Wang, Y.; Ramaswamy, V.; Saleh, F.
2017-12-01
Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.
Hydrodynamical simulation of the core helium flash with two-dimensional convection
International Nuclear Information System (INIS)
Cole, P.W.
1981-01-01
The thermonuclear runaway of helium reactions under the condition of electron degeneracy in the hot, dense central regions of a low mass Population II red giant is investigated. A two-dimensional finite difference approach to time dependent convection has been applied to a peak energy production model of this phenomenon called the core helium flash. The dynamical conservation equations are integrated in two spatial dimensions and time which allow the horizontal variations of the dynamical variables to be followed explicitly. The unbalanced bouyancy forces in convectively unstable regions lead to mass flow (i.e., convective energy transport) by calculation of the velocity flow patterns produced by the conservation laws of mass, momentum, and energy without recourse to any phenomenological theory of convection. The initial phase of this hydrodynamical simulation is characterized by a thermal readjustment via downward convective energy transport into the neutrino cooled core in a series of convection modulated thermal pulses. Each of these pulses is driven by the thermal runaway and quenched by the convective energy transport when the actual temperature gradient in the flash region becomes sufficiently superadiabatic. These convection modulated thermal pulses are observed throughout 95% of the calculation, the duration of which is approximately 570,000 cycles or nearly 96,000 seconds of evolution. After this initial thermal restructuring, there ensues in the simulation a dynamic phase in which the thermonuclear runaway becomes violent. The degree of violence, the final composition, and the peak temperature depend sensitively on the nuclear energy generation rates of those reactions involving alpha particle captures
International Nuclear Information System (INIS)
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-01-01
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester
Energy Technology Data Exchange (ETDEWEB)
Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)
2015-08-15
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-01
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.
2013-11-01
The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.
Swain, Eric D.; Wolfert, Melinda A.; Bales, Jerad D.; Goodwin, Carl R.
2004-01-01
Successful restoration of the southern Florida ecosystem requires extensive knowledge of the physical characteristics and hydrologic processes controlling water flow and transport of constituents through extremely low-gradient freshwater marshes, shallow mangrove-fringed coastal creeks and tidal embayments, and near-shore marine waters. A sound, physically based numerical model can provide simulations of the differing hydrologic conditions that might result from various ecosystem restoration scenarios. Because hydrology and ecology are closely linked in southern Florida, hydrologic model results also can be used by ecologists to evaluate the degree of ecosystem restoration that could be achieved for various hydrologic conditions. A robust proven model, SWIFT2D, (Surface-Water Integrated Flow and Transport in Two Dimensions), was modified to simulate Southern Inland and Coastal Systems (SICS) hydrodynamics and transport conditions. Modifications include improvements to evapotranspiration and rainfall calculation and to the algorithms that describe flow through coastal creeks. Techniques used in this model should be applicable to other similar low-gradient marsh settings in southern Florida and elsewhere. Numerous investigations were conducted within the SICS area of southeastern Everglades National Park and northeastern Florida Bay to provide data and parameter values for model development and testing. The U.S. Geological Survey and the National Park Service supported investigations for quantification of evapotranspiration, vegetative resistance to flow, wind-induced flow, land elevations, vegetation classifications, salinity conditions, exchange of ground and surface waters, and flow and transport in coastal creeks and embayments. The good agreement that was achieved between measured and simulated water levels, flows, and salinities through minimal adjustment of empirical coefficients indicates that hydrologic processes within the SICS area are represented properly
Two-dimensional simulation of sintering process
International Nuclear Information System (INIS)
Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.
1996-01-01
The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)
Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field
International Nuclear Information System (INIS)
Mahdieh, M. H.; Gavili, A.
2005-01-01
Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated
Conaway, Jeffrey S.; Moran, Edward H.
2004-01-01
Bathymetric and hydraulic data were collected by the U.S. Geological Survey on the Tanana River in proximity to Alaska Department of Transportation and Public Facilities' bridge number 505 at mile 80.5 of the Alaska Highway. Data were collected from August 7-9, 2002, over an approximate 5,000- foot reach of the river. These data were combined with topographic data provided by Alaska Department of Transportation and Public Facilities to generate a two-dimensional hydrodynamic model. The hydrodynamic model was calibrated with water-surface elevations, flow velocities, and flow directions collected at a discharge of 25,600 cubic feet per second. The calibrated model was then used for a simulation of the 100-year recurrence interval discharge of 51,900 cubic feet per second. The existing bridge piers were removed from the model geometry in a second simulation to model the hydraulic conditions in the channel without the piers' influence. The water-surface elevations, flow velocities, and flow directions from these simulations can be used to evaluate the influence of the piers on flow hydraulics and will assist the Alaska Department of Transportation and Public Facilities in the design of a replacement bridge.
Two dimensional simulation of high power laser-surface interaction
International Nuclear Information System (INIS)
Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P.; Busch, G.E.
1998-01-01
For laser intensities in the range of 10 8 --10 9 W/cm 2 , and pulse lengths of order 10 microsec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing
Two-dimensional integrated Z-pinch ICF design simulations
Energy Technology Data Exchange (ETDEWEB)
Lash, J.S.
1999-07-01
The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility.
Two-dimensional integrated Z-pinch ICF design simulations
International Nuclear Information System (INIS)
Lash, J.S.
1999-01-01
The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility
Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence
DEFF Research Database (Denmark)
Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry
2007-01-01
The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...
Li, Dong Feng; Bai, Fu Qing; Nie, Hui
2018-06-01
In order to analyze the influence of bridge holes widening on hydrodynamic such as water level, a two-dimensional mathematical model was used to calculate the hydrodynamic factors, river network flow velocity vector distribution is given, water level and difference of bridge widening before and after is calculated and charted, water surface gradient in seven different river sections near the upper reaches of bridges is counted and revealed. The results of hydrodynamic calculation indicate that The Maximum and the minimum deducing numerical value of the water level after bridge widening is 0.028m, and 0.018m respective. the seven sections water surface gradient becomes smaller until it becomes negative, the influence of bridge widening on the upstream is basically over, the range of influence is about 450m from the bridge to the upstream. reach
Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J
2011-09-01
Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes
International Nuclear Information System (INIS)
Slattery, W.L.; Spangenberg, W.H.
1982-01-01
A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
required. Nature of problem: In inertial confinement fusion and related experiments with lasers and particle beams, energy transport by thermal radiation becomes important. Under these conditions, the radiation field strongly interacts with the hydrodynamic motion through emission and absorption processes. Solution method: The equations of radiation transfer coupled with Lagrangian hydrodynamics, heat diffusion and beam tracing (laser or ions) are solved, in two-dimensional axial-symmetric geometry ( R-Z coordinates) using a fractional step scheme. Radiation transfer is solved with angular resolution. Matter properties are either interpolated from tables (equations-of-state and opacities) or computed by user routines (conductivities and beam attenuation). Restrictions: The code has been designed for typical conditions prevailing in inertial confinement fusion (ns time scale, matter states close to local thermodynamical equilibrium, negligible radiation pressure, …). Although a wider range of situations can be treated, extrapolations to regions beyond this design range need special care. Unusual features: A special computer language, called r94, is used at top levels of the code. These parts have to be converted to standard C by a translation program (supplied as part of the package). Due to the complexity of code (hydro-code, grid generation, user interface, graphic post-processor, translator program, installation scripts) extensive manuals are supplied as part of the package. Running time: 567 seconds for the example supplied.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Two-dimensional heat conducting simulation of plasma armatures
International Nuclear Information System (INIS)
Huerta, M.A.; Boynton, G.
1991-01-01
This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature
Two-dimensional simulation of the MHD stability, (1)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1976-03-01
The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)
Two-dimensional simulations of magnetically-driven instabilities
International Nuclear Information System (INIS)
Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.
1986-01-01
A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program
Two dimensional hybrid simulation of a curved bow shock
International Nuclear Information System (INIS)
Thomas, V.A.; Winske, D.
1990-01-01
Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters
Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.
2012-12-01
Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.
One and two dimensional simulations on beat wave acceleration
International Nuclear Information System (INIS)
Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.
1984-01-01
Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept
Particle simulation of a two-dimensional electrostatic plasma
International Nuclear Information System (INIS)
Patel, K.
1989-01-01
Computer simulation is a growing field of research and plasma physics is one of the important areas where it is being applied today. This report describes the particle method of simulating a two-dimensional electrostatic plasma. The methods used to discretise the plasma equations and integrate the equations of motion are outlined. The algorithm used in building a simulation program is described. The program is applied to simulating the Two-stream Instability occurring within an infinite plasma. The results of the simulation are presented. The growth rate of the instability as simulated is in excellent agreement with the growth rate as calculated using linear theory. Diagnostic techniques used in interpreting the data generated by the simulation program are discussed. A comparison of the computing environment of the ND and PC from a user's viewpoint is presented. It is observed that the PC is an acceptable computing tool for certain (non-trivial) physics problems, and that more extensive use of its computing power should be made. (author). 5 figs
Two-dimensional PIC-MCC simulation of ion extraction
International Nuclear Information System (INIS)
Xiong Jiagui; Wang Dewu
2000-01-01
To explore more simple and efficient ion extraction methods used in atomic vapor laser isotope separation (AVLIS), two-dimensional (2D) PIC-MCC simulation code is used to simulate and compare several methods: parallel electrode method, II type electrode method, improved M type electrode method, and radio frequency (RF) resonance method. The simulations show that, the RF resonance method without magnetic field is the best among others, then the improved M type electrode method. The result of simulation of II type electrode method is quite different from that calculated by 2D electron equilibrium model. The RF resonance method with or without magnetic field has guide different results. Strong resonance occurs in the simulation without magnetic field, whereas no significant resonance occurs under weak magnetic field. And that is quite different from the strong resonance phenomena occurring in the 1D PIC simulation with weak magnetic field. As for practical applications, the RF resonance method without magnetic field has pros and cons, compared with the M type electrode method
Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation
International Nuclear Information System (INIS)
Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J
2010-01-01
A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.
Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code
Energy Technology Data Exchange (ETDEWEB)
Trent, D.S.
1973-06-01
The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Directory of Open Access Journals (Sweden)
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Two-dimensional computer simulation of high intensity proton beams
Lapostolle, Pierre M
1972-01-01
A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).
International Nuclear Information System (INIS)
Schneider, V.; Rentzsch, T.; Maruhn, J.
1988-04-01
In this report we describe a two-dimensional hydrodynamic code applicable to the problems stated. In section II we describe the algorithm solving the hydrodynamic equations. In section III we present test calculations involving the propagation of shocks and contact discontinuities as well as the growth of a Rayleigh-Taylor Instability (RTI). Section IV includes all the modifications and supplements required to use the code to investigate the interaction of intense HI beams with matter. Numcerical simulations of experiments using the RFQ facility and the planned SIS-ESR at GSI are finally discussed in section V. (orig./HSI)
Hysteresis and avalanches in two-dimensional foam rheology simulations
International Nuclear Information System (INIS)
Jiang, Y.; Swart, P.J.; Saxena, A.; Asipauskas, M.; Glazier, J.A.
1999-01-01
Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a driven large-Q Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At small strain amplitudes, bubbles deform and recover their shapes elastically, and the macroscopic response is that of a linear elastic cellular material. For increasing strain amplitude, the energy-strain curve starts to exhibit hysteresis before any topological rearrangements occur, indicating a macroscopic viscoelastic response. When the applied strain amplitude exceeds a critical value, the yield strain, topological rearrangements occur, the foam starts to flow, and we observe macroscopic irreversibility. We find that the dynamics of topological rearrangements depend sensitively on the structural disorder. Structural disorder decreases the yield strain; sufficiently high disorder changes the macroscopic response of a foam from a viscoelastic solid to a viscoelastic fluid. This wide-ranging dynamical response and the associated history effects of foams result from avalanchelike rearrangement events. The spatiotemporal statistics of rearrangement events do not display long-range correlations for ordered foams or at low shear rates, consistent with experimental observations. As the shear rate or structural disorder increases, the topological events become more correlated and their power spectra change from that of white noise toward 1/f noise. Intriguingly, the power spectra of the total stored energy also exhibit this 1/f trend. copyright 1999 The American Physical Society
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
Two-dimensional numerical simulation of flow around three-stranded rope
Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng
2016-08-01
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.
Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows
MacFadyen, Andrew
2010-01-01
The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.
International Nuclear Information System (INIS)
Yurov, A.V.; Yurova, A.A.
2006-01-01
The simple algebraic method for construction of exact solutions of two-dimensional hydrodynamic equations of incompressible flow is proposed. This method can be applied both to nonviscous flow (Euler equations) and to viscous flow (Navier-Stokes equations). In the case of nonviscous flow, the problem is reduced to sequential solving of three linear partial differential equations. In the case of viscous flow, the Navier-Stokes equations are reduced to three linear partial differential equations and one differential equation of the first order [ru
Holmquist, Jeffrey G.; Waddle, Terry J.
2013-01-01
We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.
Simulation of deep one- and two-dimensional redshift surveys
International Nuclear Information System (INIS)
Park, Changbom; Gott, J.R. III
1991-01-01
We show that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with non-equal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6-h -1 Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased Cold Dark Matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. The structures (spikes) we see in these simulated samples occur when the narrow pencil-beam pierces walls, filaments and clusters appearing randomly along the line-of-sight. We have applied a statistical test for goodness of fit to a periodic lattice to the observations and the simulations. (author)
Simulation of deep one- and two-dimensional redshift surveys
Park, Changbom; Gott, J. Richard, III
1991-03-01
It is shown that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with nonequal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6/h Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased cold dark matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. (1990). The structures (spikes) seen in these simulated samples occur when the narrow pencil-beam pierces walls, filaments, and clusters appearing randomly along the line-of-sight. A statistical test for goodness of fit to a periodic lattice has been applied to the observations and the simulations. It is found that the statistical significance level (P = 15.4 percent) is not strong enough to reject the null hypothesis that the observations and the simulations were drawn at random from the same set.
Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir
Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang
2018-01-01
This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.
Two dimensional simulation of ion beam-plasm interaction | Echi ...
African Journals Online (AJOL)
Hybrid plasma simulation is a model in which different components of the plasma are treated differently. In this work the ions are treated as particles while the electrons are treated as a neutralizing background fluid through which electric signals may propagate. Deuterium ion beams incident on the tritium plasma interact ...
Simulation of hole mobility in two-dimensional systems
International Nuclear Information System (INIS)
Donetti, Luca; Gamiz, Francisco; Rodriguez, Noel
2009-01-01
We develop a fully self-consistent solver for the six-band k . p Schrödinger and Poisson equations to compute the valence-band structure of Si and Ge devices with arbitrary substrate orientation and uniaxial or biaxial strain. This allows us to compute the potential, charge distribution and subband energy dispersion relation for hole inversion layers in different devices and, using a simplex Monte Carlo simulator, to evaluate the low-field mobility. New procedures have been developed to calculate the scattering rates. The results obtained in the case of a (0 0 1) Si MOSFET device are compared with experimental mobility curves and a very good agreement is found. Then, hole mobility curves for different structures and crystallographic orientations both with strained and unstrained materials are evaluated
International Nuclear Information System (INIS)
Peterson, D.L.; Bowers, R.L.; McLenithan, K.D.; Deeney, C.; Chandler, G.A.; Spielman, R.B.; Matzen, M.K.; Roderick, N.F.
1998-01-01
A two-dimensional (2-D) Eulerian Radiation-Magnetohydrodynamic (RMHD) code has been used to simulate imploding z pinches for three experiments fielded on the Los Alamos Pegasus II capacitor bank [J. C. Cochrane et al., Dense Z-Pinches, Third International Conference, London, United Kingdom 1993 (American Institute of Physics, New York, 1994), p. 381] and the Sandia Saturn accelerator [R. B. Spielman et al., Dense Z-Pinches, Second International Conference, Laguna Beach, 1989 (American Institute of Physics, New York, 1989), p. 3] and Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. These simulations match the experimental results closely and illustrate how the code results may be used to track the flow of energy in the simulation and account for the amount of total radiated energy. The differences between the calculated radiated energy and power in 2-D simulations and those from zero-dimensional (0-D) and one-dimensional (1-D) Lagrangian simulations (which typically underpredict the total radiated energy and overpredict power) are due to the radially extended nature of the plasma shell, an effect which arises from the presence of magnetically driven Rayleigh endash Taylor instabilities. The magnetic Rayleigh endash Taylor instabilities differ substantially from hydrodynamically driven instabilities and typical measures of instability development such as e-folding times and mixing layer thickness are inapplicable or of limited value. A new measure of global instability development is introduced, tied to the imploding plasma mass, termed open-quotes fractional involved mass.close quotes Examples of this quantity are shown for the three experiments along with a discussion of the applicability of this measure. copyright 1998 American Institute of Physics
Paardekooper, S.-J.
2017-08-01
We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.
Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.
2010-01-01
The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Laser bistatic two-dimensional scattering imaging simulation of lambert cone
Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei
2015-11-01
This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.
International Nuclear Information System (INIS)
Hua-Bing, Li; Li, Jin; Bing, Qiu
2008-01-01
To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))
The simulation of two-dimensional migration patterns - a novel approach
Energy Technology Data Exchange (ETDEWEB)
Villar, Heldio Pereira [Universidade de Pernambuco, Recife, PE (Brazil). Escola Politecnica]|[Centro Regional de Ciencias Nucleares, Recife, PE (Brazil)
1997-12-31
A novel approach to the problem of simulation of two-dimensional migration of solutes in saturated soils is presented. In this approach, the two-dimensional advection-dispersion equation is solved by finite-differences in a stepwise fashion, by employing the one-dimensional solution first in the direction of flow and then perpendicularly, using the same time increment in both cases. As the results of this numerical model were to be verified against experimental results obtained by radioactive tracer experiments, an attenuation factor, to account for the contribution of the gamma rays emitted by the whole plume of tracer to the readings of the adopted radiation detectors, was introduced into the model. The comparison between experimental and simulated concentration contours showed good agreement, thus establishing the feasibility of the approach proposed herein. (author) 6 refs., 6 figs.
The simulation of two-dimensional migration patterns - a novel approach
International Nuclear Information System (INIS)
Villar, Heldio Pereira
1997-01-01
A novel approach to the problem of simulation of two-dimensional migration of solutes in saturated soils is presented. In this approach, the two-dimensional advection-dispersion equation is solved by finite-differences in a stepwise fashion, by employing the one-dimensional solution first in the direction of flow and then perpendicularly, using the same time increment in both cases. As the results of this numerical model were to be verified against experimental results obtained by radioactive tracer experiments, an attenuation factor, to account for the contribution of the gamma rays emitted by the whole plume of tracer to the readings of the adopted radiation detectors, was introduced into the model. The comparison between experimental and simulated concentration contours showed good agreement, thus establishing the feasibility of the approach proposed herein. (author)
International Nuclear Information System (INIS)
Minnhagen, P.; Weber, H.
1985-01-01
A Monte Carlo simulation of the Ginsburg-Landau Coulomb-gas model for vortex fluctuations is described and compared to the measured resistance scaling function for two-dimensional superconductors. This constitutes a new, more direct way of confirming the vortex-fluctuation explanation for the resistive tail of high-sheet-resistance superconducting films. The Monte Carlo data obtained indicate a striking accordance between theory and experiments
Numerical simulation of potato slices drying using a two-dimensional finite element model
Directory of Open Access Journals (Sweden)
Beigi Mohsen
2017-01-01
Full Text Available An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick’s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y. Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.
Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization
Directory of Open Access Journals (Sweden)
Supriya Dhabal
2014-01-01
Full Text Available We present a novel hybrid algorithm based on particle swarm optimization (PSO and simulated annealing (SA for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.
Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon
International Nuclear Information System (INIS)
Ma, Fa-Jun; Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.
2014-01-01
Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed
The design of visible system of two-dimensional numerical simulation of radon-222 migration
International Nuclear Information System (INIS)
Zhang Xiongjie; Zhang Ye; Zhang Junkui; Tang Bin
2008-01-01
On the grounds of the radon transport equation in the even overburden layer, the value simulation equation using the two-dimensional finite difference method had been inferred, and the visible system of value simulation was proposed by programming with VB and Matlab. The mixed programming and the method of using repetitive process to solve difference equation were narrated in detail. Through this paper, a practical tool was offered to the researcher studying on the radon migration in the even overburden layer, and a more convenient developing way was explored for the researchers developing the relative system. (authors)
International Nuclear Information System (INIS)
Goldberg, L.F.
1990-08-01
The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year's funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge
Hydrodynamic simulations of expanding shells
Czech Academy of Sciences Publication Activity Database
Wünsch, Richard; Palouš, Jan; Ehlerová, Soňa
2004-01-01
Roč. 289, 3-4 (2004), s. 35-36 ISSN 0004-640X. [From observation to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA AV ČR KSK1048102 Keywords : hydrodynamic simulations * ISM * star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004
Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation
Directory of Open Access Journals (Sweden)
Diogo Santos
2016-06-01
Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.
Directory of Open Access Journals (Sweden)
Ali Ben Moussa
2012-10-01
Full Text Available In this work, the problem of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond has been numerically studied by means of computational fluid dynamics in transient regime. The body of the simulated pond is an enclosure of height H and length L wherein an artificial salinity gradient is created in order to suppress convective motions induced by solar radiation absorption and to stabilize the solar pond during the period of operation. Here we show the distribution of velocity, temperature and salt concentration fields during energy collection and storage in a solar pond filled with water and constituted by three different salinity zones. The bottom of the pond is blackened and the free-surface is subjected to heat losses by convection, evaporation and radiation while the vertical walls are adiabatic and impermeable. The governing equations of continuity, momentum, thermal energy and mass transfer are discretized by finite–volume method in transient regime. Velocity vector fields show the presence of thin convective cells in the upper convective zone (UCZ and large convective cells in the lower convective zone (LCZ. This study shows the importance of buoyancy ratio in the decrease of temperature in the UCZ and in the preservation of high temperature in the LCZ. It shows also the importance of the thickness of Non-Convective Zone (NCZ in the reduction of the upwards heat losses.
Computer simulation of the martensite transformation in a model two-dimensional body
International Nuclear Information System (INIS)
Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.
1979-05-01
An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids
Computer simulation of the martensite transformation in a model two-dimensional body
International Nuclear Information System (INIS)
Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.
1979-06-01
An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids
Thermal structure of the ionosphere of Mars - simulations with one- and two-dimensional models
International Nuclear Information System (INIS)
Singhal, R.P.; Whitten, R.C.
1988-01-01
Heat flux saturation effects are included in the present one- and two-dimensional models of the Martian upper ionosphere's thermal structure. The inclusion of small upper boundary and volume heat sources is found to yield satisfactory simulations of the dayside ion temperature observation results obtained by Viking 1's retarding potential analyzers. It is noted that the plasma flow-transport of heat from the dayside to the nightside makes no contribution to the ion and electron temperatures that have been calculated for the nightside. 22 references
Two-dimensional particle simulation of negative ion extraction from a volume source
International Nuclear Information System (INIS)
Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.
1995-01-01
Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))
Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles
DEFF Research Database (Denmark)
Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob
2015-01-01
We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the parti......We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices...... taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...
Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Vygornitskii, Nikolai V.
2018-02-01
The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi, and solvent evaporation rates, u . For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x , and vertical, y , directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi and u .
NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding
International Nuclear Information System (INIS)
Guenther, Ulrich L.; Schaffhausen, Brian
2002-01-01
The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)
Two-dimensional pixel image lag simulation and optimization in a 4-T CMOS image sensor
Energy Technology Data Exchange (ETDEWEB)
Yu Junting; Li Binqiao; Yu Pingping; Xu Jiangtao [School of Electronics Information Engineering, Tianjin University, Tianjin 300072 (China); Mou Cun, E-mail: xujiangtao@tju.edu.c [Logistics Management Office, Hebei University of Technology, Tianjin 300130 (China)
2010-09-15
Pixel image lag in a 4-T CMOS image sensor is analyzed and simulated in a two-dimensional model. Strategies of reducing image lag are discussed from transfer gate channel threshold voltage doping adjustment, PPD N-type doping dose/implant tilt adjustment and transfer gate operation voltage adjustment for signal electron transfer. With the computer analysis tool ISE-TCAD, simulation results show that minimum image lag can be obtained at a pinned photodiode n-type doping dose of 7.0 x 10{sup 12} cm{sup -2}, an implant tilt of -2{sup 0}, a transfer gate channel doping dose of 3.0 x 10{sup 12} cm{sup -2} and an operation voltage of 3.4 V. The conclusions of this theoretical analysis can be a guideline for pixel design to improve the performance of 4-T CMOS image sensors. (semiconductor devices)
International Nuclear Information System (INIS)
Vahedi, V.; Birdsall, C.K.; Lieberman, M.A.; DiPeso, G.; Rognlien, T.D.
1993-01-01
Weakly ionized processing plasmas are studied in two dimensions using a bounded particle-in-cell (PIC) simulation code with a Monte Carlo collision (MCC) package. The MCC package models the collisions between charged and neutral particles, which are needed to obtain a self-sustained plasma and the proper electron and ion energy loss mechanisms. A two-dimensional capacitive radio-frequency (rf) discharge is investigated in detail. Simple frequency scaling laws for predicting the behavior of some plasma parameters are derived and then compared with simulation results, finding good agreements. It is found that as the drive frequency increases, the sheath width decreases, and the bulk plasma becomes more uniform, leading to a reduction of the ion angular spread at the target and an improvement of ion dose uniformity at the driven electrode
Two-dimensional full-wave code for reflectometry simulations in TJ-II
International Nuclear Information System (INIS)
Blanco, E.; Heuraux, S.; Estrada, T.; Sanchez, J.; Cupido, L.
2004-01-01
A two-dimensional full-wave code in the extraordinary mode has been developed to simulate reflectometry in TJ-II. The code allows us to study the measurement capabilities of the future correlation reflectometer that is being installed in TJ-II. The code uses the finite-difference-time-domain technique to solve Maxwell's equations in the presence of density fluctuations. Boundary conditions are implemented by a perfectly matched layer to simulate free propagation. To assure the stability of the code, the current equations are solved by a fourth-order Runge-Kutta method. Density fluctuation parameters such as fluctuation level, wave numbers, and correlation lengths are extrapolated from those measured at the plasma edge using Langmuir probes. In addition, realistic plasma shape, density profile, magnetic configuration, and experimental setup of TJ-II are included to determine the plasma regimes in which accurate information may be obtained
International Nuclear Information System (INIS)
Bianchini, Alessandro; Balduzzi, Francesco; Bachant, Peter; Ferrara, Giovanni; Ferrari, Lorenzo
2017-01-01
Highlights: • 2D CFD simulations compared to experimental tow-tank data on the RVAT test model. • The use of CFD with open-field-like boundaries is suggested. • A reliable estimation of the turbine performance and the wake structure is obtained. • The transitional turbulence model is recommended for low TSRs and/or small rotors. • The wake analysis identified the main vortical structures generated by the blades. - Abstract: Thanks to the continuous improvement of calculation resources, computational fluid dynamics (CFD) is expected to provide in the next few years a cost-effective and accurate tool to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines. This rotor type is in fact increasingly welcome by the wind energy community, especially in case of small size applications and/or non-conventional installation sites. In the present study, unique tow tank experimental data on the performance curve and the near-wake structure of a Darrieus rotor were used as a benchmark to validate the effectiveness of different CFD approaches. In particular, a dedicated analysis is provided to assess the suitability, the effectiveness and the future prospects of simplified two-dimensional (2D) simulations. The correct definition of the computational domain, the selection of the turbulence models and the correction of simulated data for the parasitic torque components are discussed in this study. Results clearly show that, (only) if properly set, two-dimensional CFD simulations are able to provide - with a reasonable computational cost - an accurate estimation of the turbine performance and also quite reliably describe the attended flow-field around the rotor and its wake.
International Nuclear Information System (INIS)
Hata, M.
2010-01-01
Complete text of publication follows. A cone-guided target is used in the Fast Ignition Realization Experiment project phase-I (FIREX-I) and optimization of its design is performed. However a laser profile is not optimized much, because the laser profile that is the best for core heating is not known well. To find that, it is useful to investigate characteristics of generated fast electrons in each condition of different laser profiles. In this research, effects of laser profiles on fast electron generation are investigated on somewhat simple conditions by two-dimensional Particle-In-Cell simulations. In these simulations, a target is made up of Au pre-plasma and Au plasma. The Au pre-plasma has the exponential profile in the x direction with the scale length L = 4.0 μm and the density from 0.10 n cr to 20 n cr . The Au plasma has the flat profile in the x direction with 10 μm width and 20 n cr . Plasma profiles are uniform in the y direction. The ionization degree and the mass number of plasmas are 40 and 197, where the ionization degree is determined by PINOCO simulations. PINOCO is a two-dimensional radiation hydrodynamics simulation code, which simulates formation of the high-density plasma during the compression phase in the fast ignition. A laser is assumed to propagate as plane wave from the negative x direction to the positive x direction. Laser profiles are supposed to be uniform in the y direction. Three different laser profiles, namely flat one with t flat = 100 fs, Gaussian one with t rise/fall = 47.0 fs and flat + Gaussian one with t rise/fall = 23.5 fs and t flat = 50 fs are used. The energy and the peak intensity are constant with E = 10 7 J/cm 2 and I L = 10 20 W/cm 2 in all cases of different laser profiles. We compare results in each condition of three different laser profiles and investigate effects of laser profiles on fast electron generation. Time-integrated energy spectra are similar in all cases of three different laser profiles. In the
Long-range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model
International Nuclear Information System (INIS)
Prahm, L.P.; Christensen, O.
1977-01-01
The pseudospectral dispersion model (Christensen and Prahm, 1976) is adapted for simulation of the long-range transmission of sulphur pollutants in the European region, covering an area of about 4000 km x 4000 km. Regional ''background'' concentrations of sulphur oxides are found to be highly dependent on distant sources and to correlate poorly with local source strength during the considered three- and four-day episodes. The simulation is based on emission data, given in squares of about 50 km x 50 km and on synoptic wind fields derived from observed wind velocities of the 850 mb level and the surface level. The two-dimensional model includes a constant vertical mixing depth. Appropriate values for the deposition and the transformation rates of SO 2 and SO/sup 4 are used. The concentration of pollutants computed from the two-dimensional pseudospectral dispersion model reflects the variable meteorological conditions. Computed concentrations are compared with measurements, giving spatial correlations between 0.4 and 0.8 for more than 400 ground-based 24 h mean values, and a spatial correlation of 0.9 for eight aircraft samples averaged over approx.30 min. A discussion of the influence of different sources of error in the model simulation is given. The high numerical accuracy of the pseudospectral model is combined with a modest consumption of CPU computer time. This study is the first application of the pseudospectral dispersion model which compares computed concentrations with measured field data. The model has possible applications as a tool for assessment of the impact of both national and international emission regulation strategies
International Nuclear Information System (INIS)
Kim, J.; McMurray, J. S.; Williams, C. C.; Slinkman, J.
1998-01-01
We report the results of a 2-step two-dimensional (2D) diffusion study by Scanning Capacitance Microscopy (SCM) and 2D TSUPREM IV process simulation. A quantitative 2D dopant profile of gate-like structures consisting heavily implanted n+ regions separated by a lighter doped n-type region underneath 0.56 μm gates is measured with the SCM. The SCM is operated in the constant-change-in-capacitance mode. The 2-D SCM data is converted to dopant density through a physical model of the SCM/silicon interaction. This profile has been directly compared with 2D TSUPREM IV process simulation and used to calibrate the simulation parameters. The sample is then further subjected to an additional diffusion in a furnace for 80 minutes at 1000C. The SCM measurement is repeated on the diffused sample. This final 2D dopant profile is compared with a TSUPREM IV process simulation tuned to fit the earlier profile with no change in the parameters except the temperature and time for the additional diffusion. Our results indicate that there is still a significant disagreement between the two profiles in the lateral direction. TSUPREM IV simulation considerably underestimates the diffusion under the gate region
One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.
Lhomme, J; Bouvier, C; Mignot, E; Paquier, A
2006-01-01
A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.
International Nuclear Information System (INIS)
Roderick, N.F.; Hussey, T.W.; Faehl, R.J.; Boyd, R.W.
1978-01-01
Two-dimensional (r-z) magnetohydrodynamic simulations of the electromagnetic implosion of metallic foil plasmas show, for certain initial configurations, a tendency to develop large-amplitude perturbations characteristic of the hydromagnetic Rayleigh-Taylor instability. These perturbations develop at the plasma magnetic field interface for plasma configurations where the density gradient scale length, the characteristic dimension for the instability, is short. The effects on the plasma dynamics of the implosion will be discussed for several initial foil configurations. In general, the growth rates and linear mode structure are found to be influenced by the plasma shell thickness and density gradient scale length, in agreement with theory. The most destructive modes are found to be those with wavelengths of the order of the plasma shell thickness
Simulation of detonation cell kinematics using two-dimensional reactive blast waves
Thomas, G. O.; Edwards, D. H.
1983-10-01
A method of generating a cylindrical blast wave is developed which overcomes the disadvantages inherent in the converging-diverging nozzle technique used by Edwards et al., 1981. It is demonstrated than an exploding wire placed at the apex of a two-dimensional sector provides a satisfactory source of the generation of blast waves in reactive systems. The velocity profiles of the blast waves are found to simulate those in freely propagating detonations very well, and this method does not suffer from the disadvantage of having the mass flow at the throat as in the nozzle method. The density decay parameter is determined to have a constant value of 4 in the systems investigated, and it is suggested that this may be a universal value. It is proposed that suitable wedges could be used to create artificial Mach stems in the same manner as Strehlow and Barthel (1971) without the attendant disadvantages of the nozzle method.
Chua, Victor; Vissers, Michael; Law, Stephanie A.; Vishveshwara, Smitha; Eckstein, James N.
2015-03-01
We simulate the consequences of the superconducting proximity effect on the DC current response of a semiconductor-superconductor proximity device within the quasiclassical formalism in the diffusively disordered limit. The device is modeled on in-situ fabricated NS junctions of superconducting Nb films on metallic doped InAs films, with electrical terminals placed in an N-S-N T-junction configuration. Due to the non-collinear configuration of this three terminal device, a theoretical model based on coupled two dimensional spectral and distributional Usadel equations was constructed and numerically solved using Finite-Elements methods. In the regime of high junction conductance, our numerical results demonstrate strong temperature and spatial dependencies of the proximity induced modifications to spectral and transport properties. Such characteristics deviate strongly from usual tunnel junction behavior and aspects of this have been observed in prior experiments[arXiv:1402.6055].
Direct numerical simulation of the passive scalar field in a two-dimensional turbulent channel flow
International Nuclear Information System (INIS)
Kasagi, N.; Tomita, Y.; Kuroda, A.
1991-01-01
This paper reports on a direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air that was carried out. The iso-flux condition is imposed on the walls so that the local mean temperature linearly increases in the streamwise direction. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained include rms velocity and temperature fluctuations, Reynolds stresses, turbulent heat fluxes and other higher order correlations. They are compared mainly with the DNS data obtained by Kim and Moin (1987) and Kim (1987) in a higher Reynolds number flow with isothermal walls. Agreement between these two results is generally good. Each term in the budget equations of temperature variance, its dissipation rate and turbulent heat fluxes is also calculated in order to establish a data base of convective heat transfer for thermal turbulence modeling
An axial calculation method for accurate two-dimensional PWR core simulation
International Nuclear Information System (INIS)
Grimm, P.
1985-02-01
An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)
2017-01-01
Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485
Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell
International Nuclear Information System (INIS)
Fadaei, M.; Mohammadi, R.; Ghassemi, M.
2014-01-01
Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data
Numerical simulation of two-dimensional late-stage coarsening for nucleation and growth
International Nuclear Information System (INIS)
Akaiwa, N.; Meiron, D.I.
1995-01-01
Numerical simulations of two-dimensional late-stage coarsening for nucleation and growth or Ostwald ripening are performed at area fractions 0.05 to 0.4 using the monopole and dipole approximations of a boundary integral formulation for the steady state diffusion equation. The simulations are performed using two different initial spatial distributions. One is a random spatial distribution, and the other is a random spatial distribution with depletion zones around the particles. We characterize the spatial correlations of particles by the radial distribution function, the pair correlation functions, and the structure function. Although the initial spatial correlations are different, we find time-independent scaled correlation functions in the late stage of coarsening. An important feature of the late-stage spatial correlations is that depletion zones exist around particles. A log-log plot of the structure function shows that the slope at small wave numbers is close to 4 and is -3 at very large wave numbers for all area fractions. At large wave numbers we observe oscillations in the structure function. We also confirm the cubic growth law of the average particle radius. The rate constant of the cubic growth law and the particle size distribution functions are also determined. We find qualitatively good agreement between experiments and the present simulations. In addition, the present results agree well with simulation results using the Cahn-Hilliard equation
One-and-Two-Dimensional Simulations of Liner Performance at Atlas Parameters
International Nuclear Information System (INIS)
Keinigs, R.K.; Atchison, W.L.; Faehl, R.J.; Mclenithan, K.D.; Trainor, R.J.
1998-01-01
The authors report results of one-and-two-dimensional MHD simulations of an imploding heavy liner in Z-pinch geometry. The driving current has a pulse shape and peak current characteristic of the Atlas pulsed-power facility being constructed at Los Alamos National Laboratory. One-dimensional simulations of heavy composite liners driven by 30 MA currents can achieve velocities on the order of 14 km/sec. Used to impact a tungsten target, the liner produces shock pressures of ∼ fourteen megabars. The first 2-D simulations of imploding liners driven at Atlas current parameters are also described. These simulations have focused on the interaction of the liner with the glide planes, and the effect of realistic surface perturbations on the dynamics of the pinch. It is found that the former interaction does not seriously affect the inner liner surface. Results from the second problem indicate that a surface perturbation having amplitude as small as 0.2 microm can have a significant effect on the implosion dynamics
Energy Technology Data Exchange (ETDEWEB)
Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)
2014-01-15
A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.
GIS-based two-dimensional numerical simulation of rainfall-induced debris flow
Directory of Open Access Journals (Sweden)
C. Wang
2008-02-01
Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.
SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY
Energy Technology Data Exchange (ETDEWEB)
Lee, Seong-Jae; Hyung, Siek [School of Science Education (Astronomy), Chungbuk National University, Chungbuk 28644 (Korea, Republic of); Chattopadhyay, Indranil; Kumar, Rajiv [ARIES, Manora Peak, Nainital-263002, Uttarakhand (India); Ryu, Dongsu, E-mail: seong@chungbuk.ac.kr [Department of Physics, School of Natural Sciences UNIST, Ulsan 44919 (Korea, Republic of)
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
Two-dimensional simulation of the thermal stress effect on static and dynamic VDMOS characteristics
International Nuclear Information System (INIS)
Alwan, M.; Beydoun, B.; Ketata, K.; Zoaeter, M.
2005-01-01
Using a two-dimensional simulator, the effect of the thermal stress on static and dynamic vertical double-diffusion metal oxide semiconductor (VDMOS) characteristics have been investigated. The use of the device under certain thermal stress conditions can produce modifications of its physical and electrical properties. Based on physics and 2D simulations, this paper proposes an analysis of this stress effect observed on the electrical characteristics of the device. Parameters responsible of these modifications are determined. Approximate expressions of the ionization coefficients and breakdown voltage in terms of temperature are proposed. Non-punch-through junction theory is used to express the breakdown voltage and the space charge extension with respect to the impurity concentration and the temperature. The capacitances of the device have been also studied. The effect of the stress on C-V characteristics is observed and analyzed. We notice that the drain-gate, drain-source and gate-source capacitances are shifted due to the degradation of device physical properties versus thermal stress
International Nuclear Information System (INIS)
Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.
1978-06-01
A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references
International Nuclear Information System (INIS)
Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.
1978-04-01
A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements
Energy Technology Data Exchange (ETDEWEB)
Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.
1978-06-01
A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.
GPU-based simulation of the two-dimensional unstable structure of gaseous oblique detonations
Energy Technology Data Exchange (ETDEWEB)
Teng, H.H.; Kiyanda, C.B.; Ng, H.D. [Department of Mechanical and Industrial Engineering, Concordia University, Montréal, QC, H3G 1M8 (Canada); Morgan, G.H.; Nikiforakis, N. [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE (United Kingdom)
2015-03-10
In this paper, the two-dimensional structure of unstable oblique detonations induced by the wedge from a supersonic combustible gas flow is simulated using the reactive Euler equations with a one-step Arrhenius chemistry model. A wide range of activation energy of the combustible mixture is considered. Computations are performed on the Graphical Processing Unit (GPU) to reduce the simulation runtimes. A large computational domain covered by a uniform mesh with high grid resolution is used to properly capture the development of instabilities and the formation of different transverse wave structures. After the initiation point, where the oblique shock transits into a detonation, an instability begins to manifest and in all cases, the left-running transverse waves first appear, followed by the subsequent emergence of right-running transverse waves forming the dual-head triple point structure. This study shows that for low activation energies, a long computational length must be carefully considered to reveal the unstable surface due to the slow growth rate of the instability. For high activation energies, the flow behind the unstable oblique detonation features the formation of unburnt gas pockets and strong vortex-pressure wave interaction resulting in a chaotic-like vortical structure.
International Nuclear Information System (INIS)
Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.
2002-01-01
Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism
Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.
2018-04-01
We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.
TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS
Directory of Open Access Journals (Sweden)
Galen Gisler
2006-01-01
Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.
Simulation of a two-dimensional dipolar system on a APE100/quadrics SIMD architecture
International Nuclear Information System (INIS)
Bruno, A.; Pisacane, F.; Rosato, V.
1997-01-01
The temperature behavior of a system of dipoles with long-range interactions has been simulated via a two-dimensional lattice Monte Carlo on a massively (SIMD) platform (Quadrics/APE100). Thermodynamic quantities have been evaluated in order to locate and to characterize the phase transition in absence of applied field. Emphasis is given to the code implementation on the SIMD architecture and to the relevant features which have been used to improve code capabilities and performances. The probability of simultaneous occurrence of at least k spanning clusters has been studied by Monte Carlo simulations on the 2D square lattice with free boundaries at the bond percolation threshold p c = 1/2. It is found that the probability of k and more Incipient Spanning Clusters (ISC) have the values P(k > 1) ∼ 0.00658(3) and P(k > 2) ∼ 0.00000148(21) provided that the limit of these probabilities for infinite lattices exists. The probability P(k > 3) of more than three ISC could be estimated to be of the order of 10 -11 and is beyond the possibility to compute such a value by nowadays computers. So, it is impossible to check in simulations the Aizenman law for the probabilities when k much-gt 1. We have detected a single sample with four ISC in a total number of about 1010 samples investigated. The probability of this single event is 1/10 for that number of samples. The influence of boundary conditions is discussed in the last section
Directory of Open Access Journals (Sweden)
Lulu Wang
2016-01-01
Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.
Two-dimensional simulations of multi-hollow VHF SiH4/H2 plasma
Directory of Open Access Journals (Sweden)
Li-Wen Su
2018-02-01
Full Text Available A triode multi-hollow VHF SiH4/H2 plasma (60 MHz was examined at a pressure of 20 Pa by two-dimensional simulations using the fluid model. In this study, we considered the effect of the rate constant of reaction, SiH3 + SiH3→SiH2 + SiH4, on the plasma characteristics. A typical VHF plasma of a high-electron density with a low-electron temperature was obtained between two discharge electrodes. Spatial profiles of SiH3+, SiH2+, SiH3- and SiH3 densities were similar to that of the electron density while the electron temperature had a maximum value near the two discharge electrodes. It was found that the SiH3 radical density did not decrease rapidly near the substrate and the electron temperature was lower than 1 eV, suggesting that the triode multi-hollow plasma source can provide high quality amorphous silicon with a high deposition rate.
Two-dimensional single fluid MHD simulations of plasma opening switches
International Nuclear Information System (INIS)
Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.
1989-01-01
Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Ota, Keigo; Suzuki, Kosuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2012-08-01
Two-dimensional (2D) symmetric flapping flight is investigated by an immersed boundary-lattice Boltzmann method (IB-LBM). In this method, we can treat the moving boundary problem efficiently on the Cartesian grid. We consider a model consisting of 2D symmetric flapping wings without mass connected by a hinge with mass. Firstly, we investigate the effect of the Reynolds number in the range of 40-200 on flows around symmetric flapping wings under no gravity field and find that for high Reynolds numbers (Re Greater-Than-Or-Slanted-Equal-To 55), asymmetric vortices with respect to the horizontal line appear and the time-averaged lift force is induced on the wings, whereas for low Reynolds numbers (Re Less-Than-Or-Slanted-Equal-To 50), only symmetric vortices appear around the wings and no lift force is induced. Secondly, the effect of the initial position of the wings is investigated, and the range of the initial phases where the upward flight is possible is found. The effects of the mass and flapping amplitude are also studied. Finally, we carry out free flight simulations under gravity field for various Reynolds numbers in the range 60 Less-Than-Or-Slanted-Equal-To Re Less-Than-Or-Slanted-Equal-To 300 and Froude numbers in the range 3 Less-Than-Or-Slanted-Equal-To Fr Less-Than-Or-Slanted-Equal-To 60 and identify the region where upward flight is possible. (paper)
Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex
Energy Technology Data Exchange (ETDEWEB)
Yeh, Shu-Hao [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre, E-mail: kais@purdue.edu [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar)
2014-12-21
The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire conducting energy between the outer antenna system and the reaction center; it is an important photosynthetic system to study the transfer of excitonic energy. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a) in some of the FMO monomers. To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways: (1) it is directly involved in the first apo form pathway (6 → 3 → 1) by passing the excitonic energy to exciton 6; and (2) it facilitates an increase in the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 → 4,5 → 2 → 1) and thus increases the possible downward sampling routes across the BChls.
International Nuclear Information System (INIS)
Kato, Tsunehiko N.; Takabe, Hideaki
2010-01-01
A two-dimensional electromagnetic particle-in-cell simulation with the realistic ion-to-electron mass ratio of 1836 is carried out to investigate the electrostatic collisionless shocks in relatively high-speed (∼3000 km s -1 ) plasma flows and also the influence of both electrostatic and electromagnetic instabilities, which can develop around the shocks, on the shock dynamics. It is shown that the electrostatic ion-ion instability can develop in front of the shocks, where the plasma is under counterstreaming condition, with highly oblique wave vectors as was shown previously. The electrostatic potential generated by the electrostatic ion-ion instability propagating obliquely to the shock surface becomes comparable with the shock potential and finally the shock structure is destroyed. It is also shown that in front of the shock the beam-Weibel instability gradually grows as well, consequently suggesting that the magnetic field generated by the beam-Weibel instability becomes important in long-term evolution of the shock and the Weibel-mediated shock forms long after the electrostatic shock vanished. It is also observed that the secondary electrostatic shock forms in the reflected ions in front of the primary electrostatic shock.
Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles
International Nuclear Information System (INIS)
Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.
2015-01-01
We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results
International Nuclear Information System (INIS)
Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.
2003-01-01
In this work, a virtual boundary method is applied to the numerical simulation of a uniform flow over a cylinder. The force source term, added to the two-dimensional Navier-Stokes equations, guarantees the imposition of the no-slip boundary condition over the body-fluid interface. These equations are discretized, using the finite differences method. The immersed boundary is represented with a finite number of Lagrangian points, distributed over the solid-fluid interface. A Cartesian grid is used to solve the fluid flow equations. The key idea is to propose a method to calculate the interfacial force without ad hoc constants that should usually be adjusted for the type of flow and the type of the numerical method, when this kind of model is used. In the present work, this force is calculated using the Navier-Stokes equations applied to the Lagrangian points and then distributed over the Eulerian grid. The main advantage of this approach is that it enables calculation of this force field, even if the interface is moving or deforming. It is unnecessary to locate the Eulerian grid points near this immersed boundary. The lift and drag coefficients and the Strouhal number, calculated for an immersed cylinder, are compared with previous experimental and numerical results, for different Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Hallquist, J.O.
1982-02-01
This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.
Two-dimensional simulations of steady perforated-plate stabilized premixed flames
Altay, H. Murat
2010-03-17
The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor
Two-dimensional simulation of GaAsSb/GaAs quantum dot solar cells
Kunrugsa, Maetee
2018-06-01
Two-dimensional (2D) simulation of GaAsSb/GaAs quantum dot (QD) solar cells is presented. The effects of As mole fraction in GaAsSb QDs on the performance of the solar cell are investigated. The solar cell is designed as a p-i-n GaAs structure where a single layer of GaAsSb QDs is introduced into the intrinsic region. The current density–voltage characteristics of QD solar cells are derived from Poisson’s equation, continuity equations, and the drift-diffusion transport equations, which are numerically solved by a finite element method. Furthermore, the transition energy of a single GaAsSb QD and its corresponding wavelength for each As mole fraction are calculated by a six-band k · p model to validate the position of the absorption edge in the external quantum efficiency curve. A GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4 provides the best power conversion efficiency. The overlap between electron and hole wave functions becomes larger as the As mole fraction increases, leading to a higher optical absorption probability which is confirmed by the enhanced photogeneration rates within and around the QDs. However, further increasing the As mole fraction results in a reduction in the efficiency because the absorption edge moves towards shorter wavelengths, lowering the short-circuit current density. The influences of the QD size and density on the efficiency are also examined. For the GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4, the efficiency can be improved to 26.2% by utilizing the optimum QD size and density. A decrease in the efficiency is observed at high QD densities, which is attributed to the increased carrier recombination and strain-modified band structures affecting the absorption edges.
Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve.
Govindarajan, V; Udaykumar, H S; Herbertson, L H; Deutsch, S; Manning, K B; Chandran, K B
2010-03-01
The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bi-leaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and the valve housing results in relatively high platelet activation levels whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disc valve with that of a bi-leaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disc valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime and the flow through the gap width is marked by the development of a shear layer which separates from the leaflet downstream of the valve. Zones of re-circulation are observed in the gap between the leaflet edge and the valve housing on the major orifice region of the tilting disc valve and are seen to be migrating towards the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed which sheds in the direction of fluid motion as observed in experiments using PIV measurements. The activation parameter computed for the tilting disc valve, at the time of closure was found to be 2.7 times greater than that of the bi-leaflet mechanical valve and was found to be in the vicinity of the minor orifice region mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.
Hydrodynamic simulation of elliptic flow
Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W
1999-01-01
We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.
Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil
飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo
2000-01-01
An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....
Energy Technology Data Exchange (ETDEWEB)
Jo, Ju-Yeon, E-mail: ju8879@kuchem.kyoto-u.ac.jp; Ito, Hironobu, E-mail: h.ito@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp
2016-12-20
Frequency-domain two-dimensional (2D) Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium–nonequilibrium hybrid molecular dynamics (MD) simulation algorithm. An appropriate representation of the 2D Raman spectrum obtained from MD simulations provides an easy-to-understand depiction of structural and dynamical properties. We elucidate mechanisms governing the 2D signal profiles involving anharmonic mode–mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal profiles and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently. Moreover, the MD simulation results allow us to visualize the molecular structure and dynamics by comparing the accurately calculated spectrum with experimental result.
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
Mukhartova, Yu. V.; Krupenko, A. S.; Mangura, P. A.; Levashova, N. T.
2018-01-01
A two-dimensional hydrodynamic model was developed and applied to describe turbulent fluxes of CO2 and H2O within the atmospheric surface layer over a heterogeneous land surface featuring mosaic vegetation and complex topography. Numerical experiments were carried out with a 4.5-km profile that crosses a hilly region in the central part of European Russia, with the diverse land-use patterns (bare soil, crop areas, grasslands, and forests). The results showed very strong variability of the vertical and horizontal turbulent CO2 and H2O fluxes. The standard deviations of the vertical fluxes were estimated for separate profile sections with uniform vegetation cover for daylight conditions in summer, and they were comparable with the mean vertical fluxes for corresponding sections. The highest horizontal turbulent fluxes occurred at the boundaries between different plant communities and at irregularities in surface profile. In some cases, these fluxes reached 10-20% of the absolute values of the mean vertical fluxes for corresponding profile sections. Significant errors in estimating the local and integrated fluxes e.g. when using the eddy covariance technique, can result from ignoring the surface topography, even in the case of relatively large plots with uniform vegetation cover.
International Nuclear Information System (INIS)
Jagla, E A
2004-01-01
I study the buckling transition under compression of a two-dimensional, hexagonal, regular elastic honeycomb. Under isotropic compression, the system buckles to a configuration consisting of a unit cell containing four of the original hexagons. This buckling pattern preserves the sixfold rotational symmetry of the original lattice but is chiral, and can be described as a combination of three different elemental distortions in directions rotated by 2π/3 from each other. Non-isotropic compression may induce patterns consisting of a single elemental distortion or a superposition of two of them. The numerical results compare very well with the outcome of a Landau theory of second-order phase transitions
Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.
Khrustalyov, Yu V; Vaulina, O S
2012-04-01
Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.
Mixed finite element simulations in two-dimensional groundwater flow problems
International Nuclear Information System (INIS)
Kimura, Hideo
1989-01-01
A computer code of groundwater flow in two-dimensional porous media based on the mixed finite element method was developed for accurate approximations of Darcy velocities in safety evaluation of radioactive waste disposal. The mixed finite element procedure solves for both the Darcy velocities and pressure heads simultaneously in the Darcy equation and continuity equation. Numerical results of a single well pumping at a constant rate in a uniform flow field showed that the mixed finite element method gives more accurate Darcy velocities nearly 50 % on average error than standard finite element method. (author)
NUMERICAL SIMULATION OF FLOW OVER TWO-DIMENSIONAL MOUNTAIN RIDGE USING SIMPLE ISENTROPIC MODEL
Directory of Open Access Journals (Sweden)
Siswanto Siswanto
2009-07-01
Full Text Available Model sederhana isentropis telah diaplikasikan untuk mengidentifikasi perilaku aliran masa udara melewati topografi sebuah gunung. Dalam model isentropis, temperature potensial θ digunakan sebagai koordinat vertikal dalam rezim aliran adiabatis. Medan angin dalam arah vertikal dihilangkan dalam koordinat isentropis sehingga mereduksi sistim tiga dimensi menjadi sistim dua dimensi lapisan θ. Skema komputasi beda hingga tengah telah digunakan untuk memformulasikan model adveksi. Paper ini membahas aplikasi sederhana dari model isentropis untuk mempelajari gelombang gravitasi dan fenomena angin gunung dengan desain komputasi periodik dan kondisi batas lateral serta simulasi dengan topografi yang berbeda. The aim of this work is to study turbulent flow over two-dimensional hill using a simple isentropic model. The isentropic model is represented by applying the potential temperature θ, as the vertical coordinate and is conversed in adiabatic flow regimes. This implies a vanishing vertical wind in isentropic coordinates which reduces the three dimensional system to a stack of two dimensional θ–layers. The equations for each isentropic layer are formally identical with the shallow water equation. A computational scheme of centered finite differences is used to formulate an advective model. This work reviews a simple isentropic model application to investigate gravity wave and mountain wave phenomena regard to different experimental design of computation and topographic height.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)
2004-10-15
The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.
International Nuclear Information System (INIS)
Yoon, Hyun Jin; Kim, Dong Il
2004-01-01
The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.
Comparison of one- and two-dimensional detectors on simulated and spin-stand readback waveforms
International Nuclear Information System (INIS)
Chan, Kheong Sann; Rachid, Elidrissi Moulay; Eason, Kwaku; Radhakrishnan, Rathnakumar; Teo, Kim Keng
2012-01-01
Shingled writing (SW) and two-dimensional magnetic recording (TDMR) are two complementary candidate technologies proposed to extend the life of magnetic recording. SW enables the writing of narrow tracks with a wider writer by shingling the tracks; each track partially overlaps the preceding track leaving only a fraction of that track on the medium. TDMR is the companion technology to SW that enables reading of narrower tracks with a wider reader. In this work we compare the performances of 1D and 2D detectors in the shingled writing environment, using both comprehensive channel models and spin-stand readback. - Research highlights: → Improvement to the GFP model to include variety of effects from micromagnetics. → 1D/2D detector performance evaluation over variations of GFP model. → 1D/2D detector performance evaluation over various levels of ISI/ITI. → First TDMR implementation attempt on the spin-stand.
Two-Dimensional Variable Property Conjugate Heat Transfer Simulation of Nanofluids in Microchannels
International Nuclear Information System (INIS)
Ramiar, A.; Ranjbar, A.A.
2013-01-01
Laminar two-dimensional forced convective heat transfer of CuO-water and Al 2 O 3 -water nanofluids in a horizontal microchannel has been studied numerically, considering axial conduction effects in both solid and liquid regions and variable thermal conductivity and dynamic viscosity. The results show that using nanoparticles with higher thermal conductivities will intensify enhancement of heat transfer characteristics and slightly increases shear stress on the wall. The obtained results show more steep changes in Nusselt number for lower diameters and also higher values of Nusselt number by decreasing the diameter of nanoparticles. Also, by utilizing conduction number as the criterion, it was concluded from the results that adding nanoparticles will intensify the axial conduction effect in the geometry considered.
Vojak, B. A.; Alley, G. D.
1983-08-01
Two-dimensional numerical simulations are used to compare etched geometry and overgrown Si permeable base transistors (PTBs), considering both the etched collector and etched emitter biasing conditions made possible by the asymmetry of the etched structure. In PTB devices, the two-dimensional nature of the depletion region near the Schottky contact base grating results in a smaller electron barrier and, therefore, a larger collector current in the etched than in the overgrown structure. The parasitic feedback effects which result at high base-to-emitter bias levels lead to a deviation from the square-law behavior found in the collector characteristics of the overgrown PBT. These structures also have lower device capacitances and smaller transconductances at high base-to-emitter voltages. As a result, overgrown and etched structures have comparable predicted maximum values of the small signal unity short-circuit current gain frequency and maximum oscillation frequency.
Rudianto, Indra; Sudarmaji
2018-04-01
We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.
Karavitis, G.A.
1984-01-01
The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)
Simulation of the formation of two-dimensional Coulomb liquids and solids in dusty plasmas
International Nuclear Information System (INIS)
Hwang, H.H.; Kushner, M.J.
1997-01-01
Dust particle transport in low-temperature plasmas has recently received considerable attention due to the desire to minimize contamination of wafers during plasma processing of microelectronics devices. Laser light scattering observations of dust particles near wafers in reactive-ion-etching (RIE) radio frequency (rf) discharges have revealed clouds which display collective behavior. These observations have motivated experimental studies of the Coulomb liquid and solid properties of these systems. In this paper, we present results from a two-dimensional model for dust particle transport in RIE rf discharges in which we include particle-particle Coulomb interactions. We predict the formation of Coulomb liquids and solids. These predictions are based both on values of Γ>2 (liquid) and Γ>170 (solid), where Γ is the ratio of electrostatic potential energy to thermal energy, and on crystal-like structure in the pair correlation function. We find that Coulomb liquids and solids composed of trapped dust particles in RIE discharges are preferentially formed with increasing gas pressure, decreasing particle size, and decreasing rf power. We also observe the ejection of particles from dust crystals which completely fill trapping sites, as well as lattice disordering followed by annealing and refreezing. copyright 1997 American Institute of Physics
Yura, Harold T; Hanson, Steen G
2012-04-01
Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.
International Nuclear Information System (INIS)
Choi, Young Joon; Djilali, Ned
2016-01-01
Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified
Numerical simulation in a two dimensional turbulent flow over a backward-facing step
International Nuclear Information System (INIS)
Silveira Neto, A. da; Grand, D.
1991-01-01
Numerical simulations of turbulent flows in complex geometries are generally restricted to the prediction of the mean flow and use semi-empirical turbulence models. The present study is devoted to the simulation of the coherence structures which develop in a flow submitted to a velocity change, downstream of a backward facing step. Two aspect ratios (height of the step over height of the channel) have been explored and the values of the Reynolds number vary from (6000 to 90000). In the isothermal case coherent structures have been obtained by the numerical simulation in the mixing layer downstream of the step. The numerical simulations provides results in fairly good agreement with available experimental results. In a second step a thermal stratification is imposed on this flow for one value of Richardson number (0.5) the coherent structures disappear downstream for increasing values of Richardson number. (author)
Monte Carlo-molecular dynamics simulations for two-dimensional magnets
International Nuclear Information System (INIS)
Kawabata, C.; takeuchi, M.; Bishop, A.R.
1985-01-01
A combined Monte Carlo-molecular dynamics simulation technique is used to study the dynamic structure factor on a square lattice for isotropic Heisenberg and planar classical ferromagnetic spin Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Soria-Hoyo, C; Castellanos, A [Departamento de Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de Fisica Aplicada II, EUAT, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: cshoyo@us.es
2008-10-21
Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.
International Nuclear Information System (INIS)
Soria-Hoyo, C; Castellanos, A; Pontiga, F
2008-01-01
Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-01
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.
International Nuclear Information System (INIS)
Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui
2015-01-01
Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data
Simulations of interference effects in gated two-dimensional ballistic electron systems
DEFF Research Database (Denmark)
Jauho, Antti-Pekka; Pichugin, K.N.; Sadreev, A.F.
1999-01-01
We present detailed simulations addressing recent electronic interference experiments,where a metallic gate is used to locally modify the Fermi wavelength of the charge carriers. Our numerical calculations are based on a solution of the one-particle Schrodinger equation for a realistic model of t...
Simulation of Two Dimensional Electrophoresis and Tandem Mass Spectrometry for Teaching Proteomics
Fisher, Amanda; Sekera, Emily; Payne, Jill; Craig, Paul
2012-01-01
In proteomics, complex mixtures of proteins are separated (usually by chromatography or electrophoresis) and identified by mass spectrometry. We have created 2DE Tandem MS, a computer program designed for use in the biochemistry, proteomics, or bioinformatics classroom. It contains two simulations--2D electrophoresis and tandem mass spectrometry.…
A web portal for hydrodynamical, cosmological simulations
Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.
2017-07-01
This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.
Depletion interactions in two-dimensional colloid-polymer mixtures: molecular dynamics simulations
International Nuclear Information System (INIS)
Kim, Soon-Chul; Seong, Baek-Seok; Suh, Soong-Hyuck
2009-01-01
The depletion interactions acting between two hard colloids immersed in a bath of polymers, in which the interaction potentials include the soft repulsion/attraction, are extensively studied by using the molecular dynamics simulations. The collision frequencies and collision angle distributions for both incidental and reflection conditions are computed to study the dynamic properties of the colloidal mixtures. The depletion effect induced by the polymer-polymer and colloid-polymer interactions are investigated as well as the size ratio of the colloid and polymer. The simulated results show that the strong depletion interaction between two hard colloids appears for the highly asymmetric hard-disc mixtures. The attractive depletion force at contact becomes deeper and the repulsive barrier becomes wider as the asymmetry in size ratio increases. The strong polymer-polymer attraction leads to the purely attractive depletion interaction between two hard colloids, whereas the purely repulsive depletion interaction is induced by the strong colloid-polymer attraction.
Mass transfer Simulation of Two-dimensional Natural Convection of Mixture Layer in an IVR
Energy Technology Data Exchange (ETDEWEB)
Kim, Su-Hyeon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
This study is focusing on the angle dependent heat flux distribution at the reactor vessel plenum due to mixture layer natural convection experiment. We simulated heat transfer using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. An S-bend shaped copper is used as the volumetric heat source, which is simulated as a heater in previous heat transfer studies. The advantage of mass transfer experiment is the achievement of the high buoyancy condition similar to reactor vessel because of high Pr. This study performed mass transfer experiment using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. The experimental result was compared with previous 2D study (SIGMA CP)
Two-dimensional simulation of positive and negative streamers in air
International Nuclear Information System (INIS)
Babaeva, N.Yu.; Naidis, G.V.
1998-01-01
The paper deals with 2D numerical simulation of positive and negative streamers in air at atmospheric pressure. The dynamics of an axially symmetric streamer based on a charged sphere is described by a coupled system of equations for the electric field and the density of charged particles. The results of simulation show that the production rate of radicals in short sphere-plane gaps depends only weakly on the discharge conditions, that the streamer velocity in uniform field depends linearly on the streamer length, and the field corresponding to the negative streamer propagation with a constant velocity is 2-3 times greater than that obtained with a positive streamer. (J.U.)
International Nuclear Information System (INIS)
Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.
2013-01-01
We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities
Computational issues in the simulation of two-dimensional discrete dislocation mechanics
Segurado, J.; LLorca, J.; Romero, I.
2007-06-01
The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.
A two-dimensional simulator of the neutronic behaviour of low power fast reactors
International Nuclear Information System (INIS)
Penha, M.A.V.R. da.
1984-01-01
A model to simulate the temporal neutronic behaviour of fast breeder reactors was developed. The effective cross-sections are corrected, whenever the reactor state change; by using linear correlations and interpolation schemes with data contained in a library previously compiled. This methodology was coupled with a simplified spatial neutronic calculation to investigate the temporal behaviour of neutronic parameters such as breeding gain, flux and power. (Author) [pt
Structure of the lunar wake: Two-dimensional global hybrid simulations
Czech Academy of Sciences Publication Activity Database
Trávníček, Pavel; Hellinger, Petr; Schriver, D.; Bale, S. D.
2005-01-01
Roč. 32, - (2005), L06102/1-L06102/4 ISSN 0094-8276 R&D Projects: GA ČR(CZ) GA205/05/1011 Grant - others:ESA(XE) PRODEX 14529; NSF(US) INT- 0010111; NASA (US) NAG5-11804 Institutional research plan: CEZ:AV0Z30420517 Keywords : hybrid simulations * lunar wake Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.491, year: 2005
Two-dimensional PIC simulations of ion beam instabilities in Supernova-driven plasma flows
Energy Technology Data Exchange (ETDEWEB)
Dieckmann, M E; Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Meli, A; Mastichiadis, A [Department of Physics, National University of Athens, Panepistimiopolis, Zografos 15783 (Greece); Drury, L O C [Dublin Institute for Advanced Studies, Dublin 2 (Ireland)], E-mail: markd@tp4.rub.de
2008-06-15
Supernova remnant blast shells can reach the flow speed v{sub s} = 0.1c and shocks form at its front. Instabilities driven by shock-reflected ion beams heat the plasma in the foreshock, which may inject particles into diffusive acceleration. The ion beams can have the speed v{sub b} {approx} v{sub s}. For v{sub b} << v{sub s} the Buneman or upper-hybrid instabilities dominate, while for v{sub b} >> v{sub s} the filamentation and mixed modes grow faster. Here the relevant waves for v{sub b} {approx} v{sub s} are examined and how they interact nonlinearly with the particles. The collision of two plasma clouds at the speed v{sub s} is modelled with particle-in-cell simulations, which convect with them magnetic fields oriented perpendicular to their flow velocity vector. One simulation models equally dense clouds and the other one uses a density ratio of 2. Both simulations show upper-hybrid waves that are planar over large spatial intervals and that accelerate electrons to {approx}10 keV. The symmetric collision yields only short oscillatory wave pulses, while the asymmetric collision also produces large-scale electric fields, probably through a magnetic pressure gradient. The large-scale fields destroy the electron phase space holes and they accelerate the ions, which facilitates the formation of a precursor shock.
Xu, Kui; Lin, Zifeng; Merlet, Céline; Taberna, Pierre-Louis; Miao, Ling; Jiang, Jianjun; Simon, Patrice
2017-12-06
We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti 3 C 2 T x MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] + [TFSI] - ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium
International Nuclear Information System (INIS)
Sarri, G; Quinn, K; Kourakis, I; Borghesi, M; Murphy, G C; Drury, L O C; Dieckmann, M E; Ynnerman, A; Bret, A
2011-01-01
The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.
Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium
Energy Technology Data Exchange (ETDEWEB)
Sarri, G; Quinn, K; Kourakis, I; Borghesi, M [Centre for Plasma Physics, The Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Murphy, G C; Drury, L O C [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dieckmann, M E; Ynnerman, A [Department of Science and Technology (ITN), Linkoeping University, 60174 Norrkoping (Sweden); Bret, A, E-mail: gsarri01@qub.ac.uk [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)
2011-07-15
The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.
Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.
2018-03-01
The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.
International Nuclear Information System (INIS)
Vieira, Camila Braga; Jian Su
2010-01-01
Natural convection is a physical phenomenon that has been investigated in nuclear engineering so as to provide information about heat transfer in severe accident conditions involving nuclear reactors. This research reported transient natural convection of fluids with uniformly distributed volumetrically heat generation in square cavity with isothermal side walls and adiabatic top/bottom walls. Two Prandtl numbers were considered, 0:0321 and 0:71. Direct numerical simulations were applied in order to obtain results about the velocities of the fluid in directions x and y. These results were used in Fast Fourier Transform, which showed the periodic, quasi-chaotic and chaotic behavior of transient laminar flow. (author)
A two-dimensional simulation model for the molded underfill process in flip chip packaging
Energy Technology Data Exchange (ETDEWEB)
Guo, Xue Ru; Young, Wen Bin [National Cheng Kung University, Tainan (China)
2015-07-15
The flip chip process involves the deposition of solder bumps on the chip surface and their subsequent direct attachment and connection to a substrate. Underfilling traditional flip chip packaging is typically performed following a two-step approach. The first step uses capillary force to fill the gap between the chip and the substrate, and the second step uses epoxy molding compound (EMC) to overmold the package. Unlike traditional flip chip packaging, the molded underfill (MUF) concept uses a single-step approach to simultaneously achieve both underfill and overmold. MUF is a simpler and faster process. In this study, a 2D numerical model is developed to simulate the front movement of EMC flow and the void formation for different geometric parameters. The 2D model simplifies the procedures of geometric modeling and reduces the modeling time for the MUF simulation. Experiments are conducted to verify the prediction results of the model. The effect on void formation for different geometric parameters is investigated using a 2D model.
Directory of Open Access Journals (Sweden)
Tor eNordam
2013-09-01
Full Text Available A formalism is introduced for the non-perturbative, purely numerical, solution of the reduced Rayleigh equation for the scattering of light from two-dimensional penetrable rough surfaces. Implementation and performance issues of the method, and various consistency checks of it, are presented and discussed. The proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results. For a non-absorbing metal surface the conservation of energy was explicitly checked, and found to be satisfied to within 0.03%, or better, for the parameters assumed. This testifies to the accuracy of the approach and a satisfactory discretization. As an illustration, we calculate the full angular distribution of the mean differential reflection coefficient for the scattering of p- or s-polarized light incident on two-dimensional dielectric or metallic randomly rough surfaces defined by (isotropic or anisotropic Gaussian and cylindrical power spectra. Simulation results obtained by the proposed method agree well with experimentally measured scattering data taken from similar well-characterized, rough metal samples, or to results obtained by other numerical methods.
Turbulence prediction in two-dimensional bundle flows using large eddy simulation
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)
1995-09-01
Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.
Voinovich, Peter; Merlen, Alain
2005-12-01
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.
Chacon-Madrid, Heber J; Murphy, Benjamin N; Pandis, Spyros N; Donahue, Neil M
2012-10-16
We use a two-dimensional volatility basis set (2D-VBS) box model to simulate secondary organic aerosol (SOA) mass yields of linear oxygenated molecules: n-tridecanal, 2- and 7-tridecanone, 2- and 7-tridecanol, and n-pentadecane. A hybrid model with explicit, a priori treatment of the first-generation products for each precursor molecule, followed by a generic 2D-VBS mechanism for later-generation chemistry, results in excellent model-measurement agreement. This strongly confirms that the 2D-VBS mechanism is a predictive tool for SOA modeling but also suggests that certain important first-generation products for major primary SOA precursors should be treated explicitly for optimal SOA predictions.
International Nuclear Information System (INIS)
Wu, Tianmin; Zhang, Ruiting; Li, Huanhuan; Zhuang, Wei; Yang, Lijiang
2014-01-01
We analyzed, based on the theoretical spectroscopic modeling, how the differences in the folding landscapes of two β-hairpin peptides trpzip2 and trpzip4 are reflected in their thermal unfolding infrared measurements. The isotope-edited equilibrium FTIR and two dimensional infrared spectra of the two peptides were calculated, using the nonlinear exciton propagation method, at a series of temperatures. The spectra calculations were based on the configuration distributions generated using the GB OBC implicit solvent MD simulation and the integrated tempering sampling technique. Conformational analysis revealed the different local thermal stabilities for these two peptides, which suggested the different folding landscapes. Our study further suggested that the ellipticities of the isotope peaks in the coherent IR signals are more sensitive to these local stability differences compared with other spectral features such as the peak intensities. Our technique can thus be combined with the relevant experimental measurements to achieve a better understanding of the peptide folding behaviors
International Nuclear Information System (INIS)
Neves Conti, T. das.
1983-01-01
A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt
Kandouci, Chahinaz; Djebbari, Ali
2018-04-01
A new family of two-dimensional optical hybrid code which employs zero cross-correlation (ZCC) codes, constructed by the balanced incomplete block design BIBD, as both time-spreading and wavelength hopping patterns are used in this paper. The obtained codes have both off-peak autocorrelation and cross-correlation values respectively equal to zero and unity. The work in this paper is a computer experiment performed using Optisystem 9.0 software program as a simulator to determine the wavelength hopping/time spreading (WH/TS) OCDMA system performances limitations. Five system parameters were considered in this work: the optical fiber length (transmission distance), the bitrate, the chip spacing and the transmitted power. This paper shows for what sufficient system performance parameters (BER≤10-9, Q≥6) the system can stand for.
Mesoscale simulations of hydrodynamic squirmer interactions.
Götze, Ingo O; Gompper, Gerhard
2010-10-01
The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)
2012-08-20
Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.
Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim
2012-07-07
Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files.
International Nuclear Information System (INIS)
Doroshkevich, A.G.; Kotok, E.V.; Novikov, I.D.; Polyudov, A.N.; Shandarin, S.F.; Sigov, Y.S.
1980-01-01
The results of a numerical experiment are given that describe the non-linear stages of the development of perturbations in gravitating matter density in the expanding Universe. This process simulates the formation of the large-scale structure of the Universe from an initially almost homogeneous medium. In the one- and two-dimensional cases of this numerical experiment the evolution of the system from 4096 point masses that interact gravitationally only was studied with periodic boundary conditions (simulation of the infinite space). The initial conditions were chosen that resulted from the theory of the evolution of small perturbations in the expanding Universe. The results of numerical experiments are systematically compared with the approximate analytic theory. The results of the calculations show that in the case of collisionless particles, as well as in the gas-dynamic case, the cellular structure appeared at the non-linear stage in the case of the adiabatic perturbations. The greater part of the matter is in thin layers that separate vast regions of low density. In a Robertson-Walker universe the cellular structure exists for a finite time and then fragments into a few compact objects. In the open Universe the cellular structure also exists if the amplitude of initial perturbations is large enough. But the following disruption of the cellular structure is more difficult because of too rapid an expansion of the Universe. The large-scale structure is frozen. (author)
Nenov, Artur; Mukamel, Shaul; Garavelli, Marco; Rivalta, Ivan
2015-08-11
First-principles simulations of two-dimensional electronic spectroscopy in the ultraviolet region (2DUV) require computationally demanding multiconfigurational approaches that can resolve doubly excited and charge transfer states, the spectroscopic fingerprints of coupled UV-active chromophores. Here, we propose an efficient approach to reduce the computational cost of accurate simulations of 2DUV spectra of benzene, phenol, and their dimer (i.e., the minimal models for studying electronic coupling of UV-chromophores in proteins). We first establish the multiconfigurational recipe with the highest accuracy by comparison with experimental data, providing reference gas-phase transition energies and dipole moments that can be used to construct exciton Hamiltonians involving high-lying excited states. We show that by reducing the active spaces and the number of configuration state functions within restricted active space schemes, the computational cost can be significantly decreased without loss of accuracy in predicting 2DUV spectra. The proposed recipe has been successfully tested on a realistic model proteic system in water. Accounting for line broadening due to thermal and solvent-induced fluctuations allows for direct comparison with experiments.
International Nuclear Information System (INIS)
Yamamoto, Y.; Yoshikawa, K.; Hattori, Y.
1987-01-01
A two-dimensional simulation code for the beam direct energy conversion called KVAD (Kyoto University Advanced DART) including various loss mechanisms has been developed, and shown excellent agreement with the authors' experiments using the He + beams. The beam direct energy converter (BDC) is the device to recover the kinetic energy of unneutralized ions in the neutral beam injection (NBI) system directly into electricity. The BDC is very important and essential not only to the improvements of NBI system efficiency, but also to the relaxation of high heat flux problems on the beam dump with increase of injection energies. So far no simulation code could have successfully predicted BDC experimental results. The KUAD code applies, an optimized algorithm for vector processing, the finite element method (FEM) for potential calculation, and a semi-automatic method for spatial segmentations. Since particle trajectories in the KVAD code are analytically solved, very high speed tracings of the particle could be achieved by introducing an adjacent element matrix to identify the neighboring triangle elements and electrodes. Ion space charges are also analytically calculated by the Cloud in Cell (CIC) method, as well as electron space charges. Power losses due to atomic processes can be also evaluated in the KUAD code
International Nuclear Information System (INIS)
Yu Zhicong; Noo, Frédéric; Wunderlich, Adam; Dennerlein, Frank; Lauritsch, Günter; Hornegger, Joachim
2012-01-01
Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp–Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp–Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files. (note)
Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets
Energy Technology Data Exchange (ETDEWEB)
Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.
1988-11-01
The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition.
Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets
International Nuclear Information System (INIS)
Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.
1988-01-01
The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition
International Nuclear Information System (INIS)
Wu, S.T.; Han, S.M.; Dryer, M.
1979-01-01
A two-dimensional, time-dependent, magnetohydrodynamic, numerical model is used to investigate multiple, transient solar wind flows which start close to the Sun and then extend into interplanetary space. The initial conditions are assumed to be appropriate for steady, homogeneous solar wind conditions with an average, spiral magnetic field configuration. Because both radial and azimuthal dimensions are included, it is possible to place two or more temporally-developing streams side-by-side at the same time. Thus, the evolution of the ensuing stream interaction is simulated by this numerical code. Advantages of the present method are as follows: (1) the development and decay of asymmetric MHD shocks and their interactions are clearly indicated; and (2) the model allows flexibility in the specification of evolutionary initial conditions in the azimuthal direction, thereby making it possible to gain insight concerning the interplanetary consequences of real physical situations more accurately than by use of the one-dimensional approach. Examples of such situations are the occurrence of near-simultaneous solar flares in adjacent active regions and the sudden appearance of enlargement of coronal holes as a result of a transient re-arrangement from a closed to an open magnetic field topology. (author)
Yang, L M; Shu, C; Wang, Y
2016-03-01
In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.
Directory of Open Access Journals (Sweden)
Guodong Liu
2013-01-01
Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.
Hydrodynamic simulations of accretion disks in cataclysmic variables
International Nuclear Information System (INIS)
Hirose, Masahito; Osaki, Yoji
1990-01-01
The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)
Computer simulation of the fire-tube boiler hydrodynamics
Directory of Open Access Journals (Sweden)
Khaustov Sergei A.
2015-01-01
Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.
Directory of Open Access Journals (Sweden)
Yan-jie Ni
2017-08-01
Full Text Available Instead of the capillary plasma generator (CPG, a discharge rod plasma generator (DRPG is used in the 30 mm electrothermal-chemical (ETC gun to improve the ignition uniformity of the solid propellant. An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun (2D-IB-SPETCG is presented to describe the process of the ETC launch. Both calculated pressure and projectile muzzle velocity accord well with the experimental results. The feasibility of the 2D-IB-SPETCG model is proved. Depending on the experimental data and initial parameters, detailed distribution of the ballistics parameters can be simulated. With the distribution of pressure and temperature of the gas phase and the propellant, the influence of plasma during the ignition process can be analyzed. Because of the radial flowing plasma, the propellant in the area of the DRPG is ignited within 0.01 ms, while all propellant in the chamber is ignited within 0.09 ms. The radial ignition delay time is much less than the axial delay time. During the ignition process, the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech. The radial ignition uniformity is proved. The temperature of the gas increases from several thousand K (conventional ignition to several ten thousand K (plasma ignition. Compare the distribution of the density and temperature of the gas, we know that low density and high temperature gas appears near the exits of the DRPG, while high density and low temperature gas appears at the wall near the breech. The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch. The 2D-IB-SPETC model can be used for prediction and improvement of experiments.
Bitzer, Klaus
1999-05-01
Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in Post
Xu, Yonggang; Wang, Jing; Li, Jing; Lei, Bingying; Tang, Jie; Wang, Yishan; Li, Yongfang; Zhao, Wei; Duan, Yixiang
2017-04-01
A two-dimensional self-consistent fluid model was employed to investigate the spatiotemporal characteristics of discharges in atmospheric pressure argon (Ar) dielectric barrier discharge driven by a Gaussian voltage. The simulation results show that a discharge with multiple current pulses occurs each half-cycle in the gas gap. A transition from the Townsend mode to the glow mode is observed with the increasing applied voltage each half-cycle at a lower driving frequency (7.5 kHz). It is also found that the glow mode survives all the discharge phases at a higher driving frequency (12.5 kHz and 40 kHz). The change in the discharge mode with the driving frequency mainly lies in the fact that a lot of charged particles created in the discharge gap have no enough time to drift and diffuse around, and then these particles are assembled in the discharge space at higher frequency. Additionally, the spatial distributions of the electron density indicate that a center-advantage discharge is ignited at the driving frequencies of interest, resulting in the radial non-uniformity of discharge because of the edge effects. However, this overall non-uniformity is weakened with the driving frequency increased to 40 kHz, at which concentric ring patterns are observed. These distinct behaviors are mainly attributed to the fact that many charged particles generated are trapped in the gas gap and then accumulated to make the extension along the radial direction due to the charged particles transport and diffusion, and that the effective overlapping of a large number of avalanches induced by the increased "seed" electron density with the driving frequency. Meanwhile, the surface charged particles accumulated on the dielectric barriers are also shown to play a role in the formation of the discharge structure.
International Nuclear Information System (INIS)
Ohsuga, Ken; Mineshige, Shin
2011-01-01
We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, ρ 0 , we can reproduce three distinct modes of accretion flow. In model A, which has the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of mild beaming, the apparent (isotropic) photon luminosity is ∼22L E (where L E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B, which has moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ∼7 R S (where R S is the Schwarzschild radius), while the flow is radiatively inefficient otherwise. The magnetic-pressure-driven disk wind appears in this model. In model C, the density is too low for the flow to be radiatively efficient. The flow thus becomes radiatively inefficient accretion flow, which is geometrically thick and optically thin. The magnetic-pressure force, together with the gas-pressure force, drives outflows from the disk surface, and the flow releases its energy via jets rather than via radiation. Observational implications are briefly discussed.
Hydrodynamic Simulations of Kepler's Supernova Remnant
Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.
Frenkel, D.; Ernst, M.H.
1989-01-01
We compute the velocity autocorrelation function of a tagged particle in a two-dimensional lattice-gas cellular automaton using a method that is about a million times more efficient than existing techniques. A t-1 algebraic tail in the tagged-particle velocity autocorrelation function is clearly
FireStem2D A two-dimensional heat transfer model for simulating tree stem injury in fires
Efthalia K. Chatziefstratiou; Gil Bohrer; Anthony S. Bova; Ravishankar Subramanian; Renato P.M. Frasson; Amy Scherzer; Bret W. Butler; Matthew B. Dickinson
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by...
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Smoothed particle hydrodynamics simulations of flow separation at bends
Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.
2014-01-01
The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are
Smoothed particle hydrodynamics simulations of flow separation at bends
Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.
2013-01-01
The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are
Detailed simulation of morphodynamics : 1. Hydrodynamic model
Nabi, M.; De Vriend, H.J.; Mosselman, E.; Sloff, C.J.; Shimizu, Y.
2012-01-01
We present a three-dimensional high-resolution hydrodynamic model for unsteady incompressible flow over an evolving bed topography. This is achieved by using a multilevel Cartesian grid technique that allows the grid to be refined in high-gradient regions and in the vicinity of the river bed. The
Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations
Directory of Open Access Journals (Sweden)
Kentaro Nagamine
2010-01-01
Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.
Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics
Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.
2015-01-01
This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.
Anguy, Yannick; Bernard, Dominique; Ehrlich, Robert
1996-05-01
This work is part of an attempt to quantify the relationship between the permeability tensor ( K) and the micro-structure of natural porous media. A brief account is first provided of popular theories used to relate the micro-structure to K. Reasons for the lack of predictive power and restricted generality of current models are discussed. An alternative is an empirically based implicit model wherein K is expressed as a consequence of a few “pore-types” arising from the dynamics of depositional processes. The analytical form of that implicit model arises from evidence of universal association between pore-type and throat size in sandstones and carbonates. An explicit model, relying on the local change of scale technique is then addressed. That explicit model allows, from knowledge of the three-dimensional micro-geometry to calculate K explicitly without having recourse to any constitutive assumptions. The predictive and general character of the explicit model is underlined. The relevance of the change of scale technique is recalled to be contingent on the availability of rock-like three-dimensional synthetic media. A random stationary ergodic process is developed, that allows us to generate three-dimensional synthetic media from a two-dimensional autocorrelation function r(λ x ,λ y ) and associated probability density function ∈ β measured on a single binary image. The focus of this work is to ensure the rock-like character of those synthetic media. This is done first through a direct approach: n two-dimensional synthetic media, derived from single set ( ∈ β , r(λ x ,λ y )) yield n permeability tensors K {/i-1,n i} (calculated by the local change of scale) of the same order. This is a necessary condition to ensure that r(λ x ,λ y ) and ∈ β carry all structural information relevant to K. The limits of this direct approach, in terms of required Central Process Unit time and Memory is underlined, raising the need for an alternative. This is done by
The frontal method in hydrodynamics simulations
Walters, R.A.
1980-01-01
The frontal solution method has proven to be an effective means of solving the matrix equations resulting from the application of the finite element method to a variety of problems. In this study, several versions of the frontal method were compared in efficiency for several hydrodynamics problems. Three basic modifications were shown to be of value: 1. Elimination of equations with boundary conditions beforehand, 2. Modification of the pivoting procedures to allow dynamic management of the equation size, and 3. Storage of the eliminated equations in a vector. These modifications are sufficiently general to be applied to other classes of problems. ?? 1980.
International Nuclear Information System (INIS)
Bychkov, Yu. I.; Yampolskaya, S. A.; Yastremskii, A. G.
2013-01-01
The kinetic processes accompanying plasma column formation in an inhomogeneous discharge in a Ne/Xe/HCl gas mixture at a pressure of 4 atm were investigated by using a two-dimensional model. Two cathode spots spaced by 0.7 cm were initiated by distorting the cathode surface at local points, which resulted in an increase in the field strength in the cathode region. Three regimes differing in the charging voltage, electric circuit inductance, and electric field strength at the local cathode points were considered. The spatiotemporal distributions of the discharge current; the electron density; and the densities of excited xenon atoms, HCl(v = 0) molecules in the ground state, and HCl(v > 0) molecules in vibrational levels were calculated. The development of the discharge with increasing the electron density from 10 4 to 10 16 cm −3 was analyzed, and three characteristic stages in the evolution of the current distribution were demonstrated. The width of the plasma column was found to depend on the energy deposited in the discharge. The width of the plasma column was found to decrease in inverse proportion to the deposited energy due to spatiotemporal variations in the rates of electron production and loss. The calculated dependences of the cross-sectional area of the plasma column on the energy deposited in the discharge agree with the experimental results.
Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer
International Nuclear Information System (INIS)
Diaz, Luis A.; Botte, Gerardine G.
2015-01-01
Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Akihiro; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)
2016-07-10
A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.
Energy Technology Data Exchange (ETDEWEB)
Ryu, Seungyeob, E-mail: syryu@kaeri.re.kr [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Youngin; Kang, Hanok; Kim, Keung Koo [Korea Atomic Energy Research Institute (KAERI), 1045 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Sungho, E-mail: sunghoko@cnu.ac.kr [Department of Mechanical Design Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)
2016-08-15
Highlights: • We directly simulate intermediate-sized bubbles in low viscous liquids. • The path instability and shape oscillation can be successfully simulated. • The motion of a pair bubble and bubble swarm is presented. • Bubbles with high-Reynolds-number can be simulated with under-resolved grids. • The counter diffusion multiphase method is feasible for the direct simulation of bubbly flows. - Abstract: The counter diffusion lattice Boltzmann method (LBM) is used to simulate intermediate-sized bubbles in low viscous liquids. Bubbles at high Reynolds numbers ranging from hundreds to thousands are simulated successfully, which cannot be done for the existing LBM versions. The characteristics of the path instability of two rising bubbles are studied for a wide range of Eotvos and Morton numbers. Finally, the study presented how bubble swarms move within the flow and how the flow surrounding the bubbles is affected by the bubble motions.
Two-dimensional numerical simulation of the effect of single event burnout for n-channel VDMOSFET
International Nuclear Information System (INIS)
Guo Hongxia; Chen Yusheng; Wang Wei; Zhao Jinlong; Zhang Yimen; Zhou Hui
2004-01-01
2D MEDICI simulator is used to investigate the effect of Single Event Burnout (SEB) for n-channel power VDMOSFETs. The simulation results are consistent with experimental results which have been published. The simulation results are of great interest for a better understanding of the occurrence of events. The effects of the minority carrier lifetime in the base region, the base width and the emitter doping density on SEB susceptibility are verified. Some hardening solutions to SEB are provided. The work shows that the 2D simulator MEDICI is an useful tool for burnout prediction and for the evaluation of hardening solutions. (authors)
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
International Nuclear Information System (INIS)
Hofschen, S.; Wolff, I.
1996-01-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement
Energy Technology Data Exchange (ETDEWEB)
Hofschen, S.; Wolff, I. [Gerhard Mercator Univ. of Duisburg (Germany). Dept. of Electrical Engineering
1996-08-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement.
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)
Vu, Bruce; Berg, Jared; Harris, Michael F.
2014-01-01
Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae-Hoon; Kim, Yong-Kyun; Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Dong Geon; Choi, Joonbum; Jang, Jae Yeong [Hanyang University, Seoul (Korea, Republic of); Chung, Hyun-Tai [Seoul National University, Seoul (Korea, Republic of)
2016-10-15
Gamma Knife model C contains 201 {sup 60}Co sources located on a spherical surface, so that each beam is concentrated on the center of the sphere. In the last work, we simulated the Gamma Knife model C through Monte Carlo simulation code using Geant4. Instead of 201 multi-collimation system, we made one single collimation system that collects source parameter passing through the collimator helmet. Using the virtual source, we drastically reduced the simulation time to transport 201 gamma circle beams to the target. Gamma index has been widely used to compare two dose distributions in cancer radiotherapy. Gamma index pass rates were compared in two calculated results using the virtual source method and the original method and measured results obtained using radiocrhomic films. A virtual source method significantly reduces simulation time of a Gamma Knife Model C and provides equivalent absorbed dose distributions as that of the original method showing Gamma Index pass rate close to 100% under 1mm/3% criteria. On the other hand, it gives a little narrow dose distribution compared to the film measurement showing Gamma Index pass rate of 94%. More accurate and sophisticated examination on the accuracy of the simulation and film measurement is necessary.
International Nuclear Information System (INIS)
Boyd, J; Buick, J; Cosgrove, J A; Stansell, P
2005-01-01
The lattice Boltzmann model is used to observe changes in the velocity flow and shear stress in a carotid artery model during a simulated stenosis growth. Near wall shear stress in the unstenosed artery is found to agree with literature values. The model also shows regions of low velocity, rotational flow and low near wall shear stress along parts of the walls of the carotid artery that have been identified as being prone to atherosclerosis. These regions persist during the simulated stenosis growth, suggesting that atherosclerotic plaque build-up creates regions of flow with properties that favour atherosclerotic progression
Energy Technology Data Exchange (ETDEWEB)
Mayer, M., E-mail: matej.mayer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Malinský, P. [Nuclear Physics Institute of the Czech Academy of Sciences v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Schiettekatte, F. [Regroupement Québécois sur les Matériaux de Pointe (RQMP), Département de Physique, Université de Montréal, Montréal, QC (Canada); Zolnai, Z. [Centre for Energy Research, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)
2016-10-15
The codes RBS-MAST, STRUCTNRA, F95-Rough and CORTEO are simulation codes for ion beam analysis spectra from two- or three-dimensional sample structures. The codes were intercompared in a code-code comparison using an idealized grating structure and by comparison to experimental data from a silicon grating on tantalum interlayer. All codes are in excellent agreement at higher incident energies and not too large energy losses. At lower incident energies, grazing angles of incidence and/or larger energy losses plural scattering effects play an increasing role. Simulation codes with plural scattering capabilities offer higher accuracy and better agreement to experimental results in this regime.
Ngoma, Jeff; Philippe, Pierre; Bonelli, Stéphane; Radjaï, Farhang; Delenne, Jean-Yves
2018-05-01
We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.
Czech Academy of Sciences Publication Activity Database
Mayer, M.; Malinský, Petr; Schiettekatte, F.; Zolnai, Z.
2016-01-01
Roč. 385, OCT (2016), s. 65-73 ISSN 0168-583X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : ion beam analysis * computer simulation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016
Zeng, Guang-Ming; Zhang, Shuo-Fu; Qin, Xiao-Sheng; Huang, Guo-He; Li, Jian-Bing
2003-05-01
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.
Energy Technology Data Exchange (ETDEWEB)
Fadaei, H.; Renard, G. [Inst. Francais du Petrole, Lyon (France); Quintard, M.; Debenest, G. [L' Inst. de Mecanique des Fluides de Toulouse, Toulouse (France); Kamp, A.M. [Centre Huile Lourde Ouvert et Experimental CHLOE, Pau (France)
2008-10-15
Core and matrix block scale simulations of in situ combustion (ISC) processes in a fractured reservoir were conducted. ISC propagation conditions and oil recovery mechanisms were studied at core scale, while the 2-D behaviour of ISC was also studied at block-scale in order to determine dominant processes for combustion propagation and the characteristics of different steam fronts. The study examined 2-phase combustion in a porous medium containing a solid fuel as well as 2-D conventional dry combustion methods. The aim of the study was to predict ISC extinction and propagation conditions as well as to understand the mechanisms of oil recovery using ISC processes. The simulations were also used to develop up-scaling guidelines for fractured systems. Computations were performed using different oxygen diffusion and matrix permeability values. The effect of each production mechanism was studied separately. The multi-phase simulations showed that ISC in fractured reservoirs is feasible. The study showed that ISC propagation is dependent on the oxygen diffusion coefficient, while matrix permeability plays an important role in oil production. Oil production was governed by gravity drainage and thermal effects. Heat transfer due to the movement of combustion front velocity in the study was minor when compared to heat transfer by conduction and convection. It was concluded that upscaling methods must also consider the different zones distinguished for oil saturation and temperatures. 15 refs., 2 tabs., 15 figs.
Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars
Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.
2002-08-01
We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.
Energy Technology Data Exchange (ETDEWEB)
Yoon, E. S.; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Korea Advanced Institute of Science and Technology, Yuseong-gu, DaeJeon 305-701 (Korea, Republic of)
2014-03-15
An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.
Energy Technology Data Exchange (ETDEWEB)
Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)
2017-07-15
Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.
International Nuclear Information System (INIS)
Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong
2017-01-01
Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.
Energy Technology Data Exchange (ETDEWEB)
Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
Energy Technology Data Exchange (ETDEWEB)
Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2016-08-15
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
International Nuclear Information System (INIS)
Djouder, M.; Kermoun, F.; Mitiche, M. D.; Lamrous, O.
2016-01-01
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere
International Nuclear Information System (INIS)
Lan, Haiqiang; Zhang, Zhongjie
2011-01-01
The finite-difference (FD) method is a powerful tool in seismic wave field modelling for understanding seismic wave propagation in the Earth's interior and interpreting the real seismic data. The accuracy of FD modelling partly depends on the implementation of the free-surface (i.e. traction-free) condition. In the past 40 years, at least six kinds of free-surface boundary condition approximate schemes (such as one-sided, centred finite-difference, composed, new composed, implicit and boundary-modified approximations) have been developed in FD second-order elastodynamic simulation. Herein we simulate seismic wave fields in homogeneous and lateral heterogeneous models using these free-surface boundary condition approximate schemes and evaluate their stability and applicability by comparing with corresponding analytical solutions, and then quantitatively evaluate the accuracies of different approximate schemes from the misfit of the amplitude and phase between the numerical and analytical results. Our results confirm that the composed scheme becomes unstable for the V s /V p ratio less than 0.57, and suggest that (1) the one-sided scheme is only accurate to first order and therefore introduces serious errors for the shorter wavelengths, other schemes are all of second-order precision; (2) the new composed, implicit and boundary-modified schemes are stable even when the V s /V p ratio is less than 0.2; (3) the implicit and boundary-modified schemes are able to deal with laterally varying (heterogeneous) free surface; (4) in the corresponding stability range, the one-sided scheme shows remarkable errors in both phase and amplitude compared to analytical solution (which means larger errors in travel-time and reflection strength), the other five approximate schemes show better performance in travel-time (phase) than strength (amplitude)
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Energy Technology Data Exchange (ETDEWEB)
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Large eddy simulation of hydrodynamic cavitation
Bhatt, Mrugank; Mahesh, Krishnan
2017-11-01
Large eddy simulation is used to study sheet to cloud cavitation over a wedge. The mixture of water and water vapor is represented using a homogeneous mixture model. Compressible Navier-Stokes equations for mixture quantities along with transport equation for vapor mass fraction employing finite rate mass transfer between the two phases, are solved using the numerical method of Gnanaskandan and Mahesh. The method is implemented on unstructured grid with parallel MPI capabilities. Flow over a wedge is simulated at Re = 200 , 000 and the performance of the homogeneous mixture model is analyzed in predicting different regimes of sheet to cloud cavitation; namely, incipient, transitory and periodic, as observed in the experimental investigation of Harish et al.. This work is supported by the Office of Naval Research.
Simulating colloid hydrodynamics with lattice Boltzmann methods
International Nuclear Information System (INIS)
Cates, M E; Stratford, K; Adhikari, R; Stansell, P; Desplat, J-C; Pagonabarraga, I; Wagner, A J
2004-01-01
We present a progress report on our work on lattice Boltzmann methods for colloidal suspensions. We focus on the treatment of colloidal particles in binary solvents and on the inclusion of thermal noise. For a benchmark problem of colloids sedimenting and becoming trapped by capillary forces at a horizontal interface between two fluids, we discuss the criteria for parameter selection, and address the inevitable compromise between computational resources and simulation accuracy
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
Numerical simulation of the cavitation's hydrodynamic excitement
International Nuclear Information System (INIS)
Hassis, H.; Dueymes, E.; Lauro, J.F.
1993-01-01
First, we study the motion, the velocity, the phases plane and the acoustic sources associated to a spherical bubble in a compressible or incompressible medium. The bubble can be excited by periodic or random excitements. We study the parameters which influence their behaviour: periodicity or not of motion, implosion and explosion or oscillation of bubble. We take into account this behaviour in a model of cavitation: it is a numerical simulation using population of bubbles which are with positions (in the cavitation volume) and sizes are random. These bubbles are excited by a random excitement: a model of turbulent flow or implosion and explosion of bubble. (author)
Numerical simulations for radiation hydrodynamics. 2: Transport limit
International Nuclear Information System (INIS)
Dai, W.W.; Woodward, P.R.
2000-01-01
A finite difference scheme is proposed for two-dimensional radiation hydrodynamical equations in the transport limit. The scheme is of Godunov-type, in which the set of time-averaged flux needed in the scheme is calculated through Riemann problems solved. In the scheme, flow signals are explicitly treated, while radiation signals are implicitly treated. Flow fields and radiation fields are updated simultaneously. An iterative approach is proposed to solve the set of nonlinear algebraic equations arising from the implicitness of the scheme. The sweeping method used in the scheme significantly reduces the number of iterations or computer CPU time needed. A new approach to further accelerate the convergence is proposed, which further reduces the number of iterations needed by more than one order. No matter how many cells radiation signals propagate in one time step, only an extremely small number of iterations are needed in the scheme, and each iteration costs only about 0.8% of computer CPU time which is needed for one time step of a second order accurate and fully explicit scheme. Two-dimensional problems are treated through a dimensionally split technique. Therefore, iterations for solving the set of algebraic equations are carried out only in each one-dimensional sweep. Through numerical examples it is shown that the scheme keeps the principle advantages of Godunov schemes for flow motion. In the time scale of flow motion numerical results are the same as those obtained from a second order accurate and fully explicit scheme. The acceleration of the convergence proposed in this paper may be directly applied to other hyperbolic systems. This study is important for laser fusion and astrophysics
International Nuclear Information System (INIS)
Tahir, N.A.; Kim, V.; Lamour, E.; Lomonosov, I.V.; Piriz, A.R.; Rozet, J.P.; Stöhlker, Th.; Sultanov, V.; Vernhet, D.
2012-01-01
In this paper we report on two-dimensional numerical simulations of heating of a rotating, wheel shaped target impacted by the full intensity of the ion beam that will be delivered by the SPIRAL2 facility at Caen, France. The purpose of this work is to study heating of solid targets that will be used to strip the fast ions of SPIRAL2 to the required high charge state for the FISIC (Fast Ion–Slow Ion Collision) experiments. Strippers of aluminum with different emissivities and of carbon are exposed to high beam current of different ion species as oxygen, neon and argon. These studies show that carbon, due to its much higher sublimation temperature and much higher emissivity, is more favorable compared to aluminum. For the highest beam intensities, an aluminum stripper does not survive. However, problem of the induced thermal stresses and long term material fatigue needs to be investigated before a final conclusion can be drawn.
International Nuclear Information System (INIS)
Peng Xiaoling; Min Yong; Ma Tianyu; Luo Wei; Yan Mi
2009-01-01
The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics
Energy Technology Data Exchange (ETDEWEB)
Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)
2016-06-01
A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.
Hydrodynamic simulations of microjetting from shock-loaded grooves
Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Soulard, L.; Loison, D.
2017-01-01
The interaction of a shock wave with a free surface which has geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s. This process can be involved in many applications, like pyrotechnics or industrial safety. Recent laser shock experiments reported elsewhere in this conference have provided some insight into jet formation as well as jet tip velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particle hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is illustrated. Finally, the possibility to simulate the late stage of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.
Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Chuang, Wayne; Hildebrandt Ruiz, Lea; Ng, Nga L; Wang, Yangjun; Hao, Jiming
2015-02-17
We evaluate the one-dimensional volatility basis set (1D-VBS) and two-dimensional volatility basis set (2D-VBS) in simulating the aging of SOA derived from toluene and α-pinene against smog-chamber experiments. If we simulate the first-generation products with empirical chamber fits and the subsequent aging chemistry with a 1D-VBS or a 2D-VBS, the models mostly overestimate the SOA concentrations in the toluene oxidation experiments. This is because the empirical chamber fits include both first-generation oxidation and aging; simulating aging in addition to this results in double counting of the initial aging effects. If the first-generation oxidation is treated explicitly, the base-case 2D-VBS underestimates the SOA concentrations and O:C increase of the toluene oxidation experiments; it generally underestimates the SOA concentrations and overestimates the O:C increase of the α-pinene experiments. With the first-generation oxidation treated explicitly, we could modify the 2D-VBS configuration individually for toluene and α-pinene to achieve good model-measurement agreement. However, we are unable to simulate the oxidation of both toluene and α-pinene with the same 2D-VBS configuration. We suggest that future models should implement parallel layers for anthropogenic (aromatic) and biogenic precursors, and that more modeling studies and laboratory research be done to optimize the "best-guess" parameters for each layer.
Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang
2017-09-01
Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.
Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?
Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim
2014-11-01
Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
International Nuclear Information System (INIS)
Bankura, Arindam; Chandra, Amalendu
2015-01-01
The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water
International Nuclear Information System (INIS)
Jiang Shuai; Jia Rui; Tao Ke; Hou Caixia; Sun Hengchao; Li Yongtao; Yu Zhiyong
2017-01-01
Interdigitated back contact (IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO 2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO 2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO 2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm. Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. (paper)
International Nuclear Information System (INIS)
Liang, Xian-Ting
2014-01-01
A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time
Directory of Open Access Journals (Sweden)
Dongjia Cao
2017-12-01
Full Text Available Phase-field simulation serves as an effective tool for quantitative characterization of microstructure evolution in single-crystal Ni-based superalloys during solidification nowadays. The classic unit cell is either limited to γ dendrites along crystal orientation or too ideal to cover complex morphologies for γ dendrites. An attempt to design the unit cell for two-dimensional (2-D phase-field simulations of microstructure evolution in single-crystal Ni-based superalloys during solidification was thus performed by using the MICRESS (MICRostructure Evolution Simulation Software in the framework of the multi-phase-field (MPF model, and demonstrated in a commercial TMS-113 superalloy. The coupling to CALPHAD (CALculation of PHAse Diagram thermodynamic database was realized via the TQ interface and the experimental diffusion coefficients were utilized in the simulation. Firstly, the classic unit cell with a single γ dendrite along crystal orientation was employed for the phase-field simulation in order to reproduce the microstructure features. Then, such simple unit cell was extended into the cases with two other different crystal orientations, i.e., and . Thirdly, for crystal orientations, the effect of γ dendritic orientations and unit cell sizes on microstructure and microsegregation was comprehensively studied, from which a new unit cell with multiple γ dendrites was proposed. The phase-field simulation with the newly proposed unit cell was further performed in the TMS-113 superalloy, and the microstructure features including the competitive growth of γ dendrites, microsegregation of different solutes and distribution of γ′ grains, can be nicely reproduced.
Stoll, Dwight R; Sajulga, Ray W; Voigt, Bryan N; Larson, Eli J; Jeong, Lena N; Rutan, Sarah C
2017-11-10
An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension ( 1 D) column into the second dimension ( 2 D) column leads to severe 2 D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1 D mobile phase overwhelms the 2 D column with each injection of 1 D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2 D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2 D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80μL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real
Energy Technology Data Exchange (ETDEWEB)
Marocchino, A.; Atzeni, S.; Schiavi, A. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)
2014-01-15
In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.
International Nuclear Information System (INIS)
Marocchino, A.; Atzeni, S.; Schiavi, A.
2014-01-01
In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies
Marocchino, A.; Atzeni, S.; Schiavi, A.
2014-01-01
In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.
International Nuclear Information System (INIS)
Kanevce, Ana; Kuciauskas, Darius; Levi, Dean H.; Johnston, Steven W.; Allende Motz, Alyssa M.
2015-01-01
We use two-dimensional numerical simulations to analyze high spatial resolution time-resolved spectroscopy data. This analysis is applied to two-photon excitation time-resolved photoluminescence (2PE-TRPL) but is broadly applicable to all microscopic time-resolved techniques. By solving time-dependent drift-diffusion equations, we gain insight into carrier dynamics and transport characteristics. Accurate understanding of measurement results establishes the limits and potential of the measurement and enhances its value as a characterization method. Diffusion of carriers outside of the collection volume can have a significant impact on the measured decay but can also provide an estimate of carrier mobility as well as lifetime. In addition to material parameters, the experimental conditions, such as spot size and injection level, can impact the measurement results. Although small spot size provides better resolution, it also increases the impact of diffusion on the decay; if the spot size is much smaller than the diffusion length, it impacts the entire decay. By reproducing experimental 2PE-TRPL decays, the simulations determine the bulk carrier lifetime from the data. The analysis is applied to single-crystal and heteroepitaxial CdTe, material important for solar cells, but it is also applicable to other semiconductors where carrier diffusion from the excitation volume could affect experimental measurements
International Nuclear Information System (INIS)
Kim, Doosik; Economou, Demetre J.
2004-01-01
A combined fluid/Monte Carlo (MC) simulation was developed to study the two-dimensional (2D) sheath over a flat insulator/conductor interface on a radio-frequency (rf) biased electrode in a high-density plasma. The insulator capacitance increased the local impedance between the plasma and the bias voltage source. Thus, for uniform ion density and electron temperature far away from the wall, the sheath potential over the insulator was only a fraction of that over the conductor, resulting in a thinner sheath over the insulator. The fluid model provided the spatiotemporal profiles of the 2D sheath electric field. These were used as input to the MC simulation to compute the ion energy distribution (IED) and ion angular distribution (IAD) at different locations on the surface. The ion flux, IED, and IAD changed drastically across the insulator/conductor interface due to the diverging rf electric field in the distorted sheath. The ion flux was larger on the conductor at the expense of that on the insulator. Both the ion impact angle and angular spread increased progressively as the material interface was approached. The ion impact energy and energy spread were smaller on the insulator as compared to the conductor. For given plasma parameters, as the insulator thickness was increased, the sheath potential and thickness over the insulator decreased, and sheath distortion became more pronounced
International Nuclear Information System (INIS)
Sharp, Leah Z.; Egorova, Dassia; Domcke, Wolfgang
2010-01-01
Two-dimensional (2D) photon-echo spectra of a single subunit of the Fenna-Matthews-Olson (FMO) bacteriochlorophyll trimer of Chlorobium tepidum are simulated, employing the equation-of-motion phase-matching approach (EOM-PMA). We consider a slightly extended version of the previously proposed Frenkel exciton model, which explicitly accounts for exciton coherences in the secular approximation. The study is motivated by a recent experiment reporting long-lived coherent oscillations in 2D transients [Engel et al., Nature 446, 782 (2007)] and aims primarily at accurate simulations of the spectroscopic signals, with the focus on oscillations of 2D peak intensities with population time. The EOM-PMA accurately accounts for finite pulse durations as well as pulse-overlap effects and does not invoke approximations apart from the weak-field limit for a given material system. The population relaxation parameters of the exciton model are taken from the literature. The effects of various dephasing mechanisms on coherence lifetimes are thoroughly studied. It is found that the experimentally detected multiple frequencies in peak oscillations cannot be reproduced by the employed FMO model, which calls for the development of a more sophisticated exciton model of the FMO complex.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Rippled shock front solutions for testing hydrodynamic stability simulations
International Nuclear Information System (INIS)
Munro, D.H.
1989-01-01
The response of a shock front to arbitrary small perturbations can be calculated analytically. Such rippled shock front solutions are useful for determining the accuracy of hydrodynamic simulation codes such as LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1977)], which are used to compute perturbation growth in inertial fusion targets. The LASNEX fractional errors are of order κ 2 L 2 , where κ is the transverse wavenumber of the perturbation, and L is the largest zone dimension. Numerical errors are about 25% for a calculation using 26 zones per transverse wavelength
CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION
Energy Technology Data Exchange (ETDEWEB)
Schneider, Evan E.; Robertson, Brant E. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
2015-04-15
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256{sup 3}) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION
International Nuclear Information System (INIS)
Schneider, Evan E.; Robertson, Brant E.
2015-01-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256 3 ) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density
International Nuclear Information System (INIS)
Zhang Jiao; Wang Yanhui; Wang Dezhen; Zhuang Juan
2014-01-01
As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on temporal behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is developed to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2…) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to another, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteristics of the discharge system are studied for further understanding of the radial structure. (low temperature plasma)
International Nuclear Information System (INIS)
Lee, Wan-Gyu; Kim, Jun-Seok; Kim, Hee-Jeen; Kim, Sang-Young; Hwang, Sung-Bo; Lee, Jeong-Gun
2005-01-01
Two-dimensional optical simulation has been performed for investigating light propagation through a micro lens and inter-metal dielectric (IMD) layers in an Al and Cu back-end of line (BEOL) onto a Si photodiode, and its effects on the wave power, as well as optical carriers generated by a visible ray in the silicon substrate area, i.e. photodiode of a CMOS image sensor pixel. The number of optically generated carriers in an Al-BEOL has been compared to a Cu-BEOL. It is shown that more optical carriers are generated in the Cu-BEOL for the red color because a higher permittivity dielectric material like SiC is used in the Cu-BEOL to prevent Cu from diffusing into the dielectric material, resulting in higher optical loss in the higher- permittivity dielectric layers. Thus, the optical power density arriving in the silicon substrate is higher in the Al-BEOL than in the Cu-BEOL when the wavelength is blue (470 nm) or green (550 nm) in the visible ray spectrum. In conclusion, the structure of a Cu-BEOL in a CMOS image sensor has to be optimized for generating more optical carriers through lower-permittivity IMD materials or by reducing the permittivity difference between SiC (or SiN) and IMD materials, without deteriorating the capability as a barrier to Cu diffusion.
Institute of Scientific and Technical Information of China (English)
Xiang Xu; Hao Ge; Shuai Wang; Zhongling Dai; Younian Wang; Aimin Zhu
2009-01-01
A two-dimensional (2D) fluid model is presented to study the discharge of argon in a dual frequency capacitively coupled plasma (CCP) reactor. We are interested in the influence of low-frequency (LF) source parameters such as applied voltage amplitudes and low frequencies on the plasma characteristics. In this paper, the high frequency is set to 60 MHz with voltage 50 V. The simulations were carried out for low frequencies of 1, 2 and 6 MHz with LF voltage 100 V, and for LF voltages of 60, 90 and 120 V with low frequency 2 MHz. The results of 2D distributions of electric field and ion density, the ion flux impinging on the substrate and the ion energy on the powered electrode are shown. As the low frequency increases, two sources become from uncoupling to coupling, When two sources are uncoupling, the increase in LF has little impact on the plasma characteristics, but when two sources are coupling, the increase in LF decreases the uniformities of ion density and ion flux noticeably. It is also found that with the increase in LF voltage, the uniformities in the radial direction of ion density distribution and ion flux at the powered electrode decreases significantly, and the energy of ions bombarding on the powered electrode increases significantly.
Sugiyanto, S.; Hardyanto, W.; Marwoto, P.
2018-03-01
Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.
3D hydrodynamic simulations of carbon burning in massive stars
Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.
2017-10-01
We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.
Trobo, Marta L.; Albano, Ezequiel V.; Binder, Kurt
2018-03-01
Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field Hb favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, Hbbaseline length of the circle-cut sphere droplet would exceed b. For Hbc r i tbaseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θeff in the regime θc energy barrier for the "depinning" of the droplet (i.e., growth of θeff to π - θc) vanishes when θeff approaches π/2, in practice only angles θeff up to about θef f m a x≃70 ° were observed. For larger fields (Hb>Hb*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τG∝Hb-1, the nucleation time τN scales as ln τN∝Hb-1. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θc is used.
International Nuclear Information System (INIS)
Le, Q V; Chan, W K; Schwartz, J
2014-01-01
Ag/AgX sheathed Bi 2 Sr 2 CaCu 2 O x (Bi2212) is the only superconducting round wire (RW) with high critical current density (J c ) at high magnetic (>25 T) and is thus a strong candidate for high field magnets for nuclear magnetic resonance and high energy physics. A significant remaining challenge, however, is the relatively poor electromechanical behavior of Bi2212 RW, yet there is little understanding of the relationships between the internal Bi2212 microstructure and the mechanical behavior. This is in part due to the complex microstructures within the Bi2212 filaments and the uncertain role of interfilamentary bridges. Here, two-dimensional peridynamic simulations are used to study the stress distribution of the Bi2212 RWs under an axial tensile load. The simulations use scanning electron micrographs obtained from high J c wires as a starting point to study the impact of various defects on the distribution of stress concentration within the Bi2212 microstructure and Ag. The flexibility of the peridynamic approach allows various defects, including those captured from SEM micrographs and artificially created defects, to be inserted into the microstructure for systematic study. Furthermore, this approach allows the mechanical properties of the defects to be varied, so the effects of porosity and both soft and hard secondary phases are evaluated. The results show significant stress concentration around defects, interfilamentary bridges and the rough Bi2212/Ag interface. In general, the stress concentration resulting from porosity is greater than that of solid-phase inclusions. A clear role of the defect geometry is observed. Results indicate that crack growth is likely to initiate at the Ag/Bi2212 interface or at voids, but that voids may also arrest crack growth in certain circumstances. These results are consistent with experimental studies of Bi2212 electromechanical behavior and magneto-optical imaging of crack growth. (paper)
Three-dimensional hydrodynamic simulations of OMEGA implosions
Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.
2017-05-01
The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.
Two-dimensional hydrodynamic and transport models were used to simulate tidal and subtidal circulation, residence times, and the longitudinal distributions of conservative constituents in New Bedford Harbor, Massachusetts, before and after a hurricane barrier was constructed. The...
Liu, Yue; Booth, Jean-Paul; Chabert, Pascal
2018-02-01
A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected
Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement
Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim
2018-06-01
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.
Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.
2007-03-01
A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.
Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations
Bordwell, B. R.; Brown, B. P.; Oishi, J.
2016-12-01
A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.
Numerical simulation of hydrodynamic performance of ship under oblique conditions
Directory of Open Access Journals (Sweden)
CHEN Zhiming
2018-02-01
Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.
Wagner, Daniel M.
2013-01-01
In the early morning hours of June 11, 2010, substantial flooding occurred at Albert Pike Recreation Area in the Ouachita National Forest of west-central Arkansas, killing 20 campers. The U.S. Forest Service needed information concerning the extent and depth of flood inundation, the water velocity, and flow paths throughout Albert Pike Recreation Area for the flood and for streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The two-dimensional flow model Fst2DH, part of the Federal Highway Administration’s Finite Element Surface-water Modeling System, and the graphical user interface Surface-water Modeling System (SMS) were used to perform a steady-state simulation of the flood in a 1.5-mile reach of the Little Missouri River at Albert Pike Recreation Area. Peak streamflows of the Little Missouri River and tributary Brier Creek served as inputs to the simulation, which was calibrated to the surveyed elevations of high-water marks left by the flood and then used to predict flooding that would result from streamflows corresponding to annual exceedence probabilities of 1 and 2 percent. The simulated extent of the June 11, 2010, flood matched the observed extent of flooding at Albert Pike Recreation Area. The mean depth of inundation in the camp areas was 8.5 feet in Area D, 7.4 feet in Area C, 3.8 feet in Areas A, B, and the Day Use Area, and 12.5 feet in Lowry’s Camp Albert Pike. The mean water velocity was 7.2 feet per second in Area D, 7.6 feet per second in Area C, 7.2 feet per second in Areas A, B, and the Day Use Area, and 7.6 feet per second in Lowry’s Camp Albert Pike. A sensitivity analysis indicated that varying the streamflow of the Little Missouri River had the greatest effect on simulated water-surface elevation, while varying the streamflow of tributary Brier Creek had the least effect. Simulated water-surface elevations were lower than those modeled by the U.S. Forest Service using the standard-step method, but the
Hoomans, B.P.B.; Kuipers, J.A.M.; Briels, Willem J.; van Swaaij, Willibrordus Petrus Maria
1996-01-01
A discrete particle model of a gas-fluidised bed has been developed and in this the two-dimensional motion of the individual, spherical particles was directly calculated from the forces acting on them, accounting for the interaction between the particles and the interstitial gas phase. Our collision
D Hydrodynamics Simulation of Amazonian Seasonally Flooded Wetlands
Pinel, S. S.; Bonnet, M. P.; Da Silva, J. S.; Cavalcanti, R., Sr.; Calmant, S.
2016-12-01
In the low Amazonian basin, interactions between floodplains and river channels are important in terms of water exchanges, sediments, or nutrients. These wetlands are considered as hotspot of biodiversity and are among the most productive in the world. However, they are threatened by climatic changes and anthropic activities. Hence, considering the implications for predicting inundation status of floodplain habitats, the strong interactions between water circulation, energy fluxes, biogeochemical and ecological processes, detailed analyses of flooding dynamics are useful and needed. Numerical inundation models offer means to study the interactions among different water sources. Modeling floods events in this area is challenging because flows respond to dynamic hydraulic controls coming from several water sources, complex geomorphology, and vegetation. In addition, due to the difficulty of access, there is a lack of existing hydrological data. In this context, the use of monitoring systems by remote sensing is a good option. In this study, we simulated filling and drainage processes of an Amazon floodplain (Janauacá Lake, AM, Brazil) over a 6 years period (2006-2012). Common approaches of flow modeling in the Amazon region consist of coupling a 1D simulation of the main channel flood wave to a 2D simulation of the inundation of the floodplain. Here, our approach differs as the floodplain is fully simulated. Model used is the 3D model IPH-ECO, which consists of a three-dimensional hydrodynamic module coupled with an ecosystem module. The IPH-ECO hydrodynamic module solves the Reynolds-Averaged Navier-Stokes equations using a semi-implicit discretization. After having calibrated the simulation against roughness coefficients, we validated the model in terms of vertical accuracy against water levels (daily in situ and altimetrics data), in terms of flood extent against inundation maps deduced from available remote-sensed product imagery (ALOS-1/PALSAR.), and in terms
Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek
2018-04-01
We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.
De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico
2012-02-01
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.
International Nuclear Information System (INIS)
De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; López-Cámara, Diego
2012-01-01
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρ∝r –k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.
Energy Technology Data Exchange (ETDEWEB)
De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)
2012-02-20
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the
Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS
Afanasyev, Andrey
2015-04-01
MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge
Simulations of Model Microswimmers with Fully Resolved Hydrodynamics
Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi
2017-10-01
Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that
AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION
International Nuclear Information System (INIS)
Christie, Duncan; Arras, Phil; Li, Zhi-Yun
2016-01-01
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point
AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION
Energy Technology Data Exchange (ETDEWEB)
Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)
2016-03-20
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.
Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)
2009-01-01
The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.
Investigating mass transfer in symbiotic systems with hydrodynamic simulations
de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.
2014-06-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.
Hydrodynamic Simulation of the Cosmological X-Ray Background
Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.
2001-08-01
We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with
DEFF Research Database (Denmark)
Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth
1996-01-01
In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where both translational and internal degrees of freedom are present and coupled through microscopic interactions, with a focus on the manner of the macroscopic coupling between the two types...... where the spin degrees of freedom are slaved by the translational degrees of freedom and develop a first-order singularity in the order-disorder transition that accompanies the lattice-melting transition. The internal degeneracy of the spin states in model III implies that the spin order...
An Investigation of Intracluster Light Evolution Using Cosmological Hydrodynamical Simulations
Tang, Lin; Lin, Weipeng; Cui, Weiguang; Kang, Xi; Wang, Yang; Contini, E.; Yu, Yu
2018-06-01
Intracluster light (ICL) in observations is usually identified through the surface brightness limit (SBL) method. In this paper, for the first time we produce mock images of galaxy groups and clusters, using a cosmological hydrodynamical simulation to investigate the ICL fraction and focus on its dependence on observational parameters, e.g., the SBL, the effects of cosmological redshift-dimming, point-spread function (PSF), and CCD pixel size. Detailed analyses suggest that the width of the PSF has a significant effect on the measured ICL fraction, while the relatively small pixel size shows almost no influence. It is found that the measured ICL fraction depends strongly on the SBL. At a fixed SBL and redshift, the measured ICL fraction decreases with increasing halo mass, while with a much fainter SBL, it does not depend on halo mass at low redshifts. In our work, the measured ICL fraction shows a clear dependence on the cosmological redshift-dimming effect. It is found that there is more mass locked in the ICL component than light, suggesting that the use of a constant mass-to-light ratio at high surface brightness levels will lead to an underestimate of ICL mass. Furthermore, it is found that the radial profile of ICL shows a characteristic radius that is almost independent of halo mass. The current measurement of ICL from observations has a large dispersion due to different methods, and we emphasize the importance of using the same definition when observational results are compared with theoretical predictions.
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Smoothed particle hydrodynamic simulations of expanding HII regions
Bisbas, Thomas G.
2009-09-01
This thesis deals with numerical simulations of expanding ionized regions, known as HII regions. We implement a new three dimensional algorithm in Smoothed Particle Hydrodynamics for including the dynamical effects of the interaction between ionizing radiation and the interstellar medium. This interaction plays a crucial role in star formation at all epochs. We study the influence of ionizing radiation in spherically symmetric clouds. In particular, we study the spherically symmetric expansion of an HII region inside a uniform-density, non-self-gravitating cloud. We examine the ability of our algorithm to reproduce the known theoretical solution and we find that the agreement is very good. We also study the spherically symmetric expansion inside a uniform-density, self-gravitating cloud. We propose a new differential equation of motion for the expanding shell that includes the effects of gravity. Comparing its numerical solution with the simulations, we find that the equation predicts the position of the shell accurately. We also study the expansion of an off-centre HII region inside a uniform-density, non- self-gravitating cloud. This results in an evolution known as the rocket effect, where the ionizing radiation pushes and accelerates the cloud away from the exciting star leading to its dispersal. During this evolution, cometary knots appear as a result of Rayleigh-Taylor and Vishniac instabilities. The knots are composed of a dense head with a conic tail behind them, a structure that points towards the ionizing source. Our simulations show that these knots are very reminiscent of the observed structures in planetary nebula, such as in the Helix nebula. The last part of this thesis is dedicated to the study of cores ionized by an exciting source which is placed outside and far away from them. The evolution of these cores is known as radiation driven compression (or implosion). We perform simulations and compare our findings with results of other workers and we
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Study on two-dimensional induced signal readout of MRPC
International Nuclear Information System (INIS)
Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin
2012-01-01
A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.
Energy Technology Data Exchange (ETDEWEB)
Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)
2012-07-20
We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
Simulation of seismic signals from asymmetric LANL hydrodynamic calculations
International Nuclear Information System (INIS)
Stevens, J.L.; Rimer, N.; Halda, E.J.; Barker, T.G.; Davis, C.G.; Johnson, W.E.
1993-01-01
Hydrodynamic calculations of an asymmetric nuclear explosion source were propagated to teleseismic distances to investigate the effects of the asymmetric source on seismic signals. The source is an explosion in a 12 meter long canister with the device at one end of the canister and a metal plate adjacent to the explosion. This produces a strongly asymmetric two-lobed source in the hydrodynamic region. The hydrodynamic source is propagated to the far field using a three-step process. The Eulerian hydrodynamic code SOIL was used by LANL to calculate the material velocity, density, and internal energy up to a time of 8.9 milliseconds after the explosion. These quantities were then transferred to an initial grid for the Lagrangian elastic/plastic finite difference code CRAM, which was used by S-CUBED to propagate the signal through the region of nonlinear deformation into the external elastic region. The cavity size and shape at the time of the overlay were determined by searching for a rapid density change in the SOIL grid, and this interior region was then rezoned into a single zone. The CRAM calculation includes material strength and gravity, and includes the effect of the free surface above the explosion. Finally, far field body waves were calculated by integrating over a closed surface in the elastic region and using the representation theorem. A second calculation was performed using an initially spherical source for comparison with the asymmetric calculation
Energy Technology Data Exchange (ETDEWEB)
Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Effective viscosity of two-dimensional suspensions: Confinement effects
Doyeux, Vincent; Priem, Stephane; Jibuti, Levan; Farutin, Alexander; Ismail, Mourad; Peyla, Philippe
2016-08-01
We study the rheology of a sheared two-dimensional (2D) suspension of non-Brownian disks in the presence of walls. Although it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension provides valuable insights and helps in the understanding of 3D results. Due to the direct visualization of the whole 2D flow (the shear plane), we are able to give a clear interpretation of the full hydrodynamics of semidilute confined suspensions. For instance, we examine the role of disk-wall and disk-disk interactions to determine the dissipation of confined sheared suspensions whose effective viscosity depends on the area fraction ϕ of the disks as ηeff=η0[1 +[η ] ϕ +β ϕ2+O (ϕ3) ] . We provide numerical estimates of [η ] and β for a wide range of confinements. As a benchmark for our simulations, we compare the numerical results obtained for [η ] and β for very weak confinements with analytical values [η] ∞ and β∞ obtained for an infinite fluid. If the value [η] ∞=2 is well known in the literature, much less is published on the value of β . Here we analytically calculate with very high precision β∞=3.6 . We also reexamine the 3D case in the light of our 2D results.
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Energy Technology Data Exchange (ETDEWEB)
Martínez-Sykora, Juan [Bay Area Environmental Research Institute, Petaluma, CA 94952 (United States); Pontieu, Bart De; Hansteen, Viggo H. [Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304 (United States); Carlsson, Mats; Gudiksen, Boris V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Nóbrega-Siverio, Daniel, E-mail: juanms@lmsal.com [Instituto de Astrofísica de Canarias, E-38200 La Laguna (Tenerife) (Spain)
2017-09-20
We investigate the effects of interactions between ions and neutrals on the chromosphere and overlying corona using 2.5D radiative MHD simulations with the Bifrost code. We have extended the code capabilities implementing ion–neutral interaction effects using the generalized Ohm’s law, i.e., we include the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. Our models span from the upper convection zone to the corona, with the photosphere, chromosphere, and transition region partially ionized. Our simulations reveal that the interactions between ionized particles and neutral particles have important consequences for the magnetothermodynamics of these modeled layers: (1) ambipolar diffusion increases the temperature in the chromosphere; (2) sporadically the horizontal magnetic field in the photosphere is diffused into the chromosphere, due to the large ambipolar diffusion; (3) ambipolar diffusion concentrates electrical currents, leading to more violent jets and reconnection processes, resulting in (3a) the formation of longer and faster spicules, (3b) heating of plasma during the spicule evolution, and (3c) decoupling of the plasma and magnetic field in spicules. Our results indicate that ambipolar diffusion is a critical ingredient for understanding the magnetothermodynamic properties in the chromosphere and transition region. The numerical simulations have been made publicly available, similar to previous Bifrost simulations. This will allow the community to study realistic numerical simulations with a wider range of magnetic field configurations and physics modules than previously possible.
Numerical simulations of glass impacts using smooth particle hydrodynamics
International Nuclear Information System (INIS)
Mandell, D.A.; Wingate, C.A.
1995-01-01
As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data
Multi-dimensional cubic interpolation for ICF hydrodynamics simulation
International Nuclear Information System (INIS)
Aoki, Takayuki; Yabe, Takashi.
1991-04-01
A new interpolation method is proposed to solve the multi-dimensional hyperbolic equations which appear in describing the hydrodynamics of inertial confinement fusion (ICF) implosion. The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly improved, by assuming the continuities of the second and the third spatial derivatives in addition to the physical value and the first derivative. These derivatives are derived from the given physical equation. In order to evaluate the new method, Zalesak's example is tested, and we obtain successfully good results. (author)
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Tracer dispersion in two-dimensional rough fractures.
Drazer, G; Koplik, J
2001-05-01
Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.
Soap film flows: Statistics of two-dimensional turbulence
International Nuclear Information System (INIS)
Vorobieff, P.; Rivera, M.; Ecke, R.E.
1999-01-01
Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R λ ∼100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in k space consistent with the k -3 spectrum of the Kraichnan endash Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. copyright 1999 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Chen, C. D.; Kemp, A. J.; Pérez, F.; Link, A.; Key, M. H.; McLean, H.; Ping, Y.; Patel, P. K. [Lawrence Livermore National Laboratory (United States); Beg, F. N.; Chawla, S.; Sorokovikova, A.; Westover, B. [University of California, San Diego (United States); Morace, A. [University of Milan (Italy); Stephens, R. B. [General Atomics (United States); Streeter, M. [Imperial College London (United Kingdom)
2013-05-15
A 2-D multi-stage simulation model incorporating realistic laser conditions and a fully resolved electron distribution handoff has been developed and compared to angularly and spectrally resolved Bremsstrahlung measurements from high-Z planar targets. For near-normal incidence and 0.5-1 × 10{sup 20} W/cm{sup 2} intensity, particle-in-cell (PIC) simulations predict the existence of a high energy electron component consistently directed away from the laser axis, in contrast with previous expectations for oblique irradiation. Measurements of the angular distribution are consistent with a high energy component when directed along the PIC predicted direction, as opposed to between the target normal and laser axis as previously measured.
Directory of Open Access Journals (Sweden)
R. A. Prakapovich
2014-01-01
Full Text Available An adaptive neurocontroller for autonomous robotic vehicle control, which is designed to generate control signals (according to preprogrammed motion algorithm and to develop individual reactions to some external impacts during functioning process, that allows the robot to adapt to external environment changes, is suggested. To debug and test the proposed neurocontroller a specially designed program, able to simulate the sensory and executive systems operation of the robotic vehicle, is used.
Miao, Linling; Young, Charles D.; Sing, Charles E.
2017-07-01
Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.
Directory of Open Access Journals (Sweden)
Javier Achury Varila
2010-04-01
Full Text Available La inestabilidad en la combustión es una condición indeseada en algunos sistemas de combustión como en turbinas de gas por ejemplo. Se refiere a la presencia autogenerada de oscilaciones en la presión que pueden afectar a la cámara de combustión y de paso llegar a generar ruido. Una reciente tendencia generalizada en los procesos de combustión apunta al uso de mezclas pobres para la reducción de contaminantes, no obstante que este tipo de mezclas son más susceptibles a la inestabilidad en la combustión. Las complicadas relaciones que gobiernan el fenómeno se pueden resumir como el acoplamiento entre la llama y la acústica del sistema. En el presente trabajo se presenta un planteamiento numérico que permite aproximarse al fenómeno a través de la solución de un modelo de combustión básico implementado computacionalmente. En este modelo se simula una autoexcitación del sistema a través de oscilaciones en la entrada de flujos de reactantes. Finalmente, se comparan los resultados de la simulación numérica con otras simulaciones y datos experimentales.The Combustion instability is an undesirable condition reached in some combustion systems, as during the operation of gas turbines. It refers to self-excited oscillations of pressure that may affect the combustion chamber and generate noise. A recent generalized tendency in combustion processes aims to the use of lean combustion (low fuel/air ratios for pollutants reduction, nevertheless this sort of mixtures are more susceptible to combustion instabilities. The complex relationship that generates the phenomenon can be summarized as the coupling between flame and acoustics. In this paper it is outlined a numerical approach to this phenomenon by solving a basic computational combustion model (by Direct Numerical Simulation. In this model a self-excited system is simulated through imposed oscillations in reactants flows. Finally, results for this numerical simulation are compared
Czech Academy of Sciences Publication Activity Database
Klimo, O.; Psikal, J.; Tikhonchuk, V.T.; Weber, Stefan A.
2014-01-01
Roč. 56, č. 5 (2014), 055010 ISSN 0741-3335 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 Keywords : laser plasma interaction * stimulated Raman scattering * hot electrons * particle-in-cell simulation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.186, year: 2014
Simulating sympathetic detonation using the hydrodynamic models and constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)
2016-12-15
A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Fu, Li; Merabia, Samy; Joly, Laurent
2017-11-01
Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.
Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs
Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.
2018-05-01
We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.
Fu, Li; Merabia, Samy; Joly, Laurent
2017-11-24
Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.
3-D CFD simulations of hydrodynamics in the Sulejow dam reservoir
Directory of Open Access Journals (Sweden)
Ziemińska-Stolarska Aleksandra
2015-12-01
Full Text Available This paper reports the processes by which a single-phase 3-D CFD model of hydrodynamics in a 17-km-long dam reservoir was developed, verified and tested. A simplified VOF model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA. Excellent agreement (average error of less than 10% between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics in the lake, especially on the development of the water circulation pattern in the lacustrine zone.
Energy Technology Data Exchange (ETDEWEB)
Noda, S [Toyohashi University of Technology, Aichi (Japan); Hashimoto, K [Sumitomo Metal Industries, Ltd., Osaka (Japan); Nakajima, T [Kobe University, Kobe (Japan). Faculty of Engineering
1994-07-25
The effect of fuel dilution on growth of flames formed in 2-D mixing layers was studied by numerical simulation. The methane mass fraction of fuel was adjusted to 1.0, 0.3 and 0.2 through dilution by nitrogen, while the oxygen mass fraction of an oxidizer was fixed at 0.27. Flame structure was complicated due to the flows separated by flame at the leading edge of flames, and three peaks of the second Damkohler number were observed. Fuel dilution by nitrogen caused blow-off of flames, and the mixing ratio of the fuel and oxidizer at the leading edge of flames was essential to blow-off of diffused flames. In the case where vortices were observed in a flow field, the first Damkohler number was important which was determined by the hydrodynamic characteristic time of coherent vortices and the chemical characteristic time of flame propagation based on the mixing ratio of the fuel and oxidizer at the leading edge of flames. The diffused flames were elongated by shearing force, and an exothermic reaction was suppressed and a flame stabilization decreased with a decrease in second Damkohler number. 10 refs., 9 figs., 1 tab.
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Hydrodynamic simulation of X-UV laser-produced plasmas
International Nuclear Information System (INIS)
Fajardo, M.; Zeitoun, P.; Gauthier, J.C.
2004-01-01
With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)
Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems
International Nuclear Information System (INIS)
Mathews, G.J.; Evans, C.R.; Wilson, J.R.
1986-09-01
We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs
Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids
Ahuja, Vishal Raju
2018-01-01
This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion
Pressure of two-dimensional Yukawa liquids
International Nuclear Information System (INIS)
Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin
2016-01-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)
Butler, Jason E.; Shaqfeh, Eric S. G.
2005-01-01
Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.
Accurate simulation dynamics of microscopic filaments using "caterpillar" Oseen hydrodynamics
Bailey, A.G.; Lowe, C.P.; Pagonabarraga, I.; Cosentino Lagomarsino, M.
2009-01-01
Microscopic semiflexible filaments suspended in a viscous fluid are widely encountered in biophysical problems. The classic example is the flagella used by microorganisms to generate propulsion. Simulating the dynamics of these filaments numerically is complicated because of the coupling between the
Directory of Open Access Journals (Sweden)
Deirdre R. Meldrum
2012-06-01
Full Text Available Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1 their ability to rotate biological cells in a stable and precise manner; and (2 their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV was used to provide a detailed characterization of flows in the new design. Simulated and experimental results demonstrate that a trapezoidal side chamber represents a viable option for accomplishing controlled single cell rotation. Further, agreement between experimental and simulated results confirms that numerical simulation is an effective method for chamber design.
Treatment of compounds and alloys in radiation hydrodynamics simulations of ablative laser loading
International Nuclear Information System (INIS)
Swift, Damian C.; Gammel, J. Tinka; Clegg, Samuel M.
2004-01-01
Different methods were compared for constructing models of the behavior of a prototype intermetallic compound, nickel aluminide, for use in radiation hydrodynamics simulations of shock wave generation by ablation induced by laser energy. The models included the equation of state, ionization, and radiation opacity. The methods of construction were evaluated by comparing the results of simulations of an ablatively generated shock wave in a sample of the alloy. The most accurate simulations were obtained using the 'constant number density' mixture model to calculate the equation of state and opacity, and Thomas-Fermi ionization. This model is consistent with that found to be most accurate for simulations of ablatively shocked elements
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Properties of galaxies reproduced by a hydrodynamic simulation
Vogelsberger, M.; Genel, S.; Springel, V.; Torrey, P.; Sijacki, D.; Xu, D.; Snyder, G.; Bird, S.; Nelson, D.; Hernquist, L.
2014-05-01
Previous simulations of the growth of cosmic structures have broadly reproduced the `cosmic web' of galaxies that we see in the Universe, but failed to create a mixed population of elliptical and spiral galaxies, because of numerical inaccuracies and incomplete physical models. Moreover, they were unable to track the small-scale evolution of gas and stars to the present epoch within a representative portion of the Universe. Here we report a simulation that starts 12 million years after the Big Bang, and traces 13 billion years of cosmic evolution with 12 billion resolution elements in a cube of 106.5 megaparsecs a side. It yields a reasonable population of ellipticals and spirals, reproduces the observed distribution of galaxies in clusters and characteristics of hydrogen on large scales, and at the same time matches the `metal' and hydrogen content of galaxies on small scales.
A detailed framework to incorporate dust in hydrodynamical simulations
Grassi, Tommaso; Bovino, S.; Haugbølle, Troels; Schleicher, Dominik R. G.
2017-01-01
Dust plays a key role in the evolution of the ISM and its correct modelling in numerical simulations is therefore fundamental. We present a new and self-consistent model that treats grain thermal coupling with the gas, radiation balance, and surface chemistry for molecular hydrogen. This method can be applied to any dust distribution with an arbitrary number of grain types without affecting the overall computational cost. In this paper we describe in detail the physics and the algorithm behin...
Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei
2012-07-28
This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.
Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan
2017-05-01
Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Neutrino radiation-hydrodynamics. General relativistic versus multidimensional supernova simulations
International Nuclear Information System (INIS)
Liebendoerfer, Matthias; Fischer, Tobias; Hempel, Matthias
2010-01-01
Recently, simulations of the collapse of massive stars showed that selected models of the QCD phase transitions to deconfined quarks during the early postbounce phase can trigger the supernova explosion that has been searched for over many years in spherically symmetric supernova models. Using sophisticated general relativistic Boltzmann neutrino transport, it was found that a characteristic neutrino signature is emitted that permits to falsify or identify this scenario in the next Galactic supernova event. On the other hand, more refined observations of past supernovae and progressing theoretical research in different supernova groups demonstrated that the effects of multidimensional fluid instabilities cannot be neglected in global models of the explosions of massive stars. We point to different efforts where neutrino transport and general relativistic effects are combined with multidimensional fluid instabilities in supernovae. With those, it will be possible to explore the gravitational wave emission as a potential second characteristic observable of the presence of quark matter in new-born neutron stars. (author)
Hydrodynamic stability of inverted annular flow in an adiabatic simulation
International Nuclear Information System (INIS)
De Jarlais, G.; Ishii, M.; Linehan, J.
1986-01-01
Inverted annular flow was simulated adiabatically with turbulent water jets, issuing downward from large aspect ratio nozzles, enclosed in gas annuli. Velocities, diameters, and gas species were varied, and core jet length, shape, breakup mode, and dispersed core droplet sizes were recorded at approximately 750 data points. Inverted annular flow destabilization led to inverted slug flow at low relative velocities, and to dispersed droplet flow, core breakup length correlations were developed by extending work on free liquid jets to include this coaxial, jet disintegration phenomenon. The results show length dependence upon D/sub J/, Re/sub J/, We/sub J/, α, and We/sub G/,rel. Correlations for core shape, breakup mechanisms, and dispersed core droplet size were also developed, by extending the results of free jet stability, roll wave entrainment, and churn turbulent droplet stability studies
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Hydrodynamic cavitation in microsystems. II. Simulations and optical observations
Medrano, M.; Pellone, C.; Zermatten, P. J.; Ayela, F.
2012-04-01
Numerical calculations in the single liquid phase and optical observations in the two-phase cavitating flow regime have been performed on microdiaphragms and microventuris fed with deionized water. Simulations have confirmed the influence of the shape of the shrinkage upon the contraction of the jet, and so on the localisation of possible cavitating area downstream. Observations of cavitating flow patterns through hybrid silicon-pyrex microdevices have been performed either via a laser excitation with a pulse duration of 6 ns, or with the help of a high-speed camera. Recorded snapshots and movies are presented. Concerning microdiaphragms, it is confirmed that very high shear rates downstream the diaphragms are the cause of bubbly flows. Concerning microventuris, a gaseous cavity forms on a boundary downstream the throat. As a consequence of a microsystem instability, the cavity displays a high frequency pulsation. Low values Strouhal numbers are associated to such a sheet cavitation. Moreover, when the intensity of the cavitating flow is reduced, there is a mismatch between the frequency of the pulsation of the cavity and the frequency of shedded clouds downstream the channel. That may be the consequence of viscous effects limiting the impingement of a re-entrant liquid jet on the attached cavity.
Hydrodynamic simulation of a lithium chloride salt system
International Nuclear Information System (INIS)
Eberle, C. S.; Herrmann, S. D.; Knighton, G. C.
1999-01-01
A fused lithium chloride salt system's constitutive properties were evaluated and compared to a number of fluid properties, and water was shown to be an excellent simulant of lithium chloride salt. With a simple flow model, the principal scaling term was shown to be a function of the kinematic viscosity. A water mock-up of the molten salt was also shown to be within a ±3% error in the scaling analysis. This made it possible to consider developing water scaled tests of the molten salt system. Accurate flow velocity and pressure measurements were acquired by developing a directional velocity probe. The device was constructed and calibrated with a repeatable accuracy of ±15%. This was verified by a detailed evaluation of the probe. Extensive flow measurements of the engineering scale mockup were conducted, and the results were carefully compared to radial flow patterns of a straight blade stirrer. The flow measurements demonstrated an anti-symmetric nature of the stirring, and many additional effects were also identified. The basket design was shown to prevent fluid penetration into the fuel baskets when external stirring was the flow mechanism
International Nuclear Information System (INIS)
Starrfield, S.; Kenyon, S.; Truran, J.W.; Sparks, W.M.
1983-01-01
We have used a Lagrangian, hydrodynamic stellar-evolution computer code to evolve a thermonuclear runaway in the accreted hydrogen rich envelope of a 1.0M, 10-km neutron star. Our simulation produced an outburst which lasted about 2000 sec and peak effective temperature was 3 keV. The peak luminosity exceeded 2 x 10 5 L. A shock wave caused a precursor in the light curve which lasted 10 -5 sec
A solution of two-dimensional magnetohydrodynamic flow using the finite volume method
Directory of Open Access Journals (Sweden)
Naceur Sonia
2014-01-01
Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.
Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M
2015-07-09
Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". Copyright © 2015 Elsevier B.V. All rights reserved.
Modeling of laser induced air plasma and shock wave dynamics using 2D-hydrodynamic simulations
Paturi, Prem Kiran; S, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem, University Of Hyderabad Team; Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam Team
2017-06-01
The laser induced air plasma dynamics and the SW evolution modeled using the two dimensional hydrodynamic code by considering two different EOS: ideal gas EOS with charge state effects taken into consideration and Chemical Equilibrium applications (CEA) EOS considering the chemical kinetics of different species will be presented. The inverse bremsstrahlung absorption process due to electron-ion and electron-neutrals is considered for the laser-air interaction process for both the models. The numerical results obtained with the two models were compared with that of the experimental observations over the time scales of 200 - 4000 ns at an input laser intensity of 2.3 ×1010 W/cm2. The comparison shows that the plasma and shock dynamics differ significantly for two EOS considered. With the ideas gas EOS the asymmetric expansion and the subsequent plasma dynamics have been well reproduced as observed in the experiments, whereas with the CEA model these processes were not reproduced due to the laser energy absorption occurring mostly at the focal volume. ACRHEM team thank DRDO, India for funding.
Two-dimensional ion effects in relativistic diodes
International Nuclear Information System (INIS)
Poukey, J.W.
1975-01-01
In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)
Equilibrium spherically curved two-dimensional Lennard-Jones systems
Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.
2005-01-01
To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced
Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions
Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin
2017-06-01
We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin
2017-07-01
A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.
International Nuclear Information System (INIS)
Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.
2013-01-01
We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions
Guidi, G.; Casado, J.; Ascasibar, Y.; García-Benito, R.; Galbany, L.; Sánchez-Blázquez, P.; Sánchez, S. F.; Rosales-Ortega, F. F.; Scannapieco, C.
2018-06-01
In this work we present a set of synthetic observations that mimic the properties of the Integral Field Spectroscopy (IFS) survey CALIFA, generated using radiative transfer techniques applied to hydrodynamical simulations of galaxies in a cosmological context. The simulated spatially-resolved spectra include stellar and nebular emission, kinematic broadening of the lines, and dust extinction and scattering. The results of the radiative transfer simulations have been post-processed to reproduce the main properties of the CALIFA V500 and V1200 observational setups. The data has been further formatted to mimic the CALIFA survey in terms of field of view size, spectral range and sampling. We have included the effect of the spatial and spectral Point Spread Functions affecting CALIFA observations, and added detector noise after characterizing it on a sample of 367 galaxies. The simulated datacubes are suited to be analysed by the same algorithms used on real IFS data. In order to provide a benchmark to compare the results obtained applying IFS observational techniques to our synthetic datacubes, and test the calibration and accuracy of the analysis tools, we have computed the spatially-resolved properties of the simulations. Hence, we provide maps derived directly from the hydrodynamical snapshots or the noiseless spectra, in a way that is consistent with the values recovered by the observational analysis algorithms. Both the synthetic observations and the product datacubes are public and can be found in the collaboration website http://astro.ft.uam.es/selgifs/data_challenge/.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk
Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia
2018-01-01
We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.
SIMULATIONS OF HIGH-VELOCITY CLOUDS. I. HYDRODYNAMICS AND HIGH-VELOCITY HIGH IONS
International Nuclear Information System (INIS)
Kwak, Kyujin; Henley, David B.; Shelton, Robin L.
2011-01-01
We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sightlines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass ∼ 120 M sun ) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass ∼ 4 x 10 5 M sun ) remained largely intact, although deformed, during its simulation period (240 Myr).
Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos S.; Le Bret, Theo; Pontzen, Andrew
2017-08-01
Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the technique developed by Cooper et al. (which we call stings here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by ≲10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases, this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.
Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation
Directory of Open Access Journals (Sweden)
Manisha Bal
2017-12-01
Full Text Available The filtered containment venting system (FCVS is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD has been used to predict the hydrodynamic behaviour of a newly designed venturi scrubber. Mesh was developed by gambit 2.4.6 and ansys fluent 15 has been used to predict the pressure drop profile inside the venturi scrubber under various flow conditions. The Reynolds Renormalization Group (RNG k-Îµ turbulence model and the volume of the fluid (VOF were employed for this simulation. The effect of throat gas velocity, liquid mass flow rate, and liquid loading on pressure drop was studied. Maximum pressure drop 2064.34 pa was achieved at the throat gas velocity of 60Â m/s and liquid flow rate of 0.033Â kg/s and minimum pressure drop 373.51 pa was achieved at the throat gas velocity of 24Â m/s and liquid flow rate of 0.016Â kg/s. The results of the present study will assist for proper functioning of venturi scrubber. Keywords: Venturi scrubber, Hydrodynamics, Pressure drop, Computational fluid dynamics, Nuclear power plant safety, Flow prediction
Numerical simulations of radiation hydrodynamics and modeling of high temperature hohlraum cavities
International Nuclear Information System (INIS)
Gupta, N.K.; Godwal, B.K.
2003-10-01
A summary of our efforts towards the validation of radiation hydrodynamics and opacity models are presented. Effects of various parameters on the radiation temperature inside an inertial confinement fusion (ICF) hohlraum, the effects of non-local thermodynamic equilibrium conditions on emission and absorption, and the hydrodynamics of aluminium and gold foils driven by radiation are studied. LTE and non-LTE predictions for emitted radiation are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. It is shown that the mixing of two high Z materials can lead to an enhancement in the Rosseland mean. An experimental study of soft x-ray emission from laser-irradiated Au-Cu mix-Z targets confirmed these predictions. It is seen that only multi group non-LTE radiation transport is able to explain experimentally observed features in the conversion efficiency of laser light to x-rays. One group radiation transport under predicts the radiation temperature. It is shown that erroneous results can be obtained if the space mesh in the hohlraum wall is not fine enough. Hydrodynamics of a wedge shaped aluminium foil driven by the hohlraum radiation is also presented and results are compared with NOVA laser experiments. Laser driven shock wave EOS and gold hohlraum experiments carried out at CAT are analyzed and they confirmed our theoretical estimates. (author)
International Nuclear Information System (INIS)
Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.
2013-01-01
Direct-drive–ignition designs with plastic CH ablators create plasmas of long density scale lengths (L n ≥ 500 μm) at the quarter-critical density (N qc ) region of the driving laser. The two-plasmon–decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation–hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of L n approaching ∼400 μm have been created; (2) the density scale length at N qc scales as L n (μm)≃(R DPP ×I 1/4 /2); and (3) the electron temperature T e at N qc scales as T e (keV)≃0.95×√(I), with the incident intensity (I) measured in 10 14 W/cm 2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (R DPP ) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons f hot is found to have a similar behavior for both configurations: a rapid growth [f hot ≃f c ×(G c /4) 6 for G c hot ≃f c ×(G c /4) 1.2 for G c ≥ 4, with the common wave gain is defined as G c =3 × 10 −2 ×I qc L n λ 0 /T e , where the laser intensity contributing to common-wave gain I qc , L n , T e at N qc , and the laser wavelength λ 0 are, respectively, measured in [10 14 W/cm 2 ], [μm], [keV], and [μm]. The saturation level f c is observed to be f c ≃ 10 –2 at around
Hydrodynamic simulations of light ion beam-matter interactions: ablative acceleration of thin foils
International Nuclear Information System (INIS)
Devore, C.R.; Gardner, J.H.; Boris, J.P.; Mosher, D.
1984-01-01
A one-dimensional model is used to study the hydrodynamic response of thin foils to bombardment by an intense proton beam. The beam targets are single- and multilayer planar foils of gold and polystyrene. The main conclusion is that the efficiency of conversion of incident beam energy to directed kinetic energy of the target is maximized by using a multilayer design. For beam parameters associated with the Gamble II device at the Naval Research Laboratory, the simulations yield payload velocities of over 5 cm/μs and energy conversion efficiencies of over 30%. The implications of these results for inertial confinement fusion research are discussed. (author)
Simulating Rayleigh-Taylor (RT) instability using PPM hydrodynamics @scale on Roadrunner (u)
Energy Technology Data Exchange (ETDEWEB)
Woodward, Paul R [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Rockefeller, Gabriel M [Los Alamos National Laboratory; Fryer, Christopher L [Los Alamos National Laboratory; Dimonte, Guy [Los Alamos National Laboratory; Dai, W [Los Alamos National Laboratory; Kares, R. J. [Los Alamos National Laboratory
2011-01-05
The effect of initial conditions on the self-similar growth of the RT instability is investigated using a hydrodynamics code based on the piecewise-parabolic-method (PPM). The PPM code was converted to the hybrid architecture of Roadrunner in order to perform the simulations at extremely high speed and spatial resolution. This paper describes the code conversion to the Cell processor, the scaling studies to 12 CU's on Roadrunner and results on the dependence of the RT growth rate on initial conditions. The relevance of the Roadrunner implementation of this PPM code to other existing and anticipated computer architectures is also discussed.
Gholampour, S.; Fatouraee, N.; Seddighi, A. S.; Seddighi, A.
2017-05-01
Three-dimensional computational models of the cerebrospinal fluid (CSF) flow and brain tissue are presented for evaluation of their hydrodynamic conditions before and after shunting for seven patients with non-communicating hydrocephalus. One healthy subject is also modeled to compare deviated patients data to normal conditions. The fluid-solid interaction simulation shows the CSF mean pressure and pressure amplitude (the superior index for evaluation of non-communicating hydrocephalus) in patients at a greater point than those in the healthy subject by 5.3 and 2 times, respectively.
Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.
2018-01-01
We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Floodplain simulation for Musi River using integrated 1D/2D hydrodynamic model
Directory of Open Access Journals (Sweden)
Al Amin Muhammad B.
2017-01-01
Full Text Available This paper presents the simulation of floodplain at Musi River using integrated 1D and 2D hydrodynamic model. The 1D flow simulation was applied for the river channel with flow hydrograph as upstream boundary condition. The result of 1D flow simulation was integrated into 2D flow simulation in order to know the area and characteristics of flood inundation. The input data of digital terrain model which was used in this research had grid resolution of 10m×10m, but for 2D simulation the resolution was with grid resolution 50 m × 50 m so as to limit simulation time since the model size was big enough. The result of the simulation showed that the inundated area surrounding Musi River is about 107.44 km2 with maximum flood depth is 3.24 m, water surface velocity ranges from 0.00 to 0.83 m/s. Most of floodplain areas varied from middle to high flood hazard level, and only few areas had very high level of flood hazard especially on river side. The structural flood control measurement to be recommended to Palembang is to construct flood dike and flood gate. The non structural measurement one is to improve watershed management and socialization of flood awareness.
Jones, Joseph L.; Fulford, Janice M.; Voss, Frank D.
2002-01-01
A system of numerical hydraulic modeling, geographic information system processing, and Internet map serving, supported by new data sources and application automation, was developed that generates inundation maps for forecast floods in near real time and makes them available through the Internet. Forecasts for flooding are generated by the National Weather Service (NWS) River Forecast Center (RFC); these forecasts are retrieved automatically by the system and prepared for input to a hydraulic model. The model, TrimR2D, is a new, robust, two-dimensional model capable of simulating wide varieties of discharge hydrographs and relatively long stream reaches. TrimR2D was calibrated for a 28-kilometer reach of the Snoqualmie River in Washington State, and is used to estimate flood extent, depth, arrival time, and peak time for the RFC forecast. The results of the model are processed automatically by a Geographic Information System (GIS) into maps of flood extent, depth, and arrival and peak times. These maps subsequently are processed into formats acceptable by an Internet map server (IMS). The IMS application is a user-friendly interface to access the maps over the Internet; it allows users to select what information they wish to see presented and allows the authors to define scale-dependent availability of map layers and their symbology (appearance of map features). For example, the IMS presents a background of a digital USGS 1:100,000-scale quadrangle at smaller scales, and automatically switches to an ortho-rectified aerial photograph (a digital photograph that has camera angle and tilt distortions removed) at larger scales so viewers can see ground features that help them identify their area of interest more effectively. For the user, the option exists to select either background at any scale. Similar options are provided for both the map creator and the viewer for the various flood maps. This combination of a robust model, emerging IMS software, and application
Directory of Open Access Journals (Sweden)
Alexander J. Werth
2012-01-01
Full Text Available Predator/prey interactions between copepods and balaenid (bowhead and right whales were studied with controlled lab experiments using moving baleen in still water and motionless baleen in flowing water to simulate zooplankton passage toward, into, and through the balaenid oral cavity. Copepods showed a lesser escape response to baleen and to a model head simulating balaenid oral hydrodynamics than to other objects. Copepod escape response increased as water flow and body size increased and was greatest at distances ≥10 cm from baleen and at copepod density = 10,000 m−3. Data from light/dark experiments suggest that escape is based on mechanoreception, not vision. The model head captured 88% of copepods. Results support previous research showing hydrodynamic effects within a whale’s oral cavity create slight suction pressures to draw in prey or at least preclude formation of an anterior compressive bow wave that could scatter or alert prey to the presence of the approaching whale.
Foucart, Francois
2018-04-01
General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.
Generalized hydrodynamic transport in lattice-gas automata
Luo, Li-Shi; Chen, Hudong; Chen, Shiyi; Doolen, Gary D.; Lee, Yee-Chun
1991-01-01
The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number k is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, k. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.
Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission
Cheng, Chung-Chieh; Pallavicini, Roberto
1991-01-01
Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.
Xu, Yan; Cai, Yanpeng; Sun, Tao; Yang, Zhifeng; Hao, Yan
2018-03-01
A multiphase finite-element hydrodynamic model and a phytoplankton simulation approach are coupled into a general modeling framework. It can help quantify impacts of land reclamation. Compared with previous studies, it has the following improvements: a) reflection of physical currents and suitable growth areas for phytoplankton, (b) advancement of a simulation method to describe the suitability of phytoplankton in the sea water. As the results, water velocity is 16.7% higher than that of original state without human disturbances. The related filling engineering has shortened sediment settling paths, weakened the vortex flow and reduced the capacity of material exchange. Additionally, coastal reclamation lead to decrease of the growth suitability index (GSI), thus it cut down the stability of phytoplankton species approximately 4-12%. The proposed GSI can be applied to the management of coastal reclamation for minimizing ecological impacts. It will be helpful for facilitating identifying suitable phytoplankton growth areas.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
International Nuclear Information System (INIS)
Mo Zeyao
2004-11-01
Multiphysics parallel numerical simulations are usually essential to simplify researches on complex physical phenomena in which several physics are tightly coupled. It is very important on how to concatenate those coupled physics for fully scalable parallel simulation. Meanwhile, three objectives should be balanced, the first is efficient data transfer among simulations, the second and the third are efficient parallel executions and simultaneously developments of those simulation codes. Two concatenating algorithms for multiphysics parallel numerical simulations coupling radiation hydrodynamics with neutron transport on unstructured grid are presented. The first algorithm, Fully Loosely Concatenation (FLC), focuses on the independence of code development and the independence running with optimal performance of code. The second algorithm. Two Level Tightly Concatenation (TLTC), focuses on the optimal tradeoffs among above three objectives. Theoretical analyses for communicational complexity and parallel numerical experiments on hundreds of processors on two parallel machines have showed that these two algorithms are efficient and can be generalized to other multiphysics parallel numerical simulations. In especial, algorithm TLTC is linearly scalable and has achieved the optimal parallel performance. (authors)
Simulation of impact ballistic of Cu-10wt%Sn frangible bullet using smoothed particle hydrodynamics
Hidayat, Mas Irfan P.; Widyastuti, Simaremare, Peniel
2018-04-01
Frangible bullet is designed to disintegrate upon impact against a hard target. Understanding the impact response and performance of frangible bullet is therefore of highly interest. In this paper, simulation of impact ballistic of Cu-IOwt%Sn frangible bullet using smoothed particle hydrodynamics (SPH) method is presented. The frangible bullet is impacted against a hard, cylindrical stainless steel target. Effect of variability of the frangible bullet material properties due to the variation of sintering temperature in its manufacturing process to the bullet frangibility factor (FF) is investigated numerically. In addition, the bullet kinetic energy during impact as well as its ricochet and fragmentation are also examined and simulated. Failure criterion based upon maximum strain is employed in the simulation. It is shown that the SPH simulation can produce good estimation for kinetic energy of bullet after impact, thus giving the FF prediction with respect to the variation of frangible bullet material properties. In comparison to explicit finite element (FE) simulation, in which only material/element deletion is shown, convenience in showing frangible bullet fragmentation is shown using the SPH simulation. As a result, the effect of sintering temperature to the way of the frangible bullet fragmented can be also observed clearly.
Decaying Two-Dimensional Turbulence in a Circular Container
Schneider, Kai; Farge, Marie
2005-01-01
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...
Stochastic and collisional diffusion in two-dimensional periodic flows
International Nuclear Information System (INIS)
Doxas, I.; Horton, W.; Berk, H.L.
1990-05-01
The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs
Analysis of two dimensional signals via curvelet transform
Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.
2007-04-01
This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.
Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds
Ressler, S. M.; Quataert, E.; Stone, J. M.
2018-05-01
We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.
Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M
2005-07-01
A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.
Energy Technology Data Exchange (ETDEWEB)
Wiles, L.E.
1979-10-01
The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.
Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations
Schneider, Evan Elizabeth
This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps
Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations
Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.
2017-12-01
A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.
Lotic Water Hydrodynamic Model
Energy Technology Data Exchange (ETDEWEB)
Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-23
Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.
Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.; Elliott, Sarah M.; Magdalene, Suzanne
2018-01-05
Lake St. Croix is a naturally impounded, riverine lake that makes up the last 40 kilometers of the St. Croix River. Substantial land-use changes during the past 150 years, including increased agriculture and urban development, have reduced Lake St. Croix water-quality and increased nutrient loads delivered to Lake St. Croix. A recent (2012–13) total maximum daily load phosphorus-reduction plan set the goal to reduce total phosphorus loads to Lake St. Croix by 20 percent by 2020 and reduce Lake St. Croix algal bloom frequencies. The U.S. Geological Survey, in cooperation with the National Park Service, developed a two-dimensional, carbon-based, laterally averaged, hydrodynamic and water-quality model, CE–QUAL–W2, that addresses the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of water temperature, oxygen, and chlorophyll a. Distribution is evaluated in the context of habitat for lake sturgeon, including a combination of temperature and dissolved oxygen conditions termed oxy-thermal habitat.The Lake St. Croix CE–QUAL–W2 model successfully reproduced temperature and dissolved oxygen in the lake longitudinally (from upstream to downstream), vertically, and temporally over the seasons. The simulated water temperature profiles closely matched the measured water temperature profiles throughout the year, including the prediction of thermocline transition depths (often within 1 meter), the absolute temperature of the thermocline transitions (often within 1.0 degree Celsius), and profiles without a strong thermocline transition. Simulated dissolved oxygen profiles matched the trajectories of the measured dissolved oxygen concentrations at multiple depths over time, and the simulated concentrations matched the depth and slope of the measured concentrations.Additionally, trends in the measured water-quality data were captured by the model simulation, gaining some potential insights into the
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Numerical simulation of viscous flow and hydrodynamic noise in surface ship
Directory of Open Access Journals (Sweden)
YU Han
2017-12-01
Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Tuning spin transport across two-dimensional organometallic junctions
Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping
2018-01-01
We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.
Transport behavior of water molecules through two-dimensional nanopores
International Nuclear Information System (INIS)
Zhu, Chongqin; Li, Hui; Meng, Sheng
2014-01-01
Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules
Guan, W.; Cheng, X.; Huang, J.; Huber, G.; Li, W.; McCammon, J. A.; Zhang, B.
2018-06-01
RPYFMM is a software package for the efficient evaluation of the potential field governed by the Rotne-Prager-Yamakawa (RPY) tensor interactions in biomolecular hydrodynamics simulations. In our algorithm, the RPY tensor is decomposed as a linear combination of four Laplace interactions, each of which is evaluated using the adaptive fast multipole method (FMM) (Greengard and Rokhlin, 1997) where the exponential expansions are applied to diagonalize the multipole-to-local translation operators. RPYFMM offers a unified execution on both shared and distributed memory computers by leveraging the DASHMM library (DeBuhr et al., 2016, 2018). Preliminary numerical results show that the interactions for a molecular system of 15 million particles (beads) can be computed within one second on a Cray XC30 cluster using 12,288 cores, while achieving approximately 54% strong-scaling efficiency.
Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD
Gao, Song
2013-05-01
The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.
Three-dimensional hydrodynamical simulations of stellar collisions. II. White dwarfs
International Nuclear Information System (INIS)
Benz, W.; Thielemann, F.K.; Hills, J.G.
1989-01-01
Three-dimensional numerical simulations are presented for collisions between white dwarfs, using a smooth-particle hydrodynamics code with 5000 particles. The code allows for radiation and degenerate pressure and uses a reduced nuclear network which models the large release of nuclear energy. Two different collision models are considered over a range of impact parameters: between two 0.06 solar-mass C-O white dwarfs and between 0.9 solar-mass and 0.7 solar-mass C-O white dwarfs. In nearly head-on collisions, a very substantial fraction of the mass is lost as a result of a large release of nuclear energy. In grazing collisions, the fraction of mass lost is close to that produced in collisions between main-sequence stars. The quantity of processed elements ejected into the ISM by these collisions does not significantly affect the chemical evolution of the Galaxy. 24 refs
Saeed, O.; Duru, L.; Yulin, D.
2018-05-01
A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.
Truong, N.; Rasia, E.; Mazzotta, P.; Planelles, S.; Biffi, V.; Fabjan, D.; Beck, A. M.; Borgani, S.; Dolag, K.; Gaspari, M.; Granato, G. L.; Murante, G.; Ragone-Figueroa, C.; Steinborn, L. K.
2018-03-01
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with M500 > 1014 M⊙E(z)-1, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the relations even at z ˜ 2. The results of the analysis show a general agreement with observations. The values of the slope of the mass-gas mass and mass-temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass selection, in the former case, and to the effect of early merger in the latter. We investigate the impact of the slope variation on the study of the evolution of the normalization. We conclude that cosmological studies through scaling relations should be limited to the redshift range z = 0-1, where we find that the slope, the scatter, and the covariance matrix of the relations are stable. The scaling between mass and YX is confirmed to be the most robust relation, being almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive to the inclusion of AGNs which influences low-mass systems. The detailed study of these objects will be crucial to evaluate the AGN effect on the ICM.
Le Texier, H.; Solomon, S.; Thomas, R. J.; Garcia, R. R.
1989-01-01
Seasonal variations of the OH-asterisk (7-5) mesospheric hydroxyl emission at 1.89 microns observed by the SME near-IR spectrometer are compared with the theoretical predictions of a two-dimensional dynamical/chemical model. The good agreement found at low latitudes for both dayglow and nightglow provides support for the model assumption that breaking gravity waves induce seasonal and latitudinal variations in diffusion. The seasonal behavior of atomic hydrogen in the upper mesosphere (related to vertical transport) and/or uncertainties in the OH Meinel band parameters are proposed as possible explanations for the discrepancy noted between model and observational data for the middle latitudes.
STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS
International Nuclear Information System (INIS)
Christensen, Charlotte R.; Quinn, Thomas; Bellovary, Jillian; Stinson, Gregory; Wadsley, James
2010-01-01
We examine the effect of mass and force resolution on a specific star formation (SF) recipe using a set of N-body/smooth particle hydrodynamic simulations of isolated galaxies. Our simulations span halo masses from 10 9 to 10 13 M sun , more than 4 orders of magnitude in mass resolution, and 2 orders of magnitude in the gravitational softening length, ε, representing the force resolution. We examine the total global SF rate, the SF history, and the quantity of stellar feedback and compare the disk structure of the galaxies. Based on our analysis, we recommend using at least 10 4 particles each for the dark matter (DM) and gas component and a force resolution of ε ∼ 10 -3 R vir when studying global SF and feedback. When the spatial distribution of stars is important, the number of gas and DM particles must be increased to at least 10 5 of each. Low-mass resolution simulations with fixed softening lengths show particularly weak stellar disks due to two-body heating. While decreasing spatial resolution in low-mass resolution simulations limits two-body effects, density and potential gradients cannot be sustained. Regardless of the softening, low-mass resolution simulations contain fewer high density regions where SF may occur. Galaxies of approximately 10 10 M sun display unique sensitivity to both mass and force resolution. This mass of galaxy has a shallow potential and is on the verge of forming a disk. The combination of these factors gives this galaxy the potential for strong gas outflows driven by supernova feedback and makes it particularly sensitive to any changes to the simulation parameters.
Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood
Ikeshima, D.; Yamazaki, D.; Kanae, S.
2016-12-01
CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also
Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations
Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.
1996-07-01
The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.
Smooth Particle Hydrodynamics GPU-Acceleration Tool for Asteroid Fragmentation Simulation
Buruchenko, Sergey K.; Schäfer, Christoph M.; Maindl, Thomas I.
2017-10-01
The impact threat of near-Earth objects (NEOs) is a concern to the global community, as evidenced by the Chelyabinsk event (caused by a 17-m meteorite) in Russia on February 15, 2013 and a near miss by asteroid 2012 DA14 ( 30 m diameter), on the same day. The expected energy, from either a low-altitude air burst or direct impact, would have severe consequences, especially in populated regions. To mitigate this threat one of the methods is employment of large kinetic-energy impactors (KEIs). The simulation of asteroid target fragmentation is a challenging task which demands efficient and accurate numerical methods with large computational power. Modern graphics processing units (GPUs) lead to a major increase 10 times and more in the performance of the computation of astrophysical and high velocity impacts. The paper presents a new implementation of the numerical method smooth particle hydrodynamics (SPH) using NVIDIA-GPU and the first astrophysical and high velocity application of the new code. The code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations.
Nevin, Becky; Comerford, Julia M.; Blecha, Laura
2018-06-01
Merging galaxies play a key role in galaxy evolution, and progress in our understanding of galaxy evolution is slowed by the difficulty of making accurate galaxy merger identifications. Mergers are typically identified using imaging alone, which has its limitations and biases. With the growing popularity of integral field spectroscopy (IFS), it is now possible to use kinematic signatures to improve galaxy merger identifications. I use GADGET-3 hydrodynamical simulations of merging galaxies with the radiative transfer code SUNRISE, the later of which enables me to apply the same analysis to simulations and observations. From the simulated galaxies, I have developed the first merging galaxy classification scheme that is based on kinematics and imaging. Utilizing a Linear Discriminant Analysis tool, I have determined which kinematic and imaging predictors are most useful for identifying mergers of various merger parameters (such as orientation, mass ratio, gas fraction, and merger stage). I will discuss the strengths and limitations of the classification technique and then my initial results for applying the classification to the >10,000 observed galaxies in the MaNGA (Mapping Nearby Galaxies at Apache Point) IFS survey. Through accurate identification of merging galaxies in the MaNGA survey, I will advance our understanding of supermassive black hole growth in galaxy mergers and other open questions related to galaxy evolution.
Hydrodynamics of AHWR gravity driven water pool under simulated LOCA conditions
International Nuclear Information System (INIS)
Thangamani, I.; Verma, Vishnu; Ali, Seik Mansoor
2015-01-01
The Advanced Heavy Water Reactor (AHWR) employs a double containment concept with a large inventory of water within the Gravity Driven Water Pool (GDWP) located at a high elevation within the primary containment building. GDWP performs several important safety functions in a passive manner, and hence it is essential to understand the hydrodynamics that this pool will be subjected to in case of an accident such as LOCA. In this paper, a detailed thermal hydraulic analysis for AHWR containment transients is presented for postulated LOCA scenarios involving RIH break sizes ranging from 2% to 50%. The analysis is carried out using in-house containment thermal hydraulics code 'CONTRAN'. The blowdown mass and energy discharge data for each break size, along with the geometrical details of the AHWR containment forms the main input for the analysis. Apart from obtaining the pressure and temperature transients within the containment building, the focus of this work is on simulating the hydrodynamic phenomena of vent clearing and pool swell occurring in the GDWP. The variation of several key parameters such as primary containment V1 and V2 volume pressure, temperature and V1-V2 differential pressure with time, BOP rupture time, vent clearing velocity, effect of pool swell on the V2 air-space pressure, GDWP water level etc. are discussed in detail and important findings are highlighted. Further, the effect of neglecting the pool swell phenomenon on the containment transients is also clearly brought out by a comparative study. The numerical studies presented in this paper give insight into containment transients that would be useful to both the system designer as well as the regulator. (author)
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations
Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias
2014-08-01
Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.
Non-standard model for electron heat transport for multidimensional hydrodynamic codes
Energy Technology Data Exchange (ETDEWEB)
Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)
2000-07-01
In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)
Non-standard model for electron heat transport for multidimensional hydrodynamic codes
International Nuclear Information System (INIS)
Nicolai, Ph.; Busquet, M.; Schurtz, G.
2000-01-01
In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems
International Nuclear Information System (INIS)
Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Meyerhofer, D. D.
2005-01-01
Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to 1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. (Author)
Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe
2015-06-01
We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.
Hoda, Nazish; Kumar, Satish
2007-12-01
The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N1/3Wi2/3 at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N-1/2κ-3(lB∣σq∣)3/2, where κ is the inverse screening length, lB is the Bjerrum length, σ is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.
Two-dimensional 220 MHz Fourier transform EPR imaging
International Nuclear Information System (INIS)
Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello
1998-01-01
In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)
Decay of homogeneous two-dimensional quantum turbulence
Baggaley, Andrew W.; Barenghi, Carlo F.
2018-03-01
We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.
Wave dispersion relations in two-dimensional Yukawa systems
International Nuclear Information System (INIS)
Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang
2003-01-01
Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ
Linear and nonlinear viscous flow in two-dimensional fluids
International Nuclear Information System (INIS)
Gravina, D.; Ciccotti, G.; Holian, B.L.
1995-01-01
We report on molecular dynamics simulations of shear viscosity η of a dense two-dimensional fluid as a function of the shear rate γ. We find an analytic dependence of η on γ, and do not find any evidence whatsoever of divergence in the Green-Kubo (GK) value that would be caused by the well-known long-time tail for the shear-stress autocorrelation function, as predicted by the mode-coupling theory. In accordance with the linear response theory, the GK value of η agrees remarkably well with nonequilibrium values at small shear rates. (c) 1995 The American Physical Society
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae
International Nuclear Information System (INIS)
Kifonidis, K.
2001-01-01
Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed
Directory of Open Access Journals (Sweden)
P. Martini
2004-01-01
Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.
Martini, P.; Carniello, L.; Avanzi, C.
2004-03-01
The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy) are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.
Thermal hydrodynamic modeling and simulation of hot-gas duct for next-generation nuclear reactor
Energy Technology Data Exchange (ETDEWEB)
Lee, Injun [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Hong, Sungdeok; Kim, Chansoo [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bai, Cheolho; Hong, Sungyull [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)
2016-12-15
Highlights: • Thermal hydrodynamic nonlinear model is presented to examine a hot gas duct (HGD) used in a fourth-generation nuclear power reactor. • Experiments and simulation were compared to validate the nonlinear porous model. • Natural convection and radiation are considered to study the effect on the surface temperature of the HGD. • Local Nusselt number is obtained for the optimum design of a possible next-generation HGD. - Abstract: A very high-temperature gas-cooled reactor (VHTR) is a fourth-generation nuclear power reactor that requires an intermediate loop that consists of a hot-gas duct (HGD), an intermediate heat exchanger (IHX), and a process heat exchanger for massive hydrogen production. In this study, a mathematical model and simulation were developed for the HGD in a small-scale nitrogen gas loop that was designed and manufactured by the Korea Atomic Energy Research Institute. These were used to investigate the effect of various important factors on the surface of the HGD. In the modeling, a porous model was considered for a Kaowool insulator inside the HGD. The natural convection and radiation are included in the model. For validation, the modeled external surface temperatures are compared with experimental results obtained while changing the inlet temperatures of the nitrogen working fluid. The simulation results show very good agreement with the experiments. The external surface temperatures of the HGD are obtained with respect to the porosity of insulator, emissivity of radiation, and pressure of the working fluid. The local Nusselt number is also obtained for the optimum design of a possible next-generation HGD.
Cosmological Simulations with Scale-Free Initial Conditions. I. Adiabatic Hydrodynamics
International Nuclear Information System (INIS)
Owen, J.M.; Weinberg, D.H.; Evrard, A.E.; Hernquist, L.; Katz, N.
1998-01-01
We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein endash de Sitter universe, including a baryonic component with Ω bary = 0.05. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed at two resolutions (32 3 and 64 3 dark matter and baryonic particles) and with two different SPH codes (TreeSPH and P3MSPH). Each simulation is based on identical initial conditions, which consist of Gaussian-distributed initial density fluctuations that have a power spectrum P(k) ∝ k -1 . The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling; radiative cooling and photoionization heating are not included. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass- and emission-weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of numerical resolution. As a result, mean gas densities and Bremsstrahlung luminosities obey the expected scalings only when calculated within a limited dynamic range in density contrast. The temperatures and luminosities of the groups show tight correlations with the baryon masses, which we find can be well represented by power laws. The Press-Schechter (PS) approximation predicts the distribution of group dark matter and baryon masses fairly well, though it tends to overestimate the baryon masses. Combining the PS mass distribution with the measured relations for T(M) and L(M) predicts the temperature and luminosity distributions fairly accurately, though there are some discrepancies at high temperatures/luminosities. In general the three simulations agree well for the properties of resolved groups, where a group
Directory of Open Access Journals (Sweden)
Jordi Prats
2017-11-01
Full Text Available One of the most important current issues in the management of lakes and reservoirs is the prediction of global climate change effects to determine appropriate mitigation and adaptation actions. In this paper we analyse whether management actions can limit the effects of climate change on water temperatures in a reservoir. For this, we used the model EOLE to simulate the hydrodynamic and thermal behaviour of the reservoir of Bimont (Provence region, France in the medium term (2036-2065 and in the long term (2066-2095 using regionalised projections by the model CNRM-CERFACS-CNRM-CM5 under the emission scenarios RCP 4.5 and RCP 8.5. Water temperature projections were compared to simulations for the reference period 1993-2013, the longest period for which we had year-long data for both hydrology and meteorology. We calibrated the model using profile measurements for the period 2010-2011 and we carried an extensive validation and assessment of model performance. In fact, we validated the model using profile measurements for 2012-2014, obtaining a root mean square error of 1.08°C and mean bias of -0.11°C, and we assured the consistency of model simulations in the long term by comparing simulated surface temperature to satellite measurements for 1999-2013. We assessed the effect using synthetic input data instead of measured input data by comparing simulations made using both kinds of data for the reference period. Using synthetic data resulted in slightly lower (-0.3°C average and maximum epilimnion temperatures, a somewhat deeper thermocline, and slightly higher evaporation (+7%. To investigate the effect of different management strategies, we considered three management scenarios: i bottom outlet and present water level; ii bottom outlet and elevated water level; and iii surface outlet and elevated water level. According to the simulations, the reservoir of Bimont will have a low rate of warming of the epilimnion of 0.009-0.024 °C·yr-1, but a
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Geometrical aspects of solvable two dimensional models
International Nuclear Information System (INIS)
Tanaka, K.
1989-01-01
It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
Two-dimensional motions of rockets
International Nuclear Information System (INIS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Guo, Yangyu; Wang, Moran
2017-10-01
The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.
International Nuclear Information System (INIS)
Nunes, F.; Varela, P.; Silva, A.; Manso, M.; Santos, J.; Nunes, I.; Serra, F.; Kurzan, B.; Suttrop, W.
1997-01-01
Broadband reflectometry is a current technique that uses the round-trip group delays of reflected frequency-swept waves to measure density profiles of fusion plasmas. The main factor that may limit the accuracy of the reconstructed profiles is the interference of the probing waves with the plasma density fluctuations: plasma turbulence leads to random phase variations and magneto hydrodynamic activity produces mainly strong amplitude and phase modulations. Both effects cause the decrease, and eventually loss, of signal at some frequencies. Several data processing techniques can be applied to filter and/or interpolate noisy group delay data obtained from turbulent plasmas with a single frequency sweep. Here, we propose a more powerful algorithm performing two-dimensional regularization (in space and time) of data provided by multiple consecutive frequency sweeps, which leads to density profiles with improved accuracy. The new method is described and its application to simulated data corrupted by noise and missing data is considered. It is shown that the algorithm improves the identification of slowly varying plasma density perturbations by attenuating the effect of fast fluctuations and noise contained in experimental data. First results obtained with this method in ASDEX Upgrade tokamak are presented. copyright 1997 American Institute of Physics
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Energy Technology Data Exchange (ETDEWEB)
Noda, S; Makino, H [Toyohashi University of Technology, Aichi (Japan); Nakajima, T [Kobe University, Kobe (Japan). Faculty of Engineering
1996-03-25
The flame instability induced by large vortices has been studied numerically. The numerical simulation is concerned with an unstable, two-dimensional, two-stream, spatially developing, confined, reacting shear layer. The behavior just after ignition is related to the flame instability which is affected strongly by large vortices in the mixing layer. Although flames are basically stable due to the balance between the burning velocity and the stream velocity, it is revealed that the leading edge is exposed under the strain in the mixing layer, and the flame becomes instable. Moreover, a method is also proposed to improve the flame stability by increasing the oxygen concentration in the oxidizer. 13 refs., 6 figs., 2 tabs.
Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind
Energy Technology Data Exchange (ETDEWEB)
Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)
2017-09-10
A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.
Magneto-hydrodynamic simulations of Heavy Ion Collisions with ECHO-QGP
Inghirami, G.; Del Zanna, L.; Beraudo, A.; Haddadi Moghaddam, M.; Becattini, F.; Bleicher, M.
2018-05-01
It is believed that very strong magnetic fields may induce many interesting physical effects in the Quark Gluon Plasma, like the Chiral Magnetic Effect, the Chiral Separation Effect, a modification of the critical temperature or changes in the collective flow of the emitted particles. However, in the hydrodynamic numerical simulations of Heavy Ion Collisions the magnetic fields have been either neglected or considered as external fields which evolve independently from the dynamics of the fluid. To address this issue, we recently modified the ECHO-QGP code, including for the first time the effects of electromagnetic fields in a consistent way, although in the limit of an infinite electrical conductivity of the plasma (ideal magnetohydrodynamics). In this proceedings paper we illustrate the underlying 3+1 formalisms of the current version of the code and we present the results of its basic preliminary application in a simple case. We conclude with a brief discussion of the possible further developments and future uses of the code, from RHIC to FAIR collision energies.
Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay
Jia, Han; Shen, Yongming; Su, Meirong; Yu, Chunxue
2018-02-01
This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Wales, Scott; Yepes, Gustavo
2014-04-01
We present the results of a series of adiabatic hydrodynamical simulations of several quintessence models (both with a free and an interacting scalar field) in comparison to a standard Λ cold dark matter cosmology. For each we use 2 × 10243 particles in a 250 h-1 Mpc periodic box assuming 7-year Wilkinson Microwave Anisotropy Probe cosmology. In this work we focus on the properties of haloes in the cosmic web at z = 0. The web is classified into voids, sheets, filaments and knots depending on the eigenvalues of the velocity shear tensor, which are an excellent proxy for the underlying overdensity distribution. We find that the properties of objects classified according to their surrounding environment show a substantial dependence on the underlying cosmology; for example, while Vmax shows average deviations of ≈5 per cent across the different models when considering the full halo sample, comparing objects classified according to their environment, the size of the deviation can be as large as 20 per cent. We also find that halo spin parameters are positively correlated to the coupling, whereas halo concentrations show the opposite behaviour. Furthermore, when studying the concentration-mass relation in different environments, we find that in all cosmologies underdense regions have a larger normalization and a shallower slope. While this behaviour is found to characterize all the models, differences in the best-fitting relations are enhanced in (coupled) dark energy models, thus providing a clearer prediction for this class of models.
Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters
Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo
2014-04-01
We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.
Particle simulation of 3D galactic hydrodynamics on the ICL DAP
International Nuclear Information System (INIS)
Johns, T.C.; Nelson, A.H.
1985-01-01
A non-self-gravitating galactic hydrodynamics code based on a quasi-particle technique and making use of a mesh for force evaluation and sorting purposes is described. The short-range nature of the interparticle pressure forces, coupled with the use of a mesh allows a particularly fast algorithm. The 3D representation of the galaxy is mapped onto the ''3D'' main store of ICL DAP in a natural way, the 2 spatial dimensions in the plane of the galaxy becoming the 2 dimensions of the processor plane on the DAP and the third dimension varying within individual processor storage elements. This leads to a fairly straightforward implementation and a high degree of parallelism in the crucial parts of the code. The particle shuffling which is necessary after each timestep is facilitated by the use of a parallel variant of the bitonic sorting algorithm. Some results of simulations using a 63x63x16 mesh and about 50,000 particles to follow the evolution of a model disk galaxy are presented
Yang, Min; Yu, Dawei; Liu, Mengmeng; Zheng, Libing; Zheng, Xiang; Wei, Yuansong; Wang, Fang; Fan, Yaobo
2017-03-01
Membrane fouling is an important issue for membrane bioreactor (MBR) operation. This paper aims at the investigation and the controlling of reversible membrane fouling due to cake layer formation and foulants deposition by optimizing MBR hydrodynamics through the combination of computational fluid dynamics (CFD) and design of experiment (DOE). The model was validated by comparing simulations with measurements of liquid velocity and dissolved oxygen (DO) concentration in a lab-scale submerged MBR. The results demonstrated that the sludge concentration is the most influencing for responses including shear stress, particle deposition propensity (PDP), sludge viscosity and strain rate. A medium sludge concentration of 8820mgL -1 is optimal for the reduction of reversible fouling in this submerged MBR. The bubble diameter is more decisive than air flowrate for membrane shear stress due to its role in sludge viscosity. The optimal bubble diameter was at around 4.8mm for both of shear stress and PDP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tracing the Origin of Black Hole Accretion Through Numerical Hydrodynamic Simulations
Spicer, Sandy; Somerville, Rachel; Choi, Ena; Brennan, Ryan
2018-01-01
It is now widely accepted that supermassive black holes co-evolve with galaxies, and may play an important role in galaxy evolution. However, the origin of the gas that fuels black hole accretion, and the resulting observable radiation, is not well understood or quantified. We use high-resolution "zoom-in" cosmological numerical hydrodynamic simulations including modeling of black hole accretion and feedback to trace the inflow and outflow of gas within galaxies from the early formation period up to present day. We track gas particles that black holes interact with over time to trace the origin of the gas that feeds supermassive black holes. These gas particles can come from satellite galaxies, cosmological accretion, or be a result of stellar evolution. We aim to track the origin of the gas particles that accrete onto the central black hole as a function of halo mass and cosmic time. Answering these questions will help us understand the connection between galaxy and black hole evolution.
Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations
Vincenzo, Fiorenzo; Kobayashi, Chiaki
2018-04-01
We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual ISM regions within single spatially-resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify 33 galaxies in the simulation, lying within dark matter halos with virial mass in the range 1011 ≤ MDM ≤ 1013 M⊙ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients which have settled in the galaxy interstellar medium, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where - at any redshift - less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O-O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy interstellar medium gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O-O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially-resolved galaxy.
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Kolmogorov flow in two dimensional strongly coupled dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)
2014-07-15
Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.
Fluctuations and symmetries in two-dimensional active gels.
Sarkar, N; Basu, A
2011-04-01
Motivated by the unique physical properties of biological active matter, e.g., cytoskeletal dynamics in eukaryotic cells, we set up effective two-dimensional (2d) coarse-grained hydrodynamic equations for the dynamics of thin active gels with polar or nematic symmetries. We use the well-known three-dimensional (3d) descriptions (K. Kruse et al., Eur. Phys. J. E 16, 5 (2005); A. Basu et al., Eur. Phys. J. E 27, 149 (2008)) for thin active-gel samples confined between parallel plates with appropriate boundary conditions to derive the effective 2d constitutive relations between appropriate thermodynamic fluxes and generalised forces for small deviations from equilibrium. We consider three distinct cases, characterised by spatial symmetries and boundary conditions, and show how such considerations dictate the structure of the constitutive relations. We use these to study the linear instabilities, calculate the correlation functions and the diffusion constant of a small tagged particle, and elucidate their dependences on the activity or nonequilibrium drive.
Qian, Tiezheng
2009-10-29
This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed. © 2009 IOP Publishing Ltd.
Spherical-shell boundaries for two-dimensional compressible convection in a star
Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.
2016-10-01
Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so
Two-dimensional core calculation research for fuel management optimization based on CPACT code
International Nuclear Information System (INIS)
Chen Xiaosong; Peng Lianghui; Gang Zhi
2013-01-01
Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)
Mode selection in two-dimensional Bragg resonators based on planar dielectric waveguides
International Nuclear Information System (INIS)
Baryshev, V R; Ginzburg, N S; Zaslavskii, V Yu; Malkin, A M; Sergeev, A S; Thumm, M
2009-01-01
Two-dimensional Bragg resonators based on planar dielectric waveguides are analysed. It is shown that the doubly periodic corrugation deposited on the dielectric surface in the form of two gratings with translational vectors directed perpendicular to each other ensures effective selection of modes along two coordinates at large Fresnel parameters. This result is obtained both by the method of coupled waves (geometrical optics approximation) and by the direct numerical simulations. Two-dimensional Bragg resonators make it possible to fabricate two-dimensional distributed feedback lasers and to provide generation of spatially coherent radiation in large-volume active media. (waveguides)
Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation
Manisha Bal; Bhim Charan Meikap
2017-01-01
The filtered containment venting system (FCVS) is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD) has been used to predict the hydrodynamic behaviour of a newly designed venturi sc...
International Nuclear Information System (INIS)
Gidas, N.K.; Koutitonsky, V.G.
1996-01-01
An experimental and numerical study was performed to measure and simulate the hydrodynamic dispersion of a pollutant effluent discharged by an outfall diffuser into an estuarine coastal zone near Rimouski, Canada. Field measurements of currents, tides, salinity, and winds were obtained in the vicinity of the injection site, and two tracer dispersion experiments were carried on in these coastal waters. The measurements were taken before and after the construction of the marine outfall diffuser. The similitude between the plume of a tracer (physical model) released into the coastal waters before construction and that of the real effluent (prototype) discharged at the same site was studied. A new coefficient of similitude was established, which allows to transpose the concentrations of the physical model tracer to the waste water concentrations of the prototype. The numerical simulation (2D) is performed with a hydrodynamic model and an advection-dispersion model of the MIKE21 system from the Danish Hydraulic Institute, using the so-called telescopic approach. The objective of these simulations was to predict, among other things, the pollutant effluent concentrations for critical hydrodynamic conditions relative to the aquatic ecosystem to be protected. The methodology elaborated was used for the management of the coastal environments subjected to pollution. (author). 28 refs., 2 tabs., 12 figs
Electronic Transport in Two-Dimensional Materials
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional transport of tokamak plasmas
International Nuclear Information System (INIS)
Hirshman, S.P.; Jardin, S.C.
1979-01-01
A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals
Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael
2009-11-01
The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q
Czech Academy of Sciences Publication Activity Database
Huang, Y.; Chen, K.; Deng, Y.; Jacobsen, J. L.; Kotecký, R.; Salas, J.; Sokal, Alan D.; Swart, Jan M.
2013-01-01
Roč. 87, Č. 1 (2013), 12136-1-12136-5 ISSN 1539-3755 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Monte Carlo simulation * two-dimensional lattices * q-state Potts Subject RIV: BE - Theoretical Physics Impact factor: 2.326, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/swart-two-dimensional potts antiferromagnets with a phase transition at arbitrarily large q.pdf
Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis
International Nuclear Information System (INIS)
Downar, T.J.
1987-01-01
A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback
First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations.
Iršič, Vid; Viel, Matteo; Haehnelt, Martin G; Bolton, James S; Becker, George D
2017-07-21
We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter (FDM) from Lyman-α forest data. Extremely light bosons with a de Broglie wavelength of ∼1 kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time, we use hydrodynamical simulations to model the Lyman-α flux power spectrum in these models and compare it to the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the intergalactic medium (IGM) that allow for jumps in the temperature of up to 5000 K, XQ-100 provides a lower limit of 7.1×10^{-22} eV, HIRES/MIKE returns a stronger limit of 14.3×10^{-22} eV, while the combination of both data sets results in a limit of 20×10^{-22} eV (2σ C.L.). The limits for the analysis of the combined data sets increases to 37.5×10^{-22} eV (2σ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power law in redshift. Light boson masses in the range 1-10×10^{-22} eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the "small scale crisis" of the cold dark matter models.
Radiative Hydrodynamic Simulations of In Situ Star Formation in the Galactic Center
Frazer, Chris; Heitsch, Fabian
2018-01-01
Many stars observed in the Galactic Center (GC) orbit the supermassive black hole (SMBH), Sagittarius A*, in a region where the extreme gravitational field is expected to inhibit star formation. Yet, many of these stars are young which favors an in situ formation scenario. Previous numerical work on this topic has focused on two possible solutions. First, the tidal capture of a > 10^4 Msun infalling molecular cloud by an SMBH may result in the formation of a surrounding gas disk which then rapidly cools and forms stars. This process results in stellar populations that are consistent with the observed stellar disk in the GC. Second, dense gas clumps of approximately 100 Msun on highly eccentric orbits about an SMBH can experience sparks of star formation via orbital compressions occurring during pericenter passage. In my dissertation, I build upon these models using a series of grid-based radiative hydrodynamic simulations, including the effects of both ionizing ultraviolet light from existing stars as well as X-ray radiation emanating from the central black hole. Radiation is treated with an adaptive ray-tracing routine, including appropriate heating and cooling for both neutral and ionized gas. These models show that ultraviolet radiation is sufficiently strong to heat low mass gas clouds, thus suppressing star formation from clump compression. Gas disks that form from cloud capture become sufficiently dense to provide shielding from the radiation of existing central stars, thus allowing star formation to continue. Conversely, X-rays easily penetrate and heat the potentially star forming gas. For sufficiently high radiation fields, this provides a mechanism to disrupt star formation for both scenarios considered above.
Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors
Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita
2017-06-01
We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.
International Nuclear Information System (INIS)
Amanifard, N.; Haghighat Namini, V.
2012-01-01
In this study a Modified Compressible Smoothed Particle Hydrodynamics method is introduced which is applicable in problems involving shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on the velocity field and displacement of particles. The most exclusive feature of the method is exactly removing artificial viscosity of the formulations and representing good compatibility with other reasonable numerical methods without any rigorous numerical fractures or tensile instabilities while Modified Compressible Smoothed Particle Hydrodynamics does not use any extra modifications. Two types of problems involving elastic-plastic deformations and shock waves are presented here to demonstrate the capability of Modified Compressible Smoothed Particle Hydrodynamics in simulation of such problems and its ability to capture shock. The problems that are proposed here are low and high velocity impacts between aluminum projectiles and semi infinite aluminum beams. Elastic-perfectly plastic model is chosen for constitutive model of the aluminum and the results of simulations are compared with other reasonable studies in these cases.
A high resolution hydrodynamic 3-D model simulation of the malta shelf area
Directory of Open Access Journals (Sweden)
A. F. Drago
2003-01-01
Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle. The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by internal dynamics, to be followed in
A high resolution hydrodynamic 3-D model simulation of the malta shelf area
Directory of Open Access Journals (Sweden)
A. F. Drago
Full Text Available The seasonal variability of the water masses and transport in the Malta Channel and proximity of the Maltese Islands have been simulated by a high resolution (1.6 km horizontal grid on average, 15 vertical sigma layers eddy resolving primitive equation shelf model (ROSARIO-I. The numerical simulation was run with climatological forcing and includes thermohaline dynamics with a turbulence scheme for the vertical mixing coefficients on the basis of the Princeton Ocean Model (POM. The model has been coupled by one-way nesting along three lateral boundaries (east, south and west to an intermediate coarser resolution model (5 km implemented over the Sicilian Channel area. The fields at the open boundaries and the atmospheric forcing at the air-sea interface were applied on a repeating "perpetual" year climatological cycle.
The ability of the model to reproduce a realistic circulation of the Sicilian-Maltese shelf area has been demonstrated. The skill of the nesting procedure was tested by model-modelc omparisons showing that the major features of the coarse model flow field can be reproduced by the fine model with additional eddy space scale components. The numerical results included upwelling, mainly in summer and early autumn, along the southern coasts of Sicily and Malta; a strong eastward shelf surface flow along shore to Sicily, forming part of the Atlantic Ionian Stream, with a presence throughout the year and with significant seasonal modulation, and a westward winter intensified flow of LIW centered at a depth of around 280 m under the shelf break to the south of Malta. The seasonal variability in the thermohaline structure of the domain and the associated large-scale flow structures can be related to the current knowledge on the observed hydrography of the area. The level of mesoscale resolution achieved by the model allowed the spatial and temporal evolution of the changing flow patterns, triggered by
Hydrodynamic Simulation of the Columbia River, Hanford Reach, 1940--2004
Energy Technology Data Exchange (ETDEWEB)
Waichler, Scott R.; Perkins, William A.; Richmond, Marshall C.
2005-06-15
Many hydrological and biological problems in the Columbia River corridor through the Hanford Site require estimates of river stage (water surface elevation) or river flow and velocity. Systematic collection of river stage data at locations in the Hanford Reach began in 1991, but many environmental projects need river stage information at unmeasured locations or over longer time periods. The Modular Aquatic Simulation System 1D (MASS1), a one-dimensional, unsteady hydrodynamic and water quality model, was used to simulate the Columbia River from Priest Rapids Dam to McNary Dam from 1940 to 2004, providing estimates of water surface elevation, volumetric flow rate, and flow velocity at 161 locations on the Hanford Reach. The primary input data were bathymetric/topographic cross sections of the Columbia River channel, flow rates at Priest Rapids Dam, and stage at McNary Dam. Other inputs included Yakima River and Snake River inflows. Available flow data at a gaging station just below Priest Rapids Dam was mean daily flow from 1940 to 1986 and hourly thereafter. McNary dam was completed in 1957, and hourly stage data are available beginning in 1975. MASS1 was run at an hourly timestep and calibrated and tested using 1991--2004 river stage data from six Hanford Reach locations (areas 100B, 100N, 100D, 100H, 100F, and 300). Manning's roughness coefficient in the Reach above each river recorder location was adjusted using an automated genetic algorithm and gradient search technique in three separate calibrations, corresponding to different data subsets, with minimization of mean absolute error as the objective. The primary calibration was based on 1999, a representative year, and included all locations. The first alternative calibration also used all locations but was limited in time to a high-flow period during spring and early summer of 1997. The second alternative calibration was based on 1999 and included only 300 Area stage data. Model goodness-of-fit for all
Directory of Open Access Journals (Sweden)
Alejandro Acevedo-Malavé
2012-06-01
Full Text Available Smoothed Particle Hydrodynamics (SPH is a Lagrangian mesh-free formalism and has been useful to model continuous fluid. This formalism is employed to solve the Navier-Stokes equations by replacing the fluid with a set of particles. These particles are interpolation points from which properties of the fluid can be determined. In this study, the SPH method is applied to simulate the hydrodynamics interaction of many drops, showing some settings for the coalescence, fragmentation and flocculation problem of equally sized liquid drops in three-dimensional spaces. For small velocities the drops interact only through their deformed surfaces and the flocculation of the droplets arises. This result is very different if the collision velocity is large enough for the fragmentation of droplets takes place. We observe that for velocities around 15 mm/ms the coalescence of droplets occurs. The velocity vector fields formed inside the drops during the collision process are shown.
Anomalous hydrodynamics in two dimensions
Indian Academy of Sciences (India)
Abstract. A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, ...
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science