Guo, Chen-Gang; Shang, Zhi; Yan, Jian; Li, Si; Li, Guo-Qing; Liu, Rong-Zhong; Qing, Ying; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi
2015-05-01
Routine native immobilized pH gradient isoelectric focusing (IPG-IEF) and two-dimensional gel electrophoresis (2DE) are still suffering from unfortunate reproducibility, poor resolution (caused by protein precipitation) and instability in characterization of intact protein isoforms and posttranslational modifications. Based on the concept of moving reaction boundary (MRB), we firstly proposed a tunable non-IPG-IEF system to address these issues. By choosing proper pairs of catholyte and anolyte, we could achieve desired cathodic and anodic migrating pH gradients in non-IPG-IEF system, effectively eliminating protein precipitation and uncertainty of quantitation existing in routine IEF and 2DE, and enhancing the resolution and sensitivity of IEF. Then, an adjustable 2DE system was developed by combining non-IPG-IEF with polyacrylamide gel electrophoresis (PAGE). The improved 2DE was evaluated by testing model proteins and colon cancer cell lysates. The experiments revealed that (i) a tunable pH gradient could be designed via MRB; (ii) up to 1.65 fold improvement of resolution was achieved via non-IPG-IEF; (iii) the sensitivity of developed techniques was increased up to 2.7 folds; and (iv) up to about 16.4% more protein spots could be observed via the adjustable 2DE as compared with routine one. The developed techniques might contribute to complex proteome research, especially for screening of biological marker and analysis of extreme acidic/alkaline proteins. Copyright © 2015 Elsevier B.V. All rights reserved.
García-Otero, Natalia; Peña-Vázquez, Elena; Barciela-Alonso, María Carmen; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2013-06-18
Dissolved proteins were assessed in surface and deep seawater by two-dimensional isoelectric focusing (IEF) OFFGEL-lab-on-chip (LOC) electrophoresis after tangential flow ultrafiltration followed by centrifugal ultrafiltration (preconcentration factor of 3000). Dissolved protein isolation was performed by treating the ultrafiltrated retentate with cold acetone and also with chloroform as precipitating reagents. The best electrophoretic behavior of the isolated proteins was obtained after protein precipitation with chloroform before different rinsing stages for removing methanol and water interferences. Metals bound to proteins in the different OFFGEL fractions were assessed by inductively coupled plasma-optical emission spectrometry and electrothermal atomic absorption spectrometry, under optimized operating conditions. Experiments regarding stability of the metal-binding proteins [superoxide dismutase (SOD) and alcohol dehydrogenase (ADH) as protein models] showed the integrity of the Zn-binding SOD/ADH under the OFFGEL electrophoretic conditions. However, stability of Cu bound to SOD is not guaranteed. The first electrophoretic dimension (IEF OFFGEL) showed that dissolved proteins in surface seawater exhibit alkaline isoelectric points (pIs of 8.10 and 8.37) and also acid Ips (4.82, 5.13, 5.43, and 5.73), while LOC showed that the isolated proteins exhibit a spread molecular weight range (within 15 - 63 kDa); although, high molecular weights were the most commonly found. Regarding deep seawater, isolated proteins were of acid Ips (from 3.30 to 4.22) and low molecular weight (within the 21-24 kDa range). Elements such as Cd, Cu, Mn, and Ni were mainly associated with dissolved proteins of alkaline pIs in surface seawater, while Zn was mainly associated to proteins of acid pIs. However, only Cu and Mn were found to be bound to dissolved proteins of higher Ips in deep seawater, and the amount of Mn (from 68 to 84 μg L(-1)) was higher than that found in dissolved
Dickerson, Jane A; Ramsay, Lauren M; Dada, Oluwatosin O; Cermak, Nathan; Dovichi, Norman J
2010-08-01
CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi
CAPILLARY ISOELECTRIC FOCUSING (CIEF) FOR THE CHARACTERIZATION OF HUMIC SUBSTANCES
Preparative solution isoelectric focusing was used to fractionate 50 mg of a soil fulvic acid (FA); the harvested fractions were characterized with UV-Vis spectroscopy, gel permeation chromatography and capillary zone electrophoresis (CZE) and showed a distribution in the created...
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
Separation of two forms of rabbit metallothionein by isoelectric focusing.
Nordberg, G F; Nordberg, M; Piscator, M; Vesterberg, O
1972-02-01
Rabbits were given repeated injections of cadmium chloride. Cadmium- and zinc-containing protein fractions were obtained from the livers of these animals by precipitation procedures and Sephadex G-75 chromatography. The protein thus obtained showed several characteristics similar to those of the earlier described protein metallothionein. Further separation by isoelectric focusing showed two main protein peaks with isoelectric points at 3.9 and 4.5 respectively. Amino acid analysis of these two forms showed similar content of most amino acids [residues per cent.: cysteine (28%), aspartate (8%), threonine (5-6%), serine (12%), glycine (7%), alanine (13%), methionine (2%), isoleucine (2%)] but with a small difference in content of lysine (12 and 13% respectively), proline (9 and 5% respectively) and glutamate (2 and 4% respectively). The two forms of the protein both contained cadmium, but only the one with pI4.5 contained also significant amounts of zinc.
Capillary isoelectric focusing of native and inactivated microorganisms.
Horká, M; Kubícek, O; Růzicka, F; Holá, V; Malinovská, I; Slais, K
2007-07-06
The research of microorganisms includes the development of methods for the inactivation of viruses and other microbes. It also means to efficiently eliminate the infectivity of microorganisms without damage of their integrity and structure. According to the results of the last 5 years the capillary electromigration techniques appear to be very perspective for the comparison of the methods applicable for inactivation in the diagnostics and study of the pathogens. In this paper we suggest the capillary isoelectric focusing of the model microorganisms, Escherichia coli, Staphylococcus epidermidis, Candida albicans and bacteriophage PhiX 174, native or inactivated by different procedures. UV detection and fluorometric detection for the dynamically modified microbes by pyrenebutanoate on the basis of the non-ionogenic tenside were used here. Isoelectric points of native and/or dynamically modified microorganisms and other properties were compared with those obtained after microorganisms inactivation. The segmental injection of the sample pulse enabled the reproducible and efficient capillary isoelectric focusing in different pH gradients. The low-molecular-weight pI markers were used for tracing of the pH gradient.
Gelsema, W.J.; Ligny, C.L. de; Veen, N.G. van der
1979-01-01
Isoelectric points, pIapp, in sucrose-urea-water and glycerol-ethanol-water mixtures and isoelectric points, pI, in water have been determined at 25° for some carrier ampholytes. The differences, pIapp---pI, are shown to account for the primary medium effect and the pH measuring cell effect on the
Gelsema, W.J.; Ligny, C.L. de; Veen, N.G. van der
1979-01-01
Isoelectric points, pIapp, in sucrose-urea-water and glycerol-ethanol-water mixtures and isoelectric points, pI, in water have been determined at 25° for some carrier ampholytes. The differences, pIapp---pI, are shown to account for the primary medium effect and the pH measuring cell effect on the i
Electromechanical properties of dried tendon and isoelectrically focused collagen hydrogels.
Denning, D; Abu-Rub, M T; Zeugolis, D I; Habelitz, S; Pandit, A; Fertala, A; Rodriguez, B J
2012-08-01
Assembling artificial collagenous tissues with structural, functional, and mechanical properties which mimic natural tissues is of vital importance for many tissue engineering applications. While the electro-mechanical properties of collagen are thought to play a role in, for example, bone formation and remodeling, this functional property has not been adequately addressed in engineered tissues. Here the electro-mechanical properties of rat tail tendon are compared with those of dried isoelectrically focused collagen hydrogels using piezoresponse force microscopy under ambient conditions. In both the natural tissue and the engineered hydrogel D-periodic type I collagen fibrils are observed, which exhibit shear piezoelectricity. While both tissues also exhibit fibrils with parallel orientations, Fourier transform analysis has revealed that the degree of parallel alignment of the fibrils in the tendon is three times that of the dried hydrogel. The results obtained demonstrate that isoelectrically focused collagen has similar structural and electro-mechanical properties to that of tendon, which is relevant for tissue engineering applications.
Identification of Pacific rockfish (Sebastes) species by isoelectric focusing.
Lundstrom, R C
1983-07-01
Isoelectric focusing (IEF) is currently the most reliable method available for the identification of fish species. The high resolution of this method usually allows discrimination between even closely related species. One genus, the Sebastes, does present a problem however. Using both low and high resolution, IEF is unable to differentiate several species. Disc electrophoresis, used in an AOAC official final action method, does not differentiate the rockfish reliably. Using IEF, identical protein patterns were obtained for Pacific Ocean perch (Sebastes alutus), Bocaccio rockfish (S. paucispinis), and yelloweye rockfish (S. ruberrimus). A second group, comprised of silvergray rockfish (S. brevispinis), yellowtail rockfish (S. flavidus), black rockfish (S. melanops), and canary rockfish (S. pinniger), also has identical protein patterns. Widow rockfish (S. entomelas) and chilipepper rockfish (S. goodei) each had a unique pattern, different from the above 2 groups and from each other. The actual taxonomic relationships of these rockfish species are not clear and further work with IEF may help in this regard. Users of IEF and disc electrophoresis for identification purposes should be aware of this problem when working with the Sebastes.
Araque, A; Jaugey, J; Javet, P
1996-01-01
Reproducibility in protein purification by preparative isoelectric focusing depends greatly on temperature control during the separation process. A preparative apparatus is described, including a heat exchanger between compartments with isoelectric membranes. The selectivity of the isoelectric membranes was optimized as a function of isoelectric points of the separated proteins. At 2500 V and 60 W, 0.3 g of horse heart myoglobin from 0.2 g of whale skeletal muscle myoglobin could be separated in 1 h. At a total load of 2 g protein, 97% of bovine hemoglobin (2% initial concentration) was purified from bovine serum albumin (0.15%).
Cade-Treyer, D; Cade, A; Darjo, A; Jouvion-Moreno, M
1996-03-01
The aim of this 45 min, 60 megabyte, modular program is to initiate students, scientists and engineers of biotechnology, biomedicine and agrofood industries into isoelectric focusing (IEF) and titration curves for analytical (e.g. IEF, zone electrophoresis, isotachophoresis, electrotransfer) and preparative (e.g. ion-exchange chromatography, chromatofocusing) application of charge-dependent methods. For advanced teaching, the following theoretical and practical aspects may be of interest: pH gradient engineering, IEF resolving power, generation of pH gradient, sample-ampholyte interactions, pH gradient drift, immobilized pH gradients (IPG), IPG-two-dimensional (2-D) electrophoresis, preparative methods with multi-compartments and IPG membranes, capillary IEF, isozyme analysis, etc.). The program associates fixed and animated drawings, and computer-assisted simulations, with spoken and written commentaries (in English). It is illustrated with numerous IEF gel patterns and titration curves and some video sequences to be run on a multimedia PC with MS Windows 3.1 (or later releases) as the only software. The linear presentation of the program may be used directly on the PC, or may be projected on a screen from the PC, for small classes or for a larger audience (200 persons). Its development as an interactive multimedia program is in progress and will soon be available on the Internet.
Coherent electron focusing with quantum point contacts in a two-dimensional electron gas
Houten, H. van; Beenakker, C.W.J.; Williamson, J.G.; Broekaart, M.E.I.; Loosdrecht, P.H.M. van; Wees, B.J. van; Mooij, J.E.; Foxon, C.T.; Harris, J.J.
1989-01-01
Transverse electron focusing in a two-dimensional electron gas is investigated experimentally and theoretically for the first time. A split Schottky gate on top of a GaAs-AlxGa1–xAs heterostructure defines two point contacts of variable width, which are used as injector and collector of ballistic el
Chick, J M; Haynes, P A; Molloy, M P; Bjellqvist, B; Baker, M S; Len, A C L
2008-03-01
Membrane proteins are of particular interest in proteomics because of their potential therapeutic utility. Past proteomic approaches used to investigate membrane proteins have only been partially successful at providing a comprehensive analysis due to the inherently hydrophobic nature and low abundance for some of these proteins. Recently, these difficulties have been improved by analyzing membrane protein enriched samples using shotgun proteomics. In addition, the recent application of methanol-assisted trypsin digestion of membrane proteins has been shown to be a method to improve membrane protein identifications. In this study, a comparison of different concentrations of methanol was assessed for assisting membrane protein digestion with trypsin prior to analysis using a gel-based shotgun proteomics approach called peptide immobilized pH gradient isoelectric focusing (IPG-IEF). We demonstrate the use of peptide IEF on pH 3-10 IPG strips as the first dimension of two-dimensional shotgun proteomics for protein identifications from the membrane fraction of rat liver. Tryptic digestion of proteins was carried out in varying concentrations of methanol in 10 mM ammonium bicarbonate: 0% (v/v), 40% (v/v), and 60% (v/v). A total of 800 proteins were identified from 60% (v/v) methanol, which increased the protein identifications by 17% and 14% compared to 0% (v/v) methanol and 40% (v/v) methanol assisted digestion, respectively. In total, 1549 nonredundant proteins were identified from all three concentrations of methanol including 690 (42%) integral membrane proteins of which 626 of these proteins contained at least one transmembrane domain. Peptide IPG-IEF separation of peptides was successful as the peptides were separated into discrete pI regions with high resolution. The results from this study prove utility of 60% (v/v) methanol assisted digestion in conjunction with peptide IPG-IEF as an optimal shotgun proteomics technique for the separation and identification of
Ruzicka, Filip; Horka, Marie; Hola, Veronika; Votava, Miroslav
2007-03-01
The biofilm formation is an important factor of S. epidermidis virulence. Biofilm-positive strains might be clinically more important than biofilm-negative ones. Unlike biofilm-negative staphylococci, biofilm-positive staphylococci are surrounded with an extracellular polysaccharide substance. The presence of this substance on the surface can affect physico-chemical properties of the bacterial cell, including surface charge. 73 S. epidermidis strains were examined for the presence of ica operon, for the ability to form biofilm by Christensen test tube method and for the production of slime by Congo red agar method. Isoelectric points (pI) of these strains were determined by means of Capillary Isoelectric Focusing. The biofilm negative strains focused near pI value 2.3, while the pI values of the biofilm positive strains were near 2.6. Isoelectric point is a useful criterion for the differentiation between biofilm-positive and biofilm-negative S. epidermidis strains.
Pedrosa, M M; Legaz, M E
1995-04-01
Four major arginase isoforms, I, II, III and IV, have been detected in Evernia prunastri thallus. They differ in terms of both physical and biochemical properties. The isoelectric point (pI) of these proteins has been determined by both isoelectric focusing in density gradient column and high-performance capillary electrophoresis (HPCE). Isoelectric focusing revealed charge microheterogeneity for isoforms II and IV whereas arginases I and II had the same pI value of 5.8. HPCE separation confirmed this charge microheterogeneity for isoform IV but not for isoform III, and provided evidence of microheterogeneity for isoforms I and II. The effect of various electrolyte buffers and running conditions on the HPCE separation of arginase isoform were investigated. Addition of 0.5 mM spermidine (SPD) to the running buffer reduced the electroosmotic flow (EOF) and permitted discriminating between the native proteins and protein fragments.
A two-dimensionally focusing, quasi-optical antenna for millimeter-wave scattering in plasmas
Energy Technology Data Exchange (ETDEWEB)
Idehara, T.; Tatsukawa, T. (Faculty of Engineering, Fukui University, Fukui 910, Japan (JP)); Brand, G.F.; Fekete, P.W.; Moore, K.J. (School of Physics, University of Sydney, NSW 2006 (Australia))
1990-06-01
A two-dimensionally focusing, quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for use with a tunable gyrotron in order to carry out millimeter-wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. The advantages of this antenna are the following: (1) The elliptical reflector focuses the radiation beam in the toroidal direction, while the parabolic reflector focuses in the direction of major radius. This gives excellent two-dimensional focusing in the plasma region, and consequently excellent spatial resolution. (2) The focal point can be easily swept along the direction of major radius in the whole plasma region, simply by changing the angle of the parabolic reflector by a small amount. These features have been demonstrated experimentally using the tunable gyrotron source, GYROTRON III, and in computations of the radiated fields.
Liu, Yifan; Shen, Yusheng; Duan, Lian; Yobas, Levent
2016-10-01
Two-dimensional hydrodynamic flow focusing is demonstrated through a microfluidic device featuring a monolithic integrated glass micronozzle inside a flow-focusing geometry. Such a coaxial configuration allows simple one-step focusing of a sample fluid stream, jetted from the micronozzle tip, in both in-plane and out-of-plane directions. The width of the focused filament can be precisely controlled and further scaled down to the submicrometer regime to facilitate rapid hydrodynamic mixing. Fluorescence quenching experiments reveal ultra-fast microsecond mixing of the denaturant into the focused filament. This device offers new possibilities to a set of applications such as the study of protein folding kinetics.
Chromatofocusing purification of CD1b-antigen complexes and their analysis by isoelectric focusing.
Garcia-Alles, Luis Fernando; de la Salle, Henri
2013-01-01
The presentation of lipid antigens to T cells is mediated by the CD1 proteins. Purified functional CD1/lipid complexes are valuable tools to investigate such immune processes. Here, we describe how these complexes can be prepared in vitro, how they can be purified by chromatofocusing and how to control their antigen-loading status by isoelectric focusing.
Scale-up of isoelectric focusing. [for large scale protein fracionation
Bier, Milan
1986-01-01
The paper describes some applications to large scale protein fractionation using a recycling isoelectric focusing apparatus. Separation is achieved in free solution without the use of supporting media. Various alternatives for the formation of the pH gradient are discussed and results of a computer simulation are presented.
Negative refraction and focusing of electromagnetic wave through two-dimensional photonic crystals
Institute of Scientific and Technical Information of China (English)
ZHANG Xiang-dong
2006-01-01
The negative refraction of electromagnetic waves in photonic crystals was recently demonstrated experimentally,and the physical properties were analyzed.Microsuperlenses based on two-dimensional photonic crystals were designed and the subwavelength images were observed.In this review,after providing a brief history of the research related to the above phenomena,we will summarize our research works in this field including the method of creating a negative refraction region,generating an absolute negative refraction,the focusing of unpolarized electromagnetic waves,and the effect of interface and disorder on the image by the two-dimensional photonic crystal flat lens.The discussion on the negative refraction and the focusing by high symmetric quasicrystals is also presented.
Ettori, C; Righetti, P G; Chiesa, C; Frigerio, F; Galli, G; Grandi, G
1992-09-01
Recombinant human growth hormone (r-hGH) expressed in Escherichia coli, was 70-80% purified by a combination of ion-exchange chromatography and metal ion affinity chromatography. For the last purification step, a multicompartment electrolyzer was used, containing three compartments delimited by isoelectric membranes and two additional anodic and cathodic chambers. The central compartment was situated between two membranes having isoelectric points (pI) of 5.08 (anodic) and of 5.16 (cathodic), i.e. equidistant from the pI value of hGH (pI 5.12). r-hGH was isoelectric between these two membranes and could not leave the central chamber, while more acidic and more cathodic impurities collected in the two lateral chambers under the influence of the electric field. The r-hGH, thus purified, exhibited a single band by isoelectric focusing (IEF) in immobilized pH gradients (IPG) and gave recoveries greater than 90%. The problem of isoelectric precipitation in a practically ion-free environment was alleviated by focusing in 30% glycerol added with 1% neutral detergent (Nonidet-P40). The latter was eliminated by passage through a Q-Sepharose column after collecting the pI 5.12 band from the electrolyzer. Also the pre-hormone (pre-hGH) can be purified in a similar manner (30% glycerol, 1% Nonidet P-40) between two membranes having pIs 4.77 (anodic) and 4.87 (cathodic) (pre-hGH pI 4.82). This paper demonstrates the possibility of purifying by a focusing process also poorly soluble proteins at the pI.
Test of a two-dimensionally focusing quasi-optical antenna using a gyrotron
Energy Technology Data Exchange (ETDEWEB)
Idehara, T.; Tatsukawa, T.; Brand, G.F.; Fekete, P.W.; Moore, K.J.
1989-05-01
A quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for millimeter wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. This letter reports the first demonstration of the properties of such an antenna using a gyrotron millimeter wave source. Its advantages are (1) good two-dimensional focusing (along the major radius and the toroidal directions) and (2) easy movement of the focus across the diameter of the plasma by changing the orientation of the parabolic reflector.
Phophoglucomutase first locus polymorphism as revealed by isoelectric focusing in Southern Africa.
Tipler, T D; Dunn, D S; Jenkins, T
1982-01-01
Eleven Southern African populations (representing European, Asian and Negroid populations) have been typed for the first locus phosphoglucomutase (PGM1) using isoelectric focusing (pH range 5.0-8.0) in acrylamide gels. The gene frequencies of the four common alleles at this locus in these populations were compared to those found previously in European and Negroid populations. Marked differences in gene frequencies were observed: Negroes have a lower PGM1(2-) compared with Caucasoids due to a lower PGM1(2-) frequency, Indians a relatively high PGM1(2) due to a higher frequency of the PGM1(2+) allele. The Afrikaans and Ashkenazim do not differ appreciably from their European counterparts. The appearances of the rarer PGM1(6) and PGM1(7) alleles on isoelectric focusing are described and some kinetic properties examined. The PGM2(2-1), or 'Atkinson' phenotype, can also be detected with this technique.
Direct MALDI-MS Analysis of Proteins Isolated by Liquidphase Isoelectric Focusing Electrophoresis
Institute of Scientific and Technical Information of China (English)
LIU Ning; L(U¨) Lei; ZHANG Xuan; WANG Zhi; SUN Ya-dong; LIU Zhi-qiang; LIU Shu-ying
2005-01-01
A liquid-phase isoelectric focusing electrophoresis system(Rotofor) was used as the prefractionation tool for the sample preparation in the MALDI-MS analysis of a protein mixture. Each fraction collected was then directly subjected to MALDI-TOF-MS analysis. By this approach, we are able to resolve two types of hemoglobins, A and C, which cannot be successfully separated by means of the traditional SDS-PAGE method.
Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis
DEFF Research Database (Denmark)
Antfolk, M.; Muller, Peter Barkholt; Augustsson, P.
2014-01-01
Handling of sub-micrometer bioparticles such as bacteria are becoming increasingly important in the biomedical field and in environmental and food analysis. As a result, there is an increased need for less labor-intensive and time-consuming handling methods. Here, an acoustophoresis-based microfl......Handling of sub-micrometer bioparticles such as bacteria are becoming increasingly important in the biomedical field and in environmental and food analysis. As a result, there is an increased need for less labor-intensive and time-consuming handling methods. Here, an acoustophoresis......-based microfluidic chip that uses ultrasound to focus sub-micrometer particles and bacteria, is presented. The ability to focus sub-micrometer bioparticles in a standing one-dimensional acoustic wave is generally limited by the acoustic-streaming-induced drag force, which becomes increasingly significant the smaller...... the particles are. By using two-dimensional acoustic focusing, i.e. focusing of the sub-micrometer particles both horizontally and vertically in the cross section of a microchannel, the acoustic streaming velocity field can be altered to allow focusing. Here, the focusability of E. coli and polystyrene...
Michels, David A; Tu, Andrea W; McElroy, Will; Voehringer, David; Salas-Solano, Oscar
2012-06-19
Characterization of charge heterogeneity of recombinant monoclonal antibodies (mAbs) requires high throughput analytical methods to support clone selection and formulation screens. We applied the NanoPro technology to rapidly measure relative charge distribution of mAbs in early stage process development. The NanoPro is a multiplexed capillary-based isoelectric immunoassay with whole-column imaging detection. This assay offers specificity, speed and sensitivity advantages over conventional capillary isoelectric focusing (CIEF) platforms. After CIEF, charge variants are photochemically immobilized to the wall of a short coated capillary. Once immobilized, mAbs are probed using a secondary anti-IgG conjugated with horseradish peroxidase. After flushing away excess reagents, secondary antibodies bound to their targets are then detected by chemiluminescence upon incubation with peroxidase reactive substrates. Charge heterogeneity as determined by chemiluminescence was similar to that measured by conventional CIEF technology with absorbance detection for purified mAbs and contaminated mAbs derived directly from host cellular extract. Upon method optimization, the automated CIEF immunoassay was applied to several mAbs of varying isoelectric points, demonstrating the suitability of NanoPro as a rugged high-throughput product characterization tool. Furthermore, qualification of detection sensitivity, precision, and dynamic range are reported with discussion of its advantages as an alternative approach to rapidly characterize charge variants during process development of mAbs.
Wavelength dependence of focusing properties of two-dimensional photonic quasicrystal flat lens.
Liu, Jianjun; Fan, Zhigang; Hu, Haili; Yang, Maohua; Guan, Chunying; Yuan, Libo; Guo, Hao; Zhang, Xiong
2012-05-15
We investigated the wavelength dependence of the focusing properties of a germanium-cylinder-based two-dimensional (2D) decagonal Penrose-type photonic quasicrystal (PQC) flat lens for the first time, to the best of our knowledge. We found that near the second bandgap and in the high-frequency side (between the bandgap boundary and the first light intensity peak) of the pass band, the flat lens can exhibit a focusing effect for a point light source and that the focusing wavelengths can directly be drawn from the photonic band structure. For all the focusing wavelengths, the summation of the object distance and the image distance is less than the thickness of the flat lens when the object distance is half the thickness of the flat lens. As the wavelength increases, the image distance, the image quality, and the effective refractive index of the flat lens increase, whereas the image power of the point light source decreases. The effective refractive index of the flat lens is less than -1.
From Image Processing to Classification: 1. Modelling Disturbances of Isoelectric Focusing Patterns
DEFF Research Database (Denmark)
Jensen, Karsten; Søndergaard, I.; Skovgaard, I. M.
1995-01-01
In order to optimize the conditions for evaluation of isoelectric focusing (IEF) patterns by digital image processing, the sources of error in determination of the pi values were analyzed together with the influence of a varying background. The effects of band distortions, in the spectra...... of the individual lanes, were examined. In order to minimize the effect of these distortions, optimal conditions for handling IEF patterns by digital image processing were elucidated. The systematic part of the global deformation on the gels was investigated and an algorithm was developed by which it was possible...
Reciprocating free-flow isoelectric focusing device for preparative separation of proteins.
Kong, Fan-Zhi; Yang, Ying; Wang, Yi; Li, Guo-Qing; Li, Shan; Xiao, Hua; Fan, Liu-Yin; Liu, Shao-Rong; Cao, Cheng-Xi
2015-11-27
The traditional recycling free-flow isoelectric focusing (RFFIEF) suffered from complex structure, tedious operations and poor extensibility as well as high cost. To address these issues, a novel reciprocating free-flow isoelectric focusing device (ReFFIEF) was developed for proteins or peptides pre-fractionation. In the new device, a reciprocating background flow was for the first time introduced into free flow electrophoresis (FFE) system. The gas cushion injector (GCI) used in the previous continuous free-flow electrophoresis (CFFE) was redesigned for the reciprocating background flow. With the GCI, the reciprocating background flow could be achieved between the GCI, separation chamber and transient self-balance collector (tSBC). In a run, process fluid flowed to and from, forming a stable reciprocating fluid flow in the separation chamber. A pH gradient was created within the separation chamber, and at the same time proteins were focused repeatedly when passing through the chamber under perpendicular electric field. The ReFFIEF procedure was optimized for fractionations of three model proteins, and the optimized method was further used for pre-fractionation of model human serum samples. As compared with the traditional RFFIEF devices developed about 25 years ago, the new ReFFIEF system showed several merits, such as simple design and structure, user-friendly operation and easy to extend as well as low cost.
Kim, H.; Park, J.; Seo, I.; Yoo, J.
2016-10-01
A collimator is an electromagnetic device that focuses or aligns the direction of wave propagation to achieve a narrow, intense beam. In this study, we propose a two-dimensional dielectric collimator for microwave beam focusing. This is something that is difficult to achieve using theoretical- or intuition-based approaches. We therefore used a systematic design process, which is referred to as the phase field design method, to obtain an optimal topological configuration for the collimator. The phase field parameter determines the optimal configuration of the dielectric material and, as a consequence, it determines the relative permittivity of the component. To verify the design results, we fabricated a prototype via three-dimensional printing and performed an experimental verification using an electric field scanner to measure the near field distributions of the designed collimator positioned parallel to an incident wave. We also performed angle dependent experiments for which the collimator position was offset at various angles. We confirmed that the experimental results are consistent with the simulation results.
Tsai, Shuo-Wen; Loughran, Michael; Hiratsuka, Atsunori; Yano, Kazuyoshi; Karube, Isao
2003-03-01
The first use of plasma polymerization technique to modify the surface of a glass chip for capillary isoelectric focusing (cIEF) of different proteins is reported. The electrophoresis separation channel was machined in Tempax glass chips with length 70 mm, 300 microm width and 100 microm depth. Acetonitrile and hexamethyldisiloxane monomers were used for plasma polymerization. In each case 100 nm plasma polymer films were coated onto the chip surface to reduce protein wall adsorption and minimize the electroosmotic flow. Applied voltages of 1000 V, 2000 V and 3000 V were used to separate mixtures of cytochrome c (pI 9.6), hemoglobin (pI 7.0) and phycocyanin (pI 4.65). Reproducible isoelectric focusing of each pI marker protein was observed in different coated capillaries at increasing concentration 2.22-5 microg microL(-1). Modification of the glass capillary with hydrophobic HMDS plasma polymerized films enabled rapid cIEF within 3 min. The separation efficiency of cytochrome c and phycocyanin in both acrylamide and HMDS coated capillaries corresponded to a plate number of 19600 which compares favourably with capillary electrophoresis of neurotransmitters with amperometric detection.
Gunther, Nereus W; Paul, Moushumi; Nuñez, Alberto; Liu, Yanhong
2012-06-01
In proteomic investigations, a number of different separation techniques can be applied to fractionate whole cell proteomes into more manageable fractions for subsequent analysis. In this work, utilizing HPLC and mass spectrometry for protein identification, two different fractionation methods were compared and contrasted to determine the potential of each method for the simple and reproducible fractionation of a bacterial proteome. Column-based chromatofocusing and liquid-based isoelectric focusing both utilized pH gradients to produce similar results in terms of the numbers of proteins successfully identified (402 and 378 proteins) and the consistency of proteins identified from one experiment to the next (<10% change). However, there was limited overlap in the protein sets with <50% of the proteins identified as common between the sets of proteins identified by the different systems. In addition to the numbers of proteins identified and consistency of those identified, the reduced monetary costs of experimentation and increased assay flexibility produced by using isoelectric focusing was considered in order to adopt a system best suited for comparative proteomic projects. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kellar, K L; Vogler, W R; Kinkade, J M
1975-12-01
Biological activities associated with colony-stimulating factor (CSF) from human leukemic urine were found to be selectively retained on an affinity adsorbent of Con A-Sepharose. Elution of activity was achieved using a linear gradient of eith alpha-methyl-D-mannopyranoside (alphaMM) or alpha-methyl-D-glucopyranoside (alphaMG), and resulted in significant increases in specific biological activity. Rechromatography of appropriate fractions indicated that retention of CSF activities was not artifactual. Pretreatment of the affinity matrix with alphaMM completely inhibited binding of CSF. Affinity chromatography of CSF on a Blue Dextran-Sepharose adsorbent was found to be an effective method for removing albumin, a major protein contaminant in urinary preparations. Treatment of CSF with neuraminidase had no effect on its in vitro activity; however, such treatment resulted in an increase in the isoelectric point of CSF from pH 3.5 to pH 4.7, as determined using both sucrose and polyacrylamide gel stabilized pH gradients. Relatively broad regions of biological activity were observed following isoelectric focusing of both neuraminidase-treated and untreated CSF, suggesting that activity was associated with a heterogeneous/polydisperse population of molecular species.
Classification of wheat varieties by isoelectric focusing patterns of gliadins and neural network.
Søndergaard, I; Jensen, K; Krath, B N
1994-05-01
Classification of wheat varieties, using isoelectric focusing patterns of the gliadins, image processing and neural networks, is described. The method was compared to a statistical classification method, discriminant analysis. The isoelectric point and the area of each band were calculated by image processing. Different methods of presenting the electrophoretic patterns to the neural network were studied. The most effective method was transformation of the electrophoretic pattern to a small (11 x 47 pixels) representation of the original digitized image, which was presented to the neural network as a vector. The neural network was trained with a number of patterns and tested with new patterns from different electrophoretic runs of the same wheat varieties. In this study we used ten different wheat varieties and the neural network was able to classify 95.5% of the patterns correctly. The statistical classification method classified the same data set 91.8% correctly. We conclude that both the neural network and discriminant analysis were able to classify the patterns correctly with a high degree of certainty. The patterns that were misclassified were indistinguishable by visual inspection.
Isoelectric focusing and ELISA for detecting adulteration of donkey milk with cow milk.
Pizzano, Rosa; Salimei, Elisabetta
2014-06-25
Donkey milk has been recently revalued intensely due to its nutritional properties. Moreover, donkey milk has been proposed as an effective alternative food for some infants with cow milk allergy. Two fast analytical methods were proposed to detect the fraudulent practice of blending cow milk to donkey milk. Detection of cow αs1-casein bands along the profiles of experimental donkey-cow milk mixtures analyzed by isoelectric focusing was adequate to estimate cow milk used as adulterant of donkey milk starting from 5% (v/v). An ELISA-based method using the antipeptide antibodies raised against the 1-28 sequence stretch of cow β-casein was also developed for an accurate definition of composition of donkey-cow milk mixtures. The presence of cow milk at levels as low as 0.5% (v/v) was detected in donkey-cow milk mixtures prepared at laboratory scale and assayed by ELISA.
Self-focusing instability of two-dimensional solitons and vortices
DEFF Research Database (Denmark)
Kuznetsov, E.A.; Juul Rasmussen, J.
1995-01-01
The instability of two-dimensional solitons and vortices is demonstrated in the framework of the three-dimensional nonlinear Schrodinger equation (NLSE). The instability can be regarded as the analog of the Kadomtsev-Petviashvili instability [B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl...
Effect of the defect on the focusing in a two-dimensional photonic-crystal-based flat lens
Institute of Scientific and Technical Information of China (English)
Feng Zhi-Fang; Wang Xiu-Guo; Li Zhi-Yuan; Zhang Dao-Zhong
2008-01-01
We have investigated in detail the influence of defect on the focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens by using the finite-difference time-domain mcthod. The result shows that many focusings can be observed at the symmetrical positions when a defect is introduced into the lens. Furthermore, the wave-guides in the lens can confine the transmission wave effectively and improve the quality of the focusing.
On-chip protein isoelectric focusing using a photoimmobilized pH gradient.
Xia, Lin; Lin, FengMing; Wu, Xin; Liu, Chuanli; Wang, Jianshe; Tang, Qi; Yu, Shiyong; Huang, Kunjie; Deng, Yulin; Geng, Lina
2014-11-01
An immobilized pH gradient was directly constructed on the inner wall of a microfluidic chip channel by photoimmobilizing focused carrier ampholytes onto the wall. A mixture of carbonic anhydrase, myoglobin, and trypsin inhibitor was successfully isoelectric-focused and separated with good linearity between the pI values of proteins and the location of the focused bands. Furthermore, coating methods for the resistance of protein nonselective adsorption and simultaneously for pH gradient photocoupling were screened. The PEG-silane coating method was found to be better than the cross-linked polyacrylamide coating and aminosilane modification methods. Finally, based on the open tubular column mode of carrier ampholytes' immobilization and effective antiadsorption coating, the immobilized pH gradient was reused and the chip was recycled for the first time. By virtue of its remarkable features including simplicity, convenience, high efficiency of protein enrichment and separation, and potential for coupling site-selective IEF with other analytical or separation techniques, this novel method promises to be useful in several applications related with zwitterionic biomolecules.
Effect of Joule heating on isoelectric focusing of proteins in a microchannel.
Yoo, Kisoo; Shim, Jaesool; Dutta, Prashanta
2014-11-01
Electric field-driven separation and purification techniques, such as isoelectric focusing (IEF) and isotachophoresis, generate heat in the system that can affect the performance of the separation process. In this study, a new mathematical model is presented for IEF that considers the temperature rise due to Joule heating. We used the model to study focusing phenomena and separation performance in a microchannel. A finite volume-based numerical technique is developed to study temperature-dependent IEF. Numerical simulation for narrow range IEF (6 Joule heating in the system for a nominal electric field of 100 V/cm. For the no Joule heating case, constant properties are used, while for the Joule heating case, temperature-dependent titration curves and thermo-physical properties are used. Our numerical results show that the temperature change due to Joule heating has a significant impact on the final focusing points of proteins, which can lower the separation performance considerably. In the absence of advection and any active cooling mechanism, the temperature increase is the highest at the mid-section of a microchannel. We also found that the maximum temperature in the system is a strong function of the [Formula: see text] value of the carrier ampholytes. Simulation results are also obtained for different values of applied electric fields in order to find the optimum working range considering the simulation time and buffer temperature. Moreover, the model is extended to study IEF in a straight microchip where pH is formed by supplying H(+) and OH(-), and the thermal analysis shows that the heat generation is negligible in ion supplied IEF.
Chaigne, Thomas; Katz, Ori; Bossy, Emmanuel; Gigan, Sylvain
2014-01-01
We implement the photoacoustic transmission-matrix approach on a two-dimensional photoacoustic imaging system, using a 15 MHz linear ultrasound array. Using a black leaf skeleton as a complex absorbing structure, we demonstrate that the photoacoustic transmission-matrix approach allows to reveal structural features that are invisible in conventional photoacoustic images, as well as to selectively control light focusing on absorbing targets, leading to a local enhancement of the photoacoustic signal.
Directory of Open Access Journals (Sweden)
F Bakhshi Garmi
2016-02-01
Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.
A Theoretical Study of the Two-Dimensional Point Focusing by Two Multilayer Laue Lenses.
Energy Technology Data Exchange (ETDEWEB)
Yan,H.; Maser, J.; Kang, H.C.; Macrader, A.; Stephenson, B.
2008-08-10
Hard x-ray point focusing by two crossed multilayer Laue lenses is studied using a full-wave modeling approach. This study shows that for a small numerical aperture, the two consecutive diffraction processes can be decoupled into two independent ones in respective directions. Using this theoretical tool, we investigated adverse effects of various misalignments on the 2D focus profile and discussed the tolerance to them. We also derived simple expressions that described the required alignment accuracy.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)
2015-09-28
Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.
Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro
2016-07-01
Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.
Egen, N. B.; Twitty, G. E.; Bier, M.
1979-01-01
Isoelectric focusing is a high-resolution technique for separating and purifying large peptides, proteins, and other biomolecules. The apparatus described in the present paper constitutes a new approach to fluid stabilization and increased throughput. Stabilization is achieved by flowing the process fluid uniformly through an array of closely spaced filter elements oriented parallel both to the electrodes and the direction of the flow. This seems to overcome the major difficulties of parabolic flow and electroosmosis at the walls, while limiting the convection to chamber compartments defined by adjacent spacers. Increased throughput is achieved by recirculating the process fluid through external heat exchange reservoirs, where the Joule heat is dissipated.
Egen, N. B.; Twitty, G. E.; Bier, M.
1979-01-01
Isoelectric focusing is a high-resolution technique for separating and purifying large peptides, proteins, and other biomolecules. The apparatus described in the present paper constitutes a new approach to fluid stabilization and increased throughput. Stabilization is achieved by flowing the process fluid uniformly through an array of closely spaced filter elements oriented parallel both to the electrodes and the direction of the flow. This seems to overcome the major difficulties of parabolic flow and electroosmosis at the walls, while limiting the convection to chamber compartments defined by adjacent spacers. Increased throughput is achieved by recirculating the process fluid through external heat exchange reservoirs, where the Joule heat is dissipated.
Directory of Open Access Journals (Sweden)
Eyyüp Karaoğul
2016-01-01
Full Text Available The main aim of this study was to enrich glycyrrhizic acid ammonium salt known as one of the main compounds of licorice roots (Glycyrrhiza glabra L. by isoelectric focused adsorptive bubble separation technique with different foaming agents. In the experiments, four bubble separation parameters were used with β-lactoglobulin, albumin bovine, and starch (soluble preferred as foaming agents and without additives. The enrichment of glycyrrhizic acid ammonium salt into the foam was influenced by different additive substances. The results showed that highest enrichment values were obtained from β-lactoglobulin as much as 368.3 times. The lowest enrichment values (5.9 times were determined for the application without additive. After enrichment, each experiment of glycyrrhizic acid ammonium salt confirmed that these substances could be quantitatively enriched into the collection vessel with isoelectric focused adsorptive bubble separation technique. The transfer of glycyrrhizic acid ammonium salt into the foam from standard solution in the presence of additive was more efficient than aqueous licorice extract.
Directory of Open Access Journals (Sweden)
Aguiar A.S.
1997-01-01
Full Text Available We describe the isolation of crotoxin, a presynaptic B-neurotoxin, as well as its subunits B (crotactine and A (crotapotin from lyophilized Crotalus durissus terrificus venom by a single-step preparative isoelectric focusing procedure. From 98 mg of dried venom protein 20.1 mg of crotactine and 13.1 mg of crotapotin were recovered in the first step of focalization and 4.2 mg in a second run. These values correspond to 35.7% of the total venom protein applied. Crotactine separated in the 9.3-7.0 pH range (tubes 1-6 and crotapotin in the 1.8-2.8 pH range (tubes 15-19 and both were homogeneous by SDS-PAGE and N-terminal amino acid analysis. Crotactine, a 12-kDa protein, presented hemolytic and phospholipase A2 activity. Thus, using isoelectric focusing we simultaneously purified both toxins in high yields. This method can be used as an alternative for the purification and characterization of proteins from other snake venoms under conditions in which biological activity is retained
Directory of Open Access Journals (Sweden)
Adrian Valentin Balteanu
2015-05-01
Full Text Available In goats, k-casein (CSN3 locus is highly polymorphic with up to 16 allele currently characterized. They produce 13 protein variants (CSN3 that were classified in two groups (AIEF and BIEF, according to their isoelectric point. Isoelectric focusing (IEF of milk samples allows the detection of these two CSN3 groups, but for correct identification of CSN3 alleles DNA based genotyping methods are needed. Therefore the objective of this study was to identify the types of alleles occurring at the CSN3 locus in Carpathian goat breed by using a combined IEF and DNA sequencing approach. IEF analysis of milk samples collected from two Carpathian goat populations reared in Romania revealed two distinct CSN3 patterns. Amplification and sequencing of CSN3 cDNA obtained from these goats revealed four polymorphic sites located in the exon 4 that are responsible for amino acids substitutions, as compared with the reference sequence of A allele. By comparative analysis of IEF and cDNA sequencing data obtained from the two populations, we shown that AIEF alleles are represented by B allele, while BIEF alleles are represented by D allele. However, the variation of CSN3 locus in Carpathian goat breed could be more complex, therefore further studies are needed to characterize it.
Zeng, Jianhua
2013-01-01
It is commonly known that stable bright solitons in periodic potentials, which represent gratings in photonics/plasmonics, or optical lattices in quantum gases, exist either in the spectral semi-infinite gap (SIG) or in finite bandgaps. Using numerical methods, we demonstrate that, under the action of the cubic self-focusing nonlinearity, defects in the form of "holes" in two-dimensional (2D) lattices support continuous families of 2D solitons \\textit{embedded} into the first two Bloch bands of the respective linear spectrum, where solitons normally do not exist. The two families of the \\textit{embedded defect solitons} (EDSs) are found to be continuously linked by the branch of \\textit{gap defect solitons} (GDSs) populating the first finite bandgap. Further, the EDS branch traversing the first band links the GDS family with the branch of regular defect-supported solitons populating the SIG. Thus, we construct a continuous chain of regular, embedded, and gap-mode solitons ("superfamily") threading the entire ...
2015-01-01
Protein kinase C (PKC), a validated therapeutic target for cancer chemotherapy, provides a paradigm for assessing structure–activity relations, where ligand binding has multiple consequences for a target. For PKC, ligand binding controls not only PKC activation and multiple phosphorylations but also subcellular localization, affecting subsequent signaling. Using a capillary isoelectric focusing immunoassay system, we could visualize a high resolution isoelectric focusing signature of PKCδ upon stimulation by ligands of the phorbol ester and bryostatin classes. Derivatives that possessed different physicochemical characteristics and induced different patterns of biological response generated different signatures. Consistent with different patterns of PKCδ localization as one factor linked to these different signatures, we found different signatures for activated PKCδ from the nuclear and non-nuclear fractions. We conclude that the capillary isoelectric focusing immunoassay system may provide a window into the integrated consequences of ligand binding and thus afford a powerful platform for compound development. PMID:24906106
Directory of Open Access Journals (Sweden)
Ivica Strelec
2011-06-01
Full Text Available Applicability of polyacrylamide gel electrophoresis and isoelectric focusing of hordeins for discrimination of six two-rowed winter barley varieties (Angora, Sladoran, Rodnik, Rex, Martin and Barun has been investigated. Hordeins extracted from dry grains and green malt of barley varieties were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis in gradient gel of 8-18% T, and by isoelectric focusing in pH gradient of 3.5-9.5 and 5.5-8.5, respectively. In all separation experiments better resolution of proteins was achieved with dry grain extracts, than with malt extracts. Angora, Sladoran and Martin variety could be distinguished from other varieties by differences in hordein patterns obtained by gradient gel SDS-PAGE (8-18% T, and Angora, Sladoran, Martin and Rodnik by isoelectric focusing in pH gradient 5.5-8.5.
Grigoriev, Maxim; Fakhrtdinov, Rashid; Irzhak, Dmitry; Firsov, Alexander; Firsov, Anatoly; Svintsov, Alexander; Erko, Alexey; Roshchupkin, Dmitry
2017-02-01
The results of studying a two-dimensional X-ray focusing by an off-axis grazing incidence phase Fresnel zone plate on the laboratory X-ray source are presented. This optics enables obtaining a focal spot of 2 μm on the laboratory X-ray source with a focusing efficiency of 30% at a high signal/noise ratio.
Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R
2016-07-15
The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics.
Energy Technology Data Exchange (ETDEWEB)
Ou Junjie [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Ren, Carolyn L., E-mail: c3ren@mecheng1.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Pawliszyn, Janusz [Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada)
2010-03-10
A new, simple method was reported to prepare PDMS membranes with micrometer size pores for microfluidic chip applications. The pores were formed by adding polystyrene and toluene into PDMS prepolymer solution prior to spin-coating and curing. The resulting PDMS membrane has a thickness of around 10 {mu}m and macropores with a diameter ranging from 1 to 2 {mu}m measured using scanning electron microscope (SEM) imaging. This PDMS membrane was validated by integrating it with PDMS microfluidic chips for protein separation using isoelectric focusing mechanism coupled with whole channel imaging detection (IEF-WCID). It has been shown that five standard pI markers and a mixture of two proteins, myoglobin and {beta}-lactoglobulin, can be separated using these chips. The results indicated that this macroporous PDMS membrane can replace the dialysis membrane in PDMS chips for the IEF-WCID technique. The preparation method of macroporous PDMS membrane may be potentially applied in other fields of microfluidic chips.
Wagner, Leona; Wermann, Michael; Rosche, Fred; Rahfeld, Jens-Ulrich; Hoffmann, Torsten; Demuth, Hans-Ulrich
2011-07-01
Abstract In the present studies we resolved the post-translational microheterogeneity of purified porcine dipeptidyl peptidase IV (DP 4) from kidney cortex. Applying SDS-homogeneous DP 4 onto an analytical agarose isoelectric focusing (IEF) gel, pH 4-6, activity staining resulted in at least 17 isoforms between pH 4.8-6.0. These could be separated into fractions with only two to six isoforms by means of preparative liquid-phase IEF, using a Rotofor cell. Starting off with three parallel Rotofor runs under the same conditions at pH 5-6, the fractions were pooled according to the specific activity of DP 4, pH and analytical IEF profile, and further refractionated without any additional ampholytes. Since excessive dilution of ampholytes and proteins was kept to the minimum, a second refractionation step could be introduced, resulting in pH gradients between 0.022 and 0.028 pH increments per fraction. By performing two consecutive refractionation steps, the high resolution necessary for the separation of DP 4 isoforms could be achieved. This represents an alternative method if isolation of isoforms with similar pI's results in precipitation and denaturation in presence of a narrow pH range. Furthermore, it demonstrates that preparative IEF is a powerful tool to resolve post-translational microheterogeneity of a purified protein required for crystallization processing.
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2015-07-01
In porous media, lateral mass exchange exerts a significant influence on the dilution of solute plumes in quasi steady state. This process is one of the main mechanisms controlling transport of continuously emitted conservative tracers in groundwater and is fundamental for the understanding of many degradation processes. We investigate the effects of high-permeability inclusions on transverse mixing in three-dimensional versus two-dimensional systems by experimental, theoretical, and numerical analyses. Our results show that mixing enhancement strongly depends on the system dimensionality and on the parameterization used to model transverse dispersion. In particular, no enhancement of transverse mixing would occur in three-dimensional media if the local transverse dispersion coefficient was uniform and flow focusing in both transverse directions was identical, which is fundamentally different from the two-dimensional case. However, the velocity and grain size dependence of the transverse dispersion coefficient and the correlation between hydraulic conductivity and grain size lead to prevailing mixing enhancement within the inclusions, regardless of dimensionality. We perform steady state bench-scale experiments with multiple tracers in three-dimensional and quasi two-dimensional flow-through systems at two different velocities (1 and 5 m/d). We quantify transverse mixing by the flux-related dilution index and compare the experimental results with model simulations. The experiments confirm that, although dilution is larger in three-dimensional systems, the enhancement of transverse mixing due to flow focusing is less effective than in two-dimensional systems. The spatial arrangement of the high-permeability inclusions significantly affects the degree of mixing enhancement. We also observe more pronounced compound-specific effects in the dilution of solute plumes in three-dimensional porous media than in two-dimensional ones.
DEFF Research Database (Denmark)
Shaw, AC; Rossel Larsen, M; Roepstorff, P
1999-01-01
improvements of two-dimensional gel electrophoresis with immobilized pH gradients (IPG) compared to isoelectric focusing with carrier ampholytes, a highly reproducible method for examining global changes in HeLa cell protein expression due to different stimuli is now available. Therefore, we have initiated...
DEFF Research Database (Denmark)
Shaw, AC; Rossel Larsen, M; Roepstorff, P
1999-01-01
improvements of two-dimensional gel electrophoresis with immobilized pH gradients (IPG) compared to isoelectric focusing with carrier ampholytes, a highly reproducible method for examining global changes in HeLa cell protein expression due to different stimuli is now available. Therefore, we have initiated...
Energy Technology Data Exchange (ETDEWEB)
Liang Liang; Dou Peng; Dong Mingming; Ke Xiaokang; Bian Ningsheng [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Liu Zhen, E-mail: zhenliu@nju.edu.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)
2009-09-14
Nuclease P1 is an important enzyme that hydrolyzes RNA or single-stranded DNA into nucleotides, and complete digestion is an essential basis for assays based on this enzyme. To digest a doubled-stranded DNA, the enzyme is usually combined with heat denaturing, which breaks doubled-stranded DNA into single strands. This paper presents an un-expected phenomenon that nuclease P1, in combination with heat denaturing, fails to completely digest a DNA sample extracted from salmon sperm. Under the experimental conditions used, at which nuclease P1 can completely digest calf thymus DNA, the digestion yield of salmon sperm DNA was only 89.5%. Spectrometric measurement indicated that a total protein of 4.7% is present in the DNA sample. To explain the reason for this phenomenon, the dynamic kinetic capillary isoelectric focusing (DK-CIEF) approach proposed previously, which allows for the discrimination of different types of protein-DNA interactions and the measurement of the individual dissociation rate constants, was modified and applied to examine possible protein-DNA interactions involved. It was found that a non-specific DNA-protein binding occurs in the sample, the dissociation rate constant for which was measured to be 7.05 {+-} 0.83 x 10{sup -3} s{sup -1}. The formation of DNA-protein complex was suggested to be the main reason for the incomplete digestion of the DNA sample. The modified DK-CIEF approach can be applied as general DNA samples, with the advantages of fast speed and low sample consumption.
DEFF Research Database (Denmark)
Celis, J E; Rasmussen, H H; Gromov, P
1995-01-01
The master two-dimensional (2-D) gel database of human keratinocytes currently lists 3154 cellular proteins (2224 isoelectric focusing, IEF; and 930 nonequilibrium pH gradient electrophoresis, NEPHGE), many of which correspond to post-translational modifications. 1082 polypeptides have been ident...
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Zhang, Wenyang; Tang, Xuemei; Ding, Mengjie; Zhong, Hongying
2014-12-10
Abundant isoforms and dynamic posttranslational modifications cause the separation and identification of histone variants to be experimentally challenging. To meet this need, we employ two-dimensional electrophoretic gel separation followed by mass spectrometric detection which takes advantage of the chelation of Cu(2+) with amino acid residues exposed on the surfaces of the histone proteins. Acid-extracted rat liver histones were first mixed with CuSO4 solution and then separated in one dimension with triton-acid-urea (TAU) gel electrophoresis and in a second dimension using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separations result from both the changes in charge and mass upon Cu(2+) chelation. Identities of each separated gel bands were obtained by using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). It was found that the migration of H3 histone isoforms of rat liver is markedly affected by the use of Cu(2+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Henares, Terence G; Uenoyama, Yuta; Nogawa, Yuto; Ikegami, Ken; Citterio, Daniel; Suzuki, Koji; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki
2013-06-07
This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.
Liu, Zhen; Ou, Junjie; Samy, Razim; Glawdel, Tomasz; Huang, Tiemin; Ren, Carolyn L; Pawliszyn, Janusz
2008-10-01
Simple-structured, well-functioned disposable poly(dimethylsiloxane) (PDMS) microchips were developed for capillary isoelectric focusing with whole column imaging detection (CIEF-WCID). Side-by-side comparison of the developed microchips with well-established commercial capillary cartridges demonstrated that the disposable microchips have comparable performance as well as advantages such as absence of lens effect and possibility of high-aspect-ratio accompanied with a dramatic reduction in cost.
Energy Technology Data Exchange (ETDEWEB)
Lester, E. P.; Miller, J. B.; Yachnin, S.
1977-01-01
HAFP was purified from five patients with hepatoma, one with gastric cancer, and one with an embryonal cell tumor, as well as from fetal liver and a monkey tumor cell line grown in tissue culture. The pattern of microheterogeneity of purified HAFP was defined for each HAFP isolate, and was demonstrated to be present in native sera, using crossed immunoelectrophoresis in agarose gels and isoelectric focusing in polyacrylamide gels containing 8 M urea. Three, and in one case four, species were seen in agarose, and were further resolved to reveal 6 major species with isoelectric focusing which could be correlated with the agarose gel variants. We have demonstrated a relationship between the immunosuppressive potency of certain HAFP preparations and the proportion of specific HAFP isomers which they contain as shown by these techniques. We have desialylated each of our preparations and demonstrated that this does not alter immunosuppressive potency but leaves residual complex microheterogeneity. Desialylated HAFP isolates contain six major HAFP isomers by isoelectric focusing, indicating that HAFP heterogeneity is based upon multiple charge differences in the HAFP molecule, apart from sialic acid content. The nature of these charge differences remain to be determined. We postulate that these charge differences modulate the immunosuppressive potency of HAFP.
Energy Technology Data Exchange (ETDEWEB)
Lester, E. P.; Miller, J. B.; Yachnin, S.
1977-01-01
HAFP was purified from five patients with hepatoma, one with gastric cancer, and one with an embryonal cell tumor, as well as from fetal liver and a monkey tumor cell line grown in tissue culture. The pattern of microheterogeneity of purified HAFP was defined for each HAFP isolate, and was demonstrated to be present in native sera, using crossed immunoelectrophoresis in agarose gels and isoelectric focusing in polyacrylamide gels containing 8 M urea. Three, and in one case four, species were seen in agarose, and were further resolved to reveal 6 major species with isoelectric focusing which could be correlated with the agarose gel variants. We have demonstrated a relationship between the immunosuppressive potency of certain HAFP preparations and the proportion of specific HAFP isomers which they contain as shown by these techniques. We have desialylated each of our preparations and demonstrated that this does not alter immunosuppressive potency but leaves residual complex microheterogeneity. Desialylated HAFP isolates contain six major HAFP isomers by isoelectric focusing, indicating that HAFP heterogeneity is based upon multiple charge differences in the HAFP molecule, apart from sialic acid content. The nature of these charge differences remain to be determined. We postulate that these charge differences modulate the immunosuppressive potency of HAFP.
Renon, P; Colombo, M M; Colombo, F; Malandra, R; Biondi, P A
2001-05-01
In this work, the most commercially important Selachian species, smoothhound (Mustelus mustelus) and starry smoothhound (Mustelus asterias), have been identified by polyacrylamide isoelectric focusing (IEF-PAGE), along with several shark species of minor commercial value. In Italy, these two smoothhound species are commonly subjected to fraudulent substitution with lesser valued sharks. After the electrophoretic runs, the band patterns of the two Mustelus species were compared with those of dogfish (Scyliorhinus canicula), spurdog (Squalus acanthias), blue shark (Prionace glauca) and black-mouthed dogfish (Galeus melanostomus), both visually and with gel analysis software. The actual isoelectric points were then submitted to cluster analysis to differentiate the single species, despite the possible occurrence of electrophoretic variations or protein polymorphism. Every shark showed species-specific band patterns and could therefore be well differentiated, as confirmed by statistical analysis.
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H.
2015-06-01
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
Energy Technology Data Exchange (ETDEWEB)
Franck, John M.; Chandrasekaran, Siddarth; Dzikovski, Boris; Dunnam, Curt R.; Freed, Jack H., E-mail: jhf3@cornell.edu [Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, New York 14853 (United States)
2015-06-07
The development, applications, and current challenges of the pulsed ESR technique of two-dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually in the form of spin-probes or spin-labels. As a result, it required the extension to much higher frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has proven very useful for studying molecular dynamics in complex fluids, and spectral results can be explained by fitting theoretical models (also described) that provide a detailed analysis of the molecular dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the ability to tune the resonance frequency, in order to probe different motional ranges, while challenges include the high ratio of the detection dead time vs. the relaxation times. We review several important 2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic → crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically aligned sample, as well as responding to local site fluctuations. (2) Several examples involving model phospholipid membranes are provided, including the dynamic structural characterization of the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma membrane
The separation of whale myoglobins with two-dimensional electrophoresis.
Spicer, G S
1988-10-01
Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.
Auluck, S K H
2014-01-01
Dense Plasma Focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding of short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool which can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited [S K H Auluck, Physics of Plasmas 20, 112501 (2013)] Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather type plasma focus fitted to thousands of automated computations, which enables construction of such design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a 4-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy ...
Melnik, B C; Melnik, S F
1988-06-01
A method for the analytical isoelectric focusing of Nonidet-P40-delipidated apolipoprotein B of human plasma low-density lipoproteins has been developed. Isoelectric focusing was performed in the presence of the zwitterionic nondenaturing detergent Chaps, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate, and the nonionic surfactant Nonidet-P40, polyoxyethyleneglycol p-t-octylphenol with a mean of 9.0 ethylene oxide units per molecule. Low-density lipoprotein (LDL) apolipoprotein B (apo-B) entered 3.75% polyacrylamide gels without precipitation at the sites of sample application, permitting apoprotein recoveries of greater than 90% in the migrating bands. LDL apo-B exhibited 10 distinguishable bands with apparent isoelectric points of 7.34 (band 1), 7.27 (band 2), 7.16 (band 3), 7.02 (band 4), 6.88 (band 5), 6.70 (band 6), 6.61 (band 7), 6.48 (band 8), 6.40 (band 9), and 6.24 (band 10), respectively. Bands 3 and 4, 6 and 7, as well as 8 and 9 could be identified as major double bands. When the focused apo-B was run in a second dimension by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the same relative molecular weight of B-100 was obtained for all focused bands. After electrotransfer to nitrocellulose paper, all bands reacted with polyclonal anti-human LDL antibody. Furthermore, the detergent-solubilized apo-B retained the immunological properties of native low-density lipoproteins when tested by double immunodiffusion against polyvalent anti-human LDL sera.
Rodriguez-Calvo, M S; Carracedo, A; Muñoz, I; Concheiro, L
1992-03-01
A new isoelectric focusing (IEF) technique in polyacrylamide gels with 6M urea and 1.5% Nonidet P40 has been developed to characterize human hair samples. The phenotypes demonstrated with this procedure has been correlated with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns described by other authors. The method described can be applied in the forensic science analysis of a single human hair. Using the same IEF technique we have studied the changes in electrophoretic patterns of cosmetically treated hair. The characteristics of the modifications observed and its utility in forensic science work are also discussed in this paper.
Nataša Mikulec; Dijana Plavljanić; Jasminka Špoljarić; Biljana Radeljević; Jasmina Havranek; Neven Antunac
2013-01-01
The aim of this study was to introduce a reference method for the detection of cow milk in ewe and goat cheeses (EC 273/08) in order to protect manufacturers and consumers from adulterations and imitations, and to ensure alignment with the demands of domestic and EU markets. The method includes isolation of casein from cheese, isoelectric focusing of γ2- and γ3-casein originating from the hydrolysis of β-casein by plasmin, the detection and quantitative determination of γ-casein in cow, ewe a...
Sompet, P.; Fung, Y. H.; Schwartz, E.; Hunter, M. D. J.; Phrompao, J.; Andersen, M. F.
2017-03-01
We combine near-deterministic preparation of a single atom with Raman sideband cooling, to create a push-button mechanism to prepare a single atom in the motional ground state of tightly focused optical tweezers. In the two-dimensional (2D) radial plane, we achieve a large ground-state fidelity for the entire procedure (loading and cooling) of ˜0.73 , while the ground-state occupancy is ˜0.88 for realizations with a single atom present. For 1D axial cooling, we attain a ground-state fraction of ˜0.52 . The combined 3D cooling provides a ground-state population of ˜0.11 . Our Raman sideband cooling variation is indifferent to magnetic field fluctuations, allowing widespread unshielded experimental implementations. Our work provides a pathway towards a range of coherent few-body experiments.
Auluck, S. K. H.
2014-12-01
Dense plasma focus (DPF) is known to produce highly energetic ions, electrons and plasma environment which can be used for breeding short-lived isotopes, plasma nanotechnology and other material processing applications. Commercial utilization of DPF in such areas would need a design tool that can be deployed in an automatic search for the best possible device configuration for a given application. The recently revisited (Auluck 2013 Phys. Plasmas 20 112501) Gratton-Vargas (GV) two-dimensional analytical snowplow model of plasma focus provides a numerical formula for dynamic inductance of a Mather-type plasma focus fitted to thousands of automated computations, which enables the construction of such a design tool. This inductance formula is utilized in the present work to explore global optimization, based on first-principles optimality criteria, in a four-dimensional parameter-subspace of the zero-resistance GV model. The optimization process is shown to reproduce the empirically observed constancy of the drive parameter over eight decades in capacitor bank energy. The optimized geometry of plasma focus normalized to the anode radius is shown to be independent of voltage, while the optimized anode radius is shown to be related to capacitor bank inductance.
Institute of Scientific and Technical Information of China (English)
LI Dongdong; HE Shaoheng
2007-01-01
Total proteins in the pollen of Humulus scandens Lour，one of the most popular aeroallergens in China，were analyzed by two-dimensional electrophoresis in the current study.The proteins were extracted by Trichloracetic acid (TCA) method，and then separated by isoelectric focusing as the first dimension and SDS-PAGE as the second dimension.The spots of proteins were visualized by staining with Coomassie Brilliant Blue.After analysis with software (ImageMaster 2D)，122 different proteins were detected;isoelectric point (pI)，Molecular weight (MW) and relativevolume of each protein in the pollen were also discovered.This is the first high-resolution，two-dimensional protein map of the pollen ofHumulus scandens Lour in China.Our finding has built a solid foundation for identification，characterization，gene cloning and standardization of allergenic proteins in the pollen ofHumulus scandens Lour for further studies.
Slattery, W J; Sinclair, A J
1983-02-01
Species identification of fresh meat can be readily achieved by serological techniques with the limitation that closely related species, such as sheep/goat, cattle/buffalo and horse/donkey, cannot be differentiated. We have examined electrophoretic techniques with particular reference to the identification of meat from closely related species. The results showed that beef and buffalo meat and meat from red and grey kangaroos could be clearly distinguished by isoelectric focusing on polyacrylamide gel or agarose in the pH range 5.5 to 8.5. Sheep and goat meat, and horse and donkey meat could not be differentiated by this technique, but were clearly distinguished from each other by their esterase isoenzyme profiles obtained after electrophoretic separation on cellulosic membrane strips. Results from this latter technique were available in one hour. We believe that species identification of fresh meat should involve an initial screening test by serological techniques followed by confirmation of the identity of suspect samples by electrophoretic techniques.
Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis.
Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay
2016-09-09
The pioneering work by Patrick H. O'Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007-4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O'Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.
Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis
Directory of Open Access Journals (Sweden)
Sandra Murphy
2016-09-01
Full Text Available The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021. The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.
Santucci, Laura; Bruschi, Maurizio; Ghiggeri, Gian Marco; Candiano, Giovanni
2015-01-01
Two-dimensional gel electrophoresis (2DE) is one of the fundamental approaches in proteomics for the separation and visualization of complex protein mixtures. Proteins can be analyzed by 2DE using isoelectric focusing (IEF) in the first dimension, combined to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension, gel staining (silver and Coomassie), image analysis, and 2DE gel database. High-resolution 2DE can resolve up to 5,000 different proteins simultaneously (∼2,000 proteins routinely), and detect and quantify <1 ng of protein per spot. Here, we describe the latest developments for a more complete analysis of biological fluids.
Institute of Scientific and Technical Information of China (English)
王丽; 周勇; 王军志
2012-01-01
Objective To develop an imaging capillary isoelectric focusing electrophoresis method for analysis of isomer and isoelectric point of glycoproteins. Methods Three glycoproteins, i.e. recombinant human PEGlysated erythropoietin (PEG-EPO), re-combinant human TNK mutant of tissue type plasminogen activator (rhTNF-tPA) and humanized monoclonal antibody (McAb) A were analyzed for isomers and isoelectric points by imaging capillary isoelectric focusing electrophoresis. Results The isoelectric points and isomers of PEG-EPO, rhTNF-tPA and humanized McAb A were effectively analyzed by the developed imaging capillary isoelectric focusing electrophoresis method. The method was reliable, rapid, and showed high resolution and reproducibility. Conclusion Imaging capillary isoelectric focusing electrophoresis method may be used for analysis of isomer and electric point of glycoproteins, which provides en effective tool for ensuring the stability of production procedure and quality control of glycoproteins.%目的 建立成像毛细管等电聚焦电泳分析糖白蛋类生物技术药物的异构体和等电点的方法.方法 应用优化的成像毛细管等电聚焦电泳技术,对3种糖蛋白类生物技术药物即聚乙二醇化重组人促红素(PEGlysated erythropoietin,PEG-EPO)、重组人组织型纤溶酶原激活剂TNK突变体(Recombinant human TNK mutant of tissue type plasminogen activator,rhTNK-tPA)和全人源化单抗A的异构体和等电点进行分析.结果 采用优化的成像毛细管等电聚焦电泳技术,可较好地分析PEG-EPO、rhTNK-tPA和全人源化单抗A的等电点和异构体,该方法可靠、快速,具有较好的分离度和重现性.结论 成像毛细管等电聚焦电泳技术可用于分析糖蛋白类生物技术药物的异构体和等电点,为保证糖蛋白类生物技术药物生产工艺的稳定性及质量控制提供了有效手段.
Bean, P; Peter, J B
1993-12-01
Carbohydrate-deficient transferrin (Tf) represents a significant advance over previous markers of alcohol abuse. Isoelectric focusing (IEF) analysis of affinity-purified Tf, under conditions of total iron saturation, identifies a major isoform at pI 5.4 in both normal consumers and alcohol abusers; three additional Tf isoforms (pI 5.6, 5.7, and 5.8) are associated with alcohol abuse. Under conditions of partial iron saturation, IEF analysis of affinity-purified Tf reveals up to seven isoforms (pI range 5.3-6.0) common to normal consumers and alcohol abusers; three additional transferrin isoforms (pI range 6.1-6.3) are present in 68% (15/22) of the alcohol abuser specimens, but in only 8% (1/12) of the specimens from normal consumers and in none of the three specimens from abstainers. These three diagnostic bands comigrate with a set of defined Tf isoforms: human iron-free Tf containing two sialic acid residues, human sialic acid-free Tf with one iron molecule, and human sialic acid-free, iron-free Tf. Serum specimens from normal consumers and alcohol abusers, analyzed for Tf isoforms by an IEF-immunoblot method under conditions of partial iron saturation, expressed Tf isoforms similar to those found using affinity-purified Tf in standard IEF. Visual examination of the immunoblots reveals the diagnostic bands in 67% (32/48) of patients with histories of sustained alcohol abuse compared with only 17% (8/48) of the normal consumers. Scanning densitometry and volume integration analysis of the immunoblots representative of normal consumer and alcohol abuser populations results in mean (+/- SE) values of 4.1 +/- 0.8 and 19.3 +/- 3.6 units, respectively (p < 0.0002).
Directory of Open Access Journals (Sweden)
Nataša Mikulec
2013-08-01
Full Text Available The aim of this study was to introduce a reference method for the detection of cow milk in ewe and goat cheeses (EC 273/08 in order to protect manufacturers and consumers from adulterations and imitations, and to ensure alignment with the demands of domestic and EU markets. The method includes isolation of casein from cheese, isoelectric focusing of γ2- and γ3-casein originating from the hydrolysis of β-casein by plasmin, the detection and quantitative determination of γ-casein in cow, ewe and goat cheese by densitometry. Ewe or goat cheese products with a minimum of 1 % of cow milk are considered to be adulterated. For the quantitative determination of cow, ewe and goat milk in cheeses, standard mixtures of cow-ewe and cow-goat milk were made by adding 0; 0.5; 1; 2; 5; 10; 25; 50; 75 and 100 % (v/v of cow milk. The quantification was performed by determining the peak area ratio of cow γ-casein in comparison to ewe/goat casein in prepared standard cheeses. The calibration curves were calculated based on the relation of the peak area ratio of cow γ-caseins (calculated as the percentage of total γ-caseins in contrast to the relative content (% of cow milk in the mixture. The method proved to be adequate for the detection of raw and heat-treated cow milk in fresh and ripened cheeses made from ewe or goat milk, or a mixture of ewe and goat milk.
Institute of Scientific and Technical Information of China (English)
Xiang MA; Ye-fei ZHU; Jia-hao SHA; Zuo-min ZHOU; Jia-yin LIU
2003-01-01
Objective To apply two-dimensional electrophoresis and mass spectrometry in the ovary proteome research Methods Protein extractions from mouse ovaries were run in IPGphor isoelectric focus system with 11 cm and 24 cm IPG strips respectively (pH 3～10, 0.3 mm thick), then the protein spots were identified by mass spectrometry.Results The ovary protein exactions separated by two-dimensional electrophoresis have got high resolution, and identifing protein by mass spectrometry was highly efficient and facilitly.These two techniques should facilitate further investigation of female reproduction proteome research.Conclusion These two rapid high resolutions and efficient techniques have a variety of applications foreground in female reproduction proteome pattern research.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
DEFF Research Database (Denmark)
Celis, J E; Madsen, Peder; Rasmussen, H H
1991-01-01
proteins in alphabetical order), "basal cell markers", "differentiation markers", "proteins highly up-regulated in psoriatic skin", "microsequenced proteins" and "human autoantigens". For reference, we have also included 2-D gel (isoelectric focusing) patterns of cultured normal and psoriatic keratinocytes......A two-dimensional (2-D) gel database of cellular proteins from noncultured, unfractionated normal human epidermal keratinocytes has been established. A total of 2651 [35S]methionine-labeled cellular proteins (1868 isoelectric focusing, 783 nonequilibrium pH gradient electrophoresis) were resolved...
Ruzicka, Filip; Horka, Marie; Hola, Veronika; Kubesova, Anna; Pavlik, Tomas; Votava, Miroslav
2010-03-01
The isoelectric points of 39 Candida parapsilosis strains were determined by means of capillary isoelectric focusing. The value of the isoelectric point corresponded well with cell surface hydrophobicity, as well as with the ability to form biofilm in these yeasts.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Auluck, S K H
2013-01-01
Recent resurgence of interest in applications of dense plasma focus and doubts about the conventional view of dense plasma focus as a purely irrotational compressive flow have re-opened questions concerning device optimization. In this context, this paper re-appraises and extends the analytical snowplow model of plasma focus sheath evolution developed by F. Gratton and J.M. Vargas (GV) (Energy Storage, Compression and Switching, Ed. V. Nardi, H. Sahlin, and W. H. Bostick, Eds., vol. 2. New York: Plenum, 1983, p. 353) and shows its relevance to contemporary research. The GV model enables construction of a special orthogonal coordinate system in which the plasma flow problem can be simplified and a model of sheath structure can be formulated. The LPP plasma focus facility, which reports neutron yield better than global scaling law, is shown to be operating closer to an optimum operating point of the GV model as compared with PF-1000.
Matsuda, Hiroyuki; Daimon, Hiroshi; Tóth, László; Matsui, Fumihiko
2007-04-01
This paper provides a way of focusing wide-angle charged-particle beams in multiple lens systems. In previous papers [H. Matsuda , Phys. Rev. E 71, 066503 (2005); 74, 036501 (2006)], it was shown that an ellipsoidal mesh, combined with electrostatic lenses, enables correction of spherical aberration over wide acceptance angles up to ±60° . In this paper, practical situations where ordinary electron lenses are arranged behind the wide-angle electrostatic lenses are taken into account using ray tracing calculation. For practical realization of the wide-angle lens systems, the acceptance angle is set to ±50° . We note that the output beams of the wide-angle electrostatic lenses have somewhat large divergence angles which cause unacceptable or non-negligible spherical aberration in additional lenses. A solution to this problem is presented showing that lens combinations to cancel spherical aberration are available, whereby wide-angle charged-particle beams can be finely focused with considerably reduced divergence angles less than ±5° .
Auluck, S K H
2016-01-01
The Gratton-Vargas snowplow model, recently revisited and expanded (S K H Auluck, Physics of Plasmas, 20, 112501 (2013)), has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility in global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the...
Directory of Open Access Journals (Sweden)
Qian Wan
2015-04-01
Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.
Energy Technology Data Exchange (ETDEWEB)
Auluck, S. K. H., E-mail: skhauluck@gmail.com [HiQ TechKnowWorks Private Limited, Nerul, Navi Mumbai 400706 (India)
2015-11-15
The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility in global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.
Auluck, S. K. H.
2015-11-01
The Gratton-Vargas snowplow model, recently revisited and expanded [S. K. H. Auluck, Phys. Plasmas 20, 112501 (2013)], has given rise to significant new insights into some aspects of the Dense Plasma Focus (DPF), in spite of being a purely kinematic description having no reference to plasma phenomena. It is able to provide a good fit to the experimental current waveforms in at least 4 large facilities. It has been used for construction of a local curvilinear frame of reference, in which conservation laws for mass, momentum, and energy can be reduced to effectively-one-dimensional hyperbolic conservation law equations. Its utility in global parameter optimization of device parameters has been demonstrated. These features suggest that the Gratton-Vargas model deserves a closer look at its supposed limitations near the singular phase of the DPF. This paper presents a discussion of its development near the device axis, based on the original work of Gratton and Vargas, with some differences. It is shown that the Gratton-Vargas partial differential equation has solutions for times after the current singularity, which exhibit an expanding bounded volume (which can serve as model of an expanding plasma column) and decreasing dynamic inductance of the discharge, in spite of having no built-in hydrodynamics. This enables the model to qualitatively reproduce the characteristic shape of the current derivative in DPF experiments without reference to any plasma phenomena, such as instabilities, anomalous resistance, or reflection of hydrodynamic shock wave from the axis. The axial propagation of the solution exhibits a power-law dependence on the dimensionless time starting from the time of singularity, which is similar to the power-law relations predicted by theory of point explosions in ideal gases and which has also been observed experimentally.
Choy, Derek Y C; Creagh, A Louise; Haynes, Charles
2014-03-01
Isoelectric chromatofocusing (ICF), a mode of chromatography by which proteins are separated based on changes in their charge state with pH, is widely used at analytical scales and finding increasing interest in biologics manufacturing due to its exceptional resolving power. Here, a method is described for using simple monoprotic and diprotic buffers to create stable mobile phases for sample loading on a strong anion exchange column and for achieving an elution pH gradient of desired shape covering any pH range from pH 10.0 to 3. The buffers used are selected to satisfy cost constraints, and to permit facile detection of eluted biologics by UV spectroscopy and mass spectrometry. The method exploits a new model described here that combines multiple-chemical and adsorption-equilibria theory to enable in silico tailoring of elution pH profiles using mixtures of these simple buffers. It is shown to provide a versatile platform for optimizing and conducting ICF of protein mixtures on strong anion exchange media. © 2013 Wiley Periodicals, Inc.
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
Institute of Scientific and Technical Information of China (English)
刘韬; 邵晓霞; 曾嵘; 夏其昌
2002-01-01
On-line coupling of capillary isoelectric focusing (CIEF) to electrospray ionization mass spectrometry (ESI-MS) as a two-dimensional separation/analysis system was employed for high-resolution analysis of the protein isoforms observed during CIEF process. The analytical system was established by using neutral coated long capillary (80 cm), active capillary positioning and sheath-liquid interface. Proteins were separated and resolved in CIEF according to their differences in isoelectric point (pI), and then characterized by ESI-MS. The focused protein zones were eluted to the entrance of MS by combining cathodic mobilization with gravity. The ultrahigh resolution (difference in pI<0.04) of this technique obtained under certain conditions led to the detection of three isoforms in hemoglobin A and in sickle cell hemoglobin (with similar charge distribution and same molecular weight, but their differences in pI ranging from 0.04 to 0.08) and two isoforms of β-lactoglobulin A (difference in pI is 0.6). The isoelectric points, relative amounts, and molecular masses of these isoforms were determined simultaneously by CIEF-ESI-MS.%在线的毛细管等电聚焦-电喷雾质谱联用, 作为一种二维的分离系统, 对毛细管等电聚焦过程中形成的蛋白质亚型进行了分析. 这种分析系统通过使用中性的涂层毛细管(80 cm长)、动态的毛细管位置调整方法和鞘流液接口得以建立. 蛋白质首先在毛细管等电聚焦过程中根据它们等电点的差异得到分离, 然后被电喷雾质谱鉴定. 已聚焦好的蛋白质区带通过结合阴极移动和重力移动的方法从毛细管中流出而进入质谱仪. 由于在此特定情况下这种方法具有极高的分辨率, 有三种血红蛋白A和镰刀型血红蛋白的亚型(具有几乎相同的电荷分布和分子质量, 但它们的等电点差异在0.04到0.08之间)和两种乳球蛋白A的亚型(等电点差异为0.6)被检测到. 这些
Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.
Browning, Mark; Vanable, Joseph
2002-01-01
Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Elschenbroich, Sarah; Ignatchenko, Vladimir; Sharma, Parveen; Schmitt-Ulms, Gerold; Gramolini, Anthony O; Kislinger, Thomas
2009-10-01
High-resolution peptide separation is pivotal for successful shotgun proteomics. The need for capable techniques propels invention and improvement of ever more sophisticated approaches. Recently, Agilent Technologies has introduced the OFFGEL fractionator, which conducts peptide separation by isoelectric focusing in an off-gel setup. This platform has been shown to accomplish high resolution of peptides for diverse sample types, yielding valuable advantages over comparable separation techniques. In this study, we deliver the first comparison of the newly emerging OFFGEL approach to the well-established on-line MudPIT platform. Samples from a membrane-enriched fraction isolated from murine C2C12 cells were subjected to replicate analysis by OFFGEL (12 fractions, pH 3-10) followed by RP-LC-MS/MS or 12-step on-line MudPIT. OFFGEL analyses yielded 1398 proteins (identified by 10,269 peptides), while 1428 proteins (11,078 peptides) were detected with the MudPIT approach. Thus, our data shows that both platforms produce highly comparable results in terms of protein/peptide identifications and reproducibility for the sample type analyzed. We achieve more accurate peptide focusing after OFFGEL fractionation with 88% of all peptides binned to a single fraction, as compared to 61% of peptides detected in only one step in MudPIT analyses. Our study suggests that both platforms are equally capable of high quality peptide separation of a sample with medium complexity, rendering them comparably valuable for comprehensive proteomic analyses.
Institute of Scientific and Technical Information of China (English)
冉金和; 李修和
2014-01-01
A two-dimensional Chirp-Z Transform (CZT) imaging algorithm for general bistatic high squint SAR is proposed. To deal with the serious range-azimuth cross coupling of echo signal in bistatic high squint SAR, Linear Range Walk Correction (LRWC) is performed in range frequency-azimuth time domain to correct the large LRW induced by the high squint model of platforms, and then the expression of a modified bistatic point target reference spectrum is derived. Reference Function Multiplication (RFM) is firstly performed to finish the bulk focusing. With the track decoupling formulas, phase terms of spectrum are decomposed into two independent phase terms as range-variant phase terms and azimuth-variant phase terms, and their space variances are eliminated by CZT respectively to get the focusing result. The simulation tests validate the effectiveness of the proposed imaging algorithm to focus the data of general airborne bistatic high squint SAR.%该文提出一般构型机载双站大斜视SAR的2维Chirp-Z变换(CZT)成像算法。针对双站大斜视回波信号的距离-方位向强耦合，在距离频域-方位时域校正载机大斜视引起的大距离走动，然后推导改进点目标的频谱公式。成像时，先用参考函数相乘完成回波一致聚焦，然后借助于载机轨迹解耦合公式将频谱相位分解为距离移变和方位移变的两个独立相位项，再运用CZT分别消除其空变性得到成像结果。仿真验证了该算法处理一般构型机载双站大斜视SAR回波数据的有效性。
Laurenzi, M A; Link, H
1978-09-01
The mobility of the immunoglobulins G, A and M, beta-trace protein and gramma-trace protein on isoleectric focusing of serum and CSF was determined by immunofixation using specific antisera. Polyclonal IgG migrated as multiple bands between pH 4.7--8.6, polyclonal IgA as multiple bands between pH 4.9--6.1 in CSF and serum. IgM could not be identified in normal CSF or serum. beta-trace protein gave three bands at pH 8.0, 8.4 and 7.4--7.5, respectively, while gamma-trace protein gave one single band at pH 9.5--greater than 9.5. Oligoclonal IgG in CSF in multiple sclerosis and neurosyphilis migrated between pH 8.6--greater than 9.5 and was easily discriminated from other proteins.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Itaconic acid carrier ampholytes for isoelectric focusing.
Brenna, O
1977-04-11
Commercial carrier ampholytes, obtained by coupling polyethylene polyamines to acrylic acid, exhibit a conductivity minimum in the pH range 5.5-6.5 owing to the lack of appropriate pK values of the polyamine in this pH region. By replacing acrylic with itaconic acid, it has been possible to effect substantial improvements in the pH range 5.5-6.5 as itaconic acid has a pK2 value of 5.45. Upon coupling, the pK of the gramma-carboxyl group remains virtually unaltered. With itoconic acid carrier ampholytes it has been possible to improve the conductivity in the pH range 5.5-6.5 by as much as 400% compared with conventional carrier ampholytes. It is suggected that the commercial products should be supplemented with itaconic acid carrier ampholytes in order to obtain a more uniform conductivity and buffering capacity in the pH range 3-10.
Evteeva, I N; Starkova, T Yu; Artemov, A V; Barlev, N A
2015-01-01
Two-dimensional gel electrophoresis, continues to be one of the fundamental methods to study the biological protein diversity. This method described by O'Farrell in 1975 includes two following steps: isoelectric focusing in the first dimension and polyacrylamide gel electrophoretic fractionation of proteins according to their molecular weight in the second dimension. In this manuscript we described several technical parameters of the commercial apparatus Dual Gel Module for the gel electrophoresis by means of which it is possible to accomplish the electrophoretic protein fractionation in both dimensions. The distribution of the highly purified commercial proteins used as molecular standards in the detection system of the apparatus Dual Gel Module was identical to the commercial strips of the device GE Healthcare, USA.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Rafalko, Agnes; Dai, Shujia; Hancock, William S; Karger, Barry L; Hincapie, Marina
2012-02-03
Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ∼1-2.5 ng/mL with a CV of ∼13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r(2) = 0.9459) was observed between standard clinical ELISA tests and the SRM-based assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples.
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Removal of interfering substances in samples prepared for two-dimensional (2-D) electrophoresis.
Berkelman, Tom
2008-01-01
Biological samples may contain contaminants that interfere with analysis by two-dimensional (2-D) electrophoresis. Lysates or biological fluids are complex mixtures that contain a wide variety of nonprotein substances in addition to the proteins to be analyzed. These substances often interfere with the resolution of the electrophoretic separation or the visualization of the result. Macromolecules (e.g., polysaccharides and DNA) can interfere with electrophoretic separation by clogging gel pores. Small ionic molecules can impair isoelectric focusing (IEF) separation by rendering the sample too conductive. Other substances (e.g., phenolics and lipids) can bind to proteins, influencing their electrophoretic properties or solubility. In many cases, measures to remove interfering substances can result in significantly clearer 2-D patterns with more visible spots and better resolution. It should be borne in mind, however, that analysis of samples by 2-D electrophoresis is usually most successful and informative when performed with minimally processed samples, so it is important that any steps taken to remove interfering substance be appropriate to the sample and only performed when necessary. Procedures for the removal of interfering substances therefore represent a compromise between removing nonprotein contaminants, and minimizing interference with the integrity and relative abundances of the sample proteins. This chapter presents a number of illustrative examples of optimized sample preparation methods in which specific interfering substances are removed by a variety of different strategies.
Two-dimensional analysis of glycated hemoglobin heterogeneity in pediatric type 1 diabetes patients.
Hempe, James M; McGehee, Amanda M; Chalew, Stuart A
2013-11-15
Interindividual and ethnic variation in glycated hemoglobin levels, unrelated to blood glucose variation, complicates the clinical use of glycated hemoglobin assays for the diagnosis and management of diabetes. Assessing the types and amounts of glycated hemoglobins present in erythrocytes could provide insight into the mechanism. Blood samples and self-monitored mean blood glucose (MBG) levels were obtained from 85 pediatric type 1 diabetes patients. Glycated hemoglobin levels were measured using three primary assays (boronate-affinity chromatography, capillary isoelectric focusing (CIEF), and standardized DCA2000+ immunoassay) and a two-dimensional (2D) analytical system consisting of boronate-affinity chromatography followed by CIEF. The 2D system separated hemoglobin into five subfractions, four of which contained glycated hemoglobins. Glycated hemoglobin measurements were compared in patients with low, moderate, or high hemoglobin glycation index (HGI), a measure of glycated hemoglobin controlled for blood glucose variation. MBG was not significantly different between HGI groups. Glycated hemoglobin levels measured by all three primary assays and in all four glycated 2D subfractions were significantly different between HGI groups and highest in high HGI patients. These results show that interindividual variation in glycated hemoglobin levels was evident in diabetes patients with similar blood glucose levels regardless of which glycated hemoglobins were measured.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Marques, Andreia Grilo; Pereira, Luísa Maria Dotti Silva; Goicoa, Ana; Semião-Santos, Saul José; Bento, Ofélia Pereira
2015-01-01
Introduction Specific immunotherapy has shown to be very useful for allergy control in dogs, with a common success rate ranging from 65% to 70%. However, this efficacy could probably be improved and the identification of individual allergomes, with the choice of more adequate molecular allergen pools for specific immunotherapy, being the strategy. Aim To map Dermatophagoides pteronyssinus (Der p) allergens for mite-sensitized atopic dogs, for better understanding how individual allergograms may influence the response to house-dust mite immunotherapy. Material and methods To identify the Der p mite allergome for dogs, 20 individuals allergic to dust-mites and sensitized to Der p, were selected. The extract from Der p was submitted to isoelectric focusing (IEF), one-dimensional (1-D) and two-dimensional (2-D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were blotted onto polyvinylidene difluoride (PVDF) membranes and immunoblottings were performed with patient sera. Allergen-bound specific IgE was detected. Results Eleven allergens were identified from isoelectric focusing (IEF), as well as from 1-D SDS PAGE. From 2-D SDS-PAGE, 24 spots were identified. Conclusions Several similarities were found between dog and human allergograms and no absolute correlation between sensitization and allergy was observed either. As in humans, different individual allergograms do not seem to implicate different clinical patterns, but may influence the response to specific immunotherapy. The molecular epidemiology approach in veterinary allergy management, by the characterization of individual patients’ allergoms and by choosing the best molecular allergen pool for each patient could also improve the efficacy of allergy immunotherapy. PMID:26015775
DEFF Research Database (Denmark)
Celis, J E; Rasmussen, H H; Olsen, E
1994-01-01
The master two-dimensional (2-D) gel database of human keratinocytes currently lists 3087 cellular proteins (2168 isoelectric focusing, IEF; and 919 none-quilibrium pH gradient electrophoresis, NEPHGE), many of which correspond to posttranslational modifications, 890 polypeptides have been...... identified (protein name, organelle components, etc.) using one or a combination of procedures that include (i) comigration with known human proteins, (ii) 2-D gel immunoblotting using specific antibodies (iii) microsequencing of Coomassie Brilliant Blue stained proteins, (iv) mass spectrometry and (v...... in the database. We also report a database of proteins recovered from the medium of noncultured, unfractionated keratinocytes. This database lists 398 polypeptides (309 IEF; 89 NEPHGE) of which 76 have been identified. The aim of the comprehensive databases is to gather, through a systematic study...
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Kebed, Kalie; Kruse, Eric; Addetia, Karima; Ciszek, Boguslawa; Thykattil, Minnie; Guile, Brittney; Lang, Roberto M; Mor-Avi, Victor
2017-02-01
Current guidelines recommend that the atria be measured in 2D echocardiographic (2DE) apical views using the method-of-disks (MOD) or area-length (AL) technique as an alternative, although no definitive data exists that these are interchangeable. However, standard apical views maximize the long-axis of the left ventricle, rather than the dimensions of the atria, resulting in atrial foreshortening. We hypothesized that the increase in normal values of atrial volumes in the recent guidelines update was driven by data obtained using either the AL technique or dedicated atrial-focused views, which maximize the longitudinal dimension of the atria and thus provide larger volumes than the MOD measurements in standard apical views. We prospectively studied 30 patients (Philips iE33) to compare 2DE measurements of left and right atrial volumes (LAV, RAV) using the MOD and AL techniques in standard and atrial-focused views, against 3D echocardiography (3DE) derived volumes (QLab) as a reference. Compared to standard views, atrial-focused views provided significantly larger MOD volumes for both atria, which were in better agreement with 3DE, as reflected by higher correlation coefficients (LAV: r = 0.95 vs. 0.89; RAV: r = 0.89 vs. 0.84), smaller biases (LAV: -1 ml vs. 7 ml; RAV: 3 ml vs. 7 ml) and tighter limits of agreement. This was also the case for the AL measurements, which were minimally larger than the MOD values (NS) for both atria. In conclusion, atrial-focused views are a more accurate alternative to standard apical views, which provides larger volumes. This finding can explain the increase in the normal values in the recent guidelines update, which was mostly driven by the use of atrial-focused views, rather than by the differences between MOD and AL techniques. This understanding is essential in order to correctly integrate the revised normal values into clinical practice.
Isolation of isoelectrically pure cholera toxin for crystallization
Spangler, Brenda D.; Westbrook, Edwin M.
1991-03-01
We have determined that the failure of cholera toxin to crystallize well results from its isoelectric heterogeneity, which is probably due to a post-translational process such as deamidation of its B subunit. Every sample of cholera toxin we have examined from commercial or academic suppliers has been heterogeneous; heterogeneous cholera toxin does not crystallize satisfactorily. We have overcome this problem by using ion-exchange fast protein liquid chromatography (FPLC) to obtain an isoelectrically homogeneous species of cholera toxin. Homogeneous cholera toxin crystallizes readily, forming single, nonmosaic crystals suitable for X-ray diffraction studies. For this process, protein was applied to a MonoQ ion-exchange column, then eluted with an isocratic low salt buffer followed by a linear salt gradient (0-100 mM NaCl). Column fractions were analyzed on isoelectric focusing gels, and those fractions containing the desired homogeneous species were pooled and concentrated. Crystals formed within 24 to 48 h in a MOPS/PEG buffer, which made use of slow isoelectric precipitation to induce crystallization.
Auluck, S K H
2016-01-01
Recent work on the revised Gratton-Vargas model has demonstrated that there are some aspects of Dense Plasma Focus (DPF) which are not sensitive to details of plasma dynamics and are well captured in an oversimplified model assumption which contains very little plasma physics. A hyperbolic conservation law formulation of DPF physics reveals the existence of a velocity threshold related to specific energy of dissociation and ionization, above which, the work done during shock propagation is adequate to ensure dissociation and ionization of the gas being ingested. These developments are utilized to formulate an algorithmic definition of DPF optimization that is valid in a wide range of applications, not limited to neutron emission. A universal scaling theory of DPF design optimization is proposed and illustrated for designing devices working at one or two orders higher pressure of deuterium than the current practice of designs optimized at pressures less than 10 mbar of deuterium. These examples show that the u...
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Two-Dimensional Gel Electrophoresis Image Analysis via Dedicated Software Packages.
Maurer, Martin H
2016-01-01
Analyzing two-dimensional gel electrophoretic images is supported by a number of freely and commercially available software. Although the respective program is highly specific, all the programs follow certain standardized algorithms. General steps are: (1) detecting and separating individual spots, (2) subtracting background, (3) creating a reference gel and (4) matching the spots to the reference gel, (5) modifying the reference gel, (6) normalizing the gel measurements for comparison, (7) calibrating for isoelectric point and molecular weight markers, and moreover, (8) constructing a database containing the measurement results and (9) comparing data by statistical and bioinformatic methods.
Auluck, S. K. H.
2016-12-01
Recent work on the revised Gratton-Vargas model (Auluck, Phys. Plasmas 20, 112501 (2013); 22, 112509 (2015) and references therein) has demonstrated that there are some aspects of Dense Plasma Focus (DPF), which are not sensitive to details of plasma dynamics and are well captured in an oversimplified model assumption, which contains very little plasma physics. A hyperbolic conservation law formulation of DPF physics reveals the existence of a velocity threshold related to specific energy of dissociation and ionization, above which, the work done during shock propagation is adequate to ensure dissociation and ionization of the gas being ingested. These developments are utilized to formulate an algorithmic definition of DPF optimization that is valid in a wide range of applications, not limited to neutron emission. This involves determination of a set of DPF parameters, without performing iterative model calculations, that lead to transfer of all the energy from the capacitor bank to the plasma at the time of current derivative singularity and conversion of a preset fraction of this energy into magnetic energy, while ensuring that electromagnetic work done during propagation of the plasma remains adequate for dissociation and ionization of neutral gas being ingested. Such a universal optimization criterion is expected to facilitate progress in new areas of DPF research that include production of short lived radioisotopes of possible use in medical diagnostics, generation of fusion energy from aneutronic fuels, and applications in nanotechnology, radiation biology, and materials science. These phenomena are expected to be optimized for fill gases of different kinds and in different ranges of mass density compared to the devices constructed for neutron production using empirical thumb rules. A universal scaling theory of DPF design optimization is proposed and illustrated for designing devices working at one or two orders higher pressure of deuterium than the current
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
Identification of tumor markers using two-dimensional electrophoresis in gastric carcinoma
Institute of Scientific and Technical Information of China (English)
Kai-Juan Wang; Run-Tian Wang; Jian-Zhong Zhang
2004-01-01
AIM: To study the differential expression of proteins in normal and cancerous gastric tissues, and further identify new molecular markers for diagnosis and prognosis of gastric carcinoma, as well as develop new therapeutic targets of the disease.METHODS: Matched pairs of tissues from 6 gastric cancer patients were analyzed for their two-dimensional electrophoresis (2DE) profiles. Soluble fraction proteins from human normal and cancerous gastric tissue were separated in the first dimension by isoelectric focusing on immobilized pH gradient (IPG, pH3-10) strips, and by 125 g/L sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension with silver nitrate staining. Protein differential expression was analyzed by use of image analysis software to find out candidates for gastric cancer-associated proteins.RESULTS: Nine protein spots overexpressed in tumor tissues as compared with noncancerous regions. In the next step, 9 tumor-specific spots were cut off from Coomassie Brilliant Blue staining gels, digested in gel with L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK)-trypsin. Protein identification was done by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS).In total, 5 tumor-specific protein spots corresponding to 5 different polypeptide chains were identified, including annexin V, carbonic anhydrase, prohibitin, fibrin beta and fibrinogen fragment D. Among these 5 spots, the potential significance of the differential expressions is discussed.CONCLUSION Differential expression analysis of proteomes may be useful for the development of new molecular markers for diagnosis and prognosis of gastric carcinoma.
Superoxide dismutase isozyme detection using two-dimensional gel electrophoresis zymograms.
Niyomploy, Ploypat; Srisomsap, Chantragan; Chokchaichamnankit, Daranee; Vinayavekhin, Nawaporn; Karnchanatat, Aphichart; Sangvanich, Polkit
2014-03-01
Superoxide dismutases (SODs) are ubiquitous antioxidant enzymes involved in cell protection from reactive oxygen species. Their antioxidant activities make them of interest to applied biotechnology industries and are usually sourced from plants. SODs are also involved in stress signaling responses in plants, and can be used as indicators of these responses. In this article, a suitable method for the separation of different SOD isoforms using two-dimensional-gel electrophoresis (2D-GE) zymograms is reported. The method was developed with a SOD standard from bovine erythrocytes and later applied to extracts from Stemona tuberosa. The first (non-denaturing isoelectric focusing) and second (denaturing sodium dodecylsulphate-polyacrylamide gel electrophoresis) dimensions of duplicate 2D-GE gels were stained with either Coomassie brilliant blue G-250 for total protein visualization, or SOD activity (zymogram) using riboflavin/nitroblue tetrazolium. For confirmation, putative SOD activity positive spots were subject to trypsin digestion and nano-liquid chromatography tandem mass spectrometry, followed by searching the MASCOT database for potential identification. The method could separate different SOD isoforms from a plant extract and at least partially maintain or allow renaturation to the native forms of the enzyme. Peptide sequencing of the 2D-GE suggested that the SODs were resolved correctly, identifying the control CuZn-SOD from bovine erythrocytes. The two SODs from S. tuberosa tubers were found to be likely homologous of a CuZn-SOD. SOD detection and isoform separation by 2D-GE zymograms was efficient and reliable. The method is likely applicable to SOD detection from plants or other organisms. Moreover, a similar approach could be developed for detection of other important enzymes in the future. Copyright © 2013 Elsevier B.V. All rights reserved.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Kitta, Kazumi; Ohnishi-Kameyama, Mayumi; Moriyama, Tatsuya; Ogawa, Tadashi; Kawamoto, Shinichi
2006-04-15
Two-dimensional electrophoresis with immobilized pH gradient (IPG) followed by acetic acid/urea-polyacrylamide gel electrophoresis (AU-PAGE) was developed for the detection of low-molecular weight food allergens. Wheat proteins were used to test the applicability of AU-PAGE for the analysis of food allergens. Isoelectric focusing (IEF) for first dimension was performed with IPG pH 3-10. AU-PAGE was performed as a second-dimensional electrophoresis and high resolution was obtained, especially for proteins below 15 kDa. For immunodetection, the proteins resolved on AU gel were transferred to a polyvinylidene difluoride membrane. The assembly of semidry electroblotting for AU gel was set reversed as for sodium dodecyl sulfate (SDS)-PAGE gel. The electroblotted membrane was immunolabeled with serum from a radio-allergosorbent test-positive individual for wheat to identify allergenic proteins. Protein spots strongly recognized by the patient's serum were chosen for further analysis. Mass spectrometry analysis revealed that these proteins were alpha-amylase/trypsin inhibitors and lipid transfer protein. The system developed in this study was shown to be useful as a standard protocol for the separation of low-molecular weight proteins. Moreover, the IPG strips on which IEF was performed could be used either for SDS-PAGE or AU-PAGE by only changing equilibrating conditions, allowing for a wide range of allergen analysis.
Lee, Kibeom; Pi, Kyungbae; Lee, Keeman
2009-01-01
A problem in proteomic analysis of lung cancer tissue is the presence of complex components of different histological backgrounds (squamous cell carcinoma, small cell lung carcinoma, and adenocarcinoma). The efficient solubilization of protein components before two-dimensional electrophoresis (2-DE) is a very critical. Poor solubilization has been associated with a failure to detect proteins and diffuse, streaked and/or trailing protein spots. Here, we have optimized the solubilization of human lung cancer tissue to increase protein resolution. Isoelectric focusing (IEF) rehydration buffer containing a thiourea-urea mixture provided superior resolution, whereas a buffer without thiourea yielded consistently poor results. In addition, IEF rehydration buffers containing CHAPS and DTT gave superior resolution, whereas buffers containing Nonidet P-40 (NP-40) and/or Triton X-100 did not. A tributylphosphine-containing buffer gave consistently poor results. Using optimized conditions, we used 2-D gel analysis of human lung cancer tissue to identify 11 differentially-expressed protein spots by MALDI-mass spectrometry. This study provides a methodological tool to study the complex mammalian proteomes.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
Two Dimensional Electrophoresis of Proteins from Cultures of Erysiphe graminis f.sp. hordei
DEFF Research Database (Denmark)
Torp, J.; Andersen, Brian
1982-01-01
Conidial proteins from barley powdery mildew, Erysiphe graminis f. sp. hordei, were separated by 2-dimensional electrophoresis in polyacrylamide slab gels. Isoelectric focusing was used in the first dimension and separation according to molecular weight in a gel containing sodium dodecyl sulphate...
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Picariello, Gianluca; De Martino, Alessandra; Mamone, Gianfranco; Ferranti, Pasquale; Addeo, Francesco; Faccia, Michele; Spagnamusso, Salvatore; Di Luccia, Aldo
2006-03-20
In the present study, an alternative procedure for two-dimensional (2D) electrophoretic analysis in proteomic investigation of the most represented basic muscle water-soluble proteins is suggested. Our method consists of Acetic acid-Urea-Triton polyacrylamide gel (AUT-PAGE) analysis in the first dimension and standard sodium dodecyl sulphate polyacrylamide gel (SDS-PAGE) in the second dimension. Although standard two-dimensional Immobilized pH Gradient-Sodium Dodecyl-Sulphate (2D IPG-SDS) gel electrophoresis has been successfully used to study these proteins, most of the water-soluble proteins are spread on the alkaline part of the 2D map and are poorly focused. Furthermore, the similarity in their molecular weights impairs resolution of the classical approach. The addition of Triton X-100, a non-ionic detergent, into the gel induces a differential electrophoretic mobility of proteins as a result of the formation of mixed micelles between the detergent and the hydrophobic moieties of polypeptides, separating basic proteins with a criterion similar to reversed phase chromatography based on their hydrophobicity. The acid pH induces positive net charges, increasing with the isoelectric point of proteins, thus allowing enhanced resolution in the separation. By using 2D AUT-PAGE/SDS electrophoresis approach to separate water-soluble proteins from fresh pork and from dry-cured products, we could spread proteins over a greater area, achieving a greater resolution than that obtained by IPG in the pH range 3-10 and 6-11. Sarcoplasmic proteins undergoing proteolysis during the ripening of products were identified by Matrix Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry peptide mass fingerprinting in a easier and more effective way. Two-dimensional AUT-PAGE/SDS electrophoresis has allowed to simplify separation of sarcoplasmic protein mixtures making this technique suitable in the defining of quality of dry-cured pork products by immediate
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Gianazza, E; Rabilloud, T; Quaglia, L; Caccia, P; Astrua-Testori, S; Osio, L; Grazioli, G; Righetti, P G
1987-09-01
We describe the synthesis of two detergents, L and A15, whose performances as solubilizing agents and as additives in the first-dimension step of a two-dimensional separation are compared with those of some commercial compounds, i.e., Nonidet P-40, 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate(Chaps), and sulfobetaine, on three membrane protein preparations: rat RBC ghosts, beef kidney microvilli, and spinach thylakoids. L is 3-]3-dodecylamidoprophylcbdimethylammonio propane-1-sulfonate; owing to the substitution of a dodecylamido for the dodecyl residue of SB 3-12, the concentration of urea compatible with 2% detergent increases from 4.5 M for the parent molecule up to 7 M. With all three biological samples on which the panel of different detergents has been tested in parallel, L + urea scores as the most effective solubilization medium. On red blood cells a notable qualitative difference is observed with the selective extraction by L as well as by N-dodecyl-N,N-dimethylammonio-3-propanesulfonate of a major protein (pI = ca. 5.5, Mr = ca. 100,000). A15 is derived from a tertiary amine, with one alkylic substituent (either C11 or C13) and two poly(ethylene oxide) tails (totaling 15 ethoxy residues), which is reacted with propane sultone. Approximately 30% of the product corresponds to the N-adduct and is a truly zwitterionic detergent, while 60% is an O-derivative and still contains a titratable amino group (with a pK of 7.2). A15 can thus be used for isoelectric focusing on immobilized pH gradients, as in this work, but would not be compatible with carrier ampholyte isoelectric focusing.(ABSTRACT TRUNCATED AT 250 WORDS)
Two-dimensional carbon fundamental properties, synthesis, characterization, and applications
Yihong, Wu; Ting, Yu
2013-01-01
After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a
Synthesis of two-dimensional materials for beyond graphene devices
Zhang, Kehao; Eichfeld, Sarah; Leach, Jacob; Metzger, Bob; Lin, Yu-Chuan; Evans, Keith; Robinson, Joshua A.
2015-05-01
In this paper, we present an overview of the currently employed techniques to synthesize two-dimensional materials, focusing on MoS2 and WSe2, and summarize the progress reported to-date. Here we discuss the importance of controlling reactor geometries to improve film uniformity and quality for MoS2 through a combination of modeling and experimental design. In addition, development of processes scalable to provide wafer scale uniformity is explored using synthesis of WSe2 via metal-organic chemical vapor deposition. Finally, we discuss the impact of each of these processes for TMD synthesis on epitaxial graphene.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Merrick, B A; Patterson, R M; Witcher, L L; He, C; Selkirk, J K
1994-05-01
Strategies are needed for rapid protein isolation in order to identify disease-related proteins and facilitate the design of oligonucleotides for further molecular inquiry. In our laboratory, C3H10T1/2 murine fibroblasts have been found to express a variety of proteins in various subcellular fractions which are relevant to experimental transformation and carcinogenesis. Preparative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) procedures were developed to identify major cytoplasmic proteins by electroblotting and microsequencing. Isoelectric focusing tube gels were enlarged to 6 mm ID to accommodate larger protein loads at 0.5 to 2 mg protein. Separated proteins were electrotransferred from 6 mm thick slab gels onto 0.22 mu polyvinylidene difluoride membranes. Nearly 100 prominent blotted proteins were stained with Coomassie Brilliant Blue between pI 4.5-7.0 and 18-106 kDa and, of these, 27 prominent and well-resolved proteins were selected for sequencing. Sequences of 14 to 24 amino acid residues in length were obtained from 11 proteins which were identified from computerized databases. Some of these identified proteins had structural or enzymatic functions while others had only recently been discovered, including a newly reported Hsp 70 class member and a novel calcium-binding protein, reticulocalbin. The new heat shock protein has a molecular mass of 75 kDa and has been designated as Grp75, PBP74, CSA or p66mot-1 in mice and humans with purported roles in transformation and antigen processing. Reticulocalbin is an endoplasmic reticular protein which contains six domains of the EF-hand motif associated with high-affinity calcium-binding proteins. It may be involved in protein transport and luminal protein processing. In addition, sequences of 5 to 11 residues in length were also obtained from six other unidentified proteins. Thus, we have found that preparative 2-D PAGE serves as a powerful one-step purification method for protein isolation and
Two-dimensional electrophoresis for comparative proteomic analysis of human bile
Institute of Scientific and Technical Information of China (English)
Bo Chen; Jing-Qing Dong; Yong-Jun Chen; Jian-Ming Wang; Jun Tian; Chun-Ben Wang; Sheng-Quan Zou
2007-01-01
BACKGROUND:Proteomic analysis of bile lfuid holds promise as a method to identify biomarkers of bile tract diseases, especially for tumors. Two-dimensional electrophoresis (2-DE) is a popular and proven separation technique for proteome analysis, but using this strategy for bile lfuid analysis is still not fully developed. This study was undertaken to (a) establish a reliable method for general clean-up to make bile lfuid samples suitable for 2-DE;(b) obtain 2-D biliary maps with high reproducibility and resolution;and (c) identify protein patterns present in 2-D biliary maps for potential tumor biomarker discovery, with the intention of distinguishing malignant from benign causes of bile duct obstruction. METHODS: Bile lfuid samples were obtained from two patients suffering from malignant and benign bile tract obstruction (one patient with cholangiocarcinoma as the experimental case, the other with cholelithiasis as control). A variety of sample preparation options, including delipidation, desalination and nucleic acid removal, were adopted to remove contaminants that affect 2-DE results. After that, each 350 μg puriifed sample was loaded onto nonlinear IPG strips (18 cm, pH 3-10 and pH 4-7) for ifrst-dimension isoelectric focusing, and 12.5% SDS-PAGE electrophoresis for second dimension separation. Then 2-D maps were visualized after silver staining and analyzed with the Image Master 2-D software. RESULTS:A large number of protein spots were separated in 2-D maps from the experimental and control groups, with means of 250 and 216 spots on pH 3-10 IPG strips, and 182 and 176 spots on pH 4-7 strips, respectively. Approximately 16 and 23 spots were differentially expressed in matched pairs from the experimental and control cases using pH 3-10 and pH 4-7 strips. CONCLUSIONS: This study established a reliable sample preparation process suitable for 2-DE of bile lfuid. By this method, 2-D biliary maps with high reproducibility and resolution were obtained. The
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Two Dimensional Connectivity for Vehicular Ad-Hoc Networks
Farivar, Masoud; Ashtiani, Farid
2008-01-01
In this paper, we focus on two-dimensional connectivity in sparse vehicular ad hoc networks (VANETs). In this respect, we find thresholds for the arrival rates of vehicles at entrances of a block of streets such that the connectivity is guaranteed for any desired probability. To this end, we exploit a mobility model recently proposed for sparse VANETs, based on BCMP open queuing networks and solve the related traffic equations to find the traffic characteristics of each street and use the results to compute the exact probability of connectivity along these streets. Then, we use the results from percolation theory and the proposed fast algorithms for evaluation of bond percolation problem in a random graph corresponding to the block of the streets. We then find sufficiently accurate two dimensional connectivity-related parameters, such as the average number of intersections connected to each other and the size of the largest set of inter-connected intersections. We have also proposed lower bounds for the case ...
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Directory of Open Access Journals (Sweden)
Zheng Xiaojuan
2009-10-01
Full Text Available Abstract Background Two-dimensional gel electrophoresis (2-DE is a powerful method to study protein expression and function in living organisms and diseases. This technique, however, has not been applied to avian bursa of Fabricius (BF, a central immune organ. Here, optimized 2-DE sample preparation methodologies were constructed for the chicken BF tissue. Using the optimized protocol, we performed further 2-DE analysis on a soluble protein extract from the BF of chickens infected with virulent avibirnavirus. To demonstrate the quality of the extracted proteins, several differentially expressed protein spots selected were cut from 2-DE gels and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS. Results An extraction buffer containing 7 M urea, 2 M thiourea, 2% (w/v 3-[(3-cholamidopropyl-dimethylammonio]-1-propanesulfonate (CHAPS, 50 mM dithiothreitol (DTT, 0.2% Bio-Lyte 3/10, 1 mM phenylmethylsulfonyl fluoride (PMSF, 20 U/ml Deoxyribonuclease I (DNase I, and 0.25 mg/ml Ribonuclease A (RNase A, combined with sonication and vortex, yielded the best 2-DE data. Relative to non-frozen immobilized pH gradient (IPG strips, frozen IPG strips did not result in significant changes in the 2-DE patterns after isoelectric focusing (IEF. When the optimized protocol was used to analyze the spleen and thymus, as well as avibirnavirus-infected bursa, high quality 2-DE protein expression profiles were obtained. 2-DE maps of BF of chickens infected with virulent avibirnavirus were visibly different and many differentially expressed proteins were found. Conclusion These results showed that method C, in concert extraction buffer IV, was the most favorable for preparing samples for IEF and subsequent protein separation and yielded the best quality 2-DE patterns. The optimized protocol is a useful sample preparation method for comparative proteomics analysis of chicken BF tissues.
Photodetectors based on graphene, other two-dimensional materials and hybrid systems.
Koppens, F H L; Mueller, T; Avouris, Ph; Ferrari, A C; Vitiello, M S; Polini, M
2014-10-01
Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...... the methods developed in the literature specifically for matching protein spot patterns, the focus is on a method based on neighbourhood relations. These methods are applied to a range of 2DGE protein spot data in a comparative study. The point pattern matching requires segmentation of the gel images...... and since the correct image segmentation can be difficult, a new alternative approach, exploiting prior knowledge from a reference gel about the protein locations to segment an incoming gel image, is proposed....
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Transport of Bose-Einstein condensates through two dimensional cavities
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Timo
2015-06-01
The recent experimental advances in manipulating ultra-cold atoms make it feasible to study coherent transport of Bose-Einstein condensates (BEC) through various mesoscopic structures. In this work the quasi-stationary propagation of BEC matter waves through two dimensional cavities is investigated using numerical simulations within the mean-field approach of the Gross-Pitaevskii equation. The focus is on the interplay between interference effects and the interaction term in the non-linear wave equation. One sees that the transport properties show a complicated behaviour with multi-stability, hysteresis and dynamical instabilities for non-vanishing interaction. Furthermore, the prominent weak localization effect, which is a robust interference effect emerging after taking a configuration average, is reduced and partially inverted for non-vanishing interaction.
Effect of pH on antigen binding by clonotypic antibodies with different isoelectric points
Energy Technology Data Exchange (ETDEWEB)
Endo, Y.; Miyai, K.; Hata, N.; Iijima, Y.
1987-02-01
Polyclonal rabbit antibodies to thyroxine, human myoglobin, human growth hormone, human thyrotropin, human alpha-fetoprotein, and human thyroglobulin were fractionated into clonotypic antibodies with different isoelectric points by agarose isoelectric focusing or chromatofocusing. The effect of pH on the binding of these antigens by their respective clonotypic antibodies was assessed by radioimmunoassay. The profiles of the pH effect differed both for different antigens and for different pI's of the antibodies used. The pH optima in the radioimmunoassays for protein antigens were found to be expressed as a function of pI and molecular weight of both antigen and antibody molecules.
Two-dimensional Electrophoresis Analysis of Proteins Extracted from Alexandrium sp. LC3
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two-dimensional electrophoresis(2-DE) of protein extracted and purified from Alexandrium sp. LC3 was conducted. In the SDS-PAGE study, the relative molecular weights of the proteins were mainly in the range of 14 kDa-31 kDa and 43 kDa-66 kDa, and more proteins were detected between 14 kDa and 31 kDa. With the improved protein preparation, the two-dimensional electrophoresis patterns indicated that the relative molecular weights of the proteins were between 14 kDa and 100 kDa, and most of them ranged from 14 kDa to 31 kDa. This was consistent with the result of the SDS-PAGE analysis. The isoelectric points were found to lie between 3.0 and 8.0, and most of them were in the range of 3.0-6.0. Better separation effect was acquired with pre-prepared immobilized gradient (IPG) strip (pH 3-5.6), and about 320 protein spots could be visualized on the 2-DE map by staining. Within pH 3-10 and pH 3-5.6 strips, the protein samples of Alexandriun sp. LC3 could be separated well.
Protein profile analysis of Malaysian snake venoms by two-dimensional gel electrophoresis
Directory of Open Access Journals (Sweden)
J Vejayan
2010-01-01
Full Text Available Snake venoms comprise a highly complex mixture of proteins, which requires for their characterization the use of versatile two-dimensional electrophoresis techniques. In the present study, venoms obtained from eight snakes (Ophiophagus hannah, Naja kaouthia, Naja sumatrana, Bungarus fasciatus, Trimeresurus sumatranus, Tropidolaemus wagleri, Enhydrina schistosa and Calloselasma rhodostoma commonly found in Malaysia were separated based on two independent properties, isoelectric point (pI and molecular weight (MW. Many differences in snake venoms at the inter-family, inter-subfamily, inter-genus and inter-species levels were revealed. Notably, proteins from individuals of the Viperidae family - Trimeresurus sumatranus, Tropidolaemus wagleri and Calloselasma rhodostoma - were found to be numerous and scattered by the two-dimensional gel electrophoresis (2DE specifically in regions between 37 and 100 kDa compared to the Elapidae venom proteins. The latter were clustered at the basic and lower molecular mass region (less than 20 kDa. Trains of spots were commonly observed, indicating that these proteins may be derived from post-translational modifications. Ophiophagus hannah (Elapidae revealed a great amount of protein spots in the higher molecular mass range when compared to Enhydrina schistosa, Naja kaouthia, Naja sumatrana and Bungarus fasciatus. Overall 2DE showed large differences in the venom profile of each species, which might be employed as an ancillary tool to the identification of venomous snake species.
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Proteome analysis technology has been used extensively in conducting discovery research of biology and has become one of the most essential technologies in functional genomics. The proteomes of the human hepatoma cell line BEL-7404 and the normal human liver cell line L-02 have been separated by high resolution two-dimensional gel electrophoresis (2-DE) with immobilized pH gradient isoelectric focusing (IPG-IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension (IPG-DALT). The resulting images have been analyzed using 2-D analysis software. Quantitative analysis reveals that 7 protein spots are detected only in hepatoma BEL-7404 cells, 14 only in L-02 cells, and 78 protein spots show significant fluctuation in quantity in both cell lines (P＜0.01).These protein spots have been displayed on a proteome differential expression map. Analysis for the reproducibility of 2-DE indicates that the positional variability in the IEF dimension is 0.73 mm, while the variability in the SDS-PAGE dimension is 0.44 mm, and the quantitative variability is 17.6%-19.2%. These results suggest that the reproducibility of 2-DE has been suitable for the study of differential expression of proteomes. Proteome differential expression maps can be useful tools for disease diagnosis, drug-target validation analysis and biological process elucidation.
Lee, KiBeom
2008-06-01
One method of improving the protein profiling of complex mammalian proteomes is the use of prefractionation followed by application of narrow pH range two dimensional (2-D) gels. The success of this strategy relies on sample solubilization; poor solubilization has been associated with missing protein fractions and diffuse, streaked, and/or trailing protein spots. In this study, I sought to optimize the solubilization of prefractionated human cancer cell samples using isoelectric focusing (IEF) rehydration buffers containing a variety of commercially available reducing agents, detergents, chaotropes, and carrier ampholytes. The solubilized proteins were resolved on 2-D gels and compared. Among five tested IEF rehydration buffers, those containing 3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate (CHAPS) and dithiothreitol (DTT) provided superior resolution, while that containing Nonidet P-40 (NP-40) did not significantly affect protein resolution, and the tributyl phosphine (TBP)-containing buffer yielded consistently poor results. In addition, I found that buffers containing typically high urea and ampholyte levels generated sharper 2-D gels. Using these optimized conditions, I was able to apply 2-D gel analysis successfully to fractionated proteins from human breast cancer tissue MCF-7, across a pH range of 4-6.7.
Directory of Open Access Journals (Sweden)
Sjögren Magnus
2004-11-01
Full Text Available Abstract Background The aim of this study was firstly, to improve and validate a cerebrospinal fluid (CSF prefractionation method followed by two-dimensional electrophoresis (2-DE and secondly, using this strategy to investigate differences between the CSF proteome of frontotemporal dementia (FTD patients and controls. From each subject three ml of CSF was prefractionated using liquid phase isoelectric focusing prior to 2-DE. Results With respect to protein recovery and purification potential, ethanol precipitation of the prefractionated CSF sample was found superior, after testing several sample preparation methods. The reproducibility of prefractionated CSF analyzed on 2-D gels was comparable to direct 2-DE analysis of CSF. The protein spots on the prefractionated 2-D gels had an increased intensity, indicating a higher protein concentration, compared to direct 2-D gels. Prefractionated 2-DE analysis of FTD and control CSF showed that 26 protein spots were changed at least two fold. Using mass spectrometry, 13 of these protein spots were identified, including retinol-binding protein, Zn-α-2-glycoprotein, proapolipoproteinA1, β-2-microglobulin, transthyretin, albumin and alloalbumin. Conclusion The results suggest that the prefractionated 2-DE method can be useful for enrichment of CSF proteins and may provide a new tool to investigate the pathology of neurodegenerative diseases. This study confirmed reduced levels of retinol-binding protein and revealed some new biomarker candidates for FTD.
Optical Spectroscopy of Two Dimensional Graphene and Boron Nitride
Ju, Long
This dissertation describes the use of optical spectroscopy in studying the physical properties of two dimensional nano materials like graphene and hexagonal boron nitride. Compared to bulk materials, atomically thin two dimensional materials have a unique character that is the strong dependence of physical properties on external control. Both electronic band structure and chemical potential can be tuned in situ by electric field-which is a powerful knob in experiment. Therefore the optical study at atomic thickness scale can greatly benefit from modern micro-fabrication technique and electric control of the material properties. As will be shown in this dissertation, such control of both gemometric and physical properties enables new possibilities of optical spectroscopic measurement as well as opto-electronic studies. Other experimental techniques like electric transport and scanning tunneling microscopy and spectroscopy are also combined with optical spectroscopy to reveal the physics that is beyond the reach of each individual technique. There are three major themes in the dissertation. The first one is focused on the study of plasmon excitation of Dirac electrons in monolayer graphene. Unlike plasmons in ordinary two dimensional electron gas, plasmons of 2D electrons as in graphene obey unusual scaling laws. We fabricate graphene micro-ribbon arrays with photolithography technique and use optical absorption spectroscopy to study its absorption spectrum. The experimental result demonstrates the extraordinarily strong light-plasmon coupling and its novel dependence on both charge doping and geometric dimensions. This work provides a first glance at the fundamental properties of graphene plasmons and forms the basis of an emerging subfield of graphene research and applications such as graphene terahertz metamaterials. The second part describes the opto-electronic response of heterostructures composed of graphene and hexagonal boron nitride. We found that there is
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Ionic solutions of two-dimensional materials
Cullen, Patrick L.; Cox, Kathleen M.; Bin Subhan, Mohammed K.; Picco, Loren; Payton, Oliver D.; Buckley, David J.; Miller, Thomas S.; Hodge, Stephen A.; Skipper, Neal T.; Tileli, Vasiliki; Howard, Christopher A.
2016-11-01
Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.
Two Dimensional Aggregation Behaviors of Quinoxaline Dendrimers.
Choi, Soyoung; Lee, Hoik; Kim, Hwan Kyu; Lee, Sang Uck; Sohn, Daewon
2015-02-01
This study focuses on the molecular behavior of two dendrimers containing a hydrophilic core group (carboxyl group) and hydrophobic branches (quinoxaline and methoxyphenyl groups), 2,3-bis(4-(2,3- bis(4-methoxyphenyl)quinoxalin-6-yloxy)phenyl)quinoxaline-6-carb-oxylic acid (G2) and 2,3-bis(4-(2,3-bis(4-(2,3-bis(4-methoxyphenyl)quinoxalin-6-yloxy)phe-nyl)quinoxalin-6-y-oxy)phenyl) quin oxaline-6-carboxylic acid (G3) at the air-water interface. To understand the mechanism of the self-assembly of these molecules, we measured the surface pressure-area (III-A) isotherm and investigated the surface morphology of Langmuir-Blodgett films transferred onto hydrophilic silicon wafers using atomic force microscopy (AFM). Upon compression, G2 molecules stand up and steadily make close-packed monolayer whereas G3 molecules form circular domains and gradually make aggregates of domains. These results were confirmed by the X-ray Reflectivity (XRR) profiles of G2 and G3 monolayers transferred onto silicon substrates.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Wan, Li
2016-01-01
Iso-electric point(IEP) is the PH, at which the $\\zeta$ potential is measured to be zero. The occurrence of IEP has been understood due to the neutralization of surface charge density (SCD) at the solid-liquid interface. In this work, we use the potential trap model to study the sources of the surface charge density at verious PC and PH, by taking the water-silica system as an example. It is revealed that in the case of $PH9$. Due to the mass action law, the dissociation of water molecules is suppressed at the PH close to IEP, leading to a zero surface charge density. In this way, zero $\\zeta$ potential is obtained at the IEP. It has also been obtained that the increase of the salt concentration in the water can decrease the $\\zeta$ potential, but increase the surface charge density.
Quantum-corrected two-dimensional Horava-Lifshitz black hole entropy
Anacleto, M A; Brito, F A; Mota-Silva, J C
2015-01-01
In this paper we focus on the Halmiton-Jacobi method to determine the temperature and the entropy of a two-dimensional Horava-Lifshitz black hole by using the generalized uncertainty principles (GUP). We also address the product of horizons, mainly concerning the event, Cauchy, cosmological and virtual horizons.
Quantum-Corrected Two-Dimensional Horava-Lifshitz Black Hole Entropy
Directory of Open Access Journals (Sweden)
M. A. Anacleto
2016-01-01
Full Text Available We focus on the Hamilton-Jacobi method to determine several thermodynamic quantities such as temperature, entropy, and specific heat of two-dimensional Horava-Lifshitz black holes by using the generalized uncertainty principles (GUP. We also address the product of horizons, mainly concerning the event, Cauchy, and cosmological and virtual horizons.
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Natale, Andrea
2016-01-01
We analyse the multiscale properties of energy-conserving upwind-stabilised finite element discretisations of the two-dimensional incompressible Euler equations. We focus our attention on two particular methods: the Lie derivative discretisation introduced in Natale and Cotter (2016a) and the SUPG discretisation of the vorticity advection equation. Such discretisations provide control on enstrophy by modelling different types of scale interactions. We quantify the performance of the schemes in reproducing the non-local energy backscatter that characterises two-dimensional turbulent flows.
Curvature effects in two-dimensional optical devices inspired by transformation optics
Yuan, Shuhao
2016-11-14
Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. Â© 2016 Author(s).
Two-dimensional Talbot self-imaging via Electromagnetically induced lattice
Wen, Feng; Wang, Wei; Ahmed, Irfan; Wang, Hongxing; Zhang, Yiqi; Zhang, Yanpeng; Mahesar, Abdul Rasheed; Xiao, Min
2017-02-01
We propose a lensless optical method for imaging two-dimensional ultra-cold atoms (or molecules) in which the image can be non-locally observed by coincidence recording of entangled photon pairs. In particular, we focus on the transverse and longitudinal resolutions of images under various scanning methods. In addition, the role of the induced nonmaterial lattice on the image contrast is investigated. Our work shows a non-destructive and lensless way to image ultra-cold atoms or molecules that can be further used for two-dimensional atomic super-resolution optical testing and sub-wavelength lithography.
Institute of Scientific and Technical Information of China (English)
江慎华; 陈惠; 陈静; 汪涛; 姚中平; 周英棠
2013-01-01
探索建立有效的地衣芽孢杆菌蛋白质组双向电泳体系,为进一步揭示地衣芽孢杆菌促进氧化葡萄糖酸杆菌产酸的作用机制奠定基础.以地衣芽孢杆菌为材料,比较蛋白质制备超声破壁时间、新型细胞裂解液、pH梯度和不同上样量对地衣芽孢杆菌蛋白双向电泳结果的影响.结果显示:采用15min超声破壁提取地衣芽孢杆菌总蛋白,选用新型蛋白质裂解,用长24cm、pH4～7的IPG胶条,在上样量为80μg进行等电聚焦,于60V 15min、120V 6h条件下进行SDS-PAGE垂直电泳,可以获得背景清晰、重复性好的双向电泳图谱.在探索出一种新型可行的新型细胞裂解液的同时,建立一套用于地衣芽孢杆菌蛋白质组分析的双向电泳方法.%A two dimensional gel electrophoresis protocol proteomic study of Bacillus lincheniformis and offer further information how Bacillus cereus stimulate the growth of Gluconobacter oxydans to produce 2-keto-L-gulonic acid (2-KLG) after entering into stationary phase was established.Different parameters,including protein preparation by different ultrasonic broken time,new type lysis,pH gradient and different sample of Bacillus lincheniformis protein,were used to evaluate the effect of two-dimensional electrophoresis of Bacillus lincheniformis proteins.Results showed that the clear background and reproducibility of two dimensional gel electrophoresis were established on the condition of using 15min of ultrasonic broken extraction,selection of protein cleavage I,pH4～7 24cm IPG strips,80 μg loading volume,isoelectric focus at 60V 15min,120V 6h.The aim of this study was not only to explore a novel cell lysate in two-dimensional gel electrophoresis,but also to establish a method of proteome analysis for two-dimensional electrophoresis of Bacillus licheniformis.
SAR processing based on the exact two-dimensional transfer function
Chang, C. Y.; Jin, M. Y.; Curlander, J. C.
1992-01-01
The two-dimensional transfer functions of several synthetic aperture radar (SAR) focusing algorithms are derived considering the spaceborne SAR environments. The formulation includes the factors of the earth rotation and the antenna squint angles. The resultant transfer functions are explicitly expressed in terms of Doppler centroid frequency and Doppler frequency rate, which can be accurately estimated from the SAR data. Point target simulation results show that the algorithm based on the two-dimensional Fourier transformation outperforms the one-dimensional one for processing data acquired from high squint angles. The two-dimensional Fourier transformation approach appears to be a viable and simple solution for the processor design of future spaceborne SAR systems.
Filtering and control for classes of two-dimensional systems
Wu, Ligang
2015-01-01
This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: · general theory and methods of analysis and optimal synthesis for 2-D systems; and · application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...
Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation
Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.
2012-01-01
The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).
Generalized non-separable two-dimensional Dammann encoding method
Yu, Junjie; Zhou, Changhe; Zhu, Linwei; Lu, Yancong; Wu, Jun; Jia, Wei
2017-01-01
We generalize for the first time, to the best of our knowledge, the Dammann encoding method into non-separable two-dimensional (2D) structures for designing various pure-phase Dammann encoding gratings (DEGs). For examples, three types of non-separable 2D DEGs, including non-separable binary Dammann vortex gratings, non-separable binary distorted Dammann gratings, and non-separable continuous-phase cubic gratings, are designed theoretically and demonstrated experimentally. Correspondingly, it is shown that 2D square arrays of optical vortices with topological charges proportional to the diffraction orders, focus spots shifting along both transversal and axial directions with equal spacings, and Airy-like beams with controllable orientation for each beam, are generated in symmetry or asymmetry by these three DEGs, respectively. Also, it is shown that a more complex-shaped array of modulated beams could be achieved by this non-separable 2D Dammann encoding method, which will be a big challenge for those conventional separable 2D Dammann encoding gratings. Furthermore, the diffractive efficiency of the gratings can be improved around ∼10% when the non-separable structure is applied, compared with their conventional separable counterparts. Such improvement in the efficiency should be of high significance for some specific applications.
Curved Two-Dimensional Electron Systems in Semiconductor Nanoscrolls
Peters, Karen; Mendach, Stefan; Hansen, Wolfgang
The perfect control of strain and layer thickness in epitaxial semiconductor bilayers is employed to fabricate semiconductor nanoscrolls with precisely adjusted scroll diameter ranging between a few nanometers and several tens of microns. Furthermore, semiconductor heteroepitaxy allows us to incorporate quantum objects such as quantum wells, quantum dots, or modulation doped low-dimensional carrier systems into the nanoscrolls. In this review, we summarize techniques that we have developed to fabricate semiconductor nanoscrolls with well-defined location, orientation, geometry, and winding number. We focus on magneto-transport studies of curved two-dimensional electron systems in such nanoscrolls. An externally applied magnetic field results in a strongly modulated normal-to-surface component leading to magnetic barriers, reflection of edge channels, and local spin currents. The observations are compared to finite-element calculations and discussed on the basis of simple models taking into account the influence of a locally modulated state density on the conductivity. In particular, it is shown that the observations in high magnetic fields can be well described considering the transport in edge channels according to the Landauer-Büttiker model if additional magnetic field induced channels aligned along magnetic barriers are accounted for.
Dynamic Properties of Two-Dimensional Polydisperse Granular Gases
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We propose a two-dimensional model of polydisperse granular mixtures with a power-law size distribution in the presence of stochastic driving. A fractal dimension D is introduced as a measurement of the inhomogeneity of the size distribution of particles. We define the global and partial granular temperatures of the multi-component mixture. By direct simulation Monte Carlo, we investigate how the inhomogeneity of the size distribution influences the dynamic properties of the mixture, focusing on the granular temperature, dissipated energy, velocity distribution, spatial clusterization, and collision time. We get the following results: a single granular temperature does not characterize a multi-component mixture and each species attains its own "granular temperature"; The velocity deviation from Gaussian distribution becomes more and more pronounced and the partial density of the assembly is more inhomogeneous with the increasing value of the fractal dimension D; The global granular temperature decreases and average dissipated energy per particle increases as the value of D augments.
Photonics and optoelectronics of two-dimensional materials beyond graphene
Ponraj, Joice Sophia; Xu, Zai-Quan; Chander Dhanabalan, Sathish; Mu, Haoran; Wang, Yusheng; Yuan, Jian; Li, Pengfei; Thakur, Siddharatha; Ashrafi, Mursal; Mccoubrey, Kenneth; Zhang, Yupeng; Li, Shaojuan; Zhang, Han; Bao, Qiaoliang
2016-11-01
Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.
Two-dimensional materials for novel liquid separation membranes
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-01
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Stavroula Foteinopoulou
2003-12-12
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
Decoherence in a Landau Quantized Two Dimensional Electron Gas
Directory of Open Access Journals (Sweden)
McGill Stephen A.
2013-03-01
Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A two-dimensional polymer prepared by organic synthesis.
Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji
2012-02-05
Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
S C Mishra; Roshan Lal; Veena Mishra
2003-10-01
Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.
Extreme paths in oriented two-dimensional percolation
Andjel, E. D.; Gray, L. F.
2016-01-01
International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT
Two-Dimensional Weak Pseudomanifolds on Eight Vertices
Indian Academy of Sciences (India)
Basudeb Datta; Nandini Nilakantan
2002-05-01
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.
Wu, Jinzi; Luo, Xiaoting; Jing, Siqun; Yan, Liang-Jun
2016-04-15
Protein carbonyls are protein oxidation products that are often used to measure the magnitude of protein oxidative damage induced by reactive oxygen or reactive nitrogen species. Protein carbonyls have been found to be elevated during aging and in age-related diseases such as stroke, diabetes, and neurodegenerative diseases. In the present article, we provide detailed protocols for detection of mitochondrial protein carbonyls labeled with biotin-hydrazide followed by 2-dimensional isoelectric focusing (IEF)/SDS-PAGE and Western blotting probed with horse-radish peroxidase-conjugated streptavidin. The presented procedures can also be modified for detection of carbonylation of non-mitochondrial proteins.
Two-Dimensional Simulation of Left-Handed Metamaterial Flat Lens Using Remcon XFDTD
Wilson, Jeffrey D.; Reinert, Jason M.
2006-01-01
Remcom's XFDTD software was used to model the properties of a two-dimensional left-handed metamaterial (LHM) flat lens. The focusing capability and attenuation of the material were examined. The results showed strong agreement with experimental results and theoretical predictions of focusing effects and focal length. The inherent attenuation in the model corresponds well with the experimental results and implies that the code does a reasonably accurate job of modeling the actual metamaterial.
Ibegbu, C; Mandock, O; Kale, V; Navalkar, R G
1987-04-01
Cell sonicates of Mycobacterium leprae and other mycobacteria were subjected to isoelectric focusing and chromatofocusing to evaluate their protein antigens and to determine if the patterns were significantly different. Isoelectric focusing showed that the proteins of all mycobacteria focused within the pH range of 3.5 to 5.5, except those of M. leprae which extended beyond 5.5 to 6.5. These studies have indicated for the first time that the protein antigens of mycobacteria are acidic in nature. Comparison between the proteins of untreated and autoclaved M. leprae showed distinct differences between the two preparations, in respect of loss of some antigens in the autoclaved M. leprae sonicate. This indicates that the bands that were not visible in the autoclaved M. leprae were those of heat-labile proteins. It is possible, however, that the absent bands could have been of a low order of intensity and hence were not discernible. On the other hand, the proteins could have coagulated due to the heat treatment, thus causing confirmational changes or ionic interactions with membrane components, due to their acidic nature. It is possible that the proteins in the autoclaved M. leprae are the ones that possess immunogenic properties since the protective ability of heat-killed M. leprae has already been established. Chromatofocusing studies have confirmed the isoelectric focusing data in respect of the number of antigens and their respective protein content, besides permitting the availability of the various fractions for further biological characterization.
Selective electromembrane extraction based on isoelectric point
DEFF Research Database (Denmark)
Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig
2015-01-01
For the first time, selective isolation of a target peptide based on the isoelectric point (pI) was achieved using a two-step electromembrane extraction (EME) approach with a thin flat membrane-based EME device. In this approach, step #1 was an extraction process, where both the target peptide...... angiotensin II antipeptide (AT2 AP, pI=5.13) and the matrix peptides (pI>5.13) angiotensin II (AT2), neurotensin (NT), angiotensin I (AT1) and leu-enkephalin (L-Enke) were all extracted as net positive species from the sample (pH 3.50), through a supported liquid membrane (SLM) of 1-nonanol diluted with 2......, and the target remained in the acceptor solution. The acceptor solution pH, the SLM composition, the extraction voltage, and the extraction time during the clean-up process (step #2) were important factors influencing the separation performance. An acceptor solution pH of 5.25 for the clean-up process slightly...
Institute of Scientific and Technical Information of China (English)
杨涌涛; 谢鹏; 陈康宁; 黄河清; 贺伟峰
2013-01-01
Objective To establish two-dimensional gel electrophoresis system for rat cortex mitochondria. Methods The adult male SD rats were sacrificed by cervical dislocation , the brain tissues quickly harvested and thecortex isolated on ice. The mitochondria were extracted and purified twice by density gradient centrifugation. Two-dimensional gel electrophoresis was performed. Immobilized pH gradient isoelectric focusing (IPG-IEF) was modified and carried out. The gels were focused at 3500 V for a total of 14000Vh and then subjected to SDS-PAGE and silver staining. Results Electrophoregram of rat cerebral cortex mitochondria was obtained with high resolu -tion by using the established two -dimensional gel electrophoresis system. Conclusion The two-dimensional gel electrophoresis system for rat cortex mitochondria was successfully established , which provides a theoretical basis and a technical support for research of cerebral cortex mitochondrion pro -teins in diseases.%目的 构建稳定的大鼠皮层线粒体双向凝胶电泳体系.方法 SD大鼠在规定的时间内快速断头取脑,冰上分离大脑皮层组织,两次密度梯度离心纯化线粒体.利用双向凝胶电泳技术改良等电聚焦的电压在3 500V聚焦,总伏小时固定为14 000 Vh.以12%的SDS-PAGE进行第二向电泳,银染显色.结果得到了分辨率较高的皮层线粒体蛋白双向凝胶电泳图谱.结论 利用改进的方法构建了高质量的双向电泳图谱,为各种疾病状态下皮层线粒体差异蛋白的研究提供了实验基础.
Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates.
Lubman, David M; Kachman, Maureen T; Wang, Haixing; Gong, Siyuan; Yan, Fang; Hamler, Rick L; O'Neil, Kimberly A; Zhu, Kan; Buchanan, Nathan S; Barder, Timothy J
2002-12-25
A review of two-dimensional (2D) liquid separation methods used in our laboratory to map the protein content of human cancer cells is presented herein. The methods discussed include various means of fractionating proteins according to isoelectric point (pI) in the first dimension. The proteins in each pI fraction are subsequently separated using nonporous (NPS) reversed-phase high-performance liquid chromatography (RP-HPLC). The liquid eluent of the RP-HPLC separation is directed on-line into an electrospray ionization time-of-flight (ESI-TOF) mass spectrometer where an accurate value of the protein intact M(r) can be obtained. The result is a 2D map of pI versus M(r) analogous to 2D gel electrophoresis; however the highly accurate and reproducible M(r) serves as the basis for interlysate comparisons. In addition, the use of liquid separations allows for the collection of hundreds of purified proteins in the liquid phase for further analysis via peptide mass mapping using matrix assisted laser desorption ionization TOF MS. A description of the methodology used and its applications to analysis of several types of human cancer cell lines is described. The potential of the method for differential proteomic analysis for the identification of biomarkers of disease is discussed.
Two-dimensional graphene analogues for biomedical applications.
Chen, Yu; Tan, Chaoliang; Zhang, Hua; Wang, Lianzhou
2015-05-07
The increasing demand of clinical biomedicine and fast development of nanobiotechnology has substantially promoted the generation of a variety of organic/inorganic nanosystems for biomedical applications. Biocompatible two-dimensional (2D) graphene analogues (e.g., nanosheets of transition metal dichalcogenides, transition metal oxides, g-C3N4, Bi2Se3, BN, etc.), which are referred to as 2D-GAs, have emerged as a new unique family of nanomaterials that show unprecedented advantages and superior performances in biomedicine due to their unique compositional, structural and physicochemical features. In this review, we summarize the state-of-the-art progress of this dynamically developed material family with a particular focus on biomedical applications. After the introduction, the second section of the article summarizes a range of synthetic methods for new types of 2D-GAs as well as their surface functionalization. The subsequent section provides a snapshot on the use of these biocompatible 2D-GAs for a broad spectrum of biomedical applications, including therapeutic (photothermal/photodynamic therapy, chemotherapy and synergistic therapy), diagnostic (fluorescent/magnetic resonance/computed tomography/photoacoustic imaging) and theranostic (concurrent diagnostic imaging and therapy) applications, especially on oncology. In addition, we briefly present the biosensing applications of these 2D-GAs for the detection of biomacromolecules and their in vitro/in vivo biosafety evaluations. The last section summarizes some critical unresolved issues, possible challenges/obstacles and also proposes future perspectives related to the rational design and construction of 2D-GAs for biomedical engineering, which are believed to promote their clinical translations for benefiting the personalized medicine and human health.
Devices, systems, and methods for microscale isoelectric fractionation
Energy Technology Data Exchange (ETDEWEB)
Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.
2016-08-09
Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel between the first and second membranes through isoelectric fractionation.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Two-dimensional superconductors with atomic-scale thickness
Uchihashi, Takashi
2017-01-01
Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Singular analysis of two-dimensional bifurcation system
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Vortices in the Two-Dimensional Simple Exclusion Process
Bodineau, T.; Derrida, B.; Lebowitz, Joel L.
2008-06-01
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....
Self-assembly of two-dimensional DNA crystals
Institute of Scientific and Technical Information of China (English)
SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun
2004-01-01
Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Quasinormal frequencies of asymptotically flat two-dimensional black holes
Lopez-Ortega, A
2011-01-01
We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Two-dimensional array of nanoparticles intermitted by long chain molecules
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
It is an important theme in nanoscience to control the interval of the ordered array of nanoparticles through modifying the chain length of the passivating molecules of the nanoparticles. The theme runs through most of the applications of the ordered array of nanoparticles. Though the Langmuir-Blodgett (LB) technique is one of the most important ways to prepare the two- dimensional ordered array of nanoparticles, it has only been used in case that the passivating molecules are short enough (
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.
Choy, Derek Y C; Creagh, A Louise; von Lieres, Eric; Haynes, Charles
2014-05-01
Experimental data are combined with classic theories describing electrolytes in solution and at surfaces to define the primary mechanisms influencing protein retention and elution during isoelectric chromatofocusing (ICF) of proteins and protein mixtures. Those fundamental findings are used to derive a new model to understand and predict elution times of proteins during ICF. The model uses a modified form of the steric mass action (SMA) isotherm to account for both ion exchange and isoelectric focusing contributions to protein partitioning. The dependence of partitioning on pH is accounted for through the characteristic charge parameter m of the SMA isotherm and the application of Gouy-Chapman theory to define the dependence of the equilibrium binding constant Kbi on both m and ionic strength. Finally, the effects of changes in matrix surface pH on protein retention are quantified through a Donnan equilibrium type model. By accounting for isoelectric focusing, ion binding and exchange, and surface pH contributions to protein retention and elution, the model is shown to accurately capture the dependence of protein elution times on column operating conditions. © 2014 Wiley Periodicals, Inc.
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique
Energy Technology Data Exchange (ETDEWEB)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)
2015-06-06
The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Two-Dimensional Electronic Spectroscopy of a Model Dimer System
Directory of Open Access Journals (Sweden)
Prokhorenko V.I.
2013-03-01
Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem
Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards
Fel, Leonid G.
2002-05-01
The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).
Specification of a Two-Dimensional Test Case
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....
Operator splitting for two-dimensional incompressible fluid equations
Holden, Helge; Karper, Trygve K
2011-01-01
We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.
Chaotic dynamics for two-dimensional tent maps
Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique
2015-02-01
For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...
Spin-orbit torques in two-dimensional Rashba ferromagnets
Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.
2015-01-01
Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent
Numerical blowup in two-dimensional Boussinesq equations
Yin, Zhaohua
2009-01-01
In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.
Exact two-dimensional superconformal R symmetry and c extremization.
Benini, Francesco; Bobev, Nikolay
2013-02-08
We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Thermodynamics of Two-Dimensional Black-Holes
Nappi, Chiara R.; Pasquinucci, Andrea
1992-01-01
We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the
Dynamical phase transitions in the two-dimensional ANNNI model
Energy Technology Data Exchange (ETDEWEB)
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Two-dimensional static black holes with pointlike sources
Melis, M
2004-01-01
We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r
Two-Dimensional Chirality in Three-Dimensional Chemistry.
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation
Indian Academy of Sciences (India)
N Sabu
2003-08-01
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
Two Dimensional F(R) Horava-Lifshitz Gravity
Kluson, J
2016-01-01
We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.
Localization of Tight Closure in Two-Dimensional Rings
Indian Academy of Sciences (India)
Kamran Divaani-Aazar; Massoud Tousi
2005-02-01
It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.
Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm
Directory of Open Access Journals (Sweden)
Bart Preneel
2005-07-01
Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.
New directions in science and technology: two-dimensional crystals
Energy Technology Data Exchange (ETDEWEB)
Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2011-08-15
Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.
Boundary-value problems for two-dimensional canonical systems
Hassi, Seppo; De Snoo, H; Winkler, Henrik
2000-01-01
The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
Dislocation climb in two-dimensional discrete dislocation dynamics
Davoudi, K.M.; Nicola, L.; Vlassak, J.J.
2012-01-01
In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r
SAR Processing Based On Two-Dimensional Transfer Function
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Confined two-dimensional fermions at finite density
De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M
1995-01-01
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.
Imperfect two-dimensional topological insulator field-effect transistors
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Miniature sensor for two-dimensional magnetic field distributions
Fluitman, J.H.J.; Krabbe, H.W.
1972-01-01
Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Spontaneous emission in two-dimensional photonic crystal microcavities
DEFF Research Database (Denmark)
Søndergaard, Thomas
2000-01-01
The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro
Phase conjugated Andreev backscattering in two-dimensional ballistic cavities
Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.
1997-01-01
We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects
Two-dimensional manifold with point-like defects
Gani, Vakhid A; Rubin, Sergei G
2014-01-01
We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.
Instability of two-dimensional heterotic stringy black holes
Azreg-Ainou, M
1999-01-01
We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.
Institute of Scientific and Technical Information of China (English)
XIONG Lei; LI haijiao; ZHANG Lewen
2008-01-01
The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.
One and two dimensional analysis of 3$\\pi$ correlations measured in Pb+Pb interactions
Bearden, I G; Boissevain, J G; Christiansen, P; Conin, L; Dodd, J; Erazmus, B; Esumi, S C; Fabjan, Christian Wolfgang; Ferenc, D; Fields, D E; Franz, A; Gaardhøje, J J; Hansen, A G; Hansen, O; Hardtke, D; van Hecke, H; Holzer, E B; Humanic, T J; Hummel, P; Jacak, B V; Jayanti, R; Kaimi, K; Kaneta, M; Kohama, T; Kopytine, M L; Leltchouk, M; Ljubicic, A; Lörstad, B; Maeda, N; Martin, L; Medvedev, A; Murray, M; Ohnishi, H; Paic, G; Pandey, S U; Piuz, François; Pluta, J; Polychronakos, V; Potekhin, M V; Poulard, G; Reichhold, D M; Sakaguchi, A; Schmidt-Sørensen, J; Simon-Gillo, J; Sondheim, W E; Sugitate, T; Sullivan, J P; Sumi, Y; Willis, W J; Wolf, K L; Xu, N; Zachary, D S
2001-01-01
$\\pi^{-}\\pi^{-}\\pi^{-}$ correlations from Pb+Pb collisions at 158 GeV/c per nucleon are presented as measured by the focusing spectrometer of the NA44 experiment at CERN. The three-body effect is found to be stronger for PbPb than for SPb. The two-dimensional three-particle correlation function is also measured and the longitudinal extension of the source is larger than the transverse extension.
25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.
Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua
2014-04-09
Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications.
Two dimensional solids and liquids influenced by small and large substrate potential
DEFF Research Database (Denmark)
Vives, E.; Lindgård, Per-Anker
1991-01-01
A general, continuous model for two dimensional solids and liquids on a substrate is studied by means of Monte Carlo simulation. The results can be applied to the case of adsorbed atoms or molecules on surfaces as well as intercalated compounds. We have focused on the study of the melting...... experiments, in particular for weak potentials and large atomic mean square displacements. New results for large potentials are also presented and possible relations to the Potts lattice gas description studied....
Synthesis of two-dimensional materials by selective extraction.
Naguib, Michael; Gogotsi, Yury
2015-01-20
CONSPECTUS: Two-dimensional (2D) materials have attracted much attention in the past decade. They offer high specific surface area, as well as electronic structure and properties that differ from their bulk counterparts due to the low dimensionality. Graphene is the best known and the most studied 2D material, but metal oxides and hydroxides (including clays), dichalcogenides, boron nitride (BN), and other materials that are one or several atoms thick are receiving increasing attention. They may deliver a combination of properties that cannot be provided by other materials. The most common synthesis approach in general is by reacting different elements or compounds to form a new compound. However, this approach does not necessarily work well for low-dimensional structures, since it favors formation of energetically preferred 3D (bulk) solids. Many 2D materials are produced by exfoliation of van der Waals solids, such as graphite or MoS2, breaking large particles into 2D layers. However, these approaches are not universal; for example, 2D transition metal carbides cannot be produced by any of them. An alternative but less studied way of material synthesis is the selective extraction process, which is based on the difference in reactivity and stability between the different components (elements or structural units) of the original material. It can be achieved using thermal, chemical, or electrochemical processes. Many 2D materials have been synthesized using selective extraction, such as graphene from SiC, transition metal oxides (TMO) from layered 3D salts, and transition metal carbides or carbonitrides (MXenes) from MAX phases. Selective extraction synthesis is critically important when the bonds between the building blocks of the material are too strong (e.g., in carbides) to be broken mechanically in order to form nanostructures. Unlike extractive metallurgy, where the extracted metal is the goal of the process, selective extraction of one or more elements from
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Topological defect motifs in two-dimensional Coulomb clusters
Radzvilavičius, A; 10.1088/0953-8984/23/38/385301
2012-01-01
The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...
The Persistence Problem in Two-Dimensional Fluid Turbulence
Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul
2010-01-01
We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.
On Dirichlet eigenvectors for neutral two-dimensional Markov chains
Champagnat, Nicolas; Miclo, Laurent
2012-01-01
We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.
Statistical mechanics of two-dimensional and geophysical flows
Bouchet, Freddy
2011-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...
Analysis of one dimensional and two dimensional fuzzy controllers
Institute of Scientific and Technical Information of China (English)
Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao
2006-01-01
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
Extension of modified power method to two-dimensional problems
Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung
2016-09-01
In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
Transport behavior of water molecules through two-dimensional nanopores
Energy Technology Data Exchange (ETDEWEB)
Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-11-14
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Transport behavior of water molecules through two-dimensional nanopores
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-11-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
Topological states in two-dimensional hexagon lattice bilayers
Zhang, Ming-Ming; Xu, Lei; Zhang, Jun
2016-10-01
We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Two-dimensional magnetostriction under vector magnetic characteristic
Wakabayashi, D.; Enokizono, M.
2015-05-01
This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.
Phase separation under two-dimensional Poiseuille flow.
Kiwata, H
2001-05-01
The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.
Two-dimensional localized structures in harmonically forced oscillatory systems
Ma, Y.-P.; Knobloch, E.
2016-12-01
Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.
Enstrophy inertial range dynamics in generalized two-dimensional turbulence
Iwayama, Takahiro; Watanabe, Takeshi
2016-07-01
We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas
Timofeev, I V
2012-01-01
Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.
Two-dimensional model of elastically coupled molecular motors
Institute of Scientific and Technical Information of China (English)
Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei
2012-01-01
A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.
Conductivity of a two-dimensional guiding center plasma.
Montgomery, D.; Tappert, F.
1972-01-01
The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.
Minor magnetization loops in two-dimensional dipolar Ising model
Energy Technology Data Exchange (ETDEWEB)
Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)
2011-05-15
The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.
Cryptography Using Multiple Two-Dimensional Chaotic Maps
Directory of Open Access Journals (Sweden)
Ibrahim S. I. Abuhaiba
2012-08-01
Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.
A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS
Institute of Scientific and Technical Information of China (English)
何吉欢
2001-01-01
A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.
Nonlocal bottleneck effect in two-dimensional turbulence
Biskamp, D; Schwarz, E
1998-01-01
The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Qing-Hai Wang
2009-08-01
Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.
Extraction of plant proteins for two-dimensional electrophoresis
Granier, Fabienne
1988-01-01
Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
J S Virdi; F Chand; C N Kumar; S C Mishra
2012-08-01
Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.
Two-dimensional hydrogen negative ion in a magnetic field
Institute of Scientific and Technical Information of China (English)
Xie Wen-Fang
2004-01-01
Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.
А heuristic algorithm for two-dimensional strip packing problem
Dayong, Cao; Kotov, V.M.
2011-01-01
In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.
Chronology Protection in Two-Dimensional Dilaton Gravity
Mishima, T; Mishima, Takashi; Nakamichi, Akika
1994-01-01
The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M
1993-01-01
Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
Phase Transitions in Two-Dimensional Traffic Flow Models
Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175
2009-01-01
We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.
SU(1,2) invariance in two-dimensional oscillator
Krivonos, Sergey
2016-01-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.
Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.
Multiple Potts models coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-07-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.
Colloidal interactions in two-dimensional nematic emulsions
Indian Academy of Sciences (India)
N M Silvestre; P Patrício; M M Telo Da Gama
2005-06-01
We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.
Thermal diode from two-dimensional asymmetrical Ising lattices.
Wang, Lei; Li, Baowen
2011-06-01
Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.
Numerical Study of Two-Dimensional Viscous Flow over Dams
Institute of Scientific and Technical Information of China (English)
王利兵; 刘宇陆; 涂敏杰
2003-01-01
In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.
Spirals and Skyrmions in two dimensional oxide heterostructures.
Li, Xiaopeng; Liu, W Vincent; Balents, Leon
2014-02-14
We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Exact analytic flux distributions for two-dimensional solar concentrators.
Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M
2013-07-01
A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.
Tricritical behavior in a two-dimensional field theory
Hamber, Herbert
1980-05-01
The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.
Quantum entanglement in a two-dimensional ion trap
Institute of Scientific and Technical Information of China (English)
王成志; 方卯发
2003-01-01
In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.
Coll Positioning systems: a two-dimensional approach
Ferrando, J J
2006-01-01
The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.
Two-dimensional correlation spectroscopy in polymer study
Park, Yeonju; Noda, Isao; Jung, Young Mee
2015-01-01
This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286
Interior design of a two-dimensional semiclassic black hole
Levanony, Dana; 10.1103/PhysRevD.80.084008
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.
Towards a two dimensional model of surface piezoelectricity
Monge Víllora, Oscar
2016-01-01
We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...
Velocity Statistics in the Two-Dimensional Granular Turbulence
Isobe, Masaharu
2003-01-01
We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...
Statistical study of approximations to two dimensional inviscid turbulence
Energy Technology Data Exchange (ETDEWEB)
Glaz, H.M.
1977-09-01
A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.
Static Structure of Two-Dimensional Granular Chain
Institute of Scientific and Technical Information of China (English)
WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan
2010-01-01
@@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.
THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.
Two-Dimensional Identification of Fetal Tooth Germs.
Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António
2017-03-01
To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology. Observational, descriptive, cross-sectional study. Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal. A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams. Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations. In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine. We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
a First Cryptosystem for Security of Two-Dimensional Data
Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen
In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.
Two-dimensional capillary electrophoresis using tangentially connected capillaries.
Sahlin, Eskil
2007-06-22
A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
A two-dimensional analytical model of petroleum vapor intrusion
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.
2016-02-01
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Strongly correlated two-dimensional plasma explored from entropy measurements.
Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S
2015-06-23
Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.
Augmented reality simulator for training in two-dimensional echocardiography.
Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A
2000-02-01
In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.
Experimental realization of two-dimensional boron sheets.
Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui
2016-06-01
A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.
Two-dimensional oxides: multifunctional materials for advanced technologies.
Pacchioni, Gianfranco
2012-08-13
The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Directory of Open Access Journals (Sweden)
Mahmood Toorchi
2015-11-01
Full Text Available Rice (Oryza sativa L. is the staple food of more than half of the population worldwide. Water deficit stress is one of the harsh limiting factors for successful production of crops. Rice during its growing period comes a cross different environmental hazards like drought stress. Recent advance in molecular physiology are promising for more progress in increasing rice yield by identification of novel candidate proteins for drought tolerance. To investigate the effect of water deficit on rice root protein expression pattern, an experiment was conducted in completely randomize design with four replications. With holding water for 24, 36 and 48 hours along with control constituted the experimental treatments. The experiment was conducted in growth chamber under controlled condition and root samples, after stress imposition, were harvested for two-dimensional electrophorese (2-DE. Proteome analysis of root tissue by 2-DE indicated that out of 135 protein spots diagnosed by Coomassie blue staining, 14 spots showed significant expression change under water deficit condition, seven of them at 1% and the other seven at 5% probability levels. Differentially changed proteins were taken into account for search in data bank using isoelectric point and molecular weight to identify the most probable responsive proteins. Up- regulation of ferredoxin oxidoreductase at first 24 hour after applying stress indicates the main role of this protein in reducing water deficit stress effects. On the other hand ribosomal proteins, GAP-3 and ATP synthase were down regulated under water deficit stress. Fructose 1,6-bisphosphate aldolase, glucose- 6-phosphate dehydrogenase and chitinase down regulated up to 36 h of stress imposition but, were later up- regulated by prolonging stress up to 48 h. It could be inferred the plant tries to decrease the effect of oxidative stress.
Simulation of two-dimensional adjustable liquid gradient refractive index (L-GRIN) microlens
Le, Zichun; Wu, Xiang; Sun, Yunli; Du, Ying
2017-07-01
In this paper, a two-dimensional liquid gradient refractive index (L-GRIN) microlens is designed which can be used in adjusting focusing direction and focal spot of light beam. Finite element method (FEM) is used to simulate the convection diffusion process happening in core inlet flow and cladding inlet flow. And the ray tracing method shows us the light beam focusing effect including the extrapolation of focal length and output beam spot size. When the flow rates of the core and cladding fluids are held the same between the internal and external, left and right, and upper and lower inlets, the focal length varied from 313 μm to 53.3 μm while the flow rate of liquids ranges from 500 pL/s to 10,000 pL/s. While the core flow rate is bigger than the cladding inlet flow rate, the light beam will focus on a light spot with a tunable size. By adjusting the ratio of cladding inlet flow rate including Qright/Qleft and Qup/Qdown, we get the adjustable two-dimensional focus direction rather than the one-dimensional focusing. In summary, by adjusting the flow rate of core inlet and cladding inlet, the focal length, output beam spot and focusing direction of the input light beam can be manipulated. We suppose this kind of flexible microlens can be used in integrated optics and lab-on-a-chip system.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2009-01-01
We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.
Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres
Directory of Open Access Journals (Sweden)
J. Javier Brey
2017-02-01
Full Text Available The dynamics of a system of hard spheres enclosed between two parallel plates separated a distance smaller than two particle diameters is described at the level of kinetic theory. The interest focuses on the behavior of the quasi-two-dimensional fluid seen when looking at the system from above or below. In the first part, a collisional model for the effective two-dimensional dynamics is analyzed. Although it is able to describe quite well the homogeneous evolution observed in the experiments, it is shown that it fails to predict the existence of non-equilibrium phase transitions, and in particular, the bimodal regime exhibited by the real system. A critical revision analysis of the model is presented , and as a starting point to get a more accurate description, the Boltzmann equation for the quasi-two-dimensional gas has been derived. In the elastic case, the solutions of the equation verify an H-theorem implying a monotonic tendency to a non-uniform steady state. As an example of application of the kinetic equation, here the evolution equations for the vertical and horizontal temperatures of the system are derived in the homogeneous approximation, and the results compared with molecular dynamics simulation results.
The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2005-01-01
The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.
Nonlinear acoustic propagation in two-dimensional ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
Two-dimensional dispersive shock waves in dissipative optical media
Kartashov, Yaroslav V
2013-01-01
We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;
2016-01-01
BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...
The Rare Two-Dimensional Materials with Dirac Cones
Wang, Jinying; Deng, Shibin; Liu, Zhongfan; Liu, Zhirong
2014-01-01
Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, ger...
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P
2009-03-20
Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
Two-dimensionally confined topological edge states in photonic crystals
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-11-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Two-Dimensionally Confined Topological Edge States in Photonic Crystals
Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Theories on Frustrated Electrons in Two-Dimensional Organic Solids
Directory of Open Access Journals (Sweden)
Chisa Hotta
2012-08-01
Full Text Available Two-dimensional quarter-filled organic solids are a promising class of materials to realize the strongly correlated insulating states called dimer Mott insulator and charge order. In their conducting layer, the molecules form anisotropic triangular lattices, harboring geometrical frustration effect, which could give rise to many interesting states of matter in the two insulators and in the metals adjacent to them. This review is concerned with the theoretical studies on such issue over the past ten years, and provides the systematic understanding on exotic metals, dielectrics, and spin liquids, which are the consequences of the competing correlation and fluctuation under frustration.
Wake-induced bending of two-dimensional plasma crystals
Energy Technology Data Exchange (ETDEWEB)
Röcker, T. B., E-mail: tbr@mpe.mpg.de; Ivlev, A. V., E-mail: ivlev@mpe.mpg.de; Zhdanov, S. K.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Couëdel, L. [CNRS, Aix-Marseille-Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille Cedex 20 (France)
2014-07-15
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Wake-induced bending of two-dimensional plasma crystals
Röcker, T B; Zhdanov, S K; Couëdel, L; Morfill, G E
2014-01-01
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Corner wetting transition in the two-dimensional Ising model
Lipowski, Adam
1998-07-01
We study the interfacial behavior of the two-dimensional Ising model at the corner of weakened bonds. Monte Carlo simulations results show that the interface is pinned to the corner at a lower temperature than a certain temperature Tcw at which it undergoes a corner wetting transition. The temperature Tcw is substantially lower than the temperature of the ordinary wetting transition with a line of weakened bonds. A solid-on-solid-like model is proposed, which provides a supplementary description of the corner wetting transition.
Dynamic Multiscaling in Two-dimensional Fluid Turbulence
Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul
2011-01-01
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Absolute band gaps in two-dimensional graphite photonic crystal
Institute of Scientific and Technical Information of China (English)
Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)
2003-01-01
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.
Kinetic analysis of two dimensional metallic grating Cerenkov maser
Energy Technology Data Exchange (ETDEWEB)
Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2011-08-15
The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.
Mean flow generation in rotating anelastic two-dimensional convection
Currie, Laura K
2016-01-01
We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.
Duality, Monodromy and Integrability of Two Dimensional String Effective Action
Das, A; Melikyan, A; Das, Ashok
2002-01-01
The monodromy matrix, ${\\hat{\\cal M}}$, is constructed for two dimensional tree level string effective action. The pole structure of ${\\hat{\\cal M}}$ is derived using its factorizability property. It is found that the monodromy matrix transforms non-trivially under the non-compact T-duality group, which leaves the effective action invariant and this can be used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We construct, explicitly, ${\\hat{\\cal M}}$ for the exactly solvable Nappi-Witten model, both when B=0 and $B\
Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies
Institute of Scientific and Technical Information of China (English)
NI Qing; CHENG Jian-Chun
2005-01-01
@@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.
Electronic Transmission Properties of Two-Dimensional Quasi-Lattice
Institute of Scientific and Technical Information of China (English)
侯志林; 傅秀军; 刘有延
2002-01-01
In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.
Two-dimensional conformal field theory and the butterfly effect
Roberts, Daniel A
2014-01-01
We study chaotic dynamics in two-dimensional conformal field theory through out-of-time order thermal correlators of the form $\\langle W(t)VW(t)V\\rangle$. We reproduce bulk calculations similar to those of [1], by studying the large $c$ Virasoro identity block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of $\\sim t_* - \\frac{\\beta}{2\\pi}\\log \\beta^2E_w E_v$, where $t_*$ is the scrambling time $\\frac{\\beta}{2\\pi}\\log c$, and $E_w,E_v$ are the energy scales of the $W,V$ operators.
Two-Dimensional Gel Electrophoresis: A Reference Protocol.
Saia-Cereda, Veronica M; Aquino, Adriano; Guest, Paul C; Martins-de-Souza, Daniel
2017-01-01
Two-dimensional gel electrophoresis (2DE) has been a mainstay of proteomic techniques for more than four decades. It was even in use for several years before the term proteomics was actually coined in the early 1990s. Over this time, it has been used in the study of many diseases including cancer, diabetes, heart disease, and psychiatric disorders through the proteomic analysis of body fluids and tissues. This chapter presents a general protocol which can be applied in the study of biological samples such as blood serum or plasma and multiple tissues including the brain.
Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis
2014-01-01
Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559
Size-dispersity effects in two-dimensional melting.
Watanabe, Hiroshi; Yukawa, Satoshi; Ito, Nobuyasu
2005-01-01
In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium relaxation behaviors of bond-orientational order parameters, we find that (i) there is a critical dispersity at which the melting transition of the hexagonal solid vanishes and (ii) the quadratic structure is metastable in a certain region of the dispersity-density parameter space. These results suggest that the dispersity not only destroys order but produces new structures under certain specific conditions.
Human muscle proteins: analysis by two-dimensional electrophoresis
Energy Technology Data Exchange (ETDEWEB)
Giometti, C.S.; Danon, M.J.; Anderson, N.G.
1983-09-01
Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.
The XY model coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-09-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.
Two-dimensional chiral topological superconductivity in Shiba lattices
Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei
2016-07-01
The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.
Field analysis of two-dimensional integrated optical gratings
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
Graphene and Two-Dimensional Materials for Optoelectronic Applications
Directory of Open Access Journals (Sweden)
Andreas Bablich
2016-03-01
Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.
AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.
The problem of friction in two-dimensional relative motion
Grech, D K; Grech, Dariusz; Mazur, Zygmunt
2000-01-01
We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.
Optimum high temperature strength of two-dimensional nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)
2013-11-01
High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
Quantum computation with two-dimensional graphene quantum dots
Institute of Scientific and Technical Information of China (English)
Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin
2012-01-01
We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.
Complex Saddles in Two-dimensional Gauge Theory
Buividovich, P V; Valgushev, S N
2015-01-01
We study numerically the saddle point structure of two-dimensional (2D) lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are in general complex-valued, even though the original integration variables and action are real. We confirm the trans-series/instanton gas structure in the weak-coupling phase, and identify a new complex-saddle interpretation of non-perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Band alignment of two-dimensional lateral heterostructures
Zhang, Junfeng; Xie, Weiyu; Zhang, S B
2016-01-01
Band alignment in two-dimensional (2D) lateral heterostructures is fundamentally different from three-dimensional (3D), as Schottky barrier height is at the Schottky-Mott limit and band offset is at the Anderson limit, regardless interfacial conditions. This robustness arises because, in the asymptotic limit, effect of interfacial dipole vanishes. First-principles calculations of graphene/h-BN and MoS2/WS2 show that 2D junction width W is typically an order of magnitude longer than 3D. Therefore, heterostructures with dimension less than W can also be made, leading to tunable band alignment.
Topological Quantum Optics in Two-Dimensional Atomic Arrays
Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.
2017-07-01
We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.
Elastic models of defects in two-dimensional crystals
Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.
2014-12-01
Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.
On two-dimensional magnetic reconnection with nonuniform resistivity
Malyshkin, Leonid M.; Kulsrud, Russell M.
2010-12-01
In this paper, two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, 'global' equations approach, the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, 'local' equations approach, the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity.
Optimum high temperature strength of two-dimensional nanocomposites
Directory of Open Access Journals (Sweden)
M. A. Monclús
2013-11-01
Full Text Available High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.
Quantum skyrmions in two-dimensional chiral magnets
Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon
2016-10-01
We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.
Local kinetic effects in two-dimensional plasma turbulence.
Servidio, S; Valentini, F; Califano, F; Veltri, P
2012-01-27
Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are investigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic topology, and can elongate along or across the local magnetic field. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysical and laboratory plasmas.
Drift modes of a quasi-two-dimensional current sheet
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2012-03-15
Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.
Magnetic quantum dot in two-dimensional topological insulators
Li, Guo; Zhu, Jia-Lin; Yang, Ning
2017-03-01
Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.
Mass/Count Variation: A Mereological, Two-Dimensional Semantics
Directory of Open Access Journals (Sweden)
Peter R Sutton
2016-12-01
Full Text Available We argue that two types of context are central to grounding the semantics for the mass/count distinction. We combine and develop the accounts of Rothstein (2010 and Landman (2011, which emphasize (non-overlap at a context. We also adopt some parts of Chierchia’s (2010 account which uses precisifying contexts. We unite these strands in a two-dimensional semantics that covers a wide range of the puzzling variation data in mass/count lexicalization. Most importantly, it predicts where we should expect to find such variation for some classes of nouns but not for others, and also explains why.
A two-dimensional approach to relativistic positioning systems
Coll, B; Morales, J A; Coll, Bartolom\\'{e}; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allow to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out.
Dynamical matrix of two-dimensional electron crystals
Côté, R.; Lemonde, M.-A.; Doiron, C. B.; Ettouhami, A. M.
2008-03-01
In a quantizing magnetic field, the two-dimensional electron gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to obtain the dynamical matrix of these crystals from a calculation of the density response function performed in the generalized random-phase approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.
Two-dimensional transport study of scrape off layer plasmas
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Nobuyuki [Interdisciplinary Graduate School of Advanced Energy Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
1999-09-01
Two-dimensional transport code is developed to analyzed the heat pulse propagation in the scrape-off layer plasma. The classical and anomalous transport models are considered as a thermal diffusivity perpendicular to the magnetic field. On the other hand, the classical transport model is chosen as a thermal diffusivity parallel to the magnetic field. The heat deposition profiles are evaluated for various kinds of transport models. It is found that the heat pulse which arrives at the divertor plate due to the classical transport is largest compared with other models. The steady state temperate profiles of the electron and ion are also discussed. (author)
Consistent theory of turbulent transport in two-dimensional magnetohydrodynamics.
Kim, Eun-jin
2006-03-03
A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.
Deformable two-dimensional photonic crystal slab for cavity optomechanics
Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I
2011-01-01
We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects
Magnetization of two-dimensional superconductors with defects
Kashurnikov, V A; Zyubin, M V
2002-01-01
The new method for modeling the layered high-temperature superconductors magnetization with defects, based on the Monte-Carlo algorithm, is developed. Minimization of the free energy functional of the vortex two-dimensional system made it possible to obtain the equilibrium vortex density configurations and calculate the magnetization of the superconductor with the arbitrary defects distribution in the wide range of temperatures. The magnetic induction profiles and magnetic flux distribution inside the superconductor, proving the applicability of the Bean model, are calculated
The XY Model Coupled to Two-Dimensional Quantum Gravity
Baillie, C F; 10.1016/0370-2693(92)91037-A
2009-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.
Smoothed Particle Hydrodynamics Method for Two-dimensional Stefan Problem
Tarwidi, Dede
2016-01-01
Smoothed particle hydrodynamics (SPH) is developed for modelling of melting and solidification. Enthalpy method is used to solve heat conduction equations which involved moving interface between phases. At first, we study the melting of floating ice in the water for two-dimensional system. The ice objects are assumed as solid particles floating in fluid particles. The fluid and solid motion are governed by Navier-Stokes equation and basic rigid dynamics equation, respectively. We also propose a strategy to separate solid particles due to melting and solidification. Numerical results are obtained and plotted for several initial conditions.
A Direct Two-Dimensional Pressure Formulation in Molecular Dynamics
YD, Sumith
2016-01-01
Two-dimensional (2D) pressure field estimation in molecular dynamics (MD) simulations has been done using three-dimensional (3D) pressure field calculations followed by averaging, which is computationally expensive due to 3D convolutions. In this work, we develop a direct 2D pressure field estimation method which is much faster than 3D methods without losing accuracy. The method is validated with MD simulations on two systems: a liquid film and a cylindrical drop of argon suspended in surrounding vapor.
Two-Dimensional Change Detection Methods Remote Sensing Applications
Ilsever, Murat
2012-01-01
Change detection using remotely sensed images has many applications, such as urban monitoring, land-cover change analysis, and disaster management. This work investigates two-dimensional change detection methods. The existing methods in the literature are grouped into four categories: pixel-based, transformation-based, texture analysis-based, and structure-based. In addition to testing existing methods, four new change detection methods are introduced: fuzzy logic-based, shadow detection-based, local feature-based, and bipartite graph matching-based. The latter two methods form the basis for a
Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry.
Sun, Yongfu; Gao, Shan; Lei, Fengcai; Xiao, Chong; Xie, Yi
2015-01-20
CONSPECTUS: The ultimate goal of solid state chemistry is to gain a clear correlation between atomic, defect, and electronic structure and intrinsic properties of solid state materials. Solid materials can generally be classified as amorphous, quasicrystalline, and crystalline based on their atomic arrangement, in which crystalline materials can be further divided into single crystals, microcrystals, and nanocrystals. Conventional solid state chemistry mainly focuses on studying single crystals and microcrystals, while recently nanocrystals have become a hot research topic in the field of solid state chemistry. As more and more nanocrystalline materials have been artificially fabricated, the solid state chemistry for studying those nanosolids has become a new subdiscipline: solid state nanochemistry. However, solid state nanochemistry, usually called "nanochemistry" for short, primarily studies the microstructures and macroscopic properties of a nanomaterial's aggregation states. Due to abundant microstructures in the aggregation states, it is only possible to build a simple but imprecise correlation between the microscopic morphology and the macroscopic properties of the nanostructures. Notably, atomically thin two-dimensional inorganic materials provide an ideal platform to establish clear structure-property relationships in the field of solid state nanochemistry, thanks to their homogeneous dispersion without the assistance of a capping ligand. In addition, their atomic structures including coordination number, bond length, and disorder degree of the examined atoms can be clearly disclosed by X-ray absorption fine structure spectroscopy. Also, their more exposed interior atoms would inevitably induce the formation of various defects, which would have a non-negligible effect on their physicochemical properties. Based on the obtained atomic and defect structural characteristics, density-functional calculations are performed to study their electronic structures
Surface science using radioactive ions at ISOLDE: from metal surfaces to two-dimensional materials
Potzger, K.; E Mølholt, T.; Fenta, A. S.; Pereira, L. M. C.
2017-06-01
We review the research carried out using the apparatus for surface physics and interfaces (ASPIC), at ISOLDE, CERN. We give an overview of the research highlights since 2000, focusing on magnetic and non-magnetic metallic surfaces, and introduce the scientific program that will follow the upgrade which is currently underway, focusing on two-dimensional materials. ASPIC was formerly used for the growth of ultrathin metallic films and their characterization by means of perturbed angular correlation spectroscopy. Past research has mainly focused on the determination of the magnetic hyperfine field at the probe atom located on different sites at the surface such as terraces, kinks, steps as well as on the investigation of the static magnetic polarization at the interface between ferromagnetic and paramagnetic layers. Future research on two-dimensional materials using ASPIC is foreseen to focus on the investigation of structural and electronic properties of adatoms (adsorption sites, hybridization effects, intra-atomic charge transfer, magnetic moments, etc). We emphasize, in this context, the exceptional capabilities of ASPIC in terms of broad applicability, high precision and low detection limits.
Confinement and dynamical regulation in two-dimensional convective turbulence
DEFF Research Database (Denmark)
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low-frequency bur......In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...... to the mean component of the flow. Bursting can also result from the quasi-linear modification of the linear instability drive which is the mean pressure gradient. For each bursting process the relevant zero-dimensional model equations are given. These are finally coupled in a minimal model of convection...
The two dimensional fold test in paleomagnetism using ipython notebook
Setiabudidaya, Dedi; Piper, John D. A.
2016-01-01
One aspect of paleomagnetic analysis prone to controversy is the result of the fold test used to evaluate the age of a magnetisation component relative to the age of a structural event. Initially, the fold test was conducted by comparing the Fisherian precision parameter (k) to results from different limbs of a fold structure before and after tilt adjustment. To accommodate synfolding magnetisation, the tilt correction can be performed in stepwise fashion to both limbs simultaneously, here called one dimensional (1D) fold test. The two dimensional (2D) fold test described in this paper is carried out by applying stepwise tilt adjustment to each limb of the fold separately. The rationale for this is that tilts observed on contrasting limbs of deformed structure may not be synchronous or even belong to the same episode of deformation. A program for the procedure is presented here which generates two dimensional values of the k-parameter visually presented in contoured form. The use of ipython notebook enables this 2D fold test to be performed interactively and yield a more precise evaluation than the primitive 1D fold test.
Quantum creep in a highly crystalline two-dimensional superconductor
Saito, Yu; Kasahara, Yuichi; Ye, Jianting; Iwasa, Yoshihiro; Nojima, Tsutomu
Conventional studies on quantum phase transitions, especially on superconductor-insulator or superconductor-metal-insulator transitions have been performed in deposited metallic thin films such as Bismuth or MoGe. Although the techniques of thin films deposition have been considerably improved, unintentional disorder such as impurities and deficiencies, generating the pinning centers, seems to still exist in such systems. The mechanical exfoliated highly crystalline two-dimensional material can be a good candidate to realize a less-disordered 2D superconductor with extremely weak pinning, combined with transfer method or ionic-liquid gating. We report on the quantum metal, namely, magnetic-field-induced metallic state observed in an ion-gated two-dimensional superconductor based on an ultra-highly crystalline layered band insulator, ZrNCl. We found that the superconducting state is extremely fragile against external magnetic fields; that is, zero resistance state immediately disappears, once an external magnetic field switches on. This is because the present system is relatively clean and the pinning potential is extremely weak, which cause quantum tunneling and flux flow of vortices, resulting in metallic ground state.
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu
1997-09-17
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Two-dimensional gas of massless Dirac fermions in graphene.
Novoselov, K S; Geim, A K; Morozov, S V; Jiang, D; Katsnelson, M I; Grigorieva, I V; Dubonos, S V; Firsov, A A
2005-11-10
Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.
Unpacking of a Crumpled Wire from Two-Dimensional Cavities.
Directory of Open Access Journals (Sweden)
Thiago A Sobral
Full Text Available The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.
Two-Dimensional Gel Electrophoresis and 2D-DIGE.
Meleady, Paula
2018-01-01
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.
Two-dimensional echocardiographic assessment of dextrocardia: a segmental approach.
Huhta, J C; Hagler, D J; Seward, J B; Tajik, A J; Julsrud, P R; Ritter, D G
1982-12-01
Two-dimensional echocardiography was used in the prospective evaluation of 40 patients with the clinical diagnosis of dextrocardia. A segmental analysis of the situs, connections, ventricular anatomy, and chamber positions was utilized for a complete diagnostic assessment. An adequate examination was possible in 33 of these patients; the findings were confirmed by cardiac catheterization and angiography in 31 patients and at operation in 26. Use of the location of the liver and the drainage of the hepatic veins and inferior vena cava allowed atrial visceral situs to be defined in 33 patients (solitus 21, inversus 9, and ambiguous 3). Pulmonary venous connections were correctly identified in 27. In 33 patients, atrioventricular (AV) and ventriculoarterial connections and ventricular anatomy were correctly predicted. Twenty patients had 2 separate well-developed ventricles. Ventriculoarterial connections were determined correctly in all 20 patients: concordant in 5, discordant in 6, double-outlet right ventricle in 5, and single-outlet right ventricle (pulmonary atresia) in 4. In 16 patients a ventricular septal defect was correctly identified. In the remainder the ventricular septum was intact. Thirteen patients had univentricular heart: 8 had 2 AV valves (double-inlet ventricle) 3 had common AV inlet, and 2 had atresia of 1 AV connection. Two-dimensional echocardiography allowed the accurate assessment of complex congenital heart defects associated with dextrocardia. Utilizing a segmental approach, one can correctly predict atrial-visceral situs, ventricular morphology and situs, and AV and ventriculoarterial connections.