing chiefly on theoretical concepts of quasielastic laser scattering.
Guo, L-X; Li, J; Zeng, H
2009-11-01
We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.
Yang, Jiao; Jiang, Yi-Lin; Li, Lin-Jie; Muhire, Elisée; Gao, Mei-Zhen
2016-04-01
Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following heat treatment process induced phase evolution from rutile to anatase. The TiO2 nanosheets calcined at 500 °C exhibited the best activity for photo-degradation of organic dyes under UV light irradiation. The obtained photodetector exhibits excellent performance with a high photocurrent to dark current ratio and fast response and recovery times. Additionally, we demonstrated that the device may have potential applications in the future low-power optoelectronics system.Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following
Yang, Henglong; Cheng, Yu-Hen; Chen, Ming-Hong; Lin, Yu-Hsuan
2016-09-01
The feasibility of applying a five-inch diagonal white organic light-emitting diode (WOLED) as a desk lamp was experimentally investigated by quantitatively comparing its two-dimensional (2D) optical intensity profile to that of a traditional 3M desk lamp equipped with optical diffuser. The 2D optical distribution patterns as the function of vertical distances to a surface of a five-inch diagonal WOLED were obtained by using rapid rotating measurement technique consisted of a sample holder on a rotational stage and a fixed photo detector with optical power meter. The 2D optical intensity profile on a surface can be rapidly established in a relatively small space by recording the reading from the fixed photo detector as rotating the sample holder. This rapid measurement technique is suitable for practical application in quality engineering without larger space. A WOLED is a compact and thin lighting source with planar device structure without additional optical components. Its optical intensity profile on a plane is expected to be different from traditional lighting sources. The optical distribution pattern of a desk lamp requires a relatively large area on a surface with relatively uniformed intensity distribution. The quantitative analysis of the similarity between WOLED and 3M desk lamp was conducted by comparing the optimal zones defined as the area within 75% of the maximum intensity in 2D optical distribution pattern. Our preliminary result showed that the optimal zone of a five-inch diagonal WOLED at 45cm vertical distance is highly similar to that of the 3M desk lamp with optical diffuser.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
Yang, Jiao; Jiang, Yi-Lin; Li, Lin-Jie; Muhire, Elisée; Gao, Mei-Zhen
2016-04-21
Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following heat treatment process induced phase evolution from rutile to anatase. The TiO2 nanosheets calcined at 500 °C exhibited the best activity for photo-degradation of organic dyes under UV light irradiation. The obtained photodetector exhibits excellent performance with a high photocurrent to dark current ratio and fast response and recovery times. Additionally, we demonstrated that the device may have potential applications in the future low-power optoelectronics system.
Light Scattering in Exoplanet Transits
Robinson, Tyler D.; Fortney, Jonathan J.
2016-10-01
Transit spectroscopy is currently the leading technique for studying exoplanet atmospheric composition, and has led to the detection of molecular species, clouds, and/or hazes for numerous worlds outside the Solar System. The field of exoplanet transit spectroscopy will be revolutionized with the anticipated launch of NASA's James Webb Space Telescope (JWST) in 2018. Over the course of the design five year mission for JWST, the observatory is expected to provide in-depth observations of many tens of transiting exoplanets, including some worlds in the poorly understood 2-4 Earth-mass regime. As the quality of transit spectrum observations continues to improve, so should models of exoplanet transits. Thus, certain processes initially thought to be of second-order importance should be revisited and possibly added to modeling tools. For example, atmospheric refraction, which was commonly omitted from early transit spectrum models, has recently been shown to be of critical importance in some terrestrial exoplanet transits. Beyond refraction, another process that has seen little study with regards to exoplanet transits is light multiple scattering. In most cases, scattering opacity in exoplanet transits has been treated as equivalent to absorption opacity. However, this equivalence cannot always hold, such as in the case of a strongly forward scattering, weakly absorbing aerosol. In this presentation, we outline a theory of exoplanet transit spectroscopy that spans the geometric limit (used in most modern models) to a fully multiple scattering approach. We discuss a new technique for improving model efficiency that effectively separates photon paths, which tend to vary slowly in wavelength, from photon absorption, which can vary rapidly in wavelength. Using this newly developed approach, we explore situations where cloud or haze scattering may be important to JWST observations of gas giants, and comment on the conditions necessary for scattering to become a major
Light scattering near phase transitions
Cummins, HZ
1983-01-01
Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.
Lee, Chanwoo; Kim, Sung Tae; Jeong, Byeong Geun; Yun, Seok Joon; Song, Young Jae; Lee, Young Hee; Park, Doo Jae; Jeong, Mun Seok
2017-01-01
We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of ~60% with the radius of ~34 nm and the cone angle of ~35°. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of ~40 nm and a Raman enhancement factor of ~4,760.
DEFF Research Database (Denmark)
Christensen, Niels Bech
polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described bylinear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo......Time-of-flight and polarized triple axis neutron scattering is used to probe the spin excitations of Cu(DCOO)_2_·_4D_2O and La_2_-_xSr_xCuO_4. The first part of the thesis contains an investigation of the excitation spectrum of the square lattice S = 1/2Heisenberg antiferromagnet Cu(DCOO)_2_·_4D_2O...
Mei, Jun; Liu, Zhengyou; Qiu, Chunyin
2005-06-29
We extend the multiple-scattering theory (MST) to out-of-plane propagating elastic waves in 2D periodical composites by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission coefficient calculation for finite slabs is presented. The latter is based on a double-layer scheme, which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. Being more rapid in both the band structure and the transmission coefficient calculations for out-of-plane propagating elastic waves, our approach especially shows great advantages in handling the systems with mixed solid and fluid components, for which the conventional plane wave approach fails. As the applications of the formalism, we calculate the band structure as well as the transmission coefficients through finite slabs for systems with lead rods in an epoxy host, steel rods in a water host and water rods in a PMMA host.
Energy Technology Data Exchange (ETDEWEB)
Bech Christensen, N
2005-01-01
Time-of-flight and polarized triple axis neutron scattering is used to probe the spin excitations of Cu(DCOO){sub 2}x4D{sub 2}O and La{sub 2-x}Sr{sub x}CuO{sub 4}. The first part of the thesis contains an investigation of the excitation spectrum of the square lattice S = 1/2 Heisenberg antiferromagnet Cu(DCOO){sub 2}4D{sub 2}O. Along the antiferromagnetic zone boundary a pronounced intensity variation is found for the dominant single-magnon excitations. This variation tracks an already known zone boundary dispersion. Using polarization analysis to separate the components of the excitation spectrum, a continuum of longitudinally polarized multimagnon excitations is discovered at energies above the single-magnon branch. At low energies, the findings are well described by linear spin wave theory. At high energies, linear spin wave theory fails and instead the data are very well accounted for by state-of-the-art Quantum Monte Carlo computations. In the second part of the thesis, the spin excitation spectra of the high temperature superconductors La{sub 1.90}Sr{sub 0.10}CuO{sub 4} and La{sub 1.84}Sr{sub 0.16}Cu characterized. The main discovery is that the excitations are dispersive at both doping levels. The dispersion strongly resembles that seen in other high-T{sub c} superconductors. The presence of dispersive excitations does not require superconductivity to exist. For La{sub 1.84}Sr{sub 0.16}CuO{sub 4}, but not for La{sub 1.90}Sr{sub 0.10}CuO{sub 4}, the onset superconductivity gives rise to a spectral weight shift which displays qualitative and quantitative similarities to the resonance mode observed in other high-T{sub c} superconductors. (au)
Kuhls-Gilcrist, Andrew T.; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen
2010-01-01
The MTF, NNPS, and DQE are standard linear system metrics used to characterize intrinsic detector performance. To evaluate total system performance for actual clinical conditions, generalized linear system metrics (GMTF, GNNPS and GDQE) that include the effect of the focal spot distribution, scattered radiation, and geometric unsharpness are more meaningful and appropriate. In this study, a two-dimensional (2D) generalized linear system analysis was carried out for a standard flat panel detector (FPD) (194-micron pixel pitch and 600-micron thick CsI) and a newly-developed, high-resolution, micro-angiographic fluoroscope (MAF) (35-micron pixel pitch and 300-micron thick CsI). Realistic clinical parameters and x-ray spectra were used. The 2D detector MTFs were calculated using the new Noise Response method and slanted edge method and 2D focal spot distribution measurements were done using a pin-hole assembly. The scatter fraction, generated for a uniform head equivalent phantom, was measured and the scatter MTF was simulated with a theoretical model. Different magnifications and scatter fractions were used to estimate the 2D GMTF, GNNPS and GDQE for both detectors. Results show spatial non-isotropy for the 2D generalized metrics which provide a quantitative description of the performance of the complete imaging system for both detectors. This generalized analysis demonstrated that the MAF and FPD have similar capabilities at lower spatial frequencies, but that the MAF has superior performance over the FPD at higher frequencies even when considering focal spot blurring and scatter. This 2D generalized performance analysis is a valuable tool to evaluate total system capabilities and to enable optimized design for specific imaging tasks. PMID:21243038
Scattering theory of stochastic electromagnetic light waves.
Wang, Tao; Zhao, Daomu
2010-07-15
We generalize scattering theory to stochastic electromagnetic light waves. It is shown that when a stochastic electromagnetic light wave is scattered from a medium, the properties of the scattered field can be characterized by a 3 x 3 cross-spectral density matrix. An example of scattering of a spatially coherent electromagnetic light wave from a deterministic medium is discussed. Some interesting phenomena emerge, including the changes of the spectral degree of coherence and of the spectral degree of polarization of the scattered field.
Margerin, Ludovic; Planès, Thomas; Mayor, Jessie; Calvet, Marie
2016-01-01
Coda-wave interferometry is a technique which exploits tiny waveform changes in the coda to detect temporal variations of seismic properties in evolving media. Observed waveform changes are of two kinds: traveltime perturbations and distortion of seismograms. In the last 10 yr, various theories have been published to relate either background velocity changes to traveltime perturbations, or changes in the scattering properties of the medium to waveform decorrelation. These theories have been limited by assumptions pertaining to the scattering process itself-in particular isotropic scattering, or to the propagation regime-single-scattering and/or diffusion. In this manuscript, we unify and extend previous results from the literature using a radiative transfer approach. This theory allows us to incorporate the effect of anisotropic scattering and to cover a broad range of propagation regimes, including the contribution of coherent, singly scattered and multiply scattered waves. Using basic physical reasoning, we show that two different sensitivity kernels are required to describe traveltime perturbations and waveform decorrelation, respectively, a distinction which has not been well appreciated so far. Previous results from the literature are recovered as limiting cases of our general approach. To evaluate numerically the sensitivity functions, we introduce an improved version of a spectral technique known as the method of `rotated coordinate frames', which allows global evaluation of the Green's function of the radiative transfer equation in a finite domain. The method is validated through direct pointwise comparison with Green's functions obtained by the Monte Carlo method. To illustrate the theory, we consider a series of scattering media displaying increasing levels of scattering anisotropy and discuss the impact on the traveltime and decorrelation kernels. We also consider the related problem of imaging variations of scattering properties based on intensity
Institute of Scientific and Technical Information of China (English)
DAI Tao; ZHU Xing; ZHANG Bei; ZHANG Zhen-Sheng; LIU Dan; WANG Xiao; BAO Kui; KANG Xiang-Ning; XU Jun; Yu Da-Peng
2007-01-01
A two-dimensional array of dodecagonal photonic quasicrystal(12PQC)is fabricated on the surface of current injected GaN-based LEDs to out-couple guided modes.The spatially-resolved surface light extraction mapping of 12PQC is observed and compared with that of triangular lattice photonic crystal (3PC)by microscopic electrical luminescence and scanning near-field microscopy.The higher enhancement factor of 12PQC is obtained to be larger than that of 3PC.It is shown that 12PQC is more favourable and efficient for light extraction of guided lights.
Energy Technology Data Exchange (ETDEWEB)
Monsefi, Farid [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Väs (Sweden); Carlsson, Linus; Silvestrov, Sergei [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås (Sweden); Rančić, Milica [Division of Applied Mathematics, The School of Education, Culture and Communication, Mälardalen University, MDH, Västerås, Sweden and Department of Theoretical Electrical Engineering, Faculty of Electronic Engineering, University (Serbia); Otterskog, Magnus [School of Innovation, Design and Engineering, IDT, Mälardalen University, MDH Västerås (Sweden)
2014-12-10
To solve the electromagnetic scattering problem in two dimensions, the Finite Difference Time Domain (FDTD) method is used. The order of convergence of the FDTD algorithm, solving the two-dimensional Maxwell’s curl equations, is estimated in two different computer implementations: with and without an obstacle in the numerical domain of the FDTD scheme. This constitutes an electromagnetic scattering problem where a lumped sinusoidal current source, as a source of electromagnetic radiation, is included inside the boundary. Confined within the boundary, a specific kind of Absorbing Boundary Condition (ABC) is chosen and the outside of the boundary is in form of a Perfect Electric Conducting (PEC) surface. Inserted in the computer implementation, a semi-norm has been applied to compare different step sizes in the FDTD scheme. First, the domain of the problem is chosen to be the free-space without any obstacles. In the second part of the computer implementations, a PEC surface is included as the obstacle. The numerical instability of the algorithms can be rather easily avoided with respect to the Courant stability condition, which is frequently used in applying the general FDTD algorithm.
Incoherent subharmonic light scattering in isotropic media.
Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S
2005-02-01
Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.
The Amsterdam-Granada Light Scattering Database
Muñoz, O.; Moreno, F.; Guirado, D.; Dabrowska, D.D.; Volten, H.; Hovenier, J.W.
2012-01-01
The Amsterdam Light Scattering Database proved to be a very successful way of promoting the use of the data obtained with the Amsterdam Light Scattering apparatus at optical wavelengths. Many different research groups around the world made use of the experimental data. After the closing down of the
Light scattering on chlorella vulgaris cells
Krol, Tadeusz; Zielinski, Andrzej; Witkowski, Konrad
1992-12-01
Laboratory measurements of light scattering on the axenic cultures of unicellular alga Chlorella vulgaris monoculture confirm the thesis of multi-level light scattering by the cell i.e., both by outer cell membrane and the internal structure of the cell, as well as by its molecular structures. In the measurements, the technique of dynamic light scattering and analysis by the regulation method was used, indicate that the light scattering phenomenon is affected by particles of sizes corresponding either to overall dimensions of the cell or to the dimensions of its internal structures. A correlation was found between the suggested sizes and the stage of physiological evolution of the culture. The measurements of 10 functions constituting the elements of the scattering matrix for an alive Chlorella vulgaris culture and cultures with internal cell structures modified by chemical and mechanical agents evidence that the internal structures of cells play an important role in the interaction of phytoplankton and light.
Radiofrequency encoded angular-resolved light scattering
DEFF Research Database (Denmark)
Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.
2015-01-01
The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...
Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.
2013-12-01
Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.
Ultraslow-light effects in symmetric and asymmetric waveguide structures with moon-like scatterers
Wan, Yong; Ge, Xiao-Hui; Xu, Sheng; Guo, Yue; Yuan, Feng
2017-02-01
Ultraslow-light effects in two-dimensional hexagonal-lattice coupled waveguide with moon-like scatterers were theoretically studied using the plane-wave expansion method. For symmetric structures, simulations showed that slow light with high group index can be achieved by shifting the scatterers and adjusting the radius of moon-like scatterers. The maximum group index was over 8:0 × 104. For asymmetric structures, simulations showed that slow light with flat band and high group index can be obtained by shifting the scatterers, adjusting the radius of moon-like scatterers, and rotating the scatterers. The maximum group index was over 5:7 × 105 with a "saddle-like" relationship between the frequency and group index.
Resonance Light Scattering Imaging Determination of Heparin
Institute of Scientific and Technical Information of China (English)
Hong Ping GUO; Cheng Zhi HUANG; Jian LING
2006-01-01
A laser-induced resonance light scattering (RLS) imaging method to determine heparin is described based on the high light scattering emission power of the aggregation species of heparin with α, β, γ, δtetra(4-trimethylaminoniumphenyl)prophyrin (TAPP) in solution. By imaging the light scattering signals of the aggregation species, we proposed the method to determine the heparin with a detection range of 0.02 - 0.6 μg/mL and the detection limit (3 σ) of 1.3 ng/mL.
Gómez-Urrea, H. A.; Duque, C. A.; Pérez-Quintana, I. V.; Mora-Ramos, M. E.
2017-03-01
The dispersion relations of two-dimensional photonic crystals made of uniaxial polaritonic cylinders arranged in triangular lattice are calculated. The particular case of the transverse magnetic polarization is taken into account. Three different uniaxial materials showing transverse phonon-polariton excitations are considered: aluminum nitride, gallium nitride, and indium nitride. The study is carried out by means of the finite-difference time-domain technique for the solution of Maxwell equations, together with the method of the auxiliary differential equation. It is shown that changing the filling fraction can result in the modification of both the photonic and polaritonic bandgaps in the optical dispersion relations. Wider gaps appear for smaller filling fraction values, whereas a larger number of photonic bandgaps will occur within the frequency range considered when a larger filling fraction is used. The effect of including the distinct wurtzite III-V nitride semiconductors as core materials in the cylinders embedded in the air on the photonic properties is discussed as well, highlighting the effect of the dielectric anisotropy on the properties of the polaritonic part of the photonic spectrum.
Transparent alumina: A light scattering model
Apetz, R.; Van Bruggen, P.B.
2003-01-01
A model based on Rayleigh-Gans-Debye light scattering theory has been developed to describe the light transmission properties of fine-grained, fully dense polycrystalline ceramics consisting of birefringent crystals. This model extends light transmission models based on geometrical optics, which are
Investigating Static and Dynamic Light Scattering
Sun, Yong
2011-01-01
A new size, static radii $R_{s}$, can be measured accurately using Static Light Scattering (SLS) technique when the Rayleigh-Gans-Debye approximation is valid for dilute homogenous spherical particles in dispersion. The method proposed in this work not only can measures the particle size distribution and average molar mass accurately but also enables us to explore Dynamic Light Scattering (DLS) technique further. Detailed investigation of the normalized time auto-correlation function of the scattered light intensity $g^{2)}(\\tau)$ shows that the measurements of DLS can be expected accurately and the static and hydrodynamic radii of nanoparticles are different. Only at some special conditions, the Z-average hydrodynamic radius can be measured accurately at a given scattering angle. The fact that the values of average hydrodynamic radius measured at different scattering angles are consistent or the values of polydispersity index are small does not mean the particle size distribution is narrow or monodisperse.
DEFF Research Database (Denmark)
Schins, A.G.; Nielsen, M.; Arts, A.F.M.
1992-01-01
A neutron scattering study of the magnetic order in the randomly mixed two-dimensional ferromagnet-antiferromagnet Rb2Cu1-xCoxF4 has been performed. For x = 0.037, 0.083, and 0.88, the system enters an oblique ferromagnetic phase, an axial ferromagnetic, and an axial antiferromagnetic phase...
Multiple light scattering in porous gallium phosphide
Bret, Boris Paul Jean
2005-01-01
This thesis presents an experimental study on multiple light scattering, with the necessary introductions: theoretical background and sample preparation. The emphasis is put on the effects of the multiple scattering of waves, i.e., where interference effects exist and are significant, in the search for Anderson localization. In ensemble-averaged random media, there exists a cone of light, superimposed on the diffuse background, in the exact backscattering direction, due to the constructive in...
Angularly-resolved elastic light scattering of micro-particles
Aptowicz, Kevin B.
From microbiology to astrophysics, the scientific community has long embraced elastic light scattering from small particles as a diagnostic tool. Elastic light scattering has an extremely large scattering cross-section, allowing for single particle interrogation. This is critical in applications where trace amounts of suspect particles are to be detected in a diverse background of natural aerosols. By angularly-resolving the elastically scattered light, features can be detected in these patterns that are sensitive to a particle's morphology (shape, size, internal structure, and composition). An apparatus to collect LA TAOS (Large-Angle Two-dimensional Angular Optical Scattering) patterns from single particles in-situ and in real-time was designed and constructed. The setup utilizes a cross-beam trigger system to minimize the effects of the aberration coma stemming from the main collection optic, an ellipsoidal mirror. LA TAOS patterns of ambient aerosols were collected and analyzed. Approximately 15% of the ambient aerosol had a sphere-like shape. The refractive index of these spheres was estimated by curve-fitting to Lorenz-Mie theory. In addition, the island features prevalent in the LA TAOS pattern were analyzed. Metrics generated from these were used to get partial discrimination between clusters of Bacillus subtilis spores (a simulant for anthrax) and aerosol particles found in the ambient atmosphere. A novel experimental setup for collecting simultaneously LA TAOS patterns at two wavelengths in the mid-infrared was also implemented. With this setup, the relative strength of single-particle absorption could be discerned at the two illuminating wavelengths.
2012-05-10
light (Schmelzle, 1994 and Albano , 1994). The kinetic mechanisms were incorporated into the flow field model by introducing the species mass... Albano , M., 1994. Computer Simulation of a Photolytic Reactor to Study the Effects of a Variety of Wavelengths, A Thesis in Environmental Pollution
Duin, van E.H.S.
1992-01-01
This thesis reports on a study of the water quality in the Markermeer, focusing on the relationships between sediment transport, the light field and the growth of Oscillatoria agardhii . The study comprises two aspects: an extensive data collection program with the data
Olbrich, Carsten; Jansen, Thomas L. C.; Liebers, Joerg; Aghtar, Mortaza; Struempfer, Johan; Schulten, Klaus; Knoester, Jasper; Kleinekathoefer, Ulrich; Strümpfer, Johan
2011-01-01
The experimental observation of long-lived quantum coherences in the Fenna-Matthews-Olson (FMO) light-harvesting complex at low temperatures has challenged general intuition in the field of complex molecular systems and provoked considerable theoretical effort in search of explanations. Here we repo
Light scattering of interacting gold nanorods
Energy Technology Data Exchange (ETDEWEB)
McGuirt, Baxter; Kielbasa, Jerry; Park, Jung-Ho; Zhang, Junping; Peterson, Eric; Williams, Richard; Carroll, David [Center for Nanotechnology and Molecular Materials and Department of Physics, Wake Forest University, Winston-Salem, NC (United States); Sisco, Patrick; Murphy, Catherine; Adams, Richard D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)
2009-12-15
The optical field intensity of light scattering from nanorods of gold has been imaged at distances that are intermediate between the near-field and far-field regimes using a near-field scanning optical microscope (NSOM). For scattering from isolated nanorods the Fraunhofer diffractive behaviour is modified slightly by the dipolar nature of metal nanoantannae as would be expected at these imaging distances. However, when the nanorods are brought into close proximity, interactions between the nanorods alter the scattering behaviour substantially creating large field intensities between the structures. By sampling the field with the near-field microscope tip scanned at different heights, detailed maps of the scattering profile can be generated. The NSOM image of far-field scattered light from an isolated gold nanorod. The nanorod was imaged at a distance of roughly 8 {mu}m above the support substrate using a scanning near-field microscope operated at constant height mode. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Choi, Won-Sik; Park, Si-Hyun [Yeungnam University, Gyeongsan (Korea, Republic of)
2014-05-15
We numerically simulated the light-extraction efficiency of light-emitting diodes (LEDs) with an integrated two-dimensional photonic crystal (PC) structure on the top surface in order to enhance light extraction. We considered InGaN-based LED chips with a typical emission wavelength of λ{sub o} = 460 nm and an emission wavelength inside the LED chip of λ = λ{sub 0}/n{sub GaN} , where n{sub GaN} is the refractive index of GaN. We used positive (relief) and negative (intaglio) patterns for the PC structures with square arrangements. The pattern period (Λ), width (d), and height (h) of the PC structure were varied systematically in the PC-LEDs; then the light-extraction efficiency of each PC-LED was simulated numerically using a three-dimensional finite-difference time-domain method to optimize the PC structure in terms of light extraction. The PC LED with a square pillar pattern with Λ ∼ 1.4λ, d ∼ 0.75Λ, and h ∼ 0.75Λ had the maximum light-extraction efficiency for positive patterns while the cylindrical hole pattern with Λ ∼ 1.2λ, d ∼ 0.5Λ, and h ∼ 0.5Λ had the maximum light-extraction efficiency for negative patterns.
Yudin, Dmitry; Shelykh, Ivan A.
2016-10-01
A nonperturbative interaction of an electronic system with a laser field can substantially modify its physical properties. In particular, in two-dimensional (2D) materials with a lack of inversion symmetry, the achievement of a regime of strong light-matter coupling allows direct optical tuning of the strength of the Rashba spin-orbit interaction (SOI). Capitalizing on these results, we build a theory of the dynamical conductivity of a 2D electron gas with both Rashba and Dresselhaus SOIs coupled to an off-resonant high-frequency electromagnetic wave. We argue that strong light-matter coupling modifies qualitatively the dispersion of the electrons and can be used as a powerful tool to probe and manipulate the coupling strengths and adjust the frequency range where optical conductivity is essentially nonzero.
Energy Technology Data Exchange (ETDEWEB)
Tidwell, V.C.; Glass, R.J.
1992-01-21
Two independent high-resolution moisture-sensing techniques, x-ray absorption and light transmission, have been developed for use in two-dimensional, thin-slab experimental systems. The techniques yield full-field measurement capabilities with exceptional resolution of moisture content in time and space. These techniques represent powerful tools for the experimentalist to investigate processes governing unsaturated flow and transport through fractured and nonfractured porous media. Evaluation of these techniques has been accomplished by direct comparison of data obtained by means of the x-ray and light techniques as well as comparison with data collected by gravimetric and gamma-ray densitometry techniques. Results show excellent agreement between data collected by the four moisture-content measurement techniques. This program was established to support the Yucca Mountain Site Characterization Project.
The Whiteness of Things and Light Scattering
Gratton, L. M.; Lopez-Arias, T.; Calza, G.; Oss, S.
2009-01-01
We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the "colour" white. These experiments can be used in the classroom with an enquiry…
Circularly symmetric light scattering from nanoplasmonic spirals.
Trevino, Jacob; Cao, Hui; Dal Negro, Luca
2011-05-11
In this paper, we combine experimental dark-field imaging, scattering, and fluorescence spectroscopy with rigorous electrodynamics calculations in order to investigate light scattering from planar arrays of Au nanoparticles arranged in aperiodic spirals with diffuse, circularly symmetric Fourier space. In particular, by studying the three main types of Vogel's spirals fabricated by electron-beam lithography on quartz substrates, we demonstrate polarization-insensitive planar light diffraction in the visible spectral range. Moreover, by combining dark-field imaging with analytical multiparticle calculations in the framework of the generalized Mie theory, we show that plasmonic spirals support distinctive structural resonances with circular symmetry carrying orbital angular momentum. The engineering of light scattering phenomena in deterministic structures with circular Fourier space provides a novel strategy for the realization of optical devices that fully leverage on enhanced, polarization-insensitive light-matter coupling over planar surfaces, such as thin-film plasmonic solar cells, plasmonic polarization devices, and optical biosensors.
Zhang, Hanyu; Choi, Jungwook; Ramani, Arjun; Voiry, Damien; Natoli, Sean N; Chhowalla, Manish; McMillin, David R; Choi, Jong Hyun
2016-09-19
Molybdenum disulfide (MoS2 ) is a promising candidate for electronic and optoelectronic applications. However, its application in light harvesting has been limited in part due to crystal defects, often related to small crystallite sizes, which diminish charge separation and transfer. Here we demonstrate a surface-engineering strategy for 2D MoS2 to improve its photoelectrochemical properties. Chemically exfoliated large-area MoS2 thin films were interfaced with eight molecules from three porphyrin families: zinc(II)-, gallium(III)-, iron(III)-centered, and metal-free protoporphyrin IX (ZnPP, GaPP, FePP, H2 PP); metal-free and zinc(II) tetra-(N-methyl-4-pyridyl)porphyrin (H2 T4, ZnT4); and metal-free and zinc(II) tetraphenylporphyrin (H2 TPP, ZnTPP). We found that the photocurrents from MoS2 films under visible-light illumination are strongly dependent on the interfacial molecules and that the photocurrent enhancement is closely correlated with the highest occupied molecular orbital (HOMO) levels of the porphyrins, which suppress the recombination of electron-hole pairs in the photoexcited MoS2 films. A maximum tenfold increase was observed for MoS2 functionalized with ZnPP compared with pristine MoS2 films, whereas ZnT4-functionalized MoS2 demonstrated small increases in photocurrent. The application of bias voltage on MoS2 films can further promote photocurrent enhancements and control current directions. Our results suggest a facile route to render 2D MoS2 films useful for potential high-performance light-harvesting applications.
Light organization of small particles by multiple scattering
Hang, Zhi Hong
Optical manipulation is of broad interest in physics, chemistry, and biology. In the literature, most of the studies are focused on the optical trapping on a single object. In this thesis, we investigated the light-induced interaction of a collection of particles. The light-induced interaction between small particles was studied by a hierarchy of methods including the dipole theory, the multiple scattering and Maxwell stress tensor formalism, and the finite-difference-time-domain method. We showed that the multiple scattering between small particles could induce a binding mechanism to stabilize optically organized structures, but at the same time induced an intrinsic unbinding mechanism. The stability of optically organized structure was studied and a concept of "optical density" was introduced to gauge the destabilizing effect. We found that light-induced forces could bind dielectric spheres into extended structures through two mechanisms, each with its own length scale which could be adjusted by the configuration of the external light source. By manipulating the commensurability of the two length scales, these two mechanisms cooperated to bind a large number of spheres. When the two length scales became incommensurate for some particular incident angle, the competition between the two mechanisms led to modulated structures and other complex phenomena such as re-entrant stability. We searched for the possibility for stabilizing larger clusters. For this purpose, we found that circularly polarized light bound dielectric spheres into large-scale two-dimensional hexagonal lattice and multiple scattering also induced a rotation of optically bound structures. We searched for configurations that could induce optical trapping by field enhancement. Enhanced transmission on perforated metallic film system was studied. Surface modes bound on multi perforated perfect metal plate system were analytical solved and related to different high transmittance modes. Near
Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin
2017-03-01
Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies.
van der Vegte, C P; Prajapati, J D; Kleinekathöfer, U; Knoester, J; Jansen, T L C
2015-01-29
The Light Harvesting 2 (LH2) complex is a vital part of the photosystem of purple bacteria. It is responsible for the absorption of light and transport of the resulting excitations to the reaction center in a highly efficient manner. A general description of the chromophores and the interaction with their local environment is crucial to understand this highly efficient energy transport. Here we include this interaction in an atomistic way using mixed quantum-classical (molecular dynamics) simulations of spectra. In particular, we present the first atomistic simulation of nonlinear optical spectra for LH2 and use it to study the energy transport within the complex. We show that the frequency distributions of the pigments strongly depend on their positions with respect to the protein scaffold and dynamics of their local environment. Furthermore, we show that although the pigments are closely packed the transition frequencies of neighboring pigments are essentially uncorrelated. We present the simulated linear absorption spectra for the LH2 complex and provide a detailed explanation of the states responsible for the observed two-band structure. Finally, we discuss the energy transfer within the complex by analyzing population transfer calculations and 2D spectra for different waiting times. We conclude that the energy transfer from the B800 ring to the B850 ring is mediated by intermediate states that are delocalized over both rings, allowing for a stepwise downhill energy transport.
Scattered light mapping of protoplanetary disks
Stolker, T.; Dominik, C.; Min, M.; Garufi, A.; Mulders, G. D.; Avenhaus, H.
2016-12-01
Context. High-contrast scattered light observations have revealed the surface morphology of several dozen protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. Aims: We aim to construct a method which takes into account how the flaring shape of the scattering surface of an optically thick protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (e.g., scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected images (r2-scaled) and dust phase functions. Methods: The scattered light mapping method projects a power law shaped disk surface onto the detector plane after which the observed scattered light image is interpolated backward onto the disk surface. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in the R' band and VLT/NACO in the H and Ks bands. Results: The brightest side of the r2-scaled R' band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r2-scaling. The decrease in polarized surface brightness in the scattering angle range of 40°-70° is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak, which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Conclusions: Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the
Light Scattering Reviews, Vol 6 Light Scattering and Remote Sensing of Atmosphere and Surface
Kokhanovsky, Alexander A
2012-01-01
This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.
Label-free identification of individual bacteria using Fourier transform light scattering
Jo, YoungJu; Kim, Min-hyeok; Park, HyunJoo; Kang, Suk-Jo; Park, YongKeun
2015-01-01
Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.
Discrimination of airborne material particles from light scattering (TAOS) patterns
Crosta, Giovanni F.; Pan, Yong-Le; Videen, Gorden; Aptowicz, Kevin B.; Chang, Richard K.
2013-05-01
Two-dimensional angle-resolved optical scattering (TAOS) is an experimental method which collects the intensity pattern of monochromatic light scattered by a single, micron-sized airborne particle. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. The solution proposed herewith relies on a learning machine (LM): rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified. The LM consists of two interacting modules: a feature extraction module and a linear classifier. Feature extraction relies on spectrum enhancement, which includes the discrete cosine Fourier transform and non-linear operations. Linear classification relies on multivariate statistical analysis. Interaction enables supervised training of the LM. The application described in this article aims at discriminating the TAOS patterns of single bacterial spores (Bacillus subtilis) from patterns of atmospheric aerosol and diesel soot particles. The latter are known to interfere with the detection of bacterial spores. Classification has been applied to a data set with more than 3000 TAOS patterns from various materials. Some classification experiments are described, where the size of training sets has been varied as well as many other parameters which control the classifier. By assuming all training and recognition patterns to come from the respective reference materials only, the most satisfactory classification result corresponds to ≍ 20% false negatives from Bacillus subtilis particles and <= 11% false positives from environmental and diesel particles.
High-Energy Compton Scattering Light Sources
Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M
2005-01-01
No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2
Controlling stimulated Raman scattering by two-color light in inertial confinement fusion
Liu, Z. J.; Chen, Y. H.; Zheng, C. Y.; Cao, L. H.; Li, B.; Xiang, J.; Hao, L.; Lan, K.
2017-08-01
A method is proposed to control the stimulated Raman scattering in the inertial confinement fusion by using auxiliary 2ω light to suppress the stimulated Raman scattering of the 3ω light. In this scheme, inverse bremsstrahlung absorption and parametric instabilities in the 2ω light increase the electron temperature and the plasma-density fluctuation, thus preventing the development of Raman scattering of the 3ω light. This scheme is successfully demonstrated by both one-dimensional kinetic simulations and two-dimensional radiative hydrodynamic simulations. The one-dimensional Vlasov results show that the time-averaged transmissivity of the 3ω light increases from 0.75 to 0.95 under certain conditions. Results obtained using the particle-in-cell method with Monte Carlo collisions show that the electron temperature is greatly increased with the increasing intensity of the 2ω light. The two-dimensional radiative hydrodynamic simulation results show that the electron temperature increases from 3.2 keV to 3.5 keV, and the time-averaged backscattering level decreases from 0.28 to 0.1 in the presence of the auxiliary 2ω light.
Ultrafast image-based dynamic light scattering for nanoparticle sizing
Energy Technology Data Exchange (ETDEWEB)
Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu, E-mail: usst-caixs@163.com [Institute of Particle and Two-Phase Flow Measurement, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China)
2015-11-15
An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.
Light-like Scattering in Quantum Gravity
Bjerrum-Bohr, N E J; Holstein, Barry R; Plante, Ludovic; Vanhove, Pierre
2016-01-01
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-1/2, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum hbar dependent terms using the same eikonal method.
Light-like scattering in quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy & Discovery Center, Niels Bohr Institute,University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Donoghue, John F. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Holstein, Barry R. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA, 93016 (United States); Planté, Ludovic; Vanhove, Pierre [CEA, DSM, Institut de Physique Théorique, IPhT, CNRS MPPU, URA2306,Saclay, Gif-sur-Yvette, F-91191 (France)
2016-11-21
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.
Light-like scattering in quantum gravity
Bjerrum-Bohr, N. E. J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre
2016-11-01
We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1/2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.
Protoplanetary disks and exoplanets in scattered light
Stolker, T.
2017-01-01
High-contrast imaging facilitates the direct detection of protoplanetary disks in scattered light and self-luminous exoplanets on long-period orbits. The combined power of extreme adaptive optics and differential imaging techniques delivers high spatial resolution images of disk morphologies down to
Scattered light mapping of protoplanetary disks
Stolker, T; Min, M; Garufi, A; Mulders, G D; Avenhaus, H
2016-01-01
High-contrast scattered light observations have revealed the surface morphology of several dozens of protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. We aim to construct a method which takes into account how the flaring shape of the scattering surface of an (optically thick) protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected (r^2-scaled) images and dust phase functions. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in R'-band and VLT/NACO in H- and Ks-band. The brightest side of the r^2-scaled R'-ban...
Institute of Scientific and Technical Information of China (English)
Marimuthu PAULVANNA NAYAKI; Arunachalam P. KABILAN
2009-01-01
A novel light scattering technique for mapping metal surface corrosion is presented and its results on copper exposed to atmosphere are reported. The front end of the instrument is made up of a sensor module comprising a thin beam light emitting diode (LED) illuminating a small spot on the metal surface, and a matched pair of photodetectors, one for capturing the reflected light and the other for sampling the scattered light. The analog photocurrent signals are digitized and processed online by a personal computer (PC) to determine the corrosion factor defined in terms of the two current values. By scanning the sample surface using the light beam and by computing the corrosion factor values simultaneously, a three dimensional graph and a two dimensional contour map are generated in the PC using Matlab tools. The values of the corrosion factor measured in different durations of exposure to atmosphere, which obey a bilogarithmic law, testify to the validity of our mathematical model.
Inelastic light scattering by low-lying excitations of electrons in low-dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Pellegrini, V. [NEST CNR-INFM and Scuola Normale Superiore, Pisa (Italy); Pinczuk, A. [Department of Physics, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey (United States)
2006-11-15
The low-dimensional electron systems that reside in artificial semiconductor heterostructures of great perfection are a contemporary materials base for explorations of collective phenomena. Studies of low-lying elementary excitations by inelastic light scattering offer insights on properties such energetics, interactions and spin magnetization. We review here recent light scattering results obtained from two-dimensional (2D) quantum fluids in semiconductor heterostructures under extreme conditions of low temperature and large magnetic field, where the quantum Hall phases are archetypes of novel behaviors. We also consider recent light scattering experiments that have probed the excitation spectra of few-electron states in semiconductor quantum dots. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Institute of Scientific and Technical Information of China (English)
张秋佳; 赵玉华; 韩冬; 余平; 刘明珠
2011-01-01
Referring to the complicated operating and bad field measuring of existing surface roughness, an on-line measurement method is presented based on laser two-dimensional scattering principle. The method proposed can not only measure the surface roughness parameters, but also figure out the surface topography. In this measurement, by using non-diffraction laser beam as light source and high accuracy CCD camera as displacement sensor, and applying the method of signal processing of surface roughness by Matlab, real-time measurement of surface roughness can be realized.This method is realized with modularized design, and has the advantages of simple structure, powerful real-time processing capability, high-precision measurement, visual display, and easy operation, etc.%针对现有零件表面粗糙度测量仪器操作复杂,现场测量能力差的问题,提出一种基于激光二维散射的在线测量方法,该方法不仅可以测量表面粗糙度的统计参数,而且可以反映出表面纹理的形貌特征.在测量中,用无衍射激光光束作光源,用高精度的CCD摄像机作位移传感器,利用Matlab进行表面粗糙度测量数据采集与处理,使表面粗糙度在线检测成为可能.该方法运用模块化设计,具有结构简单、实时处理能力强、测试精度高、显示结果直观、不会划伤被测件等优点.
Fathollahi Khalkhali, T.; Bananej, A.
2016-12-01
In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals.
Cooperativity in light scattering by cold atoms
Bienaime, Tom; Piovella, Nicola; Kaiser, Robin
2012-01-01
A cloud of cold N two-level atoms driven by a resonant laser beam shows cooperative effects both in the scattered radiation field and in the radiation pressure force acting on the cloud center-of-mass. The induced dipoles synchronize and the scattered light presents superradiant and/or subradiant features. We present a quantum description of the process in terms of a master equation for the atomic density matrix in the scalar, Born-Markov approximations, reduced to the single-excitation limit. From a perturbative approach for weak incident field, we derive from the master equation the effective Hamiltonian, valid in the linear regime. We discuss the validity of the driven timed Dicke ansatz and of a partial wave expansion for different optical thicknesses and we give analytical expressions for the scattered intensity and the radiation pressure force on the center of mass. We also derive an expression for collective suppression of the atomic excitation and the scattered light by these correlated dipoles.
Zeno: Critical Fluid Light Scattering Experiment
Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen
1996-01-01
The Zeno (Critical Fluid Light Scattering) experiment is the culmination of a long history of critical fluid light scattering in liquid-vapor systems. The major limitation to making accurate measurements closer to the critical point was the density stratification which occurs in these extremely compressible fluids. Zeno was to determine the critical density fluctuation decay rates at a pair of supplementary angles in the temperature range 100 mK to 100 (mu)K from T(sub c) in a sample of xenon accurately loaded to the critical density. This paper gives some highlights from operating the instrument on two flights March, 1994 on STS-62 and February, 1996 on STS-75. More detail of the experiment Science Requirements, the personnel, apparatus, and results are displayed on the Web homepage at http://www.zeno.umd.edu.
Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering
DEFF Research Database (Denmark)
Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei
2017-01-01
We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determine...... the scattering cross-sections by spherical particles, the fields inside which correspond to the Airy-exponential waves....
Light scattering measurement of sodium polyacrylate products
Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie
2015-03-01
In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.
Characterization of Acryl amide Resins Using Static Light Scattering
Libi, Sumit; Norwood, David
2012-02-01
Our research is based on the use of light scattering technique for the characterization of known and unknown particles within a liquid. The research focused specifically on the detection of resin polymer that may be present in the given samples using static light scattering. The sample was delivered into a high performance liquid chromatography system with static light scattering, refractive index and viscosity detectors. Static Light scattering measures the intensity of the light scattered as the function of scattering angle and polymer sample concentration. Based on these results the molecular weight and radius of gyration of the given sample can be calculated.
Theory of diffusive light scattering cancellation cloaking
Farhat, Mohamed; Guenneau, Sebastien; Bagci, Hakan; Salama, Khaled Nabil; Alu, Andrea
2016-01-01
We report on a new concept of cloaking objects in diffusive light regime using the paradigm of the scattering cancellation and mantle cloaking techniques. We show numerically that an object can be made completely invisible to diffusive photon density waves, by tailoring the diffusivity constant of the spherical shell enclosing the object. This means that photons' flow outside the object and the cloak made of these spherical shells behaves as if the object were not present. Diffusive light invisibility may open new vistas in hiding hot spots in infrared thermography or tissue imaging.
In, Hai-Jung; Kwon, Oh-Kyong
2012-03-01
A novel driving method for two-dimensional (2D) and three-dimensional (3D) switchable active matrix organic light-emitting diode (AMOLED) displays is proposed to extend emission time and data programming time during 3D display operation. The proposed pixel consists of six thin-film transistors (TFTs) and two capacitors, and the aperture ratio of the pixel is 45.8% under 40-in. full-high-definition television condition. By increasing emission time and programming time, the flicker problem can be reduced and the lifetime of AMOLED displays can be extended owing to the decrease in emission current density. Simulation results show that the emission current error range from -0.4 to 1.6% is achieved when the threshold voltage variation of driving TFTs is in the range from -1.0 to 1.0 V, and the emission current error is 1.0% when the power line IR-drop is 2.0 V.
Model of Light Scattering in Cavitation Area
Directory of Open Access Journals (Sweden)
S. P. Skvortsov
2015-01-01
Full Text Available The offered work presents analysis of extinction mechanisms and justification of light scattering model in ultrasonic cavitation area to justify a control method of ultrasonic cavitation through its optical sounding by low-intensity laser radiation and through photo-detector record of last radiation.The analysis of the extinction mechanisms has shown that the most essential mechanism causing a change of the transmission coefficient with time is dispersion on pulsating cavitation bubbles. Other extinction mechanisms lead to the time-constant reduction of last radiation intensity and can be taken into consideration by normalizing a recorded transmission coefficient for a previously measured liquid transmission coefficient when there is no cavitation.The feature of light scattering on the cavitation bubbles is primary dispersion in a forward direction that is connected with great values of bubbles radius from units to hundreds of micrometers. In case of single bubbles, dispersion can be described by Mi's theory, and, as to the cavitation area, it is reasonable to use the theory of V. Tversky for multiple light scattering. Thus, dispersion section, according to the paradox of extinction, can be considered to be equal to doubled geometrical section of a bubble. With increasing bubble radius the transmission coefficient monotonically decreases. So, the law of bubble pulsations and the model of light scattering define the law of changing transmission coefficient.Therefore, the cavitation area with its optical sounding acts as a peculiar opto-acoustic modulator. Thus, the demodulated signal of a photo-detector comprises information on pulsations of bubbles.The paper examines the influence of cavitation area thickness and bubbles concentration on the transmission coefficient. It shows a type of transmission coefficient dependence on the radius of cavitation bubbles.The optical sounding method is attractive because it allows us to obtain data on the
Measurements Of Scattered Light From Asbestos Particulate
Riis, P.; Ballik, E. A.
1987-09-01
Light-scattering techniques are potentially very important for the low-level detection and identification of particulate species such as asbestos in aerosol and liquid suspensions. Low-level detection is essential because asbestos is a known carcinogen, even at very-low exposure levels. At present, most asbestos particulate monitoring is used on optical microscopy. If detailed analysis is required, then electron microscopy is employed. Both of these methods are labour intensive. Furthermore, the optical microscopy method is not very reliable. Although the light-scattering techniques described here have general applicability, the emphasis is on asbestos measurements. Ordinary measurements of Mie scattering from asbestos suspensions can provide only limited information on asbestos content. owever, a more sophisticated technique can be employed which relies on the fact that asbestos particulate is fibrous rather than spherical in shape, and that the fibres align in a strong magnetic field (approximately 0.5 T). Particulate other than asbestos is generally non-fibrous in shape. Measurements have been carried out on liquid suspensions of asbestos contained in a small cell placed between the poles of a rotating magnet. The aligned fibres, which rotate about their centre of mass as they follow the field, are illuminated using a laser source. The Mie-scattering intensity is measured as a function of rotation angle, and the resulting data is then analysed with the aid of a microcomputer. Intensity maxima and minima provide reliable information on asbestos concentration, even in the presence of strong scattering from other particulate. In addition, the angular location of the intensity peaks provides information on the type of asbestos present. Each type has a characteristic alignment behaviour in a strong magnetic field. Using relatively-simple equipment, chrysotile asbestos (the most commonly-used type) has been detected at levels below 30 ng/l.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
ATLAS Event Display: Light-by-Light Scattering
ATLAS Collaboration
2017-01-01
An event display of light-by-light scattering in ultra-peripheral lead+lead collisions at 5.02 TeV with the ATLAS detector at the LHC. The event 461251458 from run 287931 recorded on 13 December 2015 at 09:51:07 is shown. Two back-to-back photons with an invariant mass of 24 GeV with no additional activity in the detector are presented. All calorimeter cells with E>500 MeV are shown.
Hang, Da-Ren; Sharma, Krishna Hari; Chen, Chun-Hu; Islam, Sk Emdadul
2016-08-26
We exploit the utilization of two-dimensional (2D) molybdenum oxide nanoflakes as a co-catalyst for ZnO nanorods (NRs) to enhance their photocatalytic performance. The 2D nanoflakes of orthorhombic α-MoO3 were synthesized through a sonication-aided exfoliation technique. The 2D MoO3 nanoflakes can be further converted to substoichiometric quasi-metallic MoO3-x by using UV irradiation. Subsequently, 1D-2D MoO3 /ZnO NR and MoO3-x /ZnO NR composite photocatalysts have been successfully synthesized. The photocatalytic performances of the novel nanosystems in the decomposition of methylene blue are studied by using UV- and visible-illumination setup. The incorporated 2D nanoflakes show a positive influence on the photocatalytic activity of the ZnO. The obtained rate constant values follow the order of pristine ZnO NR
Tikhonov, A. M.
2016-09-01
According to experimental data on X-ray scattering and reflectometry with synchrotron radiation, a twodimensional crystallization phase transition in a monolayer of melissic acid at the n-hexane-water interface with a decrease in the temperature occurs after a wetting transition.
Energy Technology Data Exchange (ETDEWEB)
Tikhonov, A. M. [Russian Academy of Sciences (RAS), Moscow (Russian Federation). Kapitza Inst. for Physical Problems
2016-09-01
According to experimental data on X-ray scattering and reflectometry with synchrotron radiation, a twodimensional crystallization phase transition in a monolayer of melissic acid at the n-hexane–water interface with a decrease in the temperature occurs after a wetting transition.
Energy Technology Data Exchange (ETDEWEB)
Fathollahi Khalkhali, T., E-mail: tfathollahi@aeoi.org.ir; Bananej, A.
2016-12-16
In this study, we analyze complete photonic band gap properties of two-dimensional dielectric-plasma photonic crystals with triangular and square lattices, composed of plasma rods with different geometrical shapes in the anisotropic tellurium background. Using the finite-difference time-domain method we discuss the maximization of the complete photonic band gap width as a function of plasma frequency and plasma rods parameters with different shapes and orientations. The numerical results demonstrate that our proposed structures represent significantly wide complete photonic band gaps in comparison to previously studied dielectric-plasma photonic crystals. - Highlights: • In this paper, we have investigated plasma photonic crystals. • Plasma is a kind of dispersive medium with its equivalent refractive index related to the frequency of an incident EM wave. • In this work, our simulations are performed using the Meep implementation of the finite-difference time-domain (FDTD) method. • For this study, the lattice structures investigated are triangular and square. • Extensive calculations reveal that almost all of these structures represent wide complete band gaps.
Institute of Scientific and Technical Information of China (English)
张德悦; 马富明
2004-01-01
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.
Industrial Particle Size Measurement Using Light Scattering
Muly, E. C.; Frock, H. N.
1980-12-01
The precise knowledge of particle size and particle size distribution is fundamental to the control of a wide variety of industrial processes. Processing steps as diverse as crystallization, grinding, emulsification, and atomization, produce particles in the size range .1 to 1000 micrometers in diameter. While the object of some processes may be the production of particles of specified sizes, e.g., abrasives and glass beads, other processes may require particle size control for process efficiency, e.g., crystallization, and still others for control of final product quality, e.g., minerals, cement, and ceramics. In many processes more than one of these reasons may be important. A line of instruments has been developed using light scattering to measure various parameters of particulate distributions. These instruments employ laser illumination of a flowing stream of particles, producing Fraunhofer diffraction patterns which are processed both optically and electronically with unique, proprietary techniques. Various parameters of the particle size distribution are measured. The measurement is both rapid and precise. This paper will cover the importance of particle size measurements in various processes, different types of measurement methods, and the application of light scattering technology to size determinations in wet slurries and dry powders. A number of specific applications will be discussed encompassing minerals grinding, Portland cement, and rolling mill emulsions. Some references will be made to energy savings through automation.
Fourier transform light scattering angular spectroscopy using digital inline holography.
Kim, Kyoohyun; Park, YongKeun
2012-10-01
A simple and practical method for measuring the angle-resolved light scattering (ARLS) from individual objects is reported. Employing the principle of inline holography and a Fourier transform light scattering technique, both the static and dynamic scattering patterns from individual micrometer-sized objects can be effectively and quantitatively obtained. First, the light scattering measurements were performed on individual polystyrene beads, from which the refractive index and diameter of each bead were retrieved. Also, the measurements of the static and dynamic light scattering from intact human red blood cells are demonstrated. Using the present method, an existing microscope can be directly transformed into a precise instrument for ARLS measurements.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Extinction and Scattering of Light by Magnetic Colloidal Nanoparticles
Directory of Open Access Journals (Sweden)
C.V. Yerin
2015-12-01
Full Text Available The peculiarities of scattering and extinction of light by colloids with different concentrations of magnetite nanoparticles are investigated. The light absorption effect on spectral dependencies of optical density of magnetic colloid are observed. According to dynamic light scattering experiments, particle size distributions for samples with different concentration of nanoparticles are defined.
Energy Technology Data Exchange (ETDEWEB)
Walker, Bennett N., E-mail: bennett.walker@fda.hhs.gov [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); James, Robert H.; Ilev, Ilko K. [Optical Therapeutics and Medical Nanophotonics Laboratory, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States); Calogero, Don [Office of Device Evaluation, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993 (United States)
2015-09-15
Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.
Measurement of Dynamic Light Scattering Intensity in Gels
Rochas, Cyrille
2015-01-01
In the scientific literature little attention has been given to the use of dynamic light scattering (DLS) as a tool for extracting the thermodynamic information contained in the absolute intensity of light scattered by gels. In this article we show that DLS yields reliable measurements of the intensity of light scattered by the thermodynamic fluctuations, not only in aqueous polymer solutions, but also in hydrogels. In hydrogels, light scattered by osmotic fluctuations is heterodyned by that from static or slowly varying inhomogeneities. The two components are separable owing to their different time scales, giving good experimental agreement with macroscopic measurements of the osmotic pressure. DLS measurements in gels are, however, tributary to depolarised light scattering from the network as well as to multiple light scattering. The paper examines these effects, as well as the instrumental corrections required to determine the osmotic modulus. For guest polymers trapped in a hydrogel the measured intensity...
How to distinguish elastically scattered light from Stokes shifted light for solid-state lighting?
Meretska, M. L.; Lagendijk, A.; Thyrrestrup, H.; Mosk, A. P.; IJzerman, W. L.; Vos, W.L.
2016-01-01
We have studied the transport of light through phosphor diff user plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that both elastically scatter and Stokes shift light in the visible wavelength range (400-700 nm). We
Miniature instrumentation for laser light scattering experiments
Brown, Robert G. W.
1989-01-01
Traditional optical systems for photon correlation spectroscopy and laser anemometry have relied upon physically large and fairly expensive lasers, bulk-optics such as lenses of a few inches diameter, large mechanical mounts and carefully selected, fragile and bulky photon counting photomultiplier detectors. In some cases, experimental fluid dynamics at a desired position in a flow, perhaps deep inside complex machinery, is physically impossible or very difficult. Similar problems exist with photon correlation spectroscopy, e.g., remote and heterodyne experiments. Various optical and electro optical components were investigated and characterized with the aim of replacing existing photon correlation laser spectroscopy and anemometry techniques in miniaturized form, and with significant cost reduction. Very recently, a range of miniature, modular light scattering systems were constructed from little solid state optical and electro optical components, and experimentally verified measurement performance comparable to standard lab photon correlation spectroscopy and laser anemometry equipment.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Ostroumov, Evgeny E; Mulvaney, Rachel M; Anna, Jessica M; Cogdell, Richard J; Scholes, Gregory D
2013-09-26
Excited state dynamics in LH2 complexes of two purple bacterial species were studied by broad-band two-dimensional electronic spectroscopy. The optical response was measured in the 500-600 nm spectral region on the 0-400 fs time scale. Global target analysis of two-dimensional (2D) transient spectra revealed the main energy transfer pathways between carotenoid S2, 1Bu(-) and S1 states and bacteriochlorophyll Qx state. Global analysis ascertained the evolutionary and vibration-associated spectra, which also indicated the presence of a higher-lying vibrational level in the carotenoid S1 state. The estimation of the spectral overlap between the 1Bu(-) state and the Qx state indicated a significant contribution of the 1Bu(-) state to the overall S2-to-Qx excitation energy transfer.
Institute of Scientific and Technical Information of China (English)
Wang Yan; Shen Bo; Xu Fu-Jun; Huang Sen; Miao Zhen-Lin; Lin Fang; Yang Zhi-Jian; Zhang Guo-Yi
2009-01-01
This paper reports that cathodoluminescence (CL) measurements have been done to study the alloy fluctuation of the Al0.3Ca0.7N layer in Al0.3Ca0.7N/GaN heterostructures. The CL images and linescanning results demonstrate the existcnce of compositional fluctuation of Al in the Al0.3Ga0.7N barrier. A model using a δ-shape perturbation Hamilton function has been proposed to simulate the scattering probability of the two dimensional electron gases (2DEG) induced by Al composition fluctuation. Two factors, including conduction band fluctuation and polarization electric field variation, induced by the Al composition fluctuation have been taken into account. The scattering relaxation time induced by both factors has been estimated to be 0.31 ns and 0.0078 us, respectively, indicating that the variation of the piezoelectric field is dominant in the scattering of the 2DEG induced by Al fluctuation.
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Scattering of light by charged colloidal particles in salt solutions
Vrij, A.; Overbeek, J.Th.G.
1962-01-01
In the interpretation of light scattering by colloidal electrolytes in salt solutions the interaction between the colloidal particles and the low molecular weight ions has to be taken into account. When fluctuation theory is applied for the derivation of a light-scattering equation, nonelectroneutra
Utility of light scatter in the morphological analysis of sperm
We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...
Light scattering by neutrophils: Model, simulation, and experiment
Orlova, D.Y.; Yurkin, M.A.; Hoekstra, A.G.; Maltsev, V.P.
2008-01-01
We studied the elastic light-scattering properties of human blood neutrophils, both experimentally and theoretically. The experimental study was performed with a scanning flow cytometer measuring the light-scattering patterns (LSPs) of individual cells over an angular range of 5-60 deg. We determine
Light scattering by marine heterotrophic bacteria
Ulloa, Osvaldo; Sathyendranath, Shubha; Platt, Trevor; Quinones, Renato A.
1992-01-01
Mie theory is applied to estimate scattering by polydispersions of marine heterotrophic bacteria, and a simple expression is derived for the bacterial scattering coefficient. The error incurred in deriving bacterial optical properties by use of the van de Hulst approximations is computed. The scattering properties of natural bacterial assemblages in three marine environments, Georges Bank, Northeast Channel, and Sargasso Sea, are assessed by applying Mie theory to field data on bacterial size and abundance. Results are used to examine the potential contribution of bacteria to the scattering properties of seawater. The utility of using pigment data to predict the magnitude of scattering by bacteria is discussed.
Improved algorithm of light scattering by a coated sphere
Institute of Scientific and Technical Information of China (English)
Lei Liu; Huarui Wang; Bin Yu; Yamin Xu; Jianqi Shen
2007-01-01
An efficient numerical algorithm for computing the light scattering by a coated sphere is proposed. The calculation of relevant functions by different recurrence algorithms is discussed. The new algorithm avoids the numerical difficulties, which give rise to significant errors encountered in practice by prior methods. Exemplifying results such as extinction efficiency, scattering efficiency, light scattering intensity as well as calculation speed are provided. The results show that this algorithm is efficient, fast, numerically stable and accurate.
Scattering of light by a system of anisotropic particles.
Du, Xinyue; Zhao, Daomu
2010-05-15
The cross-spectral density function of the scattered field that is produced by scattering of a coherent plane light wave incident on a collection of different types of anisotropic particles is derived. We show the phenomena of interference of the fields scattered by each of the particles in the system. Numerical results indicate that the information about the shape, the distance, and the relative orientation of the particles may be obtained from far-zone measurements of the scattered field.
Macrovoids formation and light scattering of PMMA
Indian Academy of Sciences (India)
Zhi Hong Chen; Z C Chang; C B Lin
2007-08-01
After desorption of PMMA with saturated methanol and ethanol and then desorption by distilled water, the macrovoids are formed because of the phase inversion. The macrovoids on the surface of the specimens are larger and more numerous than those in the bulk. The macrovoids are likely to be closed-type, if the hydrolysis temperature is lower. On the other hand, if the hydrolysis temperature is higher, the macrovoids are likely to be open-type. Due to the formation of macrovoids, smaller than visible wavelengths, the light will disperse, and therefore, reduces the transmittance of the specimens. The transmittance is decreased when the hydrolysis temperature and hydrolysis time are increased. Furthermore, it is much clearer when ethanol is used as solvent than methanol. The scattered intensity of the specimens after hydrolysis is inversely proportional to the visible wavelength with an exponent, , in the range 0.04–2.83 for methanol and 0.02–0.21 for ethanol.
Light scattering of thin azobenzene side-chain polyester layers
DEFF Research Database (Denmark)
Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.
2002-01-01
characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values.......Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...
Study of erythrocyte membrane fluctuation using light scattering analysis
Lee, Hoyoon; Lee, Sangyun; Park, YongKeun; Shin, Sehyun
2016-03-01
It is commonly known that alteration of erythrocyte deformability lead to serious microcirculatory diseases such as retinopathy, nephropathy, etc. Various methods and technologies have been developed to diagnose such membrane properties of erythrocytes. In this study, we developed an innovative method to measure hemorheological characteristics of the erythrocyte membrane using a light scattering analysis with simplified optic setting and multi-cell analysis as well. Light scattering intensity through multiple erythrocytes and its power density spectrum were obtained. The results of light scattering analyses were compared in healthy control and artificially hardened sample which was treated with glutaraldehyde. These results were further compared with conventional assays to measure deformable property in hemorheology. We found that light scattering information would reflect the disturbance of membrane fluctuation in artificially damaged erythrocytes. Therefore, measuring fluctuation of erythrocyte membrane using light scattering signal could facilitate simple and precise diagnose of pathological state on erythrocyte as well as related complications.
Positron Production in Multiphoton Light-by-Light Scattering
Energy Technology Data Exchange (ETDEWEB)
Koffas, Thomas
2003-07-28
We present the results of an experimental study on e{sup +}e{sup -} pair production during the collision of a low emittance 46.6 GeV electron beam with terawatt laser pulses from a Nd:glass laser at 527 nm wavelength and with linear polarization. The experiment was conducted at the Final Focus Test Beam facility in the Stanford Linear Accelerator Center. Results with a 49.1 GeV electron beam are also included. A signal of 106 {+-} 14 positrons for the 46.6 GeV electron beam case and of 22 {+-} 10 positrons for the 49.1 GcV case above background, has been detected. We interpret the positrons as the products of a two-step process during which laser photons are backscattered to high energy gamma photons that absorb in their turn several laser photons in order to produce a e{sup +}e{sup -} pair. The data compare well with the existing theoretical models. This is the first observation in the laboratory of inelastic Light-by-Light scattering with only real photons. Alternatively, the data are interpreted as a manifestation of the spontaneous breakdown of the vacuum under the influence of an intense external alternating electric field.
Multiangle static and dynamic light scattering in the intermediate scattering angle range
Tamborini, Elisa
2012-01-01
We describe a light scattering apparatus based on a novel optical scheme covering the scattering angle range $0.5\\dg \\le \\theta \\le 25\\dg$, an intermediate regime at the frontier between wide angle and small angle setups that is difficult to access by existing instruments. Our apparatus uses standard, readily available optomechanical components. Thanks to the use of a charge-coupled device detector, both static and dynamic light scattering can be performed simultaneously at several scattering angles. We demonstrate the capabilities of our apparatus by measuring the scattering profile of a variety of samples and the Brownian dynamics of a dilute colloidal suspension.
Light scattering in Baltic crude oil - seawater emulsion
Directory of Open Access Journals (Sweden)
Adam Stelmaszewski
2009-09-01
Full Text Available The paper discusses the scattering of radiation by a Baltic crude oil - seawater emulsion. The scattering spectrum calculated using the Mie solution in the spectral range from 380 nm to 730 nm is compared with the measured spectrum of light scattered through a right angle. Spectra in the wavelength range from 210 nm to 730 nm were measured using a spectrofluorimeter for fresh and stored samples of the Baltic crude oil emulsion. Scattering increases with wavelength in the UV range and then decreases slightly with the wavelength of visible light. The result of the calculation is similar to the measured spectra. Both the calculated and measured spectra display numerous relative extremes throughout the spectral area. Light scattering in the emulsion decreases during storage as the oil concentration in the medium diminishes. The results also demonstrate that the single scattering model describes the phenomenon correctly.
Lee, Mark D.; Jenkins, Stewart D.; Ruostekoski, Janne
2016-06-01
We derive equations for the strongly coupled system of light and dense atomic ensembles. The formalism includes an arbitrary internal-level structure for the atoms and is not restricted to weak excitation of atoms by light. In the low-light-intensity limit for atoms with a single electronic ground state, the full quantum field-theoretical representation of the model can be solved exactly by means of classical stochastic electrodynamics simulations for stationary atoms that represent cold atomic ensembles. Simulations for the optical response of atoms in a quantum degenerate regime require one to synthesize a stochastic ensemble of atomic positions that generates the corresponding quantum statistical position correlations between the atoms. In the case of multiple ground levels or at light intensities where saturation becomes important, the classical simulations require approximations that neglect quantum fluctuations between the levels. We show how the model is extended to incorporate corrections due to quantum fluctuations that result from virtual scattering processes. In the low-light-intensity limit, we illustrate the simulations in a system of atoms in a Mott-insulator state in a two-dimensional optical lattice, where recurrent scattering of light induces strong interatomic correlations. These correlations result in collective many-atom subradiant and superradiant states and a strong dependence of the response on the spatial confinement within the lattice sites.
Effects of cellular fine structure on scattered light pattern.
Liu, Caigen; Capjack, Clarence E
2006-06-01
Biological cells are complex in both morphological and biochemical structure. The effects of cellular fine structure on light scattered from cells are studied by employing a three-dimensional code named AETHER which solves the full set of Maxwell equations by using the finite-difference time-domain method. It is shown that changes in cellular fine structure can cause significant changes in the scattered light pattern over particular scattering angles. These changes potentially provide the possibility for distinguishability of cellular intrastructures. The effects that features of different intrastructure have on scattered light are discussed from the viewpoint of diagnosing cellular fine structure. Finally, we discuss scattered light patterns for lymphocyte-like cells and basophil-like cells.
Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro
2016-11-01
The stress-induced light scattering method (SILSM) was proposed for inspecting surface to detect polishing induced latent flaws. In this study, in order to clarify the mechanism of the light scattering intensity variation of latent flaws using SILSM, we have investigated stress effect of light scattering intensities using polarized light system and calculated the reflectance and the retardation using Jones matrix. As the results, we evaluated the change in the birefringence around a tip of a latent flaw between before and after stress were applied.
Absorption and scattering of light by small particles
Bohren, Craig F
1983-01-01
Absorption and Scattering of Light by Small Particles. Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include:. * Classical theor
Light scattering by nonspherical particles theory, measurements, and applications
Mishchenko, Michael I; Travis, Larry D
1999-01-01
There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part
Correlating the morphological and light scattering properties of biological cells
Moran, Marina
The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Light scattering by particles in water theoretical and experimental foundations
Jonasz, Miroslaw
2007-01-01
Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...
Measurements and interpretations of light scattering from intact biological cells
Wilson, Jeremy D.
Visible light interacts with biological cells primarily through elastic scattering. The details of how cells scatter light depend on their morphology and their substructures. In this thesis we first present a series of experiments and models to discern the specific contributions of certain sub-cellular constituents to whole-cell scattering. Exploiting the findings of those studies, we report on experiments within model systems of cell death that demonstrate the potential of light scattering measurements as a tool in modern biology. Instrumentation capable of exploiting the findings of this thesis from a biology-relevant microscopy platform is designed and developed. A Mie theory based interpretation of light scattering signals originating from a collection of particles with a broad size distribution is developed. Upon applying this model to scattering data from intact cells, we find that it robustly extracts the size scale of dominant light scattering particles, suggests that scattering measurements are sensitive primarily to mitochondrial and lysosomal morphology, and unites conflicting results in the literature. Using this model as a basis, we present a collection of studies in which we use various strategies of photodynamic therapy (PDT) as a biophysical tool to perturb mitochondria and lysosomes, and observe the effects of these perturbations on whole-cell scattering. Through these experiments, we are able to discern the individual contributions of mitochondria and lysosomes to whole-cell light scattering, and demonstrate that mitochondria are responsible for roughly 80% of the scattering signal. Results of experiments aimed at demonstrating the potential role that light scattering measurements have to play in future studies of cell death biology are presented. We first show that mitochondrial-PDT-induced morphology changes measured with light scattering map into the cell killing efficacy of the therapy. We next demonstrate that mitochondrial
Interactive directional subsurface scattering and transport of emergent light
DEFF Research Database (Denmark)
Dal Corso, Alessandro; Frisvad, Jeppe Revall; Mosegaard, Jesper;
2016-01-01
-based analytical models for subsurface scattering but also directional models. In addition, our method enables easy extraction of virtual point lights for transporting emergent light to the rest of the scene. Our method requires neither preprocessing nor texture parameterization of the translucent objects...... is the first to include interactive transport of emergent light from deformable translucent objects....
Light scattering from exoplanet oceans and atmospheres
Zugger, Michael E; Williams, Darren M; Kane, Timothy J; Philbrick, C Russell
2010-01-01
Orbital variation in polarized and unpolarized reflected starlight from exoplanets could eventually be used to detect liquid water on planet surfaces. Exoplanets with rough surfaces, or those dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 degrees, whereas ocean-covered planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 degrees. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 degrees; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column, dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach...
Light Scattering by Optically Soft Particles Theory and Applications
Sharma, Subodh K
2006-01-01
The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.
Modelling of classical ghost images obtained using scattered light
Crosby, S.; Castelletto, S.; Aruldoss, C.; Scholten, R. E.; Roberts, A.
2007-08-01
The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.
Jiang, Jinghua; McGraw, Greg; Ma, Ruiqing; Brown, Julie; Yang, Deng-Ke
2017-02-20
We developed a novel light enhancing film for an organic light emitting diode (OLED) based on polymer dispersed liquid crystal (PDLC). In the film, the liquid crystal droplets are unidirectionally aligned along the film normal direction and exhibit selective scattering. The film scatters light emitted only in directions with large incident angles but not light emitted in directions with small incident angles. When the light is scattered, it changes propagation direction and exits the OLED. The PDLC film reduces the total internal reflection and thus can significantly increase the light efficiency of the OLED.
Surface magnetism studied by polarized light emission after He+ scattering
Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R
1997-01-01
Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of
Light scattering from polymer solutions and nanoparticle dispersions
Schärtl, Wolfgang; Janca, Josef
2007-01-01
Light scattering is a very powerful method to characterize the structure of polymers and nanoparticles in solution. Recent technical developments have strongly enhanced the possible applications of this technique, overcoming previous limitations like sample turbidity or insufficient experimental time scales. However, despite their importance, these new developments have not yet been presented in a comprehensive form. In addition, and maybe even more important to the broad audience, there lacks a simple-to-read textbook for students and non-experts interested in the basic principles and fundamental techniques of light scattering. As part of the Springer Laboratory series, this book tries not only to provide such a simple-to-read and illustrative textbook about the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, but also intends to cover some of the newest technical developments in experimental light scattering.
Light scattering by neutrophils: model, simulation, and experiment.
Orlova, Darya Yu; Yurkin, Maxim A; Hoekstra, Alfons G; Maltsev, Valeri P
2008-01-01
We studied the elastic light-scattering properties of human blood neutrophils, both experimentally and theoretically. The experimental study was performed with a scanning flow cytometer measuring the light-scattering patterns (LSPs) of individual cells over an angular range of 5-60 deg. We determined the absolute differential light-scattering cross sections of neutrophils. We also proposed an optical model for a neutrophil as a sphere filled by small spheres and prolate spheroids that correspond to granules and segmented nucleus, respectively. This model was used in simulations of LSPs using the discrete dipole approximation and different compositions of internal organelles. A comparison of experimentally measured and simulated LSPs gives a good qualitative agreement in LSP shape and quantitative agreement in overall magnitude of the differential light-scattering cross section.
Light projectile scattering off the Color Glass Condensate
Fukushima, Kenji
2007-01-01
We systematically compute the expectation value of Wilson lines in the McLerran-Venugopalan model, which provides useful formulae for evaluation of the scattering aimplitude in the collision of a light projectile and a heavy target.
Analytic expression for in-field scattered light distribution
Peterson, Gary L.
2004-01-01
Light that is scattered from lenses and mirrors in an optical system produces a halo of stray light around bright objects within the field of view. The angular distribution of scattered light from any one component is usually described by the Harvey model. This paper presents analytic expressions for the scattered irradiance at a focal plane from optical components that scatter light in accordance with the Harvey model. It is found that the irradiance is independent of the location of an optical element within the system, provided the element is not located at or near an intermediate image plane. It is also found that the irradiance has little or no dependence on the size of the element.
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Institute of Scientific and Technical Information of China (English)
FENG Shuai; LI Yu-xi; AO Ling; REN Cheng
2011-01-01
The light propagation characteristics through the annular coupled-resonator cavity waveguides are systematically analyzed by the finite-difference time-domain (FDTD) method. It is found that this kind of waveguide has more minbands owing to the increasing of the cavity's size, compared with the traditional line-typed coupled-resonator waveguide. The group velocity of light propagation can be reduced for a further degree when the adjacent annular cavities are interlaced in the perpendicular direction, and a group velocity about 0.00067c (c is the light speed in vacuum) can be obtained.
Efficient light propagation for multiple anisotropic volume scattering
Energy Technology Data Exchange (ETDEWEB)
Max, N. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Davis, CA (United States)
1993-12-01
Realistic rendering of participating media like clouds requires multiple anisotropic light scattering. This paper presents a propagation approximation for light scattered into M direction bins, which reduces the ``ray effect`` problem in the traditional ``discrete ordinates`` method. For a volume of n{sup 3} elements, it takes O(M n{sup 3} log n + M{sup 2} n{sup 3}) time and O(M n{sup 3}) space.
Synthesis of aerogel tiles with high light scattering length
Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A
1999-01-01
The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.
Evaluation of advanced light scattering technology for microgravity experiments
Fredericks, W. J.; Rosenblum, W. M.
1990-01-01
The capabilities of modern light scattering equipment and the uses it might have in studying processes in microgravity are evaluated. Emphasis is on the resolution of polydisperse systems. This choice was made since a major use of light scattering was expected to be the study of crystal growth of macromolecules in low gravity environments. An evaluation of a modern photon correlation spectrometer and a Mie spectrometer is presented.
Visible light scatter as quantitative information source on milk constituents
DEFF Research Database (Denmark)
Melentieva, Anastasiya; Kucheryavskiy, Sergey; Bogomolov, Andrey
2012-01-01
-time monitoring of processes and products. Optical analysis is generally performed in near and middle infrared (NIR and MIR) regions and relies on the component absorbance and Beer’s Law. The light scatter effect is therefore considered as a disturbance to be avoided during the measurement or eliminated...... at the data analysis stage. The region of visible (Vis) light (400-800 nm) is economically attractive, because it offers a range of inexpensive light sources, optics and detectors. At present, however, it is commonly considered useless, because of the light scatter by fat globules (1-10 μm) and protein...
Iida, K; Kiriyama, H; Fukai, A; Konings, WN; Nango, M
2001-01-01
The detergent-isolated light-harvesting polypeptide (LR)/bacteriochlorophyll alpha (BChl alpha) complex from the photosynthetic bacterium Rhodospirillum rubrum was organized in thermostable liposomal membranes comprising membrane-spanning tetraether lipids from Sulfolobus acidocaldarius to develop a
Application of light scattering to coatings a user's guide
Diebold, Michael P
2014-01-01
The book begins with the fundamentals of light scattering, first by individual particles, then by small groups of particles, and finally by the trillions of particles present in a real-life paint film. From there, Dr. Diebold focuses on application of these fundamentals to paint formulation. The scope includes both theory and practice with an emphasis on application (from both performance and cost standpoints). The book gives a clear understanding of light scattering principles and application of these principles to paint formulation (with a focus on TiO2 - the strongest scattering material a
Backward elastic light scattering of malaria infected red blood cells
Lee, Seungjun; Lu, Wei
2011-08-01
We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.
Scaling in light scattering by sharp conical metal tips
Pors, Anders; Bozhevolnyi, Sergey I
2016-01-01
Using the electrostatic approximation, we analyze electromagnetic fields scattered by sharp conical metal tips, which are illuminated with light polarized along the tip axis. We establish scaling relations for the scattered field amplitude and phase, whose validity is verified with numerical simulations. Analytic expressions for the wavelength, at which the scattered field near the tip changes its direction, and field decay near the tip extremity are obtained, relating these characteristics to the cone angle and metal permittivity. The results obtained have important implications to various tip-enhanced phenomena, ranging from Raman and scattering near-field imaging to photoemission spectroscopy and nano-optical trapping.
Digital optical phase conjugation for delivering two-dimensional images through turbid media.
Hillman, Timothy R; Yamauchi, Toyohiko; Choi, Wonshik; Dasari, Ramachandra R; Feld, Michael S; Park, YongKeun; Yaqoob, Zahid
2013-01-01
Optical transmission through complex media such as biological tissue is fundamentally limited by multiple light scattering. Precise control of the optical wavefield potentially holds the key to advancing a broad range of light-based techniques and applications for imaging or optical delivery. We present a simple and robust digital optical phase conjugation (DOPC) implementation for suppressing multiple light scattering. Utilizing wavefront shaping via a spatial light modulator (SLM), we demonstrate its turbidity-suppression capability by reconstructing the image of a complex two-dimensional wide-field target through a highly scattering medium. Employing an interferometer with a Sagnac-like ring design, we successfully overcome the challenging alignment and wavefront-matching constraints in DOPC, reflecting the requirement that the forward- and reverse-propagation paths through the turbid medium be identical. By measuring the output response to digital distortion of the SLM write pattern, we validate the sub-wavelength sensitivity of the system.
How to distinguish elastically scattered light from Stokes shifted light for solid-state lighting?
Meretska, M; Thyrrestrup, H; Mosk, A P; IJzerman, W L; Vos, W L
2015-01-01
We have studied the transport of light through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain $\\mathrm{YAG:Ce}^{+3}$ phosphor particles that elastically scatter light and Stokes shifts it in the visible wavelength range (400-700 nm). We excite the phosphor with a narrowband light source, and measure spectra of the outgoing light. The Stokes shifted light is separated from the elastically scattered light in the measured spectra and using this technique we isolate the elastic transmission of the plates. This result allows us to extract the transport mean free path $l_{\\mathrm{tr}}$ over the full wavelength range by employing diffusion theory. Simultaneously, we determine the absorption mean free path $l_{\\mathrm{abs}}$ in the wavelength range 400 to 530 nm where $\\mathrm{YAG:Ce}^{+3}$ absorbs. The diffuse absorption $\\mu_{\\mathrm{a}} =\\frac{1}{l_{\\mathrm{abs}}}$ spectrum is qualitative similar to the absorption coefficient of $\\mathrm{YA...
2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao
2015-11-01
Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.
Focusing coherent light through a nonlinear scattering medium
Frostig, Hadas; Derevyanko, Stanislav; Silberberg, Yaron
2016-01-01
Wavefront shaping is a powerful technique that can be used to focus light through scattering media, with the limitation that the obtained focus contains a small fraction of the total power. The method is based on the assumption that the field at the output is a linear superposition of the modes traveling through different paths in the medium. However, when the scattering medium also exhibits nonlinearity, as may occur in multiphoton microscopy, this assumption is violated and the applicability of wavefront shaping becomes unclear. Here we show that using adaptive optimization of the wavefront light can still be controlled and focused through a nonlinear scattering medium, and that the focused fraction of power can be significantly enhanced in the presence of moderate positive nonlinearity. Our results suggest that the use of short pulses for focusing through scattering media with a mild self-focusing response might be favorable to the use of continuous-wave light.
Multiple scattering of polarized light: influence of absorption.
Hohmann, A; Voit, F; Schäfer, J; Kienle, A
2014-06-07
This work continues previous research about multiple scattering of polarized light propagation in turbid media, putting emphasis on the imaginary part of the scatterers' complex refractive index. The whole angle-dependent Müller matrix is evaluated by comparing results of a polarization sensitive radiative transfer solution to Maxwell theory. Turbid media of defined scatterer concentrations are modelled in three dimensions by sphere ensembles kept inside a cubic or spherical simulation volume. This study addresses the impact of absorption on polarization characteristics for selected media from low to high absorption. Besides that, effects caused by multiple and dependent scattering are shown for increasing volume concentration. In this context some unique properties associated with multiple scattering and absorption are pointed out. Further, scattering results in two dimensions are compared for examples of infinite parallel cylinders of high absorption and perpendicularly incident plane waves.
Light-induced scattering of light in NBS:Ce crystals
Voronov, V. V.; Dorosh, I. R.; Kuzminov, Iu. S.; Tkachenko, N. V.
1980-11-01
An experiment is described in which light-induced scattering of laser light was observed in Ce-doped (Sr/x/Ba/1-x/)/1-y/(Nb2O6)/y/ crystals with x = 0.61 and y = 0.4993. It is shown that the observed effect results from the holographic amplification of light scattered by crystal defects and that the observed asymmetry of the scattering is associated with the diffusion mechanism of hologram recording in crystals. A theoretical model of the scattering process is constructed for the diffusion recording mechanism.
Quantum noise memory effect of multiple scattered light
Lodahl, P
2005-01-01
We investigate frequency correlations in multiple scattered light that are present in the quantum fluctuations. The memory effect for quantum and classical noise is compared, and found to have markedly different frequency scaling, which was confirmed in a recent experiment. Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light.
Quantum noise frequency correlations of multiply scattered light
DEFF Research Database (Denmark)
Lodahl, Peter
2006-01-01
Frequency correlations in multiply scattered light that are present in quantum fluctuations are investigated. The speckle correlations for quantum and classical noise are compared and are found to depend markedly differently on optical frequency, which was confirmed in a recent experiment....... Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light....
Light scattering characteristicof TiO2 nanocrystalline porous films
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
TiO2 nanocrystalline porous films consisting of binary particles mixture (mean diameters of 12 and 100 nm) are capable of increasing the light absorption due to the possession of large specific surface area and light scattering property. The simultaneous reduction of the film thickness leads to a decrease of the recombination loss during electron transport and an increase of the photocurrent efficiency.
Light scattering in optical CT scanning of Presage dosimeters
Energy Technology Data Exchange (ETDEWEB)
Xu, Y; Adamovics, J; Cheeseborough, J C; Chao, K S; Wuu, C S, E-mail: yx2010@columbia.ed
2010-11-01
The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS' optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.
Comparative Study of Light Scattering from Hepatoma Cells and Hepatocytes
Lin, Xiaogang; Wang, Rongrong; Guo, Yongcai; Gao, Chao; Guo, Xiaoen
2012-11-01
Primary liver cancer is one of the highest mortality malignant tumors in the world. China is a high occurrence area of primary liver cancer. Diagnosis of liver cancer, especially early diagnosis, is essential for improving patients' survival. Light scattering and measuring method is an emerging technology developed in recent decades, which has attracted a large number of biomedical researchers due to its advantages, such as fast, simple, high accuracy, good repeatability, and non-destructive. The hypothesis of this project is that there may be some different light scattering information between hepatoma cells and hepatocyte. Combined with the advantages of the dynamic light scattering method and the biological cytology, an experimental scheme to measure the light scattering information of cells was formulated. Hepatoma cells and hepatic cells were irradiated by a semiconductor laser (532 nm). And the Brookhaven BI-200SM wide-angle light scattering device and temperature control apparatus were adopted. The light scattering information of hepatoma cells and hepatic cells in vitro within the 15°C to 30°C temperature range was processed by a BI-9000AT digital autocorrelator. The following points were found: (a) the scattering intensities of human hepatic cells and hepatoma cells are nearly not affected by the temperature factor, and the former is always greater than the latter and (b) the relaxation time of hepatoma cells is longer than that of hepatic cells, and both the relaxation time are shortened with increasing temperature from 15°C to 25°C. It can be concluded that hepatoma cells could absorb more incident light than hepatic cells. The reason may be that there exists more protein and nucleic acid in cancerous cells than normal cells. Furthermore, based on the length relaxation time, a conclusion can be inferred that the Brownian movement of cancer cells is greater.
Pu, Chenchen; Wan, Jun; Liu, Enzhou; Yin, Yunchao; Li, Juan; Ma, Yongning; Fan, Jun; Hu, Xiaoyun
2017-03-01
Herein, porous protonated graphitic carbon nitride (pGCN) is prepared from bulk g-C3N4 (GCN) directly by acidic cutting and hydrothermal process. The holey structure not only provides a lot of bounds on the accelerated and photo induced charge transfer and thus reduce the aggregation, but also endows the GCN with more exposure to the active site. The pGCN is obtained with an increased band gap of 2.91 eV together with a higher specific surface area of 82.76 m2g-1. Meanwhile, the positively charged GCN resulted from the protonation pretreatment is beneficial for improving the interaction with negatively charged GO sheets. Compared with GCN, pGCN-rGO displays a significant decrease of PL intensities and an apparently enhancement of visible-light absorption, resulting a lower charge recombination rate and a better light absorption. Besides, the enhanced charge separation is demonstrated by photoluminescence emission spectroscopy and the transient photocurrent measurement. The photocatalytic performance studies for the degradation of MB indicate that pGCN-rGO exhibits the highest adsorption ability towards dye molecules. In addition, the pGCN-5 wt% rGO composite shows the optimal photocatalytic activity, the photodegradation rate of MB is 99.4% after 80 min of irradiation and the H2 evolution performance up to 557 μmol g-1h-1 under visible light, which is much higher than the other control samples.
Institute of Scientific and Technical Information of China (English)
文立华; 张京妹; 孙进才
2001-01-01
Traditional methods for solving acoustic problems in engineering often require the solution of non-symmetric full matrix, whose dimension may be even higher than 10 000 and thus computational cost becomes quite high. To overcome this serious shortcoming, we propose a new periodic wavelet approach for the Helmholtz integral-equation solution of two-dimensional acoustic radiation and scattering over curved computation domain. We expand the boundary quantities in terms of periodic and orthogonal wavelets and we obtain the algebraic equations needed for solving the acoustic problems with Dirichlet, Neumann and mixed conditions. We evaluate the coefficients with fast wavelet transform. The advantage of the new approach is a highly sparse matrix system. We compare the numerical results obtained with our new approach, boundary element method or analytical solutions; the numerical results, as given in Table 1, show that our new approach converges rapidly and is of good accuracy.%提出了一种新的求解二维Helmholtz积分方程的方法。它通过将边界量用周期子波展开，将Helmholtz积分方程化为一组代数方程求解。即可求解Dirichlet、Neumann问题，也可求解混合边值问题。方程的系数形成可用快速子波变换。用该方法形成的Helmholtz积分方程的系数矩阵是一稀疏矩阵。这样大大提高了计算效率。本文算例表明：该方法收敛快，精度高，相同的精度下，本文方法求解的未知量大大少于边界元所用未知量。
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Using light scattering to determine the stoichiometry of protein complexes.
Mogridge, Jeremy
2015-01-01
The stoichiometry of a protein complex can be calculated from an accurate measurement of the complex's molecular weight. Multiangle laser light scattering in combination with size exclusion chromatography and interferometric refractometry provides a powerful means for determining the molecular weights of proteins and protein complexes. In contrast to conventional size exclusion chromatography and analytical centrifugation, measurements do not rely on the use of molecular weight standards and are not affected by the shape of the proteins. The technique is based on the direct relationship between the amount of light scattered by a protein in solution, and the product of its concentration and molecular weight. A typical experimental configuration includes a size exclusion column to fractionate the sample, a light scattering detector to measure scattered light, and an interferometric refractometer to measure protein concentration. The determination of the molecular weight of an anthrax toxin complex will be used to illustrate how multiangle laser light scattering can be used to determine the stoichiometry of protein complexes.
Light fields in complex media: Mesoscopic scattering meets wave control
Rotter, Stefan; Gigan, Sylvain
2017-01-01
The newly emerging field of wave front shaping in complex media has recently seen enormous progress. The driving force behind these advances has been the experimental accessibility of the information stored in the scattering matrix of a disordered medium, which can nowadays routinely be exploited to focus light as well as to image or to transmit information even across highly turbid scattering samples. An overview of these new techniques, their experimental implementations, and the underlying theoretical concepts following from mesoscopic scattering theory is provided. In particular, the intimate connections between quantum transport phenomena and the scattering of light fields in disordered media, which can both be described by the same theoretical concepts, are highlighted. Particular emphasis is put on how these topics relate to application-oriented research fields such as optical imaging, sensing, and communication.
LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis
Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.
2002-11-01
The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.
Inelastic light scattering in low dimensional semiconductors
Energy Technology Data Exchange (ETDEWEB)
Watt, M
1988-12-01
Raman scattering is a powerful technique with which to study the lattice vibrations of semiconductors. Investigations of the phonons of GalnAs-InP heterostructures have shown that although the phonons in GalnAs quantum wells resembled those of bulk GalnAs, they were screened by free carriers. Raman scattering and photoluminescence techniques were employed to estimate the plasma density at which plasmon-phonon coupling became significant. Triple crystal x-ray diffraction measurements complemented the Raman scattering data and provided information on the GalnAs alloy composition and state of strain. It was found that although nominally lattice-matched to the underlying InP, the epitaxially-grown layers were tetragonally distorted in the direction of growth. Assessment of sample damage produced by reactive-ion-etching (RIE) was undertaken as a prerequisite to the study of phonons in fabricated nanostructures. Structural damage to the crystal showed up as a relaxation of the crystalline selection rules allowing the observation of a symmetry-forbidden phonon. The intensity of this phonon correlated well with depth profiling of the damage. Optimised RIE conditions were found to produce negligible crystalline damage. The study of GaAs cylinders (with diameters of less than 100 nanometers) revealed an additional feature in the optical phonon region of their Raman spectra. This feature was identified as a surface phonon of the quantum cylinders. The experimentally-observed frequencies of the surface phonon peaks showed good agreement with calculated frequencies based on vibrations in small, geometrically-regular crystals. The main contribution of this work is the study of the surface phonons of the GaAs quantum cylinders. This is the first time that surface phonons have been observed in small fabricated samples: all previous work has involved specially-prepared crystalline powders or else comparatively large slab geometries. The conclusion that can be drawn from this work
Scattering of non-separable states of light
Reddy, Chithrabhanu P Salla Gangi; Singh, R P
2015-01-01
We experimentally show that the non-separability of polarization and orbital angular momentum present in a light beam remains preserved under scattering through a random medium like rotating ground glass. We verify this by measuring the degree of polarization and observing the intensity distribution of the beam when projected to different polarization states, before as well as after the scattering. We extend our study to the non-maximally non-separable states also.
Xue, Jin-Hua; Qian, Qiu-Mei; Wang, Yong-Sheng; Meng, Xia-Ling; Liu, Lu
2013-02-01
A novel method of resonance light scattering (RLS) was developed for the analysis of trace metallothioneins (MTs) in human urine. In a CH3COOH-CH3COONa buffer solution of pH 4.5, the formation of a complex between levofloxacin (LEV)-Pd and MTs led to enhance the RLS intensity of the system, and the enhanced RLS intensity at 468 nm was proportional to the concentration of MTs in the range of 0.059-22.4 μg mL-1. The linear regression equation was ΔI = 127.5 ρ (μg mL-1)-88.02 with a correlation coefficient of 0.9992, and the detection limit of 17.8 ng mL-1. The relative standard deviation and the average recovery were 3.8-5.4% (n = 11) and 92.15%, respectively. The proposed method is convenient, reliable and sensitive, and has been used successfully for the determination of trace MTs in human urine samples.
A Theory of Exoplanet Transits with Light Scattering
Robinson, Tyler D.
2017-02-01
Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope. However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.
Light scattering from macromolecular systems: Molecular crystals and polymers
Bernstein, E. R.
1981-11-01
The research objectives were to: (1) characterize phase transitions theoretically and experimentally in molecular crystal systems; (2) use the above understanding gained by light scattering studies and theoretical interpretation to apply to the more complex system of lyotropic liquid crystals; and (3) then apply knowledge gained on the model systems of increasing complexity to polymer liquid crystals and solid polymers as observed by laser light scattering techniques. Systems experimentally and theoretically discussed are: trioxane, triazine, benzil, and chloranil. Studies of lyotropic liquid crystals (sodium decyl sulfate, sodium sulfate, decanol, water) have progressed. The major findings are: a number of phase transitions occur between 20 and 60 C; these transitions evidence strong critical behavior and long correlation times for fluctuations; and liquid crystals can be studied by light scattering. Spectra of solid powders, ribbons, and liquid crystals of PBT and solid PBO were obtained.
Light losses from scattering in luminescent solar concentrator waveguides.
Breukers, Robert D; Smith, Gerald J; Stirrat, Hedley L; Swanson, Adam J; Smith, Trevor A; Ghiggino, Kenneth P; Raymond, Sebastiampillai G; Winch, Nicola M; Clarke, David J; Kay, Andrew J
2017-04-01
The reductions in the transmission of emission originating from a fluorophore dissolved in a polymer matrix due to light scattering were compared in two forms of planar waveguides used as luminescent solar concentrators: a thin film of poly(methylmethacrylate) (PMMA) spin-coated on a glass plate and a solid PMMA plate of the same dimensions. The losses attributable to light scattering encountered in the waveguide consisting of the thin film of polymer coated on a glass plate were not detectable within experimental uncertainty, whereas the losses in the solid polymer plate were significant. The losses in the solid plate are interpreted as arising from light-scattering centers comprising minute bubbles of vapor/gas, incomplete polymerization or water clusters that are introduced during or after the thermally induced polymerization process.
Light-by-light scattering in UPC at the LHC
Klusek-Gawenda, Mariola; Szczurek, Antoni
2016-01-01
We discuss diphoton semi(exclusive) production in ultraperipheral $PbPb$ collisions at energy of $\\sqrt{s_{NN}}=$ 5.5 TeV (LHC). The nuclear calculations are based on equivalent photon approximation in the impact parameter space. The cross sections for elementary $\\gamma \\gamma \\to \\gamma \\gamma$ subprocess are calculated including two different mechanisms: box diagrams with leptons and quarks in the loops and a VDM-Regge contribution with virtual intermediate hadronic excitations of the photons. We got relatively high cross sections in $PbPb$ collisions ($306$ nb). This opens a possibility to study the $\\gamma \\gamma \\to \\gamma \\gamma$ (quasi)elastic scattering at the LHC. We find that the cross section for elastic $\\gamma\\gamma$ scattering could be measured in the lead-lead collisions for the diphoton invariant mass $W_{\\gamma\\gamma} \\approx 15-20$ GeV.
Agustí, Gloria; Thompson, Amber L; Gaspar, Ana B; Muñoz, M Carmen; Goeta, Andrés E; Rodríguez-Velamazán, José Alberto; Castro, Miguel; Burriel, Ramón; Real, José Antonio
2008-02-07
A complete structural, calorimetric, and magnetic characterisation of the 2D coordination spin crossover polymer [Fe(pmd)(2)[Cu(CN)(2)](2)] is reported. The crystal structure has been investigated below room temperature at 180 K and 90 K, and at 30 K after irradiating the sample at low temperature with green light (lambda = 532 nm). The volume cell contraction through the thermal spin transition is only 18 A(3) which is lower than the usually observed value of around 25-30 A(3) while the average Fe-N bond distances decrease by the typical value of about 0.19 A. The structural data of the irradiated state indicate that the high spin state is well induced since the cell parameters are consistent with the data at 180 K. Calorimetric and photo-calorimetric experiments have also been performed. The entropy content for the thermal spin transition, DeltaS = 35-37 J mol(-1) K(-1) lies in the lowest range of the typical values and correlates with the low volume cell contraction. The combination of the crystallographic and calorimetric data predicts, in accordance with a mean-field approach, a linear pressure dependence of the critical temperature with a slope of 302 K GPa(-1). Magnetic measurements under pressure reveal an anomalous behaviour since the critical temperature and hysteresis do not change up to 0.22 GPa but an apparent linear dependence is obtained for higher pressures (up to 0.8 GPa) with a slope two times higher than the mean-field estimation.
Insulin association in neutral solutions studied by light scattering
DEFF Research Database (Denmark)
Hvidt, S.
1991-01-01
Molecular weights and weight distributions of sulfated, Zn-free, and 2Zn insulins have been measured at pH 7.3 as a function of concentration from 0.1 to 2 mg/ml by use of a combination of light scattering, refractometry, and size-exclusion chromatography. Results show that sulfated insulin is mo...... absence. An average hydrodynamic radius of 5.6 nm, close to the crystallographic size of the insulin hexamer, was determined from dynamic light scattering of 2Zn insulin solutions....
Nonspherical nanoparticles characterization by partially depolarized dynamic light scattering
Levin, Alexander D.; Shmytkova, Ekaterina A.
2015-06-01
The realization of improved depolarized dynamic light scattering method is presented. This technique supports measurement of non-spherical nanoparticals dimensions in liquids. The relations between translational and rotational diffusion coefficients and autocorrelation function of scattered light with polarized and depolarized components in various proportions are derived. Thus measurement of very weak cross-polarized component can be avoided. This improvement permits to reduce measurement time, to improve signal to noise ratio and results precision. The technique was applied for sizing of gold nanorods and multiwalled carbon nanotubes in liquids.
Dynamic light scattering with applications to chemistry, biology, and physics
Berne, Bruce J
2000-01-01
Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation f
Effect of pyrophosphate on the light scatter in KDP crystal
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Pyrophosphate doped potassium dihydrogen phosphate (KDP) crystal was grown from aqueous solution by the temperature lowering method. Light scatter in KDP crystal was detected with the ultramicroscopic method. The light scatter in KDP crystal was aggravated when pyrophosphate was doped into the growth solution, which was distributed ununiformly in prism and pyramidal sectors of KDP crystal. Different effects of pyrophosphate on prism and pyramidal sectors of KDP crystal can explain this case. The transmission in this crystal was measured, showing that pyrophosphate affects the transmission evidently.
Compton scattering of twisted light: angular distribution and polarization of scattered photons
Stock, S; Fritzsche, S; Seipt, D
2015-01-01
Compton scattering of twisted photons is investigated within a non-relativistic framework using first-order perturbation theory. We formulate the problem in the density matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light.
An empirical correction for moderate multiple scattering in super-heterodyne light scattering
Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas
2017-05-01
Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.
Inelastic light scattering in low dimensional semiconductors
Watt, M
1988-01-01
frequencies of the surface phonon peaks showed good agreement with calculated frequencies based on vibrations in small, geometrically-regular crystals. The main contribution of this work is the study of the surface phonons of the GaAs quantum cylinders. This is the first time that surface phonons have been observed in small fabricated samples: all previous work has involved specially-prepared crystalline powders or else comparatively large slab geometries. The conclusion that can be drawn from this work is that the cylinders are not only well-defined (as observed from the SEM micrographs) but they are also crystalline. The implication is that such structures can now be fabricated at a sufficiently high level to allow progress in prototype devices such as the quantum dot laser. Raman scattering is a powerful technique with which to study the lattice vibrations of semiconductors. Investigations of the phonons of GalnAs-InP heterostructures have shown that although the phonons in GalnAs quantum wells resembled t...
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Light-by-light scattering sum rules in light of new data
Danilkin, Igor
2016-01-01
We evaluate the light-quark meson contributions to three exact light-by-light scattering sum rules in light of new data by the Belle Collaboration, which recently has extracted the transition form factors of the tensor meson $f_2(1270)$ as well as of the scalar meson $f_0(980)$. We confirm a previous finding that the $\\eta, \\eta^\\prime$ and helicity-2 $f_2(1270)$ contributions saturate one of these sum rules up to photon virtualities up to around 1 GeV$^2$. At larger virtualities, our sum rule analysis shows an important contribution of the $f_2(1565)$ meson and provides a first empirical extraction of its helicity-2 transition form factor. Two further sum rules allow us to predict the helicity-0 and helicity-1 transition form factors of the $f_2(1270)$ meson. Furthermore, our analysis also provides an update for the scalar and tensor meson hadronic light-by-light contributions to the muon's anomalous magnetic moment.
The impact of dust particle morphological details on light scattering
Kemppinen, Osku; Nousiainen, Timo; Lindqvist, Hannakaisa; Jeong, Gi Young
2016-04-01
We investigate the impact of dust particle surface roughness and internal structure on light scattering. Starting from digital representation of realistically shaped dust particles, we vary the particle morphology, and perform light scattering simulations to both the original and the modified particles. By mapping the changes in morphology to the changes in scattering, we will get information of how strongly and in which way a particular change affects scattering. All investigations have been done with complex, irregular particle shapes. For surface roughness studies we have kept the particle total volume virtually constant during the roughening process, and the roughness element size small enough to keep the overall shape relatively unchanged. For internal structure studies, the size and the external shape are kept constant. These safety measures help ensure that the effects seen are in fact due to the feature studied. The work is notable for model development, because some models can not include surface roughness, for example. In that case, the people who use such models have to adjust for the fact that the results are inaccurate, and by knowing how surface roughness typically changes the scattering results, the adjustment can be made. As a corollary, if it is shown that a particular feature does not change scattering results in any noticeable way, the model developers can confidently ignore or simplify it.
Development of bacterial colony phenotyping instrument using reflected scatter light
Doh, Iyll-Joon
Bacterial rapid detection using optical scattering technology (BARDOT) involves in differentiating elastic scattering pattern of bacterial colony. This elastic light scatter technology has shown promising label-free classification rate. However, there is limited success in certain circumstances where either a growth media or a colony has higher opacity. This situation is due to the physical principles of the current BARDOT which mainly relies on optical patterns generated by transmitted signals. Incoming light is obstructed and cannot be transmitted through the dense bacterial colonies, such as Lactobacillus, Yeast, mold and soil bacteria. Moreover, a blood agar, widely used in clinical field, is an example of an opaque media that does not allow light to be transmitted through. Therefore, in this research, a newly designed reflection type scatterometer is presented. The reflection type scatterometer measures the elastic scattering pattern generated by reflected signal. A theoretical model to study the optical pattern characteristic with respect to bacterial colony morphology is presented. Both theoretical and experiment results show good agreement that the size of backward scattering pattern has positive correlation to colony aspect ratio, a colony elevation to diameter ratio. Four pathogenic bacteria on blood agar, Escherichia coli K12, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus, are tested and measured with proposed instrument. The measured patterns are analyzed with a classification software, and high classification rate can be achieved.
Tunable scattering cancellation of light using anisotropic cylindrical cavities
Díaz-Aviñó, Carlos; Zapata-Rodríguez, Carlos J
2016-01-01
Engineered core-shell cylinders are good candidates for applications in invisibility and cloaking.In particular, hyperbolic nanotubes demonstrate tunable ultra-low scattering cross section in the visible spectral range. In this work we investigate the limits of validity of the condition for invisibility, which was shown to rely on reaching an epsilon near zero in one of the components of the effective permittivity tensor of the anisotropic metamaterial cavity. For incident light polarized perpendicularly to the scatterer axis, critical deviations are found in low-birefringent arrangements and also with high-index cores. We demonstrate that the ability of anisotropic metallodielectric nanocavities to dramatically reduce the scattered light is associated with a multiple Fano-resonance phenomenon. We extensively explore such resonant effect to identify tunable windows of invisibility.
Light scattering artefacts in a funnel phantom using optical CT
Energy Technology Data Exchange (ETDEWEB)
Bosi, Stephen G [Department of Radiation Oncology, Prince of Wales Hospital, Sydney (Australia); Brown, Saxby; Baldock, Clive [Institute of Medical Physics, School of Physics, University of Sydney Australia (Australia); Sarabipour, Sarvenaz [Department of Nuclear Medicine and Radiobiology, University of Sherbrooke (Canada); De Deene, Yves [Radiotherapy Department, Ghent University Hospital (Belgium)], E-mail: c.baldock@physics.usyd.edu.au
2009-05-01
A gelatin phantom containing a funnel-shaped region of high opacity (or optical density OD) was used to examine light-scattering induced artefacts in a cone-beam optical CT scanner used for gel dosimetry. To correctly simulate polymer gel dosimeters, the opacity was introduced by adding a colloidal scatterer to the gelatin. In line profiles of OD taken from 3-D reconstructions of the funnel, those profiles with a long pathlength through high OD regions exhibited a 'dishing' artefact, while those of short pathlength exhibited the opposite effect - 'doming'. These phenomena are accounted for by a model that includes the effect of stray, scattered light.
Hybrid graphene nematic liquid crystal light scattering device
Qasim, M. M.; Khan, A. A.; Kostanyan, A.; Kidambi, P. R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Gardiner, D. J.; Hofmann, S.; Wilkinson, T. D.
2015-08-01
A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04094a
Half a century of light scatter metrology and counting
Stover, John C.
2014-09-01
Back in the early days Bill Wolf once said something like: "The guy with the lowest scatter measurement is closest to the right answer." He was often right then - but not anymore. Everything has changed. Today measurements are limited by Rayleigh scatter from the air - not the instrument. We have both written and physical standards and everybody spells BRDF the same way. In the time it takes to give this talk, over 100,000 silicon wafers will be inspected around the world using a few thousand scatterometers - average price about one million dollars each. The way the world illuminates everything from homes to football fields is changing with the advent of high brightness LED's and these lighting systems are designed using a combination of scatter metrology and analysis techniques - many of which were started at The Optical Sciences Center. This paper reviews two major highlights in half a century of scatter metrology progress.
Optical Characterization of Optofluidic Waveguides Using Scattered Light Imaging.
Jenkins, Micah H; Phillips, Brian S; Zhao, Yue; Holmes, Matthew R; Schmidt, Holger; Hawkins, Aaron R
2011-08-01
The use of scattered light images is shown to be an attractive method for the characterization of optofluidic waveguides. The method is shown to be capable of measuring waveguide propagation losses and transmissions between solid and liquid-core structures. Measurement uncertainties are considered and characterized and were typically less than 15%.
HeNe-laser light scattering by human dental enamel
Zijp, [No Value; tenBosch, JJ; Groenhuis, RAJ
1995-01-01
Knowledge of the optical properties of tooth enamel and an understanding of the origin of these properties are necessary for the development of new optical methods for caries diagnosis and the measurement of tooth color. We measured the scattering intensity functions for HeNe-laser light of 80- to 1
Light scattering of PMMA latex particles in benzene: structural effects
Nieuwenhuis, E.A.; Vrij, A.
1979-01-01
Intra- and interparticle structural effects were studied in polymethylmethacrylate (PMMA) latex dispersions in a nonpolar solvent with the technique of light scattering. The required transparency of the dispersions was attained by a close matching of the refractive index of PMMA and solvent, for whi
Light scattering by photonic crystals with a dirac spectrum
Sepkhanov, Ruslan
2009-01-01
In this thesis we consider several effects of a Dirac spectrum in photonic crystals on the scattering and propagation of light. We calculate the effect of a Dirac point (a conical singularity in the band structure) on the transmission of radiation through a photonic crystal. We find that the transmi
Multiple scattering of polarized light in a turbid medium
Gorodnichev, E. E.; Kuzovlev, A. I.; Rogozkin, D. B.
2007-01-01
It is shown that multiple scattering of polarized light in a turbid medium can be represented as independent propagation of three basic modes: intensity and linearly and circularly polarized modes. Weak interaction between the basic modes can be described by perturbation theory and gives rise to "ov
Light scattering by photonic crystals with a dirac spectrum
Sepkhanov, Ruslan
2009-01-01
In this thesis we consider several effects of a Dirac spectrum in photonic crystals on the scattering and propagation of light. We calculate the effect of a Dirac point (a conical singularity in the band structure) on the transmission of radiation through a photonic crystal. We find that the
Quantum correlations induced by multiple scattering of quadrature squeezed light
DEFF Research Database (Denmark)
Lodahl, Peter
2006-01-01
Propagating quadrature squeezed light through a multiple scattering random medium is found to induce pronounced spatial quantum correlations that have no classical analogue. The correlations are revealed in the number of photons transported through the sample that can be measured from the intensity...
Using Light Scattering to Track, Characterize and Manipulate Colloids
van Oostrum, P.D.J.
2011-01-01
A new technique is developed to analyze in-line Digital Holographic Microscopy images, making it possible to characterize, and track colloidal particles in three dimensions at unprecedented accuracy. We took digital snapshots of the interference pattern between the light scattered by micrometer
Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metal
DEFF Research Database (Denmark)
Roberts, Alexander; Søndergaard, Thomas; Chirumamilla, Manohar
2016-01-01
for a two-dimensional scatterer. We construct a simple resonator model which predicts the wavelength-dependent extinction, scattering, and absorption cross section of the trench and compare the model findings with full numerical simulations. Both extinction and scattering cross sections are mainly...... determined by the wavelength and can reach highly supergeometric values. At wavelengths where the metal exhibits near perfect electrical conductor behavior, such trenches lend themselves to be used as self-normalizing scatterers, as their scattering cross section is independent of their geometry and depend...... and two-photon luminescence that the resonant behavior of the vertical trenches is preserved....
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Scattering optical elements: stand-alone optical elements exploiting multiple light scattering
Park, Jongchan; Park, Chunghyun; Lee, KyeoReh; Lee, Heon; Cho, Yong-Hoon; Park, YongKeun
2016-01-01
Optical design and fabrication techniques are crucial for making optical elements. From conventional lenses to diffractive optical elements, and to recent metasurfaces, various types of optical elements have been proposed to manipulate light where optical materials are fabricated into desired structures. Here, we propose a scattering optical element (SOE) which exploits multiple light scattering and wavefront shaping. Instead of fabricating optical materials, the SOE consists of a disordered medium and a photopolymer-based wavefront recorder, with shapes the wavefront of impinging light on demand. With the proposed stand-alone SOEs, we experimentally demonstrate control of various properties of light, including intensity, polarisation, spectral frequency and near field. Due to the tremendous freedom brought about by disordered media, the proposed approach will provide unexplored routes to manipulate arbitrary optical fields in stand-alone optical elements.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Energy Technology Data Exchange (ETDEWEB)
Zhou, Dong-Ying; Shi, Xiao-Bo; Gao, Chun-Hong; Cai, Shi-Duan; Jin, Yue; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn
2014-09-30
Graphical abstract: - Highlights: • A combination of scattering layer and roughened substrate is used for light extraction from OLEDs. • The scattering layer is readily achieved by spin-coating the TiO{sub 2} sol. • The enhancement relying scattering depends on the size of TiO{sub 2} nano particles. • With the light extraction techniques the uniform emission is achieved. - Abstract: A combination of a scattering medium layer and a roughened substrate was proposed to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Comparing with a reference OLED without any scattering layer, 65% improvement in the forward emission has been achieved with a scattering layer formed on an intentionally roughened external substrate surface of the OLED by spin-coating a sol–gel fabricated matrix containing well dispersed titania (TiO{sub 2}) particles. Such a combination method not only demonstrated efficient extraction of the light trapped in the glass substrate but also achieved homogenous emission from the OLED panel. The proposed technique, convenient and inexpensive, is believed to be suitable for the large area OLED production in lighting applications.
Kiselev, A D; Reshetnyak, V Yu; Sluckin, T J
2002-05-01
We extend the T-matrix approach to light scattering by spherical particles to some simple cases in which the scatterers are optically anisotropic. Specifically, we consider cases in which the spherical particles include radially and uniformly anisotropic layers. We find that in both cases the T-matrix theory can be formulated using a modified T-matrix ansatz with suitably defined modes. In a uniformly anisotropic medium we derive these modes by relating the wave packet representation and expansions of electromagnetic field over spherical harmonics. The resulting wave functions are deformed spherical harmonics that represent solutions of the Maxwell equations. We present preliminary results of numerical calculations of the scattering by spherical droplets. We concentrate on cases in which the scattering is due only to the local optical anisotropy within the scatterer. For radial anisotropy we find that nonmonotonic dependence of the scattering cross section on the degree of anisotropy can occur in a regime to which both the Rayleigh and semiclassical theories are inapplicable. For uniform anisotropy the cross section is strongly dependent on the angle between the incident light and the optical axis, and for larger droplets this dependence is nonmonotonic.
Disordered Cellulose-Based Nanostructures for Enhanced Light Scattering
2017-01-01
Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light–matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation. PMID:28191920
Functional Imaging of Tissue Morphology with Polarized Light Scattering Spectroscopy
Backman, Vadim
2001-03-01
We report a new imaging technique to study the morphology of living epithelial cells in vivo. The method is based on light scattering spectroscopy with polarized light (PLSS) and makes it possible to distinguish between single backscattering from epithelial cell nuclei and multiply scattered light. The spectrum of the single backscattering component is further analyzed to provide quantitative histological information about the epithelial cells such as the size distribution, refractive index, and chromatin content of the cell nuclei. The measurement of cell nuclear morphology is crucial for detection and diagnosis of cancerous and precancerous conditions in many human tissues. The method was successfully applied to image precancerous regions of several tissues. Clinical studies in five organs (esophagus, colon, bladder, oral cavity, and uterine cervix) showed the generality and efficacy of the technique.
Shape-dependent light scattering properties of subwavelength silicon nanoblocks.
Ee, Ho-Seok; Kang, Ju-Hyung; Brongersma, Mark L; Seo, Min-Kyo
2015-03-11
We explore the shape-dependent light scattering properties of silicon (Si) nanoblocks and their physical origin. These high-refractive-index nanostructures are easily fabricated using planar fabrication technologies and support strong, leaky-mode resonances that enable light manipulation beyond the optical diffraction limit. Dark-field microscopy and a numerical modal analysis show that the nanoblocks can be viewed as truncated Si waveguides, and the waveguide dispersion strongly controls the resonant properties. This explains why the lowest-order transverse magnetic (TM01) mode resonance can be widely tuned over the entire visible wavelength range depending on the nanoblock length, whereas the wavelength-scale TM11 mode resonance does not change greatly. For sufficiently short lengths, the TM01 and TM11 modes can be made to spectrally overlap, and a substantial scattering efficiency, which is defined as the ratio of the scattering cross section to the physical cross section of the nanoblock, of ∼9.95, approaching the theoretical lowest-order single-channel scattering limit, is achievable. Control over the subwavelength-scale leaky-mode resonance allows Si nanoblocks to generate vivid structural color, manipulate forward and backward scattering, and act as excellent photonic artificial atoms for metasurfaces.
Aerosol light scattering measurements as a function of relative humidity.
Day, D E; Malm, W C; Kreidenweis, S M
2000-05-01
The hygroscopic nature of atmospheric fine aerosol was investigated at a rural site in the Great Smoky Mountains National Park during July and August 1995. Passing the sample aerosol through an inlet, which housed an array of Perma Pure diffusion dryers, controlled the sample aerosol's relative humidity (RH). After conditioning the aerosol sample in the inlet, the light scattering coefficient and the aerosol size distribution were simultaneously measured. During this study, the conditioned aerosol's humidity ranged between 5% < RH < 95%. Aerosol response curves were produced using the ratio bspw/bspd; where bspw is the scattering coefficient measured at some RH greater than 20% and bspd is the scattering coefficient of the "dry" aerosol. For this work, any sample RH values below 15% were considered dry. Results of this investigation showed that the light scattering ratio increased continuously and smoothly over the entire range of relative humidity. The magnitude of the ratio at a particular RH value, however, varied considerably in time, particularly for RH values greater than approximately 60%. Curves of the scattering coefficient ratios as a function of RH were generated for each day and compared to the average 12-hour chemical composition of the aerosol. This comparison showed that for any particular RH value the ratio was highest during time periods of high sulfate concentrations and lowest during time periods of high soil or high organic carbon concentrations.
Light scattering by fractal dust aggregates: I. Angular dependence of scattering
Tazaki, Ryo; Okuzumi, Satoshi; Kataoka, Akimasa; Nomura, Hideko
2016-01-01
In protoplanetary disks, micron-sized dust grains coagulate to form highly porous dust aggregates. Because the optical properties of these aggregates are not completely understood, it is important to investigate how porous dust aggregates scatter light. In this study, the light scattering properties of porous dust aggregates were calculated using a rigorous method, the T-matrix method, and the results were then compared with those obtained using the Rayleigh-Gans-Debye (RGD) theory and Mie theory with the effective medium approximation (EMT). The RGD theory is applicable to moderately large aggregates made of nearly transparent monomers. This study considered two types of porous dust aggregates, ballistic cluster-cluster agglomerates (BCCAs) and ballistic particle-cluster agglomerates (BPCAs). First, the angular dependence of the scattered intensity was shown to reflect the hierarchical structure of dust aggregates; the large-scale structure of the aggregates is responsible for the intensity at small scatteri...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Evaluation of Influence of Multiple Scattering Effect in Light-Scattering-Based Applications
Institute of Scientific and Technical Information of China (English)
XU Sheng-Hua; SUN Zhi-Wei
2007-01-01
The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.
Using neural networks for dynamic light scattering time series processing
Chicea, Dan
2017-04-01
A basic experiment to record dynamic light scattering (DLS) time series was assembled using basic components. The DLS time series processing using the Lorentzian function fit was considered as reference. A Neural Network was designed and trained using simulated frequency spectra for spherical particles in the range 0–350 nm, assumed to be scattering centers, and the neural network design and training procedure are described in detail. The neural network output accuracy was tested both on simulated and on experimental time series. The match with the DLS results, considered as reference, was good serving as a proof of concept for using neural networks in fast DLS time series processing.
Geometrical optics approximation of light scattering by large air bubbles
Institute of Scientific and Technical Information of China (English)
Haitao Yu; Jianqi Shen; Yuehuan Wei
2008-01-01
For large spherical bubbles in water,geometrical optics approximation is considered a better method for calculating light scattering patterns.In this paper,the basic theory of geometrical optics approximation is clarified.The change of phase for bubbles is calculated when total reflection occurs,which is different from particles with relative refractive indices larger than 1.Verification of the method was achieved by assuming a spherical particle and comparing present results to Mie scattering and Debye calculation.Agreement with the Mie theory was excellent in all directions when the dimensionless size parameter is larger than 50.Limitations of the geometrical optics approximation are also discussed.
Free-form thin lens design with light scattering surfaces for practical LED down light illumination
Lin, Raychiy J.; Sun, Ching-Cherng
2016-05-01
The free-form optical quasilens surface technology was utilized to develop and design a solid transparent plastic optical lens for the LED down light with the narrow angular light distribution requirement in the LED lighting applications. In order to successfully complete the mission, the precise mid-field angular distribution model of the LED light source was established and built. And also the optical scattering surface property of the Harvey BSDF scattering model was designed, measured, and established. Then, the optical simulation for the entire optical system was performed to develop and design this solid transparent plastic optical lens system. Finally, the goals of 40 deg angular light distribution pattern defined at full width half maximum with glare reduced in the areas of interest and the optical performance of nearly 82% light energy transmission optics were achieved for the LED down light illumination.
Lu, Dingze; Fang, Pengfei; Ding, Junqian; Yang, Minchen; Cao, Yufei; Zhou, Yawei; Peng, Kui; Kondamareddy, Kiran Kumar; Liu, Min
2017-02-01
Two-dimensional TiO2-based nanosheets (TNSs) co-modified by surface-enriched carbon dots (CDs) and Gd2O3 nanoparticles: (Gd-C-TNSs), capable of exhibiting visible-light-driven photo catalysis were synthesized using a two-pot hydrothermal route. The samples had a sheet-like structure, thickness of approximately 3.6 nm, large specific surface area of 240-350 cm2/g. The CDs (2-3 nm) and Gd2O3 nanoparticles (1-2 nm) were highly dispersed over the surface of the nanosheets. The co-modification by Gd2O3 nanoparticles and CDs influenced the crystallinity, crystal structure, and surface area of the TNSs, and improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate amount of modification. A very high efficiency was obtained using 0.5 at% Gd/Ti and 3.0 g/L of CDs. The visible-light-induced photocatalytic activity is enhanced under the isolated Cr(VI) system, isolated Rhodamin B (RhB) system, and the synergism between RhB degradation and Cr(VI) reduction for the Gd-C-TNSs photocatalysts. Initially, the photocatalytic activity gradually increased with an increase in the amount of CDs, and then decreased after attaining a maximum, in the case where 0.5 at% Gd/Ti and 3.0 g/L of CDs were used. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Gd2O3 nanoparticles, TNSs, and CDs in the Gd-C-TNSs composites. The effect led to a fast separation and slow recombination of photo-induced electron-hole pairs. An alternate mechanism for enhanced visible-light photocatalytic activity was also considered.
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Light scattering from impurity enhanced liquid layers in polycrystalline ice
Thomson, E. S.; Wettlaufer, J. S.; Wilen, L. A.
2009-12-01
Impurity enhanced grain boundary premelting underlies a wide range of geophysical phenomena throughout the cryosphere. In particular, it is known that when water droplets freeze in the atmosphere they are highly polycrystalline and impurities are rejected into grain boundaries. The predicted character and sensitivity of grain boundaries to impurities close to the melting point precludes the use of standard techniques for imaging the interface. Unlike their larger more macroscopic relatives such as veins (3 grain intersections) and nodes (4 grain intersections), grain boundaries do not submit to optical microscopy. However, using an experimental light scattering method grain boundary changes can be measured as a function of thermodynamic variables. Accurate analysis of the light scattering data generated using this method requires a full theory of light propagation through the grain boundary layer straddled by ice crystals. Here we present a theory for light scattering from such a boundary, experimental data using NaCl as a dopant, and dicsuss atmospheric implications from the troposphere to the stratosphere.
Simulations of light-light scattering in quantum vacuum
Carneiro, Pedro; Grismayer, Thomas; Silva, LuíS.; Fonseca, Ricardo
2016-10-01
Facilities such as the Extreme Light Infrastructure (ELI) or the VULCAN 20 PW project, as well as the Petta-Watt SLAC project, coupled with the x-ray LCLSII source will allow to perform the first experiments on the probing of quantum vacuum. In our work, we developed a numerical method to self-consistently solve the nonlinear system of Maxwell's equations including quantum corrections of vacuum polarization. The robustness of our algorithm allied to the ability to integrate this tool within a particle-in-cell (PIC) method, represents an important milestone in modeling future planned experiments to prove the existence of the quantum vacuum. Such experiments aim to measure the induced ellipticity on a x-ray pulse after probing a strong optical pump due to the quantum vacuum fluctuations. We present simulation results of both the ellipticity induced and polarization rotation, using realistic laser parameters of the Petta-Watt SLAC project, and the x-ray LCLSII source, whilst taking into account all finite-size multi-dimensional effects. We show how the ellipticity induced varies as a function of the distance to the axis of the beam, proving the importance of taking into account finite-size effects. This work serves as an important tool to complement existing efforts within the community to probe the effects of the quantum vacuum, in the strong field regime, for the first time.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Light scattering from acoustic vibrational modes in confined structures
Bandhu, Rudra Shyam
The acoustic vibrational modes and their light scattering intensities in confined structures such as supported films, double layer free-standing membrane and sub-micron sized wires on a free-standing membrane have been studied using Brillouin Light Scattering (BLS). Standing wave type acoustic phonons were recently observed in supported thin films of silicon oxy-nitride. We build upon this finding to study the acoustic modes in thin zinc selenide (ZnSe) films on gallium arsenide (GaAs). The surprising behaviour of the Brillouin intensities of the standing wave modes in ZnSe are explained in terms of interference of the elasto-optic scattering amplitudes from the film and substrate. Numerical calculations of the scattering cross-section, which takes into account ripple and elasto-optic scattering mechanism, agrees well with the experimental data. Light scattering studies of standing wave type modes in free-standing polymethyl methacrylate (PMMA) layer on Si3N4 were carried out. In these bilayer structures PMMA is much softer than Si3N 4, a property that leads to confinement of low frequency modes associated with the PMMA layer to within its boundaries. In addition, the flexural and the dilatational modes from the Si3N4 layer are observed and are found to hybridize with the standing wave modes from the PMMA layer. Our study of phonon modes in PMMA wires supported on a free-standing Si3N4 membrane extends our work on free-standing double layer membranes. In recent years there is much interest in the study of phonon modes in nano-scale structures such as wires or dots. Although much theoretical work has been carried out in this direction, no experiments exist that explore the dispersion of the phonon modes in such structures. Brillouin Light scattering is ideally suited for studying phonons in such reduced dimensions and our work represents the first effort in this direction. The spectra reveal modes which are quantized both along the width, as well along the thickness
Supercontinuum Light Sources for Hyperspectral Subsurface Laser Scattering
DEFF Research Database (Denmark)
Nielsen, Otto Højager Attermann; Dahl, Anders Lindbjerg; Larsen, Rasmus;
2011-01-01
A materials structural and chemical composition influences its optical scattering properties. In this paper we investigate the use of subsurface laser scattering (SLS) for inferring structural and chemical information of food products. We have constructed a computer vision system based on a super......A materials structural and chemical composition influences its optical scattering properties. In this paper we investigate the use of subsurface laser scattering (SLS) for inferring structural and chemical information of food products. We have constructed a computer vision system based...... on a supercontinuum laser light source and an Acousto- Optic Tunable Filter (AOTF) to provide a collimated light source, which can be tuned to any wavelength in the range from 480 to 900 nm. We present the newly developed hyperspectral vision system together with a proof-of-principle study of its ability...... to discriminate between dairy products with either similar chemical or structural composition. The combined vision system is a new way for industrial food inspection allowing non-intrusive online process inspection of parameters that is hard with existing technology....
Quasielastic Light Scattering and Structure of Nanodroplets Mixed with Polycaprolactone
Directory of Open Access Journals (Sweden)
Soheil Sharifi
2014-01-01
Full Text Available The interaction of polycaprolactone (PCL with droplets of a microemulsion is studied with quasielastic light scattering and small angle X-ray scattering At constant droplet size we vary the PCL concentration and there is clear evidence for an increasing attractive interaction of the droplets from structural investigations with small-angle X-ray scattering (SAXS. The collective diffusion coefficient (Dc of the droplets is monitored with quasielastic light scattering (QELS. We mainly focus on the variation of the dynamic behavior as a function of the PCL concentration and length scale (M.W. = 5000 and 10000 in microemulsion. With increasing PCL concentration and length scale the dynamics of the system slow down. A hard sphere model with depletion potential can fit well the SAXS experiment of microemulsion mixed with PCL. The results show with increase of PCL on microemulsion the size of droplets is constant at 83Å but the size ratio of polymer to droplets is changing.
Light-scattering and dispersion behavior of multiwalled carbon nanotubes
Saltiel, Craig; Manickavasagam, Siva; Pinar Mengüc, M.; Andrews, Rodney
2005-08-01
Elliptically polarized light-scattering measurements were performed to investigate the dispersion behavior of multiwalled carbon nanotubes (MWNT). Xylene- and pyridine-derived MWNT powders were dispersed in water and ethanol in separate optic cells and allowed to sit undisturbed over a two-week time period after probe sonication. Continuous light-scattering measurements taken between scattering angles of 10-170 deg and repeated over several days showed that the nanotubes formed fractal-like networks. The pyridine-derived MWNTs showed greater dispersion variation over time, tending to aggregate and clump much faster than the xylene-derived tubes. The water suspensions appeared much more stable than the ethanol suspensions, which transformed into nonfractal morphology after a few hours. We relate the dispersion stability to size and fringe patterns on the outer surface of the nanotubes. Measured values of fractal dimension were distinctly lower than those in previous studies of single-walled carbon nanotubes. Profiles of both diagonal and off-diagonal scattering matrix elements are presented.
Application of a scattered-light radiometric power meter.
Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P
2011-04-01
The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics
Dynamic light scattering on bioconjugated laser generated gold nanoparticles.
Zimbone, Massimo; Baeri, Pietro; Calcagno, Lucia; Musumeci, Paolo; Contino, Annalinda; Barcellona, Maria Luisa; Bonaventura, Gabriele
2014-01-01
Gold nanoparticles (AuNPs) conjugated to DNA are widely used for biomedical targeting and sensing applications. DNA functionalization is easily reached on laser generated gold nanoparticles because of their unique surface chemistry, not reproducible by other methods. In this context, we present an extensive investigation concerning the attachment of DNA to the surface of laser generated nanoparticles using Dynamic Light Scattering and UV-Vis spectroscopy. The DNA conjugation is highlighted by the increase of the hydrodynamic radius and by the UV-Vis spectra behavior. Our investigation indicates that Dynamic Light Scattering is a suitable analytical tool to evidence, directly and qualitatively, the binding between a DNA molecule and a gold nanoparticle, therefore it is ideal to monitor changes in the conjugation process when experimental conditions are varied.
Dynamic light scattering on bioconjugated laser generated gold nanoparticles.
Directory of Open Access Journals (Sweden)
Massimo Zimbone
Full Text Available Gold nanoparticles (AuNPs conjugated to DNA are widely used for biomedical targeting and sensing applications. DNA functionalization is easily reached on laser generated gold nanoparticles because of their unique surface chemistry, not reproducible by other methods. In this context, we present an extensive investigation concerning the attachment of DNA to the surface of laser generated nanoparticles using Dynamic Light Scattering and UV-Vis spectroscopy. The DNA conjugation is highlighted by the increase of the hydrodynamic radius and by the UV-Vis spectra behavior. Our investigation indicates that Dynamic Light Scattering is a suitable analytical tool to evidence, directly and qualitatively, the binding between a DNA molecule and a gold nanoparticle, therefore it is ideal to monitor changes in the conjugation process when experimental conditions are varied.
Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks
Birnstiel, Tilman; Pinilla, Paola; Kama, Mihkel
2015-01-01
Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular "gaps". The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple scenario without any gravitational or hydrodynamical disturbances to the gas disk structure. Even with a smooth and continuous gas density profile, we find that the scattered light emission produced by small dust grains can exhibit ring-like depressions similar to those presented in recent observations. The physical mechanisms responsible for these features rely on the inefficient fragmentation of dust particles. The occurrence and position of the proposed "gap" features depend most strongly on the dust-to-gas ratio, the f...
Parhelic-like circle from light scattering in Plateau borders
Energy Technology Data Exchange (ETDEWEB)
Tufaile, A., E-mail: tufaile@usp.br; Tufaile, A.P.B.
2015-03-06
We are reporting a new simple optical element to generate halos. We have observed interesting patterns of light scattering in Plateau borders in foams. In analogy to the atmospheric phenomena known as parhelic circle, sun dogs, and sun pillars, we have named the features of the patterns observed as parlaseric circle, laser dogs, and laser pillars. The triangular symmetry of the Plateau borders is analogous to the hexagonal symmetry of ice crystals which produce these atmospheric phenomena. Working with one Plateau border at a time, we have observed wave optics phenomena that are not perceived in the atmospheric phenomena, such as diffraction and interference. - Highlights: • We obtained halo formation from light scattering in a Plateau border using an experiment. • We explained halo formation using geometrical theory of diffraction. • An optical element based on a Plateau border is proposed. • We compared some aspects of the parhelic circle with the parlaseric circle.
Fernandes, Gustavo E.; Pan, Yong-Le; Chang, Richard K.; Aptowicz, Kevin; Pinnick, Ronald G.
2006-10-01
Two-dimensional angular optical scattering (TAOS) patterns of aerosols are measured simultaneously from the forward hemisphere 15°Bacillus subtilis spores. These information-rich patterns, measured with a single laser pulse for individual particles on the fly, suggest that forward-TAOS and backward-TAOS measurements may be used for rapid classification of single aerosol particles.
Extending Kubelka-Munk's Theory with Lateral Light Scattering
Mourad, Safer; Emmel, Patrick; Simon, Klaus; Hersch, Roger David
2001-01-01
Due to its simplicity, the theory of KUBELKA-MUNK [1] has found a wide acceptance for modeling the optical properties of light scattering materials. However, the concept is not explicitly adapted to predict halftone prints on paper. In this respect, a recent improvement was given by BERG. Our approach is an extension of BERG'S model in order to reduce the gap between the mathematical description of the paper's point spread function and the experimental results of simple reflectance measurements.
Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations
Uskoković, Vuk
2012-01-01
Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including...
Visible light scatter as quantitative information source on milk constituents
DEFF Research Database (Denmark)
Melentieva, Anastasiya; Kucheryavskiy, Sergey; Bogomolov, Andrey
2012-01-01
VISIBLE LIGHT SCATTER AS A QUANTITATIVE INFORMATION SOURCE ON MILK CONSTITUENTS A. Melenteva 1, S. Kucheryavski 2, A. Bogomolov 1,31Samara State Technical University, Molodogvardeyskaya Street 244, 443100 Samara, Russia. 2Aalborg University, campus Esbjerg, Niels Bohrs vej 8, 6700 Esbjerg, Denmar...... research area are presented and discussed. References: [1] A. Bogomolov, S. Dietrich, B. Boldrini, R.W. Kessler, Food Chemistry (2012), doi:10.1016/j.foodchem.2012.02.077....
Chahine algorithm to invert light scattering spectroscopy of epithelial dysplasia
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To perceive the epithelial dysplasia from the light scattering spectroscopy (LSS) is an inverse problem, which can be transformed into the inversion of the size distribution of epithelial-cell nuclei. Based on the simulation of single polarized LSS for epithelial-cell nuclei, Chahine algorithm is adopted to retrieve the size distribution. Numerical results show that Chahine algorithm has high inversion precision for both single-peaked and bimodal models, which implies the potential to increase diagnostic resolution of LSS.
Light scattering measurements supporting helical structures for chromatin in solution.
Campbell, A M; Cotter, R I; Pardon, J F
1978-05-01
Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.
Ultraviolet refractometry using field-based light scattering spectroscopy
2009-01-01
Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angula...
Computational analysis of light scattering from collagen fiber networks
Arifler, Dizem; Pavlova, Ina; Gillenwater, Ann; Richards-Kortum, Rebecca
2007-07-01
Neoplastic progression in epithelial tissues is accompanied by structural and morphological changes in the stromal collagen matrix. We used the Finite-Difference Time-Domain (FDTD) method, a popular computational technique for full-vector solution of complex problems in electromagnetics, to establish a relationship between structural properties of collagen fiber networks and light scattering, and to analyze how neoplastic changes alter stromal scattering properties. To create realistic collagen network models, we acquired optical sections from the stroma of fresh normal and neoplastic oral cavity biopsies using fluorescence confocal microscopy. These optical sections were then processed to construct three-dimensional collagen networks of different sizes as FDTD model input. Image analysis revealed that volume fraction of collagen fibers in the stroma decreases with neoplastic progression, and statistical texture features computed suggest that fibers tend to be more disconnected in neoplastic stroma. The FDTD modeling results showed that neoplastic fiber networks have smaller scattering cross-sections compared to normal networks of the same size, whereas high-angle scattering probabilities tend to be higher for neoplastic networks. Characterization of stromal scattering is expected to provide a basis to better interpret spectroscopic optical signals and to develop more reliable computational models to describe photon propagation in epithelial tissues.
High energy light scattering in the generalized eikonal approximation.
Chen, T W
1989-10-01
The generalized eikonal approximation method is applied to the study of light scattering by a dielectric medium. In this method, the propagation of light inside the medium is assumed to be rectilinear, as in the usual eikonal method, but with a parameterized propagator which is used to include the edge effect and ray optics behavior at the limit of very short wavelengths. The resulting formulas for the intensity and extinction efficiency factor are compared numerically and shown to agree excellently with the exact results for a homogeneous dielectric sphere.
Subdiffraction scattered light imaging of gold nanoparticles using structured illumination.
Chang, Bo-Jui; Lin, Shiuan Huei; Chou, Li-Jun; Chiang, Su-Yu
2011-12-15
A reflective light-scattering (RLS) microscope with structured illumination (SI) provides subdiffraction resolution and improves the image quality of gold nanoparticles in biological systems. The three-dimensional (3D)-structured pattern is rapidly and precisely controlled with a spatial light modulator and scrambled at the conjugate image plane to increase spatial incoherence. The reconstructed SI-RLS image of 100 nm gold nanoparticles reveals lateral and axial resolutions of approximately 117 and 428 nm. We present a high-resolution image of gold nanoparticles inside a HeLa cell, with improved contrast.
Metamaterials. Invisibility cloaking in a diffusive light scattering medium.
Schittny, Robert; Kadic, Muamer; Bückmann, Tiemo; Wegener, Martin
2014-07-25
In vacuum, air, and other surroundings that support ballistic light propagation according to Maxwell's equations, invisibility cloaks that are macroscopic, three-dimensional, broadband, passive, and that work for all directions and polarizations of light are not consistent with the laws of physics. We show that the situation is different for surroundings leading to multiple light scattering, according to Fick's diffusion equation. We have fabricated cylindrical and spherical invisibility cloaks made of thin shells of polydimethylsiloxane doped with melamine-resin microparticles. The shells surround a diffusively reflecting hollow core, in which arbitrary objects can be hidden. We find good cloaking performance in a water-based diffusive surrounding throughout the entire visible spectrum and for all illumination conditions and incident polarizations of light. Copyright © 2014, American Association for the Advancement of Science.
Propagation of coherent polarized light in turbid highly scattering medium.
Doronin, Alexander; Macdonald, Callum; Meglinski, Igor
2014-02-01
Within the framework of further development of unified Monte Carlo code for the needs of biomedical optics and biophotonics, we present an approach for modeling of coherent polarized light propagation in highly scattering turbid media, such as biological tissues. The temporal coherence of light, linear and circular polarization, interference, and the helicity flip of circularly polarized light due to reflection at the medium boundary and/or backscattering events are taken into account. To achieve higher accuracy in the results and to speed up the modeling, the implementation of the code utilizes parallel computing on NVIDIA graphics processing units using Compute Unified Device Architecture. The results of the simulation of coherent linearly and circularly polarized light are presented in comparison with the results of known theoretical studies and the results of alternative modelings.
Terahertz magneto-optical spectroscopy of a two-dimensional hole gas
Energy Technology Data Exchange (ETDEWEB)
Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pan, W.; Reno, J. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Ekenberg, U. [Semiconsultants, Brunnsgrnd 12, SE-18773 Täby (Sweden); Gvozdić, D. M. [School of Electrical Engineering, University of Belgrade, Belgrade 11120 (Serbia); Boubanga-Tombet, S. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai (Japan); Upadhya, P. C. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Electro-Optics Systems, Indian Space Research Organization, Bangalore 560058 (India)
2015-01-19
Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, in contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.
Photovoltaic structures having a light scattering interface layer and methods of making the same
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj
2015-10-13
Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.
Determination of reversible protein equilibrium association coefficients using light scattering
Larkin, Michael
2009-03-01
The characterization in solution of reversible protein associations as well as associations between proteins and small molecules is essential in many areas of science. Understanding cellular function or developing and formulating pharmaceuticals or other biologically active materials often requires quantitation of such associations. Most pharmaceuticals have functionality due solely to association with molecules within the body, and the discovery and accurate characterization of these associations is a key element for pharmaceutical development. Unfortunately, most methods used to measure associations of proteins require either immobilizing the protein on a surface (e.g. surface plasmon resonance), which potentially alters the protein characteristics, or require considerable time and effort and large quantities of sample (e.g. analytical ultracentrifugation, isothermal titration calorimetry). Light scattering based measurements of reversible association coefficients require much less sample and may be performed much more rapidly than other free solution techniques. In this talk I describe how static and dynamic light scattering may each independently be used to measure equilibrium association coefficients between proteins in free solution, and may also be used to observe and quantitate the association of small molecules with them. I present background theory for both static and dynamic light scattering measurements of equilibrium associations, and examples of measurements made of both model systems and of systems with commercial relevance in the pharmaceutical industry.
Light scattering studies of solids and atomic vapors
Energy Technology Data Exchange (ETDEWEB)
Chiang, T.C.
1978-09-01
The general technique of light scattering and luminescence was used to study the properties of a number of material systems. First, multi-phonon resonant Raman scattering up to four phonons in GaSe and one- and two-phonon resonant Raman scattering in the mixed GaS/sub x/Se/sub 1-x/ crystals with x < or = 0.23 were investigated. Second, the observation of one-phonon resonant Raman scattering in HfS/sub 2/ is reported. The result is used to determine the position of the direct gap of HfS/sub 2/. Third, the first observation of the ..pi..-polarized one-magnon luminescence sideband of the /sup 4/T/sub lg/ (/sup 4/G) ..-->.. /sup 6/A/sub lg/(/sup 6/S) excitonic transition in antiferromagnetic MnF/sub 2/ is presented. An effective temperature of the crystal is deduced from the simultaneously observed anti-Stokes sideband emission. Multi-magnon (< or = 7) excitonic luminescence sidebands were also observed in MnF/sub 2/, KMnF/sub 2/, and RbMnF/sub 3/ using pulsed excitation and detection. A simple model based on two-ion local exchange is proposed to explain the results qualitatively. Fourth, the first observation of two-magnon resonant Raman scattering in MnF/sub 2/ around the magnon sidebands is reported. A simple theoretical description explains the experimental observations. Fifth, a detailed theory of exciton-exciton interaction in MnF/sub 2/ is developed to explain and to predict the experimental results on two-exciton absorption, high level excitation, and exciton--exciton scattering. Sixth, Brillouin scattering was used to obtain the five independent elastic constants of the layered compound GaSe. The results show clear elastic anisotropy of the crystal. Resonant Brillouin scattering near the absorption edge was also studied, but no resonant enhancement was found. Seventh, two-photon parametric scattering in sodium vapor was studied. Phase matching angles and scattering cross sections are calculated for a given set of experimental conditions.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Lehtinen, K
2012-01-01
The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Angstrom in two globules, the Thumbprint Nebula and DC303.8-14.2. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered H-alpha and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Spectra are presented separately for t...
Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers
Energy Technology Data Exchange (ETDEWEB)
Rothberg, Lewis
2012-11-30
Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.
Michelson, Jennifer; Werner, Liliana; Ollerton, Andrew; Leishman, Lisa; Bodnar, Zachary
2012-08-01
To assess light scattering and light transmittance in intraocular lenses (IOLs) explanted because of optic opacification. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Poly(methyl methacrylate) (PMMA) IOLs with snowflake degeneration, hydrophilic acrylic IOLs with different calcification patterns, and 1 calcified silicone IOL explanted from an eye with asteroid hyalosis were studied with gross and light microscopy. Light scattering was measured with an EAS-1000 Scheimpflug camera. Light transmittance was measured with a Lambda 35 UV/Vis spectrophotometer (single-beam configuration with RSA-PE-20 integrating sphere). Analyses were performed at room temperature in the hydrated state and compared with controls. The study evaluated 8 PMMA IOLs, 22 hydrophilic acrylic IOLs, and 1 silicone IOL. Light scattering was as follows: 208 to 223 computer-compatible tapes (CCTs) for PMMA IOLs with snowflake degeneration (control = 9 CCTs); 90 to 227 CCTs for calcified hydrophilic acrylic IOLs (controls = 12 to 23 CCTs); 223 CCTs for the calcified silicone IOL (control = 5 CCTs). The mean light transmittance in the visible light spectrum was 81.08% to 97.10% for PMMA IOLs (control = 98.80%); 78.94% to 97.32% for hydrophilic acrylic IOLs (controls = 97.32% to 98.66%); 94.68% for the silicone IOL (control = 97.74%). Intraocular lens opacification led to very high levels of light scattering and a potential for decreased light transmittance, which play a role in the development of symptoms such as glare and halos, decreased contrast sensitivity, and eventually decreased visual acuity. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University
Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang
2009-06-01
A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.
Discovery of polarized light scattered by dust around Alpha Orionis
Mcmillan, R. S.; Tapia, S.
1978-01-01
Following the suggestion by Jura and Jacoby (1976), linearly polarized blue continuum starlight scattered by the dust shell around the M2 Iab star Alpha Orionis (Betelgeuse) has been discovered. The polarization has been traced in the NE, NW, SE, and SW directions and has positive (tangential) orientation. Some asymmetry of the optical depth in the shell exists 15 and 30 arcsec from the star. In the NE direction the polarization was measured as far as 90 arcsec (17,000 AU) from the star. The dependence of the average intensity of the scattered light from the nebula on angular distance from the star is more consistent with an inverse-square density law than with inverse 1.5 or inverse-cube laws. Assuming that the density is proportional to the inverse square of distance from the star, the scattering optical depth in blue light along a radius of 0.03 arcsec is no more than 0.15 + or - 0.05. Future observations of the wavelength dependence of polarization will allow a determination of grain size.
Inelastic light scattering spectroscopy of semiconductor nitride nanocolumns
Energy Technology Data Exchange (ETDEWEB)
Calleja, J.M.; Lazic, S.; Sanchez-Paramo, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Agullo-Rueda, F. [Materials Science Institute of Madrid, CSIC, 28049 Madrid (Spain); Cerutti, L.; Ristic, J.; Fernandez-Garrido, S.; Sanchez-Garcia, M.A.; Grandal, J.; Calleja, E. [ISOM and Departamento de Ingenieria Electronica, ETSIT, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Trampert, A.; Jahn, U. [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)
2007-08-15
A review of inelastic light scattering measurements on group III-nitride nanocolumns grown by molecular beam epitaxy is presented. The nanocolumns are hexagonal, high quality single crystals with diameters in the range of 20 to 100 nm, with no traces of extended defects. GaN nanocolumns grown on bare Si substrates with both (111) and (100) orientation display narrow phonon peaks, indicating the absence of strain inhomogeneities. This opens the possibility of efficient integration of the nanocolumns as optoelectronic devices with the complementary metal oxide semiconductor technology. Measurements of the E{sub 2} phonon frequency on AlGaN nanocolumns indicate a linear dependence of the Al concentration on the Al relative flux, up to 60%. The E{sub 2} peak width increases with Al content due to phonon damping by alloy scattering. Inelastic light scattering measurements in InN nanocolumns display a coupled LO phonon-plasmon mode together with uncoupled phonons. The coupled mode is not observed in a reference compact sample. The origin of the coupled mode is attributed to spontaneous accumulation of electrons at the lateral surfaces of the nanocolumns. The presence of free electrons in the nanocolumns is confirmed by infrared reflectance measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ultraviolet refractometry using field-based light scattering spectroscopy
Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.
2010-01-01
Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Imperfect two-dimensional topological insulator field-effect transistors
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059
The muon g-2: Dyson-Schwinger status on hadronic light-by-light scattering
Energy Technology Data Exchange (ETDEWEB)
Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter; Williams, Richard [Institut für Theoretische Physik, Justus-Liebig–Universität Giessen, 35392 Giessen (Germany)
2016-01-22
We give a status report on the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment from the Dyson-Schwinger approach. We discuss novel, model-independent properties of the light-by-light amplitude: we give its covariant decomposition in view of electromagnetic gauge invariance and Bose symmetry, and we identify the relevant kinematic regions that are probed under the integral. The decomposition of the amplitude at the quark level and the importance of its various diagrams are discussed and related to model approaches.
Stray-light suppression with high-collection efficiency in laser light-scattering experiments
Deilamian, K.; Gillaspy, J. D.; Kelleher, D. E.
1992-01-01
An optical system is described for collecting a large fraction of fluorescent light emitted isotropically from a cylindrical interaction region. While maintaining an overall detection efficiency of 9 percent, the system rejects, by more than 12 orders of magnitude, incident laser light along a single axis that intersects the interaction region. Such a system is useful for a wide variety of light-scattering experiments in which high-collection efficiency is desirable, but in which light from an incident laser beam must be rejected without resorting to spectral filters.
Neutron and light scattering studies of polymers adsorbed on laponite
Nelson, A R J
2002-01-01
The adsorption of poly(ethylene oxide) (PEO) and various poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic) copolymers onto the synthetic clay Laponite, was investigated using Small Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS). The Laponite particles are anisotropic, with a relatively high aspect ratio; but are the same order of magnitude in size as the polymer radius of gyration. Consequently, the particles present a radically different adsorption geometry compared to a locally planar interface, that is assumed by the majority of adsorption studies. The PEO homo-polymer formed thin layers, with the layer thickness being much smaller on the face than on the edge of the particle. Furthermore, the face thickness remained constant with increasing molecular weight, unlike the edge thickness, which grew with a small power law dependence on the molecular weight. Although the hydrodynamic thicknesses (DLS) were larger than those observed with SANS, the layer thicknesses ...
Light dark matter scattering in outer neutron star crusts
Cermeño, Marina; Silk, Joseph
2016-01-01
We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.
Light dark matter scattering in outer neutron star crusts
Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph
2016-09-01
We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.
Lee, Keunsoo; Shin, Jin-Wook; Park, Jun-Hwan; Lee, Jonghee; Joo, Chul Woong; Lee, Jeong-Ik; Cho, Doo-Hee; Lim, Jong Tae; Oh, Min-Cheol; Ju, Byeong-Kwon; Moon, Jaehyun
2016-07-13
We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE). When a wrinkle structure is simultaneously used for an external light extraction structure, the total enhancement of the integrated EQE was 65.3%. The EQE is maximized to 65.3% at a current level of 2.0 mA/cm(2). By applying an internal light scattering layer and wrinkle structure to an OLED, the variance in the emission spectra was negligible over a broad viewing angle. Power mode analyses with finite difference time domain (FDTD) simulations revealed that the use of a scattering layer effectively reduced the waveguiding mode while introducing non-negligible absorption. Our method offers an effective yet simple approach to achieve both efficiency enhancement and spectral stability for a wide range of OLED applications.
Mandel'shtam-Brillouin scattering of laser light as a remote sensing tool.
Daniels, A.
1972-01-01
The mathematical relations regarding the intensity of scattered light are derived. The nature of density inhomogeneities in air is discussed together with scattering due to moving isothermal pressure fluctuations, the spectral distribution of scattering from static isobaric density fluctuations, and applications of Mandel'shtam-Brillouin (M-B) scattering to atmospheric sensing. It is concluded that M-B scattering of laser light from the atmosphere has an outstanding potential for remote atmospheric sensing.
Population of collective modes in light scattering by many atoms
Guerin, William; Kaiser, Robin
2017-05-01
The interaction of light with an atomic sample containing a large number of particles gives rise to many collective (or cooperative) effects, such as multiple scattering, superradiance, and subradiance, even if the atomic density is low and the incident optical intensity weak (linear optics regime). Tracing over the degrees of freedom of the light field, the system can be well described by an effective atomic Hamiltonian, which contains the light-mediated dipole-dipole interaction between atoms. This long-range interaction is at the origin of the various collective effects, or of collective excitation modes of the system. Even though an analysis of the eigenvalues and eigenfunctions of these collective modes does allow distinguishing superradiant modes, for instance, from other collective modes, this is not sufficient to understand the dynamics of a driven system, as not all collective modes are significantly populated. Here, we study how the excitation parameters, i.e., the driving field, determines the population of the collective modes. We investigate in particular the role of the laser detuning from the atomic transition, and demonstrate a simple relation between the detuning and the steady-state population of the modes. This relation allows understanding several properties of cooperative scattering, such as why superradiance and subradiance become independent of the detuning at large enough detuning without vanishing, and why superradiance, but not subradiance, is suppressed near resonance. We also show that the spatial properties of the collective modes allow distinguishing diffusive modes, responsible for radiation trapping, from subradiant modes.
Dynamic light scattering in veterinary medicine: refinement of diagnostic criteria
Dubin, Stephen; Zietz, Stanley; Gabriel, Karl L.; Gabriel, David; DellaVecchia, Michael A.; Ansari, Rafat R.
2001-05-01
In dynamic light scattering (DLS), the structure or material of interest, suspended in a fluid, is illuminated by a beam of laser light and the scattered light is interpreted in terms of diffusion coefficient, particle size or its distribution. DLS has shown clear promise as a non-invasive, objective and precise diagnostic modality for investigation of lens opacity (cataract) and other medical and toxicological problems. The clinical potential of LDS has been demonstrated in several species both in vivo and in vitro. In many clinical cases, discernment between normal and diseased patients is possible by simple inspection of the particle size distribution. However a more rigorous and sensitive classification scheme is needed, particularly for evaluation of therapy and estimation of tissue injury. The data supplied by DLS investigation is inherently multivariate and its most efficient interpretation requires a multivariate approach which includes the variability among specimens as well as any correlation among the variables (e.g. across the particle size distribution). We present a brief review of DLS methodology, illustrative data and our efforts toward a diagnostic classification scheme. In particular we will describe application of the Mahalanobis distance and related statistical methods to DLS data.
Enhanced Light Scattering of Secondary Organic Aerosols by Multiphase Reactions.
Li, Kun; Li, Junling; Liggio, John; Wang, Weigang; Ge, Maofa; Liu, Qifan; Guo, Yucong; Tong, Shengrui; Li, Jiangjun; Peng, Chao; Jing, Bo; Wang, Dong; Fu, Pingqing
2017-02-07
Secondary organic aerosol (SOA) plays a pivotal role in visibility and radiative forcing, both of which are intrinsically linked to the refractive index (RI). While previous studies have focused on the RI of SOA from traditional formation processes, the effect of multiphase reactions on the RI has not been considered. Here, we investigate the effects of multiphase processes on the RI and light-extinction of m-xylene-derived SOA, a common type of anthropogenic SOA. We find that multiphase reactions in the presence of liquid water lead to the formation of oligomers from intermediate products such as glyoxal and methylglyoxal, resulting in a large enhancement in the RI and light-scattering of this SOA. These reactions will result in increases in light-scattering efficiency and direct radiative forcing of approximately 20%-90%. These findings improve our understanding of SOA optical properties and have significant implications for evaluating the impacts of SOA on the rapid formation of regional haze, global radiative balance, and climate change.
Light-by-light scattering in the Lamb shift and the bound electron g factor
Czarnecki, Andrzej; Szafron, Robert
2016-12-01
We compute an O ( α2(Zα ) 6) contribution to the hydrogen-atom Lamb shift arising from light-by-light scattering. Analogous diagrams, with one atomic electric field insertion replaced by an external magnetic field, contribute to the gyromagnetic factor of the bound electron at O ( α2(Zα ) 4) . We also calculate the contribution to the gyromagnetic factor from the muon magnetic loop.
On calculating disconnected-type hadronic light-by-light scattering diagrams from lattice QCD
Hayakawa, M; Christ, N H; Izubuchi, T; Jin, L C; Lehner, C
2015-01-01
For reliable comparison of the standard model prediction to the muon g-2 with its experimental value, the hadronic light-by-light scattering (HLbL) contribution must be calculated by lattice QCD simulation. HLbL contribution has many types of disconnected-type diagrams. Here, we start with recalling the point that must be taken care of in every method to calculate them by lattice QCD, and present one concrete method called nonperturbative QED method.
Light-by-light scattering in the Lamb shift and the bound electron g factor
Czarnecki, Andrzej
2016-01-01
We compute an $\\mathcal{O}\\left(\\alpha^2(Z\\alpha)^6\\right)$ contribution to the hydrogen-atom Lamb shift arising from the light-by-light scattering. Analogous diagrams, with one atomic electric field insertion replaced by an external magnetic field, contribute to the gyromagnetic factor of the bound electron at $\\mathcal{O}\\left(\\alpha^2(Z\\alpha)^4\\right)$. We also calculate the contribution to the gyromagnetic factor from the muon magnetic loop.
Scaling up Echo-State Networks with multiple light scattering
Dong, Jonathan; Krzakala, Florent; Wainrib, Gilles
2016-01-01
Echo-State Networks and Reservoir Computing have been studied for more than a decade. As they provide an elegant yet powerful alternative to traditional computing, researchers have tried to implement them using physical systems, in particular non-linear optical elements, achieving high bandwidth and low power consumption. Here we present a completely different optical implementation of Echo-State Networks using light-scattering materials. As a proof of concept, binary networks have been successfully trained to perform non-linear operations on time series and memory of such networks has been evaluated. This new method is fast, power efficient and easily scalable to very large networks.
Multiple scattering of light in three-dimensional photonic quasicrystals.
Ledermann, Alexandra; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2009-02-01
Recent experiments on three-dimensional icosahedral dielectric photonic quasicrystals have shown several unexpected features: transmitted femtosecond pulses developed a trailing "diffusive" exponential tail and the sum of (zeroth-order) transmittance and reflectance was well below unity. These experimental findings have previously been ascribed to sample imperfections. Here, we analyze these findings by using 3D periodic approximants of the ideal photonic quasicrystals. We show that the experimental observations can be explained in terms of multiple scattering of light within these structures, i.e., in terms of intrinsic rather than purely extrinsic quasicrystal properties.
Wide-field imaging through scattering media by scattered light fluorescence microscopy
Zhou, Yulan; Li, Xun
2017-08-01
To obtain images through scattering media, scattered light fluorescence (SLF) microscopy that utilizes the optical memory effect has been developed. However, the small field of view (FOV) of SLF microscopy limits its application. In this paper, we have introduced a re-modulation method to achieve wide-field imaging through scattering media by SLF microscopy. In the re-modulation method, to raster scan the focus across the object plane, the incident wavefront is re-modulated via a spatial light modulator (SLM) in the updated phase compensation calculated using the optimized iterative algorithm. Compared with the conventional optical memory effect method, the re-modulation method can greatly increase the FOV of a SLF microscope. With the phase compensation theoretically calculated, the process of updating the phase compensation of a high speed SLM is fast. The re-modulation method does not increase the imaging time. The re-modulation method is, therefore, expected to make SLF microscopy have much wider applications in biology, medicine and physiology.
HD100546 multi-epoch scattered light observations
Energy Technology Data Exchange (ETDEWEB)
Avenhaus, Henning; Quanz, Sascha P.; Meyer, Michael R. [ETH Zurich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Brittain, Sean D. [Department of Physics and Astronomy, 118 Kinard Laboratory, Clemson University, Clemson, SC 29634 (United States); Carr, John S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Najita, Joan R., E-mail: havenhaus@astro.phys.ethz.ch [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)
2014-07-20
We present H, K{sub s}, and L' filter polarimetric differential imaging (PDI) data for the transitional disk around HD100546 obtained in 2013, together with an improved re-reduction of previously published 2006 data. We reveal the disk in polarized scattered light in all three filters, achieving an inner working angle of ∼0.''1. Additional, short-exposure observations in the H and K{sub s} filters probe the surroundings of the star down to ∼0.''03 (∼3 AU). HD100546 is fascinating because of its variety of sub-structures possibly related to forming planets in the disk, and PDI is currently the best technique for imaging them in the near-IR. For the first time ever, we detect a disk in L-band PDI data, and we constrain the outer radius of the inner hole to 14 ± 2 AU and its eccentricity to <0.133. A dark lane is detected between ∼0.''2-0.''6 AU in the front side of the disk, which is likely an effect of the scattering angle and the scattering function of the grains. We find a spiral arm in the northeast that has no obvious connection to spiral arms seen before by other authors further out in the disk, but winds are in the same direction (clockwise). The two bright scattering peaks along the semi-major axis are asymmetric, with the southeastern one being significantly brighter. This could be related to the inner companion candidate that is close to the brighter side of the disk at the time of the observations. The scattering color is close to gray between the H and K{sub s} filters ([H]–[K{sub s}] = 0.19 ± 0.11), but the scattering in the L' filter is significantly weaker ([H]–[L'] = –1.08 ± 0.35, [K{sub s}]–[L'] = –1.27 ± 0.35). We measure the position angle of the disk to be 138° ± 3°, consistent with previous observations, and we derive the dust scattering function in the H and K{sub s} filters between ∼35° and ∼130° at two different radii (30-50 and 80-110 AU) and show that
Coherence effects in scattering order expansion of light by atomic clouds
Rouabah, Mohamed-Taha; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola
2014-01-01
We interpret cooperative scattering by a collection of cold atoms as a multiple scattering process. Starting from microscopic equations describing the response of $N$ atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.
Coherence effects in scattering order expansion of light by atomic clouds.
Rouabah, Mohamed-Taha; Samoylova, Marina; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola
2014-05-01
We interpret cooperative scattering by a collection of cold atoms as a multiple-scattering process. Starting from microscopic equations describing the response of N atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple-scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double-scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.
Interactions between lasers and two-dimensional transition metal dichalcogenides.
Lu, Junpeng; Liu, Hongwei; Tok, Eng Soon; Sow, Chorng-Haur
2016-05-03
The recent increasing research interest in two-dimensional (2D) layered materials has led to an explosion of in the discovery of novel physical and chemical phenomena in these materials. Among the 2D family, group-VI transition metal dichalcogenides (TMDs), such as represented by MoS2 and WSe2, are remarkable semiconductors with sizable energy band gaps, which make the TMDs promising building blocks for new generation optoelectronics. On the other hand, the specificity and tunability of the band gaps can generate particularly strong light-matter interactions between TMD crystals and specific photons, which can trigger complex and interesting phenomena such as photo-scattering, photo-excitation, photo-destruction, photo-physical modification, photochemical reaction and photo-oxidation. Herein, we provide an overview of the phenomena explained by various interactions between lasers and the 2D TMDs. Characterizations of the optical fundamentals of the TMDs via laser spectroscopies are reviewed. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement of the TMDs materials via laser modification are comprehensively summarized. Finally, we conclude the review by discussing the prospects for further development in this research area.
HD100546 Multi-Epoch Scattered-Light Observations
Avenhaus, Henning; Meyer, Michael R; Brittain, Sean D; Carr, John S; Najita, Joan R
2014-01-01
We present H, Ks and L filter polarimetric differential imaging (PDI) data for the transitional disk around HD100546 obtained in 2013, together with an improved re-reduction of previously published 2006 data. We reveal the disk in polarized scattered light in all three filters, achieving an inner working angle of 0.1 arcsec. Additional, short-exposure observations in the H and Ks filter probe the surrounding of the star down to about 0.03 (about 3 AU). HD100546 is fascinating because of its variety of sub-structures possibly related to forming planets in the disk, and PDI is currently the best technique to image them in the near-IR. Our key results are: (1) For the first time ever, we detect a disk in L-band PDI data. (2) We constrain the outer radius of the inner hole to 14pm2 AU and its eccentricity to < 0.133. (3) We detect a dark lane in the front side of the disk, which is likely an effect of the scattering angle and the scattering function of the grains. (4) We find a spiral arm in the northeast whic...
Institute of Scientific and Technical Information of China (English)
梁馨元; 陈笑; 王义全; 冯帅; 杨国建; 陈胥冲
2013-01-01
Light propagation in photonic band gaps in two-dimensional organic octagonal quasiperiodic photonic crystal slabs is investigated by finite-difference time-domain method. The transmission property and light localization in the polystyrene air-rod slab and air polystyrene-rod slab are compared in detail. The results show that even in extremely low-index dielectric contrast of rods, the photonic band gaps and eigenmodes are observed in the visible spectrum. Besides, the central position of bandgap is red-shifted with the increase of slab thickness. When defects are introduced into two quasiperiodic structures, the occurrence position of defect modes and property of red-shifting in wavelength of modes are different with the increase of size of defect nanocavities. The difference in property originates from the competition consequence of two physical mechanisms which are the energy levels of defects in photonic crystals and the resonance of modes in the defect cavity. The results may give theoretical support for fabricating luminescent devices based on organic quasicrystals.%采用时域有限差分法研究了二维八重准晶有机光子晶体的光传输特性,重点分析了光束在聚苯乙烯空气柱平板结构和聚苯乙烯介质柱结构中的透射特性与光局域特性.研究结果表明,即使在低折射率对比度的情况下,两种完整八重准晶平板结构中均出现了可见光波段的光子带隙和本征模,且光子带隙中心位置随着平板厚度的增大而红移.当在两种准晶结构中引入缺陷微腔时,带隙内的缺陷模产生位置和波长红移特性随着微腔结构的变化规律明显不同,这种差异性是由两种物理机制(即光子晶体缺陷能级变化与微腔所支持的驻波条件)共同作用的结果.这一研究结果将为实验制备有机准晶发光器件提供一定的理论基础.
The Spectrum of the Diffuse Galactic Light I: The Milky Way in Scattered Light
Brandt, Timothy D
2011-01-01
We measure the optical spectrum of the Diffuse Galactic Light--the local Milky Way in reflection--using 92,000 blank-sky spectra from the Sloan Digital Sky Survey. We correlate the SDSS optical flux density in regions of blank sky against 100 \\mu{}m intensity independently measured by the COBE and IRAS satellites, which provides a measure of the dust column density times the intensity of illuminating starlight. The spectrum of scattered light is very blue and shows a clear 4000 \\AA{} break and broad Mg b absorption. This is consistent with scattered starlight, and the continuum of the diffuse galactic light is well-reproduced by a simple radiative transfer model of the Galaxy. We also detect line emission in H\\alpha, H\\beta, [N II], and [S II], consistent with scattered light from the local interstellar medium. The strength of [N II] and [S II], combined with upper limits on [O III] and [He I], indicate a relatively soft ionizing spectrum. We find that our measurements of the diffuse galactic light can constr...
Fining of Red Wine Monitored by Multiple Light Scattering.
Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo
2017-07-12
This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.
Flow speed measurement using two-point collective light scattering
Energy Technology Data Exchange (ETDEWEB)
Heinemeier, N.P
1998-09-01
Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au) 1 tab., 51 ills., 29 refs.
Lysozyme Aggregation and Fibrillation Monitored by Dynamic Light Scattering
Nemzer, Louis; Flanders, Bret; Schmit, Jeremy; Sorensen, Christopher
2012-02-01
The aggregation of amyloidogenic proteins provides a rich phase space with significant biomedical implications, including a link with several age-related diseases. We employed dynamic light scattering to monitor the aggregation of lysozyme, a model protein, from a monomeric state until the formation of micron-sized fibrils. For an aqueous lysozyme solution buffered at pH 2, the auto-correlation function of the scattered light intensity was found to be well-fit by a single exponential function with decay time τ = 1/(2Dq^2) = 0.25 ms, which corresponds to a mean hydrodynamic radius (RH) of 2.2 nm, very likely generated by monomers. Ethanol (4% v/v final concentration) induced a partial unfolding, to RH = 4.6 nm. The subsequent addition of 70 mM KCl was found to shrink the size back to RH = 2.5 nm, as expected when a denatured protein refolds due to partial screening of the intramolecular repulsion. However, further aggregation was not observed. At pH 4, using a low-salt acetate buffer, more ethanol (10% v/v) was required to initiate unfolding, but once it occurred, larger aggregates formed. These results are consistent with the model that partial unfolding, which exposes beta-motif secondary structure, is a prerequisite for aggregation and fibrillation, but the aggregation fate depends on the protein charge state (pH) and screening (salt concentration).
Scattered H-alpha light from Galactic dust clouds
Mattila, K; Lehtinen, K
2006-01-01
Bright emission nebulae, or HII regions, around hot stars are readily seen in H-alpha light. However, the all-pervasive faint H-alpha emission has only recently been detected and mapped over the whole sky. Mostly the H-alpha emission observed along a line of sight is produced by ionised gas in situ. There are, however, cases where all or most of the H-alpha radiation is due to scattering by electrons or dust particles which are illuminated by an H-alpha emitting source off the line of sight. Here we demonstrate that diffuse, translucent and dark dust clouds at high galactic latitudes are in many cases observed to have an excess of diffuse H-alpha surface brightness, i.e. they are brighter than the surrounding sky. We show that the majority of this excess surface brightness can be understood as light scattered off the interstellar dust grains. The source of incident photons is the general Galactic H-alpha background radiation impinging on the dust clouds from all over the sky.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
THEORETICAL-MODEL FOR THE SCATTERING OF LIGHT BY DENTIN AND COMPARISON WITH MEASUREMENTS
ZIJP, [No Value; TENBOSCH, JJ
1993-01-01
A theoretical model of the scattering of light by dentin is presented. The model that results is a superposition of several scattering contributions, i.e., scattering by mineral crystals, collagen fibrils, and dentinal tubules. These tubules are oriented so that they cause an asymmetrical scattering
Modeling diffuse reflectance measurements of light scattered by layered tissues
Rohde, Shelley B.
In this dissertation, we first present a model for the diffuse reflectance due to a continuous beam incident normally on a half space composed of a uniform scattering and absorbing medium. This model is the result of an asymptotic analysis of the radiative transport equation for strong scattering, weak absorption and a defined beam width. Through comparison with the diffuse reflectance computed using the numerical solution of the radiative transport equation, we show that this diffuse reflectance model gives results that are accurate for small source-detector separation distances. We then present an explicit model for the diffuse reflectance due to a collimated beam of light incident normally on layered tissues. This model is derived using the corrected diffusion approximation applied to a layered medium, and it takes the form of a convolution with an explicit kernel and the incident beam profile. This model corrects the standard diffusion approximation over all source-detector separation distances provided the beam is sufficiently wide compared to the scattering mean-free path. We validate this model through comparison with Monte Carlo simulations. Then we use this model to estimate the optical properties of an epithelial layer from Monte Carlo simulation data. Using measurements at small source-detector separations and this model, we are able to estimate the absorption coefficient, scattering coefficient and anisotropy factor of epithelial tissues efficiently with reasonable accuracy. Finally, we present an extension of the corrected diffusion approximation for an obliquely incident beam. This model is formed through a Fourier Series representation in the azimuthal angle which allows us to exhibit the break in axisymmetry when combined with the previous analysis. We validate this model with Monte Carlo simulations. This model can also be written in the form of a convolution of an explicit kernel with the incident beam profile. Additionally, it can be used to
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Near-field imaging of out-of-plane light scattering in photonic crystal slabs
DEFF Research Database (Denmark)
Volkov, Valentyn; Bozhevolnyi, Sergey; Taillaert, Dirk
2003-01-01
A collection scanning near-field optical microscope (SNOM) is used to image the propagating of light at telecommunication wavelengths (1520-1570 nm) along photonic crystal (PC) slabs, which combine slab waveguides with in-plane PCs consisting of one- and two-dimensional gratings. The efficient out...
Polyelectrolyte Conformation, Interactions and Hydrodynamics as Studied by Light Scattering.
Ghosh, Snehasish
Polyelectrolyte conformation, interactions and hydrodynamics show a marked dependence on the ionic strength (C_{rm s}) of the medium, the concentration (C_{rm p}) of the polymer itself and their charge density (xi). The apparent electrostatic persistence length obtained from static light scattering varied approximately as the inverse square root of C _{rm s} for highly pure, high molecular weight hyaluronate (HA) as well as for variably ionized acrylamide/sodium acrylate copolymers (NaPAA), and linearly with xi. The experimental values of persistence length and second virial coefficient (A_2) are compared to predictions from theories based on the Debye-Huckel approximation for the Poisson-Boltzmann equation and on excluded-volume. Although the mean square radius of gyration () depended strongly on C _{rm s}. decreasing with increasing C_{rm s} for both HA and NaPAA indicating clear evidence of polyion expansion, dynamic light scattering values of the translational diffusion coefficient (D) remains constant when extrapolated to infinite polymer concentration for both the polymers. The behavior of D is compared to predictions from coupled mode theory in the linear limit. The effects of NaOH on the conformations, interactions, diffusion and hydrolysis rates of HA are characterized in detail using static, dynamic and time-dependent light scattering supplemented by size exclusion chromatography (SEC). For the HA , A_2 and the hydrolysis rates all resemble superposing titration curves, while the D remains independent of both the concentration of NaOH, and the contraction of . The indication is that the interactions, conformations and the hydrolysis rates are all controlled by the titration of the HA hydroxyl groups by the NaOH to yield -O ^-, which (i) destroys single strand hydrogen bonds, leading to de-stiffening and contraction of the HA coil and a large decrease in intermolecular interaction, and (ii) slowly depolymerizes HA. The experimental results of HA
A schlieren method for ultra-low angle light scattering measurements
Brogioli, D; Giglio, M; Giglio, Marzio
2003-01-01
We describe a self calibrating optical technique that allows to perform absolute measurements of scattering cross sections for the light scattered at extremely small angles. Very good performances are obtained by using a very simple optical layout similar to that used for the schlieren method, a technique traditionally used for mapping local refraction index changes. The scattered intensity distribution is recovered by a statistical analysis of the random interference of the light scattered in a half-plane of the scattering wave vectors and the main transmitted beam. High quality data can be obtained by proper statistical accumulation of scattered intensity frames, and the static stray light contributions can be eliminated rigorously. The potentialities of the method are tested in a scattering experiment from non equilibrium fluctuations during a free diffusion experiment. Contributions of light scattered from length scales as long as Lambda=1 mm can be accurately determined.
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
Smith, A. J. A.; Grainger, R. G.
2014-02-01
Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index) that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
Directory of Open Access Journals (Sweden)
A. J. A. Smith
2014-08-01
Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for lognormal distributions of black carbon fractal aggregates and return extinction cross sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross sections and the asymmetry parameter can be obtained to within 3%.
The Effects of Scattered Light from Optical Components on Visual Function
2016-02-01
measures light scatter in the human eye (intraocular scatter) over a region from ~5° - 10° from the optical axis, or at an average scatter angle of...contrast sensitivity were measured in twelve subjects without and with eight different optical materials (OM) positioned in front of their right eye ... measure light scatter with and without an optical component in front of the eye and then calculating the difference, may provide data to derive a measure
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Light scattering by planetary-regolith analog samples: computational results
Väisänen, Timo; Markkanen, Johannes; Hadamcik, Edith; Levasseur-Regourd, Anny-Chantal; Lasue, Jeremie; Blum, Jürgen; Penttilä, Antti; Muinonen, Karri
2017-04-01
We compute light scattering by a planetary-regolith analog surface. The corresponding experimental work is from Hadamcik et al. [1] with the PROGRA2-surf [2] device measuring the polarization of dust particles. The analog samples are low density (volume fraction 0.15 ± 0.03) agglomerates produced by random ballistic deposition of almost equisized silica spheres (refractive index n=1.5 and diameter 1.45 ± 0.06 µm). Computations are carried out with the recently developed codes entitled Radiative Transfer with Reciprocal Transactions (R2T2) and Radiative Transfer Coherent Backscattering with incoherent interactions (RT-CB-ic). Both codes incorporate the so-called incoherent treatment which enhances the applicability of the radiative transfer as shown by Muinonen et al. [3]. As a preliminary result, we have computed scattering from a large spherical medium with the RT-CB-ic using equal-sized particles with diameters of 1.45 microns. The preliminary results have shown that the qualitative characteristics are similar for the computed and measured intensity and polarization curves but that there are still deviations between the characteristics. We plan to remove the deviations by incorporating a size distribution of particles (1.45 ± 0.02 microns) and detailed information about the volume density profile within the analog surface. Acknowledgments: We acknowledge the ERC Advanced Grant no. 320773 entitled Scattering and Absorption of Electromagnetic Waves in Particulate Media (SAEMPL). Computational resources were provided by CSC - IT Centre for Science Ltd, Finland. References: [1] Hadamcik E. et al. (2007), JQSRT, 106, 74-89 [2] Levasseur-Regourd A.C. et al. (2015), Polarimetry of stars and planetary systems, CUP, 61-80 [3] Muinonen K. et al. (2016), extended abstract for EMTS.
Detection of circular polarization in light scattered from photosynthetic microbes
Sparks, William B; Germer, Thomas A; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F Duccio; Martin, William; 10.1073/pnas.0810215106
2009-01-01
The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Due to the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches.
Brillouin light scattering studies of 2D magnonic crystals
Tacchi, S.; Gubbiotti, G.; Madami, M.; Carlotti, G.
2017-02-01
Magnonic crystals, materials with periodic modulation of their magnetic properties, represent the magnetic counterpart of photonic, phononic and plasmonic crystals, and have been largely investigated in recent years because of the possibility of using spin waves as a new means for carrying and processing information over a very large frequency bandwidth. Here, we review recent Brillouin light scattering studies of 2D magnonic crystals consisting of single- and bi-component arrays of interacting magnetic dots or antidot lattices. In particular, we discuss the principal properties of the magnonic band diagram of such systems, with emphasis given to its dependence on both magnetic and the geometrical parameters. Thanks to the possibility of tailoring their band structure by means of several degrees of freedom, planar magnonic crystals offer a good opportunity to design an innovative class of nanoscale microwave devices.
Remnant lipoprotein size distribution profiling via dynamic light scattering analysis.
Chandra, Richa; Mellis, Birgit; Garza, Kyana; Hameed, Samee A; Jurica, James M; Hernandez, Ana V; Nguyen, Mia N; Mittal, Chandra K
2016-11-01
Remnant lipoproteins (RLP) are a metabolically derived subpopulation of triglyceride-rich lipoproteins (TRL) in human blood that are involved in the metabolism of dietary fats or triglycerides. RLP, the smaller and denser variants of TRL particles, are strongly correlated with cardiovascular disease (CVD) and were listed as an emerging atherogenic risk factor by the AHA in 2001. Varying analytical techniques used in clinical studies in the size determination of RLP contribute to conflicting hypotheses in regard to whether larger or smaller RLP particles contribute to CVD progression, though multiple pathways may exist. We demonstrated a unique combinatorial bioanalytical approach involving the preparative immunoseparation of RLP, and dynamic light scattering for size distribution analysis. This is a new facile and robust methodology for the size distribution analysis of RLP that in conjunction with clinical studies may reveal the mechanisms by which RLP cause CVD progression. Copyright © 2016 Elsevier B.V. All rights reserved.
LIGHT SCATTERING OF POLYSACCHARIDE FROM LACQUER IN AQUEOUS SOLUTION
Institute of Scientific and Technical Information of China (English)
ZHANG Lina; DU Yumin; KUMANOTANI JU
1989-01-01
The polysaccharide having weight-average molecular weight Mw= 1. 09 × 105 , isolated from the sap of lac trees ( Vietnam ), was separated into 12 fractions by aqueous-phase preparative gel permeation chromatography. The molecular weights and molecular weight distributions of the fractions were measured in aqueous 0.08M KCl/0.01 M NaAc and 0.4M KCl/0.05M NaAc at pH = 7.6 by light scattering, viscometry and gel permeation chromatography. The Mark-Houwink equation in aqueous 0.08M KCl/0.01M NaAc at30 ℃ was found to be [ η] = 2.28 ×10-2 M0.52w ( cm3/g ), which indicated the polysaccharide chain in the aqueous solution to be a spherical random coil.
Elastic scattering, fusion, and breakup of light exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)
2016-05-15
The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)
2D Static Light Scattering for Dairy Based Applications
DEFF Research Database (Denmark)
Skytte, Jacob Lercke
Throughout this thesis we investigate a recently introduced optical technique denoted 2D static light scattering (2DSLS). The technique is remote sensing, non-invasive, highly flexible, and appears to be well suited for in-line process control. Moreover, the output signal contains contributions......, this specific process control can be highly beneficial. To provide suitable reference measures on the actual microstructure, we investigate how to quantify micrographs of yogurts objectively. We provide a comparative study, that includes a broad range of different image texture descriptors....... from several different optical phenomena, which can be utilised to provide information on chemical composition and underlying microstructure of an investigated sample. The main goal of this thesis is to provide an exploratory study of the 2DSLS technique in relation to dairy based applications...
Multifractal analysis of light scattering-intensity fluctuations
Shayeganfar, F.; Jabbari-Farouji, S.; Movahed, M. Sadegh; Jafari, G. R.; Tabar, M. Reza Rahimi
2009-12-01
We provide a simple interpretation of non-Gaussian nature of the light scattering-intensity fluctuations from an aging colloidal suspension of Laponite using the multiplicative cascade model, Markovian method, and volatility correlations. The cascade model and Markovian method enable us to reproduce most of recent empirical findings: long-range volatility correlations and non-Gaussian statistics of intensity fluctuations. We provide evidence that the intensity increments Δx(τ)=I(t+τ)-I(t) , upon different delay time scales τ , can be described as a Markovian process evolving in τ . Thus, the τ dependence of the probability density function p(Δx,τ) on the delay time scale τ can be described by a Fokker-Planck equation. We also demonstrate how drift and diffusion coefficients in the Fokker-Planck equation can be estimated directly from the data.
Evaluation of urine culture screening by light-scatter photometry
Energy Technology Data Exchange (ETDEWEB)
Hale, D.C.; Thrupp, L.D.; Matsen, J.M.
1981-08-01
Urine screening for bacteriuria by light-scatter photometry (Autobac) was evaluated for accuracy and compared with a colony count by the calibrated loop method. Incubation time, inoculum size, precision, and interference of particulate matter were evaluated in an effort to standardize the screening procedure. Results showed that urines could be accurately screened for Enterobacteriaceae by inoculating a single Autobac cuvette chamber with 0.1 or 0.2 ml of urine and determining the voltage change after four hours. A change of greater than or equal to 0.2 units indicates significant bacteriuria. Decreased accuracy was noted for urines having greater than 10(5) cfu/ml of Pseudomonas species or gram-positive cocci, possibly because these organisms grow more slowly.
Manipulating scattering of ultracold atoms with light-induced dissipation
Lemeshko, Mikhail
2013-01-01
Recently it has been shown that pairs of atoms can form metastable bonds due to non-conservative forces induced by dissipation [Lemeshko&Weimer, Nature Comm. 4, 2230 (2013)]. Here we study the dynamics of interaction-induced coherent population trapping - the process responsible for the formation of dissipatively bound molecules. We derive the effective dissipative potentials induced between ultracold atoms by laser light, and study the time evolution of the scattering states. We demonstrate that binding occurs on short timescales of ~10 microseconds, even if the initial kinetic energy of the atoms significantly exceeds the depth of the dissipative potential. Dissipatively-bound molecules with preordained bond lengths and vibrational wavefunctions can be created and detected in current experiments with ultracold atoms.
Heterodyne Near-Field Scattering
Brogioli, D; Giglio, M; Giglio, Marzio
2002-01-01
We describe an optical technique based on the statistical analysis of the random intensity distribution due to the interference of the near-field scattered light with the strong transmitted beam. It is shown that, from the study of the two-dimensional power spectrum of the intensity, one derives the scattered intensity as a function of the scattering wave vector. Near-field conditions are specified and discussed. The substantial advantages over traditional scattering technique are pointed out, and is indicated that the technique could be of interest for wave lengths other than visible light.
Scattering of light by Gaussian-correlated quasi-homogeneous anisotropic media.
Du, Xinyue; Zhao, Daomu
2010-02-01
We investigate the case when light is scattered by Gaussian-correlated, quasi-homogeneous, anisotropic media. The analytical expression for the cross-spectral density function of the scattered field that is produced by scattering of a polychromatic plane wave incident upon a Gaussian-correlated, quasi-homogeneous, anisotropic medium is derived by use of a tensor method. Numerical examples are given to illustrate the normalized spectral density and the spectral degree of coherence of the field scattered by the anisotropic scatterer in contrast with that scattered by the isotropic scatterer.
Light collection from scattering media in a silicon photonics integrated circuit
2011-01-01
We present a silicon photonics integrated circuit to efficiently couple scattered light into a single mode waveguide. By modulating the phase of N light-capturing elements, the collection efficiency can be increased by a factor N.
Focusing light through scattering media by full-polarization digital optical phase conjugation.
Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V
2016-03-15
Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single-polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first, to the best of our knowledge, full-polarization DOPC system that records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm-thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase-conjugation fidelity.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering
Energy Technology Data Exchange (ETDEWEB)
Bunkin, N F; Shkirin, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Burkhanov, I S; Chaikov, L L [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Lomkova, A K [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)
2014-11-30
Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)
Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto
2009-08-14
Measurement of intrinsic optical signals (IOSs) is an attractive technique for monitoring tissue viability in brains since it enables noninvasive, real-time monitoring of morphological characteristics as well as physiological and biochemical characteristics of tissue. We previously showed that light scattering signals reflecting cellular morphological characteristics were closely related to the IOSs associated with the redox states of cytochrome c oxidase in the mitochondrial respiratory chain. In the present study, we examined the relationship between light scattering and energy metabolism. Light scattering signals were transcranially measured in rat brains after oxygen and glucose deprivation, and the results were compared with concentrations of cerebral adenosine triphosphate (ATP) measured by luciferin-luciferase bioluminescence assay. Electrophysiological signal was also recorded simultaneously. After starting saline infusion, EEG activity ceased at 108+/-17s, even after which both the light scattering signal and ATP concentration remained at initial levels. However, light scattering started to change in three phases at 236+/-15s and then cerebral ATP concentration started to decrease at about 260s. ATP concentration significantly decreased during the triphasic scattering change, indicating that the start of scattering change preceded the loss of cerebral ATP. The mean time difference between the start of triphasic scattering change and the onset of ATP loss was about 24s in the present model. DC potential measurement showed that the triphasic scattering change was associated with anoxic depolarization. These findings suggest that light scattering signal can be used as an indicator of loss of tissue viability in brains.
Institute of Scientific and Technical Information of China (English)
ZHAO XiaoHui; HUANG ChengZhi
2007-01-01
In acid buffer solution, proteins with positive charge can react with anion surfactant and result in a great enhancement of synchronous light scattering (SLS) signals. In this contribution, the correlative experiment was made to compare the interaction of human serum albumin (HAS) and immunoglobulin G (IgG) with sodium dodecyl sulfonate (SDS). Based on the measurements of the polarization light scattering signals, a new method of scattering polarization was constituted to distinguish these two interaction systems with molecular weight difference (HAS 66 kDa; IgG 150 kDa). The results were consistent with the data measured by dynamic light scattering (DLS) technique.
Li, Xu; Chen, Zhigang; Gong, Jianmin; Taflove, Allen; Backman, Vadim
2004-06-01
Understanding light scattering by nonspherical particles is crucial in modeling the transport of light in realistic structures such as biological tissues. We report the application of novel analytical approaches based on modified Wentzel-Kramers-Brillouin and equiphase-sphere methods that facilitate accurate characterization of light scattering by a wide range of irregularly shaped dielectric particles. We also demonstrate that these approaches have the potential to address the inverse-scattering problem by means of a spectral analysis of the total scattering cross section of arbitrarily shaped particles.
Spatio-Temporal Imaging of Light Transport in Highly Scattering Media under White Light Illumination
Badon, Amaury; Lerosey, Geoffroy; Boccara, Albert C; Fink, Mathias; Aubry, Alexandre
2016-01-01
Imaging the propagation of light in time and space is crucial in optics, notably for the study of complex media. We here demonstrate the passive measurement of time-dependent Green's functions between every point at the surface of a strongly scattering medium by means of low coherence interferometry. The experimental access to this Green's matrix is essential since it contains all the information about the complex trajectories of light within the medium. In particular, the spatio-temporal spreading of the diffusive halo can be locally investigated in the vicinity of each point then acting as a virtual source. On the one hand, this approach allows a quantitative imaging of the diffusion constant in the scattering medium with a spatial resolution of the order of a few transport mean free paths. On the other hand, our approach is able to reveal and quantify the anisotropy of light diffusion, which can be of great interest for optical characterization purposes. This study opens important perspectives both in opti...
Optical evaluation of Fricke xylenol orange gel by light scattered at 90 degrees
Energy Technology Data Exchange (ETDEWEB)
Svoboda, J; Alwan, R; Guermeur, F; Makovicka, L; Bailly, Y [IRMA/ENISYS/FEMTO-ST UMR 6174 CNRS, Universite de Franche-Comte, Pole Universitaire, BP 71427, 25211 Montbeliard Cedex (France); Spevacek, V; Cechak, T [Department of Dosimetry and Application of Ionizing Radiation, FNSPE, Czech Technical University in Prague, Brehova 7, Praha 1, 115 19 (Czech Republic); Martin, E [Department of Radiotherapy, CH Belfort-Montbeliard, 25209 Montbeliard (France)], E-mail: svobojir@kmlinux.fjfi.cvut.cz
2009-05-01
This communication presents optical method for evaluation of Fricke xylenol gel (FXG) using light scattered at 90 degrees to initial direction. Although Fricke gel is predominantly absorbing, gelatine matrix scatters enough light which could be collected and related to dose delivered to gel. Initials experiments were oriented to determination applicability of this approach.
Bruining, J.; Fijnaut, H.M.
We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due
Bruining, J.; Fijnaut, H.M.
1975-01-01
We have obtained a rotational diffusion coefficient of the 70S ribosome isolated from Escherichia-coli (MRE-600), from the depolarized light scattering spectrum measured by photon correlation spectroscopy. The intensity correlation function of depolarized scattered light contains contributions due t
Measurements of strong correlations in the transport of light through strongly scattering materials
Akbulut, D.
2013-01-01
In this thesis, we study light transport through multiple scattering random photonic materials. Light incident on such materials undergoes many scattering events before exiting the material. The relation between the incident and the transmitted fields is determined by the optical transmission matrix
Measurements of strong correlations in the transport of light through strongly scattering materials
Akbulut, D.
2013-01-01
In this thesis, we study light transport through multiple scattering random photonic materials. Light incident on such materials undergoes many scattering events before exiting the material. The relation between the incident and the transmitted fields is determined by the optical transmission matrix
Light-scattering polarization measurements as a new parameter in flow cytometry
Grooth, de B.G.; Terstappen, L.W.M.M.; Puppels, G.J.; Greve, J.
1987-01-01
Polarization measurement of orthogonal light scattering is introduced as a new optical parameter in flow cytometry. In the experimental setup, the electrical field of the incident laser beam is polarized in the direction of the sample flow. The intensity of the orthogonal light scattering polarized
DEFF Research Database (Denmark)
Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo
The effect of angular orientation of a scattered light sensor with respect to main curvature and surface lay on roughness measurements is evaluated. A commercial scattered light sensor OS 500-32 from Optosurf GmbH was used. The investigation was performed on polished cylindrical surfaces with cro...
Botta, Lea Maria; White, Shane N.; Deyhle, Hans; Dziadowiec, Iwona; Schulz, Georg; Thalmann, Peter; Müller, Bert
2016-10-01
Dental caries, one of the most prevalent infectious bacterial diseases in the world, is caused by specific types of acid-producing bacteria. Caries is a disease continuum resulting from the earliest loss of ions from apatite crystals through gross cavitation. Enamel dissolution starts when the pH-value drops below 5.5. Neutralizing the pH-value in the oral cavity opposes the process of demineralization, and so caries lesions occur in a dynamic cyclic de-mineralizing/remineralizing environment. Unfortunately, biomimetic regeneration of cavitated enamel is not yet possible, although remineralization of small carious lesions occurs under optimal conditions. Therefore, the development of methods that can regenerate carious lesions, and subsequently recover and retain teeth, is highly desirable. For the present proceedings we analyzed one naturally occurring sub-surface and one artificially produced lesion. For the characterization of artificial and natural lesions micro computed tomography is the method of choice when looking to determine three-dimensional mineral distribution and to quantify the degree of mineralization. In this pilot study we elucidate that the de-mineralized enamel in natural and artificially induced lesions shows comparable X-ray attenuation behavior, thereby implying that the study protocol employed herein seems to be appropriate. Once we know that the lesions are comparable, a series of well-reproducible in vitro experiments on enamel regeneration could be performed. In order to quantify further lesion morphology, the anisotropy of the enamel's nanostructure can be characterized by using spatially resolved, small-angle X-ray scattering. We wanted to demonstrate that the artificially induced defect fittingly resembles the natural carious lesion.
Characterization of dental composite curing kinetics using dynamic light scattering
Wells-Gray, Elaine M.; Kirkpatrick, Sean J.; Sakaguchi, Ron L.
2009-02-01
Polymer resin composites are a class of widely used restorative dental materials that undergo a complex polymerization curing process that has been the subject of substantial research. This study uses speckle correlation methods based on dynamic light scattering as a tool to monitor the rate and extent of dental composite polymerization during and after photo-curing. Thin disc-shaped samples (composite consisting of 50:50 BisGMA/TEGDMA resin, quartz silica filler particles, and camphorquinone as photo-initiator. A 633 nm HeNe laser beam was used to probe the top surface of the sample via a backscattered speckle pattern, while the bottom surface was illuminated with a halogen curing lamp (peak wavelength=470nm) to initiate the polymerization reaction. The speckle patterns were recorded with a CCD camera, and stored as a 'speckle cube' for post processing. Correlation values of the intensity fluctuation were calculated on a pixel-by-pixel basis for pairs of subsequent speckle images and then ensemble averaged. Results show a sharp decrease in correlation at the onset of curing, indicating a large amount of double bond conversion and movement within the composite. Correlation values then quickly increase, eventually reaching a plateau near unity, indicating cessation of molecular rearrangement. The kinetic behavior demonstrated by our correlation curves are in good agreement with curing data found in the literature, and demonstrate the usefulness of this technique for monitoring dental composite curing.
Physiological and pathological clinical conditions and light scattering in brain
Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke
2016-08-01
MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3‑ at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3‑ at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth.
Light scattering studies of irradiated {kappa}- and {iota}-carrageenan
Energy Technology Data Exchange (ETDEWEB)
Abad, L.V. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan) and Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines)]. E-mail: lvabad@pnri.dost.gov.ph; Nasimova, I.R. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Physics Department, Moscow State University, Moscow 119992 (Russian Federation); Aranilla, C.T. [Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines); Shibayama, M. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan)]. E-mail: sibayama@issp.u-tokyo.ac.jp
2005-05-01
The relationships between the molecular weight (Mw) and the characteristic decay time distribution function G({gamma}) of irradiated kappa ({kappa}-) and iota ({iota}-) carrageenan were studied by static and dynamic light scattering (DLS). Mw and the characteristic decay time ({gamma}{sup -1}) are both steep decreasing exponential function with radiation dose. The dynamic behavior of irradiated {iota}-carrageenan was compared to irradiated {kappa}-carrageenan by DLS. The intensity correlation function of both carrageenans shifted towards shorter relaxation times with increasing radiation dose. Irradiated {iota}-carrageenan like {kappa}-carrageenan exhibits power law behavior at 0-50 kGy (at 0.05-0.1M KCl) indicating similar gelation behaviors. The temperature at which transition from coil to helix takes place (conformational transition temperature) decreases with increasing irradiation dose. A new faster relaxation mode appears at around 0.1-1 ms for both carrageenans between 100 and 150 kGy. Maximum peak height for this mode is at 100 kGy which corresponds to the optimum biological activity of {kappa}- and {iota}-carrageenan.
Scattering of electromagnetic light waves from a deterministic anisotropic medium
Li, Jia; Chang, Liping; Wu, Pinghui
2015-11-01
Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.
Human muscle proteins: analysis by two-dimensional electrophoresis
Energy Technology Data Exchange (ETDEWEB)
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-01
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Directory of Open Access Journals (Sweden)
Luisa A Marcelino
Full Text Available Calcium carbonate skeletons of scleractinian corals amplify light availability to their algal symbionts by diffuse scattering, optimizing photosynthetic energy acquisition. However, the mechanism of scattering and its role in coral evolution and dissolution of algal symbioses during "bleaching" events are largely unknown. Here we show that differences in skeletal fractal architecture at nano/micro-lengthscales within 96 coral taxa result in an 8-fold variation in light-scattering and considerably alter the algal light environment. We identified a continuum of properties that fall between two extremes: (1 corals with low skeletal fractality that are efficient at transporting and redistributing light throughout the colony with low scatter but are at higher risk of bleaching and (2 corals with high skeletal fractality that are inefficient at transporting and redistributing light with high scatter and are at lower risk of bleaching. While levels of excess light derived from the coral skeleton is similar in both groups, the low-scatter corals have a higher rate of light-amplification increase when symbiont concentration is reduced during bleaching, thus creating a positive feedback-loop between symbiont concentration and light-amplification that exposes the remaining symbionts to increasingly higher light intensities. By placing our findings in an evolutionary framework, in conjunction with a novel empirical index of coral bleaching susceptibility, we find significant correlations between bleaching susceptibility and light-scattering despite rich homoplasy in both characters; suggesting that the cost of enhancing light-amplification to the algae is revealed in decreased resilience of the partnership to stress.
Recursion relations and scattering amplitudes in the light-front formalism
Cruz-Santiago, Christian A
2013-01-01
The fragmentation functions and scattering amplitudes are investigated in the framework of light-front perturbation theory. It is demonstrated that, the factorization property of the fragmentation functions implies the recursion relations for the off-shell scattering amplitudes which are light-front analogs of the Berends-Giele relations. These recursion relations on the light-front can be solved exactly by induction and it is shown that the expressions for the off-shell light-front amplitudes are represented as a linear combinations of the on-shell amplitudes. By putting external particles on-shell we recover the scattering amplitudes previously derived in the literature.
Towards a data-driven analysis of hadronic light-by-light scattering
Colangelo, Gilberto; Kubis, Bastian; Procura, Massimiliano; Stoffer, Peter
2014-01-01
The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion-photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for $\\gamma^*\\gamma^*\\to\\pi\\pi$.
arXiv Light-by-Light Scattering Constraint on Born-Infeld Theory
Ellis, John; You, Tevong
2017-06-27
The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100 GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)Y hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90 GeV, which, in turn, imposes a lower limit of ≳11 TeV on the magnetic monopole mass in such a U(1)Y Born-Infeld theory.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.
Multiple Potts models coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-07-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.
Light Conversion and Scattering in UV Protective Textiles
Directory of Open Access Journals (Sweden)
Grancarić Ana Marija
2014-12-01
Full Text Available The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA, UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm, the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration
Yu, Chao; Wei, Hui; Wang, Xu; Le, Anh-Thu; Lu, Ruifeng; Lin, C. D.
2015-01-01
Imaging the transient process of molecules has been a basic way to investigate photochemical reactions and dynamics. Based on laser-induced electron diffraction and partial one-dimensional molecular alignment, here we provide two effective methods for reconstructing two-dimensional structure of polyatomic molecules. We demonstrate that electron diffraction images in both scattering angles and broadband energy can be utilized to retrieve complementary structure information, including positions of light atoms. With picometre spatial resolution and the inherent femtosecond temporal resolution of lasers, laser-induced electron diffraction method offers significant opportunities for probing atomic motion in a large molecule in a typical pump-probe measurement. PMID:26503116
Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.
1999-01-01
We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.
Werner, Liliana; Morris, Caleb; Liu, Erica; Stallings, Shannon; Floyd, Anne; Ollerton, Andrew; Leishman, Lisa; Bodnar, Zachary
2014-01-01
To assess the potential effect of surface light scattering on light transmittance of 1-piece hydrophobic acrylic intraocular lenses (IOLs) with or without a blue-light filter. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Intraocular lenses were obtained from human cadavers (49 IOLs total; 36 with blue-light filter) and from finished-goods inventory (controls). The IOLs were removed from cadaver eyes and the power and model matched to unused controls. After surface proteins were removed, the IOLs were hydrated for 24 hours at room temperature. Surface light scattering was measured with a Scheimpflug camera (EAS-1000 Anterior Segment Analysis System). Light transmittance was measured with a Lambda 35 UV/Vis spectrophotometer (single-beam configuration; RSA-PE-20 integrating sphere). Hydrated scatter values ranged from 4.8 to 202.5 computer-compatible tape (CCT) units for explanted IOLs with blue-light filter and 1.5 to 11.8 CCT units for controls; values ranged from 6.0 to 137.5 CCT units for explanted IOLs without a blue-light filter and 3.5 to 9.6 CCT units for controls. In both groups, there was a tendency toward increasing scatter values with increasing postoperative time. No differences in light transmittance were observed between explanted IOLs and controls in both groups (IOLs with blue-light filter: P=.407; IOL with no blue-light filter: P=.487; both paired t test). Although surface light scattering of explanted IOLs was significantly higher than that of controls and appeared to increase with time, no effect was observed on light transmittance of 1-piece hydrophobic acrylic IOLs with or without a blue-light filter. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Jacques, Steven L.; Roussel, Stéphane; Samatham, Ravikant
2016-01-01
Abstract. This report describes how optical images acquired using linearly polarized light can specify the anisotropy of scattering (g) and the ratio of reduced scattering [μs′=μs(1−g)] to absorption (μa), i.e., N′=μs′/μa. A camera acquired copolarized (HH) and crosspolarized (HV) reflectance images of a tissue (skin), which yielded images based on the intensity (I=HH+HV) and difference (Q=HH−HV) of reflectance images. Monte Carlo simulations generated an analysis grid (or lookup table), which mapped Q and I into a grid of g versus N′, i.e., g(Q,I) and N′(Q,I). The anisotropy g is interesting because it is sensitive to the submicrometer structure of biological tissues. Hence, polarized light imaging can monitor shifts in the submicrometer (50 to 1000 nm) structure of tissues. The Q values for forearm skin on two subjects (one Caucasian, one pigmented) were in the range of 0.046±0.007 (24), which is the mean±SD for 24 measurements on 8 skin sites×3 visible wavelengths, 470, 524, and 625 nm, which indicated g values of 0.67±0.07 (24). PMID:27165546
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Adkins, Gregory S; Salinger, M D; Wang, Ruihan; Fell, Richard N
2014-01-01
Recent and ongoing experimental work on the positronium spectrum motivates new efforts to calculate positronium energy levels at the level of three loop corrections. We have obtained results for one set of such corrections involving light-by-light scattering of the photons produced in a two-photon virtual annihilation process. Our result is an energy shift $1.58377(8) m \\alpha^7/\\pi^3$ for the n=1 singlet state, correcting the ground state hyperfine splitting by -6.95 kHz. We also obtained a new and more precise result for the light-by-light scattering correction to the real decay of parapositronium into two photons.
Polarization control of multiply-scattered light through random media by wavefront shaping
Guan, Yefeng; Small, Eran; Zhou, Jianying; Silberberg, Yaron
2015-01-01
We show that the polarization state of coherent light propagating through an optically thick multiple-scattering medium, can be controlled by wavefront shaping, i.e. by controlling only the spatial phase of the incoming field with a spatial light modulator. Any polarization state of light at any spatial position behind the scattering medium can be attained with this technique. Thus, transforming the random medium to an arbitrary optical polarization component becomes possible.
Ceolato, Romain; Riviere, Nicolas
2016-07-01
Spectral polarimetric light-scattering by particulate media has recently attracted growing interests for various applications due to the production of directional broadband light sources. Here the spectral polarimetric light-scattering signatures of particulate media are simulated using a numerical model based on the spectral Vector Radiative Transfer Equation (VRTE). A microphysical analysis is conducted to understand the dependence of the light-scattering signatures upon the microphysical parameters of particles. We reveal that depolarization from multiple scattering results in remarkable spectral and directional features, which are simulated by our model over a wide spectral range from visible to near-infrared. We propose to use these features to improve the inversion of the scattering problem in the fields of remote sensing, astrophysics, material science, or biomedical.
Enhancing light transmission through a random medium with inhomogeneous scattering and loss
Sarma, Raktim; Cao, Hui
2016-01-01
We enhanced the total transmission of light through a disordered waveguide with spatially inhomogeneous scattering and loss by shaping the incident wavefront of a laser beam. Using an on-chip tapered lead, we were able to access all input modes in the waveguide with a spatial light modulator. The adaptive wavefront shaping resulted in selective coupling of input light to high transmission channels, which bypassed the regions of higher scattering and loss in the waveguide. The spatial inhomogeneity of scattering and loss led to redirecting of energy flux to optical paths with less scattering and loss to maximize total energy transported through the system. This work demonstrated the power of wavefront shaping in coherent control of light transport in inhomogeneous scattering media, which are common in real applications.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Field analysis of two-dimensional integrated optical gratings
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.
Quantum skyrmions in two-dimensional chiral magnets
Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon
2016-10-01
We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.
Eremin, Yuri; Wriedt, Thomas
2014-12-01
The Discrete Sources Method (DSM) has been modified to analyze polarized light scattering by an axial symmetric penetrable nanoparticle partially embedded into a substrate. The new numerical scheme of the DSM enables to consider scattering from such substrate defects as flat particles, mounds, pits and voids. A detailed description of the numerical scheme is provided. The developed computer model has been employed to investigate scattering from a shallow particle and pit. Simulation results corresponding to the Differential Scattering Cross-Section and the integral response for P/S polarized light are presented.
Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori
2017-02-01
The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.
Muñoz, O.; Hovenier, J.W.
2011-01-01
In this paper we present an overview of light scattering experiments devoted to measure one or more elements of the scattering matrix as functions of the scattering angle of ensembles of randomly oriented small irregular particles in air. A summary of the most important findings in light scattering
DEFF Research Database (Denmark)
Mirzaev, S. Z.; Behrends, R.; Heimburg, Thomas Rainer
2006-01-01
2,6-dimethylpyridine-water, specific heat, dynamic light scattering, shear viscosity Udgivelsesdato: 14 April......2,6-dimethylpyridine-water, specific heat, dynamic light scattering, shear viscosity Udgivelsesdato: 14 April...
Two-Dimensional Supramolecular Polymers Embodying Large Unilamellar Vesicles in Water.
Chen, Shigui; Polen, Shane M; Wang, Lu; Yamasaki, Makoto; Hadad, Christopher M; Badjić, Jovica D
2016-09-07
We hereby describe a strategy for obtaining novel topological nanostructures consisting of dual-cavity basket 1, forming a curved monolayer of large unilamellar vesicles in water (CAC < 0.25 μM), and bivalent guests 4/5 populating the cavities of such bolaamphiphilic hosts. On the basis of the results of (1)H NMR spectroscopy, electron microscopy, and dynamic light scattering measurements, we postulated that divalent guest molecules 4/5 cover the curved vesicular surface in a lateral fashion to satisfy the complexation [2 + 2] valency and thereby give stable two-dimensional supramolecular polymers [1⊂4]n and [1⊂5]n. The results of experimental studies are also supported with coarse-grained molecular dynamics simulations and molecular mechanics. Our discovery about the assembly of novel vesicular structures could be of interest for stabilization/functionalization of liposomal surfaces as well as detection of polyvalent molecules and removal of targeted substances from aqueous environments.
Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas.
Smolka, Stephan; Wuester, Wolf; Haupt, Florian; Faelt, Stefan; Wegscheider, Werner; Imamoglu, Ataç
2014-10-17
Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities.
Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation
DEFF Research Database (Denmark)
Rector, D M; Poe, G R; Kristensen, Morten Pilgaard
1997-01-01
-coupled device camera to detect scattered light changes, was lowered to the contralateral dorsal hippocampal surface. Light at 660 +/- 10 (SE) nm illuminated the tissue through optic fibers surrounding the optic probe. An attached bipolar electrode recorded evoked right hippocampal commissural potentials......We assessed relationships of evoked electrical and light scattering changes from cat dorsal hippocampus following Schaeffer collateral stimulation. Under anesthesia, eight stimulating electrodes were placed in the left hippocampal CA field and an optic probe, coupled to a photodiode or a charge...... a complex population synaptic potential that lasted 100-200 ms depending on stimulus intensity and electrode position. Light scattering changes peaked 20 ms after stimuli and occurred simultaneously with population spikes. A long-lasting light scattering component peaked 100-500 ms after the stimulus...
Wang, Jiao; Xue, Jinhua; Xiao, Xilin; Xu, Li; Jiang, Min; Peng, Pengcheng; Liao, Lifu
2017-12-05
The coordination reaction of thorium (IV) with a ditopic bidentate ligand to form supramolecular polymer was studied by resonance light scattering (RLS) spectra, second-order scattering (SOS) spectra and frequency-doubling scattering (FDS) spectra, respectively. The ditopic bidentate ligand is isophthalaldehyde-tetrapyrrole (IPTP). It was synthesized through a condensation reaction of isophthalaldehyde with pyrrole. The formation of supramolecular polymer results in remarkable intensity enhancements of the three light scattering signals. The maximum scattering wavelengths of RLS, FDS and SOS were 290, 568 and 340nm, respectively. The reaction was used to establish new light scattering methods for the determination of thorium (IV) by using IPTP as probe. Under optimum conditions, the intensity enhancements of RLS, SOS and FDS were directly proportional to the concentration of thorium (IV) in the ranges of 0.01 to 1.2μgmL(-1), 0.05 to 1.2μgmL(-1) and 0.05 to 1.2μgmL(-1), respectively. The detection limits were 0.003μgmL(-1), 0.012μgmL(-1) and 0.021μgmL(-1), respectively. The methods were suitable for analyzing thorium (IV) in actual samples. The results show acceptable recoveries and precision compared with a reference method. Copyright © 2017 Elsevier B.V. All rights reserved.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Equivalence theorem for the spectral density of light waves on weak scattering.
Wang, Tao; Ji, Xiaoling; Zhao, Daomu
2014-07-01
The Equivalence theorem for the spectral density of light waves on weak scattering is discussed. It is shown that when a spatially coherent plane light wave is scattered from two entirely different media, the far-zone spectral density may have identical distribution provided the low-frequency antidiagonal spatial Fourier components of the correlation function of the media are the same. An example of light waves on scattering from a Gaussian Schell model medium is discussed, and the condition on which two different media may produce identical spectral densities is presented.
ARTICLES: Photoinduced light scattering in cerium-doped barium strontium niobate crystals
Voronov, Valerii V.; Dorosh, I. R.; Kuz'minov, Yu S.; Tkachenko, N. V.
1980-11-01
Photoinduced light scattering was observed in cerium-doped (SrxBa1-x)1-y(Nb2O6)y crystals having the composition x = 0.61, y = 0.4993. It was found that this effect is due to holographic amplification of light scattered by crystal defects. An analysis is made of static and dynamic characteristics of self-amplification of scattered light in the crystals. A theoretical model of the process is constructed assuming that the hologram recording process is of the diffusion type. Theoretical results are compared with the experiment.
Photoinduced light scattering in cerium-doped barium strontium niobate crystals
Voronov, V. V.; Dorosh, I. R.; Kuz'minov, Yu. S.; Tkachenko, N. V.
Photoinduced light scattering was observed in cerium-doped (Srx Ba1-x)1-y(Nb2O6)y crystals having the composition x = 0.61, y = 0.4993. It was found that this effect is due to holographic amplification of light scattered by crystal defects. An analysis is made of static and dynamic characteristics of self-amplification of scattered light in the crystals. A theoretical model of the process is constructed assuming that the hologram recording process is of the diffusion type. Theoretical results are compared with the experiment.
Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering.
Antoun, Ayman; Pavlov, Michael Y.; Tenson, Tanel; Ehrenberg M, M åNs
2004-01-01
Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.
Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering
Directory of Open Access Journals (Sweden)
Antoun Ayman
2004-01-01
Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.
Analysis of Light Scattering by Nanoobjects on a Plane Surface via Discrete Sources Method
Eremina, Elena; Eremin, Yuri; Wriedt, Thomas
2012-12-01
In the last years light scattering by nanostructures is of interest in different areas of science and technology. Analysis of light scattered by nanostructures is an effective tool for a better understanding of their properties. In this work the Discrete Sources Method (DSM) is applied to model light scattering by nanoparticles on a surface. One of attractive features of the DSM is an ability to account for all the features of the modeled system, such as complex refractive index with frequency dispersion of particles and a substrate, scattering interaction of particle and an interface. To demonstrate the variety of possible applications for the DSM, we concentrated on two practical applications. First is light scattering by a nanorod on a surface, which requires the use of a general 3D version of the DSM. The second case discussed in this chapter is light scattering by a nanoshell, which allows the accounting for the axial symmetry of the problem and essential reduction of calculation time. In both cases light scattering characteristics and their dependence on nanostructure characteristics like size, symmetry, incident angle, particle orientation, refractive index and wavelength are analyzed and discussed.
Polarized light scattering as a probe for changes in chromosome structure
Energy Technology Data Exchange (ETDEWEB)
Shapiro, Daniel Benjamin [Univ. of California, Berkeley, CA (United States)
1993-10-01
Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparing light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.
Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics
Favre-Bulle, Itia A.; Preece, Daryl; Nieminen, Timo A.; Heap, Lucy A.; Scott, Ethan K.; Rubinsztein-Dunlop, Halina
2015-06-01
Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam’s degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz-Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics.
Luk`yanchuk, Boris S; Paniagua-Dominguez, Ramon; Kuznetsov, Arseniy I
2014-01-01
High-refractive index dielectric nanoparticles may exhibit strong directional forward light scattering at visible and near-infrared wavelengths due to interference of simultaneously excited electric and magnetic dipole resonances. For a spherical high-index dielectric, the so-called first Kerker's condition can be realized, at which the backward scattering practically vanishes for some combination of refractive index and particle size. However, Kerker's condition for spherical particles is only possible at the tail of the scattering resonances, when the particle scatters light weakly. Here we demonstrate that significantly higher forward scattering can be realized if spheroidal particles are considered instead. For each value of refractive index exists an optimum shape of the particle, which produces minimum backscattering efficiency together with maximum forward scattering. This effect is achieved due to the overlapping of magnetic and electric dipole resonances of the spheroidal particle at the resonance fr...
Light scattering by a spherical particle with multiple densely packed inclusions
Institute of Scientific and Technical Information of China (English)
Sun Xian-Ming; Wang Hai-Hua; Liu Wan-Qiang; Shen Ji
2009-01-01
This paper calculates light scattering by a spherical water particle containing densely packed inclusions at a visible wavelength 0.55 μm by a combination of ray-tracing and Monte Carlo techniques. While the individual reflection and refraction events at the outer boundary of a sphere particle are considered by a ray-tracing program, the Monte Carlo routine simulates internal scattering processes. The main advantage of this method is that the shape of the particle can be arbitrary, and multiple scattering can be considered in the internal scattering processes. A dense-medium light-scattering theory based on the introduction of the static structure factor is used to calculate the phase function and asymmetry parameters for densely packed inclusions. Numerical results of the single scattering characteristics for a sphere containing multiple densely packed inclusions are given.
Density of states governs light scattering in photonic crystals
García, P D; Froufe-Pérez, Luis S; López, C
2008-01-01
We describe a smooth transition from (fully ordered) photonic crystal to (fully disordered) photonic glass that enables us to make an accurate measurement of the scattering mean free path in nanostructured media and, in turn, establishes the dominant role of the density of states. We have found one order of magnitude chromatic variation in the scattering mean free path in photonic crystals for just $\\sim 3%$ shift around the band-gap ($\\sim 27$ nm in wavelength).
Low-Frequency Scattering from Two-Dimensional Perfect Conductors
1991-04-01
jkr ! G(f, f’)K.(f’)ds’, f E S (2.6) where the bar on the integral sign indicates that the singularity at f = f’ is excluded. From the small...2.17) is O~n’ 7 The bar on the integral sign indicates that this is a Cauchy principal value integration. To determine the low-frequency expansion
Electron Scattering in Two-Dimensional Disordered Heterostructures
2002-01-01
8217Departamento de Fisica de Materiales , Universidad Complutense, E-20840 Madrid, Spain 2Departamento de Ffsica, Universidad Cat6lica del Norte, Casilla...ICM P99-135-F and Cdtedra Presidencial de Ciencias for financial support. REFERENCES 1. U. Penner, H. Raicker, and I. N. Yassievich, Semicond. Sci
Validation of in-line surface characterization by light scattering in Robot Assisted Polishing
DEFF Research Database (Denmark)
Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo
2014-01-01
The suitability of a commercial scattered light sensor for in-line characterization of fine surfaces in the roughness range Sa 1 – 30 nm generated by the Robot Assisted Polishing (RAP) was investigated and validated. A number of surfaces were generated and directly measured with the scattered lig...
Dynamics of spontaneous radiation of atoms scattered by a resonance standing light wave
Fedorov, MV; Efremov, MA; Yakovlev, VP; Schleich, WP
2003-01-01
The scattering of atoms by a resonance standing light wave is considered under conditions when the lower of two resonance levels is metastable, while the upper level rapidly decays due to mainly spontaneous radiative transitions to the nonresonance levels of an atom. The diffraction scattering regim
Formation of liquid inclusion induced light scatter in KDP (DKDP) crystals
Institute of Scientific and Technical Information of China (English)
孙洵; 孙大亮; 许心光; 王正平; 付有君; 王圣来; 曾红; 李毅平; 于锡玲; 高樟寿
2001-01-01
We describe in this paper the formation of liquid inclusion induced light scatter in potassium dihydrogen phosphate (KDP) crystal and deuterated potassium dihydrogen phosphate (DKDP) crystals. The measurement has been done with an atomic force microscope (AFM). The mechanism of formation of liquid inclusion scatter has been proposed and the effect of super-saturation discussed.
Energy Technology Data Exchange (ETDEWEB)
Dishman, K.L.; Doolin, P.K.; Hoffman, J.F. (Ashland Petroleum Co., Ashland, KY (United States))
1993-07-01
A method of interconversion of dry sieve and laser light scattering particle size values has been developed for cracking catalysts. Values obtained by light scattering techniques were consistently larger than those obtained by dry sieve analysis. The differences were primarily due to lack of sphericity of the particles. The particle size distribution determined by light scattering techniques was based on an average particle diameter. Conversely, the sieve measured the smallest diameter of the particle which can pass through the opening. Microscopic examination of commercial cracking catalysts confirmed their nonuniformity. The sphericity of the catalyst particles decreased as particle size increased. Therefore, the divergence between the laser light scattering and dry sieving value became greater as the catalyst particle size increased.
Kokhanovsky, Alexander A
2014-01-01
This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.
Light Scattering and Thermal Emission by Primitive Dust Particles in Planetary Systems
Kimura, Hiroshi; Li, Aigen; Lebreton, Jérémy
2016-01-01
This review focuses on numerical approaches to deducing the light-scattering and thermal-emission properties of primitive dust particles in planetary systems from astronomical observations. The particles are agglomerates of small grains with sizes comparable to visible wavelength and compositions being mainly magnesium-rich silicates, iron-bearing metals, and organic refractory materials in pristine phases. These unique characteristics of primitive dust particles reflect their formation and evolution around main-sequence stars of essentially solar composition. The development of light-scattering theories has been offering powerful tools to make a thorough investigation of light scattering and thermal emission by primitive dust agglomerates in such a circumstellar environment. In particular, the discrete dipole approximation, the T-matrix method, and effective medium approximations are the most popular techniques for practical use in astronomy. Numerical simulations of light scattering and thermal emission by ...
Neutron and photon (light) scattering on solitons in the quasi-one-dimensional magnetics
Abdulloev, K O
1999-01-01
The general expression we have found earlier for the dynamics form-factor is used to analyse experiments on the neutron and photon (light) scattering by the gas of solitons in quasi-one-dimensional magnetics (Authors)
Energy Technology Data Exchange (ETDEWEB)
Sorensen, C.M.
1976-01-01
An effort to expand light-scattering autocorrelation techniques to Brownian diffusional and critical fluid systems in which multiple scattering effects are important, and to understand the observed similarity of the Rayleigh linewidth of light scattered from these two seemingly different systems is discussed. A formalism was developed to find the light field multiply scattered from a suspension of Brownian diffusing particles. For the field doubly scattered from a system of noninteracting Brownian particles, the intensity and correlation time were much less dependent on the scattering angle than for the singly scattered component. The polarized and depolarized correlation times of light scattered from Brownian particle systems were measured. The double-scattering formalism was extended to light scattered from critical fluid systems. In the region k xi greater than 5 the doubly and singly scattered correlation times were nearly equal. The dynamic droplet model of critical phenomena was developed which gives the proper, experimentally verified, forms for the intensity and linewidth of light scattered from a critical fluid. To test the dynamic droplet model and the mode theories Rayleigh linewidth predictions, light-scattering measurements were performed on the critical fluid system methanol and cyclohexane. The data agreed with both the dynamic droplet and decoupled mode theory predictions. The depolarized scattered spectra from a critical fluid were measured, and qualitative agreement with the double-scattering theory was found. 57 figures, 5 tables.
The scatter of light of different colour in the atmosphere.
Schreuder, D.A.
1976-01-01
It is often claimed (Devaux) that yellow light is superior to white light for vehicle headlamps. This claim is supported by evidence of a physical, physiological and psychological nature. In most cases, it appears that the advantages of yellow light are small, and can usually be neglected particul
Simplifying the calculation of light scattering properties for black carbon fractal aggregates
Directory of Open Access Journals (Sweden)
A. J. A. Smith
2014-02-01
Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.
Optical Imaging of Cells with Gold Nanoparticle Clusters as Light Scattering Contrast Agents
DEFF Research Database (Denmark)
Tanev, Stoyan
2011-01-01
developments in advanced cytometry research by pointing out potential new research directions. A brief description of the FDTD method focusing on the features associated with its application to modeling of light scattering and OPCM cell imaging experiments is provided. The examples include light scattering...... from OPCM imaging of single biological cells in conditions of controlled refractive index matching (RIM) and labeling by diffused and clustered gold NPs. The chapter concludes with a discussion and suggestions for future research....
T-matrix computations of light scattering by red blood cells
Nilsson, Annika M. K.; Alsholm, Peter; Karlsson, Anders; Andersson-Engels, Stefan
1998-01-01
The electromagnetic far field, as well as near field, originating from light interaction with a red blood cell (RBC) volume equivalent spheroid, were analyzed utilizing T-matrix theory. This method is a powerful tool which enables the influence of cell shape on the angular distribution of scattered light to be studied. General observations were that the three-dimensional shape, as well as optical thickness apparent to the incident field, affect the forward scattering. The ba...
Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong
2010-07-19
We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomalous Light Scattering by Topological PT-symmetric Particle Arrays
Ling, C. W.; Choi, Ka Hei; Mok, T. C.; Zhang, Zhao-Qing; Fung, Kin Hung
2016-12-01
Robust topological edge modes may evolve into complex-frequency modes when a physical system becomes non-Hermitian. We show that, while having negligible forward optical extinction cross section, a conjugate pair of such complex topological edge modes in a non-Hermitian -symmetric system can give rise to an anomalous sideway scattering when they are simultaneously excited by a plane wave. We propose a realization of such scattering state in a linear array of subwavelength resonators coated with gain media. The prediction is based on an analytical two-band model and verified by rigorous numerical simulation using multiple-multipole scattering theory. The result suggests an extreme situation where leakage of classical information is unnoticeable to the transmitter and the receiver when such a -symmetric unit is inserted into the communication channel.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Directory of Open Access Journals (Sweden)
Manvir S. Kushwaha
2012-09-01
Full Text Available The most fundamental approach to an understanding of electronic, optical, and transport phenomena which the condensed matter physics (of conventional as well as nonconventional systems offers is generally founded on two experiments: the inelastic electron scattering and the inelastic light scattering. This work embarks on providing a systematic framework for the theory of inelastic electron scattering and of inelastic light scattering from the electronic excitations in GaAs/Ga1−xAlxAs quantum wells. To this end, we start with the Kubo's correlation function to derive the generalized nonlocal, dynamic dielectric function, and the inverse dielectric function within the framework of Bohm-Pines’ random-phase approximation. This is followed by a thorough development of the theory of inelastic electron scattering and of inelastic light scattering. The methodological part is then subjected to the analytical diagnoses which allow us to sense the subtlety of the analytical results and the importance of their applications. The general analytical results, which know no bounds regarding, e.g., the subband occupancy, are then specified so as to make them applicable to practicality. After trying and testing the eigenfunctions, we compute the density of states, the Fermi energy, the full excitation spectrum made up of intrasubband and intersubband – single-particle and collective (plasmon – excitations, the loss functions for all the principal geometries envisioned for the inelastic electron scattering, and the Raman intensity, which provides a measure of the real transitions induced by the (laser probe, for the inelastic light scattering. It is found that the dominant contribution to both the loss peaks and the Raman peaks comes from the collective (plasmon excitations. As to the single-particle peaks, the analysis indicates a long-lasting lack of quantitative comparison between theory and experiments. It is inferred that the inelastic electron