Energy Technology Data Exchange (ETDEWEB)
Srivastava, Vineet K., E-mail: vineetsriiitm@gmail.com [ISRO Telemetry, Tracking and Command Network (ISTRAC), Bangalore-560058 (India); Awasthi, Mukesh K. [Department of Mathematics, University of Petroleum and Energy Studies, Dehradun-248007 (India); Singh, Sarita [Department of Mathematics, WIT- Uttarakhand Technical University, Dehradun-248007 (India)
2013-12-15
This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.
Directory of Open Access Journals (Sweden)
Vineet K. Srivastava
2013-12-01
Full Text Available This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM, for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.
Confined two-dimensional fermions at finite density
De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M
1995-01-01
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.
Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
严承华; 王赤忠; 程尔升
2001-01-01
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.
Directory of Open Access Journals (Sweden)
Chunye Gong
2014-01-01
Full Text Available It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE with iterative implicit finite difference method is O(MxMyN2. In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16–4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling
Energy Technology Data Exchange (ETDEWEB)
Hwang, Moonkyu; Jeong, Jaejoon
2007-07-15
The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme.
Institute of Scientific and Technical Information of China (English)
Chaojun Yan; Wenbiao Peng; Haijun Li
2007-01-01
@@ The alternate-direction implicit finite difference beam propagation method (FD-BPM) is used to analyze the two-dimensional (2D) symmetrical multimode interference (MMI) couplers. The positions of the images at the output plane and the length of multimode waveguide are accurately determined numerically. In order to reduce calculation time, the parallel processing of the arithmetic is implemented by the message passing interface and the simulation is accomplished by eight personal computers.
Finite amplitude waves in two-dimensional lined ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
A second-order uniform expansion is obtained for nonlinear wave propagation in a two-dimensional duct lined with a point-reacting acoustic material consisting of a porous sheet followed by honeycomb cavities and backed by the impervious wall of the duct. The waves in the duct are coupled with those in the porous sheet and the cavities. An analytical expression is obtained for the absorption coefficient in terms of the sound frequency, the physical properties of the porous sheet, and the geometrical parameters of the flow configuration. The results show that the nonlinearity flattens and broadens the absorption vs. frequency curve, irrespective of the geometrical dimensions or the porous material acoustic properties, in agreement with experimental observations.
Two-dimensional finite-element temperature variance analysis
Heuser, J. S.
1972-01-01
The finite element method is extended to thermal analysis by forming a variance analysis of temperature results so that the sensitivity of predicted temperatures to uncertainties in input variables is determined. The temperature fields within a finite number of elements are described in terms of the temperatures of vertices and the variational principle is used to minimize the integral equation describing thermal potential energy. A computer calculation yields the desired solution matrix of predicted temperatures and provides information about initial thermal parameters and their associated errors. Sample calculations show that all predicted temperatures are most effected by temperature values along fixed boundaries; more accurate specifications of these temperatures reduce errors in thermal calculations.
Two-dimensional cylindrical thermal cloak designed by implicit transformation method
Yuan, Xuebo; Lin, Guochang; Wang, Youshan
2016-07-01
As a new-type technology of heat management, thermal metamaterials have attracted more and more attentions recently and thermal cloak is a typical case. Thermal conductivity of thermal cloak designed by coordinate transformation method is usually featured by inhomogeneity, anisotropy and local singularity. Explicit transformation method, which is commonly used to design thermal cloak with the coordinate transformation known in advance, has insufficient flexibility, making it hard to proactively reduce the difficulty of device fabrication. In this work, we designed the thermal conductivity of two-dimensional (2D) cylindrical thermal cloak using the implicit transformation method without knowledge of the coordinate transformation in advance. With two classes of generation functions taken into consideration, this study adopted full-wave simulations to analyze the thermal cloaking performances of designed thermal cloaks. Material distributions and simulation results showed that the implicit transformation method has high flexibility. The form of coordinate transformation not only influences the homogeneity and anisotropy but also directly influences the thermal cloaking performance. An improved layered structure for 2D cylindrical thermal cloak was put forward based on the generation function g(r) = r15, which reduces the number of the kinds of constituent materials while guaranteeing good thermal cloaking performance. This work provides a beneficial guidance for reducing the fabrication difficulty of thermal cloak.
Efficient two-dimensional magnetotellurics modelling using implicitly restarted Lanczos method
Indian Academy of Sciences (India)
Krishna Kumar; Pravin K Gupta; Sri Niwas
2011-08-01
This paper presents an efficient algorithm, FDA2DMT (Free Decay Analysis for 2D Magnetotellurics (MT)), based on eigenmode approach to solve the relevant partial differential equation, for forward computation of two-dimensional (2D) responses. The main advantage of this approach lies in the fact that only a small subset of eigenvalues and corresponding eigenvectors are required for satisfactory results. This small subset (pre-specified number) of eigenmodes are obtained using shift and invert implementation of Implicitly Restarted Lanczos Method (IRLM). It has been established by experimentation that only 15–20% smallest eigenvalue and corresponding eigenvectors are sufficient to secure the acceptable accuracy. Once the single frequency response is computed using eigenmode approach, the responses for subsequent frequencies can be obtained in negligible time. Experiment design results for validation of FDA2DMT are presented by considering two synthetic models from COMMEMI report, Brewitt-Taylor and Weaver (1976) model and a field data based model from Garhwal Himalaya.
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl
2008-01-01
Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve
Effects of finite laser pulse width on two-dimensional electronic spectroscopy
Leng, Xuan; Yue, Shuai; Weng, Yu-Xiang; Song, Kai; Shi, Qiang
2017-01-01
We combine the hierarchical equations of motion method and the equation-of-motion phase-matching approach to calculate two-dimensional electronic spectra of model systems. When the laser pulse is short enough, the current method reproduces the results based on third-order response function calculations in the impulsive limit. Finite laser pulse width is found to affect both the peak positions and shapes, as well as the time evolution of diagonal and cross peaks. Simulations of the two-color two-dimensional electronic spectra also show that, to observe quantum beats in the diagonal and cross peaks, it is necessary to excite the related excitonic states simultaneously.
Natale, Andrea
2016-01-01
We analyse the multiscale properties of energy-conserving upwind-stabilised finite element discretisations of the two-dimensional incompressible Euler equations. We focus our attention on two particular methods: the Lie derivative discretisation introduced in Natale and Cotter (2016a) and the SUPG discretisation of the vorticity advection equation. Such discretisations provide control on enstrophy by modelling different types of scale interactions. We quantify the performance of the schemes in reproducing the non-local energy backscatter that characterises two-dimensional turbulent flows.
Implicit finite difference methods on composite grids
Mastin, C. Wayne
1987-01-01
Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.
Directory of Open Access Journals (Sweden)
Carlos Salinas
2011-05-01
Full Text Available The work was aimed at simulating two-dimensional wood drying stress using the control-volume finite element method (CVFEM. Stress/strain was modeled by moisture content gradients regarding shrinkage and mechanical sorption in a cross-section of wood. CVFEM was implemented with triangular finite elements and lineal interpolation of the independent variable which were programmed in Fortran 90 language. The model was validated by contrasting results with similar ones available in the specialised literature. The present model’s results came from isothermal (20ºC drying of quaking aspen (Populus tremuloides: two-dimensional distribution of stress/strain and water content, 40, 80, 130, 190 and 260 hour drying time and evolution of normal stress (2.5 <σ͓ ͓ < 1.2, MPa, from the interior to the exterior of wood.
Ultraviolet finiteness of Chiral Perturbation Theory for two-dimensional Quantum Electrodynamics
Paston, S A; Franke, V A
2003-01-01
We consider the perturbation theory in the fermion mass (chiral perturbation theory) for the two-dimensional quantum electrodynamics. With this aim, we rewrite the theory in the equivalent bosonic form in which the interaction is exponential and the fermion mass becomes the coupling constant. We reformulate the bosonic perturbation theory in the superpropagator language and analyze its ultraviolet behavior. We show that the boson Green's functions without vacuum loops remain finite in all orders of the perturbation theory in the fermion mass.
Third order finite volume evolution Galerkin (FVEG) methods for two-dimensional wave equation system
Lukácová-Medvid'ová, Maria; Warnecke, Gerald; Zahaykah, Yousef
2003-01-01
The subject of the paper is the derivation and analysis of third order finite volume evolution Galerkin schemes for the two-dimensional wave equation system. To achieve this the first order approximate evolution operator is considered. A recovery stage is carried out at each level to generate a piecewise polynomial approximation from the piecewise constants, to feed into the calculation of the fluxes. We estimate the truncation error and give numerical examples to demonstrate the higher order...
Two-Dimensional, Implicit Confidence Tests as a Tool for Recognizing Student Misconceptions
Klymkowsky, Michael W.; Taylor, Linda B.; Spindler, Shana R.; Garvin-Doxas, R. Kathy
2006-01-01
The misconceptions that students bring with them, or that arise during instruction, are a critical barrier to learning. Implicit-confidence tests, a simple modification of the multiple-choice test, can be used as a strategy for recognizing student misconceptions. An important issue, however, is whether such tests are gender-neutral. We analyzed…
Implicit finite-difference simulations of seismic wave propagation
Chu, Chunlei
2012-03-01
We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation
Kouatchou, Jules
1999-01-01
In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.
Bessel-Modal Method for Finite-Height Two-Dimensional Photonic Crystal
Institute of Scientific and Technical Information of China (English)
SHI Jun-Feng; HUANG Sheng-Ye; WANG Dong-Sheng
2005-01-01
@@ By applying the dyadic Green function, the dispersion relation of two-dimensional photonic crystal can be ex pressed as the cylindrical wave expansions of eigenmodes. With the aid of Green's theorem, the plane-wavecoefficients of eigenmodes are reconstructed and employed to formulate the scattering matrix of finite-height twodimensional photonic crystal. These operations make the convergence rate very rapid, and reduce the dimension of the scattering matrix. As a demonstration, we present the transmission and electromagnetic field distributions for an InGaAsIn photonic crystal, and investigate their convergence.
Finite Element Analysis of Electromagnetic Waves in Two-Dimensional Transformed Bianisotropic Media
Liu, Yan; Guenneau, Sebastien
2015-01-01
We analyse wave propagation in two-dimensional bianisotropic media with the Finite Element Method (FEM). We start from the Maxwell-Tellegen's equations in bianisotropic media, and derive some system of coupled Partial Difference Equations (PDEs) for longitudinal electric and magnetic field components. Perfectly Matched Layers (PMLs) are discussed to model such unbounded media. We implement these PDEs and PMLs in a finite element software. We apply transformation optics in order to design some bianisotropic media with interesting functionalities, such as cloaks, concentrators and rotators. We propose a design of metamaterial with concentric layers made of homogeneous media with isotropic permittivity, permeability and magneto-electric parameters that mimic the required effective anisotropic tensors of a bianisotropic cloak in the long wavelength limit (homogenization approach). Our numerical results show that well-known metamaterials can be transposed to bianisotropic media.
Institute of Scientific and Technical Information of China (English)
张德悦; 马富明
2004-01-01
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.
INTERVAL FINITE VOLUME METHOD FOR UNCERTAINTY SIMULATION OF TWO-DIMENSIONAL RIVER WATER QUALITY
Institute of Scientific and Technical Information of China (English)
HE Li; ZENG Guang-ming; HUANG Guo-he; LU Hong-wei
2004-01-01
Under the interval uncertainties, by incorporating the discretization form of finite volume method and interval algebra theory, an Interval Finite Volume Method (IFVM) was developed to solve water quality simulation issues for two-dimensional river when lacking effective data of flow velocity and flow quantity. The IFVM was practically applied to a segment of the Xiangjiang River because the Project of Hunan Inland Waterway Multipurpose must be started working after the environmental impact assessment for it. The simulation results suggest that there exist rather apparent pollution zones of BOD5 downstream the Dongqiaogang discharger and that of COD downstream Xiaoxiangjie discharger, but the pollution sources have no impact on the safety of the three water plants located in this river segment. Although the developed IFVM is to be perfected, it is still a powerful tool under interval uncertainties for water environmental impact assessment, risk analysis, and water quality planning, etc. besides water quality simulation studied in this paper.
Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite
Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.
2010-01-01
A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.
Institute of Scientific and Technical Information of China (English)
LIAO HongLin; SHI HanSheng; SUN ZhiZhong
2009-01-01
Corrected explicit-implicit domain decomposition (CEIDD) algorithms are studied for parallel approximation of semilinear parabolic problems on distributed memory processors. It is natural to divide the spatial domain into some smaller parallel strips and cells using the simplest straight-line interface (SI). By using the Leray-Schauder fixed-point theorem and the discrete energy method, it is shown that the resulting CEIDD-SI algorithm is uniquely solvable, unconditionally stable and convergent. The CEIDD-SI method always suffers from the globalization of data communication when interior boundaries cross into each other inside the domain. To overcome this disadvantage, a composite interface (CI) that consists of straight segments and zigzag fractions is suggested. The corresponding CEIDD-CI algorithm is proven to be solvable, stable and convergent. Numerical experiments are presented to support the theoretical results.
Two-dimensional thermal analysis of a fuel rod by finite volume method
Energy Technology Data Exchange (ETDEWEB)
Costa, Rhayanne Y.N.; Silva, Mario A.B. da; Lira, Carlos A.B. de O., E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamaento de Energia Nuclear
2015-07-01
In a nuclear reactor, the amount of power generation is limited by thermal and physic limitations rather than by nuclear parameters. The operation of a reactor core, considering the best heat removal system, must take into account the fact that the temperatures of fuel and cladding shall not exceed safety limits anywhere in the core. If such considerations are not considered, damages in the fuel element may release huge quantities of radioactive materials in the coolant or even core meltdown. Thermal analyses for fuel rods are often accomplished by considering one-dimensional heat diffusion equation. The aim of this study is to develop the first paper to verify the temperature distribution for a two-dimensional heat transfer problem in an advanced reactor. The methodology is based on the Finite Volume Method (FVM), which considers a balance for the property of interest. The validation for such methodology is made by comparing numerical and analytical solutions. For the two-dimensional analysis, the results indicate that the temperature profile agree with expected physical considerations, providing quantitative information for the development of advanced reactors. (author)
Implicit finite-difference methods for the Euler equations
Pulliam, T. H.
1985-01-01
The present paper is concerned with two-dimensional Euler equations and with schemes which are in use of the time of this writing. Most of the development presented carries over directly to three dimensions. The characteristics of the two-dimensional Euler equations in Cartesian coordinates are considered along with generalized curvilinear coordinate transformations, metric relations, invariants of the transformation, flux Jacobian matrices and eigensystems, numerical algorithms, flux split algorithms, implicit and explicit nonlinear control (smoothing), upwind differencing in supersonic regions, unsteady and steady-state computation, the diagonal form of implicit algorithm, metric differencing and invariants, boundary conditions, geometry and mesh generation, and sample solutions.
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R
2015-01-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear", introduced by Farazmand, Blazevski, and Haller [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our techniqu...
Directory of Open Access Journals (Sweden)
Kunal Pathak
2016-09-01
Full Text Available The calcium signaling plays a crucial role in expansion and contraction of cardiac myocytes. This calcium signaling is achieved by calcium diffusion, buffering mechanisms and influx in cardiac myocytes. The various calcium distribution patterns required for achieving calcium signaling in myocytes are still not well understood. In this paper an attempt has been made to develop a model of calcium distribution in myocytes incorporating diffusion of calcium, point source and excess buffer approximation. The model has been developed for a two dimensional unsteady state case. Appropriate boundary conditions and initial condition have been framed. The finite element method has been employed to obtain the solution. The numerical results have been used to study the effect of buffers and source amplitude on calcium distribution in myocytes.
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
Transmission and reflection properties of two-dimensional finite metal crystals
Roszkiewicz, Agata; Nasalski, Wojciech
2017-07-01
Optical characteristics of a finite two-dimensional silver stripe photonic crystal of a square lattice are numerically analysed with use of multilayer Rigorous Coupled Wave Analysis. Qualitative changes in optical response of the crystal originated from modifications of the thickness and filling factors of each layer and the polarization direction of the incident wave are shown. The crystal manifests its various characteristics in wideband or narrowband reflection and transmission, while absorption remains low. The behaviour of the crystal is determined by its structure geometry yielding excitation of localized plasmons and collective modes together with interactions between them. The optical response of the square lattice structure is also compared with the response of a triangular lattice crystal.
Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail
Alansatan, Sait
An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24
Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance
Liang, Zhichun; Crepeau, Richard H.; Freed, Jack H.
2005-12-01
Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
Finite-time scaling via linear driving: application to the two-dimensional Potts model.
Huang, Xianzhi; Gong, Shurong; Zhong, Fan; Fan, Shuangli
2010-04-01
We apply finite-time scaling to the q-state Potts model with q=3 and 4 on two-dimensional lattices to determine its critical properties. This consists in applying to the model a linearly varying external field that couples to one of its q states to manipulate its dynamics in the vicinity of its criticality and that drives the system out of equilibrium and thus produces hysteresis and in defining an order parameter other than the usual one and a nonequilibrium susceptibility to extract coercive fields. From the finite-time scaling of the order parameter, the coercivity, and the hysteresis area and its derivative, we are able to determine systematically both static and dynamic critical exponents as well as the critical temperature. The static critical exponents obtained in general and the magnetic exponent delta in particular agree reasonably with the conjectured ones. The dynamic critical exponents obtained appear to confirm the proposed dynamic weak universality but unlikely to agree with recent short-time dynamic results for q=4. Our results also suggest an alternative way to characterize the weak universality.
Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.
2016-05-01
Progress in describing thermodynamic phase transitions in quantum systems is obtained by noticing that the Gibbs operator e-β H for a two-dimensional (2D) lattice system with a Hamiltonian H can be represented by a three-dimensional tensor network, the third dimension being the imaginary time (inverse temperature) β . Coarse graining the network along β results in a 2D projected entangled-pair operator (PEPO) with a finite bond dimension D . The coarse graining is performed by a tree tensor network of isometries. The isometries are optimized variationally, taking into account full tensor environment, to maximize the accuracy of the PEPO. The algorithm is applied to the isotropic quantum compass model on an infinite square lattice near a symmetry-breaking phase transition at finite temperature. From the linear susceptibility in the symmetric phase and the order parameter in the symmetry-broken phase, the critical temperature is estimated at Tc=0.0606 (4 ) J , where J is the isotropic coupling constant between S =1/2 pseudospins.
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
Energy Technology Data Exchange (ETDEWEB)
Carpenter, D.C.
1997-04-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions.
Two-dimensional finite elements model for boron management in agroforestry sites.
Tayfur, Gokmen; Tanji, Kenneth K; Baba, Alper
2010-01-01
Agroforesty systems, which are recommended as a management option to lower the shallow groundwater level and to reuse saline subsurface drainage waters from the tile-drained croplands in the drainage-impacted areas of Jan Joaquin Valley of California, have resulted in excessive boron buildup in the soil root zone. To assess the efficacy of the long-term impacts of soil boron buildup in agroforesty systems, a mathematical model was developed to simulate non-conservative boron transport. The developed dynamic two-dimensional finite element model simulates water flow and boron transport in saturated-unsaturated soil system, including boron sorption and boron uptake by root-water extraction processes. The simulation of two different observed field data sets by the developed model is satisfactory, with mean absolute error of 1.5 mg/L and relative error of 6.5%. Application of the model to three different soils shows that boron adsorption is higher in silt loam soil than that in sandy loam and clay loam soils. This result agrees with the laboratory experimental observations. The results of the sensitivity analysis indicate that boron uptake by root-water extraction process influences the boron concentration distribution along the root zone. Also, absorption coefficient and maximum adsorptive capacity of a soil for boron are found to be sensitive parameters.
Numerical investigations on the finite time singularity in two-dimensional Boussinesq equations
Yin, Z
2006-01-01
To investigate the finite time singularity in three-dimensional (3D) Euler flows, the simplified model of 3D axisymmetric incompressible fluids (i.e., two-dimensional Boussinesq approximation equations) is studied numerically. The system describes a cap-like hot zone of fluid rising from the bottom, while the edges of the cap lag behind, forming eye-like vortices. The hot liquid is driven by the buoyancy and meanwhile attracted by the vortices, which leads to the singularity-forming mechanism in our simulation. In the previous 2D Boussinesq simulations, the symmetricial initial data is used. However, it is observed that the adoption of symmetry leads to coordinate singularity. Moreover, as demonstrated in this work that the locations of peak values for the vorticity and the temperature gradient becomes far apart as $t$ approaches the predicted blow-up time. This suggests that the symmetry assumption may be unreasonable for searching solution blow-ups. One of the main contributions of this work is to propose a...
Two-dimensional finite volume method for dam-break flow simulation
Institute of Scientific and Technical Information of China (English)
M.ALIPARAST
2009-01-01
A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).
An implicit finite-difference operator for the Helmholtz equation
Chu, Chunlei
2012-07-01
We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.
Energy Technology Data Exchange (ETDEWEB)
He, Pei-Song, E-mail: hepeisong@th.btbu.edu.cn; Zhao, Jia; Geng, Ai-Cong; Xu, Deng-Hui; Hu, Rong
2013-11-01
We prove that in a two-dimensional homogeneous boson system with Rashba spin–orbit coupling, Bose–Einstein condensate with plane-wave order is unstable at finite temperature. The calculations are based on a nonlinear sigma model scheme. The density wave contributions to the thermal deletions are divergent in the infrared limit. The behavior of the divergence is different from that without spin–orbit coupling.
A Study of Two-Dimensional Unsteady Breaking Waves in Finite-Depth Water
2010-01-01
1880). [8] J. H. Duncan, “An experimental investigation of breaking waves produced by a towed hydrofoil ,” Proc. R. Soc. London, Ser. A 377, 331(1981...measured the drag per unit length due to quasi-steady breaking waves generated with a submerged hydrofoil . His measurements illustrated that the... hydrofoil . Proc. R. Soc. London Ser. A 377, 331-348. DUNCAN, J. H. 1983 The breaking and non-breaking wave resistance of a two- dimensional hydrofoil . J
Tomé, M. F.; Bertoco, J.; Oishi, C. M.; Araujo, M. S. B.; Cruz, D.; Pinho, F. T.; Vynnycky, M.
2016-04-01
This work is concerned with the numerical solution of the K-BKZ integral constitutive equation for two-dimensional time-dependent free surface flows. The numerical method proposed herein is a finite difference technique for simulating flows possessing moving surfaces that can interact with solid walls. The main characteristics of the methodology employed are: the momentum and mass conservation equations are solved by an implicit method; the pressure boundary condition on the free surface is implicitly coupled with the Poisson equation for obtaining the pressure field from mass conservation; a novel scheme for defining the past times t‧ is employed; the Finger tensor is calculated by the deformation fields method and is advanced in time by a second-order Runge-Kutta method. This new technique is verified by solving shear and uniaxial elongational flows. Furthermore, an analytic solution for fully developed channel flow is obtained that is employed in the verification and assessment of convergence with mesh refinement of the numerical solution. For free surface flows, the assessment of convergence with mesh refinement relies on a jet impinging on a rigid surface and a comparison of the simulation of a extrudate swell problem studied by Mitsoulis (2010) [44] was performed. Finally, the new code is used to investigate in detail the jet buckling phenomenon of K-BKZ fluids.
Spectral Properties of the Two-Dimensional Laplacian with a Finite Number of Point Interactions
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1997-01-01
We discuss spectral properties of the Laplacian with multiple ($N$) point interactions in two-dimensional bounded regions. A mathematically sound formulation for the problem is given within the framework of the self-adjoint extension of a symmetric (Hermitian) operator in functional analysis. The eigenvalues of this system are obtained as the poles of a transition matrix which has size $N$. Closely examining a generic behavior of the eigenvalues of the transition matrix as a function of the energy, we deduce the general condition under which point interactions have a substantial effect on statistical properties of the spectrum.
CHEBYSHEV SPECTRAL-FINITE ELEMENT METHOD FOR TWO-DIMENSIONAL UNSTEADY NAVIER-STOKES EQUATION
Institute of Scientific and Technical Information of China (English)
Benyu Guo; Songnian He; Heping Ma
2002-01-01
A mixed Chebyshev spectral-finite element method is proposed for solving two-dimensionalunsteady Navier-Stokes equation. The generalized stability and convergence are proved.The numerical results show the advantages of this method.
Energy Technology Data Exchange (ETDEWEB)
Neumann, A.U.; Derrida, B.
1988-10-01
We study the time evolution of two configurations submitted to the same thermal noise for several two dimensional models (Ising ferromagnet, symmetric spin glass, non symmetric spin glass). For all these models, we find a non zero critical temperature above which the two configurations always meet. Using finite size scaling ideas, we determine for these three models this dynamical phase transition and some of the critical exponents. For the ferromagnet, the transition T/sub c/ approx. = 2.25 coincides with the Curie temperature whereas for the two spin glass models +- J distribution of bonds) we obtain T/sub c/ approx. = 1.5-1.7.
Dyer, Gregory C; Preu, Sascha; Vinh, N Q; Allen, S James; Reno, John L; Shaner, Eric A
2016-01-01
We measured a change in the current transport of an antenna-coupled, multi-gate, GaAs/AlGaAs field-effect transistor when terahertz electromagnetic waves irradiated the transistor and attribute the change to bolometric heating of the electrons in the two-dimensional electron channel. The observed terahertz absorption spectrum indicates coherence between plasmons excited under adjacent biased device gates. The experimental results agree quantitatively with a theoretical model we developed that is based on a generalized plasmonic transmission line formalism and describes an evolution of the plasmonic spectrum with increasing electron density modulation from homogeneous to the crystal limit. These results demonstrate an electronically induced and dynamically tunable plasmonic band structure.
Finite size scaling analysis of intermittency moments in the two dimensional Ising model
Burda, Z; Peschanski, R; Wosiek, J
1993-01-01
Finite size scaling is shown to work very well for the block variables used in intermittency studies on a 2-d Ising lattice. The intermittency exponents so derived exhibit the expected relations to the magnetic critical exponent of the model. Email contact: pesch@amoco.saclay.cea.fr
Horowitz, A; Sheinman, I; Lanir, Y; Perl, M; Sideman, S
1988-02-01
A two-dimensional incompressible plane-stress finite element is formulated for the simulation of the passive-state mechanics of thin myocardial strips. The formulation employs a total Lagrangian and materially nonlinear approach, being based on a recently proposed structural material law, which is derived from the histological composition of the tissue. The ensuing finite element allows to demonstrate the mechanical properties of a single myocardial layer containing uniformly directed fibers by simulating various loading cases such as tension, compression and shear. The results of these cases show that the fiber direction is considerably stiffer than the cross-fiber direction, that there is significant coupling between these two directions, and that the shear stiffness of the tissue is lower than its tensile and compressive stiffness.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
Energy Technology Data Exchange (ETDEWEB)
Stone, C.M.
1997-07-01
SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.
Kim, Kyungmok; Géringer, Jean; 10.1177/0954411911422843
2012-01-01
This paper describes a two-dimensional (2D) finite element simulation for fracture and fatigue behaviours of pure alumina microstructures such as those found at hip prostheses. Finite element models are developed using actual Al2O3 microstructures and a bilinear cohesive zone law. Simulation conditions are similar to those found at a slip zone in a dry contact between a femoral head and an acetabular cup of hip prosthesis. Contact stresses are imposed to generate cracks in the models. Magnitudes of imposed stresses are higher than those found at the microscopic scale. Effects of microstructures and contact stresses are investigated in terms of crack formation. In addition, fatigue behaviour of the microstructure is determined by performing simulations under cyclic loading conditions. It is shown that crack density observed in a microstructure increases with increasing magnitude of applied contact stress. Moreover, crack density increases linearly with respect to the number of fatigue cycles within a given con...
Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.
2007-04-01
A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.
Critical Casimir force scaling functions of the two-dimensional Ising model at finite aspect ratios
Hobrecht, Hendrik; Hucht, Alfred
2017-02-01
We present a systematic method to calculate the universal scaling functions for the critical Casimir force and the according potential of the two-dimensional Ising model with various boundary conditions. Therefore we start with the dimer representation of the corresponding partition function Z on an L× M square lattice, wrapped around a torus with aspect ratio ρ =L/M . By assuming periodic boundary conditions and translational invariance in at least one direction, we systematically reduce the problem to a 2× 2 transfer matrix representation. For the torus we first reproduce the results by Kaufman and then give a detailed calculation of the scaling functions. Afterwards we present the calculation for the cylinder with open boundary conditions. All scaling functions are given in form of combinations of infinite products and integrals. Our results reproduce the known scaling functions in the limit of thin films ρ \\to 0 . Additionally, for the cylinder at criticality our results confirm the predictions from conformal field theory.
A Finite-Element Solution of the Navier-Stokes Equations for Two-Dimensional and Axis-Symmetric Flow
Directory of Open Access Journals (Sweden)
Sven Ø. Wille
1980-04-01
Full Text Available The finite element formulation of the Navier-Stokes equations is derived for two-dimensional and axis-symmetric flow. The simple triangular, T6, isoparametric element is used. The velocities are interpolated by quadratic polynomials and the pressure is interpolated by linear polynomials. The non-linear simultaneous equations are solved iteratively by the Newton-Raphson method and the element matrix is given in the Newton-Raphson form. The finite element domain is organized in substructures and an equation solver which works on each substructure is specially designed. This equation solver needs less storage in the computer and is faster than the traditional banded equation solver. To reduce the amount of input data an automatic mesh generator is designed. The input consists of the coordinates of eight points defining each substructure with the corresponding boundary conditions. In order to interpret the results they are plotted on a calcomp plotter. Examples of plots of the velocities, the streamlines and the pressure inside a two-dimensional flow divider and an axis-symmetric expansion of a tube are shown for various Reynolds numbers.
Laser heating of finite two-dimensional dust clusters: A. Experiments
Energy Technology Data Exchange (ETDEWEB)
Schablinski, Jan; Block, Dietmar; Piel, Alexander [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel, 24098 Kiel (Germany); Melzer, Andre [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet Greifswald, 17487 Greifswald (Germany); Thomsen, Hauke; Kaehlert, Hanno; Bonitz, Michael [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts-Universitaet zu Kiel, 24098 Kiel (Germany)
2012-01-15
Laser manipulation allows to control the kinetic particle temperature in dusty plasmas. Different methods of laser heating for plasma crystals are benchmarked experimentally. The methods are analyzed with respect to homogeneity and isotropy in a spatial, temporal, and statistical sense. It is shown that it is possible to achieve particle dynamics very close to thermal equilibrium and that laser heating methods allow for a detailed study of phase transitions in finite size systems.
Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case
Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun
2008-07-01
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.
Implicit Finite-Size Effects in Computer Simulations
Denton, A. R.; EGELSTAFF, P. A.
1997-01-01
The influence of periodic boundary conditions (implicit finite-size effects) on the anisotropy of pair correlations in computer simulations is studied for a dense classical fluid of pair-wise interacting krypton atoms near the triple point. Molecular dynamics simulation data for the pair distribution function of N-particle systems, as a function of radial distance, polar angle, and azimuthal angle are compared directly with corresponding theoretical predictions [L. R. Pratt and S. W. Haan, J....
Energy Technology Data Exchange (ETDEWEB)
Christe, P.; Flume, R.
1987-04-09
We investigate the structure of the linear differential operators whose solutions determine the four-point correlations of primary operators in the d=2 conformally invariant SU(2) sigma-model with Wess-Zumino term and the d=2 critical statistical systems with central Virasoro charge smaller than one. Factorisation properties of the differential operators are related to a finite closure of the operator algebras. We recover the selection and fusion rules of Fateev, Zamolodchikov and Gepner, Witten for the SU(2) sigma-model. It is outlined how the results of the SU(2) model can be used for the identification of closed operator algebras in the statistical model.
Energy Technology Data Exchange (ETDEWEB)
Christe, P.; Flume, R.
1986-10-01
We investigate the structure of the linear differential operators whose solutions determine the four point correlations of primary operators in the d=2 conformally invariant SU(2) sigma-model with Wess-Zumino term and the d=2 critical statistical systems with central Virasoro charge smaller than one. Factorisation properties of the differential operators are related to a finite closure of the operator algebras. We recover the selection and fusion rules of Fateev, Zamolodchikov and Gepner, Witten for the SU(2) sigma-model. It is outlined how the results of the SU(2) model can be used for the identification of closed operator algebras in the statistical model.
Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-09-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a trade-off between accuracy and computational costs to incorporate Q into 2-D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second order in time and fourth order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Two-Dimensional Large Deformation Finite Element Analysis for the Pulling-up of Plate Anchor
Institute of Scientific and Technical Information of China (English)
WANG Dong; HU Yu-xia; JIN Xia
2006-01-01
Based on mesh regeneration and stress interpolation from an old mesh to a new one, a large deformation finite element model is developed for the study of the behaviour of circular plate anchors subjected to uplift loading. For the determination of the distributions of stress components across a clay foundation, the Recovery by Equilibrium in Patches is extended to plastic analyses. ABAQUS, a commercial finite element package, is customized and linked into our program so as to keep automatic and efficient running of large deformation calculation. The quality of stress interpolation is testified by evaluations of Tresca stress and nodal reaction forces. The complete pulling-up processes of plate anchors buried in homogeneous clay are simulated, and typical pulling force-displacement responses of a deep anchor and a shallow anchor are compared. Different from the results of previous studies, large deformation analysis is of the capability of estimating the breakaway between the anchor bottom and soils. For deep anchors, the variation of mobilized uplift resistance with anchor settlement is composed of three stages, and the initial buried depths of anchors affect the separation embedment slightly. The uplift bearing capacity of deep anchors is usually higher than that of shallow anchors.
Two Dimensional Finite Element Analysis for the Effect of a Pressure Wave in the Human Brain
Ponce L., Ernesto; Ponce S., Daniel
2008-11-01
Brain injuries in people of all ages is a serious, world-wide health problem, with consequences as varied as attention or memory deficits, difficulties in problem-solving, aggressive social behavior, and neuro degenerative diseases such as Alzheimer's and Parkinson's. Brain injuries can be the result of a direct impact, but also pressure waves and direct impulses. The aim of this work is to develop a predictive method to calculate the stress generated in the human brain by pressure waves such as high power sounds. The finite element method is used, combined with elastic wave theory. The predictions of the generated stress levels are compared with the resistance of the arterioles that pervade the brain. The problem was focused to the Chilean mining where there are some accidents happen by detonations and high sound level. There are not formal medical investigation, however these pressure waves could produce human brain damage.
Numerical simulation of shallow-water flooding using a two-dimensional finite volume model
Institute of Scientific and Technical Information of China (English)
YUAN Bing; SUN Jian; YUAN De-kui; TAO Jian-hua
2013-01-01
A 2-D Finite Volume Model (FVM) is developed for shallow water flows over a complex topography with wetting and drying processes.The numerical fluxes are computed using the Harten,Lax,and van Leer (HLL) approximate Riemann solver.Second-order accuracy is achieved by employing the MUSCL reconstruction method with a slope limiter in space and an explicit two-stage Runge-Kutta method for time integration.A simple and efficient method is introduced to deal with the wetting and drying processes without any correction of the numerical flux term or the source term.In this new method,a switch of alternative schemes is used to compute the water depths at the cell interface to obtain the numerical flux.The model is verified against benchmark tests with analytical solutions and laboratory experimental data.The numerical results show that the model can simulate different types of flood waves from the ideal flood wave to cases over complex terrains.The satisfactory performance indicates an extensive application prospect of the present model in view of its simplicity and effectiveness.
Two-dimensional finite-element modeling of periodical interdigitated full organic solar cells
Granero, P.; Balderrama, V. S.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F.
2013-01-01
By means of finite-element numerical modeling, we analyze the influence of the nanostructured dissociation interface geometry on the behavior of interdigitated heterojunction full organic solar cells. A systematic analysis of light absorption, exciton diffusion, and carrier transport, all in the same numerical framework, is carried out to obtain their dependence on the interface geometrical parameters: pillar diameter and height, and nanostructure period. Cells are constituted of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61. Results show that light absorption is maximum for pillar heights of 80 nm and 230 nm. However, due to the short exciton diffusion length of organic materials, the analysis of the exciton diffusion process reveals that the 80 nm thickness gives rise to a higher photocurrent, except for the smaller pillar diameters. In terms of efficiency, it has been observed that the charge carrier transport is weakly dependent on the geometric parameters of the nanostructured interface if compared with the exciton diffusion process. The optimal cell is a device with a pillar height of 80 nm, a structure period of 25 nm, and a ratio of the nanopillar diameter to the period of 0.75, with an efficiency 3.6 times higher than the best planar bilayer reference device. This structure is such that it reaches a compromise between having a high proportion of P3HT to increase light absorption but preserving a small pillar diameter and interpillar distance to ensure an extended exciton dissociation interface.
Explicit and implicit finite difference schemes for fractional Cattaneo equation
Ghazizadeh, H. R.; Maerefat, M.; Azimi, A.
2010-09-01
In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor-corrector and totally implicit schemes have been developed. In developing each scheme, a separate formulation approach for the governing equations has been considered. The explicit predictor-corrector scheme is the fractional generalization of well-known MacCormack scheme and has been called Generalized MacCormack scheme. This scheme solves two coupled low-order equations and simultaneously computes the flux term with the main variable. Fully implicit scheme however solves a single high-order undecomposed equation. For Generalized MacCormack scheme, stability analysis has been studied through Fourier method. Through a numerical test, the experimental order of convergency of both schemes has been found. Then, the domain of applicability and some numerical properties of each scheme have been discussed.
Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.
2015-11-01
Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.
Katyal, A. K.; Kaluarachchi, J. J.; Parker, J. C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The required inputs for flow and transport analysis are described. Detailed instructions for creating data files needed to run the program and examples of input and output files are given in appendices.
Hindman, R. G.
1985-09-01
Theoretical background and several basic test cases are presented for a new, time dependent Navier-Stokes solver for two-dimensional and axisymmetric flows. The goal of the effort is to invoke state-of-the-art computational fluid dynamics (CFD) technology to improve modeling of viscous phenomenal and to increase the robustness of CFD analysis. The original motivation was inadequate representation of supersonic ramp-induced separation by existing CFD codes. The present work addresses that inadequacy by using modern numerical methods which accurately model signal propagation in high-speed fluid flow. This technique solves the Navier-Stokes equations in general curvilinear coordinates in a four-sided domain bounded by a wall, and upper boundary opposite the wall, an inflow boundary, and an outflow boundary. The interior algorithm is a flux-difference splitting method similar to that of Yang, Lombard, and Bershader, but is blended into a second order, implicit factored delta form. With implicitly treated boundary conditions, the solution is performed using a block tridiagonal method followed by an explicit updating of the boundaries. The resulting scheme satisfies the global conversation requirement to within the order of accuracy of the algorithm. The grid is generated using a relaxation Poisson solver. A systematic and rigorous development of the complete method is presented. Initial steps in code validation include successful reproduction of Couette and Blasius solutions.
Implicit extrapolation methods for multilevel finite element computations
Energy Technology Data Exchange (ETDEWEB)
Jung, M.; Ruede, U. [Technische Universitaet Chemnitz-Zwickau (Germany)
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Bohling, G.C.; Butler, J.J.
2001-01-01
We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.
Ozevin, Didem; Fazel, Hossein; Cox, Justin; Hardman, William; Kessler, Seth S.; Timmons, Alan
2014-04-01
Gearbox components of aerospace structures are typically made of brittle materials with high fracture toughness, but susceptible to fatigue failure due to continuous cyclic loading. Structural Health Monitoring (SHM) methods are used to monitor the crack growth in gearbox components. Damage detection methodologies developed in laboratory-scale experiments may not represent the actual gearbox structural configuration, and are usually not applicable to real application as the vibration and wave properties depend on the material, structural layers and thicknesses. Also, the sensor types and locations are key factors for frequency content of ultrasonic waves, which are essential features for pattern recognition algorithm development in noisy environments. Therefore, a deterministic damage detection methodology that considers all the variables influencing the waveform signature should be considered in the preliminary computation before any experimental test matrix. In order to achieve this goal, we developed two dimensional finite element models of a gearbox cross section from front view and shaft section. The cross section model consists of steel revolving teeth, a thin layer of oil, and retention plate. An ultrasonic wave up to 1 MHz frequency is generated, and waveform histories along the gearbox are recorded. The received waveforms under pristine and cracked conditions are compared in order to analyze the crack influence on the wave propagation in gearbox, which can be utilized by both active and passive SHM methods.
Indian Academy of Sciences (India)
Bilge Inan; Ahmet Refik Bahadir
2013-10-01
This paper describes two new techniques which give improved exponential finite difference solutions of Burgers’ equation. These techniques are called implicit exponential finite difference method and fully implicit exponential finite difference method for solving Burgers’ equation. As the Burgers’ equation is nonlinear, the scheme leads to a system of nonlinear equations. At each time-step, Newton’s method is used to solve this nonlinear system. The results are compared with exact values and it is clearly shown that results obtained using both the methods are precise and reliable.
Beidokhti, H.N.; Janssen, D.W.; Khoshgoftar, M.; Sprengers, A.M.; Perdahcioglu, E.S.; Boogaard, T. van de; Verdonschot, N.J.
2016-01-01
The finite element (FE) method has been widely used to investigate knee biomechanics. Time integration algorithms for dynamic problems in finite element analysis can be classified as either implicit or explicit. Although previously both static/dynamic implicit and dynamic explicit method have been u
Directory of Open Access Journals (Sweden)
Saraswati Acharya
2015-08-01
Full Text Available Objective: To deal the implication of metabolic reaction relying on dermal thicknesses of males and females for temperature distribution on the layers of dermal part at various atmospheric temperatures. Methods: The mathematical model involving bioheat equation has been solved using finite element method and Crank-Nicolson technique to numerically investigate two dimensional temperature distributions. Initially, human dermal region under consideration is divided into six parts: stratum corneum, stratum germinativum, papillary region, reticular region, fatty layer and muscle part of subcutaneous tissue. Pennes bioheat equation is used considering the suitable physical and physiological parameters that affect the heat regulation in the layers. Computer simulation has been used for numerical results and graph of the temperatures profiles. Results: Lower percentage of muscle mass and higher percentage of adipose tissue in subcutaneous part of females result lower metabolic rate compared to males. Metabolism is considered as a heat source within the body tissue. The study delineates that when the metabolic heat generation S increases, body temperature rises and when S decreases, it goes down. In higher ambient temperature T∞ effect of S is lower as compared to lower T∞. Conclusions: Males and females would differ in their physiological responses in temperature distribution due to differences in metabolic heat production between genders. The thinner layers of males lead to higher values of skin temperature than thicker layer of females. Thickness plays a significant role in temperature distributions in human males and females body. Current understanding of human thermoregulation is based on male patterns; studies on women are still relatively rare and involve only small number of subjects. So it is still necessary for micro level study for temperature distribution model on the dermal layers of males and females.
Institute of Scientific and Technical Information of China (English)
SaraswatiAcharya; Dil Bahadur Gurung; Vinod Prakash Saxena
2015-01-01
Objective: To deal the implication of metabolic reaction relying on dermal thicknesses of males and females for temperature distribution on the layers of dermal part at various atmospheric temperatures. Methods: The mathematical model involving bioheat equation has been solved using finite element method and Crank-Nicolson technique to numerically investigate two dimensional temperature distributions. Initially, human dermal region under consideration is divided into six parts: stratum corneum, stratum germinativum, papillary region, reticular region, fatty layer and muscle part of subcutaneous tissue. Pennes bioheat equation is used considering the suitable physical and physiological parameters that affect the heat regulation in the layers. Computer simulation has been used for numerical results and graph of the temperatures profiles. Results: Lower percentage of muscle mass and higher percentage of adipose tissue in subcutaneous part of females result lower metabolic rate compared to males. Metabolism is considered as a heat source within the body tissue. The study delineates that when the metabolic heat generation S increases, body temperature rises and when S decreases, it goes down. In higher ambient temperature T∞ effect of S is lower as compared to lower T∞. Conclusions: Males and females would differ in their physiological responses in temperature distribution due to differences in metabolic heat production between genders. The thinner layers of males lead to higher values of skin temperature than thicker layer of females. Thickness plays a significant role in temperature distributions in human males and females body. Current understanding of human thermoregulation is based on male patterns; studies on women are still relatively rare and involve only small number of subjects. So it is still necessary for micro level study for temperature distribution model on the dermal layers of males and females.
Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai
2013-02-01
For efficient inversion code, the forward modeling routine, the sensitivity calculation, and the inversion algorithm must be efficient. Here, the hybrid finite difference-finite element algorithm, which is fast and accurate even when the slope of the topography is greater than 45°, is used as the forward modeling routine to calculate the responses. The sensitivity calculation is adapted from the most efficient adjoint Green's function technique. Both of these algorithms are then driven with the data space Occam's inversion. This combination of modules makes it possible to obtain an efficient inversion code based on MATLAB for two-dimensional direct current (DC) resistivity data. To demonstrate its efficiency, numerical experiments with our code and with commercial software are performed on synthetic data and real field data collected in the western part of Thailand where limestone and cavities dominate the region. In general, our code takes substantially longer than the commercial code to run but converges to a solution with a lower misfit. The result shows that the efficiency of our code makes it practical for real field surveys.
Kouhi, Mohammad; Oñate, Eugenio
2015-07-01
A new implicit stabilized formulation for the numerical solution of the compressible Navier-Stokes equations is presented. The method is based on the finite calculus (FIC) scheme using the Galerkin finite element method (FEM) on triangular grids. Via the FIC formulation, two stabilization terms, called streamline term and transverse term, are added to the original conservation equations in the space-time domain. The non-linear system of equations resulting from the spatial discretization is solved implicitly using a damped Newton method benefiting from the exact Jacobian matrix. The matrix system is solved at each iteration with a preconditioned GMRES method. The efficiency of the proposed stabilization technique is checked out in the solution of 2D inviscid and laminar viscous flow problems where appropriate solutions are obtained especially near the boundary layer and shock waves. The work presented here can be considered as a follow up of a previous work of the authors Kouhi, Oñate (Int J Numer Methods Fluids 74:872-897, 2014). In that paper, the stabilized Galerkin FEM based on the FIC formulation was derived for the Euler equations together with an explicit scheme. In the present paper, the extension of this work to the Navier-Stokes equations using an implicit scheme is presented.
Zhou, Chenggang; Landau, D. P.; Schulthess, Thomas C.
2006-01-01
By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point in $2+\\epsilon$ dimensions. We found that the long length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear $\\sigma$ model. Our Monte Carlo data and analysis confirm that the bicritical point in two dime...
Chakravarthy, S.
1978-01-01
An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.
Moortgat, Joachim; Soltanian, Mohamad Reza
2016-01-01
We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of mag...
Singh, Gurpreet; Tan, Eng Leong; Chen, Zhi Ning
2012-02-01
This Letter presents a split-step (SS) finite-difference time-domain (FDTD) method for the efficient analysis of two-dimensional (2-D) photonic crystals (PhCs) with anisotropic media. The proposed SS FDTD method is formulated with perfectly matched layer boundary conditions and caters for inhomogeneous anisotropic media. Furthermore, the proposed method is derived using the efficient SS1 splitting formulas with simpler right-hand sides that are more efficient and easier to implement. A 2-D PhC cavity with anisotropic media is used as an example to validate the efficiency of the proposed method.
Kastening, Boris
2012-10-01
Anisotropy effects on the finite-size critical behavior of a two-dimensional Ising model on a general triangular lattice in an infinite-strip geometry with periodic, antiperiodic, and free boundary conditions (bc) in the finite direction are investigated. Exact results are obtained for the scaling functions of the finite-size contributions to the free energy density. With ξ(>) the largest and ξ(temperature near criticality, we find that the dependence of these functions on the ratio ξ() and on the angle parametrizing the orientation of the correlation volume is of geometric nature. Since the scaling functions are independent of the particular microscopic realization of the anisotropy within the two-dimensional Ising model, our results provide a limited verification of universality. We explain our observations by considering finite-size scaling of free energy densities of general weakly anisotropic models on a d-dimensional film (i.e., in an L×∞(d-1) geometry) with bc in the finite direction that are invariant under a shear transformation relating the anisotropic and isotropic cases. This allows us to relate free energy scaling functions in the presence of an anisotropy to those of the corresponding isotropic system. We interpret our results as a simple and transparent case of anisotropic universality, where, compared to the isotropic case, scaling functions depend additionally on the shape and orientation of the correlation volume. We conjecture that this universality extends to cases where the geometry and/or the bc are not invariant under the shear transformation and argue in favor of validity of two-scale factor universality for weakly anisotropic systems.
Institute of Scientific and Technical Information of China (English)
LI Yuguo; LUO Ming; PEI Jianxin
2013-01-01
In this paper,we extend the scope of numerical simulations of marine controlled-source electromagnetic (CSEM) fields in a particular case of anisotropy (dipping anisotropy) to the general case of anisotropy by using an adaptive finite element approach.In comparison to a dipping anisotropy case,the first order spatial derivatives of the strike-parallel components arise in the partial differential equations for generally anisotropic media,which cause a non-symmetric linear system of equations for finite element modeling.The adaptive finite element method is employed to obtain numerical solutions on a sequence of refined unstructured triangular meshes,which allows for arbitrary model geometries including bathymetry and dipping layers.Numerical results of a 2D anisotropic model show both anisotropy strike and dipping angles have great influence on the marine CSEM responses.
Finite-temperature scaling close to Ising-nematic quantum critical points in two-dimensional metals
Punk, Matthias
2016-11-01
We study finite-temperature properties of metals close to an Ising-nematic quantum critical point in two spatial dimensions. In particular we show that at any finite temperature there is a regime where order parameter fluctuations are characterized by a dynamical critical exponent z =2 , in contrast to z =3 found at zero temperature. Our results are based on a simple Eliashberg-type approach, which gives rise to a boson self-energy proportional to Ω /γ (T ) at small momenta, where γ (T ) is the temperature dependent fermion scattering rate. These findings might shed some light on recent Monte Carlo simulations at finite temperature, where results consistent with z =2 were found.
Energy Technology Data Exchange (ETDEWEB)
Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others
2016-09-15
Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.
Bilgili, Ata; Smith, Keston W.; Lynch, Daniel R.
2006-06-01
A brief summary of Delaunay unstructured triangular grid refinement algorithms, including the recent "off-centers" method, is provided and mesh generation requirements that are imperative to meet the criteria of the circulation modeling community are defined. A Matlab public-domain two-dimensional (2-D) mesh generation package (BatTri) based on these requirements is then presented and its efficiency shown through examples. BatTri consists of a graphical mesh editing interface and several bathymetry-based refinement algorithms, complemented by a set of diagnostic utilities to check and improve grid quality. The final output mesh node locations, node depths and element incidence list are obtained starting from only a basic set of bathymetric data. This simple but efficient setup allows fast interactive mesh customization and provides circulation modelers with problem-specific flexibility while satisfying the usual requirements on mesh size and element quality. A test of the "off-centers" method performed on 100 domains with randomly generated coastline and bathymetry shows an overall 25% reduction in the number of elements with only slight decrease in element quality. More importantly, this shows that BatTri is easily upgradeable to meet the future demands by the addition of new grid generation algorithms and Delaunay refinement schemes as they are made available.
Settle, Sean O.
2013-01-01
The primary aim of this paper is to answer the question, What are the highest-order five- or nine-point compact finite difference schemes? To answer this question, we present several simple derivations of finite difference schemes for the one- and two-dimensional Poisson equation on uniform, quasi-uniform, and nonuniform face-to-face hyperrectangular grids and directly prove the existence or nonexistence of their highest-order local accuracies. Our derivations are unique in that we do not make any initial assumptions on stencil symmetries or weights. For the one-dimensional problem, the derivation using the three-point stencil on both uniform and nonuniform grids yields a scheme with arbitrarily high-order local accuracy. However, for the two-dimensional problem, the derivation using the corresponding five-point stencil on uniform and quasi-uniform grids yields a scheme with at most second-order local accuracy, and on nonuniform grids yields at most first-order local accuracy. When expanding the five-point stencil to the nine-point stencil, the derivation using the nine-point stencil on uniform grids yields at most sixth-order local accuracy, but on quasi- and nonuniform grids yields at most fourth- and third-order local accuracy, respectively. © 2013 Society for Industrial and Applied Mathematics.
Institute of Scientific and Technical Information of China (English)
陈蔚
2003-01-01
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.
A Two-Dimensional, Finite-Difference Model of the Oxidation of a Uranium Carbide Fuel Pellet
Shepherd, J; Fairweather, M; Hanson, BC; Heggs, PJ
2015-01-01
The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used...
Palma, G; Niedermayer, F; Rácz, Z; Riveros, A; Zambrano, D
2016-08-01
The zero-temperature, classical XY model on an L×L square lattice is studied by exploring the distribution Φ_{L}(y) of its centered and normalized magnetization y in the large-L limit. An integral representation of the cumulant generating function, known from earlier works, is used for the numerical evaluation of Φ_{L}(y), and the limit distribution Φ_{L→∞}(y)=Φ_{0}(y) is obtained with high precision. The two leading finite-size corrections Φ_{L}(y)-Φ_{0}(y)≈a_{1}(L)Φ_{1}(y)+a_{2}(L)Φ_{2}(y) are also extracted both from numerics and from analytic calculations. We find that the amplitude a_{1}(L) scales as ln(L/L_{0})/L^{2} and the shape correction function Φ_{1}(y) can be expressed through the low-order derivatives of the limit distribution, Φ_{1}(y)=[yΦ_{0}(y)+Φ_{0}^{'}(y)]^{'}. Thus, Φ_{1}(y) carries the same universal features as the limit distribution and can be used for consistency checks of universality claims based on finite-size systems. The second finite-size correction has an amplitude a_{2}(L)∝1/L^{2} and one finds that a_{2}Φ_{2}(y)≪a_{1}Φ_{1}(y) already for small system size (L>10). We illustrate the feasibility of observing the calculated finite-size corrections by performing simulations of the XY model at low temperatures, including T=0.
A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet
Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.
2015-12-01
The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.
Directory of Open Access Journals (Sweden)
R. Daud
2013-06-01
Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.
Kreider, Kevin L.; Baumeister, Kenneth J.
1996-01-01
An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Lansing, F. L.
1980-01-01
A numerical procedure was established using the finite-difference technique in the determination of the time-varying temperature distribution of a tubular solar collector under changing solar radiancy and ambient temperature. Three types of spatial discretization processes were considered and compared for their accuracy of computations and for selection of the shortest computer time and cost. The stability criteria of this technique were analyzed in detail to give the critical time increment to ensure stable computations. The results of the numerical analysis were in good agreement with the analytical solution previously reported. The numerical method proved to be a powerful tool in the investigation of the collector sensitivity to two different flow patterns and several flow control mechanisms.
Timofeev, Evgeny; Norouzi, Farhang
2016-06-01
The motivation for using hybrid, explicit-implicit, schemes rather than fully implicit or explicit methods for some unsteady high-speed compressible flows with shocks is firstly discussed. A number of such schemes proposed in the past are briefly overviewed. A recently proposed hybridization approach is then introduced and used for the development of a hybrid, explicit-implicit, TVD (Total Variation Diminishing) scheme of the second order in space and time on smooth solutions in both, explicit and implicit, modes for the linear advection equation. Further generalizations of this finite-volume method for the Burgers, Euler and Navier-Stokes equations discretized on unstructured grids are mentioned in the concluding remarks.
Chu, Chunlei
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.
Directory of Open Access Journals (Sweden)
Gu Feng
2006-01-01
Full Text Available The purpose of this paper is to study the weak and strong convergence of implicit iteration process with errors to a common fixed point for a finite family of nonexpansive mappings in Banach spaces. The results presented in this paper extend and improve the corresponding results of Chang and Cho (2003, Xu and Ori (2001, and Zhou and Chang (2002.
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
2005-01-01
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent
An implicit finite element method for discrete dynamic fracture
Energy Technology Data Exchange (ETDEWEB)
Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Energy Technology Data Exchange (ETDEWEB)
Katyal, A.K.; Kaluarachchi, J.J.; Parker, J.C.
1991-05-01
The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.
Energy Technology Data Exchange (ETDEWEB)
BHARDWAJ, MANLJ K.; REESE,GARTH M.; DRIESSEN,BRIAN; ALVIN,KENNETH F.; DAY,DAVID M.
2000-04-06
As computational needs for structural finite element analysis increase, a robust implicit structural dynamics code is needed which can handle millions of degrees of freedom in the model and produce results with quick turn around time. A parallel code is needed to avoid limitations of serial platforms. Salinas is an implicit structural dynamics code specifically designed for massively parallel platforms. It computes the structural response of very large complex structures and provides solutions faster than any existing serial machine. This paper gives a current status of Salinas and uses demonstration problems to show Salinas' performance.
Stability of Semi-implicit Finite Volume Scheme for Level Set Like Equation
Institute of Scientific and Technical Information of China (English)
Kim Kwang-il; Son Yong-chol
2015-01-01
We study numerical methods for level set like equations arising in im-age processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845–866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W 1,2 (W 1,1) sense in isotropic (anisotropic) diffu-sion domain.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Adaptive implicit-explicit finite element algorithms for fluid mechanics problems
Tezduyar, T. E.; Liou, J.
1988-01-01
The adaptive implicit-explicit (AIE) approach is presented for the finite-element solution of various problems in computational fluid mechanics. In the AIE approach, the elements are dynamically (adaptively) arranged into differently treated groups. The differences in treatment could be based on considerations such as the cost efficiency, the type of spatial or temporal discretization employed, the choice of field equations, etc. Several numerical tests are performed to demonstrate that this approach can achieve substantial savings in CPU time and memory.
Kumari, Babita; Adlakha, Neeru
2015-02-01
Thermoregulation is a complex mechanism regulating heat production within the body (chemical thermoregulation) and heat exchange between the body and the environment (physical thermoregulation) in such a way that the heat exchange is balanced and deep body temperatures are relatively stable. The external heat transfer mechanisms are radiation, conduction, convection and evaporation. The physical activity causes thermal stress and poses challenges for this thermoregulation. In this paper, a model has been developed to study temperature distribution in SST regions of human limbs immediately after physical exercise under cold climate. It is assumed that the subject is doing exercise initially and comes to rest at time t = 0. The human limb is assumed to be of cylindrical shape. The peripheral region of limb is divided into three natural components namely epidermis, dermis and subdermal tissues (SST). Appropriate boundary conditions have been framed based on the physical conditions of the problem. Finite difference has been employed for time, radial and angular variables. The numerical results have been used to obtain temperature profiles in the SST region immediately after continuous exercise for a two-dimensional unsteady state case. The results have been used to analyze the thermal stress in relation to light, moderate and vigorous intensity exercise.
Directory of Open Access Journals (Sweden)
Jiancai Huang
2012-01-01
Full Text Available We introduce an implicit and explicit iterative schemes for a finite family of nonexpansive semigroups with the Meir-Keeler-type contraction in a Banach space. Then we prove the strong convergence for the implicit and explicit iterative schemes. Our results extend and improve some recent ones in literatures.
Naghibi Beidokhti, Hamid; Janssen, Dennis; Khoshgoftar, Mehdi; Sprengers, Andre; Perdahcioglu, Emin Semih; Van den Boogaard, Ton; Verdonschot, Nico
2016-10-01
The finite element (FE) method has been widely used to investigate knee biomechanics. Time integration algorithms for dynamic problems in finite element analysis can be classified as either implicit or explicit. Although previously both static/dynamic implicit and dynamic explicit method have been used, a comparative study on the outcomes of both methods is of high interest for the knee modeling community. The aim of this study is to compare static, dynamic implicit and dynamic explicit solutions in analyses of the knee joint to assess the prediction of dynamic effects, potential convergence problems, the accuracy and stability of the calculations, the difference in computational time, and the influence of mass-scaling in the explicit formulation. The heel-strike phase of fast, normal and slow gait was simulated for two different body masses in a model of the native knee. Our results indicate that ignoring the dynamic effect can alter joint motion. Explicit analyses are suitable to simulate dynamic loading of the knee joint in high-speed simulations, as this method offers a substantial reduction of the computational time with a similar prediction of cartilage stresses and meniscus strains. Although mass-scaling can provide even more gain in computational time, it is not recommended for high-speed activities, in which inertial forces play a significant role. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Ramos, D
2008-01-01
The short interconnect length between the LHC superconducting magnets required the development of an optimised RF shielded bellows module, with a low impedance combined with compensation for large thermal displacements and alignment lateral offsets. Each bellows is shielded by slender copper-beryllium fingers working as preloaded beams in order to provide a constant force at the sliding contact. Unless the sliding friction and some geometrical parameters of the fingers are kept within a limited range, a large irreversible lateral deflection towards the vacuum chamber axis may occur and eventually block the beam aperture. The finite element analysis presented here simulates this failure mechanism, providing a complete understanding of the finger behaviour as well as the influence of the various design parameters. An implicit nonlinear two-dimensional model integrating friction on the sliding contacts, geometrical non-linearity and plasticity was implemented in a first stage. The design was then verified throug...
Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza
2016-10-01
We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.
Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.
2017-10-01
We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.
A finite volume alternate direction implicit approach to modeling selective laser melting
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Mohanty, Sankhya
2013-01-01
is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation......Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...
Directory of Open Access Journals (Sweden)
Wong NC
2006-01-01
Full Text Available We study an implicit predictor-corrector iteration process for finitely many asymptotically quasi-nonexpansive self-mappings on a nonempty closed convex subset of a Banach space . We derive a necessary and sufficient condition for the strong convergence of this iteration process to a common fixed point of these mappings. In the case is a uniformly convex Banach space and the mappings are asymptotically nonexpansive, we verify the weak (resp., strong convergence of this iteration process to a common fixed point of these mappings if Opial's condition is satisfied (resp., one of these mappings is semicompact. Our results improve and extend earlier and recent ones in the literature.
Rajagopal, K. R.; Srinivasa, A. R.
2016-08-01
The aim of this paper is to develop a new unified class of 3D nonlinear anisotropic finite deformation inelasticity model that (1) exhibits rate-independent or dependent hysteretic response (i.e., response wherein reversal of the external stimuli does not cause reversal of the path in state space) with or without yield surfaces. The hysteresis persists with quasistatic loading. (2) Encompasses a wide range of different types of inelasticity models (such as Mullins effect in rubber, rock and soil mechanics, traditional metal plasticity, hysteretic behavior of shape memory materials) into a simple unified framework that is relatively easy to implement in computational schemes and (3) does not require any a priori particular notion of plastic strain or yield function. The core idea behind the approach is the development of an system of implicit rate equations that allow for the continuity of the response but with different rates along different directions. The theory, which is in purely mechanical setting, subsumes and generalizes many commonly used approaches for hypoelasticity and rate-independent plasticity. We illustrate its capability by modeling the Mullins effect which is the inelastic behavior of certain rubbery materials. We are able to simulate the entire cyclic response without the use of additional internal variables, i.e., the entire response is modeled by using an implicit function of stress and strain measures and their rates.
A semi-implicit finite element method for viscous lipid membranes
Rodrigues, Diego S; Mut, Fernando; Buscaglia, Gustavo C
2014-01-01
We propose a robust simulation method for phospholipid membranes. It is based on a mixed three-field formulation that accounts for tangential fluidity (Boussinesq-Scriven law), bending elasticity (Canham-Helfrich model) and inextensibility. The unknowns are the velocity, vector curvature and surface pressure fields, all of which are interpolated with linear continuous finite elements. The method is semi-implicit - it requires the solution of a single linear system per time step. Conditional time stability is observed, with a time step restriction that scales as the square of the mesh size. Mesh quality and refinement are maintained by adaptively remeshing. Another ingredient is a numerical force that emulates the action of an optical tweezer, allowing for virtual interaction with the membrane. Extensive relaxation experiments are reported. Comparisons to exact shapes reveal the orders of convergence for position (5/3), vector curvature (3/2), surface pressure (1) and bending energy (2). Tweezing experiments a...
Hu, Zeming; Chen, Xuechun; Wu, Yulin
The block-implicit finite-difference method is used to calculate 3D incompressible turbulent flows in the body-fitted coordinate system. In the numerical discretization the hybrid difference scheme is used to treat Reynolds-averaged Navier-Stokes equations. The iterative solution of velocities and pressure on the flow field is obtained by solving simultaneously the Reynolds-averaged N-S equations and continuity equation for each cell. In the iterative process the Gauss-Seidel method is used to solve nonlinear algebraic equations. The turbulent flow is simulated by the k-epsilon turbulence modeling in conjunction with Reynolds equations. The turbulent flow of a curved duct with square cross sections is treated in detail.
Liu, Zhe; Lin, Lei; Xie, Lian; Gao, Huiwang
2016-10-01
To improve the efficiency of the terrain-following σ-coordinate non-hydrostatic ocean model, a partially implicit finite difference (PIFD) scheme is proposed. By using explicit terms instead of implicit terms to discretize the parts of the vertical dynamic pressure gradient derived from the σ-coordinate transformation, the coefficient matrix of the discrete Poisson equation that the dynamic pressure satisfies can be simplified from 15 diagonals to 7 diagonals. The PIFD scheme is shown to run stably when it is applied to simulate five benchmark cases, namely, a standing wave in a basin, a surface solitary wave, a lock-exchange problem, a periodic wave over a bar and a tidally induced internal wave. Compared with the conventional fully implicit finite difference (FIFD) scheme, the PIFD scheme produces simulation results of equivalent accuracy at only 40-60% of the computational cost. The PIFD scheme demonstrates strong applicability and can be easily implemented in σ-coordinate ocean models.
Directory of Open Access Journals (Sweden)
Gurucharan Singh Saluja
2010-01-01
Full Text Available In this paper, we give some necessary and sufficient conditions for an implicit iteration process with errors for a finite family of asymptotically quasi-nonexpansive mappings converging to a common fixed of the mappings in convex metric spaces. Our results extend and improve some recent results of Sun, Wittmann, Xu and Ori, and Zhou and Chang.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Belanger, R.; Venus, D.
2017-02-01
A two-dimensional (2D) percolation transition in Fe/W(110) ultrathin magnetic films occurs when islands in the second atomic layer percolate and resolve a frustrated magnetic state to produce long-range in-plane ferromagnetic order. Novel measurements of percolation using the magnetic susceptibility χ (θ ) as the films are deposited at a constant temperature, allow the long-range percolation transition to be observed as a sharp peak consistent with a critical phase transition. The measurements are used to trace the paramagnetic-to-ferromagnetic phase boundary between the T =0 percolation magnetic transition and the thermal Curie magnetic transition of the undiluted film. A quantitative comparison to critical scaling theory is made by fitting the functional form of the phase boundary. The fitted parameters are then used in theoretical expressions for χ (T ) in the critical region of the paramagnetic state to provide an excellent, independent representation of the experimental measurements.
Ashwin, T. R.; McGordon, A.; Widanage, W. D.; Jennings, P. A.
2017-02-01
The Pseudo Two Dimensional (P2D) porous electrode model is less preferred for real time calculations due to the high computational expense and complexity in obtaining the wide range of electro-chemical parameters despite of its superior accuracy. This paper presents a finite volume based method for re-parametrising the P2D model for any cell chemistry with uncertainty in determining precise electrochemical parameters. The re-parametrisation is achieved by solving a quadratic form of the Butler-Volmer equation and modifying the anode open circuit voltage based on experimental values. Thus the only experimental result, needed to re-parametrise the cell, reduces to the measurement of discharge voltage for any C-rate. The proposed method is validated against the 1C discharge data and an actual drive cycle of a NCR18650BD battery with NCA chemistry when driving in an urban environment with frequent accelerations and regenerative braking events. The error limit of the present model is compared with the electro-chemical prediction of LiyCoO2 battery and found to be superior to the accuracy of the model presented in the literature.
Institute of Scientific and Technical Information of China (English)
张德悦; 马富明
2004-01-01
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.
Arif, Abul Fazal Muhammad
1991-12-01
The details of formulation, numerical implementation, and evaluation of an implicit finite element procedure for nonlinear problems involving large deformation and/or large rotations is presented. A two parameter family of incrementally objective integration schemes is proposed for the analysis of a hypoelastic model with a broad range of unified rate-dependent viscoplastic constitutive models in large deformation problems. These algorithms are a generalization of the mid-point integration rule. An important step in the solution of nonlinear deformation problems using a Newton-Raphson type of iterative scheme is the calculation of a tangent operator (the so-called Jacobian) by linearizing the involved field equations. Full linearization of the virtual work equation is performed in an updated Lagrangian framework together with a calculation of the consistent linearized material moduli. In general, the reference configuration is updated after each iteration to coincide instantaneously with the present guess of the unknown equilibrium configuration. Another approach is to use the previous equilibrium state as the reference configuration until the new equilibrium configuration at the end of the time step is found. The performance of the family of incrementally objective integration schemes and the two different Jacobians is explored with emphasis on their accuracy and convergence characteristics when large incremental steps are used. Some details of the finite element implementation are given for plane strain and axisymmetric problems and results for several numerical test and practical examples are presented and discussed. Finally, the above computational procedure is extended to problems where the theory of exact kinematics is considered and the hyperelastic approximation is used.
Britton, Paul; Loughran, Jeff
This paper outlines a computational procedure that has been implemented for the direct measurement of finite material strains from digital images taken of a material surface during plane-strain process experiments. The selection of both hardware and software components of the image processing system is presented, and the numerical procedures developed for measuring the 2D material deformations are described. The algorithms are presented with respect to two-roll milling of sugar cane bagasse, a complex fibro-porous material that undergoes large strains during processing to extract the sucrose-rich liquid. Elaborations are made in regard to numerical developments for other forms of experimentation, algorithm calibrations and measurement improvements. Finite 2D strain results are shown for both confined uniaxial compression and two-roll milling experiments.
Palma, G.; Niedermayer, F.; Rácz, Z.; Riveros, A.; Zambrano, D.
2016-08-01
The zero-temperature, classical X Y model on an L ×L square lattice is studied by exploring the distribution ΦL(y ) of its centered and normalized magnetization y in the large-L limit. An integral representation of the cumulant generating function, known from earlier works, is used for the numerical evaluation of ΦL(y ) , and the limit distribution ΦL →∞(y ) =Φ0(y ) is obtained with high precision. The two leading finite-size corrections ΦL(y ) -Φ0(y ) ≈a1(L ) Φ1(y ) +a2(L ) Φ2(y ) are also extracted both from numerics and from analytic calculations. We find that the amplitude a1(L ) scales as ln(L /L0) /L2 and the shape correction function Φ1(y ) can be expressed through the low-order derivatives of the limit distribution, Φ1(y ) =[yΦ0(y ) +Φ0'(y ) ] ' . Thus, Φ1(y ) carries the same universal features as the limit distribution and can be used for consistency checks of universality claims based on finite-size systems. The second finite-size correction has an amplitude a2(L ) ∝1 /L2 and one finds that a2Φ2(y ) ≪a1Φ1(y ) already for small system size (L >10 ). We illustrate the feasibility of observing the calculated finite-size corrections by performing simulations of the X Y model at low temperatures, including T =0 .
Priimak, Dmitri
2014-01-01
We present finite differences numerical algorithm for solving 2D spatially homogeneous Boltzmann transport equation for semiconductor superlattices (SL) subject to time dependant electric field along SL axis and constant perpendicular magnetic field. Algorithm is implemented in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPUs. We compare performance and merits of one implementation versus another and discuss various methods of optimization.
Borisov, A. V.; Trifonov, A. Yu.; Shapovalov, A. V.
2011-06-01
Solutions of a generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation for a nonlocal interaction of finite radius have been constructed for initial conditions with one and two localization centers by using numerical methods. The dynamics depends on the choice of the equation parameters and initial conditions. The processes of formation and interaction of the rings expanding from each of the two localization centers and the formation of dissipative structures are considered.
An implicit control-volume finite element method for well-reservoir modelling
Pavlidis, Dimitrios; Salinas, Pablo; Xie, Zhihua; Pain, Christopher; Matar, Omar
2016-11-01
Here a novel implicit approach (embodied within the IC-Ferst) is presented for modelling wells with potentially a large number of laterals within reservoirs. IC-Ferst is a conservative and consistent, control-volume finite element method (CV-FEM) model and fully unstructured/geology conforming meshes with anisotropic mesh adaptivity. As far as the wells are concerned, a multi-phase/multi-well approach, where well systems are represented as phases, is taken here. Phase volume fraction conservation equations are solved for in both the reservoir and the wells, in addition, the field within wells is also solved for. A second novel aspect of the work is the combination of modelling and resolving of the motherbore and laterals. In this case wells do not have to be explicitly discretised in space. This combination proves to be accurate (in many situations) as well as computationally efficient. The method is applied to a number of multi-phase reservoir problems in order to gain an insight into the effectiveness, in terms of production rate, of perforated laterals. Model results are compared with semi-analytical solutions for simple cases and industry-standard codes for more complicated cases. EPSRC UK Programme Grant MEMPHIS (EP/K003976/1).
Directory of Open Access Journals (Sweden)
Taohua Liu
2017-01-01
Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(KlogK. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.
Cui, Xiongwei; Yao, Xiongliang; Wang, Zhikai; Liu, Minghao
2017-03-01
A second generation wavelet-based adaptive finite-difference Lattice Boltzmann method (FD-LBM) is developed in this paper. In this approach, the adaptive wavelet collocation method (AWCM) is firstly, to the best of our knowledge, incorporated into the FD-LBM. According to the grid refinement criterion based on the wavelet amplitudes of density distribution functions, an adaptive sparse grid is generated by the omission and addition of collocation points. On the sparse grid, the finite differences are used to approximate the derivatives. To eliminate the special treatments in using the FD-based derivative approximation near boundaries, the immersed boundary method (IBM) is also introduced into FD-LBM. By using the adaptive technique, the adaptive code requires much less grid points as compared to the uniform-mesh code. As a consequence, the computational efficiency can be improved. To justify the proposed method, a series of test cases, including fixed boundary cases and moving boundary cases, are invested. A good agreement between the present results and the data in previous literatures is obtained, which demonstrates the accuracy and effectiveness of the present AWCM-IB-LBM.
A semi-implicit finite strain shell algorithm using in-plane strains based on least-squares
Areias, P.; Rabczuk, T.; de Sá, J. César; Natal Jorge, R.
2015-04-01
The use of a semi-implicit algorithm at the constitutive level allows a robust and concise implementation of low-order effective shell elements. We perform a semi-implicit integration in the stress update algorithm for finite strain plasticity: rotation terms (highly nonlinear trigonometric functions) are integrated explicitly and correspond to a change in the (in this case evolving) reference configuration and relative Green-Lagrange strains (quadratic) are used to account for change in the equilibrium configuration implicitly. We parametrize both reference and equilibrium configurations, in contrast with the so-called objective stress integration algorithms which use a common configuration. A finite strain quadrilateral element with least-squares assumed in-plane shear strains (in curvilinear coordinates) and classical transverse shear assumed strains is introduced. It is an alternative to enhanced-assumed-strain (EAS) formulations and, contrary to this, produces an element satisfying ab-initio the Patch test. No additional degrees-of-freedom are present, contrasting with EAS. Least-squares fit allows the derivation of invariant finite strain elements which are both in-plane and out-of-plane shear-locking free and amenable to standardization in commercial codes. Two thickness parameters per node are adopted to reproduce the Poisson effect in bending. Metric components are fully deduced and exact linearization of the shell element is performed. Both isotropic and anisotropic behavior is presented in elasto-plastic and hyperelastic examples.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Barrett, John W.; Süli, Endre
2016-07-01
We prove the existence of global-in-time weak solutions to a general class of models that arise from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids, where the polymer molecules are idealized as bead-spring chains with finitely extensible nonlinear elastic (FENE) type spring potentials. The class of models under consideration involves the unsteady, compressible, isentropic, isothermal Navier-Stokes system in a bounded domain Ω in Rd, d = 2, for the density ρ, the velocity u ˜ and the pressure p of the fluid, with an equation of state of the form p (ρ) =cpργ, where cp is a positive constant and γ > 1. The right-hand side of the Navier-Stokes momentum equation includes an elastic extra-stress tensor, which is the classical Kramers expression. The elastic extra-stress tensor stems from the random movement of the polymer chains and is defined through the associated probability density function that satisfies a Fokker-Planck-type parabolic equation, a crucial feature of which is the presence of a centre-of-mass diffusion term. This extends the result in our paper J.W. Barrett and E. Süli (2016) [9], which established the existence of global-in-time weak solutions to the system for d ∈ { 2 , 3 } and γ >3/2, but the elastic extra-stress tensor required there the addition of a quadratic interaction term to the classical Kramers expression to complete the compactness argument on which the proof was based. We show here that in the case of d = 2 and γ > 1 the existence of global-in-time weak solutions can be proved in the absence of the quadratic interaction term. Our results require no structural assumptions on the drag term in the Fokker-Planck equation; in particular, the drag term need not be corotational. With a nonnegative initial density ρ0 ∈L∞ (Ω) for the continuity equation; a square-integrable initial velocity datum u˜0 for the Navier-Stokes momentum equation; and a nonnegative initial probability density function ψ0
Miksat, J.; Müller, T. M.; Wenzel, F.
2008-07-01
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor. Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Eymard, Robert; Mercier, Sophie; Prignet, Alain
2008-12-01
We are interested here in the numerical approximation of a family of probability measures, solution of the Chapman-Kolmogorov equation associated to some non-diffusion Markov process with uncountable state space. Such an equation contains a transport term and another term, which implies redistribution of the probability mass on the whole space. An implicit finite volume scheme is proposed, which is intermediate between an upstream weighting scheme and a modified Lax-Friedrichs one. Due to the seemingly unusual probability framework, a new weak bounded variation inequality had to be developed, in order to prove the convergence of the discretised transport term. Such an inequality may be used in other contexts, such as for the study of finite volume approximations of scalar linear or nonlinear hyperbolic equations with initial data in L1. Also, due to the redistribution term, the tightness of the family of approximate probability measures had to be proven. Numerical examples are provided, showing the efficiency of the implicit finite volume scheme and its potentiality to be helpful in an industrial reliability context.
Directory of Open Access Journals (Sweden)
Vineet K. Srivastava
2014-03-01
Full Text Available In this paper, an implicit logarithmic finite difference method (I-LFDM is implemented for the numerical solution of one dimensional coupled nonlinear Burgers’ equation. The numerical scheme provides a system of nonlinear difference equations which we linearise using Newton's method. The obtained linear system via Newton's method is solved by Gauss elimination with partial pivoting algorithm. To illustrate the accuracy and reliability of the scheme, three numerical examples are described. The obtained numerical solutions are compared well with the exact solutions and those already available.
Directory of Open Access Journals (Sweden)
Jiraporn Janwised
2014-01-01
Full Text Available We introduce a new technique, a three-level average linear-implicit finite difference method, for solving the Rosenau-Burgers equation. A second-order accuracy on both space and time numerical solution of the Rosenau-Burgers equation is obtained using a five-point stencil. We prove the existence and uniqueness of the numerical solution. Moreover, the convergence and stability of the numerical solution are also shown. The numerical results show that our method improves the accuracy of the solution significantly.
A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering
Directory of Open Access Journals (Sweden)
Qingzhen Xu
2013-01-01
Full Text Available Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.
Laboure, Vincent M.; McClarren, Ryan G.; Hauck, Cory D.
2016-09-01
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FPN) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
Laboure, Vincent M; Hauck, Cory D
2016-01-01
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FPN) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system in the streaming limit, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte-Carlo (IMC) calculations.
Energy Technology Data Exchange (ETDEWEB)
Maker, B.N.
1995-04-14
This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.
Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course
Kull, Trent C.
2011-01-01
A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…
Institute of Scientific and Technical Information of China (English)
Xiao Jin-Biao; Sun Xiao-Han
2006-01-01
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
Shima, Eiji; Yoshida, Kenji; Amano, Kanichi
1987-11-01
An automatic grid generator for multiple element airfoils was developed and the existing implicit Total Variation Diminishing (TVD) finite volume code was improved in both accuracy and efficiency, in order to make the Navier-Stokes solver a practical design tool for high lift devices. Utilizing these codes, Navier-Stokes analysis of the single slotted flap was carried out. The automatic grid generator utilizes the elliptic equation solver using the finite difference method combined with the panel method. The flow field is divided into subregions by the dividing stream lines which are calculated by the panel method and the computational grid in each subregion is generated by solving the elliptic equations (Thompson's method). Since the panel method can solve the potential flow around any number of arbitrary shaped bodies, this grid generator can generate a H-type computational grid around such bodies automatically. To obtain a high accuracy on a rapidly stretching grid, the flow solver uses the TVD formulation containing an explicit treatment of nonuniform grid spacing. Converging rate and numerical stability of the flow solver is augmented by the relaxation approach using Symmetric Point Gauss Seidel method in matrix inversion process which is necessary for an implicit scheme.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Bosch, Jessica
2014-04-01
We consider the efficient solution of the Cahn-Hilliard variational inequality using an implicit time discretization, which is formulated as an optimal control problem with pointwise constraints on the control. By applying a semi-smooth Newton method combined with a Moreau-Yosida regularization technique for handling the control constraints we show superlinear convergence in function space. At the heart of this method lies the solution of large and sparse linear systems for which we propose the use of preconditioned Krylov subspace solvers using an effective Schur complement approximation. Numerical results illustrate the competitiveness of this approach. © 2014 Elsevier Inc.
The solution of the two-dimensional sine-Gordon equation using the method of lines
Bratsos, A. G.
2007-09-01
The method of lines is used to transform the initial/boundary-value problem associated with the two-dimensional sine-Gordon equation in two space variables into a second-order initial-value problem. The finite-difference methods are developed by replacing the matrix-exponential term in a recurrence relation with rational approximants. The resulting finite-difference methods are analyzed for local truncation error, stability and convergence. To avoid solving the nonlinear system a predictor-corrector scheme using the explicit method as predictor and the implicit as corrector is applied. Numerical solutions for cases involving the most known from the bibliography line and ring solitons are given.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-06-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
Institute of Scientific and Technical Information of China (English)
李俊杰; 严家斌
2015-01-01
径向基点插值法(RPIM)作为一种插值型无网格方法，为改善无网格点插值法(PIM)在形函数构造过程中可能出现的矩阵奇异性问题而提出的一种方法，该算法支持域无量纲尺寸的选择区间大，能更好地处理各类工程与科学计算问题。介绍了RPIM的近似原理，给出了径向基函数形状参数的推荐值；从大地电磁二维变分问题出发利用Galerkin法结合高斯积分公式推导出相应的系统矩阵离散表达式；为提高RPIM的计算效率，将RPIM与有限元法(FEM)耦合，提出了有限元－径向基点插值法(FE-RPIM)，多个模型的数值计算验证了RPIM精度高、处理复杂模型便利及耦合法计算复杂模型高效的特点。%Polynomial basis interpolation method (RPIM), as a kind of typical interpolation meshfree method, was proposed to overcome the defects of point interpolation method (PIM) that the construction process of the shape function involves the matrix inverse operation. This method overcomes the matrix inverse problem, and supports the wider domain dimensionless size interval to better deal with all kinds of engineering and scientific computing problems. The approximate principle of RPIM was introduced in detail, and the discrete system matrix expression corresponding to the magnetotelluric two-dimensional variational problem by combining the Galerkin method and the gauss integral formula was deduced. In order to overcome the defects of low computational efficiency of RPIM, the finite element−radial point interpolation method (FE−RPIM) based on coupling the FEM and RPIM was proposed. The conclusions were verified by the numerical calculation of several models. The results show that RPIM has the advantage of high precision and convenience to calculate complex models, and FE-RPIM has the characteristics of high calculation efficiency for complex models.
Institute of Scientific and Technical Information of China (English)
Cheng HUANG; Dai ZHOU; Yan BAO
2011-01-01
A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.
A two-dimensional hydrodynamic model of a tidal estuary
Walters, Roy A.; Cheng, Ralph T.
1979-01-01
A finite element model is described which is used in the computation of tidal currents in an estuary. This numerical model is patterned after an existing algorithm and has been carefully tested in rectangular and curve-sided channels with constant and variable depth. One of the common uncertainties in this class of two-dimensional hydrodynamic models is the treatment of the lateral boundary conditions. Special attention is paid specifically to addressing this problem. To maintain continuity within the domain of interest, ‘smooth’ curve-sided elements must be used at all shoreline boundaries. The present model uses triangular, isoparametric elements with quadratic basis functions for the two velocity components and a linear basis function for water surface elevation. An implicit time integration is used and the model is unconditionally stable. The resultant governing equations are nonlinear owing to the advective and the bottom friction terms and are solved iteratively at each time step by the Newton-Raphson method. Model test runs have been made in the southern portion of San Francisco Bay, California (South Bay) as well as in the Bay west of Carquinez Strait. Owing to the complex bathymetry, the hydrodynamic characteristics of the Bay system are dictated by the generally shallow basins which contain deep, relict river channels. Great care must be exercised to ensure that the conservation equations remain locally as well as globally accurate. Simulations have been made over several representative tidal cycles using this finite element model, and the results compare favourably with existing data. In particular, the standing wave in South Bay and the progressive wave in the northern reach are well represented.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Development of a Two-Dimensional Implicit Interior Ballistics Code
1980-01-01
the universal gas constant, W is the gas molecular weight, u m and n is the covolume factor, which is composition dependent . Following Gough (Ref...c is dependent on the gas composition but not temperature. v The static enthalpy is then h = p e + p The specific heat at constant pressure is...Gun Interior Ballistics Transient Combustion Time- dependent Adaptive Grid 20, ABST’RACT (Cazrt&au:e _. .. ._._ lliO 11 ~ llltld ldenllly by block
Chan, B. C.
1986-05-01
A basic, limited scope, fast-running computer model is presented for the solution of two-dimensional, transient, thermally-coupled fluid flow problems. This model is to be the module in the SSC (an LMFBR thermal-hydraulic systems code) for predicting complex flow behavior, as occurs in the upper plenum of the loop-type design or in the sodium pool of the pool-type design. The nonlinear Navier-Stokes equations and the two-equation (two-variable) transport model of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The results of calculational examplers are shown in the computer-generated plots.
Gas-kinetic numerical schemes for one- and two-dimensional inner flows
Institute of Scientific and Technical Information of China (English)
Zhi-hui LI; Lin BI; Zhi-gong TANG
2009-01-01
Several kinds of explicit and implicit finite-difference schemes directly solving the discretized velocity distribution functions are designed with precision of different orders by analyzing the inner characteristics of the gas-kinetic numerical algorithm for Boltzmann model equation.The peculiar flow phenomena and mechanism from various flow regimes are revealed in the numerical simulations of the unsteady Sod shock-tube problems and the two-dimensional channel flows with different Knudsen numbers.The numerical remainder-effects of the difference schemes are investigated and analyzed based on the computed results.The ways of improving the computational efficiency of the gaskinetic numerical method and the computing principles of difference discretization are discussed.
Directory of Open Access Journals (Sweden)
A. S. Saluja
2013-01-01
Full Text Available We introduce a new implicit random iteration process generated by a finite family of asymptotically quasi-nonexpansive-type mappings and study necessary and sufficient conditions for the convergence of this process in a uniformly convex Banach space. The results presented in this paper extend and improve the recent ones announced by Plubtieng et al. (2007, Beg and Thakur (2009, and Saluja and Nashine (2012.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
DEFF Research Database (Denmark)
Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter
1995-01-01
The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...
Two-dimensional simulation of polymer electrolyte membrane fuel cells
Energy Technology Data Exchange (ETDEWEB)
Hum, B.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering
2002-07-01
Polymer electrolyte membrane (PEM) fuel cells have fast startup, are highly energy efficient and have high power density, rendering them very suitable for use in zero-emission vehicles and on-site power cogeneration. Before the PEM fuel cell can reach widespread commercial use, the performance has to be improved regarding the minimization of all transport resistances. This can be done by considering the electrochemical reactions in the catalyst layers along with the physical transport of reactant gas flows, product and process water, heat and the charged particles in the individual cells and stacks. This paper presents the results of a two-dimensional numerical simulation of a steady, isothermal, fully humidified PEM fuel cell which was conducted to examine what happens in the catalyst layers. The finite volume method was used together with the alternating direction implicit algorithm. It was determined that the cathode catalyst layer has more pronounced changes in potential, reaction rate and current density generation compared to the anode catalyst layer. This is because of the large cathode activation overpotential and the low diffusion coefficient of oxygen. It was demonstrated that catalyst layers, by nature, are 2 dimensional, particularly in areas of low reactant concentrations. Maximum power density is limited by the depletion of one of the reactants in the catalyst layer. Both the fuel and oxidant supply must be managed simultaneously for optimal cell performance. It was concluded that cell performance is not greatly affected by flow direction. It was noted that this analysis can also be used for more complex cell design, such as cross flow between reactant streams and practical serpentine flow channel design. 11 refs., 2 tabs., 10 figs.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Hornby, P. G.
2005-12-01
Understanding chemical and thermal processes taking place in hydrothermal mineral deposition systems could well be a key to unlocking new mineral reserves through improved targeting of exploration efforts. To aid in this understanding it is very helpful to be able to model such processes with sufficient fidelity to test process hypotheses. To gain understanding, it is often sufficient to obtain semi-quantitative results that model the broad aspects of the complex set of thermal and chemical effects taking place in hydrothermal systems. For example, it is often sufficient to gain an understanding of where thermal, geometric and chemical factors converge to precipitate gold (say) without being perfectly precise about how much gold is precipitated. The traditional approach is to use incompressible Darcy flow together with the Boussinesq approximation. From the flow field, the heat equation is used to advect-conduct the heat. The flow field is also used to transport solutes by solving an advection-dispersion-diffusion equation. The reactions in the fluid and between fluid and rock act as source terms for these advection-dispersion equations. Many existing modelling systems that are used for simulating such systems use explicit time marching schemes and finite differences. The disadvantage of this approach is the need to work on rectilinear grids and the number of time steps required by the Courant condition in the solute transport step. The second factor can be particularly significant if the chemical system is complex, requiring (at a minimum) an equilibrium calculation at each grid point at each time step. In the approach we describe, we use finite elements rather than finite differences, and the pressure, heat and advection-dispersion equations are solved implicitly. The general idea is to put unconditional numerical stability of the time integration first, and let accuracy assume a secondary role. It is in this sense that the method is semi-quantiative. However
Finite elements and finite differences for transonic flow calculations
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Low-frequency scattering from two-dimensional perfect conductors
DEFF Research Database (Denmark)
Hansen, Thorkild; Yaghjian, A.D
1991-01-01
Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...
Numerical blowup in two-dimensional Boussinesq equations
Yin, Zhaohua
2009-01-01
In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Energy Technology Data Exchange (ETDEWEB)
Gardner, David [Lawrence Livermore National Laboratory (LLNL); Woodward, Carol S. [Lawrence Livermore National Laboratory (LLNL); Evans, Katherine J [ORNL
2015-01-01
Efficient solution of global climate models requires effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a time step dictated by accuracy of the processes of interest rather than by stability governed by the fastest of the time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton s method is applied for these systems. Each iteration of the Newton s method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but this Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite-difference which may show a loss of accuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite-difference approximations of these matrix-vector products for climate dynamics within the spectral-element based shallow-water dynamical-core of the Community Atmosphere Model (CAM).
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Institute of Scientific and Technical Information of China (English)
Liang-gen Hu
2007-01-01
In this paper,we will establish several strong convergence theorems for thc approximation of common fixed points of γ-strictly asymptotically pseudocontractive mappings in uniformly convex Banach spaces using the modiied implicit iteration sequence with errors,and prove the necessary and sufficient conditions for the convergence of the sequence.Our results generalize,extend and improve the recent work,in this topic[9,10].
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Lyapunov Computational Method for Two-Dimensional Boussinesq Equation
Mabrouk, Anouar Ben
2010-01-01
A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.
Curry, D. M.
1974-01-01
Numerical results of the heat and mass transfer in a porous matrix are presented. The coupled, nonlinear partial differential equations describing this physical phenomenon are solved in finite difference form for two dimensions, using a new iterative technique (the strongly implicit procedure). The influence of the external environment conditions (heating and pressure) is shown to produce two-dimensional flow in the porous matrix. Typical fluid and solid temperature distributions in the porous matrix and internal pressure distributions are presented.
Overview of HiFi -- implicit spectral element code framework for multi-fluid plasma applications
Lukin, Vyacheslav S; Lowrie, Weston; Meier, Eric T
2016-01-01
An overview of the algorithm and a sampling of plasma applications of the implicit, adaptive high order finite (spectral) element modeling framework, HiFi, is presented. The distinguishing capabilities of the HiFi code include adaptive spectral element spatial representation with flexible geometry, highly parallelizable implicit time advance, and general flux-source form of the partial differential equations and boundary conditions that can be implemented in its framework. Early algorithm development and extensive verification studies of the two-dimensional version of the code, known as SEL, have been previously described [A.H. Glasser & X.Z. Tang, Comp. Phys. Comm., 164 (2004); V.S. Lukin, Ph.D. thesis, Princeton University (2008)]. Here, substantial algorithmic improvements and extensions are presented together with examples of two- and three- dimensional applications of the HiFi framework. These include a Cartesian two-dimensional incompressible magnetohydrodynamic simulation of low dissipation magneti...
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Singh, Gurpreet; Tan, Eng Leong; Chen, Zhi Ning
2011-04-15
In this Letter, we present an efficient complex-envelope alternating-direction-implicit finite-difference time-domain (CE-ADI-FDTD) method for the transient analysis of magnetic photonic crystals with lossy ferrites. The proposed CE-ADI-FDTD method is generally formulated for a saturated ferrite with anisotropic permittivity tensor and ferrite loss. Auxiliary differential equations for modeling saturated ferrite and Maxwell's curl equations are first cast into a first-order differential system in a CE form. Then, by using an efficient ADI splitting formulas, the proposed CE-ADI-FDTD method is attained in a very concise form with few and simple right-hand side terms. The performance of the proposed method is validated and compared with the explicit FDTD method.
Kim, E-K; Ha, S-G; Lee, J; Park, Y B; Jung, K-Y
2015-01-26
Efficient unconditionally stable FDTD method is developed for the electromagnetic analysis of dispersive media. Toward this purpose, a quadratic complex rational function (QCRF) dispersion model is applied to the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method. The 3-D update equations of QCRF-ADI-FDTD are derived using Maxwell's curl equations and the constitutive relation. The periodic boundary condition of QCRF-ADI-FDTD is discussed in detail. A 3-D numerical example shows that the time-step size can be increased by the proposed QCRF-ADI-FDTD beyond the Courant-Friedrich-Levy (CFL) number, without numerical instability. It is observed that, for refined computational cells, the computational time of QCRF-ADI-FDTD is reduced to 28.08 % of QCRF-FDTD, while the L2 relative error norm of a field distribution is 6.92 %.
DEFF Research Database (Denmark)
Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter
1995-01-01
We extend the analysis of the stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference algorithms for electrochemical kinetic simulations, to the multipoint gradient approximations at the electrode. The discussion is based on the matrix method...... of stability analysis....
Finite Element Methods On Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces
DEFF Research Database (Denmark)
Nemitz, Oliver; Nielsen, Michael Bang; Rumpf, Martin
2009-01-01
The simulation of physical processes on interfaces and a variety of applications in geometry processing and geometric modeling are based on the solution of partial differential equations on curved and evolving surfaces. Frequently, an implicit level set type representation of these surfaces...... is the most effective and computationally advantageous approach. This paper addresses the computational problem of how to solve partial differential equations on highly resolved level sets with an underlying very high-resolution discrete grid. These high-resolution grids are represented in a very efficient...... dynamic tubular grid encoding format for a narrow band. A reaction diffusion model on a fixed surface and surface evolution driven by a nonlinear geometric diffusion approach, by isotropic or truly anisotropic curvature motion, are investigated as characteristic model problems. The proposed methods...
Implicit compressible flow solvers on unstructured meshes
Nagaoka, Makoto; Horinouchi, Nariaki
1993-09-01
An implicit solver for compressible flows using Bi-CGSTAB method is proposed. The Euler equations are discretized with the delta-form by the finite volume method on the cell-centered triangular unstructured meshes. The numerical flux is calculated by Roe's upwind scheme. The linearized simultaneous equations with the irregular nonsymmetric sparse matrix are solved by the Bi-CGSTAB method with the preconditioner of incomplete LU factorization. This method is also vectorized by the multi-colored ordering. Although the solver requires more computational memory, it shows faster and more robust convergence than the other conventional methods: three-stage Runge-Kutta method, point Gauss-Seidel method, and Jacobi method for two-dimensional inviscid steady flows.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
Energy Technology Data Exchange (ETDEWEB)
Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O
2000-03-24
This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Topological defect motifs in two-dimensional Coulomb clusters
Radzvilavičius, A; 10.1088/0953-8984/23/38/385301
2012-01-01
The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...
On Dirichlet eigenvectors for neutral two-dimensional Markov chains
Champagnat, Nicolas; Miclo, Laurent
2012-01-01
We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.
2017-04-01
Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.
A New Paradigm of Modeling Two-Dimensional Overland Watershed Water Quality
Zhang, F.; Yeh, G. G.
2003-12-01
This paper presents the development of sediment and reactive chemical transport under non-isotherm condition in two-dimensional overland watershed system. Through decomposition of reaction network via Gauss-Jordan column reduction, (a) redundant fast reactions and irrelevant kinetic reactions are removed from the system; (b) fast reactions and slow reactions can be decoupled; (c) species reaction equations are transformed into two sets: equilibrium species mass action equations and kinetic-variable reaction equations. This enable our model to include as many types of reactions as possible, choose kinetic-variables instead of chemical species as primary dependent variables, and simplify the reaction terms in transport equations. In our model two options are provided to solve the advection-dispersion transport equation: Lagrangian-Eulerian approach, and Finite Element Method in Conservative Form, and three options to deal with the reaction term: Fully-implicit, Predictor-corrector, and Operator-splitting methods. The production-consumption rate of chemical species is determined by reaction-based formulations. One example problem is employed to demonstrate the design capability of the model and the robustness of the numerical simulations.
A Vertical Two-Dimensional Model to Simulate Tidal Hydrodynamics in A Branched Estuary
Institute of Scientific and Technical Information of China (English)
LIU Wen-Cheng; WU Chung-Hsing
2005-01-01
A vertical (laterally averaged) two-dimensional hydrodynamic model is developed for tides, tidal current, and salinity in a branched estuarine system. The governing equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. An explicit scheme is employed to solve the continuity equations. The momentum and mass balance equations are solved implicitly in the Cartesian coordinate system. The tributaries are governed by the same dynamic equations. A control volume at the junctions is designed to conserve mass and volume transport in the finite difference schemes, based on the physical principle of continuum medium of fluid. Predictions by the developed model are compared with the analytic solutions of steady wind-driven circulatory flow and tidal flow. The model results for the velocities and water surface elevations coincide with analytic results. The model is then applied to the Tanshui River estuarine system. Detailed model calibration and verification have been conducted with measured water surface elevations,tidal current, and salinity distributions. The overall performance of the model is in qualitative agreement with the available field data. The calibrated and verified numerical model has been used to quantify the tidal prism and flushing rate in the Tanshui River-Tahan Stream, Hsintien Stream, and Keelung River.
Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.
2015-12-01
We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.
Laboure, Vincent Matthieu
In this dissertation, we focus on solving the linear Boltzmann equation -- or transport equation -- using spherical harmonics (PN) expansions with fully-implicit time-integration schemes and Galerkin Finite Element spatial discretizations within the Multiphysics Object Oriented Simulation Environment (MOOSE) framework. The presentation is composed of two main ensembles. On one hand, we study the first-order form of the transport equation in the context of Thermal Radiation Transport (TRT). This nonlinear application physically necessitates to maintain a positive material temperature while the PN approximation tends to create oscillations and negativity in the solution. To mitigate these flaws, we provide a fully-implicit implementation of the Filtered PN (FPN) method and investigate local filtering strategies. After analyzing its effect on the conditioning of the system and showing that it improves the convergence properties of the iterative solver, we numerically investigate the error estimates derived in the linear setting and observe that they hold in the non-linear case. Then, we illustrate the benefits of the method on a standard test problem and compare it with implicit Monte Carlo (IMC) simulations. On the other hand, we focus on second-order forms of the transport equation for neutronics applications. We mostly consider the Self-Adjoint Angular Flux (SAAF) and Least-Squares (LS) formulations, the former being globally conservative but void incompatible and the latter having -- in all generality -- the opposite properties. We study the relationship between these two methods based on the weakly-imposed LS boundary conditions. Equivalences between various parity-based PN methods are also established, in particular showing that second-order filters are not an appropriate fix to retrieve void compatibility. The importance of global conservation is highlighted on a heterogeneous multigroup k-eigenvalue test problem. Based on these considerations, we propose a new
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
The transfer function analysis of various schemes for the two-dimensional shallow-water equations
Neta, B.; DeVito, C.L.
1988-01-01
In this paper various finite difference and finite element approximations to the linearized two-dimensional shallow-water equations are analyzed. This analysis complements previous results for the one-dimensional case. The first author would like to thank the NPS Foundation Research program for its support of this research.
Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media
Hao Jin Bo
2003-01-01
Effect of scattering on radiative heat transfer in two-dimensional rectangular media by the finite-volume method has been studied. Compared with the existing solutions, it shows that the result obtained by the finite-volume method is reliable. Furthermore, relative errors caused by the approximation that linear and nonlinear anisotropic scattering media is simplified to isotropic scattering media have been studied.
Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.
Wang, Lei; Hu, Bambi; Li, Baowen
2012-10-01
Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.
Two-dimensionally confined topological edge states in photonic crystals
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-11-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Two-Dimensionally Confined Topological Edge States in Photonic Crystals
Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.
Directory of Open Access Journals (Sweden)
L.-L. Wang
2011-08-01
Full Text Available Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM. Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km^{2} for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Wang, L.-L.; Chen, D.-H.; Li, Z.-J.; Zhao, L.-N.
2011-08-01
Due to the specific characteristics of semi-arid catchments, this paper aims to establish a grid-and-Green-Ampt-and-two-dimensional-kinematic-wave-based distributed hydrological physical model (Grid-GA-2D model) coupling Green-Ampt infiltration method and two dimensional overland flow routing model based on kinematic wave theory for flood simulation and forecasting with using GIS technology and digital elevation model (DEM). Taking into consideration the soil moisture redistribution at hillslope, Green-Ampt infiltration physical method is applied for grid-based runoff generation and two-dimensional implicit finite difference kinematic wave model is introduced to solve depressions water storing for grid-based overland flow concentration routing in the Grid-GA-2D model. The Grid-GA-2D model, the Grid-GA model with coupling Green-Ampt infiltration method and one-dimension kinematic wave theory, and Shanbei model were employed to the upper Kongjiapo catchment in Qin River, a tributary of the Yellow River, with an area of 1454 km2 for flood simulation. Results show that two grid-based distributed hydrological models perform better in flood simulation and can be used for flood forecasting in semi-arid catchments. Comparing with the Grid-GA model, the flood peak simulation accuracy of the newly developed model is higher.
Sahai, A.; Mansour, N. N.; Lopez, B.; Panesi, M.
2017-05-01
This work addresses the modeling of high pressure electric discharge in an arc-heated wind tunnel. The combined numerical solution of Poisson’s equation, radiative transfer equations, and the set of Favre-averaged thermochemical nonequilibrium Navier-Stokes equations allows for the determination of the electric, radiation, and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles with the Chapman-Enskog method. A multi-temperature formulation is used to account for thermal non-equilibrium. Finally, the turbulence closure of the flow equations is obtained by means of the Spalart-Allmaras model, which requires the solution of an additional scalar transport equation. A Streamline upwind Petrov-Galerkin stabilized finite element formulation is employed to solve the Navier-Stokes equation. The electric field equation is solved using the standard Galerkin formulation. A stable formulation for the radiative transfer equations is obtained using the least-squares finite element method. The developed simulation framework has been applied to investigate turbulent plasma flows in the 20 MW Aerodynamic Heating Facility at NASA Ames Research Center. The current model is able to predict the process of energy addition and re-distribution due to Joule heating and thermal radiation, resulting in a hot central core surrounded by colder flow. The use of an unsteady three-dimensional treatment also allows the asymmetry due to a dynamic electric arc attachment point in the cathode chamber to be captured accurately. The current work paves the way for detailed estimation of operating characteristics for arc-heated wind tunnels which are critical in testing thermal protection systems.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico
Howes, David A.; Abrahams, Athol D.; Pitman, E. Bruce
2006-03-01
Two distributed parameter models, a one-dimensional (1D) model and a two-dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event-based and represent each watershed by an array of 1-m2 cells, in which the cell size is approximately equal to the average area of the shrubs.Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite-difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second-order predictor-corrector finite-difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions.The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large-scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration.
Yang, Lei; Yan, Hongyong; Liu, Hong
2017-03-01
Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.
Energy Technology Data Exchange (ETDEWEB)
Javaux, Denis
2002-02-01
This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced.
Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets
Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.
2016-11-01
We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
Critical phenomena in the majority voter model on two-dimensional regular lattices.
Acuña-Lara, Ana L; Sastre, Francisco; Vargas-Arriola, José Raúl
2014-05-01
In this work we studied the critical behavior of the critical point as a function of the number of nearest neighbors on two-dimensional regular lattices. We performed numerical simulations on triangular, hexagonal, and bilayer square lattices. Using standard finite-size scaling theory we found that all cases fall in the two-dimensional Ising model universality class, but that the critical point value for the bilayer lattice does not follow the regular tendency that the Ising model shows.
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Spherical-shell boundaries for two-dimensional compressible convection in a star
Pratt, J; Goffrey, T; Geroux, C; Viallet, M; Folini, D; Constantino, T; Popov, M; Walder, R
2016-01-01
Context: We study the impact of two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from a one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star. Methods: We perform hydrodynamic implicit large-eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: We evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional s...
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
TWO-DIMENSIONAL PLANE WATER FLOW AND WATER QUALITY DISTRIBUTION IN BOSTEN LAKE
Institute of Scientific and Technical Information of China (English)
Feng Min-quan; Zhou Xiao-de; Zheng Bang-min; Min Tao; Zhao Ke-yu
2003-01-01
The two-dimensional plane water flow and water quality was developed by using the techniques of coordinate transformation, alternating directions, staggered grid, linear recurrence, and implicit scheme in the study of large water body in lakes. The model was proved to be suitable for treating the irregular boundary and predicting quickly water flow and water quality. The application of the model to the Bosten Lake in Xinjiang Uygur Autonomous Region of China shows that it is reasonable and practicable.
Saavedra, Sebastian
2012-07-01
The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed
2013-06-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
Numerical Modeling of Two-Dimensional Temperature Dynamics Across Ice-Wedge Polygons
Garayshin, Viacheslav V.
The ice wedges on the North Slope of Alaska have been forming for many millennia, when the ground cracked and the cracks were filled with snowmelt water. The infiltrated water then became frozen and turned into ice. When the annual and summer air temperatures become higher, the depth of the active layer increases. A deeper seasonal thawing may cause melting of ice wedges from their tops. Consequently, the ground starts to settle and a trough begins to form above the ice wedge. The forming trough creates a local temperature anomaly in the surrounding ground, and the permafrost located immediately under the trough starts degrading further. Once the trough is formed, the winter snow cover becomes deeper at the trough area further degrading the permafrost. In this thesis we present a computational approach to study the seasonal temperature dynamics of the ground surrounding an ice wedge and ground subsidence associated with ice wedge degradation. A thermo-mechanical model of the ice wedge based on principles of macroscopic thermodynamics and continuum mechanics was developed and will be presented. The model includes heat conduction and quasi-static mechanical equilibrium equations, a visco-elastic rheology for ground deformation, and an empirical formula which relates unfrozen water content to temperature. The complete system is reduced to a computationally convenient set of coupled equations for temperature, ground displacement and ground porosity in a two-dimensional domain. A finite element method and an implicit scheme in time were utilized to construct a non-linear system of equations, which was solved iteratively. The model employs temperature and moisture content data collected from a field experiment at the Next-Generation Ecosystem Experiments (NGEE) sites in Barrow, Alaska. The model describes seasonal dynamics of temperature and the long-term ground motion near the ice wedges and helps to explain destabilization of the ice wedges north of Alaska's Brooks
Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.
Guo, Zhaoli; Zhao, T S
2003-06-01
In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in order to improve the computational efficiency and numerical stability of a recent method [R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998)] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical scheme is removed by introducing a distribution function different from that being used currently. As a result, an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady flow around a circular cylinder. The numerical results are in good agreement with the results of previous studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Unpacking of a Crumpled Wire from Two-Dimensional Cavities.
Directory of Open Access Journals (Sweden)
Thiago A Sobral
Full Text Available The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.
Unpacking of a Crumpled Wire from Two-Dimensional Cavities.
Sobral, Thiago A; Gomes, Marcelo A F; Machado, Núbia R; Brito, Valdemiro P
2015-01-01
The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.
Tone, Florentina
2011-01-01
Pursuing our work in [18], [17], [20], [5], we consider in this article the two-dimensional thermohydraulics equations. We discretize these equations in time using the implicit Euler scheme and we prove that the global attractors generated by the numerical scheme converge to the global attractor of the continuous system as the time-step approaches zero.
Acoustic resonances in two dimensional radial sonic crystals shells
Torrent, Daniel
2010-01-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction. They have been recently introduced and are only possible thanks to the anisotropy of specially designed acoustic metamaterials [see Phys. Rev. Lett. {\\bf 103} 064301 (2009)]. We present here a comprehensive analysis of two-dimensional RSC shells, which consist of a cavity defect centered at the origin of the crystal and a finite thickness crystal shell surrounded by a fluidlike background. We develop analytic expressions demonstrating that, like for other type of crystals (photonic or phononic) with defects, these shells contain Fabry-Perot like resonances and strongly localized modes. The results are completely general and can be extended to three dimensional acoustic structures and to their photonic counterparts, the radial photonic crystals.
Acoustic resonances in two-dimensional radial sonic crystal shells
Torrent, Daniel; Sánchez-Dehesa, José
2010-07-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
Vibrational Properties of a Two-Dimensional Silica Kagome Lattice.
Björkman, Torbjörn; Skakalova, Viera; Kurasch, Simon; Kaiser, Ute; Meyer, Jannik C; Smet, Jurgen H; Krasheninnikov, Arkady V
2016-12-27
Kagome lattices are structures possessing fascinating magnetic and vibrational properties, but in spite of a large body of theoretical work, experimental realizations and investigations of their dynamics are scarce. Using a combination of Raman spectroscopy and density functional theory calculations, we study the vibrational properties of two-dimensional silica (2D-SiO2), which has a kagome lattice structure. We identify the signatures of crystalline and amorphous 2D-SiO2 structures in Raman spectra and show that, at finite temperatures, the stability of 2D-SiO2 lattice is strongly influenced by phonon-phonon interaction. Our results not only provide insights into the vibrational properties of 2D-SiO2 and kagome lattices in general but also suggest a quick nondestructive method to detect 2D-SiO2.
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Light transport and localization in two-dimensional correlated disorder
Conley, Gaurasundar M; Pratesi, Filippo; Vynck, Kevin; Wiersma, Diederik S
2013-01-01
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this article, we theoretically investigate the transport and localization of light in two-dimensional photonic structures with short-range correlated disorder. The problem is tackled semi-analytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.
Many body localization in two dimensional square and triangular lattices
Gonzalez-Garcia, L; Paredes, R
2016-01-01
Ultracold interacting Bose atoms placed in disordered two dimensional optical lattices with square and triangular symmetries are found to be localized above a certain disorder strength amplitude. From a Gross-Pitaevskii mean analysis we determine the localization length as a function of the disorder strength and investigate the energy spectrum in terms of the disorder magnitude. We found that the localization length is observed to decrease faster in triangular geometries than in square ones. In the presence of a harmonic confinement localization is observed at the center of the trap. The analysis of the energy spectrum reveals that discrete energy levels acquire a finite width that is always smaller than the distance among energy levels.
Experimental evidence for a two-dimensional quantized Hall insulator
Hilke, M.; Shahar, D.; Song, S. H.; Tsui, D. C.; Xie, Y. H.; Monroe, Don
1998-10-01
The general theoretical definition of an insulator is a material in which the conductivity vanishes at the absolute zero of temperature. In classical insulators, such as materials with a band gap, vanishing conductivities lead to diverging resistivities. But other insulators can show more complex behaviour, particularly in the presence of a high magnetic field, where different components of the resistivity tensor can display different behaviours: the magnetoresistance diverges as the temperature approaches absolute zero, but the transverse (Hall) resistance remains finite. Such a system is known as a Hall insulator. Here we report experimental evidence for a quantized Hall insulator in a two-dimensional electron system-confined in a semiconductor quantum well. The Hall resistance is quantized in the quantum unit of resistance h/e2, where h is Planck's constant and e the electronic charge. At low fields, the sample reverts to being a normal Hall insulator.
Two-dimensional Numerical Modeling Research on Continent Subduction Dynamics
Institute of Scientific and Technical Information of China (English)
WANG Zhimin; XU Bei; ZHOU Yaoqi; XU Hehua; HUANG Shaoying
2004-01-01
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction.
The modified cumulant expansion for two-dimensional isotropic turbulence
Tatsumi, T.; Yanase, S.
1981-09-01
The two-dimensional isotropic turbulence in an incompressible fluid is investigated using the modified zero fourth-order cumulant approximation. The dynamical equation for the energy spectrum obtained under this approximation is solved numerically and the similarity laws governing the solution in the energy-containing and enstrophy-dissipation ranges are derived analytically. At large Reynolds numbers the numerical solutions yield the k to the -3rd power inertial subrange spectrum which was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969), assuming a finite enstrophy dissipation in the inviscid limit. The energy-containing range is found to satisfy an inviscid similarity while the enstrophy-dissipation range is governed by the quasi-equilibrium similarity with respect to the enstrophy dissipation as proposed by Batchelor (1969). There exists a critical time which separates the initial period and the similarity period in which the enstrophy dissipation vanishes and remains non-zero respectively in the inviscid limit.
The random discrete action for two-dimensional spacetime
Benincasa, Dionigi M. T.; Dowker, Fay; Schmitzer, Bernhard
2011-05-01
A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, {M}^2. When a causally convex region of {M}^2 is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Compact triplexer in two-dimensional hexagonal lattice photonic crystals
Institute of Scientific and Technical Information of China (English)
Hongliang Ren; Jianping Ma; Hao Wen; Yali Qin; Zhefu Wu; Weisheng Hu; Chun Jiang; Yaohui Jin
2011-01-01
We design a contpact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs). A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides. Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained. The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finites-difference time-domain method. The footprint of the triplexer is about 12× 9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -4O dB for 1550 nm, making it a potentially essential device ii future fiber-to-the-home networks.%@@ We design a compact triplexer based on two-dimensional (2D) hexagonal lattice photonic crystals (PCs).A folded directional coupler (FDC) is introduced in the triplexer beside the point-defect micro-cavities and line-defect waveguides.Because of the reflection feedback of the FDC, high channel drop efficiency can be realized and a compact size with the order of micrometers can be maintained.The proposed device is analyzed using the plane wave expansion method, and its transmission characteristics are calculated using the finite-difference time-domain method.The footprint of the triplexer is about 12×9 μm, and its extinction ratios are less than -20 dB for 1310 nm, approximately -20 dB for 1490 nm, and under -40 dB for 1550 nm, making it a potentially essential device in future fiber-to-the-home networks.
Sadabadi, Mahdiye Sadat; Shafiee, Masoud; Karrari, Mehdi
2008-07-01
In this paper, parameter identification of two-dimensional continuous-time systems via two-dimensional modulating functions is proposed. In the proposed method, trigonometric functions and sine-cosine wavelets are used as modulating functions. By this, a partial differential equation on the finite-time intervals is converted into an algebraic equation linear in parameters. The parameters of the system can then be estimated using the least square algorithms. The underlying computations utilize a two-dimensional fast Fourier transform algorithm, without the need for estimating the unknown initial or boundary conditions, at the beginning of each finite-time interval. Numerical simulations are presented to show the effectiveness of the proposed algorithm.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Renormalization of two-dimensional quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Casana S, Rodolfo; Dias, Sebastiao A
1997-12-01
The Schwinger model, when quantized in a gauge non-invariant way exhibits a dependence on a parameter {alpha} (the Jackiw-Rajaraman parameter) in a way which is analogous to the case involving chiral fermions (the chiral Schwinger model). For all values of a {alpha}1, there are divergences in the fermionic Green`s functions. We propose a regularization of the generating functional Z [{eta}, {eta}, J] and we use it to renormalize the theory to one loop level, in a semi-perturbative sense. At the end of the renormalization procedure we find an implicit dependence of {alpha} on the renormalization scale {mu}. (author) 26 refs.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-08-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
A two-dimensional embedded-boundary method for convection problems with moving boundaries
Hassen, Y.J.; Koren, B.
2010-01-01
In this work, a two-dimensional embedded-boundary algorithm for convection problems is presented. A moving body of arbitrary boundary shape is immersed in a Cartesian finite-volume grid, which is fixed in space. The boundary surface is reconstructed in such a way that only certain fluxes in the imme
Lattice gas dynamics: application to driven vortices in two dimensional superconductors.
Gotcheva, Violeta; Wang, Albert T J; Teitel, S
2004-06-18
A continuous time Monte Carlo lattice gas dynamics is developed to model driven steady states of vortices in two dimensional superconducting networks. Dramatic differences are found when compared to a simpler Metropolis dynamics. Subtle finite size effects are found at low temperature, with a moving smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales.
DEFINITION STRESS INTENSITY COEFFICIENT TWO-DIMENSIONAL BODIES UNDER THERMAL LOAD
Directory of Open Access Journals (Sweden)
Shkril’ А.
2014-12-01
Full Text Available On the basis of the finite element scheme of the moment method (FEM implemented method of determining the coefficients of stress intensity (K in two-dimensional bodies under the action of temperature load. Results of test problems showed that the methods for determining the energy of K are more effeciency compared with the.
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Modeling supersonic combustion using a fully-implicit numerical method
Maccormack, Robert W.; Wilson, Gregory J.
1990-01-01
A fully-implicit finite-volume algorithm for two-dimensional axisymmetric flows has been coupled to a detailed hydrogen-air reaction mechanism (13 species and 33 reactions) so that supersonic combustion phenomena may be investigated. Numerical computations are compared with ballistic-range shadowgraphs of Lehr (1972) that exhibit two discontinuities caused by a blunt body as it passes through a premixed stoichiometric hydrogen-air mixture. The suitability of the numerical procedure for simulating these double-front flows is shown. The requirements for the physical formulation and the numerical modeling of these flowfields are discussed. Finally, the sensitivity of these external flowfields to changes in certain key reaction rate constants is examined.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Directory of Open Access Journals (Sweden)
P. Martini
2004-01-01
Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.
On the critical behaviour of two-dimensional liquid crystals
Directory of Open Access Journals (Sweden)
A.l. Fariñas-Sánchez
2010-01-01
Full Text Available The Lebwohl-Lasher (LL model is the traditional model used to describe the nematic-isotropic transition of real liquid crystals. In this paper, we develop a numerical study of the temperature behaviour and of finite-size scaling of the two-dimensional (2D LL-model. We discuss two possible scenarios. In the first one, the 2D LL-model presents a phase transition similar to the topological transition appearing in the 2D XY-model. In the second one, the 2D LL-model does not exhibit any critical transition, but its low temperature behaviour is rather characterized by a crossover from a disordered phase to an ordered phase at zero temperature. We realize and discuss various comparisons with the 2D XY-model and the 2D Heisenberg model. Having added finite-size scaling behaviour of the order parameter and conformal mapping of order parameter profile to previous studies, we analyze the critical scaling of the probability distribution function, hyperscaling relations and stiffness order parameter and conclude that the second scenario (no critical transition is the most plausible.
Two dimensional axisymmetric smooth lattice Ricci flow
Brewin, Leo
2015-01-01
A lattice based method will be presented for numerical investigations of Ricci flow. The method will be applied to the particular case of 2-dimensional axially symmetric initial data on manifolds with S^2 topology. Results will be presented that show that the method works well and agrees with results obtained using contemporary finite difference methods.
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Baird, Henry S.; Bentley, Jon L.
2005-01-01
We propose a design methodology for "implicit" CAPTCHAs to relieve drawbacks of present technology. CAPTCHAs are tests administered automatically over networks that can distinguish between people and machines and thus protect web services from abuse by programs masquerading as human users. All existing CAPTCHAs' challenges require a significant conscious effort by the person answering them -- e.g. reading and typing a nonsense word -- whereas implicit CAPTCHAs may require as little as a single click. Many CAPTCHAs distract and interrupt users, since the challenge is perceived as an irrelevant intrusion; implicit CAPTCHAs can be woven into the expected sequence of browsing using cues tailored to the site. Most existing CAPTCHAs are vulnerable to "farming-out" attacks in which challenges are passed to a networked community of human readers; by contrast, implicit CAPTCHAs are not "fungible" (in the sense of easily answerable in isolation) since they are meaningful only in the specific context of the website that is protected. Many existing CAPTCHAs irritate or threaten users since they are obviously tests of skill: implicit CAPTCHAs appear to be elementary and inevitable acts of browsing. It can often be difficult to detect when CAPTCHAs are under attack: implicit CAPTCHAs can be designed so that certain failure modes are correlated with failed bot attacks. We illustrate these design principles with examples.
A Numerical Solution of the Two-Dimensional Fusion Problem with Convective Boundary Conditions
Gülkaç, Vildan
2010-01-01
In this paper, we present an LOD method for solving the two-dimensional fusion problem with convective boundary conditions. In this study, we extend our earlier work [1] on the solution of the two-dimensional fusion problem by considering a class of time-split finite-difference methods, namely locally one-dimensional (LOD) schemes. In addition, following the idea of Douglas [2, 3], a Douglas-like splitting scheme is presented. A stability analysis by Fourier series method (von Neumann stability) of the scheme is also investigated. Computational results obtained by the present method are in excellent agreement with the results reported previously by other research.
Curvature effects in two-dimensional optical devices inspired by transformation optics
Yuan, Shuhao
2016-11-14
Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. Â© 2016 Author(s).
Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)
Fan, Mark S.; Christou, Aris; Pecht, Michael G.
1992-01-01
Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.
Directory of Open Access Journals (Sweden)
Andreev V.I.
2016-01-01
Full Text Available The article discusses the use of a numerical method the calculation of finite cylinders into account the dependence of physical and mechanical properties of the material on temperature. If we have two-dimensional temperature field characteristics of the material depends on two coordinates. - r and z from which follows that the problem of thermoelasticity is also a two-dimensional. Using the numerical method allows to solve the problem for any state of the cylinder (plane stress or plane strain and consider arbitrary boundary conditions at its ends.
On the equivalence between stochastic baker's maps and two-dimensional spin systems
Lindgren, K.
2010-05-01
We show that there is a class of stochastic bakers transformations that is equivalent to the class of equilibrium solutions of two-dimensional spin systems with finite interaction. The construction is such that the equilibrium distribution of the spin lattice is identical to the invariant measure in the corresponding bakers transformation. We illustrate the equivalence by deriving two stochastic bakers maps representing the Ising model at a temperature above and below the critical temperature, respectively. A calculation of the invariant measure and the free energy in the baker system is then shown to be in agreement with analytic results of the two-dimensional Ising model.
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
Electrical and optoelectronic properties of two-dimensional materials
Wang, Qiaoming
Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Two dimensional fermions in three dimensional YM
Narayanan, R
2010-01-01
Dirac fermions in the fundamental representation of $SU(N)$ live on the surface of a cylinder embedded in $R^3$ and interact with a three dimensional $SU(N)$ Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the circumference of the cylinder is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit at a typical bulk scale. Replacing three dimensional YM by four dimensional YM introduces non-trivial renormalization effects.
Extending models for two-dimensional constraints
DEFF Research Database (Denmark)
Forchhammer, Søren
2009-01-01
Random fields in two dimensions may be specified on 2 times 2 elements such that the probabilities of finite configurations and the entropy may be calculated explicitly. The Pickard random field is one example where probability of a new (non-boundary) element is conditioned on three previous...... elements. To extend the concept we consider extending such a field such that a vector or block of elements is conditioned on a larger set of previous elements. Given a stationary model defined on 2 times 2 elements, iterative scaling is used to define the extended model. The extended model may be used...
Grammatical complexity for two-dimensional maps
Energy Technology Data Exchange (ETDEWEB)
Hagiwara, Ryouichi; Shudo, Akira [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397 (Japan)
2004-11-05
We calculate the grammatical complexity of the symbol sequences generated from the Henon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
Grammatical complexity for two-dimensional maps
Hagiwara, Ryouichi; Shudo, Akira
2004-11-01
We calculate the grammatical complexity of the symbol sequences generated from the Hénon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.
WAVE PROPAGATION IN TWO-DIMENSIONAL DISORDERED PIEZOELECTRIC PHONONIC CRYSTALS
Institute of Scientific and Technical Information of China (English)
Jinqiang Li; Fengming Li; Yuesheng Wang; Kikuo Kishimoto
2008-01-01
The wave propagation is studied in two-dimensional disordered piezoelectric phononie crystals using the finite-difference time-domain (FDTD) method. For different eases of disorder,the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder.In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.
Curved Two-Dimensional Electron Systems in Semiconductor Nanoscrolls
Peters, Karen; Mendach, Stefan; Hansen, Wolfgang
The perfect control of strain and layer thickness in epitaxial semiconductor bilayers is employed to fabricate semiconductor nanoscrolls with precisely adjusted scroll diameter ranging between a few nanometers and several tens of microns. Furthermore, semiconductor heteroepitaxy allows us to incorporate quantum objects such as quantum wells, quantum dots, or modulation doped low-dimensional carrier systems into the nanoscrolls. In this review, we summarize techniques that we have developed to fabricate semiconductor nanoscrolls with well-defined location, orientation, geometry, and winding number. We focus on magneto-transport studies of curved two-dimensional electron systems in such nanoscrolls. An externally applied magnetic field results in a strongly modulated normal-to-surface component leading to magnetic barriers, reflection of edge channels, and local spin currents. The observations are compared to finite-element calculations and discussed on the basis of simple models taking into account the influence of a locally modulated state density on the conductivity. In particular, it is shown that the observations in high magnetic fields can be well described considering the transport in edge channels according to the Landauer-Büttiker model if additional magnetic field induced channels aligned along magnetic barriers are accounted for.
DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS
Institute of Scientific and Technical Information of China (English)
Qicheng Sun
2003-01-01
Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Two-dimensional magnetic ordering in a multilayer structure
Indian Academy of Sciences (India)
M K Mukhopadhyay; M K Sanyal
2006-07-01
The effect of confinement from one, two or from all three directions on magnetic ordering has remained an active field of research for almost 100 years. The role of dipolar interactions and anisotropy are important to obtain, the otherwise forbidden, ferromagnetic ordering at finite temperature for ions arranged in two-dimensional (2D) arrays (monolayers). We have demonstrated that conventional low-temperature magnetometry and polarized neutron scattering measurements can be performed to study short-range ferromagnetic ordering of in-plane spins in 2D systems using a multilayer stack of non-interacting monolayers of gadolinium ions formed by Langmuir–Blodgett (LB) technique. The spontaneous magnetization could not be detected in the heterogeneous magnetic phase observed here and the saturation value of the net magnetization was found to depend on the sample temperature and applied magnetic field. The net magnetization rises exponentially with lowering temperature and then reaches saturation following a ln( ) dependence. The ln( ) dependence of magnetization has been predicted from spin-wave theory of 2D in-plane spin system with ferromagnetic interaction. The experimental findings reported here could be explained by extending this theory to a temperature domain of < 1.
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
How two-dimensional bending can extraordinarily stiffen thin sheets
Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.
2016-07-01
Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.
The random discrete action for two-dimensional spacetime
Energy Technology Data Exchange (ETDEWEB)
Benincasa, Dionigi M T; Dowker, Fay; Schmitzer, Bernhard, E-mail: db1808@ic.ac.uk [Theoretical Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ (United Kingdom)
2011-05-21
A one-parameter family of random variables, called the Discrete Action, is defined for a two-dimensional Lorentzian spacetime of finite volume. The single parameter is a discreteness scale. The expectation value of this discrete action is calculated for various regions of 2D Minkowski spacetime, M{sup 2}. When a causally convex region of M{sup 2} is divided into subregions using null lines the mean of the discrete action is equal to the alternating sum of the numbers of vertices, edges and faces of the null tiling, up to corrections that tend to 0 as the discreteness scale is taken to 0. This result is used to predict that the mean of the discrete action of the flat Lorentzian cylinder is zero up to corrections, which is verified. The 'topological' character of the discrete action breaks down for causally convex regions of the flat trousers spacetime that contain the singularity and for non-causally convex rectangles.
Implicit Numerical Methods in Meteorology
Augenbaum, J.
1984-01-01
The development of a fully implicit finite-difference model, whose time step is chosen solely to resolve accurately the physical flow of interest is discussed. The method is based on an operator factorization which reduces the dimensionality of the implicit approach: at each time step only (spatially) one-dimensional block-tridiagonal linear systems must be solved. The scheme uses two time levels and is second-order accurate in time. Compact implicit spatial differences are used, yielding fourth-order accuracy both vertically and horizontally. In addition, the development of a fully interactive computer code is discussed. With this code the user will have a choice of models, with various levels of accuracy and sophistication, which are imbedded, as subsets of the fully implicit 3D code.
Magnetoconductivity of two-dimensional electron systems
Kuehnel, Frank Oliver
The conductivity sigmaxx(o) of a low-density nondegenerate 2D electron gas is investigated under conditions where hoc ≫ kBT ≫ hgamma (oc is the cyclotron frequency and hgamma is the disorder-induced width of the Landau level). Such conditions have been met for electrons on helium surface, and can also be achieved in ultra high quality heterostructures. Because of the random potential of defects, single-electron states of the lowest Landau level form a band of a width hgamma ≪ hoc. Almost all of these states are localized. Therefore, for ho c ≫ kBT ≫ hgamma, the static single-electron conductivity sigma xx(0) may be expected to be equal to zero. Since for o ≫ gamma the conductivity should decay, on the whole sigma xx(o) has a peak at a finite frequency. From scaling arguments, we show that in the single-electron approximation sigma xx(o) ∝ omu for o → 0, with the exponent mu in the range from 0.21 to 0.22, whereas the frequency dependence of the cyclotron resonance absorption peak is non-critical. The far tails of the conductivity peaks are obtained using the method of optimal fluctuation and are shown to be Gaussian. In order to investigate the shape of the low frequency peak and cyclotron resonance absorption peak, we use the method of moments (MOM). In MOM, the low-frequency conductivity is restored from its 14 spectral moments, whereas the cyclotron resonance absorption is restored from the calculated 10 spectral moments using the continuous fraction expansion. In combination with the analytical asymptotics, both expansions converge rapidly with increasing number of included moments, and give numerically accurate results throughout the region of interest. The effect of electron-electron interaction (EEI) on the low frequency conductivity is also investigated. EEI makes the static conductivity finite. For a low-density system, the effect can be described using the notion of a fluctuational field Efl which drives an electron because of electron
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
EMC/FDTD/MD simulation of carrier transport and electrodynamics in two-dimensional electron systems
Sule, N.; Willis, K. J.; Hagness, S. C.; Knezevic, I.
2014-01-01
We present the implementation and application of a multiphysics simulation technique to carrier dynamics under electromagnetic excitation in supported two-dimensional electronic systems. The technique combines ensemble Monte Carlo (EMC) for carrier transport with finite-difference time-domain (FDTD) for electrodynamics and molecular dynamics (MD) for short-range Coulomb interactions among particles. We demonstrate the use of this EMC/FDTD/MD technique by calculating the room-temperature dc an...
Quasi-particle properties in a quasi-two-dimensional electron liquid
Indian Academy of Sciences (India)
R Asgari; B Tanatar
2008-02-01
We consider the quasi-particle properties such as the effective mass and spin susceptibility of quasi-two-dimensional electron systems. The finite quantum well width effects are incorporated into the local-field factors that describe the charge and spin correlations. We employ the Fermi-hypernetted chain formalism in conjunction with fluctuation-dissipation theorem to obtain the local-field factors. Our results are in good agreement with recent experiments.
Comment on "Thermal propagation in two-dimensional Josephson junction arrays"
De Leo, Cinzia
2009-01-01
In a recent paper, Filatrella et al. [Phys. Rev. B 75, 54510 (2007)] report results of numerical calculations of energy barriers for flux quanta propagation in two-dimensional arrays of Josephson junctions with finite self and mutual inductances. To avoid complex numerical calculations, they use an approximated inductance model to address the effects of the mutual couplings. Using a full inductance matrix model, we show that this approximated model cannot be used to calculate the energy barri...
An immersed interface method for two-dimensional modelling of stratified flow in pipes
Berthelsen, Petter Andreas
2004-01-01
This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...
Universality class of the two-dimensional site-diluted Ising model.
Martins, P H L; Plascak, J A
2007-07-01
In this work, we evaluate the probability distribution function of the order parameter for the two-dimensional site-diluted Ising model. Extensive Monte Carlo simulations have been performed for different spin concentrations p (0.70universality class of the diluted Ising model seems to be independent of the amount of dilution. Logarithmic corrections of the finite-size critical temperature behavior of the model can also be inferred even for such small lattices.
Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model
Hayata, Tomoya; Yamamoto, Arata
2017-07-01
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.
Institute of Scientific and Technical Information of China (English)
Kyu; Hwan; Hwang; G.; Hugh; Song; Chanmook; Lim; Soan; Kim; Kyung-Won; Chun; Mahn; Yong; Park
2003-01-01
A channel-drop filter has been designed based on the two-dimensional triangular-lattice hole photonic-crystal structure, which consists of two line defects and two point defects, by a two-dimensional finite-difference time-domain simulation.
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.
A two-dimensional mathematical model of percutaneous drug absorption
Directory of Open Access Journals (Sweden)
Kubota K
2004-06-01
Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady
Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures
Institute of Scientific and Technical Information of China (English)
Yu Dian-Long; Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Qiu Jing
2006-01-01
The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases. The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.
Computer model of two-dimensional solute transport and dispersion in ground water
Konikow, Leonard F.; Bredehoeft, J.D.
1978-01-01
This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Stavroula Foteinopoulou
2003-12-12
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Montgomery, R. C.; Sundararajan, N.
1984-01-01
The basic theory of least square lattice filters and their use in identification of structural dynamics systems is summarized. Thereafter, this theory is applied to a two-dimensional grid structure made of overlapping bars. Previously, this theory has been applied to an integral beam. System identification results are presented for both simulated and experimental tests and they are compared with those predicted using finite element modelling. The lattice filtering approach works well for simulated data based on finite element modelling. However, considerable discrepancy exists between estimates obtained from experimental data and the finite element analysis. It is believed that this discrepancy is the result of inadequacies in the finite element modelling to represent the damped motion of the laboratory apparatus.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Exact solutions and conservation laws of the system of two-dimensional viscous Burgers equations
Abdulwahhab, Muhammad Alim
2016-10-01
Fluid turbulence is one of the phenomena that has been studied extensively for many decades. Due to its huge practical importance in fluid dynamics, various models have been developed to capture both the indispensable physical quality and the mathematical structure of turbulent fluid flow. Among the prominent equations used for gaining in-depth insight of fluid turbulence is the two-dimensional Burgers equations. Its solutions have been studied by researchers through various methods, most of which are numerical. Being a simplified form of the two-dimensional Navier-Stokes equations and its wide range of applicability in various fields of science and engineering, development of computationally efficient methods for the solution of the two-dimensional Burgers equations is still an active field of research. In this study, Lie symmetry method is used to perform detailed analysis on the system of two-dimensional Burgers equations. Optimal system of one-dimensional subalgebras up to conjugacy is derived and used to obtain distinct exact solutions. These solutions not only help in understanding the physical effects of the model problem but also, can serve as benchmarks for constructing algorithms and validation of numerical solutions of the system of Burgers equations under consideration at finite Reynolds numbers. Independent and nontrivial conserved vectors are also constructed.
Band Gap Computation of Two Dimensional Photonic Crystal for High Index Contrast Grating Application
Directory of Open Access Journals (Sweden)
Gagandeep Kaur
2014-05-01
Full Text Available Two Dimensional Photonic Crystal (PHc is convenient type of PHc, It refers to the fact that the dielectric is periodic in Two directions. The study of photonic structure by a simulation method is extremely momentous. At optical frequencies the optical density contained by two dimensional PHc changes periodically. They have the property to strong effect the propagation of light waves at these optical frequencies. A typical linearization method which solves the common nonlinear Eigen values difficulties has been used to achieve structures of the photonic band. There are two method plane wave expansion method (PWE and Finite Difference Time Domain method (FDTD. These Methods are most widely used for band gap calculation of PHc’s. FDTD Method has more smoothness and directness and can be explored effortlessly for simulation of the field circulation inside the photonic structure than PWE method so we have used FDTD Method for Two dimensional PHc’s calculation. In simulation of Two Dimensional band structures, silicon material has 0.543nm lattice constant and 1.46refractive index.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Institute of Scientific and Technical Information of China (English)
GAO Wei; DUAN Ya-li; LIU Ru-xun
2009-01-01
In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.
A Two-Dimensional MagnetoHydrodynamics Scheme for General Unstructured Grids
Livne, E; Burrows, A; Meakin, C A; Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-01-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation-hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALE). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of $div(\\bB)$ by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for...
Landim, C.; Lemire, P.
2016-07-01
We consider the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field evolving on a large but finite torus. We obtain sharp estimates for the transition time, we characterize the set of critical configurations, and we prove the metastable behavior of the dynamics as the temperature vanishes.
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
Decoherence in a Landau Quantized Two Dimensional Electron Gas
Directory of Open Access Journals (Sweden)
McGill Stephen A.
2013-03-01
Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A two-dimensional polymer prepared by organic synthesis.
Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji
2012-02-05
Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
S C Mishra; Roshan Lal; Veena Mishra
2003-10-01
Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.
Extreme paths in oriented two-dimensional percolation
Andjel, E. D.; Gray, L. F.
2016-01-01
International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT
Two-Dimensional Weak Pseudomanifolds on Eight Vertices
Indian Academy of Sciences (India)
Basudeb Datta; Nandini Nilakantan
2002-05-01
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.
Two dimensional tunable photonic crystal defect based drop filter at communication wavelength
D'souza, Nirmala Maria; Mathew, Vincent
2017-07-01
We propose a two dimensional photonic crystal (PhC) based drop filter, at communication wavelength with more than 90% transmission. The filtering is achieved by introducing two line defects and three point defects in a two dimensional triangular array of ferroelectric rods in air. Using the electro-optic property of the ferroelectric, about 32 nm tuning in the resonance wavelength is obtained. For the calculation of transmission, finite difference time domain (FDTD) simulations were performed. The operating frequency range is explored via the band structure which is obtained by the implementation of plane wave expansion (PWE) method. The influence of the radius of various rods on the filter wavelength as well as efficiency is also analyzed. The different possible configurations of this filter are also considered.
Phase diagram of a two-dimensional large- Q Potts model in an external field
Tsai, Shan-Ho; Landau, D. P.
2009-04-01
We use a two-dimensional Wang-Landau sampling algorithm to map out the phase diagram of a Q-state Potts model with Q⩽10 in an external field H that couples to one state. Finite-size scaling analyses show that for large Q the first-order phase transition point at H=0 is in fact a triple point at which three first-order phase transition lines meet. One such line is restricted to H=0; another line has H⩽0. The third line, which starts at the H=0 triple point, ends at a critical point (T,H) which needs to be located in a two-dimensional parameter space. The critical field H(Q) is positive and decreases with decreasing Q, which is in qualitative agreement with previous predictions.
Anisotropic States of Two-Dimensional Electrons in High Magnetic Fields
Ettouhami, A. M.; Doiron, C. B.; Klironomos, F. D.; Côté, R.; Dorsey, Alan T.
2006-05-01
We study the collective states formed by two-dimensional electrons in Landau levels of index n≥2 near half filling. By numerically solving the self-consistent Hartree-Fock (HF) equations for a set of oblique two-dimensional lattices, we find that the stripe state is an anisotropic Wigner crystal (AWC), and determine its precise structure for varying values of the filling factor. Calculating the elastic energy, we find that the shear modulus of the AWC is small but finite (nonzero) within the HF approximation. This implies, in particular, that the long-wavelength magnetophonon mode in the stripe state vanishes like q3/2 as in an ordinary Wigner crystal, and not like q5/2 as was found in previous studies where the energy of shear deformations was neglected.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Batrouni, George
2011-03-01
I will discuss pairing in fermionic systems in one- and two-dimensional optical lattices with population imbalance. This will be done in the context of the attractive fermionic Hubbard model using the Stochastic Green Function algorithm in d=1 while for d=2 we use Determinant Quantum Monte Carlo. This is the first exact QMC study examining the effects of finite temperature which is very important in experiments on ultra-cold atoms. Our results show that, in the ground state, the dominant pairing mechanism is at nonzero center of mass momentum, i.e. FFLO. I will then discuss the effect of finite temperature in the uniform and confined systems and present finite temperature phase diagrams. The numerical results will be compared with experiments. With M. J. Wolak (CQT, National University of Singapore) and V. G. Rousseau (Department of Physics and Astronomy, Louisiana State University).
A CMOS VLSI IC for real-time opto-electronic two-dimensional histogram generation
Richstein, James K.
1993-12-01
Histogram generation, a standard image processing operation, is a record of the intensity distribution in the image. Histogram generation has straightforward implementations on digital computers using high level languages. A prototype of an optical-electronic histogram generator was designed and tested for 1-D objects using wirewrapped MSI TTL components. The system has shown to be fairly modular in design. The aspects of the extension to two dimensions and the VLSI implementation of this design are discussed. In this paper, we report a VLSI design to be used in a two-dimensional real-time histogram generation scheme. The overall system design is such that the electronic signal obtained from the optically scanned two-dimensional semi-opaque image is processed and displayed within a period of one cycle of the scanning process. Specifically, in the VLSI implementation of the two-dimensional histogram generator, modifications were made to the original design. For the two-dimensional application, the output controller was analyzed as a finite state machine. The process used to describe the required timing signals and translate them to a VLSI finite state machine using Computer Aided Design Tools is discussed. In addition, the circuitry for sampling, binning, and display were combined with the timing circuitry on one IC. In the original design, the pulse width of the electronically sampled photodetector is limited with an analog one-shot. The high sampling rates associated with the extension to two dimensions requires significant reduction in the original 1-D prototype's sample pulse width of approximately 75 ns. The alternate design using VLSI logic gates will provide one-shot pulse widths of approximately 3 ns.
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
Isotropic model of fractional transport in two-dimensional bounded domains.
Kullberg, A; del-Castillo-Negrete, D; Morales, G J; Maggs, J E
2013-05-01
A two-dimensional fractional Laplacian operator is derived and used to model nonlocal, nondiffusive transport. This integro-differential operator appears in the long-wavelength, fluid description of quantities undergoing non-Brownian random walks without characteristic length scale. To study bounded domains, a mask function is introduced that modifies the kernel in the fractional Laplacian and removes singularities at the boundary. Green's function solutions to the fractional diffusion equation are presented for the unbounded domain and compared to the one-dimensional Cartesian approximations. A time-implicit numerical integration scheme is presented to study fractional diffusion in a circular disk with azimuthal symmetry. Numerical studies of steady-state reveal temperature profiles in which the heat flux and temperature gradient are in the same direction, i.e., uphill transport. The response to off-axis heating, scaling of confinement time with system size, and propagation of cold pulses are investigated.
Stiffer double-stranded DNA in two-dimensional confinement due to bending anisotropy
Salari, H.; Eslami-Mossallam, B.; Ranjbar, H. F.; Ejtehadi, M. R.
2016-12-01
Using analytical approach and Monte Carlo (MC) simulations, we study the elastic behavior of the intrinsically twisted elastic ribbons with bending anisotropy, such as double-stranded DNA (dsDNA), in two-dimensional (2D) confinement. We show that, due to the bending anisotropy, the persistence length of dsDNA in 2D conformations is always greater than three-dimensional (3D) conformations. This result is in consistence with the measured values for DNA persistence length in 2D and 3D in equal biological conditions. We also show that in two dimensions, an anisotropic, intrinsically twisted polymer exhibits an implicit twist-bend coupling, which leads to the transient curvature increasing with a half helical turn periodicity along the bent polymer.
Energy Technology Data Exchange (ETDEWEB)
Votsish, A.D.; Kolesnikov, Yu.B.
1977-01-01
Results are given for an experimental study of two-dimensional turbulent flow with shifts in a plane duct in an azimuthal magnetic field. The turbulent flow was shown to become practically equal to zero in a sufficiently strong field whereas the intensity of the pulsation rate has a finite value. This is explained by the fact that the magnetic field transforms the structure of turbulence into a two-dimensional structure whose maintenance merely requires an insignificant portion of medium flow energy. 4 illustrations, 8 references.
Institute of Scientific and Technical Information of China (English)
国伟华; 黄永箴; 陆巧银; 于丽娟
2004-01-01
Free spectral range of whispering-gallery (WG)-like modes in a two-dimensional (2D) square microcavity is found to be twice that in a 2D circular microcavity. The quality factor of the WG-like mode with the low mode number in a 2D square microcavity, calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation method, is found to exceed that of the WG mode in 2D circular microcavity with the same cavity dimension and close mode wavelength.
Kuiper, Logan K
2016-01-01
An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.
DEFF Research Database (Denmark)
David, Christin; Christensen, Johan; Mortensen, N. Asger
2016-01-01
We develop a methodology to incorporate nonlocal optical response of the free electron gas due to quantum-interaction effects in metal components of periodic two-dimensional plasmonic crystals and study the impact of spatial dispersion on promising building blocks for photonic circuits. Within th...... at normal incidence and the surprisingly large structural parameters at which finite blueshifts are observable, which we attribute to diffraction that offers nonvanishing in-plane wave vector components and increases the penetration depth of longitudinal (nonlocal) modes....
Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code
Energy Technology Data Exchange (ETDEWEB)
Trent, D.S.
1973-06-01
The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.
Casimir, J. B.; Kevorkian, S.; Vinh, T.
2005-10-01
This paper describes a procedure for building the dynamic stiffness matrix of two-dimensional elements with free edge boundary conditions. The dynamic stiffness matrix is the basis of the continuous element method. Then, the formulation is used to build a Kirchhoff rectangular plate element. Gorman's method of boundary condition decomposition and Levy's series are used to obtain the strong solution of the elementary problem. A symbolic computation software partially performs the construction of the dynamic stiffness matrix from this solution. The performances of the element are evaluated from comparisons with harmonic responses of plates obtained by the finite element method.
Monte Carlo renormalization-group investigation of the two-dimensional O(4) sigma model
Heller, Urs M.
1988-01-01
An improved Monte Carlo renormalization-group method is used to determine the beta function of the two-dimensional O(4) sigma model. While for (inverse) couplings beta = greater than about 2.2 agreement is obtained with asymptotic scaling according to asymptotic freedom, deviations from it are obtained at smaller couplings. They are, however, consistent with the behavior of the correlation length, indicating 'scaling' according to the full beta function. These results contradict recent claims that the model has a critical point at finite coupling.
Energy Technology Data Exchange (ETDEWEB)
Barbaro, M. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dipt. Innovazione
1997-11-01
A numerical method is described which generates an orthogonal curvilinear mesh, subject to the constraint that mesh lines are matched to all boundaries of a closed, simply connected two-dimensional region of arbitrary shape. The method is based on the solution, by an iterative finite-difference technique, of an elliptic differential system of equations for the Cartesian coordinates of the orthogonal grid nodes. The interior grid distribution is controlled by a technique which ensures that coordinate lines can be concentrated as desired. Examples of orthogonal meshes inscribed in various geometrical figures are included.
Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole
Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua
2016-06-01
The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.
Unconventional critical activated scaling of two-dimensional quantum spin glasses
Matoz-Fernandez, D. A.; Romá, F.
2016-07-01
We study the critical behavior of two-dimensional short-range quantum spin glasses by numerical simulations. Using a parallel tempering algorithm, we calculate the Binder cumulant for the Ising spin glass in a transverse magnetic field with two different short-range bond distributions, the bimodal and the Gaussian ones. Through an exhaustive finite-size analysis, we show that the cumulant probably follows an unconventional activated scaling, which we interpret as new evidence supporting the hypothesis that the quantum critical behavior is governed by an infinite randomness fixed point.
Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System
Chechkin, Gregory A.; Ratiu, Tudor S.; Romanov, Maxim S.; Samokhin, Vyacheslav N.
2016-09-01
In this paper we study the two dimensional Ericksen-Leslie equations for the nematodynamics of liquid crystals if the moment of inertia of the molecules does not vanish. We prove short time existence and uniqueness of strong solutions for the initial value problem in two situations: the space-periodic problem and the case of a bounded domain with spatial Dirichlet boundary conditions on the Eulerian velocity and the cross product of the director field with its time derivative. We also show that the speed of propagation of the director field is finite and give an upper bound for it.
Unstable dimension variability and codimension-one bifurcations of two-dimensional maps
Energy Technology Data Exchange (ETDEWEB)
Viana, Ricardo L.; Barbosa, Jose R.R.; Grebogi, Celso
2004-02-09
Unstable dimension variability is a mechanism whereby an invariant set of a dynamical system, like a chaotic attractor or a strange saddle, loses hyperbolicity in a severe way, with serious consequences on the shadowability properties of numerically generated trajectories. In dynamical systems possessing a variable parameter, this phenomenon can be triggered by the bifurcation of an unstable periodic orbit. This Letter aims at discussing the possible types of codimension-one bifurcations leading to unstable dimension variability in a two-dimensional map, presenting illustrative examples and displaying numerical evidences of this fact by computing finite-time Lyapunov exponents.
Dallapiccola, Ramona; Gopinath, Ashwin; Stellacci, Francesco; Dal Negro, Luca
2008-04-14
In this paper we investigate for the first time the near-field optical behavior of two-dimensional Fibonacci plasmonic lattices fabricated by electron-beam lithography on transparent quartz substrates. In particular, by performing near-field optical microscopy measurements and three dimensional Finite Difference Time Domain simulations we demonstrate that near-field coupling of nanoparticle dimers in Fibonacci arrays results in a quasi-periodic lattice of localized nanoparticle plasmons. The possibility to accurately predict the spatial distribution of enhanced localized plasmon modes in quasi-periodic Fibonacci arrays can have a significant impact for the design and fabrication of novel nano-plasmonics devices.
Directory of Open Access Journals (Sweden)
Hong Qi
2015-01-01
Full Text Available A maximum a posteriori (MAP estimation based on Bayesian framework is applied to image reconstruction of two-dimensional highly scattering inhomogeneous medium. The finite difference method (FDM and conjugate gradient (CG algorithm serve as the forward and inverse solving models, respectively. The generalized Gaussian Markov random field model (GGMRF is treated as the regularization, and finally the influence of the measurement errors and initial distributions is investigated. Through the test cases, the MAP estimate algorithm is demonstrated to greatly improve the reconstruction results of the optical coefficients.
Existence of a line of critical points in a two-dimensional Lebwohl Lasher model
Energy Technology Data Exchange (ETDEWEB)
Shabnam, Sabana [Department of Physics, Lady Brabourne College, Kolkata 700017 (India); DasGupta, Sudeshna, E-mail: sudeshna.dasgupta10@gmail.com [Department of Physics, Lady Brabourne College, Kolkata 700017 (India); Roy, Soumen Kumar [Department of Physics, Jadavpur University, Kolkata 700032 (India)
2016-02-15
Controversy regarding transitions in systems with global symmetry group O(3) has attracted the attention of researchers and the detailed nature of this transition is still not well understood. As an example of such a system in this paper we have studied a two-dimensional Lebwohl Lasher model, using the Wolff cluster algorithm. Though we have not been able to reach any definitive conclusions regarding the order present in the system, from finite size scaling analysis, hyperscaling relations and the behavior of the correlation function we have obtained strong indications regarding the presence of quasi-long range order and the existence of a line of critical points in our system.
Existence of a line of critical points in a two-dimensional Lebwohl Lasher model
Shabnam, Sabana; DasGupta, Sudeshna; Roy, Soumen Kumar
2016-02-01
Controversy regarding transitions in systems with global symmetry group O(3) has attracted the attention of researchers and the detailed nature of this transition is still not well understood. As an example of such a system in this paper we have studied a two-dimensional Lebwohl Lasher model, using the Wolff cluster algorithm. Though we have not been able to reach any definitive conclusions regarding the order present in the system, from finite size scaling analysis, hyperscaling relations and the behavior of the correlation function we have obtained strong indications regarding the presence of quasi-long range order and the existence of a line of critical points in our system.
A discontinuous Galerkin method for two-dimensional PDE models of Asian options
Hozman, J.; Tichý, T.; Cvejnová, D.
2016-06-01
In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.
Blow-up conditions for two dimensional modified Euler-Poisson equations
Lee, Yongki
2016-09-01
The multi-dimensional Euler-Poisson system describes the dynamic behavior of many important physical flows, yet as a hyperbolic system its solution can blow-up for some initial configurations. This article strives to advance our understanding on the critical threshold phenomena through the study of a two-dimensional modified Euler-Poisson system with a modified Riesz transform where the singularity at the origin is removed. We identify upper-thresholds for finite time blow-up of solutions for the modified Euler-Poisson equations with attractive/repulsive forcing.
Institute of Scientific and Technical Information of China (English)
Guangwei Yuan; Longjun Shen
2003-01-01
In this paper we are going to discuss the difference schemes with intrinsic parallelismfor the boundary value problem of the two dimensional semilinear parabolic systems. Theunconditional stability of the general finite difference schemes with intrinsic parallelismis justified in the sense of the continuous dependence of the discrete vector solution ofthe difference schemes on the discrete data of the original problems in the discrete W2(2,1)norms. Then the uniqueness of the discrete vector solution of this difference scheme followsas the consequence of the stability.
Two-dimensional modeling of apparent resistivity pseudosections in the Cerro Prieto region
Energy Technology Data Exchange (ETDEWEB)
Vega, R.; Martinez, M.
1981-01-01
Using a finite-difference program (Dey, 1976) for two-dimensional modeling of apparent resistivity pseudosections obtained by different measuring arrays, four apparent resistivity pseudosections obtained at Cerro Prieto with a Schlumberger array by CFE personnel were modeled (Razo, 1978). Using geologic (Puente and de la Pena, 1978) and lithologic (Diaz, et al., 1981) data from the geothermal region, models were obtained which show clearly that, for the actual resistivity present in the zone, the information contained in the measured pseudosections is primarily due to the near-surface structure and does not show either the presence of the geothermal reservoir or the granitic basement which underlies it.
Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling.
Mishchenko, E G; Shytov, A V; Halperin, B I
2004-11-26
We derive the transport equations for two-dimensional electron systems with Rashba spin-orbit interaction and short-range spin-independent disorder. In the limit of slow spatial variations, we obtain coupled diffusion equations for the electron density and spin. Using these equations we calculate electric-field induced spin accumulation and spin current in a finite-size sample for an arbitrary ratio between spin-orbit energy splitting Delta and elastic scattering rate tau(-1). We demonstrate that the spin-Hall conductivity vanishes in an infinite system independent of this ratio.
Tunable Goos-Haenchen shift for self-collimated beams in two-dimensional photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Matthews, Aaron [Nonlinear Physics Centre and Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)], E-mail: afm124@rsphysse.anu.edu.au; Kivshar, Yuri [Nonlinear Physics Centre and Centre for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)
2008-04-21
We present finite-difference time-domain studies of the Goos-Haenchen effect observed at the reflection of a self-collimated beam from the surface of a two-dimensional photonic crystal. We describe a method of tuning the shift of the reflected beam in photonic crystals through the modification of the surface, first structurally, as a change in the radius of the surface rods, and then all-optically, with the addition of nonlinear material to the surface layer. We demonstrate all-optical tunability and intensity-dependent control of the beam shift.
Monte Carlo renormalization-group investigation of the two-dimensional O(4) sigma model
Heller, Urs M.
1988-01-01
An improved Monte Carlo renormalization-group method is used to determine the beta function of the two-dimensional O(4) sigma model. While for (inverse) couplings beta = greater than about 2.2 agreement is obtained with asymptotic scaling according to asymptotic freedom, deviations from it are obtained at smaller couplings. They are, however, consistent with the behavior of the correlation length, indicating 'scaling' according to the full beta function. These results contradict recent claims that the model has a critical point at finite coupling.
Left-Handed Properties in Two-Dimensional Photonic Crystals Formed by Holographic Lithography
Institute of Scientific and Technical Information of China (English)
SHEN Xiao-Xia; YANG Xiu-Lun; CAI Lv-Zhong; WANG Yu-Rong; DONG Guo-Yan; MENG Xiang-Feng; XU Xian-Feng
2008-01-01
We give an analysis of the frequency distribution trends in the four lowest bands of two-dimensional square lattices formed by holographic lithography (HL) and in the lattices of the same kind but with regular dielectric columns with increasing filling ratios, and then present a comparative study on the left-handed properties in these two kinds of structures using plane wave expansion method and finite-difference time-domain (FDTD) simulations.The results show that the left-handed properties are more likely to exist in structures with large high-epsilon filling ratios or in a connected lattice.
T-shaped polarization beam splitter based on two-dimensional photonic crystal waveguide structures
Li, Xinlan; Shen, Hongjun; Li, Ting; Liu, Jie; Huang, Xianjian
2016-12-01
A T-shaped polarization beam splitter based on two-dimensional photonic crystal is proposed, which is composed of three waveguides: one input and two output. Unpolarized beams incident from the input port will be separated into two different polarization modes and outputted individually by two different coupling structures. Simulation results can be obtained by the finite-difference time-domain (FDTD) method. In the normalized frequency range of 0.3456 extinction ratio is all 30dB for both modes. The polarization beam splitter attains the requirement we expected by analyzing simulation results.
Elastic Wave Propagation in Two-Dimensional Ordered and Weakly Disordered Phononic Crystals
Institute of Scientific and Technical Information of China (English)
YUAN Zuo-Dong; CHENG Jian-Chun
2005-01-01
@@ Elastic wave propagation in two-dimensional solid-solid ordered and weakly disordered phononic crystals is studied by using finite-difference time-domain method.Theoretical results show that obvious band gaps in the ordered crystal could be found, while in the weakly disordered ones the band gaps could partially vanish.Furthermore,with increase of disorder, band gaps are destructed badly and prominently in the high frequency regime while slightly in the low regime.Comparing the energy transmission dependent on time, we find that the coda wave phenomenon is prominent in the ordered crystal while weakened in the weakly disordered ones, and the physical properties are discussed.
Hamiltonian dynamics of the two-dimensional lattice {phi}{sup 4} model
Energy Technology Data Exchange (ETDEWEB)
Caiani, Lando [Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), Trieste (Italy); Casetti, Lapo [Istituto Nazionale di Fisica della Materia (INFM), Unita di Ricerca del Politecnico di Torino, Dipartimento di Fisica, Politecnico di Torino, Turin (Italy); Pettini, Marco [Osservatorio Astrofisico di Arcetri, Florence (Italy)
1998-04-17
The Hamiltonian dynamics of the classical {phi}{sup 4} model on a two-dimensional square lattice is investigated by means of numerical simulations. The macroscopic observables are computed as time averages. The results clearly reveal the presence of the continuous phase transition at a finite energy density and are consistent both qualitatively and quantitatively with the predictions of equilibrium statistical mechanics. The Hamiltonian microscopic dynamics also exhibits critical slowing down close to the transition. Moreover, the relationship between chaos and the phase transition is considered, and interpreted in the light of a geometrization of dynamics. (author)
Directory of Open Access Journals (Sweden)
J. Thuburn
2014-05-01
Full Text Available A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV. The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Energy Technology Data Exchange (ETDEWEB)
Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Two-dimensional superconductors with atomic-scale thickness
Uchihashi, Takashi
2017-01-01
Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.
TreePM Method for Two-Dimensional Cosmological Simulations
Indian Academy of Sciences (India)
Suryadeep Ray
2004-09-01
We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.
Singular analysis of two-dimensional bifurcation system
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Vortices in the Two-Dimensional Simple Exclusion Process
Bodineau, T.; Derrida, B.; Lebowitz, Joel L.
2008-06-01
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....
Field analysis of two-dimensional focusing grating couplers
Borsboom, P.-P.; Frankena, H. J.
1995-05-01
A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.
Self-assembly of two-dimensional DNA crystals
Institute of Scientific and Technical Information of China (English)
SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun
2004-01-01
Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...
Two-dimensional assignment with merged measurements using Langrangrian relaxation
Briers, Mark; Maskell, Simon; Philpott, Mark
2004-01-01
Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Quasinormal frequencies of asymptotically flat two-dimensional black holes
Lopez-Ortega, A
2011-01-01
We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Zero- n bar band gap in two-dimensional metamaterial photonic crystals
Mejía-Salazar, J. R.; Porras-Montenegro, N.
2015-04-01
We have theoretically studied metamaterial photonic crystals (PCs) composed by air and double negative (DNG) material. Numerical data were obtained by means of the finite difference time-domain (FDTD) method, with results indicating the possibility for the existence of the zero- n bar non-Bragg gap in two-dimensional metamaterial PCs, which has been previously observed only in one-dimensional photonic superlattices. Validity of the present FDTD algorithm for the study of one-dimensional metamaterial PCs is shown by comparing with results for the transmittance spectra obtained by means of the well known transfer matrix method (TMM). In the case of two-dimensional metamaterial PCs, we have calculated the photonic band structure (PBS) in the limiting case of a one-dimensional photonic superlattice and for a nearly one-dimensional PC, showing a very similar dispersion relation. Finally, we show that due to the strong electromagnetic field localization on the constitutive rods, the zero- n bar non-Bragg gap may only exist in two-dimensional systems under strict geometrical conditions.
Dynamics of kinks in one- and two-dimensional hyperbolic models with quasidiscrete nonlinearities.
Rotstein, H G; Mitkov, I; Zhabotinsky, A M; Epstein, I R
2001-06-01
We study the evolution of fronts in the Klein-Gordon equation when the nonlinear term is inhomogeneous. Extending previous works on homogeneous nonlinear terms, we describe the derivation of an equation governing the front motion, which is strongly nonlinear, and, for the two-dimensional case, generalizes the damped Born-Infeld equation. We study the motion of one- and two-dimensional fronts finding a much richer dynamics than in the homogeneous system case, leading, in most cases, to the stabilization of one phase inside the other. For a one-dimensional front, the function describing the inhomogeneity of the nonlinear term acts as a "potential function" for the motion of the front, i.e., a front initially placed between two of its local maxima asymptotically approaches the intervening minimum. Two-dimensional fronts, with radial symmetry and without dissipation can either shrink to a point in finite time, grow unboundedly, or their radius can oscillate, depending on the initial conditions. When dissipation effects are present, the oscillations either decay spirally or not depending on the value of the damping dissipation parameter. For fronts with a more general shape, we present numerical simulations showing the same behavior.
Institute of Scientific and Technical Information of China (English)
YUAN; Yiran(袁益让)
2002-01-01
For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques,such as implicit-explicit difference scheme, calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources.
Wang, Zhiheng
2014-12-10
A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.
Institute of Scientific and Technical Information of China (English)
Xu Quan; Tian Qiang
2009-01-01
This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.
Lu, C.; Deng, S.; Podgorney, R. K.; Huang, H.
2011-12-01
Reliable reservoir performance predictions of enhanced geothermal reservoir systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, in order to reduce computational cost, these types of problems are solved using operator splitting method, usually by sequentially coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. However, such operator splitting approaches are applicable only to loosely coupled problems and usually converge slowly. As in most enhanced geothermal systems (EGS), fluid flow, heat transport, and rock deformation are typically strongly nonlinearly coupled, an alternative is to solve the system of nonlinear partial differential equations that govern the system simultaneously using a fully coupled solution procedure for fluid flow, heat transport, and solid mechanics. This procedure solves for all solution variables (fluid pressure, temperature and rock displacement fields) simultaneously, which leads to one large nonlinear algebraic system that needs to be solved by a strongly convergent nonlinear solver. Development over the past 10 years in the area of physics-based conditioning, strongly convergent nonlinear solvers (such as Jacobian Free Newton methods) and efficient linear solvers (such as GMRES, AMG), makes such an approach competitive. In this presentation, we will introduce a continuum-scaled parallel physics-based, fully coupled, modeling tool for predicting the dynamics of fracture initiation and propagation, fluid flow, rock deformation, and heat transport in a single integrated code named FALCON (Fracturing And Liquid-steam CONvection). FALCON is built upon a parallel computing framework developed at Idaho National Laboratory (INL) for solving coupled systems of nonlinear equations with finite element method with unstructured and adaptively refined/coarsened grids. Currently, FALCON contains poro- and thermal- elastic models
Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting
Chen, Leiming; Lee, Chiu Fan; Toner, John
2016-07-01
Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.
DEFF Research Database (Denmark)
Lotz, Mikkel Rønne; Boll, Mads; Østerberg, Frederik Westergaard
2016-01-01
We have studied the behavior of micro four-point probe (M4PP) measurements on two-dimensional (2D) sheets composed of grains of varying size and grain boundary resistivity by Monte Carlo based finite element (FE) modelling. The 2D sheet of the FE model was constructed using Voronoi tessellation......-configurations depends on the dimensionality of the current transport (i.e., one- or two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional transport is seen. Ultimately......, this affects how measurements on defective systems should be interpreted in order to extract relevant sample parameters. The Hall effect response in all M4PP configurations was only significant for moderate grain densities and fairly large grain boundary resistivity....
A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries
Energy Technology Data Exchange (ETDEWEB)
Toreja, A J; Uddin, R
2002-10-21
A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.
Brûlé, Yoann; Gralak, Boris
2015-01-01
Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.
Subtlety in the Critical Behavior of the Two Dimensional XY Model
Kim, Jae-Kwon
1996-03-01
We study the two dimensional classical XY model using the single cluster Monte Carlo algorithm^1. We present extensive high -temperature -phase bulk data that are extracted based on a novel finite- size- scaling Monte Carlo technique^2. The largest value of the estimated bulk correlation length is 1390 in lattice units. Our data reveal that η=1/4 sets in near criticality. The standard finite-size-scaling analysis of the data close to criticality, however, seems to indicate that η=1/4 is compatible only for a critical temperature (T_c) over the range 0.900 Wolff, Phys. Rev. Lett. 62, 361 (1989) ^2 J.-K. Kim, Euro. Phys. Lett. 28, 211 (1994) Research supported in part by the NSF
Energy Technology Data Exchange (ETDEWEB)
Sahraoui, Melik [Institut Preparatoire aux Etudes d' Ingenieurs de Tunis (IPEIT) (Tunisia); Kharrat, Chafik; Halouani, Kamel [UR: Micro-Electro-Thermal Systems (METS-ENIS), Industrial Energy Systems Group, Institut Preparatoire aux Etudes d' Ingenieurs de Sfax (IPEIS), University of Sfax, B.P: 1172, 3018 Sfax (Tunisia)
2009-04-15
A two-dimensional CFD model of PEM fuel cell is developed by taking into account the electrochemical, mass and heat transfer phenomena occurring in all of its regions simultaneously. The catalyst layers and membrane are each considered as distinct regions with finite thickness and calculated properties such as permeability, local protonic conductivity, and local dissolved water diffusion. This finite thickness model enables to model accurately the protonic current in these regions with higher accuracy than using an infinitesimal interface. In addition, this model takes into account the effect of osmotic drag in the membrane and catalyst layers. General boundary conditions are implemented in a way taking into consideration any given species concentration at the fuel cell inlet, such as water vapor which is a very important parameter in determining the efficiency of fuel cells. Other operating parameters such as temperature, pressure and porosity of the porous structure are also investigated to characterize their effect on the fuel cell efficiency. (author)
Density of states of two-dimensional systems with long-range logarithmic interactions
Energy Technology Data Exchange (ETDEWEB)
Somoza, Andrés M.; Ortuño, Miguel; Baturina, Tatyana I.; Vinokur, Valerii M.
2015-08-03
We investigate a single-particle density of states (DOS) in strongly disordered two- dimensional high dielectric permittivity systems with logarithmic Coulomb interaction between particles. We derive self-consistent DOS at zero temperature and show that it is appreciably suppressed as compared to the DOS expected from the Efros-Shklovskii approach.We carry out zero- and finite-temperature Monte Carlo numerical studies of the DOS and find the perfect agreement between the numerical and analytical results at zero temperature, observing, in particular, a hardening of the Coulomb gap with the increasing electrostatic screening length. At finite temperatures, we reveal a striking scaling of the DOS as a function of energy normalized to the temperature of the system.
Men, Han; Freund, Robert M; Parrilo, Pablo A; Peraire, Jaume
2009-01-01
In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several fr...
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
The partition function of two-dimensional string theory
Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen
1993-04-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The partition function of two-dimensional string theory
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))
1993-04-12
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity
Two-Dimensional Electronic Spectroscopy of a Model Dimer System
Directory of Open Access Journals (Sweden)
Prokhorenko V.I.
2013-03-01
Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem
Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards
Fel, Leonid G.
2002-05-01
The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).
Specification of a Two-Dimensional Test Case
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....
Operator splitting for two-dimensional incompressible fluid equations
Holden, Helge; Karper, Trygve K
2011-01-01
We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.
Chaotic dynamics for two-dimensional tent maps
Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique
2015-02-01
For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...
Spin-orbit torques in two-dimensional Rashba ferromagnets
Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.
2015-01-01
Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent
Exact two-dimensional superconformal R symmetry and c extremization.
Benini, Francesco; Bobev, Nikolay
2013-02-08
We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f
Topology optimization of two-dimensional elastic wave barriers
DEFF Research Database (Denmark)
Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.
2016-01-01
Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...
Non perturbative methods in two dimensional quantum field theory
Abdalla, Elcio; Rothe, Klaus D
1991-01-01
This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.
Thermodynamics of Two-Dimensional Black-Holes
Nappi, Chiara R.; Pasquinucci, Andrea
1992-01-01
We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the
Dynamical phase transitions in the two-dimensional ANNNI model
Energy Technology Data Exchange (ETDEWEB)
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Two-dimensional static black holes with pointlike sources
Melis, M
2004-01-01
We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.
Magnetic order in two-dimensional nanoparticle assemblies
Georgescu, M
2008-01-01
This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r
Two-Dimensional Chirality in Three-Dimensional Chemistry.
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi
Torque magnetometry studies of two-dimensional electron systems
Schaapman, Maaike Ruth
2004-01-01
This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation
Indian Academy of Sciences (India)
N Sabu
2003-08-01
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Forensic potential of comprehensive two-dimensional gas chromatography
Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.
2016-01-01
In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o
Easy interpretation of optical two-dimensional correlation spectra
Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.
2006-01-01
We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t
Two Dimensional F(R) Horava-Lifshitz Gravity
Kluson, J
2016-01-01
We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.
Localization of Tight Closure in Two-Dimensional Rings
Indian Academy of Sciences (India)
Kamran Divaani-Aazar; Massoud Tousi
2005-02-01
It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.
Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm
Directory of Open Access Journals (Sweden)
Bart Preneel
2005-07-01
Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.
New directions in science and technology: two-dimensional crystals
Energy Technology Data Exchange (ETDEWEB)
Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
2011-08-15
Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.
Boundary-value problems for two-dimensional canonical systems
Hassi, Seppo; De Snoo, H; Winkler, Henrik
2000-01-01
The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess
On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra
De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.
2000-01-01
The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp
Dislocation climb in two-dimensional discrete dislocation dynamics
Davoudi, K.M.; Nicola, L.; Vlassak, J.J.
2012-01-01
In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r
SAR Processing Based On Two-Dimensional Transfer Function
Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.
1994-01-01
Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Imperfect two-dimensional topological insulator field-effect transistors
Vandenberghe, William G.; Fischetti, Massimo V.
2017-01-01
To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059