WorldWideScience

Sample records for two-dimensional jet impinging

  1. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    Science.gov (United States)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  2. Spray formation processes of impinging jet injectors

    Science.gov (United States)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-11-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  3. Impinging Jet Dynamics

    CERN Document Server

    Chen, Xiaodong

    2012-01-01

    In this fluid dynamics video, Ray-tracing data visualization technique was used to obtain realistic and detailed flow motions during impinging of two liquid jets. Different patterns of sheet and rim configurations were presented to shed light into the underlying physics, including liquid chain, closed rim, open rim, unstable rim and flapping sheet. In addition, stationary asymmetrical waves were observed and compared with existing theories. The generation of stationary capillary wave in respect to the liquid rim were explained by the classic shallow water wave theory. The atomization process caused by development of the impact waves were observed in detail, including fragmentation of liquid sheet, formation of liquid ligaments, and breakup of ligament into droplet. The locking-on feature of the wavelength of impact wave were also found to be similar to that of perturbed free shear layers.

  4. Study of Several Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Impinging Jets are frequently adapted for cooling overheated parts.With the film cooling technique,this process improves thermal exchanges between walls and fluid.However if many works have concerned only the thermal aspect of this problem[1],its dynamic field has been rarely studied especially for multiple impingements.As the two phenomena caanot be totally dissociated.we have undertaken the aerodynamic and thermal study of jets impinging on a aplane wall,Various techniques,have been used as visualizations(spreading over method.LASER sheet visualizations),LDA measurements to propose a topology schema of the flow and infraed thermography.

  5. Modeling 2-D jets impinging on Stirling regenerators

    Science.gov (United States)

    Gedeon, David

    1989-01-01

    The extent to which flow leaving Stirling coolers or heaters in the form of high-velocity jets penetrate the regenerator matrix is visually modeled using a computer program. Two-dimensional laminar jets are shown impinging on regenerator samples of variable permeability ranging from no matrix at all to matrices dense enough to stop the jet dead on. The results lend credibility to a simple tension for flow uniformity as a function of penetration depth.

  6. Nanofluid impingement jet heat transfer.

    Science.gov (United States)

    Zeitoun, Obida; Ali, Mohamed

    2012-02-17

    Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters.

  7. Flow Characteristics of Rectangular Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Yoshio KINJO; Masumi TAMASHIRO; Kenyu OYAKAWA

    2006-01-01

    In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1,3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hystcretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss pc/p0 = 0.27 at the pressure ratio of p0/pb, = 6.5, where pc is the stagnation center pressure on the wall, p0 the upstream stagnation pressure, pb the ambient pressure. The other two nozzles showed that the pressure loss pc / p0=0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.

  8. Turbulent Impinging Jets into Porous Materials

    CERN Document Server

    de Lemos, Marcelo J S

    2012-01-01

    This short book deals with the mathematical modeling of jets impinging porous media. It starts with a short introduction to models describing turbulences in porous media as well as turbulent heat transfer. In its main part, the book presents the heat transfer of impinging jets using a local and a non-local thermal equilibrium approach.

  9. Fluorescence Imaging Study of Impinging Underexpanded Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  10. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  11. Statistics of fully turbulent impinging jets

    CERN Document Server

    Wilke, Robert

    2016-01-01

    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the...

  12. Study on the two-dimensional jet impinging on a circular cylinder. 1st report. ; Measurements of flow-field and heat transfer around a circular cylinder mounted near two flat plates. Enchu eno nijigen shototsu funryu ni kansuru kenkyu. 1. ; Enchu ni kinsetsushite secchishita heiban no nagareba oyobi enchu netsudentatsu eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Haneda, Y.; Kurasawa, H. (Nagano National College of Technology, Nagano (Japan)); Tsuchiya, Y. (Shinshu Univ., Nagano (Japan). Faculty of Engineering); Suzuki, K. (Kyoto Univ., Kyoto (Japan). Faculty of Engineering)

    1994-04-25

    The flow field and heat transfer around a circular cylinder is investigated experimentally when two dimensional jet is impinged on a circular cylinder mounted near two flat plates which are set at a fixed inclination against the axis of jet. Flow field varies markedly depending on whether the minimum channel width is the minimum space B between the flat plates or the space C between the cylinder and the plates. The local Nusselt number of the cylinder strongly depends on the value of space C between the cylinder and the plates. The minimum and maximum locations correspond to the locations of separation and reattachment, respectively, of the flow around the cylinder. When the ratio between the nozzle-to-cylinder distance L and the short side h of the nozzle is 3 (L/h=3), the mean Nusselt number around the cylinder becomes the maximum when C/D is 0.1 where D is the diameter of the cylinder, and increases by about 9 to 12% as compared with the case where no plate is provided. For L/h=7 and L/h=10, the mean Nusselt number does not increase distinctly as compared with the case where no flat plate is provided. 16 refs., 15 figs.

  13. CONTROL OF TWO DIMENSIONAL JETS USING MINIATURE ZERO MASS FLUX JETS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Zero mass flux jets, synthesized by acoustic actuators, have been used for the purpose of jet mixing enhancement and jet vectoring. Zero mass flux jets composed of entirely entrained fluid allow momentum transfer into the embedding flow. In the present experiments, miniature-scale high aspect ratio actuator jets are placed along the long sides and near the exit plane of a primary two-dimensional jet. In different modes, the primary jet can be vectored either towards or away from the actuator jets and the jet mixing is enhanced. The disturbance of the excitation frequency is developed while the unstable frequency of the primary jet is completely suppressed.

  14. Circular and Elliptic Submerged Impinging Water Jets

    Science.gov (United States)

    Claudey, Eric; Benedicto, Olivier; Ravier, Emmanuel; Gutmark, Ephraim

    1999-11-01

    Experiments and CFD have been performed to study circular and elliptic jets in a submerged water jet facility. The tests included discharge coefficient measurement to evaluate pressure losses encountered in noncircular nozzles compared to circular ones. Three-dimensional pressure mappings on the impingement surface and PIV measurement of the jet mean and turbulent velocity have been performed at different compound impingement angles relative to the impingement surface and at different stand-off distances. The objective was to investigate the effect of the non-circular geometry on the flow field and on the impact region. The tests were performed in a close loop system in which the water was pumped through the nozzles into a clear Plexiglas tank. The Reynolds numbers were typically in the range of 250000. Discharge coefficients of the elliptic nozzle was somewhat lower than that of the circular jet but spreading rate and turbulence level were higher. Pressure mapping showed that the nozzle exit geometry had an effect on the pressure distribution in the impact region and that high-pressure zones were generated at specific impact points. PIV measurements showed that for a same total exit area, the elliptic jets affected a surface area that is 8the equivalent circular. The turbulence level in the elliptic jet tripled due to the nozzle design. Results of the CFD model were in good agreement with the experimental data.

  15. Modelling of jet-impingement cooling for power electronics

    OpenAIRE

    Rizvi, M.J.; Skuriat, R.; Tilford, Tim; Bailey, Christopher; Johnson, C. Mark; Lu, Hua

    2009-01-01

    The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce ...

  16. Wall jets created by single and twin high pressure jet impingement

    Science.gov (United States)

    Miller, P.; Wilson, M.

    1993-03-01

    An extensive experimental investigation into the nature of the wall jets produced by single and twin normal jet impingement has been undertaken. Wall jet velocity profiles have been recorded up to 70 jet diameters from the impingement point, at pressures representative of current VStol technology. The tests used fixed convergent nozzles, with nozzle height and spacing and jet pressure being varied. Single jet impingement displays a consistent effect of nozzle height on wall jet development. For twin jet cases a powerful reinforcement exists along the wall jet interaction plane. Remote from the interaction plane the wall jets are weaker than those produced by a single jet impingement.

  17. Configuration of Shock Waves in Two-Dimensional Overexpanded Jets

    Institute of Scientific and Technical Information of China (English)

    Masashi Kashitani; Yutaka Yamaguchi; Yoshiaki Miyazato; Mitsuharu Masuda; Kazuyasu Matsuo

    2003-01-01

    An experimental and analytical study has been carried out to obtain the clear understanding of a shock wave transition associated with a steady two-dimensional overexpanded flow. Two-dimensional inviscid theory with respect to a shock wave reflection is used in the present study on the characteristic of shock waves. The results obtained from the flow analysis are compared with those obtained from flow visualizations. It is shown that in the region of regular reflection, the angle of an incident shock wave becomes lower than that calculated by two shock theory with an increment in the ratio pe/pb of the nozzle exit pressure pe to the back pressure pb. It is indicated that the configuration of shock waves in overexpanded jets is influenced by the divergent angle at the nozzle exit. Also it is shown from the flow visualization that a series of shock waves move into the nozzle inside with a decrease in pressure ratio pe/pb, even if the pe/pb is under overexpanded conditions.

  18. Sessile drop deformations under an impinging jet

    Science.gov (United States)

    Feng, James Q.

    2015-08-01

    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  19. SCALE EFFECT OF IMPINGING PRESSURE CAUSED BY SUBMERGED JET

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhong; XU Wei-lin; WANG Wei; LIU Shan-jun; DONG Jian-wei

    2005-01-01

    The characteristics of the impinging pressure at the jet equipment where the maximum jet velocity can reach 50m/s were studied. By comparing the impinging pressure with the one measured at the low velocity conditions, two conclusions of the scale effect are drawn: firstly, the velocity attenuation degree is smaller than that of low-velocity jet, and secondly, the relative impinging width is narrower than that of low-velocity jet. The reasons of the scale effect of the impinging pressure were elucidated through numerical simulation.

  20. Magnetic Resonance Velocimetry analysis of an angled impinging jet

    Science.gov (United States)

    Irhoud, Alexandre; Benson, Michael; Verhulst, Claire; van Poppel, Bret; Elkins, Chris; Helmer, David

    2016-11-01

    Impinging jets are used to achieve high heat transfer rates in applications ranging from gas turbine engines to electronics. Despite the importance and relative simplicity of the geometry, simulations historically fail to accurately predict the flow behavior in the vicinity of the flow impingement. In this work, we present results from a novel experimental technique, Magnetic Resonance Velocimetry (MRV), which measures three-dimensional time-averaged velocity without the need for optical access. The geometry considered in this study is a circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 800 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.

  1. SUBMERGED IMPINGING JETS WITHIN A FINITE WATER DEPTH

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By use of the sheet of laser light and the trac-ing particle technology, flow visualization tests of complexflow structures for submerged impinging jets within finite wa-ter depths are conducted. Typical flow patterns of submergeimpinging jets are analysed by the singular topology method.In order to reveal the mechanism of these flows, the diffusivecharacteristics and turbulent fluctuations of submerged impin-ging jets are measured by the hot-film anemometer.

  2. Conjugate heat transfer study of a turbulent slot jet impinging on a moving plate

    Science.gov (United States)

    Achari, A. Madhusudana; Das, Manab Kumar

    2017-03-01

    Numerical simulation of the flow field and conjugate heat transfer in an impinging jet with moving impingement plate is one of the important problems as it mimics closely with practical applications in industries. The Yang-Shih version of low Reynolds number k-ɛ model has been used to resolve the flow field and the temperature field in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a moving flat plate of finite thickness. The turbulence intensity and the Reynolds number considered at the inlet are 2 % and 15,000, respectively. The bottom face of the impingement plate has been maintained at a constant temperature higher than the nozzle exit temperature. The confinement plate has been considered to be adiabatic. The nozzle-to-surface spacing for the above study has been taken to be 6 and the surface-to-jet velocity ratios have been taken over a range of 0.25-1. The effects of impingement plate motion on the flow field and temperature field have been discussed elaborately with reference to stationary impingement plate. The dependence of flow field and fluid temperature field on impingement plate motion has been analyzed by plotting streamlines, isotherms for different plate speeds. A thorough study of flow characteristics for different surface-to-jet velocity ratios has been carried out by plotting profiles of mean vertical and horizontal components of velocity, pressure distribution, local shear stress distribution. The isotherms in the impingement plate of finite thickness, the distributions of solid-fluid interface temperature, the local Nusselt number, and the local heat flux for different surface-to-jet velocity ratios added to the understanding of conjugate heat transfer phenomenon.

  3. NUMERICAL SIMULATION OF LAMINAR SQUARE IMPINGING JET FLOWS

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-guang; XU Zhong; WU Yu-lin; ZHANG Yong-jian

    2005-01-01

    A theoretical study has been undertaken to determine the flow characteristics associated with a three-dimensional laminar impinging jet issuing from a square pipe nozzle. Interesting flow structures around the jet are detected. The numerical result reveals the existence of four streamwise velocity off-center peaks near the impingement plate, which is different from the rectangular jet impingement. The mechanism of the formation of the off-center velocity peaks and the parameters affecting the flow-field characteristics are discussed by comparison of the computed results with different nozzle-to-plate spacings and Reynolds numbers.

  4. Numerical simulation of circular jet impinging on hot steel plate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Flow structure and heat transfer characteristics of an axisymmetric circular jet impinging on a hot 1Cr18Ni9Ti medium plate have been simulated numerically using computational fluid dynamic (CFD) code. The relation between flow field of jet impingement and its heat transfer capability is analyzed, and the phenomenon that heat transfer at stagnation point is smaller than that of points directly around is discussed. The simulation result provides boundary conditions for thermalanalysis of medium plate quenching.

  5. Numerical simulation on submerged gas jet scouring pit morphology in impingement water bath dust removers

    Institute of Scientific and Technical Information of China (English)

    GAO Huijie; WU Xuan; ZHAO Yuxiang; WU Wenfei; LI Baowei

    2014-01-01

    The VOF interface tracking method was adopted to simulate the two-dimensional submerged gas jet scouring pit morphology in an impingement water bath dust remover.The interaction of gas/liquid two-phase was obtained by force balance and momentum exchange.On the self-designed impingement water bath dust remover test bench,the submerged gas jet flushing with different gas velocities was simulated. The results show that,the gas inlet velocity is one of the main factors affecting the submerged gas jet scou-ring pit characteristics.The unique nature of gas/liquid two-phase determines their unique way of move-ment,thus affects the morphological character of the scouring pit in the expansion lag phase.Within the study range,the characteristic radius and impact depth of the scouring pit increases with the gas velocity, and so are their growth rates.

  6. Impinging Jet Resonant Modes at Mach 1.5

    CERN Document Server

    Davis, Timothy

    2013-01-01

    High speed impinging jets have been the focus of several studies owing to their practical application and resonance dominated flow-field. The current study focuses on the identification and visualization of the resonant modes at certain critical impingement heights for a Mach 1.5 normally impinging jet. These modes are associated with high amplitude, discrete peaks in the power spectra and can be identified as having either axisymmetric or azimuthal modes. Their visualization is accomplished through phase-locked Schlieren imaging and fast-response pressure sensitive paint (PC-PSP) applied to the ground plane.

  7. Heat transfer due to impinging double free circular jets

    Directory of Open Access Journals (Sweden)

    Mohamed A. Teamah

    2015-09-01

    Full Text Available The heat transfer and fluid flow between a horizontal heated plate and impinging circular double jets were studied experimentally. The parameters investigated are the Reynolds number of each jet and jet-to-jet spacing. Experiments are carried out covering a range for Reynolds number from 7100 to 30,800 for each jet, the dimensionless jet-to-jet spacing from 22.73 to 90.1. During experimental phases, the right jet Reynolds number was higher than the left jet Reynolds number. The isothermal contours were plotted for different cases as well as the distribution of water film thickness over the heated plate. The results indicated that increasing the Reynolds number of one jet than the other increases both local and average Nusselt numbers. In addition, increasing the jet-to-jet spacing at the same Reynolds number increases the average Nusselt number.

  8. Measurements of a single pulse impinging jet. A CFD reference

    Directory of Open Access Journals (Sweden)

    Bovo Mirko

    2014-03-01

    Full Text Available This paper reports three sets of measurements of a single pulse impinging jet. The purpose is to serve as a reference for CFD validation. A gas injector generates a single pulse jet at Re ~90000. The jet impinges on a temperature controlled flat target at different angles (0º, 30º, 45º and 60º. The jet velocity field is measured with PIV. The evolution of the jet velocity profile in time is reported at two different locations (suitable as CFD inlet conditions. At the same locations also turbulence quantities are reported. The impingement wall temperature is measured with fast responding thermocouples and infrared camera. These give high time and space resolution respectively. Results are reported in a format suitable for comparison with CFD simulations. The results show that the heat transfer effects are highest for the jet impinging normally on the target. Target inclination has remarkable effects on the jet penetration rate and repeatability. Even small target inclinations result creates a preferential direction for the jet flow and cause a shift in the position of the stagnation region.

  9. Study on the breakup length of circular impinging jet

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Circular impinging jet, which is widely used in accelerated control cooling (ACC) equipment to accelerate the cooling of hot rolled plates, is subject to breakup, and may result in undesirable cooling effect. Therefore, the jet breakup should be avoided as possible in industrial production. The objective of this study is to find the relation of the processing parameters of the ACC equipment versus the breakup length of jet with weaker turbulence. To obtain quantitative findings, not only relative experimental study but also numerical simulation was carried out. For a weaker turbulent water jet, the breakup length increases with the increase of jet diameter, as well as with the jet velocity; jet diameter has a significant effect on the breakup length for a certain flow rate when compared with jet velocity; finally a suggested correlation of the jet breakup length versus jet Weber number is presented in this study.

  10. Thermal-hydraulic performance of convective boiling jet array impingement

    Science.gov (United States)

    Jenkins, R.; De Brún, C.; Kempers, R.; Lupoi, R.; Robinson, A. J.

    2016-09-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7oC. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux.

  11. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    Science.gov (United States)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  12. Radial heat transfer behavior of impinging submerged circular jets

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.W.; Ma, C.F. [Enhanced Heat Transfer and Energy Conservation, The Key Laboratory of Ministry of Education (China)

    2006-05-15

    Experiments were performed to investigate the radial heat transfer behaviors of impinging submerged circular jets. Local heat transfer rate at several fixed radial locations and different nozzle-to-plate spacings were correlated and compared. Results reveal that with the jet being far from the stagnation point, the coefficient in the correlation NuRe decreases while the exponent characterizing the flow pattern of the working liquid increases. (author)

  13. Liquid jet impinging orthogonally on a wettability-patterned surface

    Science.gov (United States)

    Koukoravas, Theodore; Ghosh, Aritra; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2016-11-01

    Jet impingement has many technological applications because of its numerous merits, especially those related to the ability of liquids to carry away heat very efficiently. The present study introduces a new configuration employing a wettability-patterning approach to divert an orthogonally-impinging laminar water jet onto a predetermined portion of the target surface. Diverging wettable tracks on a superhydrophobic background provide the means to re-direct the impinging jet along paths determined by the shape of these tracks on the solid surface. In a heat transfer example of this method, an open-surface heat exchanger is constructed and its heat transfer performance is characterized. Since this approach facilitates prolonged liquid contact with the underlying heated surface through thin-film spreading, evaporative cooling is also promoted. We demonstrate flow cases extracting 100 W/cm2 at water flow rates of O(10 mL/min). By comparing with other jet-impingement cooling approaches, the present method provides roughly four times more efficient cooling by using less amount of coolant. The reduced coolant use, combined with the gravity-independent character of this technique, offer a new paradigm for compact heat transfer devices designed to operate in reduced- or zero-gravity environments.

  14. Directional transport of impinging capillary jet on wettability engineered surfaces

    Science.gov (United States)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  15. CFD study of turbulent jet impingement on curved surface

    Institute of Scientific and Technical Information of China (English)

    Javad Taghinia; Md Mizanur Rahman; Timo Siikonen

    2016-01-01

    The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with com-putational fluid dynamics (CFD) approach. The first applied model is a one-equation SGS model for large eddy simulation (LES) and the second one is the SST-SAS hybrid RANS-LES. These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface (h/B) distances at two Reynolds numbers namely, 2960 and 4740 based on the jet exit velocity (Ue) and the hydraulic diameter (2B). The predic-tions are compared with the experimental data in the literature and also the results from RANS k-εmodel. Com-parisons show that both models can produce relatively good results. However, one-equation model (OEM) produced more accurate results especial y at impingement region at lower jet-to-surface distances. In terms of heat transfer, the OEM also predicted better at different jet-to-surface spacings. It is also observed that both models show similar performance at higher h/B ratios.

  16. Experimental study of highly viscous impinging jets

    Energy Technology Data Exchange (ETDEWEB)

    Gomon, M. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

    1998-12-01

    The objective of this research is to study the behavior of highly viscous gravity-driven jets filling a container. Matters of interest are the formation of voids in the fluid pool during the filling process and the unstable behavior of the fluid in the landing region which manifests itself as an oscillating motion. The working fluids used in this research are intended to simulate the flow behavior of molten glass. Qualitative and quantitative results are obtained in a parametric study. The fraction of voids present in the fluid pool after the filling of the container is measured for different parameter values of viscosity and mass flow rate. Likewise, frequencies of the oscillating jet are measured. Results are inconclusive with regard to a correlation between parameter settings and void fractions. As for frequencies, power law correlations are established.

  17. Particle streak velocimetry and its application to impinging laminar jets

    Science.gov (United States)

    Bergthorson, Jeff; Dimotakis, Paul

    2002-11-01

    The technique of Particle Streak Velocimetry (PSV) was improved to include digital imaging and image processing, allowing it to compete with PIV or LDV in terms of accuracy and ease of implementation. PSV provides advantages over other techniques, such as low particle mass loading, short run time experiments, and high accuracy velocity data through the direct measurement of Lagrangian trajectories. PSV, coupled with measurements of the static (Bernoulli) pressure drop across a well designed nozzle contraction, provided redundancy in the measurement of the axisymmetric impinging laminar jet. The impinging laminar jet was studied in the intermediate regime where the existence of a stagnation plate will affect the flow out of the nozzle. This nozzle separation to diameter ratio, L/d_j, regime has not been well characterized. The results indicate that a one-dimensional streamfunction formulation is not sufficient to characterize this flow.

  18. Numerical modeling of a turbulent semi-confined slot jet impinging on a concave surface

    Directory of Open Access Journals (Sweden)

    Ahmadi Hadi

    2015-01-01

    Full Text Available This article presents results from a numerical study of a turbulent slot jet impinging on a concave surface. Five different low Reynolds number k-ε models were evaluated to predict the heat transfer under a two dimensional steady turbulent jet. The effects of flow and geometrical parameters (e.g. jet Reynolds number and jet-to-target separation distance have been investigated. The Yap correction is applied for reducing the over-prediction of Nusselt number in the near wall region. It is shown that among the models tested in this study, the LS-Yap model is capable of predicting local Nusselt number in good agreement with the experimental data in both stagnation and wall jet region. Moreover, after implementation of Yap correction, no significant effect of the nozzle-to-surface distance, h/B, on the predicted stagnation Nusselt number has been found. Finally it is demonstrated that the higher values of turbulent Prandtl number reduces the heat diffusion along the wall and consequently the predicted local Nusselt number is reduced especially in the wall jet region.

  19. Reduction of glycine particle size by impinging jet crystallization.

    Science.gov (United States)

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization.

  20. Numerical analysis of jet impingement heat transfer at high jet Reynolds number and large temperature difference

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2013-01-01

    was investigated at a jet Reynolds number of 1.66 × 105 and a temperature difference between jet inlet and wall of 1600 K. The focus was on the convective heat transfer contribution as thermal radiation was not included in the investigation. A considerable influence of the turbulence intensity at the jet inlet......Jet impingement heat transfer from a round gas jet to a flat wall was investigated numerically for a ratio of 2 between the jet inlet to wall distance and the jet inlet diameter. The influence of turbulence intensity at the jet inlet and choice of turbulence model on the wall heat transfer...... was observed in the stagnation region, where the wall heat flux increased by a factor of almost 3 when increasing the turbulence intensity from 1.5% to 10%. The choice of turbulence model also influenced the heat transfer predictions significantly, especially in the stagnation region, where differences of up...

  1. Unsteady conjugate heat transfer analysis for impinging jet cooling

    Science.gov (United States)

    Tejero, F.; Flaszyński, P.; Szwaba, R.; Telega, J.

    2016-10-01

    The paper presents the numerical investigations of the heat transfer on a flat plate cooled by a single impinging jet. The thermal conductivity of the plate was modified from a high thermal case (steel -λ= 35 W/m/K) to a low one (steel alloy Inconel -λ= 9.8 W/m/K). The numerical simulations results are compared with the experimental data from the Institute of Fluid-Flow Machinery Polish Academy of Sciences, Gdansk (Poland). The numerical simulations are carried out by means of Ansys/Fluent and k-ω SST turbulence model and the temperature evolution on the target plate is investigated by conjugated heat transfer computations.

  2. A two-dimensional Euler solution for an unbladed jet engine configuration

    Science.gov (United States)

    Stewart, Mark E. M.

    1992-01-01

    A two dimensional, nonaxisymmetric Euler solution in a geometry representative of a jet engine configuration without blades is presented. The domain, including internal and external flow, is covered with a multiblock grid. In order to construct this grid, a domain decomposition technique is used to subdivide the domain, and smooth grids are dimensioned and placed in each block. The Euler solution is verified by examining five theoretical properties. The result demonstrates techniques for performing numerical solutions in complex geometries and provides a foundation for complete engine throughflow calculations.

  3. Modelling the Evaporation Rate in an Impingement Jet Dryer with Multiple Nozzles

    Directory of Open Access Journals (Sweden)

    Anna-Lena Ljung

    2017-01-01

    Full Text Available Impinging jets are often used in industry to dry, cool, or heat items. In this work, a two-dimensional Computational Fluid Dynamics model is created to model an impingement jet dryer with a total of 9 pairs of nozzles that dries sheets of metal. Different methods to model the evaporation rate are studied, as well as the influence of recirculating the outlet air. For the studied conditions, the simulations show that the difference in evaporation rate between single- and two-component treatment of moist air is only around 5%, hence indicating that drying can be predicted with a simplified model where vapor is included as a nonreacting scalar. Furthermore, the humidity of the inlet air, as determined from the degree of recirculating outlet air, has a strong effect on the water evaporation rate. Results show that the metal sheet is dry at the exit if 85% of the air is recirculated, while approximately only 60% of the water has evaporated at a recirculation of 92,5%.

  4. Large Eddy Simulation of Coherent Structure of Impinging Jet

    Institute of Scientific and Technical Information of China (English)

    Mingzhou YU; Lihua CHEN; Hanhui JIN; Jianren FAN

    2005-01-01

    @@ The flow field of a rectangular exit, semi-confined and submerged turbulent jet impinging orthogonally on a flat plate with Reynolds number 8500 was studied by large eddy simulation (LES). A dynamic sub-grid stress model has been used for the small scales of turbulence. The evolvements such as the forming, developing, moving,pairing and merging of the coherent structures of vortex in the whole regions were obtained. The results revealed that the primary vortex structures were generated periodically, which was the key factor to make the secondary vortices generate in the wall jet region. In addition, the eddy intensity of the primary vortices and the secondary vortices induced by the primary vortices along with the time were also analyzed.

  5. Study on diesel cylinder-head cooling using nanofluid coolant with jet impingement

    Directory of Open Access Journals (Sweden)

    Su Zhong-Gen

    2015-01-01

    Full Text Available To improve the heat-transfer performance of a diesel-engine cylinder head, nanofluid coolant as a new fluid was investigated, and jet impingement technology was then used to study on how to better improve heat-transfer coefficient at the nose bridge area in the diesel-engine cylinder head. Computational fluid dynamic simulation and experiments results demonstrated that using the same jet impingement parameters, the different volume shares of nanofluids showed better cooling effect than traditional coolant, but the good effect of the new cooling method was unsuitable for high volume share of nanofluid. At the same volume share of nanofluid, different jet impingement parameters such as jet angles showed different heat-transfer performance. This result implies that a strong association exists between jet impingement parameters and heat-transfer coefficient. The increase in coolant viscosity of the nanofluid coolant using jet impingement requires the expense of more drive-power cost.

  6. Convective Heat Transfer Enhancement of a Rectangular Flat Plate by an Impinging Jet in Cross Flow

    Institute of Scientific and Technical Information of China (English)

    李国能; 郑友取; 胡桂林; 张治国

    2014-01-01

    Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow. Several parameters including the jet-to-cross-flow mass ratio (X=2%-8%), the Reynolds number (Red=1434-5735) and the jet diameter (d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of en-hancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.

  7. Numerical study of a confined slot impinging jet with nanofluids.

    Science.gov (United States)

    Manca, Oronzio; Mesolella, Paolo; Nardini, Sergio; Ricci, Daniele

    2011-03-01

    Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the values calculated in the case of

  8. Numerical study of a confined slot impinging jet with nanofluids

    Directory of Open Access Journals (Sweden)

    Manca Oronzio

    2011-01-01

    Full Text Available Abstract Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4

  9. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field

    Directory of Open Access Journals (Sweden)

    Fujita Shigetaka

    2016-01-01

    Full Text Available The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194 operated by the linearized constant temperature anemometers (DANTEC, and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  10. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    Science.gov (United States)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  11. Two-dimensional confined jet thrust vector control: Operating mechanisms and performance

    Science.gov (United States)

    Caton, Jeffrey L.

    1989-03-01

    An experimental investigation of two-dimensional confined jet thrust vector control nozzles was performed. Thrust vector control was accomplished by using secondary flow injection in the diverging section of the nozzle. Schlieren photographs and video tapes were used to study flow separation and internal shock structures. Nozzle performance parameters were determined for nozzle flow with and without secondary flows. These parameters included nozzles forces, vector angles, thrust efficiencies, and flow switching response times. Vector angles as great as 18 degrees with thrust efficiencies of 0.79 were measured. Several confined jet nozzles with variations in secondary flow port design were tested and results were compared to each other. Converging-diverging nozzles of similar design to the confined jet nozzles were also tested and results were compared to the confined jet nozzle results. Existing prediction models for nozzle side to axial force ratio were evaluated. A model for nozzle total forces based on shock losses that predicted values very close to actual results was developed.

  12. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  13. Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow.

    Science.gov (United States)

    Tatom, J. W.; Cooper, M. A.; Hayden, T. K.

    1972-01-01

    Experimental investigation of the low subsonic, two-dimensional transverse hot-air jet. In the study jet-to-freestream angles of 90, 120, 135, and 150 deg and jet-to-freestream velocity ratios of 5, 10, and 20 were investigated. In the tests the jet velocity and temperature fields were measured using a temperature-compensated hot-wire anemometer. Photographs of the flowfield were also made. The tests results are compared with the available data and analysis. Results indicate a relatively minor deflection of the freestream by the jet and the presence of a large separated flow region behind the jet.

  14. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    Science.gov (United States)

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  15. Multiple impinging jet arrays. An experimental study on flow and heat transfer

    NARCIS (Netherlands)

    Geers, L.F.G.

    2004-01-01

    Because of their high efficiency and their ability to provide high heat transfer rates, impinging jets are applied for rapid cooling and heating in a wide variety of industrial processes. However, the physical phenomena controlling the heat transfer from impinging jets are to a large degree unknown.

  16. Investigation of heat transfer processes involved liquid impingement jets: a review

    Directory of Open Access Journals (Sweden)

    M. Molana

    2013-09-01

    Full Text Available This review reports research on liquid impingement jets and the abilities, limitations and features of this method of heat transfer. Some available and important correlations for Nusselt number are collected here. Also we demonstrate the capability of nanofluids to be applied in heat transfer processes involved liquid impingement jets.

  17. Numerical Analysis of the Flow Field of an Inclined Turbulent Impinging Jet

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-jing

    2013-01-01

    A three-dimensional numerical study has been applied to examine the effects of impinging angle of incline impinging jet on heat transfer and flow field characteristic. Other parameters such as nozzle to plate distance and jet velocity and temperature are also examined to investigate their influences on jet flow. The impinging angle in range of 900-650, the nozzle exit-to-plate spacing (H/D) in range of 2 to 10, the Reynolds number in range of 1.27x102 to 1.27x104 and the jet temperature in range of 323K to 773K have been considered in this project.

  18. CFD Approaches for Modelling Bubble Entrainment by an Impinging Jet

    Directory of Open Access Journals (Sweden)

    Martin Schmidtke

    2009-01-01

    Full Text Available This contribution presents different approaches for the modeling of gas entrainment under water by a plunging jet. Since the generation of bubbles happens on a scale which is smaller than the bubbles, this process cannot be resolved in meso-scale simulations, which include the full length of the jet and its environment. This is why the gas entrainment has to be modeled in meso-scale simulations. In the frame of a Euler-Euler simulation, the local morphology of the phases has to be considered in the drag model. For example, the gas is a continuous phase above the water level but bubbly below the water level. Various drag models are tested and their influence on the gas void fraction below the water level is discussed. The algebraic interface area density (AIAD model applies a drag coefficient for bubbles and a different drag coefficient for the free surface. If the AIAD model is used for the simulation of impinging jets, the gas entrainment depends on the free parameters included in this model. The calculated gas entrainment can be adapted via these parameters. Therefore, an advanced AIAD approach could be used in future for the implementation of models (e.g., correlations for the gas entrainment.

  19. Global mode decomposition of supersonic impinging jet noise

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2015-11-01

    We apply global stability analysis to an ideally expanded, Mach 1.5, turbulent jet that impinges on a flat surface. The analysis extracts axisymmetric and helical instability modes, involving coherent vortices, shocks, and acoustic feedback, which we use to help explain and predict the effectiveness of microjet control. High-fidelity large eddy simulations (LES) were performed at nozzle-to-wall distances of 4 and 4.5 throat diameters with and without sixteen microjets positioned uniformly around the nozzle lip. These flow configurations conform exactly to experiments performed at Florida State University. Stability analysis about LES mean fields predicted the least stable global mode with a frequency that matched the impingement tone observed in experiments at a nozzle-to-wall distance of 4 throat diameters. The Reynolds-averaged Navier-Stokes (RANS) equations were solved at five nozzle-to-wall distances to create base flows that were used to investigate the influence of this parameter. A comparison of the eigenvalue spectra computed from the stability analysis about LES and RANS base flows resulted in good agreement. We also investigate the effect of the boundary layer state as it emerges from the nozzle using a multi-block global mode solver. Computational resources were provided by the Argonne Leadership Computing Facility.

  20. Turbulent heat transport and its anisotropy in an impinging jet

    Directory of Open Access Journals (Sweden)

    Petera Karel

    2015-01-01

    Full Text Available The turbulent heat transport is anisotropic in many cases as reported by several researchers. RANS-based turbulence models use the turbulent viscosity when expressing the turbulent heat flux in the energy balance (analogy of the Reynolds stresses in the momentum balance. The turbulent (eddy viscosity calculation comes from the Boussinesq analogy mainly and it represents just a scalar value, hence a possible anisotropy in the turbulent flow field cannot be simply transferred to the temperature field. The computational cost of a LES-based approach can be too prohibitive in complex cases, therefore simpler explicit algebraic heat flux models describing the turbulent heat flux in the time-averaged energy equation could be used to get more accurate CFD results. This paper compares several turbulence models for the case of a turbulent impinging jet and deals with a methodology of implementing a user-defined function describing the anisotropic turbulent heat flux in a CFD code.

  1. A simple confined impingement jets mixer for flash nanoprecipitation.

    Science.gov (United States)

    Han, Jing; Zhu, Zhengxi; Qian, Haitao; Wohl, Adam R; Beaman, Charles J; Hoye, Thomas R; Macosko, Christopher W

    2012-10-01

    Johnson and Prud'homme (2003. AICHE J 49:2264-2282) introduced the confined impingement jets (CIJ) mixer to prepare nanoparticles loaded with hydrophobic compounds (e.g., drugs, inks, fragrances, or pheromones) via flash nanoprecipitation (FNP). We have modified the original CIJ design to allow hand operation, eliminating the need for a syringe pump, and we added a second antisolvent dilution stage. Impingement mixing requires equal flow momentum from two opposing jets, one containing the drug in organic solvent and the other containing an antisolvent, typically water. The subsequent dilution step in the new design allows rapid quenching with high antisolvent concentration that enhances nanoparticle stability. This new CIJ with dilution (CIJ-D) mixer is a simple, cheap, and efficient device to produce nanoparticles. We have made 55 nm diameter β-carotene nanoparticles using the CIJ-D mixer. They are stable and reproducible in terms of particle size and distribution. We have also compared the performance of our CIJ-D mixer with the vortex mixer, which can operate at unequal flow rates (Liu et al., 2008. Chem Eng Sci 63:2829-2842), to make β-carotene-containing particles over a series of turbulent conditions. On the basis of dynamic light scattering measurements, the new CIJ-D mixer produces stable particles of a size similar to the vortex mixer. Our CIJ-D design requires less volume and provides an easily operated and inexpensive tool to produce nanoparticles via FNP and to evaluate new nanoparticle formulation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels with Film Coolant Extraction

    Directory of Open Access Journals (Sweden)

    James A. Parsons

    2001-01-01

    Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.

  3. Oil-in-water emulsification using confined impinging jets.

    Science.gov (United States)

    Siddiqui, Shad W; Norton, Ian T

    2012-07-01

    A confined impinging jet mixing device has been used to investigate the continuous sunflower oil/water emulsification process under turbulent flow conditions with oil contents between 5% (v/v) and 10% (v/v). Various emulsifiers (Tween20, Span80, Whey Protein, Lecithin and Sodium Dodecylsulphate) varying in molecular weights have been studied. Mean droplet sizes varied with the emulsifiers used and smallest droplets were obtained under fully turbulent flow regime, i.e. at the highest jet flow rate and highest jet Reynolds Number conditions. Sodium Dodecylsulfate (SDS) produced droplets in the range of 3.8 μm while 6 μm droplets were obtained with Whey Protein. Similar droplet sizes were obtained under fully turbulent flow conditions (610 mL/min; Reynolds Number=13,000) for oil content varying between 5% (v/v) and 10% (v/v). To investigate the smallest droplet size possible in the device, the emulsion was passed through the geometry multiple times. Multi-pass emulsification resulted in reduction in droplet size indicating that longer residence in the flow field under high shear condition allowed for breakage of droplets as well as the time for the emulsifier to stabilize the newly formed droplets, decreasing the impact of coalescence. This was confirmed by timescale analysis of the involved process steps for the droplet data obtained via experiments. Dependence of mean droplet size on the o/w interfacial tension and peak energy dissipation was also investigated. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. PIV measurements of isothermal plane turbulent impinging jets at moderate Reynolds numbers

    Science.gov (United States)

    Khayrullina, A.; van Hooff, T.; Blocken, B.; van Heijst, G. J. F.

    2017-04-01

    This paper contains a detailed experimental analysis of an isothermal plane turbulent impinging jet (PTIJ) for two jet widths at moderate Reynolds numbers (7200-13,500) issued on a horizontal plane at fixed relative distances equal to 22.5 and 45 jet widths. The available literature on such flows is scarce. Previous studies on plane turbulent jets mainly focused on free jets, while most studies on impinging jets focused on the heat transfer between the jet and an impingement plane, disregarding jet development. The present study focuses on isothermal PTIJs at moderate Reynolds numbers characteristic of air curtains. Flow visualisations with fluorescent dye and 2D particle image velocimetry (PIV) measurements have been performed. A comparison is made with previous studies of isothermal free turbulent jets at moderate Reynolds numbers. Mean and instantaneous velocity and vorticity, turbulence intensity, and Reynolds shear stress are analysed. The jet issued from the nozzle with higher aspect ratio shows more intensive entrainment and a faster decay of the centreline velocity compared to the jet of lower aspect ratio for the same value of jet Reynolds number. The profiles of centreline and cross-jet velocity and turbulence intensity show that the PTIJs behave as a free plane turbulent jet until 70-75% of the total jet height. Alongside the information obtained on the jet dynamics, the data will be useful for the validation of numerical simulations.

  5. A Single Parameter to Characterize Wall Shear Stress Developed from an Underexpanded Axisymmetric Impinging Jet

    Science.gov (United States)

    Fillingham, Patrick; Murali, Harikrishnan

    2016-11-01

    Wall shear stress is characterized for underexpanded axisymmetric impinging jets for the application of aerodynamic particle resuspension from a surface. Analysis of the flow field and the wall shear stress resulted from normally impinging axisymmetric jets is conducted using Computational Fluid Dynamics. A normally impinging jet is modeled with a constant area nozzle, while varying height to diameter ratio (H/D) and inlet pressures. Schlieren photography is used to visualize the density gradient of the flow field for validation of the CFD. The Dimensionless Jet Parameter (DJP) is developed to describe flow regimes and characterize the shear stress. The DJP is defined as being proportional to the jet pressure ratio divided by the H/D ratio squared. Maximum wall shear stress is examined as a function of DJP with three distinct regimes: (i) subsonic impingement (DJP2). Due to the jet energy dissipation in shock structures, which become a dominant dissipation mechanism in the supersonic impingement regime, wall shear stress is limited to a finite value. Additionally, formation of shock structures in the wall flow were observed for DJP>2 resulting in difficulties with dimensionless analysis. In the subsonic impingement and transitional regimes equations as a function of the DJP are obtained for the maximum wall shear stress magnitude, maximum shear stress location, and shear stress decay. Using these relationships wall shear stress can be predicted at all locations along the impingement surface.

  6. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Science.gov (United States)

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  7. Droplet impaction on solid surfaces exposed to impinging jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zia

    2005-12-15

    The thermal response of hot surfaces exposed to impinging jet fire and subsequent impacting water droplets is investigated. The research was done mainly experimentally by utilizing three different concepts. This included experiments on a laboratory scale steel plate and large outdoor fire tests with a quadratic steel channel and steel plates. Besides the horizontal jet flame itself was characterized in a comprehensive study. As a comparative study, the last three types of the experiment were additionally modeled by the CFD-code Kameleon FireEx for validation of results. The purpose of the experiments done on bench scale steel plate (L x W x T : 300 x 200 x 8 mm) was mainly to map data on wetting temperature, water droplet size, droplet impingement angle, and droplet velocity prior to large scale jet fire tests. The droplet release angle normal to hot surface gives best cooling effect, when the surface is oriented in upright position. The partial wetting begins at about 165 degrees C. When the surface is positioned in horizontal plane, the droplet of about 5 mm in diameter wets the hot surface partially at around 240-250 degrees C within an impaction distance of 20 cm. At about 150 degrees C, the droplet is entirely attached to the surface with almost zero contact angle, and cools down the solid at a critical heat flux equivalent to 1750 kW/m{sup 2}. The cooling effectiveness is about 8 % with a Weber number of 68. Although in the event of horizontal channel (L x W x T : 1000 x 200 x 8 mm) water droplets were not applied, however, the knowledge gained with jet fire tests gave valuable information about temperature progress in solids (steels and insulation) and their response to impinging jet fire during long duration experiments. The temperature of the insulated area of the channel keeps 200 degrees C below that of the exposed surface, as long as the insulation material remained intact. Upon long test fire durations, the insulation either burns or degrades despite

  8. Droplet impaction on solid surfaces exposed to impinging jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zia

    2005-12-15

    The thermal response of hot surfaces exposed to impinging jet fire and subsequent impacting water droplets is investigated. The research was done mainly experimentally by utilizing three different concepts. This included experiments on a laboratory scale steel plate and large outdoor fire tests with a quadratic steel channel and steel plates. Besides the horizontal jet flame itself was characterized in a comprehensive study. As a comparative study, the last three types of the experiment were additionally modeled by the CFD-code Kameleon FireEx for validation of results. The purpose of the experiments done on bench scale steel plate (L x W x T : 300 x 200 x 8 mm) was mainly to map data on wetting temperature, water droplet size, droplet impingement angle, and droplet velocity prior to large scale jet fire tests. The droplet release angle normal to hot surface gives best cooling effect, when the surface is oriented in upright position. The partial wetting begins at about 165 degrees C. When the surface is positioned in horizontal plane, the droplet of about 5 mm in diameter wets the hot surface partially at around 240-250 degrees C within an impaction distance of 20 cm. At about 150 degrees C, the droplet is entirely attached to the surface with almost zero contact angle, and cools down the solid at a critical heat flux equivalent to 1750 kW/m{sup 2}. The cooling effectiveness is about 8 % with a Weber number of 68. Although in the event of horizontal channel (L x W x T : 1000 x 200 x 8 mm) water droplets were not applied, however, the knowledge gained with jet fire tests gave valuable information about temperature progress in solids (steels and insulation) and their response to impinging jet fire during long duration experiments. The temperature of the insulated area of the channel keeps 200 degrees C below that of the exposed surface, as long as the insulation material remained intact. Upon long test fire durations, the insulation either burns or degrades despite

  9. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.; Narumanchi, S.; Moreno, G.

    2014-09-01

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and were used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.

  10. Mathematical modeling of a gas jet impinging on a two phase bath

    Science.gov (United States)

    Delgado-Álvárez, J.; Ramírez-Argáez, Marco A.; González-Rivera, C.

    2012-09-01

    In this work a three phase 3D mathematical model was developed using the Volume Of Fluid (VOF) algorithm, which is able to accurately describe the cavity geometry and size as well as the liquid flow patterns created when a gas jet impinges on a two phase liquid free surface. These phenomena are commonly found in steelmaking operations such as in the Electric Arc Furnace (EAF) and the Basic Oxygen Furnace (BOF) where oxygen jets impinge on a steel bath and they control heat, momentum and mass transfer. The cavity formed in the liquids by the impinging jet depends on a force balance at the free surface where the inertial force of the jet governs these phenomena. The inertial force of the jet and its angle play important roles, being the lowest angle the best choice to shear the bath and promote stronger circulation and better mixing in the liquids.

  11. Experimental study of turbulence in isothermal jet impingement at intermediate plate spacings

    Science.gov (United States)

    Landfried, D. Tyler; Valentino, Alex; Mazumdar, Sagnik; Jana, Anirban; Kimber, Mark

    2013-11-01

    One fundamental problem in fluid dynamics is that of the axisymmetric round flow impinging on a plate placed some distance downstream of the jet. Impinging jets have a rich history of applications including small plate spacings, H/D ~ 1, such as encountered in electronics cooling, or large plate spacings, H/D ~ 102, such as vertical takeoff aircrafts and rocket engines. However, intermediate plate spacings, such as the lower plenum of the next generation nuclear reactors, are not typically studied. In this paper, an experimental study is conducted investigating the effect of the impingement plate on the flow behavior compared to the near free jet behavior when the plate is removed. Using air as the working fluid, a single jet is considered at jet Reynolds numbers of 10000, 20000, and 30000. A three-wire anemometer probe is used to quantify the mean components of velocities as well as the Reynolds stress and the third-order moments in the flow field at various distances between the jet outlet and the impingement plate. When present, the impingement plate is placed a distance of 8, 11, 14, and 17 diameters downstream of the jet. Additionally trends in the kinetic energy and dissipation are investigated for validation with numerical models.

  12. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Science.gov (United States)

    Kibar, Ali

    2017-02-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface.

  13. Analytical Study on Impingement Heat Transfer with Single—Phase Free—Surface Circular Liquid Jets

    Institute of Scientific and Technical Information of China (English)

    C.F.Ma; T.Masuoka; 等

    1996-01-01

    An analytical research was conducted to study heat transfer from horizontal surfaces to normally impinging circular jets under arbitrary-heat-flux conditions.The laminar thermal and hydraulic bound ary layers were divided into five regions of flow.General expressions of heat transfer coefficients were obtained in all the four regions of stagnation and wall jet zones before the hydraulic jump.

  14. Role of the confinement of a root canal on jet impingement during endodontic irrigation

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; Heijnen, G. L.; van der Sluis, L. W. M.; Versluis, M.

    2012-01-01

    During a root canal treatment the root canal is irrigated with an antimicrobial fluid, commonly performed with a needle and a syringe. Irrigation of a root canal with two different types of needles can be modeled as an impinging axisymmetric or non-axisymmetric jet. These jets are investigated exper

  15. Self—Induced Oscillation of Supersonic Jet During Impingement on Cylindrical Body

    Institute of Scientific and Technical Information of China (English)

    HideoKashimura; ShenYu; 等

    1998-01-01

    The phenomena of the interaction between a supersonic jet and an obstacle are related to the problems of the aeronautical and other industrial engineerings.When a supersonic jet impinges on an obstacle,the self induced oscillation occurs under several conditions.The flow charactersitics caused by the impingement of underexpanded supersonic jet on an obstacle have been investigated.However,it seems that the mechanism of self induced oscillation and the factor which dominates if have not been detailed in the published papers,The characteristics of the self induced oscillation of the supersonic jet during the impingement on a cylindrical body are investigated using the visualization of flow fields and the numerical calculations in this study.

  16. Flow characteristics in free impinging jet reactor by particle image velocimetry (PIV) investigation

    Science.gov (United States)

    Zhang, Jun; Liu, Youzhi; Qi, Guisheng; Jiao, Weizhou; Yuan, Zhiguo

    2016-08-01

    The flow characteristics in free impinging jet reactors (FIJRs) were investigated using particle image velocimetry (PIV). The effects of the Reynolds number (Re) and the ratio of jet distance to jet diameter (w/d) on flow behavior were discussed for equal volumetric flow rates of the two jets. The impingement plane, instantaneous velocity, mean velocity, and turbulent kinetic energy (TKE) distribution of FIJRs are measured from captured images using the PIV technique. As Re increases, the average diameter of the impingement plane linearly increases. The instability of the liquid is closely related to the jet velocity or the Re. However, the stagnation point is insensitive to the variation of the Re. The droplets break up from the turbulent liquid in the ‘wall-free’ environment of FIJRs, so that the liquid back-flow found in confined impinging jet reactors (CIJRs) is not observed. Increasing the Re from 1800-4100 or decreasing the w/d from 20-6 plays a similar role in increasing the TKE values and intensifying turbulence, which promotes the momentum transfer and mixing efficiency in FIJRs.

  17. Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink

    Science.gov (United States)

    Naphon, Paisarn; Nakharintr, Lursukd

    2012-11-01

    The nanofluid jet impingement heat transfer characteristics in a rectangular mini-fin heat sink are studied. The heat sink is fabricated from aluminum by a wire electrical discharge machine. The nanofluid is a mixture of deionized water and nanoscale TiO2 particles with a volume nanoparticle concentration of 0.2%. The results obtained for nanofluid jet impingement cooling in the rectangular mini-fin heat sink are compared with those found in the water jet impingement cooling. The effects of the inlet temperature of the nanofluid, its Reynolds number, and the heat flux on the heat transfer characteristics of the rectangular mini-fin heat sink are considered. It is found that the average heat transfer rates for the nanofluid as coolant are higher than those for deionized water.

  18. Physical Modelling of Axisymmetric Turbulent Impinging Jets as used within the Nuclear Industry for Mobilisation of Sludges

    Energy Technology Data Exchange (ETDEWEB)

    McKendrick, D.; Biggs, S.R.; Fairweather, M. [Institute of Particle Science and Engineering, University of Leeds, Leeds (United Kingdom); Rhodes, D. [Nexia Solutions, Sellafield, Seascale, Cumbria (United Kingdom)

    2008-07-01

    The impingement of a fluid jet onto a surface has broad applications across many industries. Within the UK nuclear industry, during the final stages of fuel reprocessing, impinging fluid jets are utilised to mobilise settled sludge material within storage tanks and ponds in preparation for transfer and ultimate immobilisation through vitrification. Despite the extensive applications of impinging jets within the nuclear and other industries, the study of two-phase, solid loaded, impinging jets is limited, and generally restricted to computational modelling. Surprisingly, very little fundamental understanding of the turbulence structure within such fluid flows through experimental investigation is found within the literature. The physical modelling of impinging jet systems could successfully serve to aid computer model validation, determine operating requirements, evaluate plant throughput requirements, optimise process operations and support design. Within this project a method is illustrated, capable of exploring the effects of process and material variables on flow phenomena of impinging jets. This is achieved via the use of non-intrusive measurement techniques Particle Image Velocimetry (PIV), Ultrasonic Doppler Velocity Profiler (UDVP) and high speed imaging. The turbulence structure for impinging jets, and their resultant radial wall jets, is presented at different jet-to-plate ratios, jet Reynolds numbers and jet outlet diameters. (authors)

  19. Computational flow and heat transfer of a row of circular jets impinging on a concave surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B.V.N.R.; Prasad, B.V.S.S.S. [Indian Institute of Technology Madras, Thermal Turbomachines Lab, Chennai (India)

    2008-04-15

    A computational investigation is carried out to study the flow and heat transfer from a row of circular jets impinging on a concave surface. The computational domain simulates the impingement cooling zone of a gas turbine nozzle guide vane. The parameters, which are varied in the study include jet Reynolds number (Re{sub d} = 5000-67800), inter-jet distance to jet diameter ratio (c/d = 3.33 and 4.67) and target plate distance to jet diameter ratio (H/d = 1, 3 and 4). The flow field, predicted with K-{omega} turbulence model and using Fluent 6.2.16, is characterized with the presence of a pair of counter rotating vortices, an upwash fountain flow and entrainment. The local pressure coefficient and Nusselt number variations along the concave plate are presented and these values are found to under predict the available experimental data by about 12%. (orig.)

  20. Imaging flow during impingement of differentially heated jets over a flat surface

    Energy Technology Data Exchange (ETDEWEB)

    Rathee, Yogender; Vinoth, B.R.; Panigrahi, P.K., E-mail: panig@iitk.ac.in; Muralidhar, K.

    2015-12-01

    Highlights: • We carried out experiments to model thermal striping phenomenon in LMFBR. • We examined temperature fluctuation in flow field using shadowgraphy. • We correlated the wall temperature fluctuations to flow fluctuations. • The PIV measurements showed a distinct recirculation zone for equal velocity jets. • Equal velocity jets show highest temperature fluctuations. - Abstract: The present study investigates thermal fluctuations occurring in the mixing region of two adjacent differentially heated water jets impinging on a horizontal stainless steel surface. The nozzle diameters of the individual jets are equal. The jets are immersed in a pool of water at the ambient temperature. The Reynolds number range considered in the experiments is 2.09 × 10{sup 3}–2.51 × 10{sup 4} for each jet, while the Richardson number is in the range of 9.58 × 10{sup −3}–1.38 × 10{sup −2}. Light intensity fluctuations in the interfacial region of the jets are imaged using the shadowgraph technique. Particle image velocimetry (PIV) has been carried out in a plane passing across the two jets. The effect of various flow rates near the nozzles and the impingement plate are visualized. Time-averaged and RMS temperature fluctuations on the exposed face of the impingement plate are measured using thermocouples. Spectra of light intensity fluctuations determined from the shadowgraph data are correlated with those in wall temperature. Light intensity spectra grow in amplitude in the flow direction, as additional jet instabilities set in. The spectra are broadband with distinct peaks, typical of high Reynolds number jets. Time-averaged and RMS wall temperature distribution are quite distinct from those of light intensity within the impinging jets. Consistent with a wall-jet behavior, the largest RMS wall temperature occurs near the stagnation point and decays away from it. The gradient in the time-averaged wall temperature is the highest for equal velocity jets and

  1. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  2. Convective heat transfer under unsteady impinging jets: the effect of the shape of the unsteadiness

    Science.gov (United States)

    Middelberg, G.; Herwig, H.

    2009-10-01

    Unsteady impinging jets are systematically controlled with respect to their time dependence in order to investigate the influence of unsteadiness on the heat transfer performance. This is achieved by a special mass flow control device, which allows almost arbitrary shapes of unsteadiness to be imposed onto the impinging jet. Three different standard signals (sinusoidal, triangular, rectangular) and two specially designed signals are applied and their influence on heat transfer is determined in terms of an enhancement factor. Heat transfer augmentation up to 30% was found and could be physically explained with the help of PIV and hot-wire measurements of the flow field.

  3. NUMERICAL SIMULATION OF THE FORMATION OF NANOPARTICLES IN AN IMPINGING TWIN-JET

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Large Eddy Simulation (LES) method has been used to solve the fluid momentum equations coupled with a convection-diffusion equation to study the formation of pollutant nanoparticles in a vehicular exhaust with impinging twin-jet. The functions of the space (S) between the two jets and the distance (H) from the exit of nozzle to the impingement plane are evaluated according to the distributions of pollutant nanoparticles. The results show that the nucleation produces a large number of nanoparticles, and gas-to-nanoparticle conversion mostly takes place in the interface region of the two jets, the circumambience of the jets, and region near the plane. The maximal particle size and maximal number concentration produced by both nucleation and coagulation appear around the region of free jet and the region near the plane, respectively. The significant differences for various spaces between the two jets are the number concentration and size distributions in the interface region of the two jets. For the case with larger space, more nanoparticles are produced by nucleation and coagulation. The more the distance from the exit of nozzle to the impingement plane, the lower is the number concentration and the fewer the particles distribute near the plane. Increasing the distance from nozzle to plane is beneficial to the reduction of nanoparticle formation.

  4. Turbulent heat transfer for impinging jet flowing inside a cylindrical hot cavity

    Directory of Open Access Journals (Sweden)

    Halouane Yacine

    2015-01-01

    Full Text Available Convective heat transfer from an isothermal hot cylindrical cavity due to a turbulent round jet impingement is investigated numerically. Three-dimensional turbulent flow is considered in this work. The Reynolds stress second order turbulence model with wall standard treatment is used for the turbulence predictions the problem parameters are the jet exit Reynolds number, ranging from 2x104 to 105and the normalized impinging distance to the cavity bottom and the jet exit Lf, ranging from 4 to 35. The computed flow patterns and isotherms for various combinations of these parameters are analyzed in order to understand the effect of the cavity confinement on the heat transfer phenomena. The flow in the cavity is divided into three parts, the area of free jet, and the area of the jet interaction with the reverse flow and the semi-quiescent flow in the region of the cavity bottom. The distribution of the local and mean Nusselt numbers along the cavity walls for above combinations of the flow parameters are detailed. Results are compared against to corresponding cases for impinging jet on a plate for the case of the bottom wall. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number. Finally, it was found that the average Nusselt number at the stagnation point could be correlated by a relationship in the form Nu=f(Lf,Re.

  5. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary la...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible.......Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary....... The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas...

  6. Jet Impingement Heat Transfer at High Reynolds Numbers and Large Density Variations

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary la...... density from the ideal gas law versus real gas data. In both cases the effect was found to be negligible........ The results also show a noticeable difference in the heat transfer predictions when applying different turbulence models. Furthermore calculations were performed to study the effect of applying temperature dependent thermophysical properties versus constant properties and the effect of calculating the gas......Jet impingement heat transfer from a round gas jet to a flat wall has been investigated numerically in a configuration with H/D=2, where H is the distance from the jet inlet to the wall and D is the jet diameter. The jet Reynolds number was 361000 and the density ratio across the wall boundary...

  7. THREE-DIMENSIONAL MEAN AND TURBULENCE CHARACTERISTICS OF AN IMPINGING DENSITY JET IN A CONFINED CROSSFLOW IN NEAR FIELD

    Institute of Scientific and Technical Information of China (English)

    FAN Jing-yu; WANG Dao-zeng; ZHANG Yan

    2004-01-01

    The three-dimensional mean and turbulence characteristics of an impinging density jet in a confined crossflow were numerically investigated using the RNG turbulence model. The comparison of the subregion structures and gross features between the numerical results and the experimental data show good agreement. The velocity, Turbulent Kinetic Energy (TKE) and concentration distributions of the impinging jet in near field were obtained and analyzed. The results indicate that the flow and concentration fields of the impinging jet in the crossflow exhibit distinguished three-dimensionality in the near field. There exist upstream wall vortices and downstream wall jet zones in the impinging region, and the TKE and concentration decays are asymmetrical in relation to the stagnation point. The lateral concentration distribution range in the impinging region spreads considerably. The enhanced entrainment and mixing of the impinging jet in the confined crossflow are mostly associated with the impinging action and lateral expansion in the impinging region. The presence of the bottom wall restrains the formation of the spanwise rollers in the transverse jet region and vertical entrainment and mixing in the impinging region and the transition region.

  8. Investigation of impinging jet resonant modes using unsteady pressure-sensitive paint measurements

    Science.gov (United States)

    Davis, Timothy; Edstrand, Adam; Alvi, Farrukh; Cattafesta, Louis; Yorita, Daisuke; Asai, Keisuke

    2015-05-01

    At given nozzle to plate spacings, the flow field of high-speed impinging jets is known to be characterized by a resonance phenomenon. Large coherent structures that convect downstream and impinge on the surface create strong acoustic waves that interact with the inherently unstable shear layer at the nozzle exit. This feedback mechanism, driven by the coherent structures in the jet shear layer, can either be axisymmetric or helical in nature. Fast-response pressure-sensitive paint (PSP) is applied to the impingement surface to map the unsteady pressure distribution associated with these resonant modes. Phase-averaged results acquired at several kHz are obtained using a flush mounted unsteady pressure transducer on the impingement plate as a reference signal. Tests are conducted on a Mach 1.5 jet at nozzle to plate spacings of . The resulting phase-averaged distribution reveals dramatically different flow fields at the corresponding impingement heights. The existence of a purely axisymmetric mode with a frequency of 6.3 kHz is identified at and is characterized by concentric rings of higher/lower pressure that propagate radially with increasing phase. Two simultaneous modes are observed at with one being a dominant symmetric mode at 7.1 kHz and the second a sub-dominant helical mode at 4.3 kHz. Complimentary phase-conditioned Schlieren images are also obtained visualizing the flow structures associated with each mode and are consistent with the PSP results.

  9. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  10. Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S. K.; Narumanchi, S.; Mihalic, M.; Moreno, G.; Bennion, K.; Jeffers, J.

    2014-08-01

    Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should hold for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.

  11. Flow pulsation in the near-wall layer of impinging jets

    Science.gov (United States)

    Tesař, V.

    2013-04-01

    Pulsation of impinging jets promises to become a useful way towards achieving the highest possible rate of passive scalar convective transport between fluid and a wall. Author investigated experimentally steady and pulsated impingement by hot-wire anemometer traversing along a radial line at a small height above the impingement wall. The data have shown two conspicuous local maxima of fluctuation intensity. In an attempt to reach understanding of these phenomena, numerical flowfield computations were also made, fitted to the experimental conditions. Despite simplification (isotropic handling of unsteadiness, eddies computed as Reynolds-type phase averages) the synergetic approach (experiment & computation) revealed interesting correlation and resulted in useful interpretations of the old problem of the off-axis extremes - and also brings new views on their behaviour in the pulsating jet case.

  12. Heat transfer of impinging jet-array over convex-dimpled surface

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shyy Woei [Thermal Fluids Laboratory, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143, Taiwan (China); Jan, Yih Jena; Chang, Shuen Fei [Department of Marine Engineering, National Kaohsiung Marine University, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81143, Taiwan (China)

    2006-08-15

    A detailed heat transfer measurement over a convex-dimpled surface of impinging jet-array with three eccentricities (E/H) between jet-centre and dimple-centre is performed. These surface dimples considerably modify heat transfers from smooth-walled scenarios due to different impinging topologies for jet array with modified inter-jet reactions. Heat transfer variations caused by adjusting jet Reynolds number (Re) and separation distance (S/D{sub j}) over the ranges of 5000=jet region of dimpled impinging surface. (author)

  13. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  14. Impinging jet study of the deposition of colloidal particles on synthetic polymer (Zeonor)

    DEFF Research Database (Denmark)

    Vlček, Jakub; Lapčík, Lubomír; Cech, Jiri

    2014-01-01

    In this study, an impinging jet deposition experiments were performed on synthetic polymer (Zeonor) original and by micro-embossing modified substrates with exactly defined topology as confirmed by AFM and SEM. Deposition experiments were performed at ambient temperature and at selected flow regime...

  15. Programmed automation of modulator cold jet flow for comprehensive two-dimensional gas chromatographic analysis of vacuum gas oils.

    Science.gov (United States)

    Rathbun, Wayne

    2007-01-01

    A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types.

  16. Numerical Investigation on Jet Impingement Behaviors Affected by a Vertically Rotating Disk Suspended Close to the Surface

    Directory of Open Access Journals (Sweden)

    Liu Bo

    2014-01-01

    Full Text Available A simplified physical model is built up to study the swirl flow effect induced by a rotating disk on the jet impingement behaviors, which is adopted to simulate the grinding process. To solve the definition problem of the interface between a rotating disk and a stationary plate in the computational simulation, a tiny gap is set between the rotating disk and the stationary plate. The results show that the rotating disk suspended above the surface adds more complexity to the flow field of jet impingement on a stationary plate. The swirling flow around the rotating disk obstructs the impinging jet flow to penetrate into the interfacial contact zone and forces the wall jet across the rotating disk to flow along transverse directions. For the given jet impinging velocity and nozzle orientation, as the disk rotational speed increases, the effect of the rotating disk on the impinging jet flow behaves more significantly. The impinging jet with small inject velocity is difficult to penetrate through the interfacial contact zone to follow by the disk swirl flows. For smaller jet impinging distance or larger oblique angle, the flow recirculation away from the interfacial contact zone becomes stronger.

  17. Ablation characteristics of special concrete due to an impinging zirconium-dioxide melt jet

    Energy Technology Data Exchange (ETDEWEB)

    An, S.M., E-mail: sangmoan@kaeri.re.kr; Ha, K.S.; Min, B.T.; Kim, H.Y.; Song, J.H.

    2015-04-01

    Highlights: • The jet impingement tests were performed for a special concrete of core-catcher. • The ablation rate and depth were measured 1.59 mm/s and 4.33 mm, respectively. • The experimental results were estimated well between the model prediction bounds. • The material ablation was described reasonably by a convective heat transfer model. - Abstract: Jet impingement experiments were performed to investigate the ablation characteristics of special concrete, which has been developed as one of the candidate protecting materials for the EU-APR1400 ex-vessel core catcher. In order to simulate the jet impingement phenomenon owing to the reactor vessel failure during a severe core meltdown accident, the experimental facility was established and the experimental conditions were determined based on parametric studies. The special concrete specimen was manufactured in accordance with the standard procedures, and its microstructures and physicochemical properties were analyzed to verify the requirements for the qualification. An induction melting technique in a cold crucible was employed to generate the zirconium-dioxide melt as a simulant of the corium melt. The special concrete was ablated uniformly over the impact area by jet impingement, and the average ablation depth was measured to be 4.33 mm. The average ablation rate in depth was evaluated as 1.59 mm/s using the temperature measurements of the specimen. As compared with the predictions by the models based on the convective and radiative heat transfer analysis, both the measured ablation rate and depth were estimated appropriately within the bounds of their limits. However, the convective heat transfer model turned out to predict the ablation characteristics of the special concrete more reasonably during the jet impingement even though some water content within the special concrete could lead to a sudden generation of the steam layer through which the material ablation is attenuated substantially by the

  18. Experimental study of slot jet impingement heat transfer on a wedge-shaped surface

    Science.gov (United States)

    Rahimi, Mostafa; Irani, Mohammad

    2012-12-01

    An experimental investigation was conducted to study the convective heat transfer rate from a wedge-shaped surface to a rectangular subsonic air jet impinging onto the apex of the wedge. The jet Reynolds number, nozzle-to-surface distance and the wedge angle were considered as the main parameters. Jet Reynolds number was ranged from 5,000 to 20,000 and two dimensionless nozzle-to-surface distances h/w = 4 and 10 were examined. The apex angle of the wedge ranged from 30° to 180° where the latter case corresponds with that of a flat surface. Velocity profile and turbulence intensity were provided for free jet flow using hot wire anemometer. Local and average Nusselt numbers on the impinged surface are presented for all the configurations. Based on the results presented, the local Nusselt number at the stagnation region increases as the wedge angle is decreased but, it then decreases over the remaining area of the impinged surface. Average Nusselt number over the whole surface is maximum when the wedge angle is 180° (i.e. plane surface) for any jet and nozzle-to-surface configuration.

  19. LARGE-SCALE VORTICAL STRUCTURES PRODUCED BY AN IMPINGING DENSITY JET IN SHALLOW CROSSFLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model.The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.

  20. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT Collector with Jet Impingement and Compound Parabolic Concentrator (CPC

    Directory of Open Access Journals (Sweden)

    Ahed Hameed Jaaz

    2017-08-01

    Full Text Available This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT collector and compound parabolic concentrators (CPC on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C. It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  1. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H.; Gaaz, Tayser Sumer

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC. PMID:28763048

  2. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    Science.gov (United States)

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  3. Measurement of Turbulence Energy Balance in a Two-Dimensional Wall Jet along a Plane Surface

    OpenAIRE

    藤沢, 延行; 白井, 紘行

    1987-01-01

    The sructure of turbulence in a wall jet along a plane surface is investigated by measuring the balance of turbulence energy. With the aid of a hot-wire anemometer system, convection velocities of small-scale turbulent motion are measured as well as other time-averaged flow properties and turbulence characteristics. It is found that the convection velocity of small-scale turbulence deviates significantly from the mean flow velocity, that is, Taylor's hypothesis is not valid for the present wa...

  4. Noise Characteristics of a Four-Jet Impingement Device Inside a Broadband Engine Noise Simulator

    Science.gov (United States)

    Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.; Hutcheson, Florence V.

    2015-01-01

    The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order accurate weighted essentially non-oscillatory shock-capturing scheme. Impinging jet devices are often used as an experimental apparatus to emulate a broadband noise source. Although such devices have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. Thus, the underlying physical mechanisms that are responsible for the generation of sound waves are not well understood. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition of the flow field is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortex tubes in the center of the impingement region. The causality method based on Lighthill's acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term in the Lighthill's stress tensor plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a reduced-order linear acoustic model of the four-jet impingement device. Finally, three linear acoustic FJID models are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  5. Density Models for Velocity Analysis of Jet Impinged CEDM Missile

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Won Ho; Kang, Tae Kyo; Cho, Yeon Ho; Chang, Sang Gyoon; Lee, Dae Hee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-05-15

    A control element drive mechanism (CEDM) can be a potential missile in the reactor head area during one of the postulated accidents. The CEDM is propelled by the high speed water jet discharged from a broken upper head nozzle. The jet expansion models to predict the missile velocity have been investigated by Kang et al. The previous work of Kang et al. showed a continuous increase in missile velocity as the CEDM missile travels. But it is not natural in that two phase flow from the nozzle break exit tends to disperse and the thrust force on the missile decreases along the distance of the travel. The jet flow also interacts with the air surrounding itself. Therefore, the density change has to be included in the estimation of the missile velocity. In this paper, two density change models of the water jet are introduced for the jet expansion models along with the distance from the nozzle break location. The first one is the direct approximation model. Two density approximation models are introduced to predict the CEDM missile velocity. For each model, the effects of the expanded jet area were included as the area ratio to the exit nozzle area. In direct approximation model, the results have showed rapid decrease in both density and missile velocity. In pressure approach model, the density change is assumed perfectly proportional to the pressure change, and the results showed relatively smooth change in both density and missile velocity comparing to the direct approximation model. Using the model developed by Kang et al.., the maximum missile velocity is about 4 times greater comparing to the pressure approach model since the density is constant as the jet density at the nozzle exit in their model. Pressure approach model has benefits in that this model adopted neither curve fitting nor extrapolation unlike the direct approximation model, and included the effects of density change which are not considered in the model developed by Kang et al. So, this model is

  6. Profiling Jet Fuel on Neurotoxic Components With Comprehensive Two-Dimensional GC

    Science.gov (United States)

    2007-11-01

    vapor at -10 °C,( Ib ). 56 Table 9; Concentration time course of 8 neurotoxic components in JP-8 vapor at -10 °C,(Ia). 57 Table 10; Concentration...time course of 8 neurotoxic components in JP-8 vapor at -10 °C,( Ib ). 58 Table 11; Concentration time course of 9 neurotoxic components in JP-8 vapor...aerosol-vapor JP-8 jet fuel exposure affects neurobehavior and neurotransmitter levels in a rat model. J. Toxicol. Environ. Health A., (2007), 70, 1203

  7. Unsteady Correlation between pressure and Temperature Field on Impinging Plate for Dual Underexpanded Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Hiroyuki HIGA; MATSUDA; lzuru SENAHA

    2009-01-01

    eady behavior of the jets. After the confirmation of the cor-relation, a simple way to find the severe fluctuating region can be provided according to the two dimensional un-steady temperature images without a lot of unsteady pressure measurements.

  8. LARGE EDDY SIMULATION OF VERTICAL JET IMPINGEMENT WITH A FREE SURFACE

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-ping; LI Chi-wai; ZHANG Chang-kuang

    2006-01-01

    The flow characteristics of a 2D slot jet vertically impinging on free surfaces are numerically investigated by the Large Eddy Simulation (LES) with a dynamic Sub-Grid Scale (SGS) model. The σ-coordinate transformation is introduced to map the depth-variable physical domain to a depth-uniform computational domain. The split-operator scheme, which splits the solution procedure into advection, diffusion and pressure propagation steps, is employed to solve the instantaneous velocity and pressure field. A fully nonlinear Lagrange-Euler method is used to compute the free surface elevation. The numerical results show that the jet retains good self-similarity in the Zone of Eestablished Flow (ZEF), while the turbulence of jet shifts gradually from isotropic to anisotropic in the Zone of Surface Impingement (ZSI). When the jet approaches the free surface, the centerline velocity decreases rapidly and the flow is deflected by the free surface. Two symmetrical surface jets are formed in the Zone of Horizontal Jets (ZHJ). An approximate Guassian distribution of super-elevation is also formed on the free surface. The computed results are in good agreement with the available experimental data.

  9. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  10. Numerical Investigation on Slot air Jet impingement Heat Transfer between Horizontal Concentric Circular Cylinders

    Directory of Open Access Journals (Sweden)

    Arash Azimi

    2015-04-01

    Full Text Available Numerical study has been carried out for slot air jet impingement cooling of horizontal concentric circular cylinders. The slot air jet is situated at the symmetry line of a horizontal cylinder along the gravity vector and impinges to the bottom of the outer cylinder which is designated as θ=0°. The outer cylinder is partially opened at the top with width of W=30mm and is kept at constant temperature T= 62°C. Inner cylinder which is a part of the slot jet structure is chosen to be insulated. The effects of jet Reynolds number in the range of 100≤ Rej ≤1000 and the ratio of spacing between nozzle and outer cylinder surface to the jet width for H=4.2 and H=12.5 on the local and average Nusselt numbers are examined. In the numerical study, FLUENT CFD package is used and validated by comparing the results with the experimental data at the same Reynolds number. It is observed that the maximum Nusselt number occurs at the stagnation point at (θ=0° and the local heat transfer coefficient decrease on the circumference of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.

  11. Particle removal process during application of impinging dry ice jet

    OpenAIRE

    Liu, Yi-Hung; Hirama, Daisuke; Matsusaka, Shuji

    2012-01-01

    In this study, we have investigated the application of dry ice blasting to remove fine particles adhering to surfaces and examined the removal process. The removal efficiency, area, and frequency have been analyzed using images captured with a high-speed microscope camera. In addition, the temperature of the dry ice jet has been measured in order to evaluate the dry ice particles and their effects on the particle removal process. The removal processes due to the impacts of primary dry ice par...

  12. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    Science.gov (United States)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  13. Analysis of disagreement between numerically predicted and experimental heat transfer data of impinging jet

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ping; YE Liang-chun; ZHOU Jie-min; YANG Ying

    2006-01-01

    The method of numerical simulation was applied to investigate the effects of jet impinging plate thickness and its thermal conductivity on the local heat flux distribution along the impinging plate. The results show that the two factors have great effects on the heat flux distribution. The non-uniformity of the local heat-flux on the impinging plate surface gets more profound as the plate becomes thicker and thermal conductivity gets larger. When Reynand even for the plate with only 25 μm in thickness, the non-uniformity of the heat flux cannot be neglected. When approximately treated as an iso-heat-flux boundary. In the experimental research, a real non-iso-heat-flux boundary is treated as an iso-heat-flux boundary, which would result in under-estimated Nusselt number value in the stagnation zone and an over-estimated value outside. Such an experimental Nusselt number distribution is taken to evaluate turbulent model, and the conclusion would be drawn that the turbulent model over-predicts the stagnation heat transfer. This is one of the important reasons why many literatures reported that k-ε turbulent model dramatically over-predicts the impinging jet heat transfer in the stagnation region.

  14. Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet

    CERN Document Server

    Harmand, Souad; Poncet, Sébastien; Shevchuk, Igor V; 10.1016/j.ijthermalsci.2012.11.009

    2013-01-01

    Fluid flow and convective heat transfer in rotor-stator configurations, which are of great importance in different engineering applications, are treated in details in this review. The review focuses on convective heat transfer in predominantly outward air flow in the rotor-stator geometries with and without impinging jets and incorporates two main parts, namely, experimental/theoretical methodologies and geometries/results. Experimental methodologies include naphthalene sublimation techniques, steady state (thin layer) and transient (thermochromic liquid crystals) thermal measurements, thermocouples and infra-red cameras, hot-wire anemometry, laser Doppler and particle image velocimetry, laser plane and smoke generator. Theoretical approaches incorporate modern CFD computational tools (DNS, LES, RANS etc). Geometries and results part being mentioned starting from simple to complex elucidates cases of a free rotating disk, a single disk in the crossflow, single jets impinging onto stationary and rotating disk,...

  15. Dynamics of fine particles during impingement of jets on a body with a needle

    Science.gov (United States)

    Alkhimov*, A. P.; Bedarev, I. A.; Fedorov, A. V.

    2013-07-01

    Numerical simulation of the impingement of a jet of a two-phase mixture of a gas with submicron metal particles on an obstacle with a needle located in front of it is carried out. The structure of a separated flow formed on impingement of a supersonic jet on a body with a needle has been studied. A comparison of various approximations for the law of resistance of spherical particles is made. It is shown that particles whose size exceeds 5 μm practically have a rectilinear trajectory and velocity sufficient for cold gas-dynamical deposition, whereas particles of diameter less than 0.2 μm envelope the separation zone being formed near the needle, and their velocity is much smaller than the critical one.

  16. Numerical study of an impinging jet to a turbulent channel flow in a T-Junction configuration

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis

    2016-11-01

    In this talk we report on Large Eddy Simulations of an impinging planar jet to a turbulent channel flow in a T-Junction configuration. Due to its capacity for mixing and heat transfer enhancement, this type of flow is encountered in various industrial applications. In particular, our work is related to the emergency cooling systems of pressurized water reactors. As is well known, this type of flow is dominated by a large separation bubble downstream the jet impingement location. Secondary regions of flow separation are predicted both upstream and downstream the impinging jet. We describe how these separation regions interact with the shear layer that is formed by the injection of the jet to the crossflow, and how they affect the mixing process. In our talk we further examine the influence of the jet's velocity to characteristic quantities of the jet, such as penetration length and expansion angle, as well as to the first and second-order statistics of the flow.

  17. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    Forcing in a High Pressure Environment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mario Roa, S. Alex Schumaker...disclose the work. PA Clearance Number: 16308 Clearance Date: 6/17/2016 13. SUPPLEMENTARY NOTES For presentation at AIAA Propulsion and Energy; Salt...the coupling between the impact waves created by impinging jets and high frequency acoustic pressure perturbations. High speed, backlit imaging was

  18. Experiments and Modeling of Impinging Jets and Premixed Hydrocarbon Stagnation Flames

    Science.gov (United States)

    2005-05-26

    coupling of the acoustic properties of the two jets could lead to oscillations and instabilities in the flames. Impinging-jet flames are found to be more...the Knudsen-Weber slip correction factor [see Eq. (A.10)], τS is the Stokes time, and σ = dup/dx ∼= duf /dx is the (local) velocity gradient [see...that act on a particle in a typical flow are ΣF = FPG + FFI + FUD + FG + FSD + FTP , (A.2) where FPG = ρf ρp mp duf dt (A.3) is the pressure-gradient

  19. Rupture of thin liquid films induced by impinging air-jets.

    Science.gov (United States)

    Berendsen, Christian W J; Zeegers, Jos C H; Kruis, Geerit C F L; Riepen, Michel; Darhuber, Anton A

    2012-07-01

    Thin liquid films on partially wetting substrates are subjected to laminar axisymmetric air-jets impinging at normal incidence. We measured the time at which film rupture occurs and dewetting commences as a function of diameter and Reynolds number of the air-jet. We developed numerical models for the air flow as well as the height evolution of the thin liquid film. The experimental results were compared with numerical simulations based on the lubrication approximation and a phenomenological expression for the disjoining pressure. We achieved quantitative agreement for the rupture times. We found that the film thickness profiles were highly sensitive to the presence of minute quantities of surface-active contaminants.

  20. Erosion onset of a cohesionless granular medium by an immersed impinging round jet

    Science.gov (United States)

    Brunier-Coulin, Florian; Cuéllar, Pablo; Philippe, Pierre

    2017-03-01

    Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results.

  1. A Study of Under-expanded Moist Air Jet Impinging on a Flat Plate

    Institute of Scientific and Technical Information of China (English)

    Yumiko OTOBE; Shigeru MATSUO; Masanori TANAKA; Hideo KASHIMURA; Heuy-Dong KIM; Toshiaki SETOGUCHI

    2005-01-01

    When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is under-expanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with non-equilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics are not known satisfactorily. In the present study, the effect of the non-equilibrium condensation on the under-expanded air jet impinging on a vertical flat plate is investigated numerically in the case with non-equilibrium condensation, frequency of oscillation for the flow field becomes larger than that without the non-equilibrium condensation, and amplitudes of static pressure become small compared with those of dry air. Furthermore, the numerical results are compared with experimental ones.

  2. On the correspondence between flow structures and convective heat transfer augmentation for multiple jet impingement

    Science.gov (United States)

    Terzis, Alexandros

    2016-09-01

    The correspondence between local fluid flow structures and convective heat transfer is a fundamental aspect that is not yet fully understood for multiple jet impingement. Therefore, flow field and heat transfer experiments are separately performed investigating mutual-jet interactions exposed in a self-gained crossflow. The measurements are taken in two narrow impingement channels with different cross-sectional areas and a single exit design. Hence, a gradually increased crossflow momentum is developed from the spent air of the upstream jets. Particle image velocimetry (PIV) and liquid crystal thermography (LCT) are used in order to investigate the aerothermal characteristics of the channel with high spatial resolution. The PIV measurements are taken at planes normal to the target wall and along the centreline of the jets, providing quantitative flow visualisation of jet and crossflow interactions. Spatially resolved heat transfer coefficient distributions on the target plate are evaluated with transient techniques and a multi-layer of thermochromic liquid crystals. The results are analysed aiming to provide a better understanding about the impact of near-wall flow structures on the convective heat transfer augmentation for these complex flow phenomena.

  3. Two-Dimensional Microdischarge Jet Array in Air: Characterization and Inactivation of Virus

    Science.gov (United States)

    Nayak, Gaurav

    Cold atmospheric pressure plasmas (CAPs) have proven to be quite effective for surface disinfection, wound healing and even cancer treatment in recent years. One of the major societal challenges faced today is related to illness caused by food-borne bacteria and viruses, particularly in minimally processed, fresh or ready-to-eat foods. Gastroenteritis outbreaks, caused, for example, by the human Norovirus (NV) is a growing concern. Current used technologies seem not to be fully effective. In this work we focus on a possible solution based on CAP technology for surface disinfection. Many discharge sources have been studied for disinfection and the two major challenges faced are the use of expensive noble gases (Ar/He) by many plasma sources and the difficulty to scale up the plasma devices. The efficacies of these devices also vary for different plasma sources, making it difficult to compare results from different research groups. Also, the interaction of plasma with the biological matter is not understood well, particularly for virus. In this work, a two-dimensional array of micro dielectric barrier discharge is used to treat Feline Calicivirus (FCV), which is a surrogate for human Norovirus. The plasma source can be operated with an air flow rate (up to 94 standard liters per minute or slm). The use of such discharge source also raises important scientific questions which are addressed in this work. These questions include the effect of gas flow rate on discharge properties and the production of reactive species responsible for virus inactivation and the underlying inactivation mechanism. The plasma source is characterized via several diagnostic techniques such as current voltage measurements for electrical characterization and power measurements, optical emission spectroscopy (OES) to determine the gas temperature, cross-correlation spectroscopy (CCS) for microdischarge evolution and timescales, UV absorption spectroscopy to measure the O3 density, absolute IR

  4. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  5. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    Science.gov (United States)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2017-02-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  6. Experimental investigation of influence of Reynolds number on synthetic jet vortex rings impinging onto a solid wall

    Science.gov (United States)

    Xu, Yang; He, GuoSheng; Kulkarni, Varun; Wang, JinJun

    2017-01-01

    Time-resolved particle image velocimetry was employed to study the effect of Reynolds number ( Re sj) on synthetic jet vortex rings impinging onto a solid wall. Four Reynolds numbers ranging from 166 to 664 were investigated for comparison while other parameters were kept constant. It is found that the Reynolds number has a significant impact on the spatial evolution of near-wall vortical structures of the impinging synthetic jet. Velocity triple decomposition reveals that periodic Reynolds shear stresses produced by both impinging and secondary vortex rings agree well with a four-quadrant-type distribution rule, and the random velocity fluctuations are strengthened as Re sj increases. For radial wall jet, radial velocity profiles exhibit a self-similar behavior for all Re sj, and this self-similar profile gradually deviates from the laminar solution as Re sj is increased. In particular, the self-similar profile for low Re sj (166) coincides with the laminar solution indicating that periodic velocity fluctuations produced by vortex rings have little effect on the velocity profile of the laminar wall jet. This also provides evidence that the impinging synthetic jet is more effective in mixing than the continuous jet for the laminar flow. For the high Re sj, the mean skin friction coefficient has a slower decay rate after reaching peak, and the radial momentum flux has a higher value at locations far away from the impingement region, both of these can be attributed to the enhanced random fluctuations.

  7. Influence of Wall Position on Flow Characteristics of an Impinging Jet

    Directory of Open Access Journals (Sweden)

    Pratik Tiwari,

    2014-03-01

    Full Text Available The study intends physical insight into heterogeneous phenomena of efflux from a small opening impinging on a surface. The work aims at understanding the role of wall location and orientation on flow characteristics of an impinging jet. Experiments were performed on an existing cascade tunnel with flow ejected at a velocity of 37 m/s from a small opening of (30 cm × 9 cm and corresponding flow features were analyzed. Results show that outside the core region, the flow experiences a monotonic reduction with increase in distance along streamline and radial direction. The orientation of wall is more efficient in bringing substantial change when placed closer to the exit (low velocity losses. The wall orientation primarily governs the chances of strong flow deflection or back flow losses. Wall placed far away from exit results in diminishing returns with a critical value beyond which the flow characteristics become insensitive of wall orientation.

  8. Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing

    Science.gov (United States)

    Michel, Monica; Desai, Jay A.; Biswas, Chandan; Kaul, Anupama B.

    2016-12-01

    Stable ink dispersions of two-dimensional-layered-materials (2DLMs) MoS2 and graphite are successfully obtained in organic solvents exhibiting a wide range of polarities and surface energies. The role of sonication time, ink viscosity and surface tension is explored in the context of dispersion stability using these solvents, which include N-methyl-2-pyrrolidone (NMP), N,N-Dimethylacetamide (DMA), dimethylformamide (DMF), Cyclohexanone (C), as well as less-toxic and more environmentally friendly Isopropanol (IPA) and Terpineol (T). The ink viscosity is engineered through the addition of Ethyl-Cellulose (EC) which has been shown to optimize the jettability of the dispersions. In contrast to prior work, the addition of EC after sonication—instead of prior to it—is noted to be effective in generating a high-density dispersion, yielding a uniform film morphology. High-quality inks are obtained using C/T and NMP as solvents for MoS2 and graphite, respectively, as gauged through optical absorption spectroscopy. Electronic transport data on the solution-cast inks is gathered at room temperature. Arrays of 2D graphite-rod based inks are printed on rigid Si, as well as flexible and transparent polyethylene terephthalate (PET) substrates. The results clearly show the promise of ink-jet printing for casting 2DLMs into hierarchically assembled structures over a range of substrates for flexible and printed-electronics applications.

  9. Simulation of Flow and Heat Transfer of Mist/Air Impinging Jet on Grinding Work-Piece

    OpenAIRE

    Fan Jiang; Han Wang; Yijun Wang; Jianhua Xiang

    2016-01-01

    The numerical investigation is presented for flow and heat transfer on grinding work-piece with mist/air impinging jet by using DPM (discrete phase model) model. The tracks of the mist droplets show most of them are accumulated on the right surface of grinding zone, and can be influenced by the rotating speed of the grinding wheel, the position and the number of the jet nozzle. The mechanism model of enhance cooling by mist/air impinging jet is developed, which indicated the mist droplet is a...

  10. Numerical investigation of heat transfer performance of synthetic jet impingement onto dimpled/protrusioned surface

    Directory of Open Access Journals (Sweden)

    Zhang Di

    2015-01-01

    Full Text Available Dynamic mesh methods and user defined functions are adopted and the shear stress transport k-ω turbulent model has been used in the numerical investigation of heat transfer performance of synthetic jet impingement onto dimple/protrusioned surface. The results show that the local time-averaged Nusselt number of the dimpled/protrusioned target surface tends to be much closer with that of flat cases with increasing of frequency. The heat transfer performance gets better when frequency increases. The area-averaged time-averaged Nusselt number of protrusioned target surface is the most close to that of flat cases when f = 320 Hz while it is the smallest among the synthetic jet cases in dimpled target surface. The heat transfer enhancement performance of synthetic jet is 30 times better than that of natural convection. The time-averaged Nusselt number of stagnation point in the protrusioned target surface is higher than that of flat target surface while it is lower in the dimpled surface than that of flat surface no matter in the synthetic jet, steady jet or natural convection cases. Meanwhile, the timeaveraged Nusselt number of stagnation point in the synthetic jet cases increases with the increasing of frequency. It is worth pointing out that the time-averaged Nusselt number of stagnation point is lower than that of steady cases when the frequency is low. However, it shows a bit higher than that of steady cases when f = 320 Hz.

  11. Detailed heat transfer measurements of impinging jet arrays issued from grooved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lo May; Chang, Shyy Woei [Department of Marine Engineering National Kaohsiung Institute of Marine Technology, Kaohsiung, Taiwan (China)

    2002-07-01

    Heat transfer augmentation of impinging jet-array with very small separation distances (S/D{sub j}<1) is attempted by using the grooved orifice plate through which the nozzles with different diameters are fitted. The combined effects of groove and nozzle-size distribution in an array have demonstrated considerable influences on heat transfers via their impacts on inter-jet reactions. With a specified coolant flow rate; the detailed heat transfer distributions over the impinging surfaces of three tested arrays are compared to reveal the optimal selections of separation distance and array configuration. Heat transfer modifications caused by varying jet Reynolds number (Re) and separation distance (S/D{sub j}) over the ranges of 1000{<=}Re{<=}4000 and 0.1{<=}S/D{sub j}{<=}8 are examined for each test array. In conformity with the experimentally revealed heat transfer physics, a regression-type analysis is performed to develop the correlations of spatially-averaged Nusselt numbers, which permit the individual and interactive effect of Re and S/D{sub j} to be evaluated. (authors)

  12. Heat transfer from impinging jets to a flat plate with conical and ring protuberances

    Science.gov (United States)

    Hrycak, P.

    1984-01-01

    An experimental investigation of heat transfer from round jets, impinging normally on a flat plate with exchangeable, heat transfer enhancing protuberances, has been carried out, and the pertinent literature surveyed, for Reynolds numbers ranging from 14,000 to 67,000, and nozzle diameters from 3.18 to 9.52 mm. The experimental data at the stagnation point indicated laminar flow, and a significant enhancement of heat transfer there, due to the introduction of the spike protuberance; the ring protuberance reduced the local heat flux somewhat. Data have also been correlated by means of dimensional analysis and compared with the conical flow theory.

  13. Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets

    DEFF Research Database (Denmark)

    Mahrt, Elena; Agarwal, Anurag; Perkel, David

    2016-01-01

    and experimental evidence for an alternative and novel vocal production mechanism: a glottal jet impinging onto the laryngeal inner planar wall. Our data provide a framework for future research on the neuromuscular control of mouse vocal production and for interpreting mouse vocal behavior phenotypes.......Rodent ultrasonic vocalizations (USVs) are a vital tool for linking gene mutations to behavior in mouse models of communication disorders, such as autism [1]. However, we currently lack an understanding of how physiological and physical mechanisms combine to generate acoustic features...

  14. Investigation of extraction fraction in confined impinging jet reactors for tri-butyl-phosphate extracting butyric acid process☆

    Institute of Scientific and Technical Information of China (English)

    Zhengming Gao; Manting Zhao; Yun Yu; Zhipeng Li; Jing Han

    2016-01-01

    The extraction fraction E and overall volumetric mass transfer coefficient kLa of TBP extracting butyric acid pro-cess in confined impinging jet reactors (CIJR) with two jets were investigated. The main variables tested were the concentration of tri-butyl-phosphate (TBP) and butyric acid, the impinging velocity V, the impinging velocity ratio of two phases Vorg/Vaq, the nozzle inner diameter di and the distance L between the jet axes and the top wall of the impinging chamber. The results showed that E and kLa increase with an increase of the impinging ve-locity V, the concentration of TBP Corg, and the impinging velocity ratio Vorg/Vaq. However, E and kLa decrease with an increase of the inner diameter di from 1 to 2 mm, the concentration of butyric acid Caq from 0.5%(v/v) to 2%(v/v). The factor L ranging from 3 to 11 mm has a negligible effect on E and kLa. A correlation on these variables and kLa was proposed based on the experimental data. These results indicated good mass transfer performance of CIJR in the extraction operation.

  15. Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Y.; Baydar, E. [Karadeniz Technical University, Department of Mechanical Engineering, Trabzon (Turkey)

    2008-09-15

    The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1-10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu{sub st}{proportional_to}Re {sup 0.69}(H/D){sup 0.019}. (orig.)

  16. Spectrum of the sound produced by a jet impinging on the gas-water interface of a supercavity

    Science.gov (United States)

    Foley, A. W.; Howe, M. S.; Brungart, T. A.

    2010-02-01

    An analysis is made of the sound generated by the impingement of an air jet on the gas-water interface of a supercavity. The water is in uniform low Mach number motion over the interface. The interface is rippled by the jet, which produces an unsteady surface force on the water that behaves as a dipole or monopole acoustic source, respectively, at high and low frequencies. In a first approximation the very large difference in the gas density and that of water implies that the surface force is similar to that occurring when a jet impinges on a rigid wall. Data from recent measurements by Foley (2009, Ph.D. Dissertation, Department of Mechanical Engineering, Boston University) of the frequency spectrum of the surface force produced by the impact of a turbulent jet on a wall are used to formulate an analytical representation of the spectrum and thence to predict the sound produced in water when the same jet impinges on the cavity interface. The prediction is used to estimate the characteristics of gas jet impingement noise for an experimental supercavitating vehicle in use at the Applied Research Laboratory of Penn State University.

  17. Micromixing efficiency in a T-shaped confined impinging jet reactor☆

    Institute of Scientific and Technical Information of China (English)

    Zhengming Gao; Jing Han; Yuyun Bao; Zhipeng Li

    2015-01-01

    Confined impinging jet reactor (CIJR) offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry. The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system. In this work, the effects of different operating conditions, such as impinging velocity and acid concentration, on segregation index were investigated. In addition, the effects of the inner nozzles diameter and the distance L between the jet axis and the top wal of the mixing chamber on the micromixing efficiency were also considered. It is concluded that the best range of L in this CIJR is 6.5–12.5 mm. Based on the incorporation model, the estimated minimum micromixing time tm of CIJR approximately equals to 2 × 10−4 s. These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank (micromixing time of 2 × 10−3 to 2 × 10−2 s). Hence, it can be envisioned that CIJR has more promising applications in various industrial processes.

  18. Combustion stability characteristics of the model chamber with various configurations of triplet impinging-jet injectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Chae Hoon [Chosun University, Gwangju (Korea, Republic of); Seol, Woo Seok [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Shibanov, Alexander A. [Research Institute of Chemical Machine Building, Sergiev Posad (Russian Federation)

    2006-06-15

    Combustion stability characteristics in actual full-scale combustion chamber of a rocket engine are investigated by experimental tests with the model (sub-scale) chamber. The present hot-fire tests adopt the combustion chamber with three configurations of triplet impinging-jet injectors such as F-O-O-F, F-O-F, and O-F-O configurations. Combustion stability boundaries are obtained and presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio. From the experimental tests, two instability regions are observed and the pressure oscillations have the similar patterns irrespective of injector configuration. But, the O-F-O injector configuration shows broader upper-instability region than the other configurations. To verify the instability mechanism for the lower and upper instability regions, air-purge acoustic test is conducted and the photograph of the flames is taken. As a result, it is found that the pressure oscillations in the two regions can be characterized by the first impinging point of hydraulic jets and pre-blowout combustion, respectively.

  19. Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow

    Science.gov (United States)

    Georgiou, Michail; Papalexandris, Miltiadis

    2015-11-01

    In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.

  20. Numerical simulation of liquid-layer breakup on a moving wall due to an impinging jet

    Science.gov (United States)

    Yu, Taejong; Moon, Hojoon; You, Donghyun; Kim, Dokyun; Ovsyannikov, Andrey

    2014-11-01

    Jet wiping, which is a hydrodynamic method for controlling the liquid film thickness in coating processes, is constrained by a rather violent film instability called splashing. The instability is characterized by the ejection of droplets from the runback flow and results in an explosion of the film. The splashing phenomenon degrades the final coating quality. In the present research, a volume-of-fluid (VOF)-based method, which is developed at Cascade Technologies, is employed to simulate the air-liquid multiphase flow dynamics. The present numerical method is based on an unstructured-grid unsplit geometric VOF scheme and guarantees strict conservation of mass of two-phase flow, The simulation results are compared with experimental measurements such as the liquid-film thickness before and after the jet wiping, wall pressure and shear stress distributions. The trajectories of liquid droplets due to the fluid motion entrained by the gas-jet operation, are also qualitatively compared with experimental visualization. Physical phenomena observed during the liquid-layer breakup due to an impinging jet is characterized in order to develop ideas for controlling the liquid-layer instability and resulting splash generation and propagation. Supported by the Grant NRF-2012R1A1A2003699, the Brain Korea 21+ program, POSCO, and 2014 CTR Summer Program.

  1. HEAT TRANSFER PERFORMANCE OF AN OIL JET IMPINGING ON A DOWNWARD-FACING STAINLESS STEEL PLATE

    Directory of Open Access Journals (Sweden)

    Roy J Issa

    2011-01-01

    Full Text Available An experimental study is carried out for the quenching of a stainless steel plate using a single oil jet impinging on the bottom surface of the plate. The objective of this study is to investigate the effect of the oil jet flow operating conditions onto the heat transfer effectiveness when the plate is heated to temperatures ranging from around 115 to 630 oC, and the oil is heated to temperatures ranging from 60 to 75 oC. Tests are conducted on the oil at various temperatures to determine its viscosity. Experiments are conducted for nozzle exit flow rates ranging from 113 to 381 ml/min, oil jet pressures from 3.1 to 12 psi, and nozzle-to-plate surface distances of 0.6 and 1 cm. The variation of the oil heat flux and heat transfer coefficient with the surface temperature for the different quenching parameters is calculated from the acquired temperature data. Tests results show the oil heat transfer effectiveness keeps increasing for increasing plate temperature. Oil jet pressure is shown to have a considerable effect on the oil heat transfer, while the nozzle-to-plate surface distance is shown to have a lesser effect. The results of this study shall lead to a better understanding of the parameters that play an important role in oil quenching for applications that are of interest to the metal process industry.

  2. Mounding of a non-Newtonian jet impinging on a solid substrate.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Grillet, Anne Mary; Roberts, Scott A.; Baer, Thomas A. (Procter & Gamble, Cincinnati, OH); Rao, Rekha Ranjana

    2010-06-01

    When a fluid jet impinges on a solid substrate, a variety of behaviors may occur around the impact region. One example is mounding, where the fluid enters the impact region faster than it can flow away, forming a mound of fluid above the main surface. For some operating conditions, this mound can destabilize and buckle, entraining air in the mound. Other behaviors include submerging flow, where the jet impinges into an otherwise steady pool of liquid, entraining a thin air layer as it enters the pool. This impact region is one of very high shear rates and as such, complex fluids behave very differently than do Newtonian fluids. In this work, we attempt to characterize this range of behavior for Newtonian and non-Newtonian fluids using dimensionless parameters. We model the fluid as a modified Bingham-Carreau-Yasuda fluid, which exhibits the full range of pseudoplastic flow properties throughout the impact region. Additionally, we study viscoelastic effects through the use of the Giesekus model. Both 2-D and 3-D numerical simulations are performed using a variety of finite element method techniques for tracking the jet interface, including Arbitrary Lagrangian Eulerian (ALE), diffuse level sets, and a conformal decomposition finite element method (CDFEM). The presence of shear-thinning characteristics drastically reduces unstable mounding behavior, yet can lead to air entrainment through the submerging flow regime. We construct an operating map to understand for what flow parameters mounding and submerging flows will occur, and how the fluid rheology affects these behaviors. This study has many implications in high-speed industrial bottle filling applications.

  3. Fluid dynamics and convective heat transfer in impinging jets through implementation of a high resolution liquid crystal technique

    Science.gov (United States)

    Kim, K.; Wiedner, B.; Camci, C.

    1993-01-01

    A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.

  4. Simulation of Flow and Heat Transfer of Mist/Air Impinging Jet on Grinding Work-Piece

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2016-01-01

    Full Text Available The numerical investigation is presented for flow and heat transfer on grinding work-piece with mist/air impinging jet by using DPM (discrete phase model model. The tracks of the mist droplets show most of them are accumulated on the right surface of grinding zone, and can be influenced by the rotating speed of the grinding wheel, the position and the number of the jet nozzle. The mechanism model of enhance cooling by mist/air impinging jet is developed, which indicated the mist droplet is an key factor of affecting the heat transfer coefficient, and the increasing of mist droplet leads to significant enhancement of the cooling effect. The effects of the jet nozzle location, the nozzle diameter, and the nozzle number on flow and heat transfer coefficient are studied. The results show that the less nozzle distance and inclination angle, the greater nozzle diameter and number lead to greater heat transfer coefficient.

  5. Secondary peak in the Nusselt number distribution of impinging jet flows: A phenomenological analysis

    Science.gov (United States)

    Aillaud, P.; Duchaine, F.; Gicquel, L. Y. M.; Didorally, S.

    2016-09-01

    This paper focuses on a wall-resolved Large Eddy Simulation (LES) of an isothermal round submerged air jet impinging on a heated flat plate, at a Reynolds number of 23 000 (based on the nozzle diameter and the bulk velocity at the nozzle outlet) and for a nozzle to plate distance of two jet diameters. This specific configuration is known to lead to a non-monotonic variation of the temporal-mean Nusselt number as a function of the jet center distance, with the presence of two distinct peaks located on the jet axis and close to two nozzle diameters from the jet axis. The objectives are here twofold: first, validate the LES results against experimental data available in the literature and second to explore this validated numerical database by the use of high order statistics such as skewness and probability density functions of the temporal distribution of temperature and pressure to identify flow features at the origin of the second Nusselt peak. Skewness (Sk) of the pressure temporal distribution reveals the rebound of the primary vortices located near the location of the secondary peak and allows to identify the initiation of the unsteady separation linked to the local minimum in the mean heat transfer distribution. In the region of mean heat transfer enhancement, joint velocity-temperature analyses highlight that the most probable event is a cold fluid flux towards the plate produced by the passage of the vortical structures. In parallel, heat transfer distributions, analyzed using similar statistical tools, allow to connect the above mentioned events to the heat transfer on the plate. Thanks to such advanced analyses, the origin of the double peak is confirmed and connected to the flow dynamics.

  6. On the effect of fractal generated turbulence on the heat transfer of circular impinging jets

    Science.gov (United States)

    Astarita, Tommaso; Cafiero, Gioacchino; Discetti, Stefano

    2013-11-01

    The intense local heat transfer achieved by circular impinging jets is exploited in countless industrial applications (cooling of turbine blades, paper drying, tempering of glass and metals, etc). The heat transfer rate depends mainly on the Reynolds number, the nozzle-to-plate distance and the upstream turbulence. It is possible to enhance the heat transfer by exciting/altering the large scale structures embedded within the jet. In this work turbulent energy is injected by using a fractal grid at the nozzle exit. Fractal grids can generate more intense turbulence with respect to regular grids with the same blockage ratio by enhancing the jet turbulence over different scales. Consequently, they are expected to improve the convective heat transfer. The results outline that a significant improvement is achieved (for small nozzle-to-plate distances up to 100% at the stagnation point and more than 10% on the integral heat transfer over a circular area of 3 nozzle diameters) under the same power input.

  7. Simulation and stability analysis of supersonic impinging jet noise with microjet control

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2014-11-01

    A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.

  8. Heat transfer in the flow of a cold, two-dimensional vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

  9. Heat transfer in a channel with inclined target surface cooled by single array of centered impinging jets

    Directory of Open Access Journals (Sweden)

    Al Mubarak Ali A.

    2013-01-01

    Full Text Available An experimental investigation has been carried out to study the heat transfer characteristics in a channel with heated target plate inclined at an angle cooled by single array of equally spaced centered impinging jets for three different jet Reynolds numbers (Re=9300, 14400 and 18800. Air ejected from an array of orifices impinges on the heated target surface The target plate forms the leading edge of a gas turbine blade cooled by jet impingement technique. The work includes the effect of jet Reynolds numbers and feed channel aspect ratios (H/d = 5, 7, 9 where H=2.5, 3.5, 4.5 cm and d=0.5 cm on the heat transfer characteristics for a given orifice jet plate configuration with equally spaced centered holes with outflow exiting in both directions (with inclined heated target surface. In general, It has been observed that, H/d=9 gives the maximum heat transfer over the entire length of the target surface as compared to all feed channel aspect ratios. H/d=9 gives 3% more heat transfer from the target surface as compared to H/d=5 (for Re=14400. Also, it has been observed that the magnitude of the averaged local Nusselt number increases with an increase in the jet Reynolds number for all the feed channel aspect ratios studied.

  10. Flow characteristics and heat transfer performances of a semi-confined impinging array of jets: effect of nozzle geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dano, B.P.E.; Liburdy, J.A. [Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering; Kanokjaruvijit, Koonlaya [Imperial College, London (United Kingdom). Dept. of Mechanical Engineering

    2005-02-01

    The flow and heat transfer characteristics of confined jet array impingement with crossflow is investigated. Discrete impingement pressure measurements are used to obtain the jet orifice discharge flow coefficient. Digital particle image velocimetry (DPIV) and flow visualization are used to determine the flow characteristics. Two thermal boundary conditions at the impinging surface are presented: an isothermal surface, and a uniform heat flux, where thermocouple and thermochromic liquid crystal methods were used, respectively, to determine the local heat transfer coefficient. Two nozzle geometries are studied, circular and cusped ellipse. Based on the interaction with the jet impingement at the surface, the crossflow is shown to influence the heat transfer results. The two thermal boundary conditions differ in overall heat transfer correlation with the jet Reynolds number. Detailed velocity data show that the flow development from the cusped ellipse nozzle affects the wall region flow more than the circular nozzle, as influenced by the crossflow interactions. The overall heat transfer for the uniform heat flux boundary condition is found to increase for the cusped ellipse orifice. (Author)

  11. Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure

    NARCIS (Netherlands)

    Thielen, L.; Hanjalić, K.; Jonker, H.; Manceau, R.

    2005-01-01

    We present numerical computations of flow and heat transfer in multiple jets impinging normally on a flat heated surface, obtained with a new second-moment turbulence closure combined with an elliptic blending model of non-viscous wall blocking effect. This model provides the mean velocity and turbu

  12. NUMERICAL STUDY OF TURBULENT IMPINGING JET WITH A REFINED k-ε MODEL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A refined k-ε model re-considering the fluctuating pressure diffusion term in the dissipation rate equation (ε-equation) is provided and used in the numerical study of circular semi-confined turbulent impinging jet.The results are compared with those of the standard k-ε model and show that the predicting ability of the refined k-ε model is much improved, especially for the turbulent kinetic energy k.So it is necessary to consider the effect of the fluctuating pressure diffusion term and to model this term correctly and exactly in the near wall region with the great adverse pressure gradient, where the effect of the pressure fluctuating is important.Therefore we can conclude that the new modeling idea expressed in this paper is correct and effective.

  13. CFD analysis of rewetting vertical nuclear fuel rod by dispersed fluid jet impingement

    Directory of Open Access Journals (Sweden)

    Ajoy Debbarma

    2016-09-01

    Full Text Available Numerical analysis of cooling assessment in hot vertical fuel rod is carryout using ANSYS 14.0 – CFX Solver. Rewetting is the process of re-establishment of coolants with hot surfaces. Numerical validation exercise carried out with number of turbulence and shear stress turbulence model fairly predict the experimental data and used for further investigation. In the present paper, dispersed fluid is simulating with CFX solver to investigate the flow boiling process in emergency cooling of vertical fuel rod. When coolants come in contact on the hot surface this may not initiated the wetting patch. However, this paper introduces the unique jet impingement direction to remove the heat from the hot surface. In this report, the rewetting temperature and wetting delay also described during in progress of wetting front movement in hot vertical rod.

  14. Numerical Study of Impingement Location of Liquid Jet Poured from a Tilting Ladle with Lip Spout

    Science.gov (United States)

    Castilla, R.; Gamez-Montero, P. J.; Raush, G.; Khamashta, M.; Codina, E.

    2017-04-01

    A new approach for simulating liquid poured from a tilting lip spout is presented, using neither a dynamic mesh nor the moving solid solution method. In this case only the tilting ladle is moving, so we propose to rotate the gravitational acceleration at an angular velocity prescribed by a geometrical and dynamical calculation to keep the poured flow rate constant. This angular velocity is applied to modify the orientation of the gravity vector in computational fluid dynamics (CFD) simulations using the OpenFOAM® toolbox. Also, fictitious forces are considered. The modified solver is used to calculate the impingement location for six spout geometries and compare the jet dispersion there. This method could offer an inexpensive tool to calculate optimal spout geometries to reduce sprue size in the metal casting industry.

  15. High-resolution hot-film measurement of surface heat flux to an impinging jet

    Science.gov (United States)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  16. 2D numerical simulation of impinging jet onto the concave surface by k - w - overline{{v2 }} - f turbulence model

    Science.gov (United States)

    Seifi, Zeinab; Nazari, Mohammad Reza; Khalaji, Erfan

    2016-03-01

    In the present article, the characteristics of turbulent jet impinging onto a concave surface is studied using k - w - overline{{v2 }} - f turbulence model. Dependent parameters such as inlet Reynolds number (2960 heat transfer of stagnation area and wall jet goes up and down through nozzle-plate distance enhancement respectively. Finally, the effects of sinusoidal pulsed inlet profile on heat transfer of unconfined impinging jet indicate direct affiliation of amplitude and neutral impact of frequency on Nusselt number distribution.

  17. On jet impingement and thin film breakup on a horizontal superhydrophobic surface

    Science.gov (United States)

    Prince, Joseph F.; Maynes, Daniel; Crockett, Julie

    2015-11-01

    When a vertical laminar jet impinges on a horizontal surface, it will spread out in a thin film. If the surface is hydrophobic and a downstream depth is not maintained, the film will radially expand until it breaks up into filaments or droplets. We present the first analysis and model that describes the location of this transition for both isotropic and anisotropic structured superhydrophobic (SH) surfaces. All surfaces explored are hydrophobic or SH, where the SH surfaces exhibit an apparent slip at the plane of the surface due to a shear free condition above the air filled cavities between the structures. The influence of apparent slip on the entire flow field is significant and yields behavior that deviates notably from classical behavior for a smooth hydrophilic surface where a hydraulic jump would form. Instead, break up into droplets occurs where the jet's outward radial momentum is balanced by the inward surface tension force of the advancing film. For hydrophobic surfaces, or SH surfaces with random micropatterning, the apparent slip on the surface is uniform in all directions and droplet breakup occurs in a circular pattern. When alternating rib/cavity microstructures are used to create the SH surface, the apparent slip varies as a function of the azimuthal coordinate, and thus, the breakup location is elliptically shaped. The thin film dynamics are modeled by a radial momentum analysis for a given jet Weber number and specified slip length and the location of breakup for multiple surfaces over a range of jet Weber numbers and realistic slip length values is quantified. The results of the analysis show that the breakup radius increases with increasing Weber number and slip length. The eccentricity of the breakup ellipse for the rib/cavity SH structures increases with increasing Weber number and slip length as well. A generalized model that allows prediction of the transition (break-up) location as a function of all influencing parameters is presented

  18. Inline Array Jet Impingement Cooling Using Al2O3 / Water Nanofluid In A Plate Finned Electronic Heat Sink

    Directory of Open Access Journals (Sweden)

    R. Reji Kumar

    2016-07-01

    Full Text Available - Jet impingement cooling is a technique used for cooling the electronic systems. In this work, heat transfer and pressure drop characteristics of deionized water and Al2O3/water nanofluid in an electronic heat sink having aluminium plate fins and provision for jet impingement cooling have been studied. A novel heat sink contains two rows of plate fins of size 29mm x 24mm x 0.56mm. A thin plate having 110 holes of diameter 2.5 mm is used to produce number of jets. The plate is kept inside the heat sink in such a way that H/dn is 5.2 mm and adjacent jet spacing is 2mm. The overall dimension of the heat sink is 60x60x 65 mm. For this work we prepared a Al2O3/water nanofluid by dispersing specified quantity of nanoparticles in to deionized water by using a ultrasonic bath. Experiments were conducted under constant heat flux condition and the volume flow rate of the fluid was in the range of 1.315 to 2.778. It is found from the results that the nanofluid removes heat better than water in the jet impingement cooling with very low rise in pressure drop.

  19. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    Science.gov (United States)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  20. Investigation of the flow-field of two parallel round jets impinging normal to a flat surface

    Science.gov (United States)

    Myers, Leighton M.

    The flow-field features of dual jet impingement were investigated through sub-scale model experiments. The experiments were designed to simulate the environment of a Short Takeoff, and Vertical Landing, STOVL, aircraft performing a hover over the ground, at different heights. Two different dual impinging jet models were designed, fabricated, and tested. The Generation 1 Model consisted of two stainless-steel nozzles, in a tandem configuration, each with an exit diameter of approximately 12.7 mm. The front convergent nozzle was operated at the sonic Mach number of 1.0, while the rear C-D nozzle was generally operated supersonically. The nozzles were embedded in a rectangular flat plate, referred to as the lift plate, which represents a generic lifting surface. The lift plate was instrumented with 36 surface pressure taps, which were used to examine the flow entrainment and recirculation patterns caused by varying the stand-off distance from the nozzle exits to a flat ground surface. The stand-off distance was adjusted with a sliding rail frame that the ground plane was mounted to. Typical dimensionless stand-off distances (ground plane separation) were H/DR = 2 to 24. A series of measurements were performed with the Generation 1 model, in the Penn State High Speed Jet Aeroacoustics Laboratory, to characterize the basic flow phenomena associated with dual jet impingement. The regions of interest in the flow-field included the vertical jet plume(s), near impingement/turning region, and wall jet outwash. Other aspects of interest included the loss of lift (suckdown) that occurs as the ground plane separation distance becomes small, and azimuthal variation of the acoustic noise radiation. Various experimental methods and techniques were used to characterize the flow-field, including flow-visualization, pressure rake surveys, surface mounted pressure taps, laser Doppler velocimetry, and acoustic microphone arrays. A second dual impinging jet scale model, Generation 2

  1. Drop Characteristics of non-Newtonian Impinging Jets at High Generalized Bird-Carreau Jet Reynolds Numbers

    Science.gov (United States)

    Sojka, Paul E.; Rodrigues, Neil S.

    2015-11-01

    The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03

  2. Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF%Modeling of an Impinging Oxygen Jet on Molten Bath Surface in 150 t EAF

    Institute of Scientific and Technical Information of China (English)

    HE Chun-lai; ZHU Rong; DONG Kai; QIU Yong-quan; SUN Kai-ming

    2011-01-01

    A transient three-dimensional mathematical model has been developed to analyze the three-phase flow in a 150 t EAF (electric arc furnace) using oxygen. VOF (multiphase volume of fluid) method is used to simulate the behaviors of molten steel and slag. Numerical simulation was conducted to clarify the transient phenomena of oxygen impingement on molten bath. When oxygen jet impinges on the surface of molten bath, the slag layer is broken and the penetrated cavity in molten steel is created. Simultaneously, the wave is formed at the surface of uncovered steel on which the slag layer is pushed away by jet. The result of numerical simulations shows that the area and velocity of uncovered steel created by impingement, jet penetration depth change from 0. 10 m2 , 0. 012 5 m/s, 3.58 cm to 0.72 m2 , 0. 1445 m/s, 11.21 cm, when the flow rate of an oxygen lance varies from 500 to 2000 m3/h. The results have been validated against water model experiments. More specially, the relation between the penetration depth and oxygen flow rate predicted by numerical simulation has been found to agree well with that concluded by water model.

  3. Heat Flux Characterization of DC Laminar-plasma Jets Impinging on a Flat Plate at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    孟显; 潘文霞; 张文宏; 吴承康

    2001-01-01

    By using steady and transient methods, the total heat fluxes and the distributions of the heat flux were measured experimentally for an argon DC laminar plasma jet impinging normally on a flat plate at atmospheric pressure. Results show that the total heat fluxes measured with a steady method are a little bit higher than those with a transient method. Numerical simulation work was executed to compare with the experimental results.

  4. Growth of thick MgB{sub 2} films by impinging-jet hybrid physical-chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lamborn, D.R. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Wilke, R.H.T.; Li, Q. [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Xi, X. [Department of Physics, Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16801 (United States); Snyder, D.W. [Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Redwing, J.M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16801 (United States)

    2008-01-18

    Thick MgB{sub 2} films are grown using a novel impinging-jet hybrid physical-chemical vapor deposition process. An increased amount of the boron source gas generates high growth rates. Superconducting properties of the thick films are comparable to previous results from other processes, which indicate that this is a promising new process for MgB{sub 2} deposition for coated conductor applications, such as wires and tapes for MRI magnets. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Experimental investigation of impinging jet erosion on model cohesive granular materials

    Science.gov (United States)

    Brunier-Coulin, Florian; Sarrat, Jean-Loup; Cuéllar, Pablo; Philippe, Pierre

    2017-06-01

    Erosion of soils affects both natural landscapes and engineering constructions as embankment dams or levees. Improving the safety of such earthen structures requires in particular finding out more about the elementary mechanisms involved in soil erosion. Towards this end, an experimental work was undertaken in three steps. First, several model materials were developed, made of grains (mostly glass beads) with solid bridges at particle contacts whose mechanical yield strength can be continuously varied. Furthermore, for most of them, we succeeded in obtaining a translucent system for the purpose of direct visualization. Second, these materials were tested against surface erosion by an impinging jet to determine a critical shear stress and a kinetic coefficient [2, 3]. Note that an adapted device based on optical techniques (combination of Refractive Index Matching and Planar Laser Induced Fluorescence [3]) was used specifically for the transparent media. Third, some specifically developed mechanical tests, and particularly traction tests, were implemented to estimate the mechanical strength of the solid bridges both at micro-scale (single contact) and at macro-scale (sample) and to investigate a supposed relationship with soil resistance to erosion.

  6. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, 41285, Arslanbey Campus, Kocaeli (Turkey)

    2016-02-15

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750–3050 Reynolds number, with an inclination angle of 20°−40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy. (paper)

  7. Investigation of droplets impinging on a deep pool: transition from coalescence to jetting

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, He [Norwegian University of Science and Technology (NTNU), Department of Energy and Process Engineering, Trondheim (Norway); Brunsvold, Amy; Munkejord, Svend Tollak [SINTEF Energy Research, Trondheim (Norway)

    2011-03-15

    An experimental investigation of droplets impinging vertically on a deep liquid pool of the same fluid was conducted. Coalescence and jetting as two of the main regimes were identified and studied. Five fluids, distilled water, technical ethanol, n-pentane, methanol and 1-propanol were used for providing different liquid-phase physical properties with density from 600 to 1,000 kg/m{sup 3}, viscosity from 0.20 to 2.00 mPa s, and surface tension from 13.7 to 72.0 mN/m. Except for the experimental run of n-pentane, which was carried out in n-pentane saturated vapor, the ambient gas for the other experiments was air. The impact processes of micro-level (diameter below 1 mm) droplets were captured using a high-speed camera with a backlight. The observations, velocity and diameter ranges of the experimental runs were described, and based on them, the effects of the liquid-phase properties were studied. It was found that both low viscosity and low surface tension can increase the instability during impact processes. By curve-fitting, the transition from coalescence to jetting was characterized by using two models, one employing the Weber number (We) and the Ohnesorge number (Oh), and one employing the Froude number (Fr) and the Capillary number (Ca). Both models characterize the coalescence-jetting threshold well. The We-Oh model was based on a commonly used model from Cossali et al. (in Exp Fluids 22:463-472, 1997) for characterizing coalescence-splashing. For the small droplet diameters (below 1 mm) considered in this study, it was required to modify the We-Oh model with a diameter-dependent term to fit the sharp change in thresholds for fluids with relatively high viscosity. The Fr-Ca model has not previously been presented in the literature. A comparison of the two models with literature data (Rodriguez and Mesler, J Colloid Interface Sci 106(2):347-352, 1985) indicates that they are also valid for impacts of droplets with diameters above 1mm. Calculation methods to

  8. Conditionally sampled two-dimensional optical wavefront measurements in the near-nozzle region of a heated axisymmetric jet

    Science.gov (United States)

    Hugo, Ronald J.; McMackin, Lenore J.

    1996-10-01

    The time-evolution of optical degradation in the near nozzle region of a heated axisymmetric jet is measured using conditional sampling techniques. A novel linearized stability experiment is performed in order to identify the flowfield states most applicable for conditional sampling techniques. The results of the conditional sampling experiment exhibit a condition where two distinct flowfield states are evident. Potential explanations for the observance of these two distinct states are proposed, with the most probable explanation being due to pi-jumps that can arise between the phase of the excitation signal and the phase of the flowfield events.

  9. CHARACTERISTICS OF CORRELATION AND SPECTRUM BETWEEN WALL FLUCTUATING PRESSURE AND FLUCTUATING VELOCITY OF IMPING-ING JET

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The correlation, the spectrum and the turbu-lent scale between wall fluctuating pressure and fluctuating ve-locity, on the bed of plunging pool under the action of single and twin impinging jet, are investigated in the paper by using 2-D LDA and the dynamic pressure scanning system of multi-ple points. It is found that the cross correlation between the horizontal fluctuating velocity and the fluctuating pressure of twin jet is bigger than that of sinlge jet, and the spectrum be-tween horizontal fluctuating velocity and fluctuating pressure obviously has approximately dominant frequency. The rela-tionship between the fluctuation pressure coefficient on wall and the turbulent intensity near the wall can be described with logarithmic curve.

  10. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    Science.gov (United States)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  11. Quantitative analysis of schlieren photographs for internal combustion engine diagnostics. 2nd Report. ; Smoothing of background distortion and analytical results of transient wall-impinging jet. Nainen kikan ni okeru schlieren shashin no teiryoka gazo shoriho ni kansuru kenkyu. 2. ; Background no yugami jokyo, narabini hiteijo hekimen shototsu funryu no kaiseki kekka

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, H.; Chikahisa, T.; Murayama, T. (Hokkaido Univ., Sapporo (Japan). Faculty of Engineering)

    1991-02-25

    It was previously reported, for the research on the internal combustion engine, that the quantitative analysis of Schlieren photographs, one of simple visualization technologies, is effective on the heightening in accuracy of the analysis by Schlieren photographs and however, insufficient in countermeasures against the background distortion, causing errors. Then, by removing background distortion and analyzing Schlieren photographs, taken of transient wall-impinging jet, evaluation was made of the present quantitative analysis. As a result, a method could be shown to effectively correct the background distortion. Further, upon analyzing transient wall-impinging jet by that method, result could be obtained to be sufficiently accurate to grasp its structural characteristics. The resent quantitative analysis is advantageous in capability of, among others, monentarily quantify the two-dimensional phenomenon by a simple unit, and support the quantitative information for the Schlieren measurerment, widely used in the research on the internal combustion engine. 8 refs., 8 figs.

  12. Analogy Between Hydraulic Jump in Films Formed by Impinging Liquid Jet and Critical Flow in Internal Flows

    Institute of Scientific and Technical Information of China (English)

    Jaroslaw Mikielewicz

    2003-01-01

    Formulated are simple models for the flow in liquid film, formed by impinging jet, and a two-phase downward flow in pipe. The models are based on simplified equations of mass, momentum and energy. The solutions of such conservation equations may have regular points belonging to one integral curve only as well as turning points can be found amongst them, which refer to extreme values in the appropriate co-ordinate system. The solutions can also have singular points belonging to none or more than one integral curve. Both the turning and singular points have a clear physical meaning. They could be linked to critical flow conditions in the pipe flow or to the so-called hydraulic jump. Analogy existing between critical conditions in the pipe and the flow of liquid films formed by the liquid jet have been shown in the paper.

  13. A closed-loop electronics cooling by implementing single phase impinging jet and mini channels heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Bintoro, Jemmy S. [University of Maine, Laboratory for Surface Science and Technology (LASST), ESRB-Barrows, Orono, ME, 04469-5708 (United States); Akbarzadeh, Aliakbar [RMIT University, Bundoora East Campus, P.O. Box 71, Bundoora, Vic. 3083 (Australia); Mochizuki, Masataka [1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan)

    2005-12-01

    This paper reports our works in the design and testing of a closed-loop electronics cooling system that adopts bi-technologies: single phase impinging jet and mini channels heat exchanger. The system has the cooling capacity of 200W over a single chip with a hydraulic diameter of 12mm. The equivalent heat flux is 177W/cm{sup 2}. The cooling system maintains the chip's surface temperature below 95{sup o}C maximum when the ambient temperature is 30{sup o}C. De-ionized water is the working fluid of the system. For the impinging jet, two different nozzles are designed and tested. The hydraulic diameters (d{sub N}) are 0.5mm and 0.8mm. The corresponding volume flow rates are 280mL/min and 348mL/min. Mini channels heat exchanger has 6 (six) copper tubes with the inner diameter of 1.27mm and the total length of about 1m. The cooling system has a mini diaphragm pump and a DC electric fan with the maximum power consumptions of 8.4W and 0.96W respectively. The coefficient of performance of the system is 21.4. (author)

  14. Heat Transfer Analysis of Flat Plate Subjected to Multi-Jet Air Impingement using Principal Component Analysis and Computational Technique

    Directory of Open Access Journals (Sweden)

    Palaniappan Chandramohan

    2017-01-01

    Full Text Available The aim of this work is to investigate experimentally the variation in temperature, heat transfer coefficient and Nusselt number of a hot plate subjected to multi-jet air impingement cooling to use the multi-objective optimization technique to arrive at optimum conditions. A flat plate of 15 cm x 10 cm is heated through a heating foil with a constant heat flux of 7667 W/m2. Air jets with and without swirling action are considered, fixing the distance of target surface from nozzle exit at 2D, 4D and 6D. Reynolds numbers 18000, 20000and 22000 and pipe diameters 8mm, 10mm and 12 mm have been considered for investigation. Experiments are designed and analyzed using Taguchi’s technique, coupled with principal component analysis for multi-variate optimization by calculating multi-response performance index (MRPI. Based on the observations made, it is concluded that lower H/D ratio and higher Reynolds number result in higher heat transfer coefficient, in accordance with the first principles. Heat transfer coefficient obtained for jets with swirl is compared with that of jet without swirling for the same Reynolds number and H/D ratio. Furthermore, it is concluded that introducing swirl results in increase of heat transfer coefficients for all the test conditions for 10mm and 12mm diameter jets. However for 8mm jet, introduction of swirl reduced the heat transfer rate for all the test conditions. From Analysis of Variance (ANOVA, it is found that significant contributions on outputs are due to the effect of H/D ratio and Reynolds number. Confirmation experiments with optimum condition result in improved heat transfer coefficient and Nusselt number. Numerical simulation has also been performed with the optimum condition. It is observed that the simulation results are in consistence with the experimental results.

  15. Enhancement of Nucleate Boiling Heat Flux on Macro/Micro-Structured Surfaces Cooled by Multiple Impinging Jets

    Science.gov (United States)

    Kugler, Scott Lee

    1997-01-01

    An experimental investigation of nucleate boiling heat transfer from modified surfaces cooled by multiple in-line impinging circular jets is reported and found to agree with single jet results. A copper block is heated from the back by two electrical arcs, and cooled on the opposite side by three identical liquid jets of distilled water at subcoolings of 25 C 50 C and 77 C and Freon 113 at 24 C subcooling. Liquid flow rates are held constant at 5, 10, and 15 GPH for each of the three jets with jet velocities ranging from 1.4 m/s to 1 1.2 m/s and jet diameters from 0.95 mm to 2.2 mm. To increase the maximum heat flux (CHF) and heat removal rate, the boiling surface was modified by both macro and micro enhancements. Macro modification consists of machined radial grooves in the boiling surface arranged in an optimally designed pattern to allow better liquid distribution along the surface. These grooves also reduce splashing of liquid droplets, and provide 'channels' to sweep away bubbles. Micro modification was achieved by flame spraying metal powder on the boiling surface, creating a porous, sintered surface. With the addition of both micro and macro structured enhancements, maximum heat flux and nucleate boiling can be enhanced by more than 200%. Examination of each surface modification separately and together indicates that at lower superheats, the micro structure provides the enhanced heat transfer by providing more nucleation sites, while for higher superheats the macro structure allows better liquid distribution and bubble removal. A correlation is presented to account for liquid subcoolings and surface enhancements, in addition to the geometrical and fluid properties previously reported in the literature.

  16. Standard test method for conducting erosion tests by solid particle impingement using gas jets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method covers the determination of material loss by gas-entrained solid particle impingement erosion with jetnozzle type erosion equipment. This test method may be used in the laboratory to measure the solid particle erosion of different materials and has been used as a screening test for ranking solid particle erosion rates of materials in simulated service environments (1,2 ). Actual erosion service involves particle sizes, velocities, attack angles, environments, and so forth, that will vary over a wide range (3-5). Hence, any single laboratory test may not be sufficient to evaluate expected service performance. This test method describes one well characterized procedure for solid particle impingement erosion measurement for which interlaboratory test results are available. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determi...

  17. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    Science.gov (United States)

    Adimurthy, M.; Katti, Vadiraj V.

    2016-06-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing (Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio (l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  18. Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a slot air jet

    Science.gov (United States)

    M, Adimurthy; Katti, Vadiraj V.

    2017-02-01

    Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.

  19. The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet

    Science.gov (United States)

    Jeffers, Nicholas; Stafford, Jason; Conway, Ciaran; Punch, Jeff; Walsh, Edmond

    2016-02-01

    Low profile impinging jets provide a means to achieve high heat transfer coefficients while occupying a small quantity of space. Consequently, they are found in many engineering applications such as electronics cooling, annealing of metals, food processing, and others. This paper investigates the influence of the stagnation zone fluid dynamics on the nozzle exit flow condition of a low profile, submerged, and confined impinging water jet. The jet was geometrically constrained to a round, 16-mm diameter, square-edged nozzle at a jet exit to target surface spacing ( H/ D) that varied between 0.25 flow regimes is the main focus of this paper; however, laminar flow data are also presented between 1350 measurement facility was designed and commissioned to utilise particle image velocimetry in order to quantitatively measure the fluid dynamics both before and after the jet exits its nozzle. The velocity profiles are normalised with the mean velocity across the nozzle exit, and turbulence statistics are also presented. The primary objective of this paper is to present accurate flow profiles across the nozzle exit of an impinging jet confined to a low H/ D, with a view to guide the boundary conditions chosen for numerical simulations confined to similar constraints. The results revealed in this paper suggest that the fluid dynamics in the stagnation zone strongly influences the nozzle exit velocity profile at confinement heights between 0 0.5—where D is the inner diameter of the jet—in order to minimise modelling uncertainty.

  20. APPLICATION OF TWO VERSIONS OF A RNG BASED k-ε MODEL TO NUMERICAL SIMULATIONS OF TURBULENT IMPINGING JET FLOW

    Institute of Scientific and Technical Information of China (English)

    Chen Qing-guang; Xu Zhong; Zhang Yong-jian

    2003-01-01

    Two independent versions of the RNG based k-ε turbulence model in conjunction with the law of the wall have been applied to the numerical simulation of an axisymmetric turbulent impinging jet flow field. The two model predictions are compared with those of the standard k-ε model and with the experimental data measured by LDV (Laser Doppler Velocimetry). It shows that the original version of the RNG k-ε model with the choice of Cε1=1.063 can not yield good results, among them the predicted turbulent kinetic energy profiles in the vicinity of the stagnation region are even worse than those predicted by the standard k-ε model. However, the new version of RNG k-ε model behaves well. This is mainly due to the corrections to the constants Cε1 and Cε2 along with a modification of the production term to account for non-equilibrium strain rates in the flow.

  1. Numerical analysis of an impinging jet reactor for the CVD and gas-phase nucleation of titania

    Science.gov (United States)

    Gokoglu, Suleyman A.; Stewart, Gregory D.; Collins, Joshua; Rosner, Daniel E.

    1994-06-01

    We model a cold-wall atmospheric pressure impinging jet reactor to study the CVD and gas-phase nucleation of TiO2 from a titanium tetra-iso-propoxide (TTIP)/oxygen dilute source gas mixture in nitrogen. The mathematical model uses the computational code FIDAP and complements our recent asymptotic theory for high activation energy gas-phase reactions in thin chemically reacting sublayers. The numerical predictions highlight deviations from ideality in various regions inside the experimental reactor. Model predictions of deposition rates and the onset of gas-phase nucleation compare favorably with experiments. Although variable property effects on deposition rates are not significant (approximately 11 percent at 1000 K), the reduction rates due to Soret transport is substantial (approximately 75 percent at 1000 K).

  2. Effect of nozzle-to-plate spacing on the development of a plane jet impinging on a heated plate

    Science.gov (United States)

    Rim, Ben Kalifa; Saïd, Nejla Mahjoub; Bournot, Hervé; Le Palec, Georges

    2016-09-01

    An experimental investigation was carried out to study the behavior of a turbulent air jet impinging on a heated plate. The study of the flow field was performed using a particle image velocimetry. A three-dimensional numerical model with Reynolds stress model has been conducted to examine the global flow. Numerical results agree well with experimental data. The main properties of the fluid occurring between the nozzle and the flat plate are presented. In addition, the effect of the distance between the nozzle exit and the plate (h/e = 14 and 28) were investigated and detailed analysis of the dynamic, turbulent distribution and temperature fields were performed. The wall shear stress and the pressure fields near the heated plate are then explored. Results showed that the mean velocity and the heat transfer characteristics of small nozzle-to-plate spacing are significantly different from those of large nozzle-to-plate spacing.

  3. Impingement of a radial jet with an annular jet. 3rd Report. Curved properties of main jet with pressure field; Hoshajo funryu to kanjo funryu no shototsu ni kansuru kenkyu. 3. Atsuryokuba ni yoru shufunryu no wankyoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kozato, Y.; Tanaka, E. [Gifu University, Gifu (Japan). Faculty of Engineering; Kariya, M. [Meidensha Corp., Tokyo (Japan)

    1994-12-25

    Annular jets (control flows) flowing out from a columnar nozzle and a concentrically circular annular nozzle were impinged perpendicularly to a main jet flowing radially from the columnar nozzle. Then, an investigation was given on pressure in a recirculation flow region, bending of the main jet, and reattachment characteristics of the main jet onto a side wall face when the deflection of the main jet and its reattachment phenomenon onto the side wall face are controlled. The experiment was performed under the conditions of a nozzle width of 6 mm, an inter-nozzle distance of 4, a control flow rate (a ratio of a flow-out rate of the control flow to that of the main jet) from 0 to 0.6, with the step height varied. Investigations were made on change of static pressure distribution in jets in the downstream direction, change of static pressure on the side wall face in the downstream direction, and the relationship between the reattachment position on the side wall and the average static pressure in the recirculation flow region. The relationship of the reattachment position of the main jet on the side wall with the average side wall static pressure and the average static pressure in the recirculation flow region is expressed by one curve. The reattachment position gets closer to the nozzle outlet as the pressure decreases in the recirculation flow region. 9 refs., 14 figs., 1 tab.

  4. CFD analysis of the impingement cooling effect of the coolant jet caused by the T56 1st stage disc metering hole

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2003-09-01

    Full Text Available OF THE IMPINGEMENT COOLING EFFECT OF THE COOLANT JET CAUSED BY THE T56 1ST STAGE DISC METERING HOLE ISABE-2003-1065 Glen C. Snedden CSIR, Defencetek, P O Box 395 Pretoria, 0001, South Africa Tony Lambert Rolls-Royce Indianapolis, Indiana, USA Abstract... the cavities via metering holes drilled through the curvic-coupling web. As a result of physical restrictions during the manufacturing process these holes are angled toward the face of the disc and result in flow impinging on the rear surface of the 1st...

  5. The effects of jet exhaust blast impingements on graphite-epoxy composites.

    OpenAIRE

    Hampey, John Michael

    1981-01-01

    Approved for public release; distribution in unlimited. The effect of jet exhaust blasts on graphite epoxy composites (Hercules 3501-6/AS4 is examined. The material degradation of the composites is determined by means of the short beam shear test Thejet exhaust tests were designed to test the worst case conditions for an F-18 aircraft operating off an aircraft carrier. Results indicate that the composites show no significant property changes if the temperature is maintai...

  6. Modified Regression Rate Formula of PMMA Combustion by a Single Plane Impinging Jet

    Directory of Open Access Journals (Sweden)

    Tsuneyoshi Matsuoka

    2017-01-01

    Full Text Available A modified regression rate formula for the uppermost stage of CAMUI-type hybrid rocket motor is proposed in this study. Assuming a quasi-steady, one-dimensional, an energy balance against a control volume near the fuel surface is considered. Accordingly, the regression rate formula which can calculate the local regression rate by the quenching distance between the flame and the regression surface is derived. An experimental setup which simulates the combustion phenomenon involved in the uppermost stage of a CAMUI-type hybrid rocket motor was constructed and the burning tests with various flow velocities and impinging distances were performed. A PMMA slab of 20 mm height, 60 mm width, and 20 mm thickness was chosen as a sample specimen and pure oxygen and O2/N2 mixture (50/50 vol.% were employed as the oxidizers. The time-averaged regression rate along the fuel surface was measured by a laser displacement sensor. The quenching distance during the combustion event was also identified from the observation. The comparison between the purely experimental and calculated values showed good agreement, although a large systematic error was expected due to the difficulty in accurately identifying the quenching distance.

  7. Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet

    Science.gov (United States)

    Meda, Adimurthy; Katti, Vadiraj V.

    2017-08-01

    The present work experimentally investigates the local distribution of wall static pressure and the heat transfer coefficient on a rough flat plate impinged by a slot air jet. The experimental parameters include, nozzle-to-plate spacing (Z /D h = 0.5-10.0), axial distance from stagnation point ( x/D h ), size of detached rib ( b = 4-12 mm) and Reynolds number ( Re = 2500-20,000). The wall static pressure on the surface is recorded using a Pitot tube and a differential pressure transmitter. Infrared thermal imaging technique is used to capture the temperature distribution on the target surface. It is observed that, the maximum wall static pressure occurs at the stagnation point ( x/D h = 0) for all nozzle-to-plate spacing ( Z/D h ) and rib dimensions studied. Coefficient of wall static pressure ( C p ) decreases monotonically with x/D h . Sub atmospheric pressure is evident in the detached rib configurations for jet to plate spacing up to 6.0 for all ribs studied. Sub atmospheric region is stronger at Z/D h = 0.5 due to the fluid accelerating under the rib. As nozzle to plate spacing ( Z/D h ) increases, the sub-atmospheric region becomes weak and vanishes gradually. Reasonable enhancement in both C p as well as Nu is observed for the detached rib configuration. Enhancement is found to decrease with the increase in the rib width. The results of the study can be used in optimizing the cooling system design.

  8. Preparation of poly(MePEGCA-co-HDCA) nanoparticles with confined impinging jets reactor: experimental and modeling study.

    Science.gov (United States)

    Lince, Federica; Bolognesi, Sara; Marchisio, Daniele L; Stella, Barbara; Dosio, Franco; Barresi, Antonello A; Cattel, Luigi

    2011-06-01

    In this work, the biodegradable copolymer poly(methoxypolyethyleneglycolcyanoacrylate-co-hexadecylcyanoacrylate) is used to prepare nanoparticles via solvent displacement in a confined impinging jets reactor (CIJR). For comparison, nanoparticles constituted by the homopolymer counterpart are also investigated. The CIJR is a small passive mixer in which very fast turbulent mixing of the solvent (i.e., acetone and tetrahydrofuran) and of the antisolvent (i.e., water) solutions occurs under controlled conditions. The effect of the initial copolymer concentration, solvent type, antisolvent-to-solvent ratio, and mixing rate inside the mixer on the final nanoparticle size distribution, surface properties, and morphology is investigated from the experimental point of view. The effect of some of these parameters is studied by means of a computational fluid dynamics (CFD) model, capable of quantifying the mixing conditions inside the CIJR. Results show that the CIJR can be profitably used for producing nanoparticles with controlled characteristics, that there is a clear correlation between the mixing rate calculated by CFD and the mean nanoparticle size, and therefore that CFD can be used to design, optimize, and scale-up these processes.

  9. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  10. Experimental and numerical investigation of flow field and heat transfer from electronic components in a rectangular channel with an impinging jet

    Directory of Open Access Journals (Sweden)

    Calisir Tamer

    2015-01-01

    Full Text Available Thermal control of electronic components is a continuously emerging problem as power loads keep increasing. The present study is mainly focused on experimental and numerical investigation of impinging jet cooling of 18 (3 × 6 array flash mounted electronic components under a constant heat flux condition inside a rectangular channel in which air, following impingement, is forced to exit in a single direction along the channel formed by the jet orifice plate and impingement plate. Copper blocks represent heat dissipating electronic components. Inlet flow velocities to the channel were measured by using a Laser Doppler Anemometer (LDA system. Flow field observations were performed using a Particle Image Velocimetry (PIV and thermocouples were used for temperature measurements. Experiments and simulations were conducted for Re = 4000 – 8000 at fixed value of H = 10 × Dh. Flow field results were presented and heat transfer results were interpreted using the flow measurement observations. Numerical results were validated with experimental data and it was observed that the results are in agreement with the experiments.

  11. Numerical simulation on submerged gas jet scouring pit morphology in impingement water bath dust removers%冲击水浴除尘器淹没气体射流冲坑形态数值模拟

    Institute of Scientific and Technical Information of China (English)

    高慧杰; 吴晅; 赵钰祥; 武文斐; 李保卫

    2014-01-01

    在自行设计制造的冲击水浴除尘器试验台上,采用 VOF 界面跟踪法对冲击水浴除尘器中二维淹没气体射流冲坑形态进行了数值模拟,气液两相流的相互作用通过力平衡和动量交换获取。结果表明:气体入口速度是影响淹没气体射流冲坑特征形态的主要因素之一;气液两相独特的性质决定了其独特的运动方式,从而影响冲坑膨胀停滞阶段冲坑的特征形态;随着气体速度的增加,冲坑特征半径和冲击深度会增加,且增幅越来越大。%The VOF interface tracking method was adopted to simulate the two-dimensional submerged gas jet scouring pit morphology in an impingement water bath dust remover.The interaction of gas/liquid two-phase was obtained by force balance and momentum exchange.On the self-designed impingement water bath dust remover test bench,the submerged gas jet flushing with different gas velocities was simulated. The results show that,the gas inlet velocity is one of the main factors affecting the submerged gas jet scou-ring pit characteristics.The unique nature of gas/liquid two-phase determines their unique way of move-ment,thus affects the morphological character of the scouring pit in the expansion lag phase.Within the study range,the characteristic radius and impact depth of the scouring pit increases with the gas velocity, and so are their growth rates.

  12. Experimental and numerical investigations on the vortical structures of an impinging jet in crossflow%横流冲击射流涡旋结构的实验和数值研究

    Institute of Scientific and Technical Information of China (English)

    张燕

    2006-01-01

    @@ The objective of this dissertation is to investigate the impinging jet under the influence of crossflow.It has been known that there exist jet shear layer, impingement on the bottom wall, interactions between the induced wall jet and the ambient crossflow in near field.There are few intensive studies of the impinging jet in crossflow at home and abroad due to the complexities of flow, such as the formation and evolution of the vortical structures, interactions among vortices, while researches on the temporal and spatial evolution of these vortical structures can promote the practical applications in environment engineering, hydroelectricity engineering, etc., and provide the basis for flow control and improvement through revealing the inherent mechanism and development of the vortical structures.

  13. 射流撞击过程中的高频压力脉动特性%CHARACTERISTICS OF DYNAMIC PRESSURE IN IMPINGING JET

    Institute of Scientific and Technical Information of China (English)

    王亭杰; 肖帅刚; 崔爱莉; 林玉兰; 金涌

    2001-01-01

    The characteristics of dynamic pressure in an impinging jet wereexperimentally studied. The instantaneous signals of dynamic pressure resulted from the turbulence in the jetting fluid were measured through a piezoelectric sensor and recorded by a computer. The pressure signals at central axial position of the jetting fluid were sampled at different fluid pressure. The measured signals obviously possessed periodical characteristics. After analyzing the signals with FFT method,it was found that there was an inherent frequency in the dynamic pressure signals. The inherent frequency increases with the average velocity of the jetting fluid at the nozzle outlet,which is consistent with the theoretical analysis. It was supposed that the dynamic pressure signals are transformed from the fluctuating fluid velocities resulted from the turbulence in the jetting fluid. The inherent frequency corresponds to the minimum eddy scale in the turbulent jet. The smaller the eddy scale is,the higher the inherent frequency is. Higher velocity of the fluid at the outlet leads to a stronger turbulent strength. The fluctuation velocities with high inherent frequency resulted in a strong shear force field,which enables the fluid to be micro-mixed fleetly and the agglomerate of solid particles to be dispersed effectively.

  14. Physical modeling of the impingement of an air jet on a water surface; Modelado fisico de la incidencia de un chorro de aire sobre una superficie de agua

    Energy Technology Data Exchange (ETDEWEB)

    Solorzano-Lopez, J.; Ramirez-Argaez, M.A.; Zenit, R.

    2010-07-01

    The use of gas jets (oxygen) plays a key role in several steelmaking processes as in the Basic Oxygen Furnace (BOF) or in the Electric Arc Furnace (EAF). Those jets improve heat, mass and momentum transfer in the liquid metal, mixing of chemical species enhancing and govern the formation of foaming slag. In this work experimental measurements were performed to determine the dimensions of the cavity formed at the liquid free surface caused by a gas jet impinging on it; also velocities vectors were measured in the zone affected by the gas jet. avities were measured from images from high speed camera and the vector maps were obtained with a Particle Image Velocimetry (PIV) technique. Both velocities and cavities were determined as a function of the main process variables: gas flow rate, distance of the nozzle from the free surface and lance angle. Cavity dimensions were statistically processed treated as a function of the process variables and also as a function of the proper dimensionless numbers that govern these phenomena. It was found that Weber and Froude numbers govern the cavity geometry. Liquid flow driven by the jet is mainly affected by the air flow rate, lance height and angle. (Author).

  15. Model independent search for new particles in two-dimensional mass space using events with missing energy, two jets and two leptons with the CMS detector

    CERN Document Server

    AUTHOR|(CDS)2080070; Hebbeker, Thomas

    2017-07-07

    The discovery of a new particle consistent with the standard model Higgs boson at the Large Hadron Collider in 2012 completed the standard model of particle physics (SM). Despite its remarkable success many questions remain unexplained. Numerous theoretical models, predicting the existence of new heavy particles, provide answers to these unresolved questions and are tested at high energy experiments such as the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). In this thesis a model independent search method for new particles in two-dimensional mass space in events with missing transverse energy is presented using 19.7 $\\mbox{fb}^{-1}$ of proton-proton collision data recorded by the CMS detector at a centre of mass energy $\\sqrt{s}$ = 8 TeV at the LHC. The analysis searches for signatures of pair-produced new heavy particles $\\mbox{T}^\\prime$ which decay further into unknown heavy particles $\\mbox{W}^\\prime$ and SM quarks $q$ ($\\mbox{T}^\\prime\\overline{\\mbox{T}^\\prime} \\rightarrow {...

  16. Local Convective Heat Transfer from Small Heaters to Impinging Submerged Axisymmetric Jets of Seven Coolants with Prandtl Number Ranging from 0.7 to 348

    Institute of Scientific and Technical Information of China (English)

    H.Sun; C.F.Ma; 等

    1997-01-01

    Using seven working fluids,a systematic experimental study was performed to investigate the local convective heat transfer from vertical heaters to impinging circular submerged jets in the range of Reynolds number between 1.17×102 and 3.69×104 with the emphasis placed on the examination of Prandtl number dependence.Heat transfer coefficients at the stagnation point were collected and correlated with the plate held within and beyond the potential core.Radial distribution of the local heat transfer coefficient was measured with five test liquids.Based on the measured profiles of the local heat transfer,a correlation was developed to cover the entire range of the adial distance.Basides the present data,the correlations developed in this work were also compared with a large quantity of available data of circular air jets.General agreement was observed between the air data and the correlations.

  17. Exploratory investigation of lift induced on a swept wing by a two-dimensional partial-span deflected jet at Mach numbers from 0.20 to 1.30

    Science.gov (United States)

    Capone, F. J.

    1972-01-01

    An exploratory investigation was conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.20 to 1.30 to determine the induced lift characteristics of a body and swept-wing configuration having a partial-span two-dimensional propulsive nozzle with exhaust exit in the notch of the swept-wing trailing edge. The Reynolds number per meter varied from 4,900,000 to 14,030,000. The effects on wing-body characteristics of deflecting the propulsive jet in the flap mode at nominal exhaust-nozzle deflection angles of 0 deg and 30 deg were studied for two nozzle designs with different geometry and wing spans.

  18. Numerical heat transfer during partially-confined, confined, and free liquid jet impingement with rotation and chemical mechanical planarization process modeling

    Science.gov (United States)

    Lallave Cortes, Jorge C.

    This work presents the use of numerical modeling for the analysis of transient and steady state liquid jet impingement for cooling application of electronics, and energy dissipation during a CMP process under the influence of a series of parameters that controls the transport phenomena mechanism. Seven thorough studies were done to explore how the flow structure and conjugated heat transfer in both the solid and fluid regions was affected by adding a secondary rotational flow during the jet impingement process. Axis-symmetrical numerical models of round jets with a spinning or static nozzle were developed using the following configurations: confined, partially-confined, and free liquid jet impingement on a rotating or stationary uniformly heated disk of finite thickness and radius. Calculations were done for various materials, namely copper, silver, Constantan, and silicon with a solid to fluid thermal conductivity ratio covering a range of 36.91.2222, at different laminar Reynolds numbers ranging from 220 to 2,000, under a broad rotational rate range of 0 to 1,000 RPM (Ekman number=infinity--3.31x10--5), nozzle-to-plate spacing (beta=0.25.5.0), dimensionless disk thicknesses (b/dn=0.167.1.67), confinement ratio (rp/rd=0.2.0.75), and Prandtl number (1.29.124.44) using NH3, H2O, FC.77 and MIL.7808 as working fluids. An engineering correlation relating the average Nusselt number with the above parameters was developed for the prediction of system performance. The simulation results compared reasonably well with previous experimental studies. The second major contribution of this research was the development of a three dimensional CMP model that shows the temperature distributions profile as an index of energy dissipation at the wafer and pad surfaces, and slurry interface. A finite element analysis was done with FIDAP 8.7.4 package under the influence of physical parameters, such as slurry flow rates (0.5.1.42 cc/s), polishing pressures (17.24.41.37 kPa), pad

  19. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  20. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  1. Femoroacetabular impingement

    Energy Technology Data Exchange (ETDEWEB)

    Kassarjian, Ara [Department of Radiology, Division of Musculoskeletal Radiology, Massachusetts General Hospital, Boston, MA (United States)]. E-mail: akassarjian@partners.org; Brisson, Melanie [Department of Radiology, Centre Hospitalier Universitaire de Quebec, Que. (Canada); Palmer, William E. [Department of Radiology, Division of Musculoskeletal Radiology, Massachusetts General Hospital, Boston, MA (United States)

    2007-07-15

    Femoroacetabular impingement is a relatively recently appreciated 'idiopathic' cause of hip pain and degenerative change. Two types of impingement have been described. The first, cam impingement, is the result of an abnormal morphology of the proximal femur, typically at the femoral head-neck junction. Cam impingement is most common in young athletic males. The second, pincer impingement, is the result of an abnormal morphology or orientation of the acetabulum. Pincer impingement is most common in middle-aged women. This article reviews the imaging findings of cam and pincer type femoroacetabular impingement. Recognition of these entities will help in the selection of the appropriate treatment with the goal of decreasing the likelihood of early degenerative change of the hip.

  2. Three-dimensional numerical study of laminar confined slot jet impingement cooling using slurry of nano-encapsulated phase change material

    Science.gov (United States)

    Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.

    2016-10-01

    This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.

  3. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    Science.gov (United States)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  4. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  5. Investigation on heat transfer mechanism of impinging jet with cross-flow%横流对冲击射流换热特性的影响

    Institute of Scientific and Technical Information of China (English)

    张传杰; 孙纪宁; 李浩; 毛宏霞

    2011-01-01

    用实验和数值计算的方法研究了横流对单孔短距冲击换热特性的影响规律.结果表明:①在实验研究范围内,冲击靶面平均努塞尔数Nuav,is随横流的增大而增大;②冲击靶面前区努塞尔数Nufia随横流的增大而减小,这是因为壁面附近x负向流动的气流流速绝对值变小,换热削弱;③靶面冲击点附近及冲击靶面后区努塞尔数Nubia随横流的增大而增大,原因是在冲击点上游出现的马蹄涡的旋涡方向和冲击射流自身形成的卷吸涡拉伸涡对方向相同,这两种涡的叠加使该区域冲击靶面的换热得到增强.%Experimental and numerical investigations were made to simulate heat transfer characteristics of a single impinging hole and short impinging distance with cross-flow.The results show that:(1)in the experiment,the average Nusselt number of the impingement surface increases with the increase of cross-flow;(2)the Nusselt number in the front impact area decreases with the increase of cross-flow,because the flow velocity near the wall decreases,weakening the heat transfer effect;(3)the Nusselt number behind impact area near the impact point increases with the increase of cross-flow,because the vortexes directions between the horseshoe vortex in the upstream near the impact point and the stretching vortex produced by impinging jet are the same,and these two vortexes enhance the heat transfer in the impact surface.

  6. Assessment of unsteady-RANS approach against steady-RANS approach for predicting twin impinging jets in a cross-flow

    Directory of Open Access Journals (Sweden)

    Zhiyin Yang

    2014-12-01

    Full Text Available A complex flow field is created when a vertical/short take-off and landing aircraft is operating near ground. One major concern for this kind of aircraft in ground effect is the possibility of ingestion of hot gases from the jet engine exhausts back into the engine, known as hot gas ingestion, which can increase the intake air temperature and also reduce the oxygen content in the intake air, potentially leading to compressor stall, low combustion efficiency and causing a dramatic loss of lift. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Accurate prediction of this complicated flow field under the Reynolds averaged Navier–Stokes (RANS approach (current practise in industry is a great challenge as previous studies suggest that some important flow features cannot be captured by the Steady-RANS (SRANS approach even with a second-order Reynolds stress model (RSM. This paper presents a numerical study of this flow using the Unsteady-RANS (URANS approach with a RSM and the results clearly indicate that the URANS approach is superior than the SRANS approach but still the predictions of Reynolds stress are not accurate enough.

  7. Research into the process of impingement of two plane jets of an ideal fluid with free boundaries

    Science.gov (United States)

    Baskakov, V. D.; Karnaukhov, K. A.

    2016-07-01

    The problem of finding parameters stationary jets, outgoing from a place of impact of two incoming flat ideal jets with free boundaries and possessing the identical speed, but various width, has no decision. Various models are widely used for a conclusion of the missing equation now, but they lead to contradictory results. The new model is offered. Adequacy to the offered model was checked by comparison results with data of the numerical calculations in ANSYS AUTODYN. The dependence approximating results of numerical calculations is developed to increase accuracy in calculations of angular provision of the internal outgoing jet.First of all, the executed researches are interesting to experts, who works on behavior low- value technological errors in shaped charges.

  8. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was {approximately}4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel.

  9. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank`s structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was {approximately}4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel.

  10. Detailed flowfield and surface properties for high Knudsen number planar jet impingement at an inclined flat plate

    Science.gov (United States)

    Cai, Chunpei; He, Xin

    2016-05-01

    This paper presents two sets of analytical exact solutions for collisionless gas flows from a planar exit, impinging at an inclined flat plate. These analytical results are obtained by using gaskinetic theories. The first set of solutions are for a diffuse reflective plate surface, and the other set of solutions are for a specular reflective plate surface. A virtual nozzle exit is adopted to aid analyzing the specular reflective plate scenario. New formulas for plate surface properties, including velocity slips, pressure, shear stress, and heat flux distributions, are provided. For both problems, the flowfield exact solutions are investigated as well. Numerical simulations with the direct simulation Monte Carlo method are performed to validate these new analytical results, and good agreement is obtained for flows with high Knudsen numbers. The results consider effects from many factors, such as the plate inclination angle, geometry ratios, and exit gas and plate properties (such as exit gas bulk density, gas speed ratio, and exit gas and plate temperatures). Compared with past work, these new solutions are more comprehensive and practical. The results also illustrate that if the plate is quite close to the nozzle exit, it is improper to adopt the traditional treatments of a point source and a simple cosine function.

  11. High-Resolution Heat Transfer Coefficients Measurement for Jet Impingement Using Thermochromic Liquid Crystals%射流冲击换热系数的高精度热色液晶测试

    Institute of Scientific and Technical Information of China (English)

    张靖周; 李立国

    2001-01-01

    A high-resolution testing technique named liquid crystal thermography is used for the experimental study on jet array impingement to map out the distribution of heat transfer coefficients on the cooling surface. Effects of the impingement distance, the impinging hole arrangement and the initial crossflow on heat transfer characteristics are investigated. The thermal images show truly the features of local heat transfer for each jet impingement cooling. The applications of thermochromic liquid crystal are successful in the qualitative and quantitative measurement for heat transfer coefficients distribution%采用高精度热色液晶测试技术对阵列射流冲击的冷却表面局部换热系数分布进行试验研究。研究了射流冲击间距、射流孔排列方式和初始横流等因素对换热特性的影响。热图像真实地反映出每一股射流的冲击冷却局部换热特征。热色液晶用于换热系数分布的定性和定量测试是非常有效的。

  12. Model Calculation of Heat Transfer Coefficient of Quenched Cooling under Jet Impingment Plate%厚板射流冲击下淬火冷却的换热系数建模计算

    Institute of Scientific and Technical Information of China (English)

    邓运来; 贺有为; 曹盛强; 张新明

    2011-01-01

    建立一种多喷嘴同时喷射淬火冷却的数学模型,通过实测冷却曲线分析计算厚板驻点区与紊流区换热系数分布规律,基于ABAQUS模拟软件模拟验证模型.结果表明:驻点与紊流点处的换热系数随时间分布是不均匀的,在10~20s内出现峰值,随后呈上下波动变化的规律;实测(或计算)试样心部与表面的冷却曲线与模拟的吻合较好,验证了多喷嘴同时喷射下的换热系数分布模型.%The quenched cooling heat transfer process of the thick plate by multi-nozzle jet impinging is extremely complicated, thus it is difficult to establish a model of the surface heat transfer coefficient distribution, which reveals the speed of the heat transfer on the jet impinging surface. In this paper, the mathematical model of multi-nozzle jet simultaneously impinging quenched cooling has been established, coefficient distribution law at the stagnation and turbulent zone has been calculated by actual measurement of the cooling curve and has been verified based on the ABAQUS simulation software. The results show that the coefficient distribution at the stagnation and turbulent zone is uneven over time, and the peak appeared within 10 to 20 seconds, and then comes to the variation of the next waves. The actual measurement(or calculation) of the cooling curves at the sample' s center and surface is at a very good match state with that of simulation, therefore it verifies the heat transfer coefficient distribution model under the multi-nozzle jet simultaneously impinging.

  13. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach.

    Science.gov (United States)

    Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng

    2013-06-14

    LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).

  14. Research on Jet Impingement Drying for Mushrooms%采用热管气体射流冲击技术干燥香菇

    Institute of Scientific and Technical Information of China (English)

    肖旭霖; 高晓丽; 李文峰; 金欢欢

    2012-01-01

    In this test, the heat pipe and jet impingement technology was applied together to explore drying process of fresh mushrooms through the single factor experiment. Test index--rehydration ratio, sensory evaluation and energy consumption changes for the trial were used to determine the optimum drying process parameters(drying tem- perature, wind velocity, height of nozzle to material). The results show that optimum parameters of the drying mush- rooms process were: temperature 60℃, wind speed 40km/h and the height of the nozzle to material 115mm.%采用热管气体射流冲击技术,通过单因素试验研究鲜香菇的干燥工艺,以香菇干燥成品的复水比、感官评价及能耗变化为试验指标,确定干燥温度、热风风速、喷嘴距物料高度的最佳工艺参数。结果表明:香菇气体射流冲击适宜干燥工艺参数为干燥温度60℃、风速40km/h、喷嘴距物料的高度115mm。

  15. Assessment of the relative performance of a confined impinging jets mixer and a multi-inlet vortex mixer for curcumin nanoparticle production.

    Science.gov (United States)

    Chow, Shing Fung; Sun, Changquan Calvin; Chow, Albert Hee Lum

    2014-10-01

    The relative performance of two specially designed mixers for nanoparticle production, namely, two-stream confined impinging jets with dilution mixer (CIJ-D-M) and four-stream multi-inlet vortex mixer (MIVM), was evaluated using the model compound, curcumin (CUR), under defined conditions of varying mixing rate and organic solvent. In the absence of turbulent fluctuations, higher mixing rate tended to generate finer particles. Among the three water-miscible organic solvents tested, acetone afforded the smallest particle size and the narrowest particle size distribution. Both mixers were capable of reproducibly fabricating CUR nanoparticles with particle size below 100 nm and high encapsulation efficiency (>99.9%). Specifically, CIJ-D-M yielded nanoparticles with smaller size and polydispersity index while the particles obtained by the MIVM displayed better short-term stability. In addition, CIJ-D-M tended to produce a mixture of irregular nanoaggregates and primary nanoparticles while roughly spherical nanoparticles were generated with the MIVM. The observed particle size and morphological differences could be attributed to the differences in the configuration of the mixing chamber and the related mixing order.

  16. Femoroacetabular impingement

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Suzanne E., E-mail: andersonsembach@yahoo.com.au [The University of Notre Dame Australia, School of Medicine Sydney, 160 Oxford Street, Darlinghurst 2010, NSW, Sydney (Australia); Department of Diagnostic, Pediatric and Interventional Radiology, Inselspital, University of Bern, Bern 3010 (Switzerland); Siebenrock, Klaus Arno; Tannast, Moritz [Department of Orthopedic Surgery, Inselspital, University of Bern, Bern 3010 (Switzerland)

    2012-12-15

    Femoroacetabular impingement (FAI) is a pathomechanical concept describing the early and painful contact of morphological changes of the hip joint, both on the acetabular, and femoral head sides. These can lead clinically to symptoms of hip and groin pain, and a limited range of motion with labral, chondral and bony lesions. Pincer impingement generally involves the acetabular side of the joint where there is excessive coverage of the acetabulum, which may be focal or more diffuse. There is linear contact of the acetabulum with the head/neck junction. Cam impingement involves the femoral head side of the joint where the head is associated with bony excrescences and is aspheric. The aspheric femoral head jams into the acetabulum. Imaging appearances are reviewed below. This type is evident in young males in the second and third decades. The main features of FAI are described.

  17. Ballistics Model for Particles on a Horizontal Plane in a Vacuum Propelled by a Vertically Impinging Gas Jet

    Science.gov (United States)

    Lane, J. E.; Metzger, P. T.

    2010-01-01

    A simple trajectory model has been developed and is presented. The particle trajectory path is estimated by computing the vertical position as a function of the horizontal position using a constant horizontal velocity and a vertical acceleration approximated as a power law. The vertical particle position is then found by solving the differential equation of motion using a double integral of vertical acceleration divided by the square of the horizontal velocity, integrated over the horizontal position. The input parameters are: x(sub 0) and y(sub 0), the initial particle starting point; the derivative of the trajectory at x(sub 0) and y(sub 0), s(sub 0) = s(x(sub 0))= dx(y)/dy conditional expectation y = y((sub 0); and b where bx(sub 0)/y(sub 0) is the final trajectory angle before gravity pulls the particle down. The final parameter v(sub 0) is an approximation to a constant horizontal velocity. This model is time independent, providing vertical position x as a function of horizontal distance y: x(y) = (x(sub 0) + s(sub 0) (y-y(sub 0))) + bx(sub 0) -(s(sub 0)y(sub 0) ((y - y(sub 0)/y(sub 0) - ln((y/y(sub 0)))-((g(y-y(sub 0)(exp 2))/ 2((v(sub 0)(exp 2). The first term on the right in the above equation is due to simple ballistics and a spherically expanding gas so that the trajectory is a straight line intersecting (0,0), which is the point at the center of the gas impingement on the surface. The second term on the right is due to vertical acceleration, which may be positive or negative. The last term on the right is the gravity term, which for a particle with velocities less than escape velocity will eventually bring the particle back to the ground. The parameters b, s(sub 0), and in some cases v(sub 0), are taken from an interpolation of similar parameters determined from a CFD simulation matrix, coupled with complete particle trajectory simulations.

  18. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

    Science.gov (United States)

    Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck

    2014-07-01

    Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution

  19. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  20. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  1. Specification of a Two-Dimensional Test Case

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....

  2. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  3. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  4. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  5. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  6. Femoroacetabular impingement

    Directory of Open Access Journals (Sweden)

    José Batista Volpon

    Full Text Available ABSTRACT The femoroacetabular impingement (FAI is as condition recently characterized that results from the abnormal anatomic and functional relation between the proximal femur and the acetabular border, associated with repetitive movements, which lead labrum and acetabular cartilage injuries. Such alterations result from anatomical variations such as acetabular retroversion or decrease of the femoroacetabular offset. In addition, FAI may result from acquired conditions as malunited femoral neck fractures, or retroverted acetabulum after pelvic osteotomies. These anomalies lead to pathological femoroacetabular contact, which in turn create impact and shear forces during hip movements. As a result, there is early labrum injury and acetabulum cartilage degeneration. The diagnosis is based on the typical clinical findings and images. Treatment is based on the correction of the anatomic anomalies, labrum debridement or repair, and degenerate articular cartilage removal. However, the natural evolution of the condition, as well as the outcome from long-term treatment, demand a better understanding, mainly in the asymptomatic individuals.

  7. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  8. An Experimental Investigation of Ice-melting and heat transfer rates from submerged warm water jets upward impinging into ice-blocks as analogous for water-filled cavities formed during subglacial eruptions.

    Science.gov (United States)

    Jamshidnia, Hamidreza; Gudmundsson, Magnus Tumi

    2016-11-01

    Rates of energy transfer in water-filled cavities formed under glaciers by geothermal and volcanic activity are investigated by conducting experiments in which hot water jets (10°- 90°C) impinging into an ice block for jet Reynolds numbers in turbulent regime of 10000 -70000. It is found that heat flux is linearly dependent on jet flow temperature. Water jet melts a cavity into an ice block. Cavities had steep to vertical sides with a doming roof. Some of ice blocks used had trapped air bubbles. In these cases that melting of the ice could have led to trapping of air at the top of cavity, partially insulating the roof from hot water jet. The overall heat transfer rate in cavity formation varied with jet temperature from <100 kW m-2 to 900 kW m-2 while melting rates in the vertical direction yield heat transfer rates of 200-1200 kW m-2. Experimental heat transfer rates can be compared to data on subglacial melting observed for ice cauldrons in Iceland. For lowest temperatures the numbers are comparable to those for geothermal water in cool, subglacial water bodies and above subglacial flowpaths of jökulhlaups. Highest experimental rates for 80-90°C jets are 3-10 times less than inferred from observations of recent subglacial eruptions (2000-4000 kW m-2) . This can indicate that single phase liquid water convection alone may not be sufficient to explain the rates seen in recent subglacial eruptions, suggesting that forced 2 or 3 phase convection can be common.

  9. 核桃气体射流冲击干燥特性及干燥模型%Drying Characteristics and Model of Walnut in Air-Impingement Jet Dryer

    Institute of Scientific and Technical Information of China (English)

    赵珂; 肖旭霖

    2015-01-01

    [Objective] In order to improve the dried walnut quality, shorten the drying time, the effects of different conditions on the walnut air-impingement jet drying were studied and the activation energy for drying was obtained and the optimum drying model was selected.[Method] Using the method of energy saving technology of dry heat pipe combined with a self-made gas jet impingement equipment, in 9 groups of an experiment, effects of different jet air temperatures (40℃, 50℃ and 60℃) and air velocities (11, 12 and 13 m·s-1) on the drying characteristics of materials, effective moisture diffusion coefficient and activation energy were studied, at the same time, through the statistical data selection for the fitting drying models, 5 drying kinetics models were established. The 5 models are the Page model, the Modified Page model, the Logarithmic model, the Herdenson and Pabis model, and the Lemus model. The data were processed by using the DPS, after finishing the fitting, a parametric equation was obtained the final generalMR andt.[Result] Compared to the most results of food material drying test, air-impingement jet drying of walnut mainly occurred in the falling rate drying period, and there was no constant drying rate stage. Air temperature had large influence on each stage of walnut air impingement. With the increase of the air temperature values, the drying rate was rising and the MR was decreased. The air velocity almost had no influence on the drying time, but had a certain influence on the rate of surface water vaporizing stage by increasing the drying time. The air velocity almost had no influence on the drying rate of internal moisture transfer stage had almost no influence, and by employing this feature, a method of changing the wind temperature and wind speed could be used in different periods, so not only the drying time was shortened, but also the purpose of energy saving was achieved. Overall, for shortening the drying time, the order of the

  10. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  11. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  12. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  13. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  14. Enhancements of Impinging Flame by Pulsation

    Institute of Scientific and Technical Information of China (English)

    AySu; Ying-ChiehLiu

    2000-01-01

    Experimental investigations on the pulsating jet-impinging diffusion flame were executed.A soleoid valve was aligned upstream of the jet orifice and the methane fuel was controlled in open-closed cycles from 0 Hz to 20Hz.Results show that the open-closed cycles,indeed increase the fluctuations of the methane fuel obviously.The evolutions of pulsating flame therefore develop faster than the continuous impinging flame.The optimized pulating frequencies are near 9 to 11 hz from the Re=170 to 283.The temperature differences between that under optimized pulsating rate and full open condition(no pulsation)are ranging from 100 to 150 degree.The pulsating effect is more singnificant at low Reynolds number.The cross section of continuous impinging flame behaves as elliptic shape with axial ratio equals to 2/3.The tip of the impinging flame obviously crosses at 42mm above the impinging point.ecause of the phenomenon of pulsation flame,the flame sheet or flame front may not be identified clearly in the averaged temperature contours.Results shows that the averaged end-contour of pulsation flame rears at 38mm above the impinging point.By observation and experiment,the pulsating flame behaves more stable and efficient than the continuous impinging flame.

  15. Statistical mechanics of two-dimensional and geophysical flows

    CERN Document Server

    Bouchet, Freddy

    2011-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...

  16. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  17. Development of stratified-charge engine by impingement of fuel jet. ; Test results with gasoline fuel. Chokufunshiki shototsu kakusan sojo kyuki kikan no kaihatsu. ; Gasoline nenryo ni yoru jikken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Onishi, S. (Japan Clean Engine Lab. Co. Ltd., Ishikawa (Japan))

    1991-04-25

    Development was made of direct fuel injection stratified-charge method (OSKA nethod), to make the mixture formation in the direct fuel injection engine by having fuel jet positively impinge on the impingement part, installed in the combustion chamber. In the present report, the following conclusion was obtained through experiment on gasoline fuel by a single cylinder engine with a spark ignition method, combined with the OSKA method: High compressive ratio was made adoptable by applying an OSKA method, using a single hole nozzle with low opening pressure. Due to feed air swirl, made unnecessary for the mixture formation, adoption of early injection under the high load, etc., the highest brake mean effective pressure attained to 1.04MPa, which is almost equivalent to that of carburetor type automobile gasoline engine, while the highest brake thermal efficiency did to 37.7%, which is so to that of direct fuel injection diesel engine, equal in volume. Also under the low load, obtained was a high thermal efficiency, nearing that of diesel engine. 8 refs., 9 figs., 2 tabs.

  18. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  19. Numerical study on heat transfer of slot nozzles impinging gas-jet cooling process%带钢镀后喷射冷却过程传热特性的数值研究

    Institute of Scientific and Technical Information of China (English)

    黄军; 武文斐; 张亚竹; 李保卫; 牛德志

    2012-01-01

    Impinging gas-jet cooling is the most important cooling method in a continuous steel strip annealing and galvanizing production. Numerical simulation of a bellow and an array of slot nozzles impinging gas-jet has been performed through the solution of 3D Navier-Stokes equations and energy equation by using the SIMPLE algorithm and a standard k-e turbulence model. The simulation results reveal the characteristics of flow field and temperature field. Heat flux on strip surface distribution characteristics presented slit-like;the average convection heat transfer coefficient is 127.3W/(m2 · K) and strip cooling rate is 12.4℃/s by typical operating conditions. Provide theoretical basis for design of quick cooling system in continuous steel strip annealing and galvanizing production.%喷射气体冷却是带钢连续退火和镀后冷却过程中最重要的冷却方法,利用数值模拟方法对带钢镀后喷射冷却过程中带钢传热特性进行研究,计算结果表明在带钢表面热流密度呈条缝状分布,典型工况下带钢表面平均对流换热系数为127.3W/(m2·K),带钢冷却速度为12.4℃/s.该研究为带钢连续退火机组及镀后快冷系统设计提供理论依据.

  20. CFD Simulation and Experiment Research of Pipe Downstream With Orifice and Jet Impingement%孔板管道下游与射流冲击的CFD模拟及实验研究

    Institute of Scientific and Technical Information of China (English)

    伊成龙; 张乐福

    2012-01-01

    In nuclear power plants, the How accelerated corrosion (FAC) occurs mainly in the secondary circuit, causing a significant impact on production practice. Straight pipes with an orifice and jet impingement were simulated by CFD at 250 ℃ and 273 ℃ , achieving flow patterns and shear force distributions on the surfaces of plates and in the internal of pipes, and identifying weak points caused by pipe thinning with an orifice and influence of jet impingement angle. The results show that the orifice diameter ratio in the straight pipe changing has little effect on the maximum point of shear stress. With smaller crashing angle, the greater the shear force is, and the stronger the mechanical action is.%在核电厂中,流动加速腐蚀主要发生在二回路,对生产实践造成很大影响.本次研究运用CFD在250℃和273℃下对带有孔板的直管以及射流冲击结构进行模拟研究,得出流场及剪切力在管道内和试样表面的分布,找出带孔板管道由于管壁减薄引起的薄弱环节及角度对射流冲击的影响.结果表明,直管孔板中管径比的变化对冲刷后剪切力最大点影响很小.冲刷角度越小,剪切力越大,机械作用越强.

  1. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  2. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  3. A computational study of heat transfer in a laminar oscillating confined slot jet impinging on an isothermal surface at low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Johnny ISSA

    2015-09-01

    Full Text Available Heat transfer in a laminar confined oscillating slot jet is numerically investigated. A uniform inlet velocity profile oscillating with an angle φ, having the following sinusoidal shape: φ= φmax*sin(2πft. φ is in radians, φmax is the maximum jet angle, and f is the oscillation frequency. The height-to-jet-width ratio (H/w was fixed to 5 and the fluid’s Prandtl number which is one of the dimensionless governing groups is 0.74. The other dimensionless groups characterizing this problem, which are, Strouhal’s number, St, and Reynolds number, Re, where varied. Re was in the range 100jet hydraulic diameter (2w. Defining φmax is explained later in this paper. For Re=250 and St=0.5, a dim heat transfer enhancement was noticed in the stagnation region, when compared to the steady case. A similar enhancement was observed for Re=400 at St=0.75. At Re=100 no improvements were observed, where the flow showed a high vulnerability to severe oscillations, that drastically reduced heat removal ability. Jet flapping could be triggered at Re=400. But the flapping mode was most stable for St=0.75, in which case, heat transfer enhancement was detected.

  4. Posterior ankle impingement.

    Science.gov (United States)

    Giannini, Sandro; Buda, Roberto; Mosca, Massimiliano; Parma, Alessandro; Di Caprio, Francesco

    2013-03-01

    Posterior ankle impingement is a common cause of chronic ankle pain and results from compression of bony or soft tissue structures during ankle plantar flexion. Bony impingement is most commonly related to an os trigonum or prominent trigonal process. Posteromedial soft tissue impingement generally arises from an inversion injury, with compression of the posterior tibiotalar ligament between the medial malleolus and talus. Posterolateral soft tissue impingement is caused by an accessory ligament, the posterior intermalleolar ligament, which spans the posterior ankle between the posterior tibiofibular and posterior talofibular ligaments. Finally, anomalous muscles have also been described as a cause of posterior impingement.

  5. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  6. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  7. Influence of orifice-to-wall distance on synthetic jet vortex ring simpinging on a fixed wall

    Institute of Scientific and Technical Information of China (English)

    XU; Yang; FENG; LiHao

    2013-01-01

    Two-dimensional particle image velocimetry (PIV) is used to investigate the influence of the orifice-to-wall distance on synthetic jet vortex rings impinging on a fixed wall. Both evolutions of vortical structures and statistical characteristics of flow fields at different orifice-to-wall distances are presented. It is found that different orifice-to-wall distances have different effects in terms of the vortex strength and impinging speed when the vortex rings are approaching the wall. The secondary vortex ring can be observed within the shear layer only when the dimensionless orifice-to-wall distance is close to or less than the dimensionless stroke length. Consequently, an appropriate orifice-to-wall distance plays a vital role in the sense of impingement effect. The statistical analysis of the flow field indicates that a wall jet forms after impingement, while both the decay rate of the maximum radial velocity and the spreading rate of the half-width decrease with the increasing orifice-to-wall distance. The non-dimensional wall jet velocity profiles at different orifice-to-wall distances all exhibit self-similar behaviors, which is consistent with the theoretical solution of the laminar wall jet.

  8. 旋转射流冲击凸台换热特性的数值模拟%Numerical simulation on heat transfer of a rotating jet impinging on a protruding pedestal

    Institute of Scientific and Technical Information of China (English)

    张志强; 周静伟; 洪飞飞

    2012-01-01

    运用重整化(RNG)的k-ε模型对半封闭板内带旋流的射流冲击凸台的传热及流动进行仿真,研究了旋转射流冲击凸台时的流场特性以及凸台表面、侧壁和平板上的传热特性.分析了旋流强度(旋转数)、流动Re数、冲击高度H/D对传热与流动的影响.结果表明,不同Re数下旋流会削弱驻点处的冲击作用,从而使得驻点处的传热Nu数减小.在雷诺数Re=25 000时,在旋转数0<R< 1.5时,旋流对凸台上表面外沿、凸台侧壁和平板的换热均有强化;而R=1.5时旋流过大,会削弱整体的换热;在雷诺数Re=5 000时,只有当R≤0.5时,带旋流的射流才能微弱地强化凸台上表面的平均换热,但旋流对凸台的侧壁和平板换热有所强化.%The RNG k-ε model was used to compute the heat transfer and rotational flow field of a semi-confined turbulent axisymmetric jet, impinging onto a pedestal mounted on a flat plate. Heat transfer and rotational flow field characteristics were investigated on the pedestal top surface and side face, as well as on the plate. The influence of rotational flow intensity ( rotation number R). Reynolds number Re and nozzle-to-pedestal distance H/D on heat transfer and flow was studied. It showed that impinging on the stagnation point was weakened by the rotating jet under different Reynolds number , and the Nusselt number on the stagnation point decreased. The combination of Re=25 000 and rotation number 0jet. The combination of Re=5 000 and rotation number R≤0. 5 is found that such a rotating jet slightly enhanced the average heat transfer on the pedestal top surface, but it enhances well on the pedestal side face and the plate.

  9. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  10. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  11. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  12. Spatiotemporal Evolution of Ar(3P2) Metastable Density Generated in a Pulsed DC Atmospheric Pressure micro-Plasma Jet Impinging on a Glass Plate

    Science.gov (United States)

    Gazeli, K.; Bauville, G.; Es-Sebbar, Et-T.; Fleury, M.; Neveau, O.; Pasquiers, St.; Santos Sousa, J.; Laboratoire de Physique des gaz et des plasmas Team

    2016-09-01

    Atmospheric Pressure micro-Plasma Jets (APPJs) are promising tools in various domains such as biomedical and material treatments. In this work, APPJs are produced in pure argon at variable flow rates (i.e., 200, 400 and 600 sccm), by applying high voltage positive pulses (250 ns in FWHM and 6 kV in amplitude) at a repetition frequency of 20 kHz. The generated plasma impacts an ungrounded glass plate placed at a distance of 5 mm from the tube's orifice and perpendicular to the streamers propagation. At these conditions, a diffuse discharge is established resulting in a non-filamentary and reproducible plasma, in contrast with the free-jet case (no target). This allows the quantification of the absolute density of the Ar(1s5) metastable state by using laser absorption spectroscopy to probe the transition 1s5 -> 2p9 at 811.531 nm. The experiments show the dependence on the gas flow rate and on the axial and radial positions of the maximum density (6-9x1013 cm-3) . At 200 sccm, it is obtained close to the tube's orifice, while with increasing flow rate it is displaced towards the plate. Regarding the radial variation, density maxima are obtained in a small area around the streamers propagation axis.

  13. Value of proximal regurgitant jet size in tricuspid regurgitation.

    Science.gov (United States)

    Rivera, J M; Vandervoort, P; Mele, D; Weyman, A; Thomas, J D

    1996-04-01

    Recent studies have shown good agreement between proximal regurgitant jet size obtained with transthoracic color flow mapping and regurgitant fraction in patients with mitral regurgitation. To evaluate this in patients with tricuspid regurgitation, we analyzed 40 patients in sinus rhythm, 16 with free jets and 24 with impinging jets, comparing proximal jet size (millimeters) with parameters derived from the Doppler two-dimensional echocardiographic method (regurgitant fraction) and the flow-convergence method (peak flow rate, effective regurgitant orifice area, and momentum). Good agreement was noted between peak flow rate (r = 0.80, p fair between effective regurgitant orifice (r = 0.65, p < 0.001), peak flow rate (0.65, p < 0.001), and momentum (r = 0.62, p < 0.001) with mean jet proximal size. Jet proximal size obtained with transthoracic color flow mapping is a good semiquantitative tool for measuring tricuspid regurgitation in free jets that correlates well with established measures of the severity and with new parameters available from analysis of the proximal acceleration field. In patients with eccentrically directed wall jets, the correlation weakens but still appears clinically significant.

  14. Two-Dimensional Supersonic Jet Mixing of Air and Helium.

    Science.gov (United States)

    1978-12-01

    fraction of each gas in the bottle. The pressure of each sample was taken using a low volume U-tube mercury manometer . The accuracy of these pressure...Elfments of Gasdynamics. New York: Jehn Wiley and Sons, Inc., 1957. 41 Appendix A Gas Sample Pressure Calculation A low volume U-tube mercury ... manometer was used to measure the pressure in the gas sample bottles. However, the pressure read from the manometer was not the actual pressure in the

  15. Influence of Liquid Viscosity on Droplet Impingement on Superhydrophobic Surfaces

    CERN Document Server

    Pearson, John T; Webb, Brent W

    2010-01-01

    This fluid dynamics video describes droplet impingement experiments performed on superhydrophobic surfaces. When droplets of pure water are impinged upon superhydrophobic surfaces, a region of thin coherent jets are observed for Weber numbers between 5 and 15. Also, peripheral splashing is observed for Weber numbers above about 200. When the viscosity of the droplet is increased by mixing glycerol with the water, the thin jets are not observed and peripheral splashing is delayed somewhat. In the Weber number range where pure water droplets are observed to splash peripherally, the water/glycerol droplets are observed to have two-pronged jets.

  16. Cold plate with combined inclined impingement and ribbed channels

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Pritish R.

    2015-12-22

    Heat transfer devices and methods for making the same that include a first enclosure having at least one inlet port; a second enclosure having a bottom plate and one or more dividing walls to establish channels, at least one internal surface of each channel having rib structures to create turbulence in a fluid flow; and a jet plate connecting the first enclosure and the second enclosure having impinging jets that convey fluid from the first enclosure to the channels, said impinging jets being set at an angular deviation from normal to cause local acceleration of fluid and to increase a local heat transfer rate.

  17. Subacromial impingement syndrome

    NARCIS (Netherlands)

    Umer, M.; Qadir, I.; Azam, M.

    2012-01-01

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a

  18. Subacromial impingement syndrome

    NARCIS (Netherlands)

    Umer, M.; Qadir, I.; Azam, M.

    2012-01-01

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matte

  19. Ischiofemoral impingement syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Tamam

    2015-06-01

    Full Text Available Ischiofemoral impingement is newly recognized extracapsular cause of atypical hip and groin pain. Ischiofemoral impingement was first defined by Johnson in 1977. It is characterized by a narrowed space between the ischial tuberosity and the lesser trochanter, associated with changes in ischiofemoral space . The diagnosis of the ischiofemoral impingement is complex. Normal radiological and ultrasound appearances may be seen in ischiofemoral impingement patients with atypical hip pain. It is important to have a focus on the symptoms , through the history taking, physi and not;cal examination, and appropriate imaging studies of the hip.In this study, we aimed to review the etiology, clinical presentation, imaging modalities, differential diagnosis and treatment options of ischiofemoral impingement. [Archives Medical Review Journal 2015; 24(2.000: 271-281

  20. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  1. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  2. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  3. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  4. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  5. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  6. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  7. On the origin of impinging tones at low supersonic flow

    CERN Document Server

    Wilke, Robert

    2016-01-01

    Impinging compressible jets may cause deafness and material fatigue due to immensely loud tonal noise. It is generally accepted that a feedback mechanism similar to the screech feedback loop is responsible for impinging tones. The close of the loop remained unclear. One hypothesis hold up in the literature explains the emanated sound with the direct interaction of vortices and the wall. Other explanations name the standoff shock oscillations as the origin of the tones. Using direct numerical simulations (DNS) we were able to identify the source mechanism for under-expanded impinging jets with a nozzle pressure ratio (NPR) of 2.15 and a plate distance of 5 diameters. We found two different types of interactions between vortices and shocks to be responsible for the generation of the impinging tones. They are not related to screech.

  8. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  10. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  11. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  12. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  13. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  14. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  15. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  16. A finite difference technique for solving a time strain separable K-BKZ constitutive equation for two-dimensional moving free surface flows

    Science.gov (United States)

    Tomé, M. F.; Bertoco, J.; Oishi, C. M.; Araujo, M. S. B.; Cruz, D.; Pinho, F. T.; Vynnycky, M.

    2016-04-01

    This work is concerned with the numerical solution of the K-BKZ integral constitutive equation for two-dimensional time-dependent free surface flows. The numerical method proposed herein is a finite difference technique for simulating flows possessing moving surfaces that can interact with solid walls. The main characteristics of the methodology employed are: the momentum and mass conservation equations are solved by an implicit method; the pressure boundary condition on the free surface is implicitly coupled with the Poisson equation for obtaining the pressure field from mass conservation; a novel scheme for defining the past times t‧ is employed; the Finger tensor is calculated by the deformation fields method and is advanced in time by a second-order Runge-Kutta method. This new technique is verified by solving shear and uniaxial elongational flows. Furthermore, an analytic solution for fully developed channel flow is obtained that is employed in the verification and assessment of convergence with mesh refinement of the numerical solution. For free surface flows, the assessment of convergence with mesh refinement relies on a jet impinging on a rigid surface and a comparison of the simulation of a extrudate swell problem studied by Mitsoulis (2010) [44] was performed. Finally, the new code is used to investigate in detail the jet buckling phenomenon of K-BKZ fluids.

  17. Impingement capability of high-pressure submerged water jet:Numerical prediction and experimental verification

    Institute of Scientific and Technical Information of China (English)

    刘海霞; 邵启明; 康灿; 龚辰

    2015-01-01

    At jet pressures ranging from 80 to 120 MPa, submerged water jets are investigated by numerical simulation and experiment. Numerical simulation enables a systematic analysis of major flow parameters such as jet velocity, turbulent kinetic energy as well as void fraction of cavitation. Experiments facilitate an objective assessment of surface morphology, micro hardness and surface roughness of the impinged samples. A comparison is implemented between submerged and non-submerged water jets. The results show that submerged water jet is characterized by low velocity magnitudes relative to non-submerged water jet at the same jet pressure. Shear effect serves as a key factor underlying the inception of cavitation in submerged water jet stream. Predicted annular shape of cavity zone is substantiated by local height distributions associated with experimentally obtained footprints. As jet pressure increases, joint contribution of jet kinetic energy and cavitation is demonstrated. While for non-submerged water jet, impingement force stems exclusively from flow velocity.

  18. 电弧炉用氧技术的多相流数值模拟研究%Modeling Research of an Impinging Oxygen Jet in the Electric Arc Furnace

    Institute of Scientific and Technical Information of China (English)

    李桂海; 何春来; 朱荣; 董凯

    2011-01-01

    A mathematical model has been developed to analyze the transient three-dimensional and three-phase flow in the 150 t EAF using single oxygen when the oxygen flow rate of 500, 1 450, 1 800, 2 000 m3/h. Multiphase Volume of Fluid (VOF) method is used to clarify the transient phenomena of oxygen impingement on the molten bath, and to simulate the behavior of molten steel and slag. The result of numerical simulations shows that with the increasing of oxygen flow rate, the velocity of molten bath increases, the penetration depth gets bigger and the surface area of uncovered steel on which the slag layer is pushed away by jets is enlarged. The results have been validated against water model experiments. More specially, the penetration depth predicted by numerical simulation has been found to agree well with that by water model. On the basis of numerical simulation, the impact force of jet under different oxygen flow rate is calculated, which shows with the increasing of impact force, the nominal static pressure of molten steel in cavity increases. And the relationship between decarburization rate and index of penetration is established.%对150 t电弧炉冶炼过程中单支氧枪供氧流量分别为500,1 450,1 800,2 000 m/h时氧气射流冲击熔池进行了三维三相流数值模拟.模拟研究表明,随着供氧流量的增加,熔池中钢液和渣液的流动速度、裸露钢液面面积及射流的冲击深度均增大.由数值模拟和水模得到的供氧流量与射流冲击深度的规律得到了很好的吻合.在数值模拟的基础上.计算了不同供氧流量下的射流冲击力;研究表明射流冲击力越大,熔池凹坑受到的静压力越大;并建立了脱碳速度与射流冲击指数之间的关系.

  19. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  20. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  1. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  2. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  3. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  4. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  5. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  6. Two-dimensional visualization of cluster beams by microchannel plates

    CERN Document Server

    Khoukaz, Alfons; Grieser, Silke; Hergemöller, Ann-Katrin; Köhler, Esperanza; Täschner, Alexander

    2013-01-01

    An advanced technique for a two-dimensional real time visualization of cluster beams in vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCP) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This inf...

  7. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  8. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  9. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  10. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  11. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  13. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements.

    Science.gov (United States)

    Shen, C H; Gau, C

    2004-07-30

    The design and fabrication for a thermal chip with an array of temperature sensors and heaters for study of micro-jet impingement cooling heat transfer process are presented. This thermal chip can minimize the heat loss from the system to the ambient and provide a uniform heat flux along the wall, thus local heat transfer processes along the wall can be measured and obtained. The fabrication procedure presented can reach a chip yield of 100%, and every one of the sensors and heaters on the chip is in good condition. In addition, micro-jet impingement cooling experiments are performed to obtain the micro-scale local heat transfer Nusselt number along the wall. Flow visualization for the micro-impinging jet is also made. The experimental results indicate that both the micro-scale impinging jet flow structure and the heat transfer process along the wall is significantly different from the case of large-scale jet impingement cooling process.

  14. Subacromial impingement syndrome

    Directory of Open Access Journals (Sweden)

    Masood Umer

    2012-05-01

    Full Text Available Subacromial impingement syndrome (SAIS represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matter of debate. However the etiology is multi-factorial, and has been attributed to both extrinsic and intrinsic mechanisms. Management includes physical therapy, injections, and, for some patients, surgery. No high-quality RCTs are available so far to provide possible evidence for differences in outcome of different treatment strategies. There remains a need for high-quality clinical research on the diagnosis and treatment of SAIS.

  15. Improvement of measurement methods for surface heat flux under water jet impinging%水射流冲击冷却过程靶面热流密度测试方法的改进

    Institute of Scientific and Technical Information of China (English)

    豆瑞锋; 温治; 周钢; 刘训良; 冯霄红; 罗建枫

    2013-01-01

    To accurately measure target surface heat flux under water jet impinging, a new experimental method to calculate the heat flux of a target plate was introduced, which included adding a heat adiabatic material under the target plate, measuring the target plate temperature at one-point only, and using a one-dimensional inverse heat transfer. Experimental data analysis indicates that the probability of the relative error within ±5%is 93%. Because the bottom surface of the target plate is approximated to adiabatic condition, the inverse heat transfer calculated temperature of the bottom surface is slightly higher than the measured one. It is concluded that by adding a heat adiabatic material under the target plate, the accurate results of temperature and heat flux distribution of the target plate can be obtained easily even using a single-point temperature measurement method.%为了准确测量水射流冲击冷却过程靶面热流密度,提出在靶体背侧增加绝热材料,采用单点测温,使用一维导热反问题计算靶体表面热流密度的方法。实验数据分析显示,采用该方法对靶体背侧温度预测的相对误差±5%以内的概率为93%以上,由于靶体背侧仅是近似的绝热条件,导热反问题计算的靶体背侧温度略高于实测温度。结果表明,通过在靶体背侧增加绝热材料,即便采用单点测温,仍然可以很容易地获得足够精确的靶体温度和表面热流密度。

  16. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  17. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  18. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  19. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  20. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  1. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  2. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  3. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  4. Direct jet impingement cooling of power electronics

    OpenAIRE

    Skuriat, Robert

    2012-01-01

    The aim of the work presented in this thesis is to improve the operational reliability of a power module and increase the efficiency of its associated cooling system by integrating the design of the cooler as part of the module. Power modules are increasingly used in a variety of applications ranging from aircraft and mass transport systems, to motor control and power conversion in the home. Reliability of the power module is very important in aerospace applications where the highest levels o...

  5. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  6. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  7. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  8. Performance of direct injection methanol engine using the fuel jet impingement and diffusion. ; Comparison between the spark plug and glow plug ignitions. Nenryo funryu no shototsu kakusan wo riyoshita chokufun methanol kikan no seino. ; Spark plug oyobi glow plug chakka hoshiki no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Onishi, S.

    1993-01-20

    The purpose of this paper is to compare the performance of direct fuel injection methanol engines with the spark plug and glow plug ignition systems. These methanol engines utilize the formation of fuel-air mixture by the fuel jet impingement and diffusion. Engine performance and cylinder pressure for the both ignition systems were analyzed. Piezoelectric pressure indicator was used for the cylinder pressure measurements, and combustion analyzer was used for their analyses. In order to estimate engine performance, effects of load and engine speed were analyzed. Consequently, almost the same brake thermal efficiencies (maximum value of 42%) were obtained for both ignition systems. For the glow plug ignition system, the combustion noise and NOx emission were lower than the spark plug engine. The NOx emission did not excess 500ppm with the glow plug ignition system. In the impingement and diffusion method, both the piston attached type impingement part and cylinder head fixed type one were applicable. 4 refs., 9 figs., 2 tabs.

  9. Femoroacetabular impingement surgery

    DEFF Research Database (Denmark)

    Reiman, Michael P; Thorborg, Kristian

    2015-01-01

    Femoroacetabuler impingement (FAI) is becoming increasingly recognised as a potential pathological entity for individuals with hip pain. Surgery described to correct FAI has risen exponentially in the past 10 years with the use of hip arthroscopy. Unfortunately, the strength of evidence supporting...

  10. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  11. Quantifying Cell Adhesion through Impingement of a Controlled Microjet

    NARCIS (Netherlands)

    Visser, Claas Willem; Gielen, Marise V.; Hao, Zhenxia; Gac, Le Severine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and r

  12. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  13. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  14. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  15. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  16. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  17. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  18. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  19. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  20. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  1. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  2. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  3. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  4. Two-dimensional visualization of cluster beams by microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    Khoukaz, A., E-mail: khoukaz@uni-muenster.de; Bonaventura, D.; Grieser, S.; Hergemöller, A.-K.; Köhler, E.; Täschner, A.

    2014-01-21

    An advanced technique for a two-dimensional real time visualization of cluster beams in a vacuum as well as of the overlap volume of cluster beams with particle accelerator beams is presented. The detection system consists of an array of microchannel plates (MCPs) in combination with a phosphor screen which is read out by a CCD camera. This setup together with the ionization of a cluster beam by an electron or ion beam allows for spatial resolved investigations of the cluster beam position, size, and intensity. Moreover, since electrically uncharged clusters remain undetected, the operation in an internal beam experiment opens the way to monitor the overlap region and thus the position and size of an accelerator beam crossing an originally electrically neutral cluster jet. The observed intensity distribution of the recorded image is directly proportional to the convolution of the spatial ion beam and cluster beam intensities and is by this a direct measure of the two-dimensional luminosity distribution. This information can directly be used for the reconstruction of vertex positions as well as for an input for numerical simulations of the reaction zone. The spatial resolution of the images is dominated by the granularity of the complete MCP device and was found to be in the order of σ≈100μm. -- Highlights: • We present a MCP system for a 2D real time visualization of cluster target beams. • With this device the vertex region of storage ring experiments can be investigated. • Time resolved 2D information about the target thickness distribution is accessible. • A spatial resolution of the MCP device of 0.1 mm was achieved. • The presented MCP system also allows for measurements on cluster masses.

  5. Femoroacetabular impingement syndrome

    Directory of Open Access Journals (Sweden)

    Tolga Ege

    2016-03-01

    Full Text Available Femoroacetabular impingement (FAI syndrome is a recently understood hip condition that describes the pathologic contact between the femoral neck and the acetabular rim. Previously, it was also called and ldquo;acetabular rim syndrome and rdquo; or and ldquo;cervicoacetabular impingement syndrome and rdquo;. It is characterized by a developmental disorder affecting the femoral neck, acetabular rim and labrum. The chronic irritation on the hip joint causes chondral damage and mechanical changes, and these degenerative changes eventually lead to osteoarthritis. Two types of FAI have been described: Cam type and pincer type. Treatment options for FAI are conservative, open, mini open and arthroscopic surgery. [Arch Clin Exp Surg 2016; 5(1.000: 42-47

  6. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  7. 纳米流冷却液射流方式强化缸盖局部冷却的试验分析%Analysis of strengthening local cooling on diesel cylinder head using nano-fluids with jet impingement technology

    Institute of Scientific and Technical Information of China (English)

    郑伟; 苏忠根; 张振东; 程强

    2013-01-01

      为解决柴油机缸盖高热密度区域的冷却问题,本文采用射流方式的纳米流对其进行强化冷却.通过配置不同体积比的Cu、MgO、Al2O3纳米流,对自制的带有射流装置的柴油机缸盖进行传热性能对比研究.结果表明,与传统冷却液水相比,射流方式下3种纳米流冷却液均能不同程度地提升缸盖高热密度区域的传热性能,局部最大增加比率超过110%;在体积比≤2%时,3种纳米流冷却液射流传热系数都呈现出随粒子浓度的增加而增加的趋势,但随浓度的进一步增加反而降低;3种纳米流冷却液的射流传热系数随射流速度的增加而增加,但MgO纳米流在低射流速度下的射流传热系数最小,甚至比传统冷却液低2%~4%;3种纳米流冷却液的射流传热系数随射流高度的增加而增加,但射流高度过高会减小射流传热系数;随射流角度的增加射流传热系数也增加,射流角度的降低不仅降低射流传热系数还会加重测试点温度不一致的现象,过低射流角度时测试点温度值最大差距近30℃;射流传热系数随射流初始温度的增加而增加,但65℃之后,传热系数则随着射流初始温度的升高而下降;随着粒子浓度增高,电动泵消耗功率随之增加,本试验最大功率损耗为115 W.本文的研究成果是一种柴油机冷却技术的应用基础研究,可为实现缸盖局部高热密度区域的良好散热提供一种新的科研思路.%Diesel engines, as an important power source for machinery, are increasingly subject to people’s attention. Only with better cooling systems can they put up better work performance. Because coolant flow in the cylinder heads is difficult, how to better cool this part is becoming a hot point in the researching world. To solve the problem of cooling the high heat density areas in diesel cylinder heads, our study used nanofluids with jet impingement technology, due to better capacity of

  8. Numerical Simulation and Visualization of a Flowfield by Interaction of Two Parallel Two-Dimensional Freejets

    OpenAIRE

    TESHIMA, Koji; NAKATSUJI, Hiroyuki

    1987-01-01

    Flowfields resulted from interaction of two equivalent freejets issued from two parallel two-dimensional sonic nozzles at various nozzle distances and at various values of the stagnation to ambient pressure ratio are investigated numerically and by visualization. A strong shear flow region appears between the two jets, which is observed by visualization, is simulated well by the present calculation. Agreements of the parameters representing the whole structure of the flowfield, such as the lo...

  9. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  10. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  11. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  12. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  13. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  14. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  15. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  17. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  18. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  19. The intrinsic two-dimensional size of Sagittarius A*

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Geoffrey C. [Academica Sinica Institute of Astronomy and Astrophysics (ASIAA), 645 North A' ohoku Place, Hilo, HI 96720 (United States); Markoff, Sera [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Brunthaler, Andreas; Falcke, Heino [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Law, Casey [Radio Astronomy Laboratory, UC Berkeley, B-20 Hearst Field Annex, Berkeley, CA 94720-3411 (United States); Maitra, Dipankar [Department of Physics and Astronomy, Wheaton College, Norton, MA 02766 (United States); Clavel, M.; Goldwurm, A. [AstroParticule et Cosmologie (APC), Université Paris 7 Denis Diderot, F-75205 Paris cedex 13 (France); Morris, M. R.; Witzel, Gunther; Meyer, Leo; Ghez, A. M., E-mail: grower@asiaa.sinica.edu.tw [UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095-1562 (United States)

    2014-07-20

    We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array observations at a wavelength of 7 mm. The intrinsic source is modeled as an elliptical Gaussian with major-axis size 35.4 × 12.6 R{sub S} in position angle 95° east of north. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95°. We also place a maximum peak-to-peak change of 15% in the intrinsic major-axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.

  20. The Intrinsic Two-Dimensional Size of Sagittarius A*

    CERN Document Server

    Bower, Geoffrey C; Brunthaler, Andreas; Law, Casey; Falcke, Heino; Maitra, Dipankar; Clavel, M; Goldwurm, A; Morris, M R; Witzel, Gunther; Meyer, Leo; Ghez, A M

    2014-01-01

    We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array (VLBA) observations at a wavelength of 7mm. The intrinsic source is modeled as an elliptical Gaussian with major axis size 35.4 x 12.6 R_S in position angle 95 deg East of North. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95 deg. We also place a maximum peak-to-peak change of 15% in the intrinsic major axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports...

  1. Faraday, Jets, and Sand

    NARCIS (Netherlands)

    Sandtke, M.; van der Meer, Roger M.; Versluis, Andreas Michel; Lohse, Detlef

    2003-01-01

    When a 6-mm layer of fine sand with an average grain size of 40 µm is poured into a cylindrical container and shaken vertically, thin jets are seen to emerge from an airy cloud of grains, almost like protuberances from the corona of the sun. A quasi two-dimensional setup reveals the jet-formation

  2. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  3. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  4. Terrestrial Plume Impingement Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Masten Space Systems proposes to create a terrestrial plume impingement testbed for generating novel datasets for extraterrestrial robotic missions. This testbed...

  5. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  6. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  7. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  8. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 2: Low Temperature Hybrid Micro-Channel/Micro-Jet Impingement Cooling

    Science.gov (United States)

    2008-09-01

    pressure gradient ( Incropera , 1999). Watson (1964) used inviscid theory to determine Boiling and Two-Phase Flow Laboratory 23 thickness h of the wall jet...the pressure drop coefficient, f is inversely proportional to jet Reynolds ( Incropera , 1999) f = KRe,.,, (4.4) and K is fairly constant for the...both pool and forced convection boiling on submerged bodies in saturated liquids", Int. J. Heat Mass Transfer, Vol. 26, pp. 389-399. Incropera , F.P

  9. Gaskinetic Modeling on Dilute Gaseous Plume Impingement Flows

    Directory of Open Access Journals (Sweden)

    Chunpei Cai

    2016-12-01

    Full Text Available This paper briefly reviews recent work on gaseous plume impingement flows. As the major part of this paper, also included are new comprehensive studies on high-speed, collisionless, gaseous, circular jet impinging on a three-dimensional, inclined, diffuse or specular flat plate. Gaskinetic theories are adopted to study the problems, and several crucial geometry-location and velocity-direction relations are used. The final complete results include impingement surface properties such as pressure, shear stress, and heat flux. From these surface properties, averaged coefficients of pressure, friction, heat flux, moment over the entire flat plate, and the distance from the moment center to the flat plate center are obtained. The final results include accurate integrations involving the geometry and specific speed ratios, inclination angle, and the temperature ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical results, and the results are essentially identical. The gaskinetic method and processes are heuristic and can be used to investigate other external high Knudsen (Kn number impingement flow problems, including the flow field and surface properties for a high Knudsen number jet from an exit and flat plate of arbitrary shapes. The results are expected to find many engineering applications, especially in aerospace and space engineering.

  10. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    Science.gov (United States)

    2015-06-01

    adiabatic wall flows over compression ramps and flows with shock impingements. The new correlations are derived from existing numerical data and...developed for 2D, laminar adiabatic wall flows over compression ramps and flows with shock impingements. These correlations are derived from existing...characterizing the influence of shocks and compression ramps on flat plate flows is presented. New correlations for laminar compressive interactions on

  11. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  12. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  13. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  14. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  15. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  16. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  17. Two-Dimensional Rotating Stall Analysis in a Wide Vaneless Diffuser

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We report a numerical study on the vaneless diffuser core flow instability in centrifugal compressors. The analysis is performed for the purpose of better understanding of the rotating stall flow mechanism in radial vaneless diffusers. Since the analysis is restricted to the two-dimensional core flow, the effect of the wall boundary layers is neglected. A commercial code with the standard incompressible viscous flow solver is applied to model the vaneless diffuser core flow in the plane parallel to the diffuser walls. At the diffuser inlet, rotating jet-wake velocity pattern is prescribed and at the diffuser outlet constant static pressure is assumed. Under these circumstances, two-dimensional rotating flow instability similar to rotating stall is found to exist. Performed parameter analysis reveals that this instability is strongly influenced by the diffuser geometry and the inlet and outlet flow conditions.

  18. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  19. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  20. Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry

    Science.gov (United States)

    Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  1. Two-dimensional hydrodynamic flow focusing in a microfluidic platform featuring a monolithic integrated glass micronozzle

    Science.gov (United States)

    Liu, Yifan; Shen, Yusheng; Duan, Lian; Yobas, Levent

    2016-10-01

    Two-dimensional hydrodynamic flow focusing is demonstrated through a microfluidic device featuring a monolithic integrated glass micronozzle inside a flow-focusing geometry. Such a coaxial configuration allows simple one-step focusing of a sample fluid stream, jetted from the micronozzle tip, in both in-plane and out-of-plane directions. The width of the focused filament can be precisely controlled and further scaled down to the submicrometer regime to facilitate rapid hydrodynamic mixing. Fluorescence quenching experiments reveal ultra-fast microsecond mixing of the denaturant into the focused filament. This device offers new possibilities to a set of applications such as the study of protein folding kinetics.

  2. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  3. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  4. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  5. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  6. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  7. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  8. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  9. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  10. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  11. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  12. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  13. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  14. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  15. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  16. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  17. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT

  18. Two-Dimensional Weak Pseudomanifolds on Eight Vertices

    Indian Academy of Sciences (India)

    Basudeb Datta; Nandini Nilakantan

    2002-05-01

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

  19. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  20. Hip labral cyst caused by psoas impingement.

    Science.gov (United States)

    Tey, Marc; Alvarez, Sonia; Ríos, Jose L

    2012-08-01

    Hip labral impingement can cause labral tears and secondary paralabral cyst formation. Femoroacetabular impingement is the main cause of labral impingement, but other conditions such as iliopsoas tendon impingement are described. There is no description of labral cyst resulting from psoas impingement treated arthroscopically in the literature. We present the case of a young sportsman with groin pain caused by psoas impingement with a labral tear and secondary paralabral cyst who was treated arthroscopically by cyst debridement, psoas tenotomy, and labral repair. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  1. CO2 corrosion morphology of X70 pipeline steel under jet impingement at high temperature and high pressure environment%高温高压喷射条件下X70管线钢的CO2腐蚀形貌

    Institute of Scientific and Technical Information of China (English)

    蔡峰; 柳伟; 樊学华; 张晶; 路民旭

    2014-01-01

    利用自主研发的高温高压环路喷射装置并结合流体动力学模拟计算,研究了高温高压CO2环境流体喷射条件下X70钢的腐蚀产物微观形貌、基体表面三维形貌、腐蚀减薄量及其统计规律,并探讨了与流体状态之间的关系。结果表明,高温高压流体喷射条件下,不同流态区域内流体传质速率和壁面切应力的差异是造成X70钢腐蚀产物、基体表面三维形貌及腐蚀减薄量差异的主要原因。按照层流区→壁面喷射区→过渡区的顺序,流体壁面切应力逐渐增加,不断减薄腐蚀产物膜直至其脱落,造成传质过程阻力减小,传质速率增大,腐蚀过程不断加剧。因此,按照层流区→壁面喷射区→过渡区的顺序,X70钢表面腐蚀产物膜由完整致密向疏松多孔变化,基体表面三维形貌呈现平坦→陡峭→非常陡峭的特征,三维表面高度偏差和均方根偏差、腐蚀减薄量平均值和标准差均呈现逐渐增大的趋势。在高温高压流体喷射条件下,X70钢的CO2腐蚀速率与壁面切应力之间较好地满足指数关系。%The CO2 corrosion behavior of X70 pipeline steel, including the corrosion product's morphology, three-dimensional sur-face topography, and corrosion thickness reduction as well as its statistical analysis, was investigated in high temperature and high pres-sure CO2 environment using self-developed loop jet impingement apparatus and computation fluid dynamic ( CFD) technique. The rela-tionship between the obtained results and flow regimes under jet impingement was also discussed. It is found that the differences of fluid mass transfer and wall shear stress distributed on the steel surface located at different flow regimes are the main reason for the differ-ences of the corrosion product's morphology, three-dimensional surface topography and corrosion thickness reduction. According to the order of the laminar zone, the wall jet zone and the transition zone, the

  2. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  3. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  4. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  5. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  6. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  7. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  8. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  9. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  10. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  11. Two-dimensional superconductors with atomic-scale thickness

    Science.gov (United States)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  12. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  13. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  14. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  15. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  16. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  17. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....

  18. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  19. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  20. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  1. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  2. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  3. Quasinormal frequencies of asymptotically flat two-dimensional black holes

    CERN Document Server

    Lopez-Ortega, A

    2011-01-01

    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.

  4. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  5. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.

  6. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    Science.gov (United States)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  7. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  8. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  9. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  10. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  11. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  12. Low-frequency scattering from two-dimensional perfect conductors

    DEFF Research Database (Denmark)

    Hansen, Thorkild; Yaghjian, A.D

    1991-01-01

    Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...

  13. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem

  14. Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards

    Science.gov (United States)

    Fel, Leonid G.

    2002-05-01

    The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).

  15. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  16. Chaotic dynamics for two-dimensional tent maps

    Science.gov (United States)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  17. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...

  18. Spin-orbit torques in two-dimensional Rashba ferromagnets

    NARCIS (Netherlands)

    Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.

    2015-01-01

    Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent

  19. Numerical blowup in two-dimensional Boussinesq equations

    CERN Document Server

    Yin, Zhaohua

    2009-01-01

    In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.

  20. Exact two-dimensional superconformal R symmetry and c extremization.

    Science.gov (United States)

    Benini, Francesco; Bobev, Nikolay

    2013-02-08

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.

  1. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f

  2. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  3. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  4. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  5. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  6. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the

  7. Dynamical phase transitions in the two-dimensional ANNNI model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, M.N.; Derrida, B.

    1988-06-01

    We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.

  8. Two-dimensional static black holes with pointlike sources

    CERN Document Server

    Melis, M

    2004-01-01

    We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.

  9. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r

  10. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    Science.gov (United States)

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  11. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  12. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  13. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  14. Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation

    Indian Academy of Sciences (India)

    N Sabu

    2003-08-01

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  15. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  16. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  17. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  18. Two Dimensional F(R) Horava-Lifshitz Gravity

    CERN Document Server

    Kluson, J

    2016-01-01

    We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.

  19. Localization of Tight Closure in Two-Dimensional Rings

    Indian Academy of Sciences (India)

    Kamran Divaani-Aazar; Massoud Tousi

    2005-02-01

    It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.

  20. Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Bart Preneel

    2005-07-01

    Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.

  1. New directions in science and technology: two-dimensional crystals

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2011-08-15

    Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.

  2. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  3. On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra

    NARCIS (Netherlands)

    De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.

    2000-01-01

    The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp

  4. Dislocation climb in two-dimensional discrete dislocation dynamics

    NARCIS (Netherlands)

    Davoudi, K.M.; Nicola, L.; Vlassak, J.J.

    2012-01-01

    In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r

  5. SAR Processing Based On Two-Dimensional Transfer Function

    Science.gov (United States)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  6. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  7. Confined two-dimensional fermions at finite density

    CERN Document Server

    De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M

    1995-01-01

    We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.

  8. Imperfect two-dimensional topological insulator field-effect transistors

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059

  9. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  10. Miniature sensor for two-dimensional magnetic field distributions

    NARCIS (Netherlands)

    Fluitman, J.H.J.; Krabbe, H.W.

    1972-01-01

    Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or

  11. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  12. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  13. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro

  14. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.

    1997-01-01

    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  15. Two-dimensional manifold with point-like defects

    CERN Document Server

    Gani, Vakhid A; Rubin, Sergei G

    2014-01-01

    We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  16. Instability of two-dimensional heterotic stringy black holes

    CERN Document Server

    Azreg-Ainou, M

    1999-01-01

    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.

  17. Two Dimensional Tensor Product B-Spline Wavelet Scaling Functions for the Solution of Two-Dimensional Unsteady Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    XIONG Lei; LI haijiao; ZHANG Lewen

    2008-01-01

    The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.

  18. LES, RANS and combined simulation of impinging flows and heat transfer

    NARCIS (Netherlands)

    Hadziabdic, M.

    2006-01-01

    This thesis reports on a numerical study of a round, isothermal turbulent jet of incompressible fluid, impinging normally on a flat wall at a different temperature. The aim was to generate detailed information about the ime-dependent three-dimensional velocity and temperature field, and, based on

  19. Heat transfer of sub-merged jet impingement on pin-fin heat sinks with silver nanofluid%Ag纳米流体浸没射流冲击换热特性

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 周明正; 周利军; 崔珍珍; 杨瑞波

    2011-01-01

    Silver-water nanofluid, used as the working fluid in this study, was prepared in one step employing ultrasound-assisted membrane reaction. The heat transfer of submerged jet impacting pin-fin heat sinks was investigated experimentally with silver nanofluid of different concentrations. The results indicate that the silver nanoparticles prepared are uniformly distributed in base fluid and with an average grain size of 4.8 nm. The surfactant used in this study has great influence on the viscosity of nanofluids. Compared with the base fluid (water and surfactant), the heat transfer coefficient of nanofluids is increased by 6.23%, 9.24% and 17. 53%, respectively, with the silver nanoparticle mass fraction of 0.02%, 0.08% and 0. 12%, under the same jet velocity. Compared with water, the heat transfer coefficient is enhanced by 6. 61% with the silver nanoparticle of 0.12%.%采用超声膜扩散法一步制备出水基Ag纳米流体作为实验工质,并对不同质量分数的Ag纳米流体在受限浸没阵列射流冲击针肋热沉中的流动和换热特性进行了实验研究.结果表明:采用超声膜扩散法制备的Ag纳米颗粒粒径分布均匀,平均粒径只有4.8 nm;表面活性剂对纳米流体的黏度影响较大;相同射流速度下,与基液(水+表面活性剂)相比,Ag粒子质量分数分别为0.02%、0.08%、0.12Z的纳米流体传热系数分别提高6.23%、9.24%、17.53Z;与纯水相比,Ag粒子质量分数为0.12%时,纳米流体传热系数增加6.61%.

  20. Electrical Aspects of Impinging Flames

    Science.gov (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  1. [Athletic pubalgia and hip impingement].

    Science.gov (United States)

    Berthaudin, A; Schindler, M; Ziltener, J-L; Menetrey, J

    2014-07-16

    Athletic pubalgia is a painful and complex syndrom encountered by athletes involved in pivoting and cutting sports such as hockey and soccer. To date, there is no real consensus on the criteria for a reliable diagnostic, the different investigations, and the appropriate therapy. Current literature underlines intrinsic and extrinsic factors contributing to athletic pubalgia. This review article reports upon two novelties related to the issue: the importance and efficience of prevention program and the association of femoro-acetabular impingement with the pubalgia.

  2. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  3. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  4. Low EUV Luminosities Impinging on Protoplanetary Disks

    CERN Document Server

    Pascucci, I; Gorti, U; Hollenbach, D; Hendler, N P; Brooks, K J; Contreras, Y

    2014-01-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10$^{42}$ photons/s for all sources without jets and lower than $5 \\times 10^{40}$ photons/s for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [NeII] 12.81 micron luminosities from three disks with slow [NeII]-detected winds. This indicates that the [NeII] line in these sources prima...

  5. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  6. The separation of whale myoglobins with two-dimensional electrophoresis.

    Science.gov (United States)

    Spicer, G S

    1988-10-01

    Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.

  7. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  8. Topological defect motifs in two-dimensional Coulomb clusters

    CERN Document Server

    Radzvilavičius, A; 10.1088/0953-8984/23/38/385301

    2012-01-01

    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...

  9. The Persistence Problem in Two-Dimensional Fluid Turbulence

    CERN Document Server

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2010-01-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.

  10. On Dirichlet eigenvectors for neutral two-dimensional Markov chains

    CERN Document Server

    Champagnat, Nicolas; Miclo, Laurent

    2012-01-01

    We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.

  11. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...

  12. Analysis of one dimensional and two dimensional fuzzy controllers

    Institute of Scientific and Technical Information of China (English)

    Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao

    2006-01-01

    The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.

  13. Extension of modified power method to two-dimensional problems

    Science.gov (United States)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  14. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  15. Transport behavior of water molecules through two-dimensional nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  16. Transport behavior of water molecules through two-dimensional nanopores

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  17. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  18. Topological states in two-dimensional hexagon lattice bilayers

    Science.gov (United States)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun

    2016-10-01

    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  19. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  20. Two-dimensional magnetostriction under vector magnetic characteristic

    Science.gov (United States)

    Wakabayashi, D.; Enokizono, M.

    2015-05-01

    This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.

  1. Phase separation under two-dimensional Poiseuille flow.

    Science.gov (United States)

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  2. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  3. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    Science.gov (United States)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  4. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  5. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  6. Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry

    CERN Document Server

    Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-01-01

    We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...

  7. Hydrodynamic aspects of premixed flame stripes in two-dimensional stagnation-point flows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Sohrab, S.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering

    1995-06-01

    The behavior of cellular premixed flames of rich butane-air in the two-dimensional stagnation-point flow configuration has been investigated. It is found that the stretching of the cellular flame results in the alignment f the ridge (extinction) and the trough (combustion) zones of the individual cells such as to form a series of parallel flame stripes. The number of flame stripes as a function of the equivalence ratio for three different mean velocities at the nozzle have been determined. Through the introduction of a generalized form of the stream function periodic velocity fields are obtained as the exact solutions of the Euler equation for the nonreactive finite-jet two-dimensional stagnation flow. The predicted periodic velocity profiles are confirmed by the experimental observation of the streamlines in nonreactive flow made visible by laser-sheet lighting. The observed average size of the flame stripes is found to be in good agreement with the predicted value. Similar periodic velocity profiles are also obtained for the viscous flow within the laminar boundary layer by treatment of the unsteady vorticity equation first described by Taylor. The results support an earlier prediction by Williams that cellular flame structures that are affected mainly by diffusive-thermal phenomena may in fact be initiated by the hydrodynamic instability.

  8. Two-dimensional model of elastically coupled molecular motors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei

    2012-01-01

    A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.

  9. Conductivity of a two-dimensional guiding center plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1972-01-01

    The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.

  10. Minor magnetization loops in two-dimensional dipolar Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)

    2011-05-15

    The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.

  11. Cryptography Using Multiple Two-Dimensional Chaotic Maps

    Directory of Open Access Journals (Sweden)

    Ibrahim S. I. Abuhaiba

    2012-08-01

    Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.

  12. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  13. Nonlocal bottleneck effect in two-dimensional turbulence

    CERN Document Server

    Biskamp, D; Schwarz, E

    1998-01-01

    The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.

  14. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Qing-Hai Wang

    2009-08-01

    Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.

  15. Extraction of plant proteins for two-dimensional electrophoresis

    OpenAIRE

    Granier, Fabienne

    1988-01-01

    Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.

  16. Lyapunov Computational Method for Two-Dimensional Boussinesq Equation

    CERN Document Server

    Mabrouk, Anouar Ben

    2010-01-01

    A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.

  17. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    J S Virdi; F Chand; C N Kumar; S C Mishra

    2012-08-01

    Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.

  18. Two-dimensional hydrogen negative ion in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Fang

    2004-01-01

    Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.

  19. А heuristic algorithm for two-dimensional strip packing problem

    OpenAIRE

    Dayong, Cao; Kotov, V.M.

    2011-01-01

    In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.

  20. Chronology Protection in Two-Dimensional Dilaton Gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1994-01-01

    The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.