WorldWideScience

Sample records for two-dimensional hydrodynamical simulation

  1. Hydrodynamical simulation of the core helium flash with two-dimensional convection

    International Nuclear Information System (INIS)

    Cole, P.W.

    1981-01-01

    The thermonuclear runaway of helium reactions under the condition of electron degeneracy in the hot, dense central regions of a low mass Population II red giant is investigated. A two-dimensional finite difference approach to time dependent convection has been applied to a peak energy production model of this phenomenon called the core helium flash. The dynamical conservation equations are integrated in two spatial dimensions and time which allow the horizontal variations of the dynamical variables to be followed explicitly. The unbalanced bouyancy forces in convectively unstable regions lead to mass flow (i.e., convective energy transport) by calculation of the velocity flow patterns produced by the conservation laws of mass, momentum, and energy without recourse to any phenomenological theory of convection. The initial phase of this hydrodynamical simulation is characterized by a thermal readjustment via downward convective energy transport into the neutrino cooled core in a series of convection modulated thermal pulses. Each of these pulses is driven by the thermal runaway and quenched by the convective energy transport when the actual temperature gradient in the flash region becomes sufficiently superadiabatic. These convection modulated thermal pulses are observed throughout 95% of the calculation, the duration of which is approximately 570,000 cycles or nearly 96,000 seconds of evolution. After this initial thermal restructuring, there ensues in the simulation a dynamic phase in which the thermonuclear runaway becomes violent. The degree of violence, the final composition, and the peak temperature depend sensitively on the nuclear energy generation rates of those reactions involving alpha particle captures

  2. Flooding Simulation of Extreme Event on Barnegat Bay by High-Resolution Two Dimensional Hydrodynamic Model

    Science.gov (United States)

    Wang, Y.; Ramaswamy, V.; Saleh, F.

    2017-12-01

    Barnegat Bay located on the east coast of New Jersey, United States and is separated from the Atlantic Ocean by the narrow Barnegat Peninsula which acts as a barrier island. The bay is fed by several rivers which empty through small estuaries along the inner shore. In terms of vulnerability from flooding, the Barnegat Peninsula is under the influence of both coastal storm surge and riverine flooding. Barnegat Bay was hit by Hurricane Sandy causing flood damages with extensive cross-island flow at many streets perpendicular to the shoreline. The objective of this work is to identify and quantify the sources of flooding using a two dimensional inland hydrodynamic model. The hydrodynamic model was forced by three observed coastal boundary conditions, and one hydrologic boundary condition from United States Geological Survey (USGS). The model reliability was evaluated with both FEMA spatial flooding extend and USGS High water marks. Simulated flooding extent showed good agreement with the reanalysis spatial inundation extents. Results offered important perspectives on the flow of the water into the bay, the velocity and the depth of the inundated areas. Using such information can enable emergency managers and decision makers identify evacuation and deploy flood defenses.

  3. Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2007-01-01

    The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the ......The appearance of sharp vorticity gradients in two-dimensional hydrodynamic turbulence and their influence on the turbulent spectra are considered. We have developed the analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together...... with the divorticity lines. Compressibility of this mapping can be considered as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. For two-dimensional turbulence in the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k−3 at large...

  4. Three-dimensional hydrodynamic simulations of OMEGA implosions

    Science.gov (United States)

    Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.; Campbell, E. M.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Marshall, F. J.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schmitt, A. J.; Obenschain, S.

    2017-05-01

    The effects of large-scale (with Legendre modes ≲ 10) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming), target offset, and variation in target-layer thickness were investigated using the low-noise, three-dimensional Eulerian hydrodynamic code ASTER. Simulations indicate that these asymmetries can significantly degrade the implosion performance. The most important sources of the asymmetries are the target offsets ( ˜10 to 20 μm), beam-power imbalance ( σrms˜10 %), and variations ( ˜5 %) in target-layer thickness. Large-scale asymmetries distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of implosion targets. The ion temperature inferred from the width of simulated neutron spectra is influenced by bulk fuel motion in the distorted hot spot and can result in up to an ˜1 -keV increase in apparent temperature. Similar temperature variations along different lines of sight are observed. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires a reduction in large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing highly efficient mid-adiabat (α = 4) implosion designs, which mitigate cross-beam energy transfer and suppress short-wavelength Rayleigh-Taylor growth.

  5. Two-dimensional hydrodynamics of uniform ion plasma in electrostatic field

    International Nuclear Information System (INIS)

    Mahdieh, M. H.; Gavili, A.

    2005-01-01

    Two-dimensional hydrodynamics of ion extraction from uniform quasi-neutral plasma, in electrostatic field has been simulated numerically. Experimentally, tunable pulsed lasers produce non-uniform plasma through stepwise photo-excitation and photo-ionization or multi-photo-ionization processes. Poisson's equation was solved simultaneously with the equations of mass, and momentum, assuming the Maxwell-Boltzmann distribution for electrons. In the calculation, the initial density profile at the boundaries has been assumed to be very steep for the ion plasma. In these calculations dynamics of electric potential and the ions density were assessed. The ion extraction time was also estimated from the calculation. The knowledge of spatial distribution of the ions across the cathode is very important for the practical purposes. In this simulation, the spatial distribution of the ion current density across the cathode as well as its temporal distribution was calculated

  6. Multi-Band Light Curves from Two-Dimensional Simulations of Gamma-Ray Burst Afterglows

    Science.gov (United States)

    MacFadyen, Andrew

    2010-01-01

    The dynamics of gamma-ray burst outflows is inherently multi-dimensional. 1.) We present high resolution two-dimensional relativistic hydrodynamics simulations of GRBs in the afterglow phase using adaptive mesh refinement (AMR). Using standard synchrotron radiation models, we compute multi-band light curves, from the radio to X-ray, directly from the 2D hydrodynamics simulation data. We will present on-axis light curves for both constant density and wind media. We will also present off-axis light curves relevant for searches for orphan afterglows. We find that jet breaks are smoothed due to both off-axis viewing and wind media effects. 2.) Non-thermal radiation mechanisms in GRB afterglows require substantial magnetic field strengths. In turbulence driven by shear instabilities in relativistic magnetized gas, we demonstrate that magnetic field is naturally amplified to half a percent of the total energy (epsilon B = 0.005). We will show high resolution three dimensional relativistic MHD simulations of this process as well as particle in cell (PIC) simulations of mildly relativistic collisionless shocks.

  7. Three-dimensional hydrodynamical simulations of stellar collisions. II. White dwarfs

    International Nuclear Information System (INIS)

    Benz, W.; Thielemann, F.K.; Hills, J.G.

    1989-01-01

    Three-dimensional numerical simulations are presented for collisions between white dwarfs, using a smooth-particle hydrodynamics code with 5000 particles. The code allows for radiation and degenerate pressure and uses a reduced nuclear network which models the large release of nuclear energy. Two different collision models are considered over a range of impact parameters: between two 0.06 solar-mass C-O white dwarfs and between 0.9 solar-mass and 0.7 solar-mass C-O white dwarfs. In nearly head-on collisions, a very substantial fraction of the mass is lost as a result of a large release of nuclear energy. In grazing collisions, the fraction of mass lost is close to that produced in collisions between main-sequence stars. The quantity of processed elements ejected into the ISM by these collisions does not significantly affect the chemical evolution of the Galaxy. 24 refs

  8. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    Science.gov (United States)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  9. Development and Calibration of Two-Dimensional Hydrodynamic Model of the Tanana River near Tok, Alaska

    Science.gov (United States)

    Conaway, Jeffrey S.; Moran, Edward H.

    2004-01-01

    Bathymetric and hydraulic data were collected by the U.S. Geological Survey on the Tanana River in proximity to Alaska Department of Transportation and Public Facilities' bridge number 505 at mile 80.5 of the Alaska Highway. Data were collected from August 7-9, 2002, over an approximate 5,000- foot reach of the river. These data were combined with topographic data provided by Alaska Department of Transportation and Public Facilities to generate a two-dimensional hydrodynamic model. The hydrodynamic model was calibrated with water-surface elevations, flow velocities, and flow directions collected at a discharge of 25,600 cubic feet per second. The calibrated model was then used for a simulation of the 100-year recurrence interval discharge of 51,900 cubic feet per second. The existing bridge piers were removed from the model geometry in a second simulation to model the hydraulic conditions in the channel without the piers' influence. The water-surface elevations, flow velocities, and flow directions from these simulations can be used to evaluate the influence of the piers on flow hydraulics and will assist the Alaska Department of Transportation and Public Facilities in the design of a replacement bridge.

  10. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    Science.gov (United States)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  11. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    Science.gov (United States)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  12. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    Science.gov (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  13. One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.

    Science.gov (United States)

    Lhomme, J; Bouvier, C; Mignot, E; Paquier, A

    2006-01-01

    A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.

  14. A two-dimensional hydrodynamic code for the interaction of intense heavy ion beams with matter based on the code CONCHAS SPRAY

    International Nuclear Information System (INIS)

    Schneider, V.; Rentzsch, T.; Maruhn, J.

    1988-04-01

    In this report we describe a two-dimensional hydrodynamic code applicable to the problems stated. In section II we describe the algorithm solving the hydrodynamic equations. In section III we present test calculations involving the propagation of shocks and contact discontinuities as well as the growth of a Rayleigh-Taylor Instability (RTI). Section IV includes all the modifications and supplements required to use the code to investigate the interaction of intense HI beams with matter. Numcerical simulations of experiments using the RFQ facility and the planned SIS-ESR at GSI are finally discussed in section V. (orig./HSI)

  15. Large-Scale Description of Interacting One-Dimensional Bose Gases: Generalized Hydrodynamics Supersedes Conventional Hydrodynamics

    Science.gov (United States)

    Doyon, Benjamin; Dubail, Jérôme; Konik, Robert; Yoshimura, Takato

    2017-11-01

    The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this Letter, we show that it supersedes the widely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying "nonlinear sound waves" emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-abacus algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.

  16. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  17. Two-dimensional integrated Z-pinch ICF design simulations

    International Nuclear Information System (INIS)

    Lash, J.S.

    1999-01-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility

  18. Two-dimensional integrated Z-pinch ICF design simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lash, J.S.

    1999-07-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility.

  19. Multi-dimensional cubic interpolation for ICF hydrodynamics simulation

    International Nuclear Information System (INIS)

    Aoki, Takayuki; Yabe, Takashi.

    1991-04-01

    A new interpolation method is proposed to solve the multi-dimensional hyperbolic equations which appear in describing the hydrodynamics of inertial confinement fusion (ICF) implosion. The advection phase of the cubic-interpolated pseudo-particle (CIP) is greatly improved, by assuming the continuities of the second and the third spatial derivatives in addition to the physical value and the first derivative. These derivatives are derived from the given physical equation. In order to evaluate the new method, Zalesak's example is tested, and we obtain successfully good results. (author)

  20. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  1. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  2. Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation

    International Nuclear Information System (INIS)

    Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J

    2010-01-01

    A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.

  3. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  4. Hydrodynamic Influence Dabanhu River Bridge Holes Widening Based on Two-Dimensional Finite Element Numerical Model

    Science.gov (United States)

    Li, Dong Feng; Bai, Fu Qing; Nie, Hui

    2018-06-01

    In order to analyze the influence of bridge holes widening on hydrodynamic such as water level, a two-dimensional mathematical model was used to calculate the hydrodynamic factors, river network flow velocity vector distribution is given, water level and difference of bridge widening before and after is calculated and charted, water surface gradient in seven different river sections near the upper reaches of bridges is counted and revealed. The results of hydrodynamic calculation indicate that The Maximum and the minimum deducing numerical value of the water level after bridge widening is 0.028m, and 0.018m respective. the seven sections water surface gradient becomes smaller until it becomes negative, the influence of bridge widening on the upstream is basically over, the range of influence is about 450m from the bridge to the upstream. reach

  5. Anomalous hydrodynamics in two dimensions

    Indian Academy of Sciences (India)

    Abstract. A new approach is presented to discuss two-dimensional hydrodynamics with gauge and gravitational anomalies. Exact constitutive relations for the stress tensor and charge current are obtained. Also, a connection between response parameters and anomaly coefficients is discussed. These are new results which, ...

  6. TWO- AND THREE-DIMENSIONAL SIMULATIONS OF ASTEROID OCEAN IMPACTS

    Directory of Open Access Journals (Sweden)

    Michael Gittings

    2003-01-01

    Full Text Available We have performed a series of two-dimensional and three-dimensional simulations of asteroid impacts into an ocean using the SAGE code from Los Alamos National Laboratory and Science Applications International Corporation. The SAGE code is a compressible Eulerian hydrodynamics code using continuous adaptive mesh refinement for following discontinuities with a fine grid while treating the bulk of the simulation more coarsely. We have used realistic equations of state for the atmosphere, sea water, the oceanic crust, and the mantle. In two dimensions, we simulated asteroid impactors moving at 20 km/s vertically through an exponential atmosphere into a 5 km deep ocean. The impactors were composed of mantle material (3.32 g/cc or iron (7.8 g/cc with diameters from 250m to 10 km. In our three-dimensional runs we simulated asteroids of 1 km diameter composed of iron moving at 20 km/s at angles of 45 and 60 degrees from the vertical. All impacts, including the oblique ones, produce a large underwater cavities with nearly vertical walls followed by a collapse starting from the bottom and subsequent vertical jetting. Substantial amounts of water are vaporized and lofted high into the atmosphere. In the larger impacts, significant amounts of crustal and even mantle material are lofted as well. Tsunamis up to a kilometer in initial height are generated by the collapse of the vertical jet. These waves are initially complex in form, and interact strongly with shocks propagating through the water and the crust. The tsunami waves are followed out to 100 km from the point of impact. Their periods and wavelengths show them to be intermediate type waves, and not (in general shallow-water waves. At great distances, the waves decay as the inverse of the distance from the impact point, ignoring sea-floor topography. For all impactors smaller than about 2 km diameter, the impacting body is highly fragmented and its remains lofted into the stratosphere with the water

  7. The Hydrodynamic Study of the Swimming Gliding: a Two-Dimensional Computational Fluid Dynamics (CFD) Analysis.

    Science.gov (United States)

    Marinho, Daniel A; Barbosa, Tiago M; Rouboa, Abel I; Silva, António J

    2011-09-01

    Nowadays the underwater gliding after the starts and the turns plays a major role in the overall swimming performance. Hence, minimizing hydrodynamic drag during the underwater phases should be a main aim during swimming. Indeed, there are several postures that swimmers can assume during the underwater gliding, although experimental results were not conclusive concerning the best body position to accomplish this aim. Therefore, the purpose of this study was to analyse the effect in hydrodynamic drag forces of using different body positions during gliding through computational fluid dynamics (CFD) methodology. For this purpose, two-dimensional models of the human body in steady flow conditions were studied. Two-dimensional virtual models had been created: (i) a prone position with the arms extended at the front of the body; (ii) a prone position with the arms placed alongside the trunk; (iii) a lateral position with the arms extended at the front and; (iv) a dorsal position with the arms extended at the front. The drag forces were computed between speeds of 1.6 m/s and 2 m/s in a two-dimensional Fluent(®) analysis. The positions with the arms extended at the front presented lower drag values than the position with the arms aside the trunk. The lateral position was the one in which the drag was lower and seems to be the one that should be adopted during the gliding after starts and turns.

  8. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  9. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  10. Two dimensional simulation of high power laser-surface interaction

    International Nuclear Information System (INIS)

    Goldman, S.R.; Wilke, M.D.; Green, R.E.L.; Johnson, R.P.; Busch, G.E.

    1998-01-01

    For laser intensities in the range of 10 8 --10 9 W/cm 2 , and pulse lengths of order 10 microsec or longer, the authors have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of their treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. The authors will present an analysis of some relatively well diagnosed experiments which have been useful in developing their modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence their simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range. This work is useful in many technical areas such as materials processing

  11. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    Science.gov (United States)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  12. Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas

    International Nuclear Information System (INIS)

    Valeo, E.J.; Kramer, G.J.; Nazikian, R.

    2001-01-01

    A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed

  13. Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes

    International Nuclear Information System (INIS)

    Slattery, W.L.; Spangenberg, W.H.

    1982-01-01

    A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described

  14. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  15. Plasmas in particle accelerators: a hydrodynamic model of three-dimensional electrostatic instabilities

    International Nuclear Information System (INIS)

    Krafft, G.A.; Mark, J.W.K.; Wang, T.S.F.

    1983-01-01

    In an earlier paper, closed hydrodynamic equations were derived with possible application to the simulation of beam plasmas relevant to designs of heavy ion accelerators for inertial confinement fusion energy applications. The closure equations involved a novel feature of anisotropic stresses even transverse to the beam. A related hydrodynamic model is used in this paper to examine further the boundaries of validity of such hydrodynamic approximations. It is also proposed as a useful tool to provide an economic means for searching the large parameter space relevant to three-dimensional stability problems involving coupling of longitudinal and transverse motions in the presence of wall impedance

  16. Frequency-dependent hydrodynamic interaction between two solid spheres

    Science.gov (United States)

    Jung, Gerhard; Schmid, Friederike

    2017-12-01

    Hydrodynamic interactions play an important role in many areas of soft matter science. In simulations with implicit solvent, various techniques such as Brownian or Stokesian dynamics explicitly include hydrodynamic interactions a posteriori by using hydrodynamic diffusion tensors derived from the Stokes equation. However, this equation assumes the interaction to be instantaneous which is an idealized approximation and only valid on long time scales. In the present paper, we go one step further and analyze the time-dependence of hydrodynamic interactions between finite-sized particles in a compressible fluid on the basis of the linearized Navier-Stokes equation. The theoretical results show that at high frequencies, the compressibility of the fluid has a significant impact on the frequency-dependent pair interactions. The predictions of hydrodynamic theory are compared to molecular dynamics simulations of two nanocolloids in a Lennard-Jones fluid. For this system, we reconstruct memory functions by extending the inverse Volterra technique. The simulation data agree very well with the theory, therefore, the theory can be used to implement dynamically consistent hydrodynamic interactions in the increasingly popular field of non-Markovian modeling.

  17. Dissipation terms in one-dimensional hydrodynamic code for ICF target

    International Nuclear Information System (INIS)

    Tamba, Moritake; Niu, Keishiro.

    1985-01-01

    The one-dimensional hydrodynamic code so far used for the simulation of the target improsion in ICF, the artificial viscosity has been employed as the dissipation terms. This artificial viscosity depends on the mesh width of the space using in the simulation and is much large in comparison with the real viscosity. In this paper, it is shown that this artificial viscosity leads to the unreasonable fusion parameters depending on the used mesh width of the space. Several methods to modify the dissipation term are given in this paper. (author)

  18. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  19. The Structure and Dynamics of An Active Galactic Nucleus Torus : CO Line Predictions for ALMA from Three-dimensional Hydrodynamical Simulations with X-ray-driven Chemistry

    NARCIS (Netherlands)

    Perez Beaupuits, J.P.; Wada, K.; Spaans, M.

    2011-01-01

    Several attempts have been made to model the mass distribution and dynamical evolution of the circumnuclear gas in active galactic nuclei (AGNs). However, chemical evolution is not included in detail in three-dimensional (3D) hydrodynamic simulations. The X-ray radiation from the AGN can drive the

  20. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  1. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  2. Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars

    Science.gov (United States)

    Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.

    2002-08-01

    We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.

  3. Lattice gas simulations of dynamical geometry in two dimensions.

    Science.gov (United States)

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  4. One and two dimensional simulations on beat wave acceleration

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.

    1984-01-01

    Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept

  5. 2D RADIATION-HYDRODYNAMIC SIMULATIONS OF SUPERNOVA SHOCK BREAKOUT IN BIPOLAR EXPLOSIONS OF A BLUE SUPERGIANT PROGENITOR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Akihiro; Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Shigeyama, Toshikazu [Research Center for the Early Universe, School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.

  6. Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches

    International Nuclear Information System (INIS)

    Peterson, D.L.; Bowers, R.L.; McLenithan, K.D.; Deeney, C.; Chandler, G.A.; Spielman, R.B.; Matzen, M.K.; Roderick, N.F.

    1998-01-01

    A two-dimensional (2-D) Eulerian Radiation-Magnetohydrodynamic (RMHD) code has been used to simulate imploding z pinches for three experiments fielded on the Los Alamos Pegasus II capacitor bank [J. C. Cochrane et al., Dense Z-Pinches, Third International Conference, London, United Kingdom 1993 (American Institute of Physics, New York, 1994), p. 381] and the Sandia Saturn accelerator [R. B. Spielman et al., Dense Z-Pinches, Second International Conference, Laguna Beach, 1989 (American Institute of Physics, New York, 1989), p. 3] and Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)]. These simulations match the experimental results closely and illustrate how the code results may be used to track the flow of energy in the simulation and account for the amount of total radiated energy. The differences between the calculated radiated energy and power in 2-D simulations and those from zero-dimensional (0-D) and one-dimensional (1-D) Lagrangian simulations (which typically underpredict the total radiated energy and overpredict power) are due to the radially extended nature of the plasma shell, an effect which arises from the presence of magnetically driven Rayleigh endash Taylor instabilities. The magnetic Rayleigh endash Taylor instabilities differ substantially from hydrodynamically driven instabilities and typical measures of instability development such as e-folding times and mixing layer thickness are inapplicable or of limited value. A new measure of global instability development is introduced, tied to the imploding plasma mass, termed open-quotes fractional involved mass.close quotes Examples of this quantity are shown for the three experiments along with a discussion of the applicability of this measure. copyright 1998 American Institute of Physics

  7. Two-dimensional simulations of magnetically-driven instabilities

    International Nuclear Information System (INIS)

    Peterson, D.; Bowers, R.; Greene, A.E.; Brownell, J.

    1986-01-01

    A two-dimensional Eulerian MHD code is used to study the evolution of magnetically-driven instabilities in cylindrical geometry. The code incorporates an equation of state, resistivity, and radiative cooling model appropriate for an aluminum plasma. The simulations explore the effects of initial perturbations, electrical resistivity, and radiative cooling on the growth and saturation of the instabilities. Comparisons are made between the 2-D simulations, previous 1-D simulations, and results from the Pioneer experiments of the Los Alamos foil implosion program

  8. Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.

    1988-11-01

    The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition.

  9. Two-dimensional study of shock breakout at the rear face of laser irradiated metallic targets

    International Nuclear Information System (INIS)

    Cottet, F.; Marty, L.; Hallouin, M.; Romain, J.P.; Virmont, J.; Fabbro, R.; Faral, B.

    1988-01-01

    The two-dimensional propagation dynamics of laser-driven shock waves in solids is studied through the analysis of the shock breakout at the rear face of the target for a set of materials and laser intensities. The laser shock simulations were carried out by means of a two-dimensional hydrodynamics code in which the laser-ablation pressure is replaced by an equivalent pressure pulse. It is shown that the two-dimensional code is a very useful tool to analyze laser-shock experiments where two-dimensional effects arise from a finite laser-spot size or a heterogeneous energy deposition

  10. On a method of construction of exact solutions for equations of two-dimensional hydrodynamics of incompressible liquids

    International Nuclear Information System (INIS)

    Yurov, A.V.; Yurova, A.A.

    2006-01-01

    The simple algebraic method for construction of exact solutions of two-dimensional hydrodynamic equations of incompressible flow is proposed. This method can be applied both to nonviscous flow (Euler equations) and to viscous flow (Navier-Stokes equations). In the case of nonviscous flow, the problem is reduced to sequential solving of three linear partial differential equations. In the case of viscous flow, the Navier-Stokes equations are reduced to three linear partial differential equations and one differential equation of the first order [ru

  11. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  12. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  13. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    Science.gov (United States)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  14. Laser bistatic two-dimensional scattering imaging simulation of lambert cone

    Science.gov (United States)

    Gong, Yanjun; Zhu, Chongyue; Wang, Mingjun; Gong, Lei

    2015-11-01

    This paper deals with the laser bistatic two-dimensional scattering imaging simulation of lambert cone. Two-dimensional imaging is called as planar imaging. It can reflect the shape of the target and material properties. Two-dimensional imaging has important significance for target recognition. The expression of bistatic laser scattering intensity of lambert cone is obtained based on laser radar eauqtion. The scattering intensity of a micro-element on the target could be obtained. The intensity is related to local angle of incidence, local angle of scattering and the infinitesimal area on the cone. According to the incident direction of laser, scattering direction and normal of infinitesimal area, the local incidence angle and scattering angle can be calculated. Through surface integration and the introduction of the rectangular function, we can get the intensity of imaging unit on the imaging surface, and then get Lambert cone bistatic laser two-dimensional scattering imaging simulation model. We analyze the effect of distinguishability, incident direction, observed direction and target size on the imaging. From the results, we can see that the scattering imaging simulation results of the lambert cone bistatic laser is correct.

  15. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    Science.gov (United States)

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  16. Numerical model for two-dimensional hydrodynamics and energy transport. [VECTRA code

    Energy Technology Data Exchange (ETDEWEB)

    Trent, D.S.

    1973-06-01

    The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents.

  17. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 2

    International Nuclear Information System (INIS)

    Arpishkin, Yu.P.; Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    A finite-difference algorithm for numeric solution of a system of one-dimensional hydrodynamics equation with heat conductivity, radiation diffusion and thermonuclear combustion is considered. The algorithm presented allows one to simulate one-dimensional thermonuclear targets for heavy-ion synthesis (HIS), irradiated with heavy ion beams. A brief description of a complex of GITTAM programs in which finite-difference algorithm for one-dimensional thermonuclear HIS target simulation is used, is given. 5 refs.; 3 figs

  18. Hydrodynamics of a three-dimensional self-propelled flexible plate

    Science.gov (United States)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  19. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  20. The simulation of two-dimensional migration patterns - a novel approach

    International Nuclear Information System (INIS)

    Villar, Heldio Pereira

    1997-01-01

    A novel approach to the problem of simulation of two-dimensional migration of solutes in saturated soils is presented. In this approach, the two-dimensional advection-dispersion equation is solved by finite-differences in a stepwise fashion, by employing the one-dimensional solution first in the direction of flow and then perpendicularly, using the same time increment in both cases. As the results of this numerical model were to be verified against experimental results obtained by radioactive tracer experiments, an attenuation factor, to account for the contribution of the gamma rays emitted by the whole plume of tracer to the readings of the adopted radiation detectors, was introduced into the model. The comparison between experimental and simulated concentration contours showed good agreement, thus establishing the feasibility of the approach proposed herein. (author)

  1. Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation

    Science.gov (United States)

    2017-01-01

    Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485

  2. Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity

    International Nuclear Information System (INIS)

    Bellomo, N; Mazzarella, G; Salasnich, L

    2014-01-01

    Motivated by the fact that two-component confined fermionic gases in Bardeen–Cooper–Schrieffer–Bose–Einstein condensate (BCS–BEC) crossover can be described through an hydrodynamical approach, we study these systems—both in the cigar-shaped configuration and in the disc-shaped one—by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity. (paper)

  3. Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2017-09-10

    A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.

  4. The simulation of two-dimensional migration patterns - a novel approach

    Energy Technology Data Exchange (ETDEWEB)

    Villar, Heldio Pereira [Universidade de Pernambuco, Recife, PE (Brazil). Escola Politecnica]|[Centro Regional de Ciencias Nucleares, Recife, PE (Brazil)

    1997-12-31

    A novel approach to the problem of simulation of two-dimensional migration of solutes in saturated soils is presented. In this approach, the two-dimensional advection-dispersion equation is solved by finite-differences in a stepwise fashion, by employing the one-dimensional solution first in the direction of flow and then perpendicularly, using the same time increment in both cases. As the results of this numerical model were to be verified against experimental results obtained by radioactive tracer experiments, an attenuation factor, to account for the contribution of the gamma rays emitted by the whole plume of tracer to the readings of the adopted radiation detectors, was introduced into the model. The comparison between experimental and simulated concentration contours showed good agreement, thus establishing the feasibility of the approach proposed herein. (author) 6 refs., 6 figs.

  5. Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon

    International Nuclear Information System (INIS)

    Ma, Fa-Jun; Duttagupta, Shubham; Shetty, Kishan Devappa; Meng, Lei; Hoex, Bram; Peters, Ian Marius; Samudra, Ganesh S.

    2014-01-01

    Multidimensional numerical simulation of boron diffusion is of great relevance for the improvement of industrial n-type crystalline silicon wafer solar cells. However, surface passivation of boron diffused area is typically studied in one dimension on planar lifetime samples. This approach neglects the effects of the solar cell pyramidal texture on the boron doping process and resulting doping profile. In this work, we present a theoretical study using a two-dimensional surface morphology for pyramidally textured samples. The boron diffusivity and segregation coefficient between oxide and silicon in simulation are determined by reproducing measured one-dimensional boron depth profiles prepared using different boron diffusion recipes on planar samples. The established parameters are subsequently used to simulate the boron diffusion process on textured samples. The simulated junction depth is found to agree quantitatively well with electron beam induced current measurements. Finally, chemical passivation on planar and textured samples is compared in device simulation. Particularly, a two-dimensional approach is adopted for textured samples to evaluate chemical passivation. The intrinsic emitter saturation current density, which is only related to Auger and radiative recombination, is also simulated for both planar and textured samples. The differences between planar and textured samples are discussed

  6. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  7. Particle simulation of a two-dimensional electrostatic plasma

    International Nuclear Information System (INIS)

    Patel, K.

    1989-01-01

    Computer simulation is a growing field of research and plasma physics is one of the important areas where it is being applied today. This report describes the particle method of simulating a two-dimensional electrostatic plasma. The methods used to discretise the plasma equations and integrate the equations of motion are outlined. The algorithm used in building a simulation program is described. The program is applied to simulating the Two-stream Instability occurring within an infinite plasma. The results of the simulation are presented. The growth rate of the instability as simulated is in excellent agreement with the growth rate as calculated using linear theory. Diagnostic techniques used in interpreting the data generated by the simulation program are discussed. A comparison of the computing environment of the ND and PC from a user's viewpoint is presented. It is observed that the PC is an acceptable computing tool for certain (non-trivial) physics problems, and that more extensive use of its computing power should be made. (author). 5 figs

  8. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    Science.gov (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  9. Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)

    2016-06-01

    A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.

  10. Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae

    International Nuclear Information System (INIS)

    Kifonidis, K.

    2001-01-01

    Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed. Hydrodynamic instabilities are of crucial importance for the explosion of massive stars as core collapse supernovae, for the synthesis of the heavy elements, and for their injection into the interstellar medium. The processes hereby involved are studied by means of two-dimensional hydrodynamic simulations which follow all phases from shock revival to shock breakout through the photosphere of a massive star. The computed distributions of radioactive elements are compared to observational data of SN 1987 A and other supernovae. While we find good agreement of our models with observations of Type Ib supernovae, the high velocities of iron group elements observed in SN 1987 A cannot be reproduced. Possible reasons for this discrepancy are discussed

  11. Three-dimensional simulations of Nova capsule implosion experiments

    International Nuclear Information System (INIS)

    Marinak, M.M.; Tipton, R.E.; Landen, O.L.

    1995-01-01

    Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values

  12. Three-dimensional Modeling of Tidal Hydrodynamics in the San Francisco Estuary

    Directory of Open Access Journals (Sweden)

    Edward S. Gross

    2010-01-01

    Full Text Available Simulations of circulation in the San Francisco Estuary were performed with the three-dimensional TRIM3D hydrodynamic model using a generic length scale turbulence closure. The model was calibrated to reproduce observed tidal elevations, tidal currents, and salinity observations in the San Francisco Estuary using data collected during 1996-1998, a period of high and variable freshwater flow. It was then validated for 1994-1995, with emphasis on spring of 1994, a period of intensive data collection in the northern estuary. The model predicts tidal elevations and tidal currents accurately, and realistically predicts salinity at both the seasonal and tidal time scales. The model represents salt intrusion into the estuary accurately, and therefore accurately represents the salt balance. The model’s accuracy is adequate for its intended purposes of predicting salinity, analyzing gravitational circulation, and driving a particle-tracking model. Two applications were used to demonstrate the utility of the model. We estimated the components of the longitudinal salt flux and examined their dependence on flow conditions, and compared predicted salt intrusion with estimates from two empirical models.

  13. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  14. Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility

    International Nuclear Information System (INIS)

    Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.

    2013-01-01

    Direct-drive–ignition designs with plastic CH ablators create plasmas of long density scale lengths (L n ≥ 500 μm) at the quarter-critical density (N qc ) region of the driving laser. The two-plasmon–decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation–hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of L n approaching ∼400 μm have been created; (2) the density scale length at N qc scales as L n (μm)≃(R DPP ×I 1/4 /2); and (3) the electron temperature T e at N qc scales as T e (keV)≃0.95×√(I), with the incident intensity (I) measured in 10 14 W/cm 2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (R DPP ) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons f hot is found to have a similar behavior for both configurations: a rapid growth [f hot ≃f c ×(G c /4) 6 for G c hot ≃f c ×(G c /4) 1.2 for G c ≥ 4, with the common wave gain is defined as G c =3 × 10 −2 ×I qc L n λ 0 /T e , where the laser intensity contributing to common-wave gain I qc , L n , T e at N qc , and the laser wavelength λ 0 are, respectively, measured in [10 14 W/cm 2 ], [μm], [keV], and [μm]. The saturation level f c is observed to be f c ≃ 10 –2 at around

  15. Multidimensional upwind hydrodynamics on unstructured meshes using graphics processing units - I. Two-dimensional uniform meshes

    Science.gov (United States)

    Paardekooper, S.-J.

    2017-08-01

    We present a new method for numerical hydrodynamics which uses a multidimensional generalization of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly use one-dimensional flux estimates as building blocks for a multidimensional integration, is its inherently multidimensional nature, and as a consequence its ability to recognize multidimensional stationary states that are not hydrostatic. A second novelty is the focus on graphics processing units (GPUs). By tailoring the algorithms specifically to GPUs, we are able to get speedups of 100-250 compared to a desktop machine. We compare the multidimensional upwind scheme to a traditional, dimensionally split implementation of the Roe solver on several test problems, and we find that the new method significantly outperforms the Roe solver in almost all cases. This comes with increased computational costs per time-step, which makes the new method approximately a factor of 2 slower than a dimensionally split scheme acting on a structured grid.

  16. Multi-dimensional simulations of core-collapse supernova explosions with CHIMERA

    Science.gov (United States)

    Messer, O. E. B.; Harris, J. A.; Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; Mezzacappa, A.

    2018-04-01

    Unraveling the core-collapse supernova (CCSN) mechanism is a problem that remains essentially unsolved despite more than four decades of effort. Spherically symmetric models with otherwise high physical fidelity generally fail to produce explosions, and it is widely accepted that CCSNe are inherently multi-dimensional. Progress in realistic modeling has occurred recently through the availability of petascale platforms and the increasing sophistication of supernova codes. We will discuss our most recent work on understanding neutrino-driven CCSN explosions employing multi-dimensional neutrino-radiation hydrodynamics simulations with the Chimera code. We discuss the inputs and resulting outputs from these simulations, the role of neutrino radiation transport, and the importance of multi-dimensional fluid flows in shaping the explosions. We also highlight the production of 48Ca in long-running Chimera simulations.

  17. Towards granular hydrodynamics in two dimensions

    International Nuclear Information System (INIS)

    Grossman, E.L.; Zhou, T.; Ben-Naim, E.; Ben-Naim, E.

    1997-01-01

    We study steady-state properties of inelastic gases in two dimensions in the presence of an energy source. We generalize previous hydrodynamic treatments to situations where high and low density regions coexist. The theoretical predictions compare well with numerical simulations in the nearly elastic limit. It is also seen that the system can achieve a nonequilibrium steady state with asymmetric velocity distributions, and we discuss the conditions under which such situations occur. copyright 1997 The American Physical Society

  18. Two-dimensional simulation of the MHD stability, (1)

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Amano, Tsuneo.

    1976-03-01

    The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)

  19. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)

    2004-10-15

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  20. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    International Nuclear Information System (INIS)

    Yoon, Hyun Jin; Kim, Dong Il

    2004-01-01

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  1. Two-dimensional heat conducting simulation of plasma armatures

    International Nuclear Information System (INIS)

    Huerta, M.A.; Boynton, G.

    1991-01-01

    This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature

  2. Two-dimensional PIC-MCC simulation of ion extraction

    International Nuclear Information System (INIS)

    Xiong Jiagui; Wang Dewu

    2000-01-01

    To explore more simple and efficient ion extraction methods used in atomic vapor laser isotope separation (AVLIS), two-dimensional (2D) PIC-MCC simulation code is used to simulate and compare several methods: parallel electrode method, II type electrode method, improved M type electrode method, and radio frequency (RF) resonance method. The simulations show that, the RF resonance method without magnetic field is the best among others, then the improved M type electrode method. The result of simulation of II type electrode method is quite different from that calculated by 2D electron equilibrium model. The RF resonance method with or without magnetic field has guide different results. Strong resonance occurs in the simulation without magnetic field, whereas no significant resonance occurs under weak magnetic field. And that is quite different from the strong resonance phenomena occurring in the 1D PIC simulation with weak magnetic field. As for practical applications, the RF resonance method without magnetic field has pros and cons, compared with the M type electrode method

  3. An axial calculation method for accurate two-dimensional PWR core simulation

    International Nuclear Information System (INIS)

    Grimm, P.

    1985-02-01

    An axial calculation method, which improves the agreement of the multiplication factors determined by two- and three-dimensional PWR neutronic calculations, is presented. The axial buckling is determined at each time point so as to reproduce the increase of the leakage due to the flattening of the axial power distribution and the effect of the axial variation of the group constants of the fuel on the reactivity is taken into account. The results of a test example show that the differences of k-eff and cycle length between two- and three-dimensional calculations, which are unsatisfactorily large if a constant buckling is used, become negligible if the results of the axial calculation are used in the two-dimensional core simulation. (Auth.)

  4. Mesoscale simulations of hydrodynamic squirmer interactions.

    Science.gov (United States)

    Götze, Ingo O; Gompper, Gerhard

    2010-10-01

    The swimming behavior of self-propelled microorganisms is studied by particle-based mesoscale simulations. The simulation technique includes both hydrodynamics and thermal fluctuations that are both essential for the dynamics of microswimmers. The swimmers are modeled as squirmers, i.e., spherical objects with a prescribed tangential surface velocity, where the focus of thrust generation can be tuned from pushers to pullers. For passive squirmers (colloids), we show that the velocity autocorrelation function agrees quantitatively with the Boussinesq approximation. Single active squirmers show a persistent random-walk behavior, determined by forward motion, lateral diffusion, and orientational fluctuations, in agreement with theoretical predictions. For pairs of squirmers, which are initially swimming in parallel, we find an attraction for pushers and a repulsion for pullers, as expected. The hydrodynamic force between squirmer pairs is calculated as a function of the center-to-center distances d(cm) and is found to be consistent with a logarithmic distance dependence for d(cm) less than about two sphere diameters; here, the force is considerably stronger than expected from the far-field expansion. The dependence of the force strength on the asymmetry of the polar surface velocity is obtained. During the collision process, thermal fluctuations turn out to be very important and to strongly affect the postcollision velocity directions of both squirmers.

  5. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    OpenAIRE

    Yujun Yi; Caihong Tang; Zhifeng Yang; Shanghong Zhang; Cheng Zhang

    2017-01-01

    The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon), which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movem...

  6. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    Science.gov (United States)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  7. Detailed simulation of morphodynamics : 1. Hydrodynamic model

    NARCIS (Netherlands)

    Nabi, M.; De Vriend, H.J.; Mosselman, E.; Sloff, C.J.; Shimizu, Y.

    2012-01-01

    We present a three-dimensional high-resolution hydrodynamic model for unsteady incompressible flow over an evolving bed topography. This is achieved by using a multilevel Cartesian grid technique that allows the grid to be refined in high-gradient regions and in the vicinity of the river bed. The

  8. Three-dimensional simulation of radionuclides dispersion in the stratified estuaries

    International Nuclear Information System (INIS)

    Koziy, L.; Margvelashvili, N.; Maderich, V.; Zheleznyak, M.

    1999-01-01

    THREE-dimensional model of TOXicants transport (THREETOX) was developed for assessment of potential and real emergency situations in the coastal area of seas and the inland water bodies. It includes the high resolution numerical hydrodynamic submodel, dynamic-thermodynamic ice submodel, submodels of suspended sediment and radionuclide transport. The results of two case studies are described. The first one concerns to two-year simulation of the Chernobyl origin radionuclide transport through Dnieper-Bug estuary into the Black sea. In the second case study the simulations were performed for the assessment of potential emergency situation caused by the radionuclide release from reactors and containers with the liquid radioactive wastes scuttled in the Novaya Zemlya fjords (Tsivolki, Stepovogo and Abrosimov). The presented results demonstrate the capability of THREETOX model to describe the wide spatial and temporal range of transport processes in the coastal area of seas. (author)

  9. Two dimensional hybrid simulation of a curved bow shock

    International Nuclear Information System (INIS)

    Thomas, V.A.; Winske, D.

    1990-01-01

    Results are presented from two dimensional hybrid simulations of curved collisionless supercritical shocks, retaining both quasi-perpendicular and quasi-parallel sections of the shock in order to study the character and origin of the foreshock ion population. The simulations demonstrate that the foreshock ion population is dominated by ions impinging upon the quasi-parallel side of the shock, while nonlocal transport from the quasi-perpendicular side of the shock into the foreshock region is minimal. Further, it is shown that the ions gain energy by drifting significantly in the direction of the convection electric field through multiple shock encounters

  10. The experimental study of hydrodynamic characteristics of the overland flow on a slope with three-dimensional Geomat

    Science.gov (United States)

    Wang, Guang-yue; Sun, Guo-rui; Li, Jian-kang; Li, Jiong

    2018-02-01

    The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.

  11. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  12. One-and-Two-Dimensional Simulations of Liner Performance at Atlas Parameters

    International Nuclear Information System (INIS)

    Keinigs, R.K.; Atchison, W.L.; Faehl, R.J.; Mclenithan, K.D.; Trainor, R.J.

    1998-01-01

    The authors report results of one-and-two-dimensional MHD simulations of an imploding heavy liner in Z-pinch geometry. The driving current has a pulse shape and peak current characteristic of the Atlas pulsed-power facility being constructed at Los Alamos National Laboratory. One-dimensional simulations of heavy composite liners driven by 30 MA currents can achieve velocities on the order of 14 km/sec. Used to impact a tungsten target, the liner produces shock pressures of ∼ fourteen megabars. The first 2-D simulations of imploding liners driven at Atlas current parameters are also described. These simulations have focused on the interaction of the liner with the glide planes, and the effect of realistic surface perturbations on the dynamics of the pinch. It is found that the former interaction does not seriously affect the inner liner surface. Results from the second problem indicate that a surface perturbation having amplitude as small as 0.2 microm can have a significant effect on the implosion dynamics

  13. Tracer dispersion in two-dimensional rough fractures.

    Science.gov (United States)

    Drazer, G; Koplik, J

    2001-05-01

    Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.

  14. Numerical simulation of cerebrospinal fluid hydrodynamics in the healing process of hydrocephalus patients

    Science.gov (United States)

    Gholampour, S.; Fatouraee, N.; Seddighi, A. S.; Seddighi, A.

    2017-05-01

    Three-dimensional computational models of the cerebrospinal fluid (CSF) flow and brain tissue are presented for evaluation of their hydrodynamic conditions before and after shunting for seven patients with non-communicating hydrocephalus. One healthy subject is also modeled to compare deviated patients data to normal conditions. The fluid-solid interaction simulation shows the CSF mean pressure and pressure amplitude (the superior index for evaluation of non-communicating hydrocephalus) in patients at a greater point than those in the healthy subject by 5.3 and 2 times, respectively.

  15. Hydrodynamic simulations of expanding shells

    Czech Academy of Sciences Publication Activity Database

    Wünsch, Richard; Palouš, Jan; Ehlerová, Soňa

    2004-01-01

    Roč. 289, 3-4 (2004), s. 35-36 ISSN 0004-640X. [From observation to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA AV ČR KSK1048102 Keywords : hydrodynamic simulations * ISM * star formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  16. CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION

    International Nuclear Information System (INIS)

    Schneider, Evan E.; Robertson, Brant E.

    2015-01-01

    We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256 3 ) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density

  17. CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Evan E.; Robertson, Brant E. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2015-04-15

    We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳256{sup 3}) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.

  18. Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer

    International Nuclear Information System (INIS)

    Diaz, Luis A.; Botte, Gerardine G.

    2015-01-01

    Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.

  19. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    International Nuclear Information System (INIS)

    Goldberg, L.F.

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year's funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge

  20. MODELING HOW A HURRICANE BARRIER IN NEW BEDFORD HARBOR, MASSACHUSETTS, AFFECTS THE HYDRODYNAMICS AND RESIDENCE TIMES

    Science.gov (United States)

    Two-dimensional hydrodynamic and transport models were used to simulate tidal and subtidal circulation, residence times, and the longitudinal distributions of conservative constituents in New Bedford Harbor, Massachusetts, before and after a hurricane barrier was constructed. The...

  1. GITTAM program for numerical simulation of one-dimensional targets TIS. Part 3

    International Nuclear Information System (INIS)

    Basko, M.M.; Sokolovskij, M.V.

    1989-01-01

    Results of testing calculations according to GITTAM program, developed for numeric simulation of one-dimensional thermonuclear targets of heavy-ion synthesis are presented. Finite-difference method for solving a system of one-dimensional hydrodynamics equations with heat conductivity, radiation diffusion and thermonuclear combustion is used in the GITTAM program. In the tests presented, based on simple automodel solutions, adiabatic motion as well as distribution of shock, thermal and radial waves in gas with simple polytron state equation is investigated. 3 refs.; 6 figs

  2. D Hydrodynamics Simulation of Amazonian Seasonally Flooded Wetlands

    Science.gov (United States)

    Pinel, S. S.; Bonnet, M. P.; Da Silva, J. S.; Cavalcanti, R., Sr.; Calmant, S.

    2016-12-01

    In the low Amazonian basin, interactions between floodplains and river channels are important in terms of water exchanges, sediments, or nutrients. These wetlands are considered as hotspot of biodiversity and are among the most productive in the world. However, they are threatened by climatic changes and anthropic activities. Hence, considering the implications for predicting inundation status of floodplain habitats, the strong interactions between water circulation, energy fluxes, biogeochemical and ecological processes, detailed analyses of flooding dynamics are useful and needed. Numerical inundation models offer means to study the interactions among different water sources. Modeling floods events in this area is challenging because flows respond to dynamic hydraulic controls coming from several water sources, complex geomorphology, and vegetation. In addition, due to the difficulty of access, there is a lack of existing hydrological data. In this context, the use of monitoring systems by remote sensing is a good option. In this study, we simulated filling and drainage processes of an Amazon floodplain (Janauacá Lake, AM, Brazil) over a 6 years period (2006-2012). Common approaches of flow modeling in the Amazon region consist of coupling a 1D simulation of the main channel flood wave to a 2D simulation of the inundation of the floodplain. Here, our approach differs as the floodplain is fully simulated. Model used is the 3D model IPH-ECO, which consists of a three-dimensional hydrodynamic module coupled with an ecosystem module. The IPH-ECO hydrodynamic module solves the Reynolds-Averaged Navier-Stokes equations using a semi-implicit discretization. After having calibrated the simulation against roughness coefficients, we validated the model in terms of vertical accuracy against water levels (daily in situ and altimetrics data), in terms of flood extent against inundation maps deduced from available remote-sensed product imagery (ALOS-1/PALSAR.), and in terms

  3. Simulation of the effects of different inflows on hydrologic conditions in Lake Houston with a three-dimensional hydrodynamic model, Houston, Texas, 2009–10

    Science.gov (United States)

    Rendon, Samuel H.; Lee, Michael T.

    2015-12-08

    Lake Houston, an important water resource for the Houston, Texas, area, receives inflows from seven major tributaries that compose the San Jacinto River Basin upstream from the reservoir. The effects of different inflows from the watersheds drained by these tributaries on the residence time of water in Lake Houston and closely associated physical and chemical properties including lake elevation, salinity, and water temperature are not well known. Accordingly, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, developed a three-dimensional hydrodynamic model of Lake Houston as a tool for evaluating the effects of different inflows on residence time of water in the lake and associated physical and chemical properties. The Environmental Fluid Dynamics Code (EFDC), a grid-based, surface-water modeling package for simulating three-dimensional circulation, mass transport, sediments, and biogeochemical processes, was used to develop the model of Lake Houston. The Lake Houston EFDC model was developed and calibrated by using 2009 data and verified by using 2010 data. Three statistics (mean error, root mean square error, and the Nash-Sutcliffe model efficiency coefficient) were used to evaluate how well the Lake Houston EFDC model simulated lake elevation, salinity, and water temperature. The residence time of water in reservoirs is associated with various physical and chemical properties (including lake elevation, salinity, and water temperature). Simulated and measured lake-elevation values were compared at USGS reservoir station 08072000 Lake Houston near Sheldon, Tex. The accuracy of simulated salinity and water temperature values was assessed by using the salinity (computed from measured specific conductance) and water temperature at two USGS monitoring stations: 295826095082200 Lake Houston south Union Pacific Railroad Bridge near Houston, Tex., and 295554095093401 Lake Houston at mouth of Jack’s Ditch near Houston, Tex. Specific conductance

  4. Two-fluid hydrodynamic model for semiconductors

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2018-01-01

    The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...

  5. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  6. User's manual for DYNA2D: an explicit two-dimensional hydrodynamic finite-element code with interactive rezoning

    Energy Technology Data Exchange (ETDEWEB)

    Hallquist, J.O.

    1982-02-01

    This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.

  7. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  8. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    International Nuclear Information System (INIS)

    Nicolai, Ph.; Busquet, M.; Schurtz, G.

    2000-01-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  9. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    Science.gov (United States)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  10. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  11. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki

    1997-01-01

    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  12. Generalized hydrodynamic transport in lattice-gas automata

    Science.gov (United States)

    Luo, Li-Shi; Chen, Hudong; Chen, Shiyi; Doolen, Gary D.; Lee, Yee-Chun

    1991-01-01

    The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number k is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, k. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.

  13. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Science.gov (United States)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.

    2017-08-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  14. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    International Nuclear Information System (INIS)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M.; Folini, D.; Popov, M. V.; Walder, R.

    2017-01-01

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  15. Lithium Depletion in Solar-like Stars: Effect of Overshooting Based on Realistic Multi-dimensional Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Viallet, M. [Astrophysics Group, University of Exeter, Exeter EX4 4QL (United Kingdom); Folini, D.; Popov, M. V.; Walder, R., E-mail: i.baraffe@ex.ac.uk [Ecole Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, F-69364 Lyon Cedex 07 (France)

    2017-08-10

    We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.

  16. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  17. Three-dimensional two-fluid numerical treatment of a reactor vessel in TRAC

    International Nuclear Information System (INIS)

    Liles, D.R.

    1979-01-01

    A three-dimensional two-fluid finite difference model has been used in TRAC (Transient Reactor Analysis Code) to represent a pressurized water reactor vessel. Mesh cells may be blocked off completely to represent large flow obstructions such as downcomer walls. The hydrodynamic volumes and flow areas may also be reduced in order to provide a porous matrix simulation of smaller scale strucuture. The finite difference equations are semi-implicit so that stability time scales are associated with material movement and not wave propagation. The block matrix structure is reduced during the implicit pass to a single element seven stripe system which is easily solved iteratively. This procedure has successfully performed numerous simulations of both full sized reactor accidents and smaller scale experments. It has proven to be a useful feature of the TRAC effort

  18. Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Kentaro Nagamine

    2010-01-01

    Full Text Available We examine the past and current work on the star formation (SF histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.

  19. The Quantum Hydrodynamics System in Two Space Dimensions

    KAUST Repository

    Antonelli, Paolo

    2011-09-16

    In this paper we study global existence of weak solutions for the quantum hydrodynamics system in two-dimensional energy space. We do not require any additional regularity and/or smallness assumptions on the initial data. Our approach replaces the WKB formalism with a polar decomposition theory which is not limited by the presence of vacuum regions. In this way we set up a self consistent theory, based only on particle density and current density, which does not need to define velocity fields in the nodal regions. The mathematical techniques we use in this paper are based on uniform (with respect to the approximating parameter) Strichartz estimates and the local smoothing property. © 2011 Springer-Verlag.

  20. GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D.; Abdikamalov, Ernazar; Moesta, Philipp; Haas, Roland; Drasco, Steve; O' Connor, Evan P.; Reisswig, Christian [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Meakin, Casey A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Schnetter, Erik, E-mail: cott@tapir.caltech.edu [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2013-05-10

    We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M{sub Sun} star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M{sub Sun} progenitor was studied in 2D by Mueller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

  1. GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Ott, Christian D.; Abdikamalov, Ernazar; Mösta, Philipp; Haas, Roland; Drasco, Steve; O'Connor, Evan P.; Reisswig, Christian; Meakin, Casey A.; Schnetter, Erik

    2013-01-01

    We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M ☉ star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M ☉ progenitor was studied in 2D by Müller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

  2. Numerical simulation of transient, adiabatic, two-dimensional two-phase flow using the two-fluid model

    International Nuclear Information System (INIS)

    Neves Conti, T. das.

    1983-01-01

    A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt

  3. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  4. Analysis of effects of laser profiles on fast electron generation by two-dimensional Particle-In-Cell simulations

    International Nuclear Information System (INIS)

    Hata, M.

    2010-01-01

    Complete text of publication follows. A cone-guided target is used in the Fast Ignition Realization Experiment project phase-I (FIREX-I) and optimization of its design is performed. However a laser profile is not optimized much, because the laser profile that is the best for core heating is not known well. To find that, it is useful to investigate characteristics of generated fast electrons in each condition of different laser profiles. In this research, effects of laser profiles on fast electron generation are investigated on somewhat simple conditions by two-dimensional Particle-In-Cell simulations. In these simulations, a target is made up of Au pre-plasma and Au plasma. The Au pre-plasma has the exponential profile in the x direction with the scale length L = 4.0 μm and the density from 0.10 n cr to 20 n cr . The Au plasma has the flat profile in the x direction with 10 μm width and 20 n cr . Plasma profiles are uniform in the y direction. The ionization degree and the mass number of plasmas are 40 and 197, where the ionization degree is determined by PINOCO simulations. PINOCO is a two-dimensional radiation hydrodynamics simulation code, which simulates formation of the high-density plasma during the compression phase in the fast ignition. A laser is assumed to propagate as plane wave from the negative x direction to the positive x direction. Laser profiles are supposed to be uniform in the y direction. Three different laser profiles, namely flat one with t flat = 100 fs, Gaussian one with t rise/fall = 47.0 fs and flat + Gaussian one with t rise/fall = 23.5 fs and t flat = 50 fs are used. The energy and the peak intensity are constant with E = 10 7 J/cm 2 and I L = 10 20 W/cm 2 in all cases of different laser profiles. We compare results in each condition of three different laser profiles and investigate effects of laser profiles on fast electron generation. Time-integrated energy spectra are similar in all cases of three different laser profiles. In the

  5. Efficient three-dimensional reconstruction of aquatic vegetation geometry: Estimating morphological parameters influencing hydrodynamic drag

    Science.gov (United States)

    Liénard, Jean; Lynn, Kendra; Strigul, Nikolay; Norris, Benjamin K.; Gatziolis, Demetrios; Mullarney, Julia C.; Bryan, Karin, R.; Henderson, Stephen M.

    2016-09-01

    Aquatic vegetation can shelter coastlines from energetic waves and tidal currents, sometimes enabling accretion of fine sediments. Simulation of flow and sediment transport within submerged canopies requires quantification of vegetation geometry. However, field surveys used to determine vegetation geometry can be limited by the time required to obtain conventional caliper and ruler measurements. Building on recent progress in photogrammetry and computer vision, we present a method for reconstructing three-dimensional canopy geometry. The method was used to survey a dense canopy of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Photogrammetric estimation of geometry required 1) taking numerous photographs at low tide from multiple viewpoints around 1 m2 quadrats, 2) computing relative camera locations and orientations by triangulation of key features present in multiple images and reconstructing a dense 3D point cloud, and 3) extracting pneumatophore locations and diameters from the point cloud data. Step 3) was accomplished by a new 'sector-slice' algorithm, yielding geometric parameters every 5 mm along a vertical profile. Photogrammetric analysis was compared with manual caliper measurements. In all 5 quadrats considered, agreement was found between manual and photogrammetric estimates of stem number, and of number × mean diameter, which is a key parameter appearing in hydrodynamic models. In two quadrats, pneumatophores were encrusted with numerous barnacles, generating a complex geometry not resolved by hand measurements. In remaining cases, moderate agreement between manual and photogrammetric estimates of stem diameter and solid volume fraction was found. By substantially reducing measurement time in the field while capturing in greater detail the 3D structure, photogrammetry has potential to improve input to hydrodynamic models, particularly for simulations of flow through large-scale, heterogenous canopies.

  6. PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code

    International Nuclear Information System (INIS)

    Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.

    1976-12-01

    Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems

  7. Modeling and simulations for molecular scale hydrodynamics of the moving contact line in immiscible two-phase flows

    KAUST Repository

    Qian, Tiezheng

    2009-10-29

    This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed. © 2009 IOP Publishing Ltd.

  8. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    Guenther, Ulrich L.; Schaffhausen, Brian

    2002-01-01

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  9. FABM-PCLake – linking aquatic ecology with hydrodynamics

    DEFF Research Database (Denmark)

    Hu, Fenjuan; Bolding, Karsten; Bruggeman, Jorn

    2016-01-01

    This study presents FABM-PCLake, a redesigned structure of the PCLake aquatic ecosystem model, which we implemented in the Framework for Aquatic Biogeochemical Models (FABM). In contrast to the original model, which was designed for temperate, fully mixed freshwater lakes, the new FABM......-PCLake represents an integrated aquatic ecosystem model that can be linked with different hydrodynamic models and allows simulations of hydrodynamic and biogeochemical processes for zero-dimensional, one-dimensional as well as three-dimensional environments. FABM-PCLake describes interactions between multiple......, including water currents, light and temperature influence a wide range of biogeochemical processes. The model enables studies on ecosystem dynamics in physically heterogeneous environments (e.g., stratifying water bodies, and water bodies with horizontal gradients in physical and biogeochemical properties...

  10. GIS-based two-dimensional numerical simulation of rainfall-induced debris flow

    Directory of Open Access Journals (Sweden)

    C. Wang

    2008-02-01

    Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.

  11. Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Christopher B.; Richmond, Marshall C.

    2001-05-01

    This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

  12. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    Science.gov (United States)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  13. Modeling NIF Experimental Designs with Adaptive Mesh Refinement and Lagrangian Hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A E; Anderson, R W; Wang, P; Gunney, B N; Becker, R; Eder, D C; MacGowan, B J

    2005-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs

  14. Modeling Nif experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    International Nuclear Information System (INIS)

    Koniges, A.E.; Anderson, R.W.; Wang, P.; Gunney, B.T.N.; Becker, R.; Eder, D.C.; MacGowan, B.J.; Schneider, M.B.

    2006-01-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs. (authors)

  15. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  16. A web portal for hydrodynamical, cosmological simulations

    Science.gov (United States)

    Ragagnin, A.; Dolag, K.; Biffi, V.; Cadolle Bel, M.; Hammer, N. J.; Krukau, A.; Petkova, M.; Steinborn, D.

    2017-07-01

    This article describes a data centre hosting a web portal for accessing and sharing the output of large, cosmological, hydro-dynamical simulations with a broad scientific community. It also allows users to receive related scientific data products by directly processing the raw simulation data on a remote computing cluster. The data centre has a multi-layer structure: a web portal, a job control layer, a computing cluster and a HPC storage system. The outer layer enables users to choose an object from the simulations. Objects can be selected by visually inspecting 2D maps of the simulation data, by performing highly compounded and elaborated queries or graphically by plotting arbitrary combinations of properties. The user can run analysis tools on a chosen object. These services allow users to run analysis tools on the raw simulation data. The job control layer is responsible for handling and performing the analysis jobs, which are executed on a computing cluster. The innermost layer is formed by a HPC storage system which hosts the large, raw simulation data. The following services are available for the users: (I) CLUSTERINSPECT visualizes properties of member galaxies of a selected galaxy cluster; (II) SIMCUT returns the raw data of a sub-volume around a selected object from a simulation, containing all the original, hydro-dynamical quantities; (III) SMAC creates idealized 2D maps of various, physical quantities and observables of a selected object; (IV) PHOX generates virtual X-ray observations with specifications of various current and upcoming instruments.

  17. Hydrodynamic simulations of light ion beam-matter interactions: ablative acceleration of thin foils

    International Nuclear Information System (INIS)

    Devore, C.R.; Gardner, J.H.; Boris, J.P.; Mosher, D.

    1984-01-01

    A one-dimensional model is used to study the hydrodynamic response of thin foils to bombardment by an intense proton beam. The beam targets are single- and multilayer planar foils of gold and polystyrene. The main conclusion is that the efficiency of conversion of incident beam energy to directed kinetic energy of the target is maximized by using a multilayer design. For beam parameters associated with the Gamble II device at the Naval Research Laboratory, the simulations yield payload velocities of over 5 cm/μs and energy conversion efficiencies of over 30%. The implications of these results for inertial confinement fusion research are discussed. (author)

  18. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    Science.gov (United States)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  19. Fish Pectoral Fin Hydrodynamics; Part III: Low Dimensional Models via POD Analysis

    Science.gov (United States)

    Bozkurttas, M.; Madden, P.

    2005-11-01

    The highly complex kinematics of the pectoral fin and the resulting hydrodynamics does not lend itself easily to analysis based on simple notions of pitching/heaving/paddling kinematics or lift/drag based propulsive mechanisms. A more inventive approach is needed to dissect the fin gait and gain insight into the hydrodynamic performance of the pectoral fin. The focus of the current work is on the hydrodynamics of the pectoral fin of a bluegill sunfish in steady forward motion. The 3D, time-dependent fin kinematics is obtained via a stereo-videographic technique. We employ proper orthogonal decomposition to extract the essential features of the fin gait and then use CFD to examine the hydrodynamics of simplified gaits synthesized from the POD modes. The POD spectrum shows that the first two, three and five POD modes capture 55%, 67%, and 80% of the motion respectively. The first three modes are in particular highly distinct: Mode-1 is a ``cupping'' motion where the fin cups forward as it is abducted; Mode-2 is an ``expansion'' motion where the fin expands to present a larger area during adduction and finally Mode-3 involves a ``spanwise flick'' of the dorsal edge of the fin. Numerical simulation of flow past fin gaits synthesized from these modes lead to insights into the mechanisms of thrust production; these are discussed in detail.

  20. POST: a postprocessor computer code for producing three-dimensional movies of two-phase flow in a reactor vessel

    International Nuclear Information System (INIS)

    Taggart, K.A.; Liles, D.R.

    1977-08-01

    The development of the TRAC computer code for analysis of LOCAs in light-water reactors involves the use of a three-dimensional (r-theta-z), two-fluid hydrodynamics model to describe the two-phase flow of steam and water through the reactor vessel. One of the major problems involved in interpreting results from this code is the presentation of three-dimensional flow patterns. The purpose of the report is to present a partial solution to this data display problem. A first version of a code which produces three-dimensional movies of flow in the reactor vessel has been written and debugged. This code (POST) is used as a postprocessor in conjunction with a stand alone three-dimensional two-phase hydrodynamics code (CYLTF) which is a test bed for the three-dimensional algorithms to be used in TRAC

  1. Numerical simulations for radiation hydrodynamics. 2: Transport limit

    International Nuclear Information System (INIS)

    Dai, W.W.; Woodward, P.R.

    2000-01-01

    A finite difference scheme is proposed for two-dimensional radiation hydrodynamical equations in the transport limit. The scheme is of Godunov-type, in which the set of time-averaged flux needed in the scheme is calculated through Riemann problems solved. In the scheme, flow signals are explicitly treated, while radiation signals are implicitly treated. Flow fields and radiation fields are updated simultaneously. An iterative approach is proposed to solve the set of nonlinear algebraic equations arising from the implicitness of the scheme. The sweeping method used in the scheme significantly reduces the number of iterations or computer CPU time needed. A new approach to further accelerate the convergence is proposed, which further reduces the number of iterations needed by more than one order. No matter how many cells radiation signals propagate in one time step, only an extremely small number of iterations are needed in the scheme, and each iteration costs only about 0.8% of computer CPU time which is needed for one time step of a second order accurate and fully explicit scheme. Two-dimensional problems are treated through a dimensionally split technique. Therefore, iterations for solving the set of algebraic equations are carried out only in each one-dimensional sweep. Through numerical examples it is shown that the scheme keeps the principle advantages of Godunov schemes for flow motion. In the time scale of flow motion numerical results are the same as those obtained from a second order accurate and fully explicit scheme. The acceleration of the convergence proposed in this paper may be directly applied to other hyperbolic systems. This study is important for laser fusion and astrophysics

  2. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    Energy Technology Data Exchange (ETDEWEB)

    Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  3. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Jordanovic, Jelena; Beleggia, Marco; Schiøtz, Jakob

    2015-01-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the parti......We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices...... taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls...... oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder...

  4. Microstructure in two- and three-dimensional hybrid simulations of perpendicular collisionless shocks

    Czech Academy of Sciences Publication Activity Database

    Burgess, D.; Hellinger, Petr; Gingell, I.; Trávníček, Pavel M.

    2016-01-01

    Roč. 82, č. 4 (2016), 905820401/1-905820401/23 ISSN 0022-3778 Institutional support: RVO:68378289 Keywords : ion-acceleration * numerical simulations * bow shock * electron acceleration * cluster observations * self-reformation * magnetic-field * whistler waves * injection * nonstationarity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.160, year: 2016 https://www.cambridge.org/core/ journals /journal-of-plasma-physics/article/microstructure-in-two-and-three-dimensional-hybrid-simulations-of-perpendicular-collisionless-shocks/F964EF89FB14A6504A49CFAD54970E2B

  5. Lotic Water Hydrodynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-23

    Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.

  6. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  7. A combined N-body and hydrodynamic code for modeling disk galaxies

    International Nuclear Information System (INIS)

    Schroeder, M.C.

    1989-01-01

    A combined N-body and hydrodynamic computer code for the modeling of two dimensional galaxies is described. The N-body portion of the code is used to calculate the motion of the particle component of a galaxy, while the hydrodynamics portion of the code is used to follow the motion and evolution of the fluid component. A complete description of the numerical methods used for each portion of the code is given. Additionally, the proof tests of the separate and combined portions of the code are presented and discussed. Finally, a discussion of the topics researched with the code and results obtained is presented. These include: the measurement of stellar relaxation times in disk galaxy simulations; the effects of two-armed spiral perturbations on stable axisymmetric disks; the effects of the inclusion of an instellar medium (ISM) on the stability of disk galaxies; and the effect of the inclusion of stellar evolution on disk galaxy simulations

  8. Two-Dimensional Hydrodynamic Simulation of Surface-Water Flow and Transport to Florida Bay through the Southern Inland and Coastal Systems (SICS)

    Science.gov (United States)

    Swain, Eric D.; Wolfert, Melinda A.; Bales, Jerad D.; Goodwin, Carl R.

    2004-01-01

    Successful restoration of the southern Florida ecosystem requires extensive knowledge of the physical characteristics and hydrologic processes controlling water flow and transport of constituents through extremely low-gradient freshwater marshes, shallow mangrove-fringed coastal creeks and tidal embayments, and near-shore marine waters. A sound, physically based numerical model can provide simulations of the differing hydrologic conditions that might result from various ecosystem restoration scenarios. Because hydrology and ecology are closely linked in southern Florida, hydrologic model results also can be used by ecologists to evaluate the degree of ecosystem restoration that could be achieved for various hydrologic conditions. A robust proven model, SWIFT2D, (Surface-Water Integrated Flow and Transport in Two Dimensions), was modified to simulate Southern Inland and Coastal Systems (SICS) hydrodynamics and transport conditions. Modifications include improvements to evapotranspiration and rainfall calculation and to the algorithms that describe flow through coastal creeks. Techniques used in this model should be applicable to other similar low-gradient marsh settings in southern Florida and elsewhere. Numerous investigations were conducted within the SICS area of southeastern Everglades National Park and northeastern Florida Bay to provide data and parameter values for model development and testing. The U.S. Geological Survey and the National Park Service supported investigations for quantification of evapotranspiration, vegetative resistance to flow, wind-induced flow, land elevations, vegetation classifications, salinity conditions, exchange of ground and surface waters, and flow and transport in coastal creeks and embayments. The good agreement that was achieved between measured and simulated water levels, flows, and salinities through minimal adjustment of empirical coefficients indicates that hydrologic processes within the SICS area are represented properly

  9. Hydrodynamic simulations of accretion disks in cataclysmic variables

    International Nuclear Information System (INIS)

    Hirose, Masahito; Osaki, Yoji

    1990-01-01

    The tidal effects of secondary stars on accretion disks in cataclysmic variables are studied by two-dimensional hydrodynamical simulations. The time evolution of an accretion disk under a constant mass supply rate from the secondary is followed until it reaches a quasi-steady state. We have examined various cases of different mass ratios of binary systems. It is found that the accretion disk settles into a steady state of an elongated disk fixed in the rotating frame of the binary in a binary system with comparable masses of component stars. On the other hand, in the case of a low-mass secondary, the accretion disk develops a non-axisymmetric (eccentric) structure and finally settles into a periodically oscillating state in which a non-axisymmetric eccentric disk rotates in the opposite direction to the orbital motion of the binary in the rotating frame of the binary. The period of oscillation is a few percent longer than the orbital period of the binary, and it offers a natural explanation for the ''superhump'' periodicity of SU UMa stars. Our results thus confirm basically those of Whitehurst (1988, AAA 45.064.032) who discovered the tidal instability of an accretion disk in the case of a low-mass secondary. We then discuss the cause of the tidal instability. It is shown that the tidal instability of accretion disks is caused by a parametric resonance between particle orbits and an orbiting secondary star with a 1:3 period ratio. (author)

  10. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  11. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    Science.gov (United States)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  12. 3-D CFD simulations of hydrodynamics in the Sulejow dam reservoir

    Directory of Open Access Journals (Sweden)

    Ziemińska-Stolarska Aleksandra

    2015-12-01

    Full Text Available This paper reports the processes by which a single-phase 3-D CFD model of hydrodynamics in a 17-km-long dam reservoir was developed, verified and tested. A simplified VOF model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA. Excellent agreement (average error of less than 10% between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics in the lake, especially on the development of the water circulation pattern in the lacustrine zone.

  13. TWO-DIMENSIONAL CORE-COLLAPSE SUPERNOVA MODELS WITH MULTI-DIMENSIONAL TRANSPORT

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Burrows, Adam; Zhang, Weiqun

    2015-01-01

    We present new two-dimensional (2D) axisymmetric neutrino radiation/hydrodynamic models of core-collapse supernova (CCSN) cores. We use the CASTRO code, which incorporates truly multi-dimensional, multi-group, flux-limited diffusion (MGFLD) neutrino transport, including all relevant O(v/c) terms. Our main motivation for carrying out this study is to compare with recent 2D models produced by other groups who have obtained explosions for some progenitor stars and with recent 2D VULCAN results that did not incorporate O(v/c) terms. We follow the evolution of 12, 15, 20, and 25 solar-mass progenitors to approximately 600 ms after bounce and do not obtain an explosion in any of these models. Though the reason for the qualitative disagreement among the groups engaged in CCSN modeling remains unclear, we speculate that the simplifying ''ray-by-ray'' approach employed by all other groups may be compromising their results. We show that ''ray-by-ray'' calculations greatly exaggerate the angular and temporal variations of the neutrino fluxes, which we argue are better captured by our multi-dimensional MGFLD approach. On the other hand, our 2D models also make approximations, making it difficult to draw definitive conclusions concerning the root of the differences between groups. We discuss some of the diagnostics often employed in the analyses of CCSN simulations and highlight the intimate relationship between the various explosion conditions that have been proposed. Finally, we explore the ingredients that may be missing in current calculations that may be important in reproducing the properties of the average CCSNe, should the delayed neutrino-heating mechanism be the correct mechanism of explosion

  14. Two-phase flow simulation of scour around a cylindrical pile

    Science.gov (United States)

    Nagel, T.; Chauchat, J.; Bonamy, C.; Liu, X.; Cheng, Z.; Hsu, T. J.

    2017-12-01

    Scour around structures is a major engineering issue that requires a detailed description of the flow field but also a consistent description of sediment transport processes that could not only be related to bed shear stress, like Shields parameter based sediment transport formula. In order to address this issue we used a multi-dimensional two-phase flow solver, sedFoam-2.0 (Chauchat et al., GMD 2017) implemented under the open-source CFD toolbox OpenFoam. Three-dimensional simulations have been performed on Roulund et al. (JFM 2005) configurations for clear-water and live bed cases. The k-omega model from Wilcox (AIAA Journal 2006) is used for the turbulent stress and the granular rheology μ(I) is used for the granular stress in the live bed case. The hydrodynamic is validated on the clear water case and the numerical results obtained for the live bed case provide a proof of concept that two-phase flow model is applicable to such problem with quantitative results for the prediction of scour depth upstream and downstream the cylinder at short timescales, up to 300s. Analyzing the simulation results in term of classical dimensionless sediment transport flux versus Shields parameter allows to get more insight into the fine scale sediment transport mechanisms involved in the scour process.

  15. Hydrodynamic Relaxation of an Electron Plasma to a Near-Maximum Entropy State

    International Nuclear Information System (INIS)

    Rodgers, D. J.; Servidio, S.; Matthaeus, W. H.; Mitchell, T. B.; Aziz, T.; Montgomery, D. C.

    2009-01-01

    Dynamical relaxation of a pure electron plasma in a Malmberg-Penning trap is studied, comparing experiments, numerical simulations and statistical theories of weakly dissipative two-dimensional (2D) turbulence. Simulations confirm that the dynamics are approximated well by a 2D hydrodynamic model. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state with constrained energy, circulation, and angular momentum. This provides evidence that 2D electron fluid relaxation in a turbulent regime is governed by principles of maximum entropy.

  16. Hydrodynamic modelling of tidal inlets in Hue, Vietnam

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2003-01-01

    Application of an one-dimensional numerical model for hydrodynamic simulation of a complex lagooninlet system in Vietnam is presented. Model results help to get a better understanding on the behaviour of the system. Based on the numerical model results and analytic solutions, stability of tidal

  17. Stabilizing local boundary conditions for two-dimensional shallow water equations

    KAUST Repository

    Dia, Ben Mansour

    2018-03-27

    In this article, we present a sub-critical two-dimensional shallow water flow regulation. From the energy estimate of a set of one-dimensional boundary stabilization problems, we obtain a set of polynomial equations with respect to the boundary values as a requirement for the energy decrease. Using the Riemann invariant analysis, we build stabilizing local boundary conditions that guarantee the stability of the hydrodynamical state around a given steady state. Numerical results for the controller applied to the nonlinear problem demonstrate the performance of the method.

  18. Concatenating algorithms for parallel numerical simulations coupling radiation hydrodynamics with neutron transport

    International Nuclear Information System (INIS)

    Mo Zeyao

    2004-11-01

    Multiphysics parallel numerical simulations are usually essential to simplify researches on complex physical phenomena in which several physics are tightly coupled. It is very important on how to concatenate those coupled physics for fully scalable parallel simulation. Meanwhile, three objectives should be balanced, the first is efficient data transfer among simulations, the second and the third are efficient parallel executions and simultaneously developments of those simulation codes. Two concatenating algorithms for multiphysics parallel numerical simulations coupling radiation hydrodynamics with neutron transport on unstructured grid are presented. The first algorithm, Fully Loosely Concatenation (FLC), focuses on the independence of code development and the independence running with optimal performance of code. The second algorithm. Two Level Tightly Concatenation (TLTC), focuses on the optimal tradeoffs among above three objectives. Theoretical analyses for communicational complexity and parallel numerical experiments on hundreds of processors on two parallel machines have showed that these two algorithms are efficient and can be generalized to other multiphysics parallel numerical simulations. In especial, algorithm TLTC is linearly scalable and has achieved the optimal parallel performance. (authors)

  19. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  20. Application of kinetic flux vector splitting scheme for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    In this article, one and two-dimensional hydrodynamical models of semiconductor devices are numerically investigated. The models treat the propagation of electrons in a semiconductor device as the flow of a charged compressible fluid. It plays an important role in predicting the behavior of electron flow in semiconductor devices. Mathematically, the governing equations form a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the kinetic flux-vector splitting (KFVS) method for the hyperbolic step, and a semi-implicit Runge-Kutta method for the relaxation step. The KFVS method is based on the direct splitting of macroscopic flux functions of the system on the cell interfaces. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge-Kutta time stepping method. Several case studies are considered. For validation, the results of current scheme are compared with those obtained from the splitting scheme based on the NT central scheme. The effects of various parameters such as low field mobility, device length, lattice temperature and voltage are analyzed. The accuracy, efficiency and simplicity of the proposed KFVS scheme validates its generic applicability to the given model equations. A two dimensional simulation is also performed by KFVS method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  1. Hydrodynamic simulations of microjetting from shock-loaded grooves

    Science.gov (United States)

    Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Soulard, L.; Loison, D.

    2017-01-01

    The interaction of a shock wave with a free surface which has geometrical defects, such as cavities or grooves, may lead to the ejection of micrometric debris at velocities of km/s. This process can be involved in many applications, like pyrotechnics or industrial safety. Recent laser shock experiments reported elsewhere in this conference have provided some insight into jet formation as well as jet tip velocities for various groove angles and shock pressures. Here, we present hydrodynamic simulations of these experiments, in both 2D and 3D geometries, using both finite element method and smoothed particle hydrodynamics. Numerical results are compared to several theoretical predictions including the Richtmyer-Meshkov instabilities. The role of the elastic-plastic behavior on jet formation is illustrated. Finally, the possibility to simulate the late stage of jet expansion and fragmentation is explored, to evaluate the mass distribution of the ejecta and their ballistic properties, still essentially unknown in the experiments.

  2. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    Directory of Open Access Journals (Sweden)

    Diogo Santos

    2016-06-01

    Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.

  3. Charge-dependent correlations from event-by-event anomalous hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Yuji [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Hirano, Tetsufumi [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Kharzeev, Dmitri E. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Department of Physics and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2016-12-15

    We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables.

  4. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2008-09-01

    Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable

  5. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  6. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases

    Science.gov (United States)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.

    2018-03-01

    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  7. Assessing factors affecting the thermal properties of a passive thermal refuge using three-dimensional hydrodynamic flow and transport modeling

    Science.gov (United States)

    Decker, Jeremy D.; Swain, Eric D.; Stith, Bradley M.; Langtimm, Catherine A.

    2013-01-01

    Everglades restoration activities may cause changes to temperature and salinity stratification at the Port of the Islands (POI) marina, which could affect its suitability as a cold weather refuge for manatees. To better understand how the Picayune Strand Restoration Project (PSRP) may alter this important resource in Collier County in southwestern Florida, the USGS has developed a three-dimensional hydrodynamic model for the marina and canal system at POI. Empirical data suggest that manatees aggregate at the site during winter because of thermal inversions that provide warmer water near the bottom that appears to only occur in the presence of salinity stratification. To study these phenomena, the environmental fluid dynamics code simulator was used to represent temperature and salinity transport within POI. Boundary inputs were generated using a larger two-dimensional model constructed with the flow and transport in a linked overland-aquifer density-dependent system simulator. Model results for a representative winter period match observed trends in salinity and temperature fluctuations and produce temperature inversions similar to observed values. Modified boundary conditions, representing proposed PSRP alterations, were also tested to examine the possible effect on the salinity stratification and temperature inversion within POI. Results show that during some periods, salinity stratification is reduced resulting in a subsequent reduction in temperature inversion compared with the existing conditions simulation. This may have an effect on POI’s suitability as a passive thermal refuge for manatees and other temperature-sensitive species. Additional testing was completed to determine the important physical relationships affecting POI’s suitability as a refuge.

  8. Classifying and modelling spiral structures in hydrodynamic simulations of astrophysical discs

    Science.gov (United States)

    Forgan, D. H.; Ramón-Fox, F. G.; Bonnell, I. A.

    2018-05-01

    We demonstrate numerical techniques for automatic identification of individual spiral arms in hydrodynamic simulations of astrophysical discs. Building on our earlier work, which used tensor classification to identify regions that were `spiral-like', we can now obtain fits to spirals for individual arm elements. We show this process can even detect spirals in relatively flocculent spiral patterns, but the resulting fits to logarithmic `grand-design' spirals are less robust. Our methods not only permit the estimation of pitch angles, but also direct measurements of the spiral arm width and pattern speed. In principle, our techniques will allow the tracking of material as it passes through an arm. Our demonstration uses smoothed particle hydrodynamics simulations, but we stress that the method is suitable for any finite-element hydrodynamics system. We anticipate our techniques will be essential to studies of star formation in disc galaxies, and attempts to find the origin of recently observed spiral structure in protostellar discs.

  9. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  10. Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Supriya Dhabal

    2014-01-01

    Full Text Available We present a novel hybrid algorithm based on particle swarm optimization (PSO and simulated annealing (SA for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.

  11. Hydrodynamic and thermal modelling of gas-particle flow in fluidized beds

    International Nuclear Information System (INIS)

    Abdelkawi, O.S; Abdalla, A.M.; Atwan, E.F; Abdelmonem, S.A.; Elshazly, K.M.

    2009-01-01

    In this study a mathematical model has been developed to simulate two dimensional fluidized bed with uniform fluidization. The model consists of two sub models for hydrodynamic and thermal behavior of fluidized bed on which a FORTRAN program entitled (NEWFLUIDIZED) is devolved. The program is used to predict the volume fraction of gas and particle phases, the velocity of the two phases, the gas pressure and the temperature distribution for two phases. Also the program calculates the heat transfer coefficient. Besides the program predicts the fluidized bed stability and determines the optimum input gas velocity for fluidized bed to achieve the best thermal behavior. The hydrodynamic model is verified by comparing its results with the computational fluid dynamic code MFIX . While the thermal model was tested and compared by the available previous experimental correlations.The model results show good agreement with MFIX results and the thermal model of the present work confirms Zenz and Gunn equations

  12. Computer modeling and simulation in inertial confinement fusion

    International Nuclear Information System (INIS)

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper we describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab

  13. Dilepton production from the quark-gluon plasma using (3 +1 )-dimensional anisotropic dissipative hydrodynamics

    Science.gov (United States)

    Ryblewski, Radoslaw; Strickland, Michael

    2015-07-01

    We compute dilepton production from the deconfined phase of the quark-gluon plasma using leading-order (3 +1 )-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equations employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The momentum-space anisotropy is also taken into account in the computation of the dilepton production rate, allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse momentum, and pair rapidity. We demonstrate that high-energy dilepton production is extremely sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon plasma generated in relativistic heavy-ion collisions using high-energy dilepton yields.

  14. Resistance scaling function for two-dimensional superconductors and Monte Carlo vortex-fluctuation simulations

    International Nuclear Information System (INIS)

    Minnhagen, P.; Weber, H.

    1985-01-01

    A Monte Carlo simulation of the Ginsburg-Landau Coulomb-gas model for vortex fluctuations is described and compared to the measured resistance scaling function for two-dimensional superconductors. This constitutes a new, more direct way of confirming the vortex-fluctuation explanation for the resistive tail of high-sheet-resistance superconducting films. The Monte Carlo data obtained indicate a striking accordance between theory and experiments

  15. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  16. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; López-Cámara, Diego

    2012-01-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρ∝r –k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  17. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  18. Utilizing dimensional analysis with observed data to determine the significance of hydrodynamic solutions in coastal hydrology

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.; Hughes, Joseph D.

    2014-01-01

    In this paper, the authors present an analysis of the magnitude of the temporal and spatial acceleration (inertial) terms in the surface-water flow equations and determine the conditions under which these inertial terms have sufficient magnitude to be required in the computations. Data from two South Florida field sites are examined and the relative magnitudes of temporal acceleration, spatial acceleration, and the gravity and friction terms are compared. Parameters are derived by using dimensionless numbers and applied to quantify the significance of the hydrodynamic effects. The time series of the ratio of the inertial and gravity terms from field sites are presented and compared with both a simplified indicator parameter and a more complex parameter called the Hydrodynamic Significance Number (HSN). Two test-case models were developed by using the SWIFT2D hydrodynamic simulator to examine flow behavior with and without the inertial terms and compute the HSN. The first model represented one of the previously-mentioned field sites during gate operations of a structure-managed coastal canal. The second model was a synthetic test case illustrating the drainage of water down a sloped surface from an initial stage while under constant flow. The analyses indicate that the times of substantial hydrodynamic effects are sporadic but significant. The simplified indicator parameter correlates much better with the hydrodynamic effect magnitude for a constant width channel such as Miami Canal than at the non-uniform North River. Higher HSN values indicate flow situations where the inertial terms are large and need to be taken into account.

  19. The tidal hydrodynamics modeling of the Topolobampo coastal lagoon system and the implications for pollutant dispersion

    International Nuclear Information System (INIS)

    Montano-Ley, Y.; Peraza-Vizcarra, R.; Paez-Osuna, F.

    2007-01-01

    The tidal hydrodynamics of the Topolobampo coastal lagoon system (Mexico) has been investigated through a modified two dimensional non-linear hydrodynamic finite difference model. The advective and diffusive process acting over a hypothetical pollutant released into the coastal lagoon have also been simulated. Maxima tidal currents (0.85 m/s) were predicted within the main channel, in agree with direct measurements. The direction of the observed fastest currents (SW), also agree quite well with the direction of the strongest tidal current predicted in this investigation, which occur during the ebb when the water of the coastal lagoon is discharged into the Gulf of California. Residual currents (0.01-0.05 m/s) were also predicted. The hypothetical pollutant released within the Topolobampo Harbor would spread to both Ohuira and Topolobampo sections, reaching the inlet after approximately 12 days. - A model has been developed to simulate the tidal hydrodynamics and the behavior of a pollutant in the Topolobampo lagoon

  20. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  1. HOTSED: a discrete element model for simulating hydrodynamic conditions and adsorbed and dissolved radioisotope concentrations in estuaries

    International Nuclear Information System (INIS)

    Fields, D.E.; Hetrick, D.M.

    1978-12-01

    A model has been developed to study the feasibility of simulating one-dimensional transport of radioisotope-tagged sediment in tidal-dominated estuaries. A preliminary one-dimensional model for simulating hydrodynamic, thermal, and dissolved radionuclide concentrations in tidal estuaries was merged with an improved version of the SEDTRN model, a multi-sediment-size class model of bedload and suspended sediment transport. The improved SEDTRN model, which employs a velocity-based rather than an energy-based sediment transport rate calculation and accounts for nonzero channel bed slope, is given credence by comparing its results in stand-alone form to those obtained using the parent model. Results of the latter model have been shown to compare favorably to field measurements. The combined preliminary model is called HOTSED. Details of model modifications, the addition of printer plot output capability, and a discussion of input and output structures are included. The HOTSED model is applied to the Hudson River under tidal-transient conditions and the transport ''tagged'' or radioisotope-bearing sediment is simulated. The code is designed specifically for applications with dominant tidal cycling. It requires, for a 76-element channel system, 270 thousand bytes of storage and, for a simulation of 25 hours, has an execution time of approximately five minutes on the IBM System 360/91 computer

  2. A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    Directory of Open Access Journals (Sweden)

    Yujun Yi

    2017-01-01

    Full Text Available The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon, which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movement in this project. Preissmann four-point partial-node implicit scheme was used to solve the governing equations in this study. Water flow and pollutant movement were appropriately simulated and the results indicated that this water quality model was comparable to MIKE 11 and had a good performance and accuracy. Simulation accuracy and model uncertainty were analyzed. Based on the validated water quality model, six pollution scenarios (Q1 = 10 m3/s, Q2 = 30 m3/s, and Q3 = 60 m3/s for volatile phenol (VOP and contaminant mercury (Hg were simulated for the MRP. Emergent pollution accidents were forecasted and changes of water quality were analyzed according to the simulations results, which helped to guarantee continuously transferring water for a large water transfer project.

  3. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    Science.gov (United States)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  4. SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output

    Science.gov (United States)

    MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.

    2007-05-01

    SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs

  5. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  6. Simulation and Analysis of Converging Shock Wave Test Problems

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

  7. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    Science.gov (United States)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  8. Study on two-dimensional induced signal readout of MRPC

    International Nuclear Information System (INIS)

    Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin

    2012-01-01

    A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.

  9. Smoothed particle hydrodynamics simulations of flow separation at bends

    NARCIS (Netherlands)

    Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.

    2014-01-01

    The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are

  10. Smoothed particle hydrodynamics simulations of flow separation at bends

    NARCIS (Netherlands)

    Hou, Q.; Kruisbrink, A.C.H.; Pearce, F.R.; Tijsseling, A.S.; Yue, T.

    2013-01-01

    The separated flow in two-dimensional bends is numerically simulated for a right-angled bend with different ratios of the channel widths and for a symmetric bend with different turning angles. Unlike the potential flow solutions that have several restrictive assumptions, the Euler equations are

  11. Two-dimensional full-wave code for reflectometry simulations in TJ-II

    International Nuclear Information System (INIS)

    Blanco, E.; Heuraux, S.; Estrada, T.; Sanchez, J.; Cupido, L.

    2004-01-01

    A two-dimensional full-wave code in the extraordinary mode has been developed to simulate reflectometry in TJ-II. The code allows us to study the measurement capabilities of the future correlation reflectometer that is being installed in TJ-II. The code uses the finite-difference-time-domain technique to solve Maxwell's equations in the presence of density fluctuations. Boundary conditions are implemented by a perfectly matched layer to simulate free propagation. To assure the stability of the code, the current equations are solved by a fourth-order Runge-Kutta method. Density fluctuation parameters such as fluctuation level, wave numbers, and correlation lengths are extrapolated from those measured at the plasma edge using Langmuir probes. In addition, realistic plasma shape, density profile, magnetic configuration, and experimental setup of TJ-II are included to determine the plasma regimes in which accurate information may be obtained

  12. Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2014-01-01

    Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.

  13. Two-fluid hydrodynamic modes in a trapped superfluid gas

    International Nuclear Information System (INIS)

    Taylor, E.; Griffin, A.

    2005-01-01

    In the collisional region at finite temperatures, the collective modes of superfluids are described by the Landau two-fluid hydrodynamic equations. This region can now be probed over the entire BCS-Bose-Einstein-condensate crossover in trapped Fermi superfluids with a Feshbach resonance, including the unitarity region. Building on the approach initiated by Zaremba, Nikuni, and Griffin in 1999 for trapped atomic Bose gases, we present a variational formulation of two-fluid hydrodynamic collective modes based on the work of Zilsel in 1950 developed for superfluid helium. Assuming a simple variational Ansatz for the superfluid and normal fluid velocities, the frequencies of the hydrodynamic modes are given by solutions of coupled algebraic equations, with constants only involving spatial integrals over various equilibrium thermodynamic derivatives. This variational approach is both simpler and more physical than a direct attempt to solve the Landau two-fluid differential equations. Our two-fluid results are shown to reduce to those of Pitaevskii and Stringari for a pure superfluid at T=0

  14. Three-dimensional simulations in optimal performance trial between two types of Hall sensors fabrication technologies

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Maria-Alexandra, E-mail: map65@cam.ac.uk

    2015-10-01

    The main objective of the present work is to make a comparison between Hall devices integrated in regular bulk and Silicon-on-Insulator (SOI) CMOS technology. A three-dimensional model based on numerical estimation is provided for a particular XL Hall structure in two different technologies (the first one is XFAB XH 0.35 µm regular bulk CMOS and the second one is XFAB SOI XI10 1 µm non-fully depleted). In assessing the performance of the Hall Effect sensors included in the comparison, both three-dimensional physical simulations and measurements results will be used. In order to discriminate which category of sensors has the highest performance, their main characteristic parameters, including input resistance, Hall voltage, absolute sensitivity and their temperature drift, will be extracted and compared. Electrostatic potential and current density distribution are important aspects that are also investigated. The particular technology offering the highest sensor performance is identified. - Highlights: • A comparison between Hall devices integrated in regular bulk and SOI CMOS technologies is made. • A three-dimensional model for the XL Hall structure, in the two technologies, is provided. • The main characteristic parameters and the temperature drift are investigated. • The sensors performance is evaluated using 3D physical simulations and measurements data.

  15. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    Science.gov (United States)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has

  16. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-05-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  17. Computer simulation of the martensite transformation in a model two-dimensional body

    International Nuclear Information System (INIS)

    Chen, S.; Khachaturyan, A.G.; Morris, J.W. Jr.

    1979-06-01

    An analytical model of a martensitic transformation in an idealized body is constructed and used to carry out a computer simulation of the transformation in a pseudo-two-dimensional crystal. The reaction is assumed to proceed through the sequential transformation of elementary volumes (elementary martensitic particles, EMP) via the Bain strain. The elastic interaction between these volumes is computed and the transformation path chosen so as to minimize the total free energy. The model transformation shows interesting qualitative correspondencies with the known features of martensitic transformations in typical solids

  18. Long-range transmission of pollutants simulated by a two-dimensional pseudospectral dispersion model

    International Nuclear Information System (INIS)

    Prahm, L.P.; Christensen, O.

    1977-01-01

    The pseudospectral dispersion model (Christensen and Prahm, 1976) is adapted for simulation of the long-range transmission of sulphur pollutants in the European region, covering an area of about 4000 km x 4000 km. Regional ''background'' concentrations of sulphur oxides are found to be highly dependent on distant sources and to correlate poorly with local source strength during the considered three- and four-day episodes. The simulation is based on emission data, given in squares of about 50 km x 50 km and on synoptic wind fields derived from observed wind velocities of the 850 mb level and the surface level. The two-dimensional model includes a constant vertical mixing depth. Appropriate values for the deposition and the transformation rates of SO 2 and SO/sup 4 are used. The concentration of pollutants computed from the two-dimensional pseudospectral dispersion model reflects the variable meteorological conditions. Computed concentrations are compared with measurements, giving spatial correlations between 0.4 and 0.8 for more than 400 ground-based 24 h mean values, and a spatial correlation of 0.9 for eight aircraft samples averaged over approx.30 min. A discussion of the influence of different sources of error in the model simulation is given. The high numerical accuracy of the pseudospectral model is combined with a modest consumption of CPU computer time. This study is the first application of the pseudospectral dispersion model which compares computed concentrations with measured field data. The model has possible applications as a tool for assessment of the impact of both national and international emission regulation strategies

  19. Many Drops Interactions I: Simulation of Coalescence, Flocculation and Fragmentation of Multiple Colliding Drops with Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2012-06-01

    Full Text Available Smoothed Particle Hydrodynamics (SPH is a Lagrangian mesh-free formalism and has been useful to model continuous fluid. This formalism is employed to solve the Navier-Stokes equations by replacing the fluid with a set of particles. These particles are interpolation points from which properties of the fluid can be determined. In this study, the SPH method is applied to simulate the hydrodynamics interaction of many drops, showing some settings for the coalescence, fragmentation and flocculation problem of equally sized liquid drops in three-dimensional spaces. For small velocities the drops interact only through their deformed surfaces and the flocculation of the droplets arises. This result is very different if the collision velocity is large enough for the fragmentation of droplets takes place. We observe that for velocities around 15 mm/ms the coalescence of droplets occurs. The velocity vector fields formed inside the drops during the collision process are shown.

  20. Numerical simulation of potato slices drying using a two-dimensional finite element model

    Directory of Open Access Journals (Sweden)

    Beigi Mohsen

    2017-01-01

    Full Text Available An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick’s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y. Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.

  1. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  2. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A.; Atzeni, S.; Schiavi, A. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)

    2014-01-15

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  3. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies

  4. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    Science.gov (United States)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  5. The design of visible system of two-dimensional numerical simulation of radon-222 migration

    International Nuclear Information System (INIS)

    Zhang Xiongjie; Zhang Ye; Zhang Junkui; Tang Bin

    2008-01-01

    On the grounds of the radon transport equation in the even overburden layer, the value simulation equation using the two-dimensional finite difference method had been inferred, and the visible system of value simulation was proposed by programming with VB and Matlab. The mixed programming and the method of using repetitive process to solve difference equation were narrated in detail. Through this paper, a practical tool was offered to the researcher studying on the radon migration in the even overburden layer, and a more convenient developing way was explored for the researchers developing the relative system. (authors)

  6. Vertical drying of a suspension of sticks: Monte Carlo simulation for continuous two-dimensional problem

    Science.gov (United States)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Vygornitskii, Nikolai V.

    2018-02-01

    The vertical drying of a two-dimensional colloidal film containing zero-thickness sticks (lines) was studied by means of kinetic Monte Carlo (MC) simulations. The continuous two-dimensional problem for both the positions and orientations was considered. The initial state before drying was produced using a model of random sequential adsorption with isotropic orientations of the sticks. During the evaporation, an upper interface falls with a linear velocity in the vertical direction, and the sticks undergo translational and rotational Brownian motions. The MC simulations were run at different initial number concentrations (the numbers of sticks per unit area), pi, and solvent evaporation rates, u . For completely dried films, the spatial distributions of the sticks, the order parameters, and the electrical conductivities of the films in both the horizontal, x , and vertical, y , directions were examined. Significant evaporation-driven self-assembly and stratification of the sticks in the vertical direction was observed. The extent of stratification increased with increasing values of u . The anisotropy of the electrical conductivity of the film can be finely regulated by changes in the values of pi and u .

  7. Hydrodynamic escape from planetary atmospheres

    Science.gov (United States)

    Tian, Feng

    Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early

  8. Numerical simulation of two-dimensional late-stage coarsening for nucleation and growth

    International Nuclear Information System (INIS)

    Akaiwa, N.; Meiron, D.I.

    1995-01-01

    Numerical simulations of two-dimensional late-stage coarsening for nucleation and growth or Ostwald ripening are performed at area fractions 0.05 to 0.4 using the monopole and dipole approximations of a boundary integral formulation for the steady state diffusion equation. The simulations are performed using two different initial spatial distributions. One is a random spatial distribution, and the other is a random spatial distribution with depletion zones around the particles. We characterize the spatial correlations of particles by the radial distribution function, the pair correlation functions, and the structure function. Although the initial spatial correlations are different, we find time-independent scaled correlation functions in the late stage of coarsening. An important feature of the late-stage spatial correlations is that depletion zones exist around particles. A log-log plot of the structure function shows that the slope at small wave numbers is close to 4 and is -3 at very large wave numbers for all area fractions. At large wave numbers we observe oscillations in the structure function. We also confirm the cubic growth law of the average particle radius. The rate constant of the cubic growth law and the particle size distribution functions are also determined. We find qualitatively good agreement between experiments and the present simulations. In addition, the present results agree well with simulation results using the Cahn-Hilliard equation

  9. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Ebeling-Koning, D.B.; Todreas, N.E.

    1983-09-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, and bubble distributions were measured in square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase incline flow a new flow separation phenomena was observed and modeled. A two-region liquid velocity model is developed to explain the experimentally observed phenomena. Fundamental data for bubbles rising in rod arrays were also taken

  10. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-01

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  11. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics.

    Science.gov (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent

    2017-11-24

    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  12. Numerical simulations of glass impacts using smooth particle hydrodynamics

    International Nuclear Information System (INIS)

    Mandell, D.A.; Wingate, C.A.

    1995-01-01

    As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data

  13. Interaction of Microphysical Aerosol Processes with Hydrodynamics Mixing

    KAUST Repository

    Alshaarawi, Amjad

    2015-12-15

    This work is concerned with the interaction between condensing aerosol dynamics and hydrodynamic mixing within ow configurations in which aerosol particles form (nucleate) from a supersaturated vapor and supersaturation is induced by the mixing of two streams (a saturated stream and a cold one). Two canonical hydrodynamic configurations are proposed for the investigation. The First is the steady one-dimensional opposed-ow configuration. The setup consists of the two (saturated and cold) streams owing from opposite nozzles. A mixing layer is established across a stagnation plane in the center where nucleation and other aerosol dynamics are triggered. The second is homogeneous isotropic turbulence in a three-dimensional periodic domain. Patches of a hot saturated gas mix with patches of a cold one. A mixing layer forms across the growing interface where the aerosol dynamics of interest occur. In both configurations, a unique analogy is observed. The results reveal a complex response to variations in the mixing rates. Depending on the mixing rate, the response of the number density falls into one of two regimes. For fast mixing rates, the maximum reached number density of the condensing droplets increases with the hydrodynamic time. We refer to this as the nucleation regime. On the contrary, for low mixing rates, the maximum reached number density decreases with the hydrodynamic time. We refer to this as the consumption regime. It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes.

  14. Experimental and numerical simulations of the hydrodynamic dispersion of a pollutant effluent in a estuarine coastal zone

    International Nuclear Information System (INIS)

    Gidas, N.K.; Koutitonsky, V.G.

    1996-01-01

    An experimental and numerical study was performed to measure and simulate the hydrodynamic dispersion of a pollutant effluent discharged by an outfall diffuser into an estuarine coastal zone near Rimouski, Canada. Field measurements of currents, tides, salinity, and winds were obtained in the vicinity of the injection site, and two tracer dispersion experiments were carried on in these coastal waters. The measurements were taken before and after the construction of the marine outfall diffuser. The similitude between the plume of a tracer (physical model) released into the coastal waters before construction and that of the real effluent (prototype) discharged at the same site was studied. A new coefficient of similitude was established, which allows to transpose the concentrations of the physical model tracer to the waste water concentrations of the prototype. The numerical simulation (2D) is performed with a hydrodynamic model and an advection-dispersion model of the MIKE21 system from the Danish Hydraulic Institute, using the so-called telescopic approach. The objective of these simulations was to predict, among other things, the pollutant effluent concentrations for critical hydrodynamic conditions relative to the aquatic ecosystem to be protected. The methodology elaborated was used for the management of the coastal environments subjected to pollution. (author). 28 refs., 2 tabs., 12 figs

  15. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    Science.gov (United States)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  16. Relativistic, Viscous, Radiation Hydrodynamic Simulations of Geometrically Thin Disks. I. Thermal and Other Instabilities

    Science.gov (United States)

    Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek

    2018-04-01

    We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.

  17. Effective viscosity of two-dimensional suspensions: Confinement effects

    Science.gov (United States)

    Doyeux, Vincent; Priem, Stephane; Jibuti, Levan; Farutin, Alexander; Ismail, Mourad; Peyla, Philippe

    2016-08-01

    We study the rheology of a sheared two-dimensional (2D) suspension of non-Brownian disks in the presence of walls. Although it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension provides valuable insights and helps in the understanding of 3D results. Due to the direct visualization of the whole 2D flow (the shear plane), we are able to give a clear interpretation of the full hydrodynamics of semidilute confined suspensions. For instance, we examine the role of disk-wall and disk-disk interactions to determine the dissipation of confined sheared suspensions whose effective viscosity depends on the area fraction ϕ of the disks as ηeff=η0[1 +[η ] ϕ +β ϕ2+O (ϕ3) ] . We provide numerical estimates of [η ] and β for a wide range of confinements. As a benchmark for our simulations, we compare the numerical results obtained for [η ] and β for very weak confinements with analytical values [η] ∞ and β∞ obtained for an infinite fluid. If the value [η] ∞=2 is well known in the literature, much less is published on the value of β . Here we analytically calculate with very high precision β∞=3.6 . We also reexamine the 3D case in the light of our 2D results.

  18. Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations

    International Nuclear Information System (INIS)

    Vahedi, V.; Birdsall, C.K.; Lieberman, M.A.; DiPeso, G.; Rognlien, T.D.

    1993-01-01

    Weakly ionized processing plasmas are studied in two dimensions using a bounded particle-in-cell (PIC) simulation code with a Monte Carlo collision (MCC) package. The MCC package models the collisions between charged and neutral particles, which are needed to obtain a self-sustained plasma and the proper electron and ion energy loss mechanisms. A two-dimensional capacitive radio-frequency (rf) discharge is investigated in detail. Simple frequency scaling laws for predicting the behavior of some plasma parameters are derived and then compared with simulation results, finding good agreements. It is found that as the drive frequency increases, the sheath width decreases, and the bulk plasma becomes more uniform, leading to a reduction of the ion angular spread at the target and an improvement of ion dose uniformity at the driven electrode

  19. Hydrodynamic instability growth of three-dimensional, “native-roughness” modulations in x-ray driven, spherical implosions at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V. A.; Weber, S. V.; Casey, D. T.; Clark, D. S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Landen, O. L.; Robey, H. F.; Weber, C. R. [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92186 (United States)

    2015-07-15

    Hydrodynamic instability growth experiments with three-dimensional (3-D) surface-roughness modulations were performed on plastic (CH) shell spherical implosions at the National Ignition Facility (NIF) [E. M. Campbell, R. Cauble, and B. A. Remington, AIP Conf. Proc. 429, 3 (1998)]. The initial capsule outer-surface roughness was similar to the standard specifications (“native roughness”) used in a majority of implosions on NIF. The experiments included instability growth measurements of the perturbations seeded by the thin membranes (or tents) used to hold the capsules inside the hohlraums. In addition, initial modulations included two divots used as spatial fiducials to determine the convergence in the experiments and to check the accuracy of 3D simulations in calculating growth of known initial perturbations. The instability growth measurements were performed using x-ray, through-foil radiography of one side of the imploding shell, based on time-resolved pinhole imaging. Averaging over 30 similar images significantly increases the signal-to-noise ratio, making possible a comparison with 3-D simulations. At a convergence ratio of ∼3, the measured tent and divot modulations were close to those predicted by 3-D simulations (within ∼15%–20%), while measured 3-D, broadband modulations were ∼3–4 times larger than those simulated based on the growth of the known imposed initial surface modulations. In addition, some of the measured 3-D features in x-ray radiographs did not resemble those characterized on the outer capsule surface before the experiments. One of the hypotheses to explain the results is based on the increased instability amplitudes due to modulations of the oxygen content in the bulk of the capsule. As the target assembly and handling procedures involve exposure to UV light, this can increase the uptake of the oxygen into the capsule, with irregularities in the oxygen seeding hydrodynamic instabilities. These new experimental results have

  20. DIMENSIONAL DEPENDENCE OF THE HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Dolence, Joshua C.; Burrows, Adam; Murphy, Jeremiah W.; Nordhaus, Jason

    2013-01-01

    A major goal over the last decade has been understanding which multidimensional effects are crucial in facilitating core-collapse supernova (CCSN) explosions. Unfortunately, much of this work has necessarily assumed axisymmetry. In this work, we present analyses of simplified two-dimensional (2D) and three-dimensional (3D) CCSN models with the goal of comparing the hydrodynamics in setups that differ only in dimension. Not surprisingly, we find many differences between 2D and 3D models. While some differences are subtle and perhaps not crucial, others are dramatic and make interpreting 2D models problematic. In particular, axisymmetric models produce excess power at the largest spatial scales, power that has been deemed critical in previous explosion models. Nevertheless, our 3D models, which have an order of magnitude less power than 2D models on large scales, explode earlier. Since explosions occur earlier in 3D than in 2D, the vigorous large-scale sloshing is either not critical in any dimension or the explosion mechanism operates differently in 2D and 3D. On the other hand, we find that the average parcel of matter in the gain region has been exposed to net heating for up to 30% longer in 3D than in 2D, an effect we attribute to the differing characters of turbulence in 2D and 3D. We suggest that this effect plays a prominent role in producing earlier explosions in 3D. Finally, we discuss a simple model for the runaway growth of buoyant bubbles that is able to quantitatively account for the growth of the shock radius and predicts a critical luminosity relation.

  1. Crossflow-induced vibrations of tube banks: hydrodynamic forces and mathematical models

    International Nuclear Information System (INIS)

    Chen, S.S.

    1977-01-01

    The objective of this paper is to present a method of analysis for the hydrodynamic forces acting on tube banks and a mathematical model for multiple tubes and multiple excitation mechanisms incorporating tube/fluid coupling. The hydrodynamic forces acting on tube banks are analyzed using the two dimensional potential flow theory

  2. Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    C. Bhagat

    2014-12-01

    Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.

  3. THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS

    International Nuclear Information System (INIS)

    Martin, Rebecca G.; Nixon, Chris; Armitage, Philip J.; Lubow, Stephen H.; Price, Daniel J.; Doğan, Suzan; King, Andrew

    2014-01-01

    We use three-dimensional hydrodynamical simulations to show that a highly misaligned accretion disk around one component of a binary system can exhibit global Kozai-Lidov cycles, where the inclination and eccentricity of the disk are interchanged periodically. This has important implications for accreting systems on all scales, for example, the formation of planets and satellites in circumstellar and circumplanetary disks, outbursts in X-ray binary systems, and accretion onto supermassive black holes

  4. Hydrodynamically Coupled Brownian Dynamics simulations for flow on non-Newtonian fluids

    NARCIS (Netherlands)

    Ahuja, Vishal Raju

    2018-01-01

    This thesis deals with model development for particle-based flow simulations of non-Newtonian fluids such as polymer solutions. A novel computational technique called Hydrodynamically Coupled Brownian Dynamics (HCBD) is presented in this thesis. This technique essentially couples the Brownian motion

  5. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  6. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  7. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    Science.gov (United States)

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  8. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection

    Science.gov (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.

    2017-12-01

    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  9. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.

    NARCIS (Netherlands)

    Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The

  10. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  11. Hysteresis and avalanches in two-dimensional foam rheology simulations

    International Nuclear Information System (INIS)

    Jiang, Y.; Swart, P.J.; Saxena, A.; Asipauskas, M.; Glazier, J.A.

    1999-01-01

    Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a driven large-Q Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At small strain amplitudes, bubbles deform and recover their shapes elastically, and the macroscopic response is that of a linear elastic cellular material. For increasing strain amplitude, the energy-strain curve starts to exhibit hysteresis before any topological rearrangements occur, indicating a macroscopic viscoelastic response. When the applied strain amplitude exceeds a critical value, the yield strain, topological rearrangements occur, the foam starts to flow, and we observe macroscopic irreversibility. We find that the dynamics of topological rearrangements depend sensitively on the structural disorder. Structural disorder decreases the yield strain; sufficiently high disorder changes the macroscopic response of a foam from a viscoelastic solid to a viscoelastic fluid. This wide-ranging dynamical response and the associated history effects of foams result from avalanchelike rearrangement events. The spatiotemporal statistics of rearrangement events do not display long-range correlations for ordered foams or at low shear rates, consistent with experimental observations. As the shear rate or structural disorder increases, the topological events become more correlated and their power spectra change from that of white noise toward 1/f noise. Intriguingly, the power spectra of the total stored energy also exhibit this 1/f trend. copyright 1999 The American Physical Society

  12. Two dimensional dopant diffusion study by scanning capacitance microscopy and TSUPREM IV process simulation

    International Nuclear Information System (INIS)

    Kim, J.; McMurray, J. S.; Williams, C. C.; Slinkman, J.

    1998-01-01

    We report the results of a 2-step two-dimensional (2D) diffusion study by Scanning Capacitance Microscopy (SCM) and 2D TSUPREM IV process simulation. A quantitative 2D dopant profile of gate-like structures consisting heavily implanted n+ regions separated by a lighter doped n-type region underneath 0.56 μm gates is measured with the SCM. The SCM is operated in the constant-change-in-capacitance mode. The 2-D SCM data is converted to dopant density through a physical model of the SCM/silicon interaction. This profile has been directly compared with 2D TSUPREM IV process simulation and used to calibrate the simulation parameters. The sample is then further subjected to an additional diffusion in a furnace for 80 minutes at 1000C. The SCM measurement is repeated on the diffused sample. This final 2D dopant profile is compared with a TSUPREM IV process simulation tuned to fit the earlier profile with no change in the parameters except the temperature and time for the additional diffusion. Our results indicate that there is still a significant disagreement between the two profiles in the lateral direction. TSUPREM IV simulation considerably underestimates the diffusion under the gate region

  13. Full molecular dynamics simulations of liquid water and carbon tetrachloride for two-dimensional Raman spectroscopy in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ju-Yeon, E-mail: ju8879@kuchem.kyoto-u.ac.jp; Ito, Hironobu, E-mail: h.ito@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka, E-mail: tanimura@kuchem.kyoto-u.ac.jp

    2016-12-20

    Frequency-domain two-dimensional (2D) Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium–nonequilibrium hybrid molecular dynamics (MD) simulation algorithm. An appropriate representation of the 2D Raman spectrum obtained from MD simulations provides an easy-to-understand depiction of structural and dynamical properties. We elucidate mechanisms governing the 2D signal profiles involving anharmonic mode–mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal profiles and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently. Moreover, the MD simulation results allow us to visualize the molecular structure and dynamics by comparing the accurately calculated spectrum with experimental result.

  14. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J.

    2016-01-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  15. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-05-15

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  16. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  17. Numerical simulations of radiation hydrodynamics and modeling of high temperature hohlraum cavities

    International Nuclear Information System (INIS)

    Gupta, N.K.; Godwal, B.K.

    2003-10-01

    A summary of our efforts towards the validation of radiation hydrodynamics and opacity models are presented. Effects of various parameters on the radiation temperature inside an inertial confinement fusion (ICF) hohlraum, the effects of non-local thermodynamic equilibrium conditions on emission and absorption, and the hydrodynamics of aluminium and gold foils driven by radiation are studied. LTE and non-LTE predictions for emitted radiation are compared with the experimental results and it is seen that non-LTE simulations show a marked improvement over LTE results. It is shown that the mixing of two high Z materials can lead to an enhancement in the Rosseland mean. An experimental study of soft x-ray emission from laser-irradiated Au-Cu mix-Z targets confirmed these predictions. It is seen that only multi group non-LTE radiation transport is able to explain experimentally observed features in the conversion efficiency of laser light to x-rays. One group radiation transport under predicts the radiation temperature. It is shown that erroneous results can be obtained if the space mesh in the hohlraum wall is not fine enough. Hydrodynamics of a wedge shaped aluminium foil driven by the hohlraum radiation is also presented and results are compared with NOVA laser experiments. Laser driven shock wave EOS and gold hohlraum experiments carried out at CAT are analyzed and they confirmed our theoretical estimates. (author)

  18. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy

    Directory of Open Access Journals (Sweden)

    P. Martini

    2004-01-01

    Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  19. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy)

    Science.gov (United States)

    Martini, P.; Carniello, L.; Avanzi, C.

    2004-03-01

    The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy) are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  20. New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars

    Science.gov (United States)

    Hossain, Murshed; Mullan, D. J.

    1990-01-01

    Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.

  1. 3D hydrodynamic simulations of carbon burning in massive stars

    Science.gov (United States)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.

    2017-10-01

    We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.

  2. Whitham modulation theory for the two-dimensional Benjamin-Ono equation.

    Science.gov (United States)

    Ablowitz, Mark; Biondini, Gino; Wang, Qiao

    2017-09-01

    Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.

  3. Numerical analysis of temperature and flow effects in a dry, two-dimensional, porous-media reservoir used for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.

    1979-10-01

    The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.

  4. A two-dimensional hydrodynamic model of turbulent transfer of CO2 and H2O over a heterogeneous land surface

    Science.gov (United States)

    Mukhartova, Yu. V.; Krupenko, A. S.; Mangura, P. A.; Levashova, N. T.

    2018-01-01

    A two-dimensional hydrodynamic model was developed and applied to describe turbulent fluxes of CO2 and H2O within the atmospheric surface layer over a heterogeneous land surface featuring mosaic vegetation and complex topography. Numerical experiments were carried out with a 4.5-km profile that crosses a hilly region in the central part of European Russia, with the diverse land-use patterns (bare soil, crop areas, grasslands, and forests). The results showed very strong variability of the vertical and horizontal turbulent CO2 and H2O fluxes. The standard deviations of the vertical fluxes were estimated for separate profile sections with uniform vegetation cover for daylight conditions in summer, and they were comparable with the mean vertical fluxes for corresponding sections. The highest horizontal turbulent fluxes occurred at the boundaries between different plant communities and at irregularities in surface profile. In some cases, these fluxes reached 10-20% of the absolute values of the mean vertical fluxes for corresponding profile sections. Significant errors in estimating the local and integrated fluxes e.g. when using the eddy covariance technique, can result from ignoring the surface topography, even in the case of relatively large plots with uniform vegetation cover.

  5. Hydrodynamic effects of reconnecting lake group with Yangtze River in China

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2011-12-01

    Full Text Available The hydrodynamic effects of reconnecting a lake group with the Yangtze River were simulated using a three-dimensional hydrodynamic model. The model was calibrated and validated using the measured water temperature and total phosphorous. The circulation patterns, water temperature, and water exchange conditions between sub-lakes were simulated under two conditions: (1 the present condition, in which the lake group is isolated from the Yangtze River; and (2 the future condition, with a proposed improvement in which connecting the lake group with the Yangtze River will allow river water to be diverted into the lake group. The simulation period selected was characterized by extremely high temperature and very little rain. The results show that the cold inflow from the river has a significant effect on the water temperature only near the inlets, and the effect is more obvious in the lower water layers than that in the upper ones. The circulation pattern changes significantly and small-scale vortices only exist in part of the lake regions. The water exchange between sub-lakes is greatly enhanced with the proposed improvement. The water replacement rate increases with water diversion but varies in different sub-lakes. Finally, a new water diversion scheme was proposed to avoid contamination of some lakes in the early stage.

  6. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations

    Science.gov (United States)

    Foucart, Francois

    2018-04-01

    General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.

  7. Fluctuations and symmetries in two-dimensional active gels.

    Science.gov (United States)

    Sarkar, N; Basu, A

    2011-04-01

    Motivated by the unique physical properties of biological active matter, e.g., cytoskeletal dynamics in eukaryotic cells, we set up effective two-dimensional (2d) coarse-grained hydrodynamic equations for the dynamics of thin active gels with polar or nematic symmetries. We use the well-known three-dimensional (3d) descriptions (K. Kruse et al., Eur. Phys. J. E 16, 5 (2005); A. Basu et al., Eur. Phys. J. E 27, 149 (2008)) for thin active-gel samples confined between parallel plates with appropriate boundary conditions to derive the effective 2d constitutive relations between appropriate thermodynamic fluxes and generalised forces for small deviations from equilibrium. We consider three distinct cases, characterised by spatial symmetries and boundary conditions, and show how such considerations dictate the structure of the constitutive relations. We use these to study the linear instabilities, calculate the correlation functions and the diffusion constant of a small tagged particle, and elucidate their dependences on the activity or nonequilibrium drive.

  8. Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations

    Science.gov (United States)

    Bordwell, B. R.; Brown, B. P.; Oishi, J.

    2016-12-01

    A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.

  9. Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Bachant, Peter; Ferrara, Giovanni; Ferrari, Lorenzo

    2017-01-01

    Highlights: • 2D CFD simulations compared to experimental tow-tank data on the RVAT test model. • The use of CFD with open-field-like boundaries is suggested. • A reliable estimation of the turbine performance and the wake structure is obtained. • The transitional turbulence model is recommended for low TSRs and/or small rotors. • The wake analysis identified the main vortical structures generated by the blades. - Abstract: Thanks to the continuous improvement of calculation resources, computational fluid dynamics (CFD) is expected to provide in the next few years a cost-effective and accurate tool to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines. This rotor type is in fact increasingly welcome by the wind energy community, especially in case of small size applications and/or non-conventional installation sites. In the present study, unique tow tank experimental data on the performance curve and the near-wake structure of a Darrieus rotor were used as a benchmark to validate the effectiveness of different CFD approaches. In particular, a dedicated analysis is provided to assess the suitability, the effectiveness and the future prospects of simplified two-dimensional (2D) simulations. The correct definition of the computational domain, the selection of the turbulence models and the correction of simulated data for the parasitic torque components are discussed in this study. Results clearly show that, (only) if properly set, two-dimensional CFD simulations are able to provide - with a reasonable computational cost - an accurate estimation of the turbine performance and also quite reliably describe the attended flow-field around the rotor and its wake.

  10. 2 Dimensional Hydrodynamic Flood Routing Analysis on Flood Forecasting Modelling for Kelantan River Basin

    Directory of Open Access Journals (Sweden)

    Azad Wan Hazdy

    2017-01-01

    Full Text Available Flood disaster occurs quite frequently in Malaysia and has been categorized as the most threatening natural disaster compared to landslides, hurricanes, tsunami, haze and others. A study by Department of Irrigation and Drainage (DID show that 9% of land areas in Malaysia are prone to flood which may affect approximately 4.9 million of the population. 2 Dimensional floods routing modelling demonstrate is turning out to be broadly utilized for flood plain display and is an extremely viable device for evaluating flood. Flood propagations can be better understood by simulating the flow and water level by using hydrodynamic modelling. The hydrodynamic flood routing can be recognized by the spatial complexity of the schematization such as 1D model and 2D model. It was found that most of available hydrological models for flood forecasting are more focus on short duration as compared to long duration hydrological model using the Probabilistic Distribution Moisture Model (PDM. The aim of this paper is to discuss preliminary findings on development of flood forecasting model using Probabilistic Distribution Moisture Model (PDM for Kelantan river basin. Among the findings discuss in this paper includes preliminary calibrated PDM model, which performed reasonably for the Dec 2014, but underestimated the peak flows. Apart from that, this paper also discusses findings on Soil Moisture Deficit (SMD and flood plain analysis. Flood forecasting is the complex process that begins with an understanding of the geographical makeup of the catchment and knowledge of the preferential regions of heavy rainfall and flood behaviour for the area of responsibility. Therefore, to decreases the uncertainty in the model output, so it is important to increase the complexity of the model.

  11. Thermal structure of the ionosphere of Mars - simulations with one- and two-dimensional models

    International Nuclear Information System (INIS)

    Singhal, R.P.; Whitten, R.C.

    1988-01-01

    Heat flux saturation effects are included in the present one- and two-dimensional models of the Martian upper ionosphere's thermal structure. The inclusion of small upper boundary and volume heat sources is found to yield satisfactory simulations of the dayside ion temperature observation results obtained by Viking 1's retarding potential analyzers. It is noted that the plasma flow-transport of heat from the dayside to the nightside makes no contribution to the ion and electron temperatures that have been calculated for the nightside. 22 references

  12. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  13. A computationally efficient simulator for three-dimensional Monte Carlo simulation of ion implantation into complex structures

    International Nuclear Information System (INIS)

    Li Di; Wang Geng; Chen Yang; Li Lin; Shrivastav, Gaurav; Oak, Stimit; Tasch, Al; Banerjee, Sanjay; Obradovic, Borna

    2001-01-01

    A physically-based three-dimensional Monte Carlo simulator has been developed within UT-MARLOWE, which is capable of simulating ion implantation into multi-material systems and arbitrary topography. Introducing the third dimension can result in a severe CPU time penalty. In order to minimize this penalty, a three-dimensional trajectory replication algorithm has been developed, implemented and verified. More than two orders of magnitude savings of CPU time have been observed. An unbalanced Octree structure was used to decompose three-dimensional structures. It effectively simplifies the structure, offers a good balance between modeling accuracy and computational efficiency, and allows arbitrary precision of mapping the Octree onto desired structure. Using the well-established and validated physical models in UT-MARLOWE 5.0, this simulator has been extensively verified by comparing the integrated one-dimensional simulation results with secondary ion mass spectroscopy (SIMS). Two options, the typical case and the worst scenario, have been selected to simulate ion implantation into poly-silicon under various scenarios using this simulator: implantation into a random, amorphous network, and implantation into the worst-case channeling condition, into (1 1 0) orientated wafers

  14. Fluctuating hydrodynamics for multiscale modeling and simulation: energy and heat transfer in molecular fluids.

    Science.gov (United States)

    Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei

    2012-07-28

    This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.

  15. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.

    Science.gov (United States)

    Lefauve, Adrien; Saintillan, David

    2014-02-01

    Strongly confined active liquids are subject to unique hydrodynamic interactions due to momentum screening and lubricated friction by the confining walls. Using numerical simulations, we demonstrate that two-dimensional dilute suspensions of fore-aft asymmetric polar swimmers in a Hele-Shaw geometry can exhibit a rich variety of novel phase behaviors depending on particle shape, including coherent polarized density waves with global alignment, persistent counterrotating vortices, density shocks and rarefaction waves. We also explain these phenomena using a linear stability analysis and a nonlinear traffic flow model, both derived from a mean-field kinetic theory.

  16. Development of our laser fusion integration simulation

    International Nuclear Information System (INIS)

    Li, J.; Zhai, C.; Li, S.; Li, X.; Zheng, W.; Yong, H.; Zeng, Q.; Hang, X.; Qi, J.; Yang, R.; Cheng, J.; Song, P.; Gu, P.; Zhang, A.; An, H.; Xu, X.; Guo, H.; Cao, X.; Mo, Z.; Pei, W.; Jiang, S.; Zhu, S. P.

    2013-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happening in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (authors)

  17. Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood

    Science.gov (United States)

    Ikeshima, D.; Yamazaki, D.; Kanae, S.

    2016-12-01

    CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also

  18. MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-07-20

    We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high

  19. Two-dimensional simulations of the superconducting proximity in superconductor-semiconductor junctions

    Science.gov (United States)

    Chua, Victor; Vissers, Michael; Law, Stephanie A.; Vishveshwara, Smitha; Eckstein, James N.

    2015-03-01

    We simulate the consequences of the superconducting proximity effect on the DC current response of a semiconductor-superconductor proximity device within the quasiclassical formalism in the diffusively disordered limit. The device is modeled on in-situ fabricated NS junctions of superconducting Nb films on metallic doped InAs films, with electrical terminals placed in an N-S-N T-junction configuration. Due to the non-collinear configuration of this three terminal device, a theoretical model based on coupled two dimensional spectral and distributional Usadel equations was constructed and numerically solved using Finite-Elements methods. In the regime of high junction conductance, our numerical results demonstrate strong temperature and spatial dependencies of the proximity induced modifications to spectral and transport properties. Such characteristics deviate strongly from usual tunnel junction behavior and aspects of this have been observed in prior experiments[arXiv:1402.6055].

  20. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  1. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C. R., E-mail: weber30@llnl.gov; Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-03-15

    The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400–800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement.

  2. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion

    International Nuclear Information System (INIS)

    Weber, C. R.; Clark, D. S.; Cook, A. W.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-01-01

    The deceleration stage of inertial confinement fusion implosions is modeled in detail using three-dimensional simulations designed to match experiments at the National Ignition Facility. In this final stage of the implosion, shocks rebound from the center of the capsule, forming the high-temperature, low-density hot spot and slowing the incoming fuel. The flow field that results from this process is highly three-dimensional and influences many aspects of the implosion. The interior of the capsule has high-velocity motion, but viscous effects limit the range of scales that develop. The bulk motion of the hot spot shows qualitative agreement with experimental velocity measurements, while the variance of the hot spot velocity would broaden the DT neutron spectrum, increasing the inferred temperature by 400–800 eV. Jets of ablator material are broken apart and redirected as they enter this dynamic hot spot. Deceleration stage simulations using two fundamentally different rad-hydro codes are compared and the flow field is found to be in good agreement

  3. Effects of ponderomotive forces and space-charge field on laser plasma hydrodynamics

    International Nuclear Information System (INIS)

    Cang Yu; Lu Xin; Wu Huichun; Zhang Jie

    2005-01-01

    Using a two-fluid two-temperature hydrodynamic code, authors studied the hydrodynamics in the interaction of intense (10 15 W/cm 2 ) ultrashort (150 fs) laser pulses and linear density plasmas. The simulation results show the ponderomotive force effect on the formation of the electron density ripples in under-dense region, such ripples increase the reflection of the laser pulse, and on the separation of the plasma in critical surface. Quasi-electroneutrality is not suitable in this case because of the different ponderomotive force and the gradient of thermal-pressure for ions and electrons. Ions are moved by the electrostatic force. Comparing with the simulation results from one-fluid two-temperature code, authors find that under strong ponderomotive force and gradient of thermo-pressure, two-fluid code is more suitable to simulate the hydrodynamics of plasmas. (authors)

  4. Hydrodynamic simulation of elliptic flow

    CERN Document Server

    Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W

    1999-01-01

    We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.

  5. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    International Nuclear Information System (INIS)

    Mueller, Bernhard

    2009-01-01

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  6. Multi-dimensional relativistic simulations of core-collapse supernovae with energy-dependent neutrino transport

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard

    2009-05-07

    In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)

  7. Rheology and hydrodynamic properties of Tolypocladium inflatum fermentation broth and its simulation.

    Science.gov (United States)

    Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M

    2005-07-01

    A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.

  8. Two-dimensional simulation of gas concentration impedance for a planar solid oxide fuel cell

    International Nuclear Information System (INIS)

    Fadaei, M.; Mohammadi, R.; Ghassemi, M.

    2014-01-01

    Highlights: • The 2D simulation shows another feature in concentration impedance. • The channel gas transport causes a capacitive behavior. • Anode polarization variation has a significant influence on velocity distribution. • The influence of 2D simulation is important for channel height bigger than 2 mm. - Abstract: This paper presents a two-dimensional model for a planar solid oxide fuel cell (SOFC) anode in order to simulate the steady-state performance characteristics as well as the electrochemical impedance spectra. The developed model couples the mass transport with the electrochemical kinetics. The transient conservation equations (momentum and species equations) are solved numerically and the linear kinetic is used for the anode electrochemistry. In order to solve the system of the nonlinear equations, an in-house code based on the finite volume method is developed and utilized. A parametric study is also carried out and the results are discussed. Results show a capacitive semicircle in the Nyquist plot which is identical to the gas concentration impedance. The simulation results are in good agreement with published data

  9. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Shu-Hao [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre, E-mail: kais@purdue.edu [Department of Chemistry and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar)

    2014-12-21

    The Fenna-Matthews-Olson (FMO) protein-pigment complex acts as a molecular wire conducting energy between the outer antenna system and the reaction center; it is an important photosynthetic system to study the transfer of excitonic energy. Recent crystallographic studies report the existence of an additional (eighth) bacteriochlorophyll a (BChl a) in some of the FMO monomers. To understand the functionality of this eighth BChl, we simulated the two-dimensional electronic spectra of both the 7-site (apo form) and the 8-site (holo form) variant of the FMO complex from green sulfur bacteria, Prosthecochloris aestuarii. By comparing the spectrum, it was found that the eighth BChl can affect two different excitonic energy transfer pathways: (1) it is directly involved in the first apo form pathway (6 → 3 → 1) by passing the excitonic energy to exciton 6; and (2) it facilitates an increase in the excitonic wave function overlap between excitons 4 and 5 in the second pathway (7 → 4,5 → 2 → 1) and thus increases the possible downward sampling routes across the BChls.

  10. Finite element method for one-dimensional rill erosion simulation on a curved slope

    Directory of Open Access Journals (Sweden)

    Lijuan Yan

    2015-03-01

    Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.

  11. MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations

    Science.gov (United States)

    Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias

    2014-08-01

    Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.

  12. Numerical study of hydrodynamic behavior and conversion efficiency of a two-buoy wave energy converter

    Science.gov (United States)

    Yang, Cen; Zhang, Yong-liang

    2018-04-01

    In this paper we propose a two-buoy wave energy converter composed of a heaving semi-submerged cylindrical buoy, a fixed submerged cylindrical buoy and a power take-off (PTO) system, and investigate the effect of the fixed submerged buoy on the hydrodynamics of the heaving semi-submerged buoy based on the three-dimensional potential theory. And the dynamic response of the semi-submerged buoy and the wave energy conversion efficiency of the converter are analyzed. The difference of the hydrodynamics and the wave energy conversion efficiency of a semi-submerged buoy converter with and without a fixed submerged buoy is discussed. It is revealed that the influence of the fixed submerged buoy on the exciting wave force, the added mass, the radiation damping coefficient and the wave energy conversion efficiency can be significant with a considerable variation, depending on the vertical distance between the heaving semi-submerged buoy and the fixed submerged buoy, the diameter ratio of the fixed submerged buoy to the heaving semi-submerged buoy and the water depth.

  13. Flow and transport simulation of Madeira River using three depth-averaged two-equation turbulence closure models

    Directory of Open Access Journals (Sweden)

    Li-ren Yu

    2012-03-01

    Full Text Available This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k˜−ε˜,k˜−w˜, and k˜−ω˜ , were used to close the non-simplified quasi-three dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k˜−ω˜ model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.

  14. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  15. Evaluation of one-dimensional and two-dimensional volatility basis sets in simulating the aging of secondary organic aerosol with smog-chamber experiments.

    Science.gov (United States)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Chuang, Wayne; Hildebrandt Ruiz, Lea; Ng, Nga L; Wang, Yangjun; Hao, Jiming

    2015-02-17

    We evaluate the one-dimensional volatility basis set (1D-VBS) and two-dimensional volatility basis set (2D-VBS) in simulating the aging of SOA derived from toluene and α-pinene against smog-chamber experiments. If we simulate the first-generation products with empirical chamber fits and the subsequent aging chemistry with a 1D-VBS or a 2D-VBS, the models mostly overestimate the SOA concentrations in the toluene oxidation experiments. This is because the empirical chamber fits include both first-generation oxidation and aging; simulating aging in addition to this results in double counting of the initial aging effects. If the first-generation oxidation is treated explicitly, the base-case 2D-VBS underestimates the SOA concentrations and O:C increase of the toluene oxidation experiments; it generally underestimates the SOA concentrations and overestimates the O:C increase of the α-pinene experiments. With the first-generation oxidation treated explicitly, we could modify the 2D-VBS configuration individually for toluene and α-pinene to achieve good model-measurement agreement. However, we are unable to simulate the oxidation of both toluene and α-pinene with the same 2D-VBS configuration. We suggest that future models should implement parallel layers for anthropogenic (aromatic) and biogenic precursors, and that more modeling studies and laboratory research be done to optimize the "best-guess" parameters for each layer.

  16. Two-time temperature Green functions in kinetic theory and molecular hydrodynamics. 3. Account of interactions of hydrodynamic fluctuations

    International Nuclear Information System (INIS)

    Tserkovnikov, Yu.A.

    2001-01-01

    The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru

  17. Hydrodynamic Simulations of Kepler's Supernova Remnant

    Science.gov (United States)

    Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen

    2018-01-01

    Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.

  18. Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.

    Science.gov (United States)

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua

    2017-07-01

    We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.

  19. Supernova Hydrodynamics on the Omega Laser. Final report

    International Nuclear Information System (INIS)

    Drake, R. Paul

    2004-01-01

    (B204)The fundamental motivation for our work is that supernovae are not well understood. Recent observations have clarified the depth of our ignorance, by producing observed phenomena that current theory and computer simulations cannot reproduce. Such theories and simulations involve, however, a number of physical mechanisms that have never been studied in isolation. We perform experiments, in compressible hydrodynamics and radiation hydrodynamics, relevant to supernovae and supernova remnants. These experiments produce phenomena in the laboratory that are believed, based on simulations, to be important to astrophysics but that have not been directly observed in either the laboratory or in an astrophysical system. During the period of this grant, we have focused on the scaling of an astrophysically relevant, radiative-precursor shock, on preliminary studies of collapsing radiative shocks, and on the multimode behavior and the three-dimensional, deeply nonlinear evolution of the Rayleigh-Taylor (RT) instability at a decelerating, embedded interface. These experiments required strong compression and decompression, strong shocks (Mach ∼10 or greater), flexible geometries, and very smooth laser beams, which means that the 60-beam Omega laser is the only facility capable of carrying out this program

  20. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  1. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Sobocinski, Kathryn L.; Heatwole, Danelle W.; Khangaonkar, Tarang; Thom, Ronald M.; Fuller, Roger

    2010-01-01

    Along the Pacific Northwest coast, much of the estuarine habitat has been diked over the last century for agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect coastal habitats that are vital to aquatic species, many restoration projects are currently underway to restore the estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Information on physical processes and hydrodynamic conditions are critical for the assessment of the success of restoration actions. Restoration of a 160- acre property at the mouth of the Stillaguamish River in Puget Sound has been proposed. The goal is to restore native tidal habitats and estuary-scale ecological processes by removing the dike. In this study, a three-dimensional hydrodynamic model was developed for the Stillaguamish River estuary to simulate estuarine processes. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Responses were evaluated at the scale of the restoration footprint. Model data was combined with biophysical data to predict habitat responses at the site. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (< 5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat.

  2. Results of two-phase natural circulation in hot-leg U-bend simulation experiments

    International Nuclear Information System (INIS)

    Ishii, M.; Lee, S.Y.; Abou El-Seoud, S.

    1987-01-01

    In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed using two different thermal-hydraulic loops. The main focus of the experiment was the two-phase flow behavior in the hot-leg U-bend typical of BandW LWR systems. The first group of experiments was carried out in the nitrogen gas-water adiabatic simulation loop and the second in the Freon 113 boiling and condensation loop. Both of the loops have been designed as a flow visualization facility and built according to the two-phase flow scaling criteria developed under this program. The nitrogen gas-water system has been used to isolate key hydrodynamic phenomena such as the phase distribution, relative velocity between phases, two-phase flow regimes and flow termination mechanisms, whereas the Freon loop has been used to study the effect of fluid properties, phase changes and coupling between hydrodynamic and heat transfer phenomena. Significantly different behaviors have been observed due to the non-equilibrium phase change phenomena such as the flashing and condensation in the Freon loop. The phenomena created much more unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors

  3. Hypersonic flow past slender bodies in dispersive hydrodynamics

    International Nuclear Information System (INIS)

    El, G.A.; Khodorovskii, V.V.; Tyurina, A.V.

    2004-01-01

    The problem of two-dimensional steady hypersonic flow past a slender body is formulated for dispersive media. It is shown that for the hypersonic flow, the original 2+0 boundary-value problem is asymptotically equivalent to the 1+1 piston problem for the fully nonlinear flow in the same physical system, which allows one to take advantage of the analytic methods developed for one-dimensional systems. This type of equivalence, well known in ideal Euler gas dynamics, has not been established for dispersive hydrodynamics so far. Two examples pertaining to collisionless plasma dynamics are considered

  4. Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion

    International Nuclear Information System (INIS)

    Yanez Vico, C.

    2012-11-01

    For moderate-Z materials, the hydrodynamic structure of the ablation region formed by the irradiation of high intensity laser beams differs from that of low-Z materials (hydrogenic ablators). In particular, the role played by the radiative energy flux becomes non-negligible for increasing atomic number material and ended up forming a second ablation front. This structure of two separated ablation fronts, called double ablation (DA) front, was confirmed in the simulations carried out by Fujioka et al. In this work a linear stability theory of DA fronts is developed for direct-drive inertial confinement fusion targets. Two models are proposed. First, a sharp boundary model where the thin front approximation is assumed for both ablation fronts. The information about the corona region that permits to close the sharp boundary model is obtained from a prior self-consistent analysis of the electronic-radiative ablation (ERA) front. Numerical results are presented as well as an analytical approach for the radiation dominated regime of very steep double ablation front structure. Second, a self-consistent numerical method where the finite length of the ablation fronts is considered. Accurate hydrodynamic profiles are taken into account in the theoretical model by means of a fitting parameters method using one-dimensional simulation results. Numerical dispersion relation is compared to the analytical sharp boundary model showing an excellent agreement for the radiation dominated regime, and the stabilization due to smooth profiles. 2D simulations are presented to validate the linear stability theory

  5. Intercomparison of ion beam analysis software for the simulation of backscattering spectra from two-dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M., E-mail: matej.mayer@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Malinský, P. [Nuclear Physics Institute of the Czech Academy of Sciences v.v.i., 250 68 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 400 96 Usti nad Labem (Czech Republic); Schiettekatte, F. [Regroupement Québécois sur les Matériaux de Pointe (RQMP), Département de Physique, Université de Montréal, Montréal, QC (Canada); Zolnai, Z. [Centre for Energy Research, Institute of Technical Physics and Materials Science (MFA), Konkoly-Thege M. út 29-33, H-1121 Budapest (Hungary)

    2016-10-15

    The codes RBS-MAST, STRUCTNRA, F95-Rough and CORTEO are simulation codes for ion beam analysis spectra from two- or three-dimensional sample structures. The codes were intercompared in a code-code comparison using an idealized grating structure and by comparison to experimental data from a silicon grating on tantalum interlayer. All codes are in excellent agreement at higher incident energies and not too large energy losses. At lower incident energies, grazing angles of incidence and/or larger energy losses plural scattering effects play an increasing role. Simulation codes with plural scattering capabilities offer higher accuracy and better agreement to experimental results in this regime.

  6. Stochastic self-propagating star formation in three-dimensional disk galaxy simulations

    International Nuclear Information System (INIS)

    Statler, T.; Comins, N.; Smith, B.F.

    1983-01-01

    Stochastic self-propagating star formation (SSPSF) is a process of forming new stars through the compression of the interstellar medium by supernova shock waves. Coupling this activity with galactic differential rotation produces spiral structure in two-dimensional disk galaxy simulations. In this paper the first results of a three-dimensional SSPSF simulation of disk galaxies are reported. Our model generates less impressive spirals than do the two-dimensional simulations. Although some spirals do appear in equilibrium, more frequently we observe spirals as non-equilibrium states of the models: as the spiral arms evolve, they widen until the spiral structure is no longer discernible. The two free parameters that we vary in this study are the probability of star formation due to a recent, nearby explosion, and the relaxation time for the interstellar medium to return to a condition of maximum star formation after it has been cleared out by an explosion and subsequent star formation. We find that equilibrium spiral structure is formed over a much smaller range of these parameters in our three-dimensional SSPSF models than in similar two-dimensional models. We discuss possible reasons for these results as well as improvements on the model which are being explored

  7. Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty.

    Science.gov (United States)

    Yamamoto, Michiro; Murakami, Yukimi; Iwatsuki, Katsuyuki; Kurimoto, Shigeru; Hirata, Hitoshi

    2016-04-02

    Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions. We developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A "two rings" method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score. Measurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation. We showed that four-dimensional, preoperative simulation can be generated by

  8. A comparison of etched-geometry and overgrown silicon permeable base transistors by two-dimensional numerical simulations

    Science.gov (United States)

    Vojak, B. A.; Alley, G. D.

    1983-08-01

    Two-dimensional numerical simulations are used to compare etched geometry and overgrown Si permeable base transistors (PTBs), considering both the etched collector and etched emitter biasing conditions made possible by the asymmetry of the etched structure. In PTB devices, the two-dimensional nature of the depletion region near the Schottky contact base grating results in a smaller electron barrier and, therefore, a larger collector current in the etched than in the overgrown structure. The parasitic feedback effects which result at high base-to-emitter bias levels lead to a deviation from the square-law behavior found in the collector characteristics of the overgrown PBT. These structures also have lower device capacitances and smaller transconductances at high base-to-emitter voltages. As a result, overgrown and etched structures have comparable predicted maximum values of the small signal unity short-circuit current gain frequency and maximum oscillation frequency.

  9. Universal hydrodynamics of non-conformal branes

    International Nuclear Information System (INIS)

    Kanitscheider, Ingmar; Skenderis, Kostas

    2009-01-01

    We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be ζ/η = 2(1/(d-1)-c s 2 ), where c s is the speed of sound in the fluid.

  10. Two-dimensional simulations of multi-hollow VHF SiH4/H2 plasma

    Directory of Open Access Journals (Sweden)

    Li-Wen Su

    2018-02-01

    Full Text Available A triode multi-hollow VHF SiH4/H2 plasma (60 MHz was examined at a pressure of 20 Pa by two-dimensional simulations using the fluid model. In this study, we considered the effect of the rate constant of reaction, SiH3 + SiH3→SiH2 + SiH4, on the plasma characteristics. A typical VHF plasma of a high-electron density with a low-electron temperature was obtained between two discharge electrodes. Spatial profiles of SiH3+, SiH2+, SiH3- and SiH3 densities were similar to that of the electron density while the electron temperature had a maximum value near the two discharge electrodes. It was found that the SiH3 radical density did not decrease rapidly near the substrate and the electron temperature was lower than 1 eV, suggesting that the triode multi-hollow plasma source can provide high quality amorphous silicon with a high deposition rate.

  11. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yosuke [Department of Physics, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 (Japan); Amano, Takanobu; Hoshino, Masahiro, E-mail: ymatumot@astro.s.chiba-u.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Hongo 1-33, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  12. Brownian dynamics with hydrodynamic interactions

    International Nuclear Information System (INIS)

    Ermak, D.L.; McCammon, J.A.

    1978-01-01

    A method for simulating the Brownian dynamics of N particles with the inclusion of hydrodynamic interactions is described. The particles may also be subject to the usual interparticle or external forces (e.g., electrostatic) which have been included in previous methods for simulating Brownian dynamics of particles in the absence of hydrodynamic interactions. The present method is derived from the Langevin equations for the N particle assembly, and the results are shown to be consistent with the corresponding Fokker--Planck results. Sample calculations on small systems illustrate the importance of including hydrodynamic interactions in Brownian dynamics simulations. The method should be useful for simulation studies of diffusion limited reactions, polymer dynamics, protein folding, particle coagulation, and other phenomena in solution

  13. Three-dimensional tokamak equilibria and stellarators with two-dimensional magnetic symmetry

    International Nuclear Information System (INIS)

    Garabedian, P.R.

    1997-01-01

    Three-dimensional computer codes have been developed to simulate equilibrium, stability and transport in tokamaks and stellarators. Bifurcated solutions of the tokamak problem suggest that three-dimensional effects may be more important than has generally been thought. Extensive calculations have led to the discovery of a stellarator configuration with just two field periods and with aspect ratio 3.2 that has a magnetic field spectrum B mn with toroidal symmetry. Numerical studies of equilibrium, stability and transport for this new device, called the Modular Helias-like Heliac 2 (MHH2), will be presented. (author)

  14. Simulation of detonation cell kinematics using two-dimensional reactive blast waves

    Science.gov (United States)

    Thomas, G. O.; Edwards, D. H.

    1983-10-01

    A method of generating a cylindrical blast wave is developed which overcomes the disadvantages inherent in the converging-diverging nozzle technique used by Edwards et al., 1981. It is demonstrated than an exploding wire placed at the apex of a two-dimensional sector provides a satisfactory source of the generation of blast waves in reactive systems. The velocity profiles of the blast waves are found to simulate those in freely propagating detonations very well, and this method does not suffer from the disadvantage of having the mass flow at the throat as in the nozzle method. The density decay parameter is determined to have a constant value of 4 in the systems investigated, and it is suggested that this may be a universal value. It is proposed that suitable wedges could be used to create artificial Mach stems in the same manner as Strehlow and Barthel (1971) without the attendant disadvantages of the nozzle method.

  15. Smoothed Particle Hydrodynamics Coupled with Radiation Transfer

    Science.gov (United States)

    Susa, Hajime

    2006-04-01

    We have constructed a brand-new radiation hydrodynamics solver based upon Smoothed Particle Hydrodynamics, which works on a parallel computer system. The code is designed to investigate the formation and evolution of first-generation objects at z ≳ 10, where the radiative feedback from various sources plays important roles. The code can compute the fraction of chemical species e, H+, H, H-, H2, and H+2 by by fully implicit time integration. It also can deal with multiple sources of ionizing radiation, as well as radiation at Lyman-Werner band. We compare the results for a few test calculations with the results of one-dimensional simulations, in which we find good agreements with each other. We also evaluate the speedup by parallelization, which is found to be almost ideal, as long as the number of sources is comparable to the number of processors.

  16. Collisional plasma transport: two-dimensional scalar formulation of the initial boundary value problem and quasi one-dimensional models

    International Nuclear Information System (INIS)

    Mugge, J.W.

    1979-10-01

    The collisional plasma transport problem is formulated as an initial boundary value problem for general characteristic boundary conditions. Starting from the full set of hydrodynamic and electrodynamic equations an expansion in the electron-ion mass ratio together with a multiple timescale method yields simplified equations on each timescale. On timescales where many collisions have taken place for the simplified equations the initial boundary value problem is formulated. Through the introduction of potentials a two-dimensional scalar formulation in terms of quasi-linear integro-differential equations of second order for a domain consisting of plasma and vacuum sub-domains is obtained. (Auth.)

  17. Rippled shock front solutions for testing hydrodynamic stability simulations

    International Nuclear Information System (INIS)

    Munro, D.H.

    1989-01-01

    The response of a shock front to arbitrary small perturbations can be calculated analytically. Such rippled shock front solutions are useful for determining the accuracy of hydrodynamic simulation codes such as LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1977)], which are used to compute perturbation growth in inertial fusion targets. The LASNEX fractional errors are of order κ 2 L 2 , where κ is the transverse wavenumber of the perturbation, and L is the largest zone dimension. Numerical errors are about 25% for a calculation using 26 zones per transverse wavelength

  18. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    Science.gov (United States)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  19. Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study.

    Science.gov (United States)

    Theers, Mario; Winkler, Roland G

    2014-08-28

    We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.

  20. A modified compressible smoothed particle hydrodynamics method and its application on the numerical simulation of low and high velocity impacts

    International Nuclear Information System (INIS)

    Amanifard, N.; Haghighat Namini, V.

    2012-01-01

    In this study a Modified Compressible Smoothed Particle Hydrodynamics method is introduced which is applicable in problems involving shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on the velocity field and displacement of particles. The most exclusive feature of the method is exactly removing artificial viscosity of the formulations and representing good compatibility with other reasonable numerical methods without any rigorous numerical fractures or tensile instabilities while Modified Compressible Smoothed Particle Hydrodynamics does not use any extra modifications. Two types of problems involving elastic-plastic deformations and shock waves are presented here to demonstrate the capability of Modified Compressible Smoothed Particle Hydrodynamics in simulation of such problems and its ability to capture shock. The problems that are proposed here are low and high velocity impacts between aluminum projectiles and semi infinite aluminum beams. Elastic-perfectly plastic model is chosen for constitutive model of the aluminum and the results of simulations are compared with other reasonable studies in these cases.

  1. Sharp vorticity gradients in two-dimensional turbulence and the energy spectrum

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Naulin, Volker; Nielsen, Anders Henry

    2010-01-01

    Formation of sharp vorticity gradients in two-dimensional (2D) hydrodynamic turbulence and their influence on the turbulent spectra are considered. The analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines...... is developed and compressibility of this mapping appears as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k −3 at large k, which appear to take the same form...

  2. Hydrodynamic motion of a heavy-ion-beam-heated plasma

    International Nuclear Information System (INIS)

    Jacoby, J.; Hoffmann, D.H.H.; Mueller, R.W.; Mahrt-Olt, K.; Arnold, R.C.; Schneider, V.; Maruhn, J.

    1990-01-01

    The first experimental study is reported of a plasma produced by a heavy-ion beam. Relevant parameters for heating with heavy ions are described, temperature and density of the plasma are determined, and the hydrodynamic motion in the target induced by the beam is studied. The measured temperature and the free-electron density are compared with a two-dimensional hydrodynamic-model calculation. In accordance with the model, a radial rarefaction wave reaching the center of the target was observed and the penetration velocity of the ion beam into the xenon-gas target was measured

  3. Hydrodynamic cavitation for sonochemical effects.

    Science.gov (United States)

    Moholkar, V S; Kumar, P S; Pandit, A B

    1999-03-01

    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.

  4. The Effect of Three-Dimensional Simulations on the Understanding of Chemical Structures and Their Properties

    Science.gov (United States)

    Urhahne, Detlef; Nick, Sabine; Schanze, Sascha

    2009-08-01

    In a series of three experimental studies, the effectiveness of three-dimensional computer simulations to aid the understanding of chemical structures and their properties was investigated. Arguments for the usefulness of three-dimensional simulations were derived from Mayer’s generative theory of multimedia learning. Simulations might lead to a decrease in cognitive load and thus support active learning. In our studies, the learning effectiveness of three-dimensional simulations was compared to two-dimensional illustrations by use of different versions of a computer programme concerning the modifications of carbon. The first and third study with freshman students of chemistry and biochemistry show that no more knowledge was acquired when participants learnt with three-dimensional simulations than with two-dimensional figures. In the second study with 16-year old secondary school students, use of simulations facilitated the acquisition of conceptual knowledge. It was concluded that three-dimensional simulations are more effective for younger students who lack the experience of learning with different visual representation formats in chemistry. In all three studies, a significant relationship between spatial ability and conceptual knowledge about the modifications of carbon was detected.

  5. Two-dimensional Nonlinear Simulations of Temperature-anisotropy Instabilities with a Proton-alpha Drift

    Science.gov (United States)

    Markovskii, S. A.; Chandran, Benjamin D. G.; Vasquez, Bernard J.

    2018-04-01

    We present two-dimensional hybrid simulations of proton-cyclotron and mirror instabilities in a proton-alpha plasma with particle-in-cell ions and a neutralizing electron fluid. The instabilities are driven by the protons with temperature perpendicular to the background magnetic field larger than the parallel temperature. The alpha particles with initially isotropic temperature have a nonzero drift speed with respect to the protons. The minor ions are known to influence the relative effect of the proton-cyclotron and mirror instabilities. In this paper, we show that the mirror mode can dominate the power spectrum at the nonlinear stage even if its linear growth rate is significantly lower than that of the proton-cyclotron mode. The proton-cyclotron instability combined with the alpha-proton drift is a possible cause of the nonzero magnetic helicity observed in the solar wind for fluctuations propagating nearly parallel to the magnetic field. Our simulations generally confirm this concept but reveal a complex helicity spectrum that is not anticipated from the linear theory of the instability.

  6. Image potential in the interaction of fast ions with carbon nanotubes: A comparison between the one- and two-fluid hydrodynamic models

    International Nuclear Information System (INIS)

    Karbunar, L.; Borka, D.; Radović, I.; Mišković, Z.L.

    2015-01-01

    Highlights: • We study the interaction of protons with carbon nanotubes under channeling conditions. • We use the linearized, 2D, one-fluid and two-fluid hydrodynamic models. • The image potential for a proton moving parallel to the nanotube axis is calculated. • Results for the image potential are compared for different types of nanotubes. • We also compute the angular and spatial distributions of channeled protons. - Abstract: We study the interaction of charged particles with four different types of single-walled carbon nanotubes (SWNTs) under channeling conditions by means of the linearized, two dimensional, one-fluid and two-fluid hydrodynamic models. The models are used to calculate the image potential for protons moving parallel to the axis of the SWNTs at the speeds up to 10 a.u. Numerical results are obtained to show the influence of the damping factor, the nanotube radius, and the particle position on the image potential inside the nanotube. We also compute the spatial and angular distributions of protons and compare them for the two models

  7. High-resolution Hydrodynamic Simulation of Tidal Detonation of a Helium White Dwarf by an Intermediate Mass Black Hole

    Science.gov (United States)

    Tanikawa, Ataru

    2018-05-01

    We demonstrate tidal detonation during a tidal disruption event (TDE) of a helium (He) white dwarf (WD) with 0.45 M ⊙ by an intermediate mass black hole using extremely high-resolution simulations. Tanikawa et al. have shown tidal detonation in results of previous studies from unphysical heating due to low-resolution simulations, and such unphysical heating occurs in three-dimensional (3D) smoothed particle hydrodynamics (SPH) simulations even with 10 million SPH particles. In order to avoid such unphysical heating, we perform 3D SPH simulations up to 300 million SPH particles, and 1D mesh simulations using flow structure in the 3D SPH simulations for 1D initial conditions. The 1D mesh simulations have higher resolutions than the 3D SPH simulations. We show that tidal detonation occurs and confirm that this result is perfectly converged with different space resolution in both 3D SPH and 1D mesh simulations. We find that detonation waves independently arise in leading parts of the WD, and yield large amounts of 56Ni. Although detonation waves are not generated in trailing parts of the WD, the trailing parts would receive detonation waves generated in the leading parts and would leave large amounts of Si group elements. Eventually, this He WD TDE would synthesize 56Ni of 0.30 M ⊙ and Si group elements of 0.08 M ⊙, and could be observed as a luminous thermonuclear transient comparable to SNe Ia.

  8. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)

    1998-08-15

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  9. Application of Simulated Three Dimensional CT Image in Orthognathic Surgery

    International Nuclear Information System (INIS)

    Kim, Hyun Don; Park, Chang Seo; Yoo, Sun Kook; Lee, Kyoung Sang

    1998-01-01

    In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of

  10. Smoothed particle hydrodynamic simulations of expanding HII regions

    Science.gov (United States)

    Bisbas, Thomas G.

    2009-09-01

    This thesis deals with numerical simulations of expanding ionized regions, known as HII regions. We implement a new three dimensional algorithm in Smoothed Particle Hydrodynamics for including the dynamical effects of the interaction between ionizing radiation and the interstellar medium. This interaction plays a crucial role in star formation at all epochs. We study the influence of ionizing radiation in spherically symmetric clouds. In particular, we study the spherically symmetric expansion of an HII region inside a uniform-density, non-self-gravitating cloud. We examine the ability of our algorithm to reproduce the known theoretical solution and we find that the agreement is very good. We also study the spherically symmetric expansion inside a uniform-density, self-gravitating cloud. We propose a new differential equation of motion for the expanding shell that includes the effects of gravity. Comparing its numerical solution with the simulations, we find that the equation predicts the position of the shell accurately. We also study the expansion of an off-centre HII region inside a uniform-density, non- self-gravitating cloud. This results in an evolution known as the rocket effect, where the ionizing radiation pushes and accelerates the cloud away from the exciting star leading to its dispersal. During this evolution, cometary knots appear as a result of Rayleigh-Taylor and Vishniac instabilities. The knots are composed of a dense head with a conic tail behind them, a structure that points towards the ionizing source. Our simulations show that these knots are very reminiscent of the observed structures in planetary nebula, such as in the Helix nebula. The last part of this thesis is dedicated to the study of cores ionized by an exciting source which is placed outside and far away from them. The evolution of these cores is known as radiation driven compression (or implosion). We perform simulations and compare our findings with results of other workers and we

  11. Soap film flows: Statistics of two-dimensional turbulence

    International Nuclear Information System (INIS)

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-01-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R λ ∼100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in k space consistent with the k -3 spectrum of the Kraichnan endash Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. copyright 1999 American Institute of Physics

  12. Two-dimensional wave propagation in layered periodic media

    KAUST Repository

    Quezada de Luna, Manuel

    2014-09-16

    We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.

  13. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B. [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States); Grim, Gary P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-07-15

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  14. Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions

    International Nuclear Information System (INIS)

    Citro, R; Palo, S De; Orignac, E; Pedri, P; Chiofalo, M-L

    2008-01-01

    Ultracold bosonic and fermionic quantum gases confined to quasi-one-dimensional (1D) geometry are promising candidates for probing fundamental concepts of Luttinger liquid (LL) physics. They can also be exploited for devising applications in quantum information processing and precision measurements. Here, we focus on 1D dipolar Bose gases, where evidence of super-strong coupling behavior has been demonstrated by analyzing the low-energy static and dynamical structures of the fluid at zero temperature by a combined reptation quantum Monte Carlo (RQMC) and bosonization approach. Fingerprints of LL behavior emerge in the whole crossover from the already strongly interacting Tonks-Girardeau at low density to a dipolar density wave regime at high density. We have also shown that a LL framework can be effectively set up and utilized to describe this strongly correlated crossover physics in the case of confined 1D geometries after using the results for the homogeneous system in LL hydrodynamic equations within a local density approximation. This leads to the prediction of observable quantities such as the frequencies of the collective modes of the trapped dipolar gas under the more realistic conditions that could be found in ongoing experiments. The present paper provides a description of the theoretical framework in which the above results have been worked out, making available all the detailed derivations of the hydrodynamic Luttinger equations for the inhomogeneous trapped gas and of the correlation functions for the homogeneous system

  15. Hydrodynamic time scales for intense laser-heated clusters

    International Nuclear Information System (INIS)

    Parra, Enrique; Alexeev, Ilya; Fan, Jingyun; Kim, Kiong Y.; McNaught, Stuart J.; Milchberg, Howard M.

    2003-01-01

    Measurements are presented of x-ray (>1.5 keV) and extreme ultraviolet (EUV, λ equal to 2-44 nm) emission from argon clusters irradiated with constant-energy (50 mJ), variable-width laser pulses ranging from 100 fs to 10 ns. The results for clusters can be understood in terms of two time scales: a short time scale for optimal resonant absorption at the critical-density layer in the expanding plasma, and a longer time scale for the plasma to drop below critical density. We present a one-dimensional hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical-density plasma layer. These simulations explain the dependence of generation efficiency on laser pulse width

  16. Simulation of seismic signals from asymmetric LANL hydrodynamic calculations

    International Nuclear Information System (INIS)

    Stevens, J.L.; Rimer, N.; Halda, E.J.; Barker, T.G.; Davis, C.G.; Johnson, W.E.

    1993-01-01

    Hydrodynamic calculations of an asymmetric nuclear explosion source were propagated to teleseismic distances to investigate the effects of the asymmetric source on seismic signals. The source is an explosion in a 12 meter long canister with the device at one end of the canister and a metal plate adjacent to the explosion. This produces a strongly asymmetric two-lobed source in the hydrodynamic region. The hydrodynamic source is propagated to the far field using a three-step process. The Eulerian hydrodynamic code SOIL was used by LANL to calculate the material velocity, density, and internal energy up to a time of 8.9 milliseconds after the explosion. These quantities were then transferred to an initial grid for the Lagrangian elastic/plastic finite difference code CRAM, which was used by S-CUBED to propagate the signal through the region of nonlinear deformation into the external elastic region. The cavity size and shape at the time of the overlay were determined by searching for a rapid density change in the SOIL grid, and this interior region was then rezoned into a single zone. The CRAM calculation includes material strength and gravity, and includes the effect of the free surface above the explosion. Finally, far field body waves were calculated by integrating over a closed surface in the elastic region and using the representation theorem. A second calculation was performed using an initially spherical source for comparison with the asymmetric calculation

  17. Application of Duflow for studying hydrodynamics and stability of tidal inlets in the Tam Giang - Cau Hai Lagoon

    NARCIS (Netherlands)

    Lam, N.T.; Verhagen, H.J.; Van der Wegen, M.

    2004-01-01

    This paper presents an application of an one-dimensional unsteady numerical model DUFLOW for hydrodynamic simulation of a complex lagoon-inlet system in Vietnam. The difficulties due to the lack of data for model boundary conditions is overcome by using sensitivity analysis approach for the

  18. Two-dimensional simulation of the thermal stress effect on static and dynamic VDMOS characteristics

    International Nuclear Information System (INIS)

    Alwan, M.; Beydoun, B.; Ketata, K.; Zoaeter, M.

    2005-01-01

    Using a two-dimensional simulator, the effect of the thermal stress on static and dynamic vertical double-diffusion metal oxide semiconductor (VDMOS) characteristics have been investigated. The use of the device under certain thermal stress conditions can produce modifications of its physical and electrical properties. Based on physics and 2D simulations, this paper proposes an analysis of this stress effect observed on the electrical characteristics of the device. Parameters responsible of these modifications are determined. Approximate expressions of the ionization coefficients and breakdown voltage in terms of temperature are proposed. Non-punch-through junction theory is used to express the breakdown voltage and the space charge extension with respect to the impurity concentration and the temperature. The capacitances of the device have been also studied. The effect of the stress on C-V characteristics is observed and analyzed. We notice that the drain-gate, drain-source and gate-source capacitances are shifted due to the degradation of device physical properties versus thermal stress

  19. Spectral-element simulation of two-dimensional elastic wave propagation in fully heterogeneous media on a GPU cluster

    Science.gov (United States)

    Rudianto, Indra; Sudarmaji

    2018-04-01

    We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.

  20. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  1. SIMULATIONS OF HIGH-VELOCITY CLOUDS. I. HYDRODYNAMICS AND HIGH-VELOCITY HIGH IONS

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Henley, David B.; Shelton, Robin L.

    2011-01-01

    We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sightlines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass ∼ 120 M sun ) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass ∼ 4 x 10 5 M sun ) remained largely intact, although deformed, during its simulation period (240 Myr).

  2. The 3D CFD study of gliding swimmer on passive hydrodynamics drag

    Directory of Open Access Journals (Sweden)

    Vishveshwar Rajendra Mantha

    2014-04-01

    Full Text Available The aim of this study was to analyze the effect of depth on the hydrodynamic drag coefficient during the passive underwater gliding after the starts and turns. The swimmer hydrodynamics performance was studied by the application of computational fluid dynamics (CFD method. The steady-state CFD simulations were performed by the application of k - omega turbulent model and volume of fluid method to obtain two-phase flow around a three-dimensional swimmer model when gliding near water surface and at different depths from the water surface. The simulations were conducted for four different swimming pool size, each with different depth, i.e., 1.0, 1.5, 2.0 and 3.0 m for three different velocities, i.e., 1.5, 2.0 and 2.5 m/s, with swimmer gliding at different depths with intervals of 0.25 m, each starting from the water surface, respectively. The numerical results of pressure drag and total coefficients at individual average race velocities were obtained. The results showed that the drag coefficient decreased as depth increased, with a trend toward reduced fluctuation after 0.5m depth from the water surface. The selection of the appropriate depth during the gliding phase should be a main concern of swimmers and coaches.

  3. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    Science.gov (United States)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our

  4. STAR FORMATION AND FEEDBACK IN SMOOTHED PARTICLE HYDRODYNAMIC SIMULATIONS. II. RESOLUTION EFFECTS

    International Nuclear Information System (INIS)

    Christensen, Charlotte R.; Quinn, Thomas; Bellovary, Jillian; Stinson, Gregory; Wadsley, James

    2010-01-01

    We examine the effect of mass and force resolution on a specific star formation (SF) recipe using a set of N-body/smooth particle hydrodynamic simulations of isolated galaxies. Our simulations span halo masses from 10 9 to 10 13 M sun , more than 4 orders of magnitude in mass resolution, and 2 orders of magnitude in the gravitational softening length, ε, representing the force resolution. We examine the total global SF rate, the SF history, and the quantity of stellar feedback and compare the disk structure of the galaxies. Based on our analysis, we recommend using at least 10 4 particles each for the dark matter (DM) and gas component and a force resolution of ε ∼ 10 -3 R vir when studying global SF and feedback. When the spatial distribution of stars is important, the number of gas and DM particles must be increased to at least 10 5 of each. Low-mass resolution simulations with fixed softening lengths show particularly weak stellar disks due to two-body heating. While decreasing spatial resolution in low-mass resolution simulations limits two-body effects, density and potential gradients cannot be sustained. Regardless of the softening, low-mass resolution simulations contain fewer high density regions where SF may occur. Galaxies of approximately 10 10 M sun display unique sensitivity to both mass and force resolution. This mass of galaxy has a shallow potential and is on the verge of forming a disk. The combination of these factors gives this galaxy the potential for strong gas outflows driven by supernova feedback and makes it particularly sensitive to any changes to the simulation parameters.

  5. Autocalibration of a one-dimensional hydrodynamic-ecological model (DYRESM 4.0-CAEDYM 3.1 using a Monte Carlo approach: simulations of hypoxic events in a polymictic lake

    Directory of Open Access Journals (Sweden)

    L. Luo

    2018-03-01

    Full Text Available Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook autocalibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand. The calibration procedure involved independently minimizing the root-mean-square error (RMSE, maximizing the Pearson correlation coefficient (r and Nash–Sutcliffe efficient coefficient (Nr for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10 000 simulation iterations. The "optimal" temperature calibration produced a RMSE of 0.54 °C, Nr value of 0.99, and r value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 and 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L−1, the Nr value was 0.75, and the r value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events from 15 January 2009 to 8 June 2011 (875 days. This verification produced an accurate simulation of five hypoxic events corresponding to DO  <  2 mg L−1 during summer of 2009–2011. The RMSE was 2.07 mg L−1, Nr value 0.62, and r value of 0.81, based on the available data set of 738 days. The autocalibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimization than traditional manual calibration which has been the standard tool practiced for similar

  6. Autocalibration of a one-dimensional hydrodynamic-ecological model (DYRESM 4.0-CAEDYM 3.1) using a Monte Carlo approach: simulations of hypoxic events in a polymictic lake

    Science.gov (United States)

    Luo, Liancong; Hamilton, David; Lan, Jia; McBride, Chris; Trolle, Dennis

    2018-03-01

    Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook autocalibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS) method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand). The calibration procedure involved independently minimizing the root-mean-square error (RMSE), maximizing the Pearson correlation coefficient (r) and Nash-Sutcliffe efficient coefficient (Nr) for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10 000 simulation iterations. The "optimal" temperature calibration produced a RMSE of 0.54 °C, Nr value of 0.99, and r value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 and 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface) was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L-1, the Nr value was 0.75, and the r value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events from 15 January 2009 to 8 June 2011 (875 days). This verification produced an accurate simulation of five hypoxic events corresponding to DO < 2 mg L-1 during summer of 2009-2011. The RMSE was 2.07 mg L-1, Nr value 0.62, and r value of 0.81, based on the available data set of 738 days. The autocalibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimization than traditional manual calibration which has been the standard tool practiced for similar complex water quality models.

  7. A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, E. S.; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Korea Advanced Institute of Science and Technology, Yuseong-gu, DaeJeon 305-701 (Korea, Republic of)

    2014-03-15

    An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.

  8. Spiraling Out of Control: Three-dimensional Hydrodynamical Modeling of the Colliding Winds in η Carinae

    Science.gov (United States)

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-01

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  9. SPIRALING OUT OF CONTROL: THREE-DIMENSIONAL HYDRODYNAMICAL MODELING OF THE COLLIDING WINDS IN η CARINAE

    International Nuclear Information System (INIS)

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-01

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  10. Two-dimensional pixel image lag simulation and optimization in a 4-T CMOS image sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yu Junting; Li Binqiao; Yu Pingping; Xu Jiangtao [School of Electronics Information Engineering, Tianjin University, Tianjin 300072 (China); Mou Cun, E-mail: xujiangtao@tju.edu.c [Logistics Management Office, Hebei University of Technology, Tianjin 300130 (China)

    2010-09-15

    Pixel image lag in a 4-T CMOS image sensor is analyzed and simulated in a two-dimensional model. Strategies of reducing image lag are discussed from transfer gate channel threshold voltage doping adjustment, PPD N-type doping dose/implant tilt adjustment and transfer gate operation voltage adjustment for signal electron transfer. With the computer analysis tool ISE-TCAD, simulation results show that minimum image lag can be obtained at a pinned photodiode n-type doping dose of 7.0 x 10{sup 12} cm{sup -2}, an implant tilt of -2{sup 0}, a transfer gate channel doping dose of 3.0 x 10{sup 12} cm{sup -2} and an operation voltage of 3.4 V. The conclusions of this theoretical analysis can be a guideline for pixel design to improve the performance of 4-T CMOS image sensors. (semiconductor devices)

  11. Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities

    International Nuclear Information System (INIS)

    Haan, S.W.; Herrmann, M.C.; Dittrich, T.R.; Fetterman, A.J.; Marinak, M.M.; Munro, D.H.; Pollaine, S.M.; Salmonson, J.D.; Strobel, G.L.; Suter, L.J.

    2005-01-01

    Targets meant to achieve ignition on the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)] have been redesigned and their performance simulated. Simulations indicate dramatically reduced growth of short wavelength hydrodynamic instabilities, resulting from two changes in the designs. First, better optimization results from systematic mapping of the ignition target performance over the parameter space of ablator and fuel thickness combinations, using techniques developed by one of us (Herrmann). After the space is mapped with one-dimensional simulations, exploration of it with two-dimensional simulations quantifies the dependence of instability growth on target dimensions. Low modes and high modes grow differently for different designs, allowing a trade-off of the two regimes of growth. Significant improvement in high-mode stability can be achieved, relative to previous designs, with only insignificant increase in low-mode growth. This procedure produces capsule designs that, in simulations, tolerate several times the surface roughness that could be tolerated by capsules optimized by older more heuristic techniques. Another significant reduction in instability growth, by another factor of several, is achieved with ablators with radially varying dopant. In this type of capsule the mid-Z dopant, which is needed in the ablator to minimize x-ray preheat at the ablator-ice interface, is optimally positioned within the ablator. A fabrication scenario for graded dopants already exists, using sputter coating to fabricate the ablator shell. We describe the systematics of these advances in capsule design, discuss the basis behind their improved performance, and summarize how this is affecting our plans for NIF ignition

  12. Numerical simulations of inertial confinement fusion hohlraum with LARED-integration code

    International Nuclear Information System (INIS)

    Li Jinghong; Li Shuanggui; Zhai Chuanlei

    2011-01-01

    In the target design of the Inertial Confinement Fusion (ICF) program, it is common practice to apply radiation hydrodynamics code to study the key physical processes happened in ICF process, such as hohlraum physics, radiation drive symmetry, capsule implosion physics in the radiation-drive approach of ICF. Recently, many efforts have been done to develop our 2D integrated simulation capability of laser fusion with a variety of optional physical models and numerical methods. In order to effectively integrate the existing codes and to facilitate the development of new codes, we are developing an object-oriented structured-mesh parallel code-supporting infrastructure, called JASMIN. Based on two-dimensional three-temperature hohlraum physics code LARED-H and two-dimensional multi-group radiative transfer code LARED-R, we develop a new generation two-dimensional laser fusion code under the JASMIN infrastructure, which enable us to simulate the whole process of laser fusion from the laser beams' entrance into the hohlraum to the end of implosion. In this paper, we will give a brief description of our new-generation two-dimensional laser fusion code, named LARED-Integration, especially in its physical models, and present some simulation results of holhraum. (author)

  13. Mechanical exfoliation of two-dimensional materials

    Science.gov (United States)

    Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping

    2018-06-01

    Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.

  14. Assessing the Hydrogeomorphic Effects of Environmental Flows using Hydrodynamic Modeling.

    Science.gov (United States)

    Gregory, Angela; Morrison, Ryan R; Stone, Mark

    2018-04-13

    Water managers are increasingly using environmental flows (e-flows) as a tool to improve ecological conditions downstream from impoundments. Recent studies have called for e-flow approaches that explicitly consider impacts on hydrogeomorphic processes when developing management alternatives. Process-based approaches are particularly relevant in river systems that have been highly modified and where water supplies are over allocated. One-dimensional (1D) and two-dimensional (2D) hydrodynamic models can be used to resolve hydrogeomorphic processes at different spatial and temporal scales to support the development, testing, and refinement of e-flow hypotheses. Thus, the objective of this paper is to demonstrate the use of hydrodynamic models as a tool for assisting stakeholders in targeting and assessing environmental flows within a decision-making framework. We present a case study of e-flows on the Rio Chama in northern New Mexico, USA, where 1D and 2D hydrodynamic modeling was used within a collaborative process to implement an e-flow experiment. A specific goal of the e-flow process was to improve spawning habitat for brown trout by flushing fine sediments from gravel features. The results revealed that the 2D hydrodynamic model provided much greater insight with respect to hydrodynamic and sediment transport processes, which led to a reduction in the recommended e-flow discharge. The results suggest that 2D hydrodynamic models can be useful tools for improving process understanding, developing e-flow recommendations, and supporting adaptive management even when limited or no data are available for model calibration and validation.

  15. Treatment of compounds and alloys in radiation hydrodynamics simulations of ablative laser loading

    International Nuclear Information System (INIS)

    Swift, Damian C.; Gammel, J. Tinka; Clegg, Samuel M.

    2004-01-01

    Different methods were compared for constructing models of the behavior of a prototype intermetallic compound, nickel aluminide, for use in radiation hydrodynamics simulations of shock wave generation by ablation induced by laser energy. The models included the equation of state, ionization, and radiation opacity. The methods of construction were evaluated by comparing the results of simulations of an ablatively generated shock wave in a sample of the alloy. The most accurate simulations were obtained using the 'constant number density' mixture model to calculate the equation of state and opacity, and Thomas-Fermi ionization. This model is consistent with that found to be most accurate for simulations of ablatively shocked elements

  16. Detonation of high explosives in Lagrangian hydrodynamic codes using the programmed burn technique

    International Nuclear Information System (INIS)

    Berger, M.E.

    1975-09-01

    Two initiation methods were developed for improving the programmed burn technique for detonation of high explosives in smeared-shock Lagrangian hydrodynamic codes. The methods are verified by comparing the improved programmed burn with existing solutions in one-dimensional plane, converging, and diverging geometries. Deficiencies in the standard programmed burn are described. One of the initiation methods has been determined to be better for inclusion in production hydrodynamic codes

  17. The SELGIFS data challenge: generating synthetic observations of CALIFA galaxies from hydrodynamical simulations

    Science.gov (United States)

    Guidi, G.; Casado, J.; Ascasibar, Y.; García-Benito, R.; Galbany, L.; Sánchez-Blázquez, P.; Sánchez, S. F.; Rosales-Ortega, F. F.; Scannapieco, C.

    2018-06-01

    In this work we present a set of synthetic observations that mimic the properties of the Integral Field Spectroscopy (IFS) survey CALIFA, generated using radiative transfer techniques applied to hydrodynamical simulations of galaxies in a cosmological context. The simulated spatially-resolved spectra include stellar and nebular emission, kinematic broadening of the lines, and dust extinction and scattering. The results of the radiative transfer simulations have been post-processed to reproduce the main properties of the CALIFA V500 and V1200 observational setups. The data has been further formatted to mimic the CALIFA survey in terms of field of view size, spectral range and sampling. We have included the effect of the spatial and spectral Point Spread Functions affecting CALIFA observations, and added detector noise after characterizing it on a sample of 367 galaxies. The simulated datacubes are suited to be analysed by the same algorithms used on real IFS data. In order to provide a benchmark to compare the results obtained applying IFS observational techniques to our synthetic datacubes, and test the calibration and accuracy of the analysis tools, we have computed the spatially-resolved properties of the simulations. Hence, we provide maps derived directly from the hydrodynamical snapshots or the noiseless spectra, in a way that is consistent with the values recovered by the observational analysis algorithms. Both the synthetic observations and the product datacubes are public and can be found in the collaboration website http://astro.ft.uam.es/selgifs/data_challenge/.

  18. Dynamic simulation of gas-liquid two-phase flow : effect of column aspect ratio on the flow structure

    NARCIS (Netherlands)

    Delnoij, E.; Kuipers, J.A.M.; van Swaaij, W.P.M.

    1997-01-01

    In this paper an Eulerian/Lagrangian model, describing the hydrodynamics of a gas-liquid bubble column, is presented. The model resolves the time dependent, two-dimensional motion of small, spherical gas bubbles in a liquid using the equation of motion. The model incorporates all relevant forces

  19. Dynamic simulation of gas-liquid two-phase flow: effect of column aspect ratio on the flow structure.

    NARCIS (Netherlands)

    Delnoij, E.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    In this paper an Eulerian/Lagrangian model, describing the hydrodynamics of a gas-liquid bubble column, is presented. The model resolves the time dependent, two-dimensional motion of small, spherical gas bubbles in a liquid using the equation of motion. The model incorporates all relevant forces

  20. Desenvolvimento de um modelo numérico hidrodinâmico tri-dimensional linear, para a simulação e a previsão da circulação na plataforma brasileira, entre 23ºe 26ºS A three-dimensional linear hydrodynamical numerical model for the simulation and forecasting of circulation on the Brazilian shelf between 23º - 26º S

    Directory of Open Access Journals (Sweden)

    Joseph Harari

    1985-01-01

    Full Text Available A three-dimensional linear hydrodynamical numerical model, Heaps type, was developed and applied to the southeastern Brazilian continental shelf, to simulate motions in the sea due to astronomical and meteorological effects. The first experiment of the model reproduced the propagation of the principal lunar tidal component (M2, allowing the plotting of its cotidal lines and current ellipses. In the second experiment, the circulation generated by astronomical factors only was simulated. And in the third experiment, the effect of the principal astronomical tidal components and meteorological effects observed in the area were reproduced, representing the total circulation in the shelf, in a period of high tidal elevations in the coast, due to the incursion of a deep cold front in this region.

  1. Numerical Simulations of Scattering of Light from Two-Dimensional Rough Surfaces Using the Reduced Rayleigh Equation

    Directory of Open Access Journals (Sweden)

    Tor eNordam

    2013-09-01

    Full Text Available A formalism is introduced for the non-perturbative, purely numerical, solution of the reduced Rayleigh equation for the scattering of light from two-dimensional penetrable rough surfaces. Implementation and performance issues of the method, and various consistency checks of it, are presented and discussed. The proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results. For a non-absorbing metal surface the conservation of energy was explicitly checked, and found to be satisfied to within 0.03%, or better, for the parameters assumed. This testifies to the accuracy of the approach and a satisfactory discretization. As an illustration, we calculate the full angular distribution of the mean differential reflection coefficient for the scattering of p- or s-polarized light incident on two-dimensional dielectric or metallic randomly rough surfaces defined by (isotropic or anisotropic Gaussian and cylindrical power spectra. Simulation results obtained by the proposed method agree well with experimentally measured scattering data taken from similar well-characterized, rough metal samples, or to results obtained by other numerical methods.

  2. New edge magnetoplasmon for a two-dimensional electron gas in a ring geometry

    International Nuclear Information System (INIS)

    Proetto, C.R.

    1992-09-01

    The dynamical response of a classical two-dimensional electron gas confined in a ring geometry under a perpendicular magnetic field is analysed. Within the hydrodynamical approach and in the strong magnetic field limit, a new set of antidot edge magnetoplasmons is obtained, corresponding to density oscillations circulating along the inner boundary of the ring and whose frequency increases with magnetic field. The associated self-induced distribution of densities and currents are presented, together with an analysis of the size dependence of these perimeter waves. (author). 15 refs, 4 figs

  3. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  4. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  5. Equilibrium spherically curved two-dimensional Lennard-Jones systems

    NARCIS (Netherlands)

    Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.

    2005-01-01

    To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced

  6. Numerical Hydrodynamics in General Relativity

    Directory of Open Access Journals (Sweden)

    Font José A.

    2003-01-01

    Full Text Available The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. With respect to an earlier version of the article, the present update provides additional information on numerical schemes, and extends the discussion of astrophysical simulations in general relativistic hydrodynamics. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A large sample of available numerical schemes is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of astrophysical simulations in strong gravitational fields is presented. These include gravitational collapse, accretion onto black holes, and hydrodynamical evolutions of neutron stars. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances on the formulation of the gravitational field and hydrodynamic equations and the numerical methodology designed to solve them.

  7. GPU-based simulation of the two-dimensional unstable structure of gaseous oblique detonations

    Energy Technology Data Exchange (ETDEWEB)

    Teng, H.H.; Kiyanda, C.B.; Ng, H.D. [Department of Mechanical and Industrial Engineering, Concordia University, Montréal, QC, H3G 1M8 (Canada); Morgan, G.H.; Nikiforakis, N. [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE (United Kingdom)

    2015-03-10

    In this paper, the two-dimensional structure of unstable oblique detonations induced by the wedge from a supersonic combustible gas flow is simulated using the reactive Euler equations with a one-step Arrhenius chemistry model. A wide range of activation energy of the combustible mixture is considered. Computations are performed on the Graphical Processing Unit (GPU) to reduce the simulation runtimes. A large computational domain covered by a uniform mesh with high grid resolution is used to properly capture the development of instabilities and the formation of different transverse wave structures. After the initiation point, where the oblique shock transits into a detonation, an instability begins to manifest and in all cases, the left-running transverse waves first appear, followed by the subsequent emergence of right-running transverse waves forming the dual-head triple point structure. This study shows that for low activation energies, a long computational length must be carefully considered to reveal the unstable surface due to the slow growth rate of the instability. For high activation energies, the flow behind the unstable oblique detonation features the formation of unburnt gas pockets and strong vortex-pressure wave interaction resulting in a chaotic-like vortical structure.

  8. Hydrodynamic interactions in active colloidal crystal microrheology.

    Science.gov (United States)

    Weeber, R; Harting, J

    2012-11-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts the development of defects, the crystal regeneration, as well as the jamming behavior.

  9. Three-Dimensional Neutral Transport Simulations of Gas Puff Imaging Experiments

    International Nuclear Information System (INIS)

    Stotler, D.P.; DIppolito, D.A.; LeBlanc, B.; Maqueda, R.J.; Myra, J.R.; Sabbagh, S.A.; Zweben, S.J.

    2003-01-01

    Gas Puff Imaging (GPI) experiments are designed to isolate the structure of plasma turbulence in the plane perpendicular to the magnetic field. Three-dimensional aspects of this diagnostic technique as used on the National Spherical Torus eXperiment (NSTX) are examined via Monte Carlo neutral transport simulations. The radial width of the simulated GPI images are in rough agreement with observations. However, the simulated emission clouds are angled approximately 15 degrees with respect to the experimental images. The simulations indicate that the finite extent of the gas puff along the viewing direction does not significantly degrade the radial resolution of the diagnostic. These simulations also yield effective neutral density data that can be used in an approximate attempt to infer two-dimensional electron density and temperature profiles from the experimental images

  10. Hydrodynamic interactions in active colloidal crystal microrheology

    OpenAIRE

    Weeber, R; Harting, JDR Jens

    2012-01-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme signif...

  11. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  12. Commercial applications of large-scale Research and Development computer simulation technologies

    International Nuclear Information System (INIS)

    Kuok Mee Ling; Pascal Chen; Wen Ho Lee

    1998-01-01

    The potential commercial applications of two large-scale R and D computer simulation technologies are presented. One such technology is based on the numerical solution of the hydrodynamics equations, and is embodied in the two-dimensional Eulerian code EULE2D, which solves the hydrodynamic equations with various models for the equation of state (EOS), constitutive relations and fracture mechanics. EULE2D is an R and D code originally developed to design and analyze conventional munitions for anti-armor penetrations such as shaped charges, explosive formed projectiles, and kinetic energy rods. Simulated results agree very well with actual experiments. A commercial application presented here is the design and simulation of shaped charges for oil and gas well bore perforation. The other R and D simulation technology is based on the numerical solution of Maxwell's partial differential equations of electromagnetics in space and time, and is implemented in the three-dimensional code FDTD-SPICE, which solves Maxwell's equations in the time domain with finite-differences in the three spatial dimensions and calls SPICE for information when nonlinear active devices are involved. The FDTD method has been used in the radar cross-section modeling of military aircrafts and many other electromagnetic phenomena. The coupling of FDTD method with SPICE, a popular circuit and device simulation program, provides a powerful tool for the simulation and design of microwave and millimeter-wave circuits containing nonlinear active semiconductor devices. A commercial application of FDTD-SPICE presented here is the simulation of a two-element active antenna system. The simulation results and the experimental measurements are in excellent agreement. (Author)

  13. Simulation of deep one- and two-dimensional redshift surveys

    International Nuclear Information System (INIS)

    Park, Changbom; Gott, J.R. III

    1991-01-01

    We show that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with non-equal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6-h -1 Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased Cold Dark Matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. The structures (spikes) we see in these simulated samples occur when the narrow pencil-beam pierces walls, filaments and clusters appearing randomly along the line-of-sight. We have applied a statistical test for goodness of fit to a periodic lattice to the observations and the simulations. (author)

  14. Application of three dimensional finite element modeling for the simulation of machining processes

    International Nuclear Information System (INIS)

    Fischer, C.E.; Wu, W.T.; Chigurupati, P.; Jinn, J.T.

    2004-01-01

    For many years, metal cutting simulations have been performed using two dimensional approximations of the actual process. Factors such as chip morphology, cutting force, temperature, and tool wear can all be predicted on the computer. However, two dimensional simulation is limited to processes which are orthogonal, or which can be closely approximated as orthogonal.Advances in finite element technology, coupled with continuing improvement in the availability of low cost, high performance computer hardware, have made the three dimensional simulation of a large variety of metal cutting processes practical. Specific improvements include efficient FEM solvers, and robust adaptive remeshing. As researchers continue to gain an improved understanding of wear, material representation, tool coatings, fracture, and other such phenomena, the machining simulation system also must adapt to incorporate these evolving models.To demonstrate the capabilities of the 3D simulation system, a variety of drilling, milling, and turning processes have been simulated and will be presented in this paper. Issues related to computation time and simulation accuracy will also be addressed

  15. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...... of the welding machines. Simulations of the mechanical tests take into account material softening due to the accumulation of ductile damage and cover conventional tests, such as tensile–shear tests, cross-tension test and peel tests, as well as the possibility of special-purpose tests designed by the users...

  16. Tuning spin transport across two-dimensional organometallic junctions

    Science.gov (United States)

    Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping

    2018-01-01

    We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.

  17. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    International Nuclear Information System (INIS)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-01-01

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities

  18. Simulations of smog-chamber experiments using the two-dimensional volatility basis set: linear oxygenated precursors.

    Science.gov (United States)

    Chacon-Madrid, Heber J; Murphy, Benjamin N; Pandis, Spyros N; Donahue, Neil M

    2012-10-16

    We use a two-dimensional volatility basis set (2D-VBS) box model to simulate secondary organic aerosol (SOA) mass yields of linear oxygenated molecules: n-tridecanal, 2- and 7-tridecanone, 2- and 7-tridecanol, and n-pentadecane. A hybrid model with explicit, a priori treatment of the first-generation products for each precursor molecule, followed by a generic 2D-VBS mechanism for later-generation chemistry, results in excellent model-measurement agreement. This strongly confirms that the 2D-VBS mechanism is a predictive tool for SOA modeling but also suggests that certain important first-generation products for major primary SOA precursors should be treated explicitly for optimal SOA predictions.

  19. Hydrodynamic and Sensory Factors Governing Response of Copepods to Simulated Predation by Balaenid Whales

    Directory of Open Access Journals (Sweden)

    Alexander J. Werth

    2012-01-01

    Full Text Available Predator/prey interactions between copepods and balaenid (bowhead and right whales were studied with controlled lab experiments using moving baleen in still water and motionless baleen in flowing water to simulate zooplankton passage toward, into, and through the balaenid oral cavity. Copepods showed a lesser escape response to baleen and to a model head simulating balaenid oral hydrodynamics than to other objects. Copepod escape response increased as water flow and body size increased and was greatest at distances ≥10 cm from baleen and at copepod density = 10,000 m−3. Data from light/dark experiments suggest that escape is based on mechanoreception, not vision. The model head captured 88% of copepods. Results support previous research showing hydrodynamic effects within a whale’s oral cavity create slight suction pressures to draw in prey or at least preclude formation of an anterior compressive bow wave that could scatter or alert prey to the presence of the approaching whale.

  20. Simulation of deep one- and two-dimensional redshift surveys

    Science.gov (United States)

    Park, Changbom; Gott, J. Richard, III

    1991-03-01

    It is shown that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with nonequal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6/h Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased cold dark matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. (1990). The structures (spikes) seen in these simulated samples occur when the narrow pencil-beam pierces walls, filaments, and clusters appearing randomly along the line-of-sight. A statistical test for goodness of fit to a periodic lattice has been applied to the observations and the simulations. It is found that the statistical significance level (P = 15.4 percent) is not strong enough to reject the null hypothesis that the observations and the simulations were drawn at random from the same set.

  1. Experimental two-dimensional quantum walk on a photonic chip.

    Science.gov (United States)

    Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min

    2018-05-01

    Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.

  2. Two-dimensional simulation of the hydromagnetic Rayleigh-Taylor instability in an imploding foil plasma

    International Nuclear Information System (INIS)

    Roderick, N.F.; Hussey, T.W.; Faehl, R.J.; Boyd, R.W.

    1978-01-01

    Two-dimensional (r-z) magnetohydrodynamic simulations of the electromagnetic implosion of metallic foil plasmas show, for certain initial configurations, a tendency to develop large-amplitude perturbations characteristic of the hydromagnetic Rayleigh-Taylor instability. These perturbations develop at the plasma magnetic field interface for plasma configurations where the density gradient scale length, the characteristic dimension for the instability, is short. The effects on the plasma dynamics of the implosion will be discussed for several initial foil configurations. In general, the growth rates and linear mode structure are found to be influenced by the plasma shell thickness and density gradient scale length, in agreement with theory. The most destructive modes are found to be those with wavelengths of the order of the plasma shell thickness

  3. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  4. Modeling of laser induced air plasma and shock wave dynamics using 2D-hydrodynamic simulations

    Science.gov (United States)

    Paturi, Prem Kiran; S, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem, University Of Hyderabad Team; Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam Team

    2017-06-01

    The laser induced air plasma dynamics and the SW evolution modeled using the two dimensional hydrodynamic code by considering two different EOS: ideal gas EOS with charge state effects taken into consideration and Chemical Equilibrium applications (CEA) EOS considering the chemical kinetics of different species will be presented. The inverse bremsstrahlung absorption process due to electron-ion and electron-neutrals is considered for the laser-air interaction process for both the models. The numerical results obtained with the two models were compared with that of the experimental observations over the time scales of 200 - 4000 ns at an input laser intensity of 2.3 ×1010 W/cm2. The comparison shows that the plasma and shock dynamics differ significantly for two EOS considered. With the ideas gas EOS the asymmetric expansion and the subsequent plasma dynamics have been well reproduced as observed in the experiments, whereas with the CEA model these processes were not reproduced due to the laser energy absorption occurring mostly at the focal volume. ACRHEM team thank DRDO, India for funding.

  5. Early orthognathic surgery with three-dimensional image simulation during presurgical orthodontics in adults.

    Science.gov (United States)

    Kang, Sang-Hoon; Kim, Moon-Key; Park, Sun-Yeon; Lee, Ji-Yeon; Park, Wonse; Lee, Sang-Hwy

    2011-03-01

    To correct dentofacial deformities, three-dimensional skeletal analysis and computerized orthognathic surgery simulation are used to facilitate accurate diagnoses and surgical plans. Computed tomography imaging of dental occlusion can inform three-dimensional facial analyses and orthognathic surgical simulations. Furthermore, three-dimensional laser scans of a cast model of the predetermined postoperative dental occlusion can be used to increase the accuracy of the preoperative surgical simulation. In this study, we prepared cast models of planned postoperative dental occlusions from 12 patients diagnosed with skeletal class III malocclusions with mandibular prognathism and facial asymmetry that had planned to undergo bimaxillary orthognathic surgery during preoperative orthodontic treatment. The data from three-dimensional laser scans of the cast models were used in three-dimensional surgical simulations. Early orthognathic surgeries were performed based on three-dimensional image simulations using the cast images in several presurgical orthodontic states in which teeth alignment, leveling, and space closure were incomplete. After postoperative orthodontic treatments, intraoral examinations revealed that no patient had a posterior open bite or space. The two-dimensional and three-dimensional skeletal analyses showed that no mandibular deviations occurred between the immediate and final postoperative states of orthodontic treatment. These results showed that early orthognathic surgery with three-dimensional computerized simulations based on cast models of predetermined postoperative dental occlusions could provide early correction of facial deformities and improved efficacy of preoperative orthodontic treatment. This approach can reduce the decompensation treatment period of the presurgical orthodontics and contribute to efficient postoperative orthodontic treatments.

  6. Energy Spectra of Vortex Distributions in Two-Dimensional Quantum Turbulence

    Directory of Open Access Journals (Sweden)

    Ashton S. Bradley

    2012-10-01

    Full Text Available We theoretically explore key concepts of two-dimensional turbulence in a homogeneous compressible superfluid described by a dissipative two-dimensional Gross-Pitaeveskii equation. Such a fluid supports quantized vortices that have a size characterized by the healing length ξ. We show that, for the divergence-free portion of the superfluid velocity field, the kinetic-energy spectrum over wave number k may be decomposed into an ultraviolet regime (k≫ξ^{-1} having a universal k^{-3} scaling arising from the vortex core structure, and an infrared regime (k≪ξ^{-1} with a spectrum that arises purely from the configuration of the vortices. The Novikov power-law distribution of intervortex distances with exponent -1/3 for vortices of the same sign of circulation leads to an infrared kinetic-energy spectrum with a Kolmogorov k^{-5/3} power law, which is consistent with the existence of an inertial range. The presence of these k^{-3} and k^{-5/3} power laws, together with the constraint of continuity at the smallest configurational scale k≈ξ^{-1}, allows us to derive a new analytical expression for the Kolmogorov constant that we test against a numerical simulation of a forced homogeneous, compressible, two-dimensional superfluid. The numerical simulation corroborates our analysis of the spectral features of the kinetic-energy distribution, once we introduce the concept of a clustered fraction consisting of the fraction of vortices that have the same sign of circulation as their nearest neighboring vortices. Our analysis presents a new approach to understanding two-dimensional quantum turbulence and interpreting similarities and differences with classical two-dimensional turbulence, and suggests new methods to characterize vortex turbulence in two-dimensional quantum fluids via vortex position and circulation measurements.

  7. Hydrodynamic property of the cytoplasm is sufficient to mediate cytoplasmic streaming in the Caenorhabiditis elegans embryo

    Science.gov (United States)

    Niwayama, Ritsuya; Shinohara, Kyosuke; Kimura, Akatsuki

    2011-01-01

    Cytoplasmic streaming is a type of intracellular transport widely seen in nature. Cytoplasmic streaming in Caenorhabditis elegans at the one-cell stage is bidirectional; the flow near the cortex (“cortical flow”) is oriented toward the anterior, whereas the flow in the central region (“cytoplasmic flow”) is oriented toward the posterior. Both cortical flow and cytoplasmic flow depend on non-muscle-myosin II (NMY-2), which primarily localizes in the cortex. The manner in which NMY-2 proteins drive cytoplasmic flow in the opposite direction from remote locations has not been fully understood. In this study, we demonstrated that the hydrodynamic properties of the cytoplasm are sufficient to mediate the forces generated by the cortical myosin to drive bidirectional streaming throughout the cytoplasm. We quantified the flow velocities of cytoplasmic streaming using particle image velocimetry (PIV) and conducted a three-dimensional hydrodynamic simulation using the moving particle semiimplicit method. Our simulation quantitatively reconstructed the quantified flow velocity distribution resolved through PIV analysis. Furthermore, our PIV analyses detected microtubule-dependent flows during the pronuclear migration stage. These flows were reproduced via hydrodynamic interactions between moving pronuclei and the cytoplasm. The agreement of flow dynamics in vivo and in simulation indicates that the hydrodynamic properties of the cytoplasm are sufficient to mediate cytoplasmic streaming in C. elegans embryos. PMID:21730185

  8. Two-phase electro-hydrodynamic flow modeling by a conservative level set model.

    Science.gov (United States)

    Lin, Yuan

    2013-03-01

    The principles of electro-hydrodynamic (EHD) flow have been known for more than a century and have been adopted for various industrial applications, for example, fluid mixing and demixing. Analytical solutions of such EHD flow only exist in a limited number of scenarios, for example, predicting a small deformation of a single droplet in a uniform electric field. Numerical modeling of such phenomena can provide significant insights about EHDs multiphase flows. During the last decade, many numerical results have been reported to provide novel and useful tools of studying the multiphase EHD flow. Based on a conservative level set method, the proposed model is able to simulate large deformations of a droplet by a steady electric field, which is beyond the region of theoretic prediction. The model is validated for both leaky dielectrics and perfect dielectrics, and is found to be in excellent agreement with existing analytical solutions and numerical studies in the literature. Furthermore, simulations of the deformation of a water droplet in decyl alcohol in a steady electric field match better with published experimental data than the theoretical prediction for large deformations. Therefore the proposed model can serve as a practical and accurate tool for simulating two-phase EHD flow. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two dimensional numerical simulations of carrier dynamics during time-resolved photoluminescence decays in two-photon microscopy measurements in semiconductors

    International Nuclear Information System (INIS)

    Kanevce, Ana; Kuciauskas, Darius; Levi, Dean H.; Johnston, Steven W.; Allende Motz, Alyssa M.

    2015-01-01

    We use two-dimensional numerical simulations to analyze high spatial resolution time-resolved spectroscopy data. This analysis is applied to two-photon excitation time-resolved photoluminescence (2PE-TRPL) but is broadly applicable to all microscopic time-resolved techniques. By solving time-dependent drift-diffusion equations, we gain insight into carrier dynamics and transport characteristics. Accurate understanding of measurement results establishes the limits and potential of the measurement and enhances its value as a characterization method. Diffusion of carriers outside of the collection volume can have a significant impact on the measured decay but can also provide an estimate of carrier mobility as well as lifetime. In addition to material parameters, the experimental conditions, such as spot size and injection level, can impact the measurement results. Although small spot size provides better resolution, it also increases the impact of diffusion on the decay; if the spot size is much smaller than the diffusion length, it impacts the entire decay. By reproducing experimental 2PE-TRPL decays, the simulations determine the bulk carrier lifetime from the data. The analysis is applied to single-crystal and heteroepitaxial CdTe, material important for solar cells, but it is also applicable to other semiconductors where carrier diffusion from the excitation volume could affect experimental measurements

  10. Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods

    Science.gov (United States)

    Ngoma, Jeff; Philippe, Pierre; Bonelli, Stéphane; Radjaï, Farhang; Delenne, Jean-Yves

    2018-05-01

    We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.

  11. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  12. Two-dimensional single fluid MHD simulations of plasma opening switches

    International Nuclear Information System (INIS)

    Roderick, N.F.; Payne, S.S.; Peterkin, R.E. Jr.; Frese, M.H.; Hussey, T.W.

    1989-01-01

    Simulations of plasma opening switch have been made using two-dimensional, single fluid, magnetohydrodynamic codes HAM and MACH2. A variety of mechanisms for magnetic field penetration have been investigated. These include plasma convection, classical and microturbulent resistive diffusion, and Hall effect transport. We find that plasma microturbulent models are necessary to explain the broad current channels observed in experiments. Both heuristic and consistent microturbulent models are able to explain observed channel widths and penetration features. The best results are obtained for a consistent model that includes the Buneman, ion acoustic, and lower hybrid microturbulent collision frequencies and threshold conditions. Maximum microturbulent collision frequencies of 5 ω p , are typical. Field transport and current channel profiles are in excellent agreement with experimental observations for GAMBLE I, GAMBLE II, and SUPERMITE experiments. Dominant field penetration mechanisms and center of mass plasma motion are current and density dependent. Including the Hall effect enhanced field penetration. Center of mass motion is negligible for the GAMBLE I experiments but significant for the GAMBLE II conditions. Scaling of plasma opening time with switch length and density can be fit by linear representations for lengths from 0.03 m to 0.24 m and ion densities from 10 18 m -3 to 1.5 times 10 19 m -3 . 15 refs., 7 figs., 1 tab

  13. Hydrodynamic Assists Magnetophoreses Rare Cancer cells Separation in Microchannel Simulation and Experimental Verifications

    Science.gov (United States)

    Saeed, O.; Duru, L.; Yulin, D.

    2018-05-01

    A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.

  14. Self-consistent one-dimensional modelling of x-ray laser plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Walling, R.S.; Scott, H.A.; Mayle, R.W.; Osterheld, A.L.

    1992-01-01

    This paper presents the simulation of a planar, one-dimensional expanding Ge x-ray laser plasma using a new code which combines hydrodynamics, laser absorption, and detailed level population calculations within the same simulation. Previously, these simulations were performed in separate steps. We will present the effect of line transfer on gains and excited level populations and compare the line transfer result with simulations using escape probabilities. We will also discuss the impact of different atomic models on the accuracy of our simulation

  15. Two-dimensional, time-dependent MHD description of interplanetary disturbances: simulation of high speed solar wind interactions

    International Nuclear Information System (INIS)

    Wu, S.T.; Han, S.M.; Dryer, M.

    1979-01-01

    A two-dimensional, time-dependent, magnetohydrodynamic, numerical model is used to investigate multiple, transient solar wind flows which start close to the Sun and then extend into interplanetary space. The initial conditions are assumed to be appropriate for steady, homogeneous solar wind conditions with an average, spiral magnetic field configuration. Because both radial and azimuthal dimensions are included, it is possible to place two or more temporally-developing streams side-by-side at the same time. Thus, the evolution of the ensuing stream interaction is simulated by this numerical code. Advantages of the present method are as follows: (1) the development and decay of asymmetric MHD shocks and their interactions are clearly indicated; and (2) the model allows flexibility in the specification of evolutionary initial conditions in the azimuthal direction, thereby making it possible to gain insight concerning the interplanetary consequences of real physical situations more accurately than by use of the one-dimensional approach. Examples of such situations are the occurrence of near-simultaneous solar flares in adjacent active regions and the sudden appearance of enlargement of coronal holes as a result of a transient re-arrangement from a closed to an open magnetic field topology. (author)

  16. Mode selection in two-dimensional Bragg resonators based on planar dielectric waveguides

    International Nuclear Information System (INIS)

    Baryshev, V R; Ginzburg, N S; Zaslavskii, V Yu; Malkin, A M; Sergeev, A S; Thumm, M

    2009-01-01

    Two-dimensional Bragg resonators based on planar dielectric waveguides are analysed. It is shown that the doubly periodic corrugation deposited on the dielectric surface in the form of two gratings with translational vectors directed perpendicular to each other ensures effective selection of modes along two coordinates at large Fresnel parameters. This result is obtained both by the method of coupled waves (geometrical optics approximation) and by the direct numerical simulations. Two-dimensional Bragg resonators make it possible to fabricate two-dimensional distributed feedback lasers and to provide generation of spatially coherent radiation in large-volume active media. (waveguides)

  17. Two-dimensional ion effects in relativistic diodes

    International Nuclear Information System (INIS)

    Poukey, J.W.

    1975-01-01

    In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)

  18. Monte Carlo simulation of atomic short range order and cluster formation in two dimensional model alloys

    International Nuclear Information System (INIS)

    Rojas T, J.; Instituto Peruano de Energia Nuclear, Lima; Manrique C, E.; Torres T, E.

    2002-01-01

    Using monte Carlo simulation have been carried out an atomistic description of the structure and ordering processes in the system Cu-Au in a two-dimensional model. The ABV model of the alloy is a system of N atoms A and B, located in rigid lattice with some vacant sites. In the model we assume pair wise interactions between nearest neighbors with constant ordering energy J = 0,03 eV. The dynamics was introduced by means of a vacancy that exchanges of place with any atom of its neighbors. The simulations were carried out in a square lattice with 1024 and 4096 particles, using periodic boundary conditions to avoid border effects. We calculate the first two parameters of short range order of Warren-Cowley as function of the concentration and temperature. It was also studied the probabilities of formation of different atomic clusters that consist of 9 atoms as function of the concentration of the alloy and temperatures in a wide range of values. In some regions of temperature and concentration it was observed compositional and thermal polymorphism

  19. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    Science.gov (United States)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  20. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  1. Improvements of the two-dimensional FDTD method for the simulation of normal- and superconducting planar waveguides using time series analysis

    International Nuclear Information System (INIS)

    Hofschen, S.; Wolff, I.

    1996-01-01

    Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement

  2. Improvements of the two-dimensional FDTD method for the simulation of normal- and superconducting planar waveguides using time series analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hofschen, S.; Wolff, I. [Gerhard Mercator Univ. of Duisburg (Germany). Dept. of Electrical Engineering

    1996-08-01

    Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement.

  3. Hydrodynamic simulation of X-UV laser-produced plasmas

    International Nuclear Information System (INIS)

    Fajardo, M.; Zeitoun, P.; Gauthier, J.C.

    2004-01-01

    With the construction of novel X-UV sources, such as V-UV FEL's (free-electron lasers), X-UV laser-matter interaction will become available at ultra-high intensities. But even table-top facilities such as X-UV lasers or High Harmonic Generation, are starting to reach intensities high enough to produce dense plasmas. X-UV laser-matter interaction is studied by a 1-dimensional hydrodynamic Lagrangian code with radiative transfer for a range of interesting X-UV sources. Heating is found to be very different for Z=12-14 elements having L-edges around the X-UV laser wavelength. Possible absorption mechanisms were investigated in order to explain this behaviour, and interaction with cold dense matter proved to be dominant. Plasma sensitivity to X-UV laser parameters such as energy, pulse duration, and wavelength was also studied, covering ranges of existing X-UV lasers. We found that X-UV laser-produced plasmas could be studied using table-top lasers, paving the way for future V-UV-FEL high intensity experiments. (authors)

  4. Reactor hydrodynamics during the reflood phase of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gay, R.R.

    1977-01-01

    The thermohydraulics of a nuclear reactor during the reflood phase of a hypothetical loss-of-coolant accident can be represented by moving control volume methodology in which six control volumes are used to represent the downcomer, lower plenum, and reactor core. The one-dimensional, homogeneous, equilibrium constitutive equations for two-phase steam/water flow are solved in each control volume and connecting junctions. One of the three core control volumes represents the quench region; it changes size and position based on the axial location of the clad quench temperature and the condensed liquid level in the flow channel. The lengths of the remaining two core control volumes are determined by the position of the quench region. Simulation of actual reflood experiments demonstrates that the methodology predicts reflood-like flow oscillations and reproduces the correct trends in experimental data. The moving control volume methodology has proven itself as a valid concept for reflood hydrodynamics, but further development of the existing EFLOD code is required for simulation of actual reflood experiments

  5. Two-dimensional core calculation research for fuel management optimization based on CPACT code

    International Nuclear Information System (INIS)

    Chen Xiaosong; Peng Lianghui; Gang Zhi

    2013-01-01

    Fuel management optimization process requires rapid assessment for the core layout program, and the commonly used methods include two-dimensional diffusion nodal method, perturbation method, neural network method and etc. A two-dimensional loading patterns evaluation code was developed based on the three-dimensional LWR diffusion calculation program CPACT. Axial buckling introduced to simulate the axial leakage was searched in sub-burnup sections to correct the two-dimensional core diffusion calculation results. Meanwhile, in order to get better accuracy, the weight equivalent volume method of the control rod assembly cross-section was improved. (authors)

  6. A two-dimensional regularization algorithm for density profile evaluation from broadband reflectometry

    International Nuclear Information System (INIS)

    Nunes, F.; Varela, P.; Silva, A.; Manso, M.; Santos, J.; Nunes, I.; Serra, F.; Kurzan, B.; Suttrop, W.

    1997-01-01

    Broadband reflectometry is a current technique that uses the round-trip group delays of reflected frequency-swept waves to measure density profiles of fusion plasmas. The main factor that may limit the accuracy of the reconstructed profiles is the interference of the probing waves with the plasma density fluctuations: plasma turbulence leads to random phase variations and magneto hydrodynamic activity produces mainly strong amplitude and phase modulations. Both effects cause the decrease, and eventually loss, of signal at some frequencies. Several data processing techniques can be applied to filter and/or interpolate noisy group delay data obtained from turbulent plasmas with a single frequency sweep. Here, we propose a more powerful algorithm performing two-dimensional regularization (in space and time) of data provided by multiple consecutive frequency sweeps, which leads to density profiles with improved accuracy. The new method is described and its application to simulated data corrupted by noise and missing data is considered. It is shown that the algorithm improves the identification of slowly varying plasma density perturbations by attenuating the effect of fast fluctuations and noise contained in experimental data. First results obtained with this method in ASDEX Upgrade tokamak are presented. copyright 1997 American Institute of Physics

  7. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  8. A linked hydrodynamic and water quality model for the Salton Sea

    Science.gov (United States)

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  9. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.

    Science.gov (United States)

    Mirza, I A; Abdulhameed, M; Vieru, D; Shafie, S

    2016-12-01

    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Hydrodynamic pressure in a tank containing two liquids

    International Nuclear Information System (INIS)

    Tang, Yu.

    1992-01-01

    A study on the dynamic response of a tank containing two different liquids under seismic excitation is presented. Both analytical and numerical (FEM) methods are employed in the analysis. The results obtained by the two methods are in good agreement. The response functions examined include the hydrodynamic pressure, base shear and base moments. A simple approach that can be used to estimate the fundamental natural frequency of the tank-liquid system containing two liquids is proposed. This simple approach is an extension of the method used for estimating the frequency of a tank-liquid system containing only one liquid. This study shows that the dynamic response of a tank filled with two liquids is quite different from that of an identical tank filled with only one liquid

  11. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  12. Investigation of hydrodynamics and heat transfer in pseudo 2D spouted beds with and without draft plates

    Directory of Open Access Journals (Sweden)

    S. H. Hosseini

    Full Text Available Abstract In the present study, hydrodynamics and gas to particle heat transfer in pseudo two dimensional spouted beds (2DSB with and without draft plates were investigated using the Eulerian-Eulerian approach. The main objective of the study was to provide an understanding of effects of the presence of draft plates on the hydrodynamics and heat transfer behavior of solid particles in the spouted beds. To validate the model, the predicted mean particle vertical velocity at the bed axis, the lateral profiles of vertical particle velocity at different bed heights for both systems, and the particle velocity vector fields in the beds were compared with the experimental measurements. A close agreement between the CFD results and the experimental data was found for both systems. The simulation results showed that the particle volume fraction in the spout and fountain regions of the spouted bed with draft plates is considerably lower than that in a conventional spouted bed (without draft plates. Simulation results also showed significant differences between the temperature distributions of gas and solid phases in spouted beds with and without draft plates.

  13. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    Science.gov (United States)

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  14. Noise-induced drift in two-dimensional anisotropic systems

    Science.gov (United States)

    Farago, Oded

    2017-10-01

    We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.

  15. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jeffrey N. [Univ. of California, Davis, CA (United States)

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  16. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  17. Hydrodynamic suppression of phase separation in active suspensions.

    Science.gov (United States)

    Matas-Navarro, Ricard; Golestanian, Ramin; Liverpool, Tanniemola B; Fielding, Suzanne M

    2014-09-01

    We simulate with hydrodynamics a suspension of active disks squirming through a Newtonian fluid. We explore numerically the full range of squirmer area fractions from dilute to close packed and show that "motility induced phase separation," which was recently proposed to arise generically in active matter, and which has been seen in simulations of active Brownian disks, is strongly suppressed by hydrodynamic interactions. We give an argument for why this should be the case and support it with counterpart simulations of active Brownian disks in a parameter regime that provides a closer counterpart to hydrodynamic suspensions than in previous studies.

  18. Hydro-dynamic Solute Transport under Two-Phase Flow Conditions.

    Science.gov (United States)

    Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez

    2017-07-26

    There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

  19. Comparing semi-analytic particle tagging and hydrodynamical simulations of the Milky Way's stellar halo

    Science.gov (United States)

    Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos S.; Le Bret, Theo; Pontzen, Andrew

    2017-08-01

    Particle tagging is an efficient, but approximate, technique for using cosmological N-body simulations to model the phase-space evolution of the stellar populations predicted, for example, by a semi-analytic model of galaxy formation. We test the technique developed by Cooper et al. (which we call stings here) by comparing particle tags with stars in a smooth particle hydrodynamic (SPH) simulation. We focus on the spherically averaged density profile of stars accreted from satellite galaxies in a Milky Way (MW)-like system. The stellar profile in the SPH simulation can be recovered accurately by tagging dark matter (DM) particles in the same simulation according to a prescription based on the rank order of particle binding energy. Applying the same prescription to an N-body version of this simulation produces a density profile differing from that of the SPH simulation by ≲10 per cent on average between 1 and 200 kpc. This confirms that particle tagging can provide a faithful and robust approximation to a self-consistent hydrodynamical simulation in this regime (in contradiction to previous claims in the literature). We find only one systematic effect, likely due to the collisionless approximation, namely that massive satellites in the SPH simulation are disrupted somewhat earlier than their collisionless counterparts. In most cases, this makes remarkably little difference to the spherically averaged distribution of their stellar debris. We conclude that, for galaxy formation models that do not predict strong baryonic effects on the present-day DM distribution of MW-like galaxies or their satellites, differences in stellar halo predictions associated with the treatment of star formation and feedback are much more important than those associated with the dynamical limitations of collisionless particle tagging.

  20. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    Energy Technology Data Exchange (ETDEWEB)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M [Centre for Plasma Physics, The Queens University of Belfast, Belfast BT7 1NN (United Kingdom); Murphy, G C; Drury, L O C [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dieckmann, M E; Ynnerman, A [Department of Science and Technology (ITN), Linkoeping University, 60174 Norrkoping (Sweden); Bret, A, E-mail: gsarri01@qub.ac.uk [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2011-07-15

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  1. Two-dimensional particle-in-cell simulation of the expansion of a plasma into a rarefied medium

    International Nuclear Information System (INIS)

    Sarri, G; Quinn, K; Kourakis, I; Borghesi, M; Murphy, G C; Drury, L O C; Dieckmann, M E; Ynnerman, A; Bret, A

    2011-01-01

    The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

  2. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  3. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    Science.gov (United States)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  4. Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Kaya, Ismet I.

    2013-02-01

    Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.

  5. Spectral maximum entropy hydrodynamics of fermionic radiation: a three-moment system for one-dimensional flows

    International Nuclear Information System (INIS)

    Banach, Zbigniew; Larecki, Wieslaw

    2013-01-01

    The spectral formulation of the nine-moment radiation hydrodynamics resulting from using the Boltzmann entropy maximization procedure is considered. The analysis is restricted to the one-dimensional flows of a gas of massless fermions. The objective of the paper is to demonstrate that, for such flows, the spectral nine-moment maximum entropy hydrodynamics of fermionic radiation is not a purely formal theory. We first determine the domains of admissible values of the spectral moments and of the Lagrange multipliers corresponding to them. We then prove the existence of a solution to the constrained entropy optimization problem. Due to the strict concavity of the entropy functional defined on the space of distribution functions, there exists a one-to-one correspondence between the Lagrange multipliers and the moments. The maximum entropy closure of moment equations results in the symmetric conservative system of first-order partial differential equations for the Lagrange multipliers. However, this system can be transformed into the equivalent system of conservation equations for the moments. These two systems are consistent with the additional conservation equation interpreted as the balance of entropy. Exploiting the above facts, we arrive at the differential relations satisfied by the entropy function and the additional function required to close the system of moment equations. We refer to this additional function as the moment closure function. In general, the moment closure and entropy–entropy flux functions cannot be explicitly calculated in terms of the moments determining the state of a gas. Therefore, we develop a perturbation method of calculating these functions. Some additional analytical (and also numerical) results are obtained, assuming that the maximum entropy distribution function tends to the Maxwell–Boltzmann limit. (paper)

  6. Effects of Surface Irregularities on Piston Ring-Cylinder Tribo Pair of a Two Stroke Motor Engine in Hydrodynamic Lubrication

    Directory of Open Access Journals (Sweden)

    A. Zavos

    2015-03-01

    Full Text Available Tribological parameters such as friction, lubrication and wear influence strongly the engine component's life. In this study, a piston ring-cylinder system simulated taking into account the surface modifications under fully flooded lubrication and normal engine conditions. The hydrodynamic pressure field solved based on the Navier Stokes equations by Fluid Structure Interaction analysis. A real experimental data of piston ring-cylinder was used from a two stroke motor engine 50 cc. The surface irregularities are measured by 3D coordinate measurement machine while the engine has been worked about 4000 hours. The friction force, the hydrodynamic pressure, the oil film and the mechanical stresses were predicted for different engine conditions. Results show that the worn profile ring reduces the friction as well as the mechanical stresses increased. Surface condition of worn top ring was observed after a metallurgical profile analysis.

  7. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2016-06-15

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  8. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    International Nuclear Information System (INIS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2016-01-01

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point

  9. AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION

    Energy Technology Data Exchange (ETDEWEB)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2016-03-20

    Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.

  10. Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Two-Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Xu, Kui; Lin, Zifeng; Merlet, Céline; Taberna, Pierre-Louis; Miao, Ling; Jiang, Jianjun; Simon, Patrice

    2017-12-06

    We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti 3 C 2 T x MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] + [TFSI] - ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine D; Savran, Mona Meral; Konge, Lars

    2016-01-01

    were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...

  12. Three dimensional, numerical analysis of an elasto hydrodynamic lubrication using fluid structure interaction (FSI) approach

    Science.gov (United States)

    Hanoca, P.; Ramakrishna, H. V.

    2018-03-01

    This work is related to develop a methodology to model and simulate the TEHD using the sequential application of CFD and CSD. The FSI analyses are carried out using ANSYS Workbench. In this analysis steady state, 3D Navier-Stoke equations along with energy equation are solved. Liquid properties are introduced where the viscosity and density are the function of pressure and temperature. The cavitation phenomenon is adopted in the analysis. Numerical analysis has been carried at different speeds and surfaces temperatures. During the analysis, it was found that as speed increases, hydrodynamic pressures will also increases. The pressure profile obtained from the Roelands equation is more sensitive to the temperature as compared to the Barus equation. The stress distributions specify the significant positions in the bearing structure. The developed method is capable of giving latest approaching into the physics of elasto hydrodynamic lubrication.

  13. Direct numerical simulation of the passive scalar field in a two-dimensional turbulent channel flow

    International Nuclear Information System (INIS)

    Kasagi, N.; Tomita, Y.; Kuroda, A.

    1991-01-01

    This paper reports on a direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air that was carried out. The iso-flux condition is imposed on the walls so that the local mean temperature linearly increases in the streamwise direction. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained include rms velocity and temperature fluctuations, Reynolds stresses, turbulent heat fluxes and other higher order correlations. They are compared mainly with the DNS data obtained by Kim and Moin (1987) and Kim (1987) in a higher Reynolds number flow with isothermal walls. Agreement between these two results is generally good. Each term in the budget equations of temperature variance, its dissipation rate and turbulent heat fluxes is also calculated in order to establish a data base of convective heat transfer for thermal turbulence modeling

  14. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1984-01-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, bubble distributions, and void fractions were measured in inline and rotational square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase yawed flow through incline rod arrays a new flow separation phenomena was observed and modeled. Bubbles of diameters significantly smaller than the rod diameter travel along the rod axis, while larger diameter bubbles move through the rod array gaps. The outcome is a flow separation not predictable with current interfacial momentum exchange models. This phenomenon was not observed in rotated square rod arrays. Current interfacial momentum exchange models were confirmed for this rod arrangement. Models for the two phase flow resistance multiplier for cross flow were reviewed and compared with data from cross and yawed flow rod arrays. Both drag and lift components of the multiplier were well predicted by the homogenous model. Other models reviewed overpredicted the data by a factor of two

  15. Waterlike anomalies in a two-dimensional core-softened potential

    Science.gov (United States)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  16. Numerical Simulation of Two Dimensional Flows in Yazidang Reservoir

    Science.gov (United States)

    Huang, Lingxiao; Liu, Libo; Sun, Xuehong; Zheng, Lanxiang; Jing, Hefang; Zhang, Xuande; Li, Chunguang

    2018-01-01

    This paper studied the problem of water flow in the Yazid Ang reservoir. It built 2-D RNG turbulent model, rated the boundary conditions, used the finite volume method to discrete equations and divided the grid by the advancing-front method. It simulated the two conditions of reservoir flow field, compared the average vertical velocity of the simulated value and the measured value nearby the water inlet and the water intake. The results showed that the mathematical model could be applied to the similar industrial water reservoir.

  17. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    Science.gov (United States)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps

  18. Numerical simulation of viscous flow and hydrodynamic noise in surface ship

    Directory of Open Access Journals (Sweden)

    YU Han

    2017-12-01

    Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.

  19. Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement

    Science.gov (United States)

    Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim

    2018-06-01

    We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.

  20. Three-dimensional simulation of a rock slide impact into water

    Science.gov (United States)

    Weaver, R.; Gisler, G.; Gittings, M.; Ranta, D.

    2007-12-01

    The steep-sided fjords of western Norway have experienced numerous rock slide events that sometimes produced devastating tsunamis. The 1934 slide in the Tafjord region, when some 3 million cubic meters of rock plunged into the water, resulted in waves tens of meters high that destroyed two villages and killed about 40 people. A similarly dangerous situation exists now in Sunnylvsfjord, where a major expanding crack in the fjord wall at Aknes threatens to release from 5 to 40 million cubic meters of rock into the water. Such an event would devastate a large region, including the Geiranger Fjord, a UN World Heritage Site that is extremely popular with tourists. The Norwegian Government's Aknes-Tafjord project is responsible for studying and monitoring the potential slide area and for providing adequate warning to protect lives and property. In order to better understand tsunami generation from such events, we have performed 3-dimensional fully compressible hydrodynamical simulations of the impact of a large number of boulders from a steep slope into a deep body of water. We use the Los Alamos/SAIC adaptive-mesh-refined SAGE code, previously used to model tsunamis from underwater explosions, asteroid impacts, and both subaqueous and subaerial landslide sources. We find the interaction of boulders and water to be extremely turbulent and dissipative. It differs markedly from simulations of large-block impacts in similar geometry. No more than about 15% of the potential energy of the boulders ends up in the water wave. The rest of the energy goes into heating the boulders (and presumably fragmenting them, though that physics is not included) into generating winds, heating air and water, and generating turbulence. In the near field, the waves produced by the impact can be quite high -- tens of meters -- and have the potential to devastate coastlines at substantial distances from the site along a narrow fjord system.

  1. On the size distribution of one-, two- and three-dimensional Voronoi cells

    International Nuclear Information System (INIS)

    Marthinsen, K.

    1994-03-01

    The present report gives a presentation of the different cell size distribution obtained by computer simulations of random Voronoi cell structures in one-, two- and three-dimensional space. The random Voronoi cells are constructed from cell centroids randomly distributed along a string, in the plane and in three-dimensional space, respectively. The size distributions are based on 2-3 · 10 4 cells. For the spacial polyhedra both the distribution of volumes, areas and radii are presented, and the two latter quantities are compared to the distributions of areas and radii from a planar section through the three-dimensional structure as well as to the corresponding distributions obtained from a pure two-dimensional cell structure. 11 refs., 11 figs

  2. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  3. Development of a three dimensional circulation model based on fractional step method

    Directory of Open Access Journals (Sweden)

    Mazen Abualtayef

    2010-03-01

    Full Text Available A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.

  4. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  5. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  6. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  7. Noncontact Cohesive Swimming of Bacteria in Two-Dimensional Liquid Films.

    Science.gov (United States)

    Li, Ye; Zhai, He; Sanchez, Sandra; Kearns, Daniel B; Wu, Yilin

    2017-07-07

    Bacterial swimming in confined two-dimensional environments is ubiquitous in nature and in clinical settings. Characterizing individual interactions between swimming bacteria in 2D confinement will help to understand diverse microbial processes, such as bacterial swarming and biofilm formation. Here we report a novel motion pattern displayed by flagellated bacteria in 2D confinement: When two nearby cells align their moving directions, they tend to engage in cohesive swimming without direct cell body contact, as a result of hydrodynamic interaction but not flagellar intertwining. We further found that cells in cohesive swimming move with higher directional persistence, which can increase the effective diffusivity of cells by ∼3 times as predicted by computational modeling. As a conserved behavior for peritrichously flagellated bacteria, cohesive swimming in 2D confinement may be key to collective motion and self-organization in bacterial swarms; it may also promote bacterial dispersal in unsaturated soils and in interstitial space during infections.

  8. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    Energy Technology Data Exchange (ETDEWEB)

    Kobyakov, D. N. [Institute of Applied Physics of the Russian Academy of Sciences, 603950 Nizhny Novgorod (Russian Federation); Pethick, C. J., E-mail: dmitry.kobyakov@appl.sci-nnov.ru, E-mail: pethick@nbi.dk [The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2017-02-20

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  9. Heights integrated model as instrument for simulation of hydrodynamic, radiation transport, and heat conduction phenomena of laser-produced plasma in EUV applications.

    Energy Technology Data Exchange (ETDEWEB)

    Sizyuk, V.; Hassanein, A.; Morozov, V.; Sizyuk, T.; Mathematics and Computer Science

    2007-01-16

    The HEIGHTS integrated model has been developed as an instrument for simulation and optimization of laser-produced plasma (LPP) sources relevant to extreme ultraviolet (EUV) lithography. The model combines three general parts: hydrodynamics, radiation transport, and heat conduction. The first part employs a total variation diminishing scheme in the Lax-Friedrich formulation (TVD-LF); the second part, a Monte Carlo model; and the third part, implicit schemes with sparse matrix technology. All model parts consider physical processes in three-dimensional geometry. The influence of a generated magnetic field on laser plasma behavior was estimated, and it was found that this effect could be neglected for laser intensities relevant to EUV (up to {approx}10{sup 12} W/cm{sup 2}). All applied schemes were tested on analytical problems separately. Benchmark modeling of the full EUV source problem with a planar tin target showed good correspondence with experimental and theoretical data. Preliminary results are presented for tin droplet- and planar-target LPP devices. The influence of three-dimensional effects on EUV properties of source is discussed.

  10. A new approach to non-Abelian hydrodynamics

    International Nuclear Information System (INIS)

    Fernández-Melgarejo, Jose J.; Rey, Soo-Jong; Surówka, Piotr

    2017-01-01

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  11. A new approach to non-Abelian hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Melgarejo, Jose J. [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Rey, Soo-Jong [School of Physics & Astronomy and Center for Theoretical Physics, Seoul National University,Seoul, 08826 (Korea, Republic of); Department of Fundamental Sciences, University of Science and Technology,Daejeon, 34113 (Korea, Republic of); Center for Gauge, Gravity & Strings, Institute for Basic Sciences,Daejeon, 34047 (Korea, Republic of); Surówka, Piotr [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany)

    2017-02-23

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  12. Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions.

    Science.gov (United States)

    Huang, Mu-Jie; Chen, Hsuan-Yi; Mikhailov, Alexander S

    2012-11-01

    Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.

  13. Pair creation, motion, and annihilation of topological defects in two-dimensional nematic liquid crystals

    Science.gov (United States)

    Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.

    2018-02-01

    We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.

  14. Effect of Second-Order Hydrodynamics on a Floating Offshore Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roald, L.; Jonkman, J.; Robertson, A.

    2014-05-01

    The design of offshore floating wind turbines uses design codes that can simulate the entire coupled system behavior. At the present, most codes include only first-order hydrodynamics, which induce forces and motions varying with the same frequency as the incident waves. Effects due to second- and higher-order hydrodynamics are often ignored in the offshore industry, because the forces induced typically are smaller than the first-order forces. In this report, first- and second-order hydrodynamic analysis used in the offshore oil and gas industry is applied to two different wind turbine concepts--a spar and a tension leg platform.

  15. Three-Dimensional Smoothed Particle Hydrodynamics Modeling of Preferential Flow Dynamics at Fracture Intersections on a High-Performance Computing Platform

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.

    2017-12-01

    The physical mechanisms that govern preferential flow dynamics in unsaturated fractured rock formations are complex and not well understood. Fracture intersections may act as an integrator of unsaturated flow, leading to temporal delay, intermittent flow and partitioning dynamics. In this work, a three-dimensional Pairwise-Force Smoothed Particle Hydrodynamics (PF-SPH) model is being applied in order to simulate gravity-driven multiphase flow at synthetic fracture intersections. SPH, as a meshless Lagrangian method, is particularly suitable for modeling deformable interfaces, such as three-phase contact dynamics of droplets, rivulets and free-surface films. The static and dynamic contact angle can be recognized as the most important parameter of gravity-driven free-surface flow. In SPH, surface tension and adhesion naturally emerges from the implemented pairwise fluid-fluid (sff) and solid-fluid (ssf) interaction force. The model was calibrated to a contact angle of 65°, which corresponds to the wetting properties of water on Poly(methyl methacrylate). The accuracy of the SPH simulations were validated against an analytical solution of Poiseuille flow between two parallel plates and against laboratory experiments. Using the SPH model, the complex flow mode transitions from droplet to rivulet flow of an experimental study were reproduced. Additionally, laboratory dimensionless scaling experiments of water droplets were successfully replicated in SPH. Finally, SPH simulations were used to investigate the partitioning dynamics of single droplets into synthetic horizontal fractures with various apertures (Δdf = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 mm) and offsets (Δdoff = -1.5, -1.0, -0.5, 0, 1.0, 2.0, 3.0 mm). Fluid masses were measured in the domains R1, R2 and R3. The perfect conditions of ideally smooth surfaces and the SPH inherent advantage of particle tracking allow the recognition of small scale partitioning mechanisms and its importance for bulk flow

  16. Cosmological Simulations with Scale-Free Initial Conditions. I. Adiabatic Hydrodynamics

    International Nuclear Information System (INIS)

    Owen, J.M.; Weinberg, D.H.; Evrard, A.E.; Hernquist, L.; Katz, N.

    1998-01-01

    We analyze hierarchical structure formation based on scale-free initial conditions in an Einstein endash de Sitter universe, including a baryonic component with Ω bary = 0.05. We present three independent, smoothed particle hydrodynamics (SPH) simulations, performed at two resolutions (32 3 and 64 3 dark matter and baryonic particles) and with two different SPH codes (TreeSPH and P3MSPH). Each simulation is based on identical initial conditions, which consist of Gaussian-distributed initial density fluctuations that have a power spectrum P(k) ∝ k -1 . The baryonic material is modeled as an ideal gas subject only to shock heating and adiabatic heating and cooling; radiative cooling and photoionization heating are not included. The evolution is expected to be self-similar in time, and under certain restrictions we identify the expected scalings for many properties of the distribution of collapsed objects in all three realizations. The distributions of dark matter masses, baryon masses, and mass- and emission-weighted temperatures scale quite reliably. However, the density estimates in the central regions of these structures are determined by the degree of numerical resolution. As a result, mean gas densities and Bremsstrahlung luminosities obey the expected scalings only when calculated within a limited dynamic range in density contrast. The temperatures and luminosities of the groups show tight correlations with the baryon masses, which we find can be well represented by power laws. The Press-Schechter (PS) approximation predicts the distribution of group dark matter and baryon masses fairly well, though it tends to overestimate the baryon masses. Combining the PS mass distribution with the measured relations for T(M) and L(M) predicts the temperature and luminosity distributions fairly accurately, though there are some discrepancies at high temperatures/luminosities. In general the three simulations agree well for the properties of resolved groups, where a group

  17. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

    International Nuclear Information System (INIS)

    Dunning, M.J.; Haan, S.W.

    1995-01-01

    Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

  18. Two-dimensional Potts antiferromagnets with a phase transition at arbitrarily large q

    Czech Academy of Sciences Publication Activity Database

    Huang, Y.; Chen, K.; Deng, Y.; Jacobsen, J. L.; Kotecký, R.; Salas, J.; Sokal, Alan D.; Swart, Jan M.

    2013-01-01

    Roč. 87, Č. 1 (2013), 12136-1-12136-5 ISSN 1539-3755 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : Monte Carlo simulation * two-dimensional lattices * q-state Potts Subject RIV: BE - Theoretical Physics Impact factor: 2.326, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/swart-two-dimensional potts antiferromagnets with a phase transition at arbitrarily large q.pdf

  19. Shadowfax: Moving mesh hydrodynamical integration code

    Science.gov (United States)

    Vandenbroucke, Bert

    2016-05-01

    Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

  20. Hydrodynamic flows of non-Fermi liquids: Magnetotransport and bilayer drag

    Science.gov (United States)

    Patel, Aavishkar A.; Davison, Richard A.; Levchenko, Alex

    2017-11-01

    We consider a hydrodynamic description of transport for generic two-dimensional electron systems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study magnetoresistance and show that it is governed only by the electronic viscosity provided that the wavelength of the underlying disorder potential is large compared to the microscopic equilibration length. We also derive the Coulomb drag transresistance for double-layer non-Fermi-liquid systems in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions coupled to a U (1 ) gauge field. We contrast our results to prior calculations of drag of Chern-Simons composite particles and place our findings in the context of available experimental data.

  1. Curvature effects in two-dimensional optical devices inspired by transformation optics

    KAUST Repository

    Yuan, Shuhao

    2016-11-14

    Light transport in curved quasi two-dimensional waveguides is considered theoretically. Within transformation optics and tensor theory, a concise description of curvature effects on transverse electric and magnetic waves is derived. We show that the curvature can induce light focusing and photonic crystal properties, which are confirmed by finite element simulations. Our results indicate that the curvature is an effective parameter for designing quasi two-dimensional optical devices in the fields of micro and nano photonics. © 2016 Author(s).

  2. Kinetic instabilities of thin current sheets: Results of two-and-one-half-dimensional Vlasov code simulations

    International Nuclear Information System (INIS)

    Silin, I.; Buechner, J.

    2003-01-01

    Nonlinear triggering of the instability of thin current sheets is investigated by two-and-one-half- dimensional Vlasov code simulations. A global drift-resonant instability (DRI) is found, which results from the lower-hybrid-drift waves penetrating from the current sheet edges to the center where they resonantly interact with unmagnetized ions. This resonant nonlinear instability grows faster than a Kelvin-Helmholtz instability obtained in previous studies. The DRI is either asymmetric or symmetric mode or a combination of the two, depending on the relative phase of the lower-hybrid-drift waves at the edges of the current sheet. With increasing particle mass ratio the wavenumber of the fastest-growing mode increases as kL z ∼(m i /m e ) 1/2 /2 and the growth rate of the DRI saturates at a finite level

  3. TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS

    Directory of Open Access Journals (Sweden)

    Galen Gisler

    2006-01-01

    Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.

  4. Hydrodynamic simulations of integrated experiments planned for OMEGA/OMEGA EP laser systems

    International Nuclear Information System (INIS)

    Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Meyerhofer, D. D.

    2005-01-01

    Integrated fast-ignition experiments for the combined OMEGA/OMEGA EP laser systems have been simulated with the multidimensional hydrodynamic code DRACO. In the simplified electron transport model included in DRACO, the electrons are introduced at the pole of a 2-D simulation and transported in a straight line toward the target core, depositing their energy according to a recently published slowing-down formula.1 Simulations, including alpha transport, of an OMEGA cryogenic target designed to reach a 1-D fuel R of 500 mg/cm2 have been carried out for 1-D (clean) and, more realistic, 2-D (with nonuniformities) implosions to assess the sensitivity to energy, timing, and irradiance of the Gaussian fast-ignitor beam. The OMEGA laser system provides up to 30 kJ of compression energy, and OMEGA EP will provide two short pulse beams, each with energies up to 2.6 kJ. For the 1-D case, the neutron yield is predicted to be in excess of 1015 (compared to 1014 for no ignitor beam) over a timing range of about 80 ps. This talk will present these results and new 2-D simulation results that include the effects of realistic cryogenic target perturbations on the compressed core. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. (Author)

  5. [Bone drilling simulation by three-dimensional imaging].

    Science.gov (United States)

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  6. SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Jae; Hyung, Siek [School of Science Education (Astronomy), Chungbuk National University, Chungbuk 28644 (Korea, Republic of); Chattopadhyay, Indranil; Kumar, Rajiv [ARIES, Manora Peak, Nainital-263002, Uttarakhand (India); Ryu, Dongsu, E-mail: seong@chungbuk.ac.kr [Department of Physics, School of Natural Sciences UNIST, Ulsan 44919 (Korea, Republic of)

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  7. Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Manisha Bal

    2017-12-01

    Full Text Available The filtered containment venting system (FCVS is a safety relevant system, which consists of venturi scrubber and a mesh filter. FCVS needs to be further assessed to improve the existing performance of the venturi scrubber. Therefore, hydrodynamics is an important counter-component needs to be investigated to improve the design of the venturi scrubber. In the present research, Computational Fluid Dynamic (CFD has been used to predict the hydrodynamic behaviour of a newly designed venturi scrubber. Mesh was developed by gambit 2.4.6 and ansys fluent 15 has been used to predict the pressure drop profile inside the venturi scrubber under various flow conditions. The Reynolds Renormalization Group (RNG k-ε turbulence model and the volume of the fluid (VOF were employed for this simulation. The effect of throat gas velocity, liquid mass flow rate, and liquid loading on pressure drop was studied. Maximum pressure drop 2064.34 pa was achieved at the throat gas velocity of 60 m/s and liquid flow rate of 0.033 kg/s and minimum pressure drop 373.51 pa was achieved at the throat gas velocity of 24 m/s and liquid flow rate of 0.016 kg/s. The results of the present study will assist for proper functioning of venturi scrubber. Keywords: Venturi scrubber, Hydrodynamics, Pressure drop, Computational fluid dynamics, Nuclear power plant safety, Flow prediction

  8. Intermediate modeling between kinetic equations and hydrodynamic limits: derivation, analysis and simulations

    International Nuclear Information System (INIS)

    Parisot, M.

    2011-01-01

    This work is dedicated study of a problem resulting from plasma physics: the thermal transfer of electrons in a plasma close to equilibrium Maxwellian. Firstly, a dimensional study of the Vlasov-Fokker-Planck-Maxwell system is performed, allowing one hand to identify a physically relevant parameter of scale and also to define mathematically the contours of validity domain. The asymptotic regime called Spitzer-Harm is studied for a relatively general class of collision operator. The following part of this work is devoted to the derivation and study of the hydrodynamic limit of the system of Vlasov-Maxwell-Landau outside the strictly asymptotic. A model proposed by Schurtz and Nicolais located in this context and analyzed. The particularity of this model lies in the application of a delocalization operation in the heat flux. The link with non-local models of Luciani and Mora is established as well as mathematics properties as the principle of maximum and entropy dissipation. Then a formal derivation from the Vlasov equations with a simplified collision operator, is proposed. The derivation, inspired by the recent work of D. Levermore, involves decomposition methods according to the spherical harmonics and methods of closing called diffusion methods. A hierarchy of intermediate models between the kinetic equations and the hydrodynamic limit is described. In particular a new hydrodynamic system integro-differential by nature, is proposed. The Schurtz and Nicolai model appears as a simplification of the system resulting from the derivation, assuming a steady flow of heat. The above results are then generalized to account for the internal energy dependence which appears naturally in the equation establishment. The existence and uniqueness of the solution of the nonstationary system are established in a simplified framework. The last part is devoted was the implementation of a specific numerical scheme to solve these models. We propose a finite volume approach can be

  9. Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Granziera, M.R.; Kazimi, M.S.

    1980-05-01

    A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions

  10. Three-Dimensional Numerical Simulation to Mud Turbine for LWD

    Science.gov (United States)

    Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi

    Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.

  11. Hyperscaling-violating Lifshitz hydrodynamics from black-holes: part II

    Energy Technology Data Exchange (ETDEWEB)

    Kiritsis, Elias [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Department of Physics, University of Crete, 71003 Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete, 71003 Heraklion (Greece); APC Univ Paris Diderot, Sorbonne Paris Cité,UMR 7164 CNRS, F-75205 Paris (France); Matsuo, Yoshinori [Department of Physics, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China)

    2017-03-08

    The derivation of Lifshitz-invariant hydrodynamics from holography, presented in https://www.doi.org/10.1007/JHEP12(2015)076 is generalized to arbitrary hyperscaling violating Lifshitz scaling theories with an unbroken U(1) symmetry. The hydrodynamics emerging is non-relativistic with scalar “forcing'. By a redefinition of the pressure it becomes standard non-relativistic hydrodynamics in the presence of specific chemical potential for the mass current. The hydrodynamics is compatible with the scaling theory of Lifshitz invariance with hyperscaling violation. The bulk viscosity vanishes while the shear viscosity to entropy ratio is the same as in the relativistic case. We also consider the dimensional reduction ansatz for the hydrodynamics and clarify the difference with previous results suggesting a non-vanishing bulk viscosity.

  12. Two-temperature hydrodynamics of laser-generated ultrashort shock waves in elasto-plastic solids

    International Nuclear Information System (INIS)

    Ilnitsky, Denis K; Migdal, Kirill P; Khokhlov, Viktor A; Inogamov, Nail A; Petrov, Yurii V; Anisimov, Sergey I; Zhakhovsky, Vasily V; Khishchenko, Konstantin V

    2014-01-01

    Shock-wave generation by ultrashort laser pulses opens new doors for study of hidden processes in materials happened at an atomic-scale spatiotemporal scales. The poorly explored mechanism of shock generation is started from a short-living two-temperature (2T) state of solid in a thin surface layer where laser energy is deposited. Such 2T state represents a highly non-equilibrium warm dense matter having cold ions and hot electrons with temperatures of 1-2 orders of magnitude higher than the melting point. Here for the first time we present results obtained by our new hybrid hydrodynamics code combining detailed description of 2T states with a model of elasticity together with a wide-range equation of state of solid. New hydro-code has higher accuracy in the 2T stage than molecular dynamics method, because it includes electron related phenomena including thermal conduction, electron-ion collisions and energy transfer, and electron pressure. From the other hand the new code significantly improves our previous version of 2T hydrodynamics model, because now it is capable of reproducing the elastic compression waves, which may have an imprint of supersonic melting like as in MD simulations. With help of the new code we have solved a difficult problem of thermal and dynamic coupling of a molten layer with an uniaxially compressed elastic solid. This approach allows us to describe the recent femtosecond laser experiments.

  13. Hydrodynamic analysis of laser-driven cylindrical implosions

    Energy Technology Data Exchange (ETDEWEB)

    Ramis, R. [E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid (Spain)

    2013-08-15

    Three-dimensional hydrodynamic simulations are performed to study laser-driven cylindrical implosions in the context of experiments (F. Perez et al., Plasma Phys. Controlled Fusion 51, 124035 (2009)) carried out at the Rutherford Appleton Laboratory in the framework of the HiPER project. The analysis is carried out by using the 3D version of the hydrocode MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475-505 (1988)). The influence of the main laser parameters on implosion performance and symmetry is consistently studied and compared with the results of 2D analysis. Furthermore, the effects of uncertainties in laser irradiation (pointing, focusing, power balance, and time jitter) on implosion performance (average peak density and temperature) are studied by means of statistical analysis.

  14. Code Differentiation for Hydrodynamic Model Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, R.J.; Maudlin, P.J.

    1999-06-27

    Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.

  15. Hydrodynamics in high-energy nuclear collisions. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Kataja, Markku.

    1989-05-01

    This thesis is a review of six publications in which we make use of relativistic hydrodynamics to solve the evolution of matter produced in extremely energetic nucleus-nucleus collisions. In the first one of these papers we study the thermodynamics, the hydrodynamics and the decoupling conditions of such matter. We discuss the initial conditions for the flow, the hydrodynamic equations for the transverse expansion of matter assuming cylindrical symmetry and longitudinal boost invariance and finally present a numeric algorithm, which we use to integrate these equations. In the subsequent three papers this framework is utilized to calculate the transverse momentum spectra of hadrons, the dilepon production and the abundance of strange particles in the final state. The bag model equation of state is used to simulate the first-order phase transition between baryonless hadronic matter and quark-gluon plasma. In the fifth paper we include the particle production from decaying color electric field according to the flux tube model for heavy ion collisions. The hadronization is incorporated by introducing an equilibrium 'mixed state' of hadrons gas, plasma and the color field in analogy to the mixed phase described by the ordinary bag model equation of state. In the last paper I apply a 1+2 dimensional numeric code to analyze a 1+3 dimensional cylindrically symmetric flow of matter assumed to be formed in a central O+Pb collision at 200 GeV/nucleon. The flow data is used to calculte the pseudorapidity distribution of transverse energy for the produced pions

  16. Method of dimensionality reduction in contact mechanics and friction

    CERN Document Server

    Popov, Valentin L

    2015-01-01

    This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in...

  17. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  18. A hybrid model for coupling kinetic corrections of fusion reactivity to hydrodynamic implosion simulations

    Science.gov (United States)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-03-01

    Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.

  19. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  20. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    Science.gov (United States)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  1. Thermo-hydrodynamical modelling of a flooded deep mine reservoir - Case of the Lorraine Coal Basin

    International Nuclear Information System (INIS)

    Reichart, Guillaume

    2015-01-01

    Since 2006, cessation of dewatering in Lorraine Coal Basin (France) led to the flooding of abandoned mines, resulting in a new hydrodynamic balance in the area. Recent researches concerning geothermal exploitation of flooded reservoirs raised new questions, which we propose to answer. Our work aimed to understand the thermos-hydrodynamic behaviour of mine water in a flooding or flooded system. Firstly, we synthesized the geographical, geological and hydrogeological contexts of the Lorraine Coal Basin, and we chose a specific area for our studies. Secondly, temperature and electric conductivity log profiles were measured in old pits of the Lorraine Coal Basin, giving a better understanding of the water behaviour at a deep mine shaft scale. We were able to build a thermos-hydrodynamic model and simulate water behaviour at this scale. Flow regime stability is also studied. Thirdly, a hydrodynamic spatialized meshed model was realized to study the hydrodynamic behaviour of a mine reservoir as a whole. Observed water-table rise was correctly reproduced: moreover, the model can be used in a predictive way after the flooding. Several tools were tested, improved or developed to ease the study of flooded reservoirs, as three-dimensional up-scaling of hydraulic conductivities and a coupled spatialized meshed model with a pipe network. (author) [fr

  2. Simulation of a two-dimensional dipolar system on a APE100/quadrics SIMD architecture

    International Nuclear Information System (INIS)

    Bruno, A.; Pisacane, F.; Rosato, V.

    1997-01-01

    The temperature behavior of a system of dipoles with long-range interactions has been simulated via a two-dimensional lattice Monte Carlo on a massively (SIMD) platform (Quadrics/APE100). Thermodynamic quantities have been evaluated in order to locate and to characterize the phase transition in absence of applied field. Emphasis is given to the code implementation on the SIMD architecture and to the relevant features which have been used to improve code capabilities and performances. The probability of simultaneous occurrence of at least k spanning clusters has been studied by Monte Carlo simulations on the 2D square lattice with free boundaries at the bond percolation threshold p c = 1/2. It is found that the probability of k and more Incipient Spanning Clusters (ISC) have the values P(k > 1) ∼ 0.00658(3) and P(k > 2) ∼ 0.00000148(21) provided that the limit of these probabilities for infinite lattices exists. The probability P(k > 3) of more than three ISC could be estimated to be of the order of 10 -11 and is beyond the possibility to compute such a value by nowadays computers. So, it is impossible to check in simulations the Aizenman law for the probabilities when k much-gt 1. We have detected a single sample with four ISC in a total number of about 1010 samples investigated. The probability of this single event is 1/10 for that number of samples. The influence of boundary conditions is discussed in the last section

  3. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    Science.gov (United States)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  4. A Toroidally Symmetric Plasma Simulation code for design of position and shape control on tokamak plasmas

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Senda, Ikuo

    1999-01-01

    A Toroidally Symmetric Plasma Simulation (TSPS) code has been developed for investigating the position and shape control on tokamak plasmas. The analyses of three-dimensional eddy currents on the conducting components around the plasma and the two-dimensional magneto-hydrodynamic (MHD) equilibrium are taken into account in this code. The code can analyze the plasma position and shape control during the minor disruption in which the deformation of plasma is not negligible. Using the ITER (International Thermonuclear Experimental Reactor) parameters, some examples of calculations are shown in this paper. (author)

  5. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    Science.gov (United States)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  6. Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction

    Science.gov (United States)

    Sid, S.; Terrapon, V. E.; Dubief, Y.

    2018-02-01

    The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed

  7. Co-current descending two-phase flows in inclined packed beds : experiments versus simulations

    Energy Technology Data Exchange (ETDEWEB)

    Atta, A.; Nigam, K.D.P.; Roy, S. [Inst. of Technology, New Delhi (India). Dept. of Chemical Engineering; Schubert, M.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2010-10-15

    This paper presented a numerical simulation for an inclined packed bed configuration for two-phase co-current downward flow. A two-phase Eulerian computational fluid dynamics (CFD) model was used to predict the hydrodynamic behaviour. Two different modelling strategies were compared, notably a straight tube with an artificially inclined gravity, and an inclined geometry with straight gravity. The effect of inclination angle of a packed bed on its gas-liquid flow segregation and liquid saturation spatial distribution was measured for varying inclinations and fluid velocities. The CFD model was adapted from a trickle-bed vertical configuration and based on the porous media concept. The predicted pressure drops for the inclined gravity were found to be insensitive to inclination. Therefore, simulations to study the parameters that influence the reduced liquid saturation were performed only with the inclined geometry case. Experimental data obtained using electrical capacitance tomography was used to validate the model predictions. The study showed that a trickle bed CFD model for vertically straight reactors can be effectively implemented in inclined reactor geometries. However, additional research is needed to formulate appropriate drag force closures which should be incorporated in the CFD model for improved quantitative estimation of inclined bed hydrodynamics. 22 refs., 10 figs.

  8. Two-component fluid membranes near repulsive walls: Linearized hydrodynamics of equilibrium and nonequilibrium states.

    Science.gov (United States)

    Sankararaman, Sumithra; Menon, Gautam I; Sunil Kumar, P B

    2002-09-01

    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, using a model that incorporates curvature-concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al., Phys. Rev. E 64, 021908 (2001)] for nonequilibrium force centers embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid egg phosphatidyl choline (EPC) bilayers. The pump-membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. These results should apply, more generally, to equilibrium fluid membranes comprised of two components, in which the effects of curvature-concentration coupling are significant, above the threshold for phase separation. We then discuss the fluctuations and mode structure in the steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly nonequilibrium result is a consequence of the incorporation of curvature-concentration coupling in our hydrodynamic treatment. This result also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls upon neglecting the role played by such couplings may need to be reevaluated.

  9. Two-Dimensional Electronic Spectroscopy of Benzene, Phenol, and Their Dimer: An Efficient First-Principles Simulation Protocol.

    Science.gov (United States)

    Nenov, Artur; Mukamel, Shaul; Garavelli, Marco; Rivalta, Ivan

    2015-08-11

    First-principles simulations of two-dimensional electronic spectroscopy in the ultraviolet region (2DUV) require computationally demanding multiconfigurational approaches that can resolve doubly excited and charge transfer states, the spectroscopic fingerprints of coupled UV-active chromophores. Here, we propose an efficient approach to reduce the computational cost of accurate simulations of 2DUV spectra of benzene, phenol, and their dimer (i.e., the minimal models for studying electronic coupling of UV-chromophores in proteins). We first establish the multiconfigurational recipe with the highest accuracy by comparison with experimental data, providing reference gas-phase transition energies and dipole moments that can be used to construct exciton Hamiltonians involving high-lying excited states. We show that by reducing the active spaces and the number of configuration state functions within restricted active space schemes, the computational cost can be significantly decreased without loss of accuracy in predicting 2DUV spectra. The proposed recipe has been successfully tested on a realistic model proteic system in water. Accounting for line broadening due to thermal and solvent-induced fluctuations allows for direct comparison with experiments.

  10. Three-Dimensional Simulations of Oblique Asteroid Impacts into Water

    Science.gov (United States)

    Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.

    2016-12-01

    Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.

  11. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  12. Research on one-dimensional two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi

    1988-10-01

    In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)

  13. Comparison of two different methods for evaluating the hydrodynamic performance of an industrial-scale fish-rearing unit

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; McLean, Ewen

    2004-01-01

    Laboratory-scale physical and mathematical models were evaluated for their utility in examining the hydrodynamic performance of a commercial fish-rearing tank. Each method was appraised with the common objective of predicting characteristic hydrodynamic behaviour of a full-scale tank. The two...

  14. Numerical Hydrodynamics in Special Relativity.

    Science.gov (United States)

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  15. Decaying quasi-two-dimensional viscous flow on a square domain

    DEFF Research Database (Denmark)

    Konijnenberg, J.A. van de; Flor, J.B.; Heijst, G.J.F. van

    1998-01-01

    A comparison is made between experimental, numerical and analytical results for the two-dimensional flow on a square domain. The experiments concern the flow at the interface of a two-layer stratified fluid, evoked by either stirring the fluid with a rake, or by injecting additional fluid...... at the interface. Two numerical simulations were performed with initial conditions and boundary conditions that correspond approximately with those met in the experiments. The analytical results concern the calculation of the lowest modes of a decaying Stokes flow on a square domain. At late times...... relationship between vorticity and stream function in the experiments and the simulations. (C) 1998 American Institute of Physics....

  16. Airy beams on two dimensional materials

    Science.gov (United States)

    Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping

    2018-05-01

    We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.

  17. Dynamical properties of magnetized two-dimensional one-component plasma

    Science.gov (United States)

    Dubey, Girija S.; Gumbs, Godfrey; Fessatidis, Vassilios

    2018-05-01

    Molecular dynamics simulation are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional interacting electron system. In this simulation we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb and the magnetic forces are included directly in the electron dynamics to study their combined effect on the dynamical properties of the 2D system. Results are presented for the velocity autocorrelation function and the diffusion constants in the presence and absence of an external magnetic field. Our simulation results clearly show that the external magnetic field has an effect on the dynamical properties of the system.

  18. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  19. Hydrodynamic interactions of two nearly touching Brownian spheres in a stiff potential: Effect of fluid inertia

    International Nuclear Information System (INIS)

    Radiom, Milad; Ducker, William; Robbins, Brian; Paul, Mark

    2015-01-01

    The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm −1 ) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the first of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces

  20. One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ramis, Rafael, E-mail: rafael.ramis@upm.es

    2017-02-01

    A new one-dimensional hydrodynamic algorithm, specifically developed for Inertial Confinement Fusion (ICF) applications, is presented. The scheme uses a fully conservative Lagrangian formulation in planar, cylindrical, and spherically symmetric geometries, and supports arbitrary equations of state with separate ion and electron components. Fluid equations are discretized on a staggered grid and stabilized by means of an artificial viscosity formulation. The space discretized equations are advanced in time using an implicit algorithm. The method includes several numerical parameters that can be adjusted locally. In regions with low Courant–Friedrichs–Lewy (CFL) number, where stability is not an issue, they can be adjusted to optimize the accuracy. In typical problems, the truncation error can be reduced by a factor between 2 to 10 in comparison with conventional explicit algorithms. On the other hand, in regions with high CFL numbers, the parameters can be set to guarantee unconditional stability. The method can be integrated into complex ICF codes. This is demonstrated through several examples covering a wide range of situations: from thermonuclear ignition physics, where alpha particles are managed as an additional species, to low intensity laser–matter interaction, where liquid–vapor phase transitions occur.

  1. Cooperation in two-dimensional mixed-games

    International Nuclear Information System (INIS)

    Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas

    2015-01-01

    Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)

  2. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  3. Proton transfer through hydrogen bonds in two-dimensional water layers: A theoretical study based on ab initio and quantum-classical simulations

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2015-01-01

    The dynamics of proton transfer (PT) through hydrogen bonds in a two-dimensional water layer confined between two graphene sheets at room temperature are investigated through ab initio and quantum-classical simulations. The excess proton is found to be mostly solvated as an Eigen cation where the hydronium ion donates three hydrogen bonds to the neighboring water molecules. In the solvation shell of the hydronium ion, the three coordinated water molecules with two donor hydrogen bonds are found to be properly presolvated to accept a proton. Although no hydrogen bond needs to be broken for transfer of a proton to such presolvated water molecules from the hydronium ion, the PT rate is still found to be not as fast as it is for one-dimensional chains. Here, the PT is slowed down as the probability of finding a water with two donor hydrogen bonds in the solvation shell of the hydronium ion is found to be only 25%-30%. The hydroxide ion is found to be solvated mainly as a complex anion where it accepts four H-bonds through its oxygen atom and the hydrogen atom of the hydroxide ion remains free all the time. Here, the presolvation of the hydroxide ion to accept a proton requires that one of its hydrogen bonds is broken and the proton comes from a neighboring water molecule with two acceptor and one donor hydrogen bonds. The coordination number reduction by breaking of a hydrogen bond is a slow process, and also the population of water molecules with two acceptor and one donor hydrogen bonds is only 20%-25% of the total number of water molecules. All these factors together tend to slow down the hydroxide ion migration rate in two-dimensional water layers compared to that in three-dimensional bulk water

  4. Mixed finite element simulations in two-dimensional groundwater flow problems

    International Nuclear Information System (INIS)

    Kimura, Hideo

    1989-01-01

    A computer code of groundwater flow in two-dimensional porous media based on the mixed finite element method was developed for accurate approximations of Darcy velocities in safety evaluation of radioactive waste disposal. The mixed finite element procedure solves for both the Darcy velocities and pressure heads simultaneously in the Darcy equation and continuity equation. Numerical results of a single well pumping at a constant rate in a uniform flow field showed that the mixed finite element method gives more accurate Darcy velocities nearly 50 % on average error than standard finite element method. (author)

  5. Hydrodynamic Simulation of the Cosmological X-Ray Background

    Science.gov (United States)

    Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.

    2001-08-01

    We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with

  6. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  7. Theory and application of a three-dimensional code SHAPS to complex piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1983-01-01

    This paper describes the theory and application of a three-dimensional computer code SHAPS to the complex piping systems. The code utilizes a two-dimensional implicit Eulerian method for the hydrodynamic analysis together with a three-dimensional elastic-plastic finite-element program for the structural calculation. A three-dimensional pipe element with eight degrees of freedom is employed to account for the hoop, flexural, axial, and the torsional mode of the piping system. In the SHAPS analysis the hydrodynamic equations are modified to include the global piping motion. Coupling between fluid and structure is achieved by enforcing the free-slip boundary conditions. Also, the response of the piping network generated by the seismic excitation can be included. A thermal transient capability is also provided in SHAPS. To illustrate the methodology, many sample problems dealing with the hydrodynamic, structural, and thermal analyses of reactor-piping systems are given. Validation of the SHAPS code with experimental data is also presented

  8. Simulating signatures of two-dimensional electronic spectra of the Fenna-Matthews-Olson complex: By using a numerical path integral

    International Nuclear Information System (INIS)

    Liang, Xian-Ting

    2014-01-01

    A framework for simulating electronic spectra from photon-echo experiments is constructed by using a numerical path integral technique. This method is non-Markovian and nonperturbative and, more importantly, is not limited by a fixed form of the spectral density functions of the environment. Next, a two-dimensional (2D) third-order electronic spectrum of a dimer system is simulated. The spectrum is in agreement with the experimental and theoretical results previously reported [for example, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 047401 (2003)]. Finally, a 2D third-order electronic spectrum of the Fenna-Matthews-Olson (FMO) complex is simulated by using the Debye, Ohmic, and Adolphs and Renger spectral density functions. It is shown that this method can clearly produce the spectral signatures of the FMO complex by using only the Adolphs and Renger spectral density function. Plots of the evolution of the diagonal and cross-peaks show that they are oscillating with the population time

  9. NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML

    Science.gov (United States)

    Stueber, Thomas J.; Paxson, Daniel E.

    2014-01-01

    The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.

  10. A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series

    Directory of Open Access Journals (Sweden)

    Keke Zhang

    2018-01-01

    Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.

  11. Periodic, quasiperiodic, and chaotic breathers in two-dimensional discrete β-Fermi—Pasta—Ulam lattice

    International Nuclear Information System (INIS)

    Xu Quan; Tian Qiang

    2013-01-01

    Using numerical method, we investigate whether periodic, quasiperiodic, and chaotic breathers are supported by the two-dimensional discrete Fermi—Pasta—Ulam (FPU) lattice with linear dispersion term. The spatial profile and time evolution of the two-dimensional discrete β-FPU lattice are segregated by the method of separation of variables, and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system. By introducing a periodic interaction into the linear interaction between the atoms, we achieve the coupling of two incommensurate frequencies for a single DB, and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system, too. (condensed matter: structural, mechanical, and thermal properties)

  12. Numerical methods for Lagrangian hydrodynamics applied to inertial fusion

    International Nuclear Information System (INIS)

    Maire, P.H.; Breil, J.; Galera, S.; Schurtz, G.

    2009-01-01

    CHIC is a code of Lagrangian hydrodynamics and implosion that has been developed since 2003 for the simulation of plasma experiments concerning inertial fusion. The transport of electron energy is assured with the Spitzer-Harm diffusion model with flux limiter. The propagation of the laser beams inside the plasma is computed by an algorithm of 3-dimensional beam launching that takes into account refraction as well as collisional absorption. The self-generated transverse magnetic fields are assessed by a magnetohydrodynamics model that stems from a generalized Ohm's law. The coupling with electron energy transport is assured with Braginskii conduction model. The validation of this code has been performed with various plasma experiments. (A.C.)

  13. THREE-DIMENSIONAL BOLTZMANN HYDRO CODE FOR CORE COLLAPSE IN MASSIVE STARS. I. SPECIAL RELATIVISTIC TREATMENTS

    International Nuclear Information System (INIS)

    Nagakura, Hiroki; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2014-01-01

    We propose a novel numerical method for solving multi-dimensional, special relativistic Boltzmann equations for neutrinos coupled with hydrodynamics equations. This method is meant to be applied to simulations of core-collapse supernovae. We handle special relativity in a non-conventional way, taking account of all orders of v/c. Consistent treatment of the advection and collision terms in the Boltzmann equations has been a challenge, which we overcome by employing two different energy grids: Lagrangian remapped and laboratory fixed grids. We conduct a series of basic tests and perform a one-dimensional simulation of core-collapse, bounce, and shock-stall for a 15 M ☉ progenitor model with a minimum but essential set of microphysics. We demonstrate in the latter simulation that our new code is capable of handling all phases in core-collapse supernova. For comparison, a non-relativistic simulation is also conducted with the same code, and we show that they produce qualitatively wrong results in neutrino transfer. Finally, we discuss a possible incorporation of general relativistic effects into our method

  14. A Three-Dimensional Model of Two-Phase Flows in a Porous Medium Accounting for Motion of the Liquid–Liquid Interface

    DEFF Research Database (Denmark)

    Shapiro, Alexander A.

    2018-01-01

    A new three-dimensional hydrodynamic model for unsteady two-phase flows in a porous medium, accounting for the motion of the interface between the flowing liquids, is developed. In a minimum number of interpretable geometrical assumptions, a complete system of macroscale flow equations is derived......, their expansion or contraction is also described, while rotation has been proven negligible. A detailed comparison with the previous studies for the two-phase flows accounting for propagation of the interface on micro- and macroscale has been carried out. A numerical algorithm has been developed allowing...

  15. Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins

    Science.gov (United States)

    Bitzer, Klaus

    1999-05-01

    Geological processes that create sedimentary basins or act during their formation can be simulated using the public domain computer code `BASIN'. For a given set of geological initial and boundary conditions the sedimentary basin evolution is calculated in a forward modeling approach. The basin is represented in a two-dimensional vertical cross section with individual layers. The stratigraphic, tectonic, hydrodynamic and thermal evolution is calculated beginning at an initial state, and subsequent changes of basin geometry are calculated from sedimentation rates, compaction and pore fluid mobilization, isostatic compensation, fault movement and subsidence. The sedimentologic, hydraulic and thermal parameters are stored at discrete time steps allowing the temporal evolution of the basin to be analyzed. A maximum flexibility in terms of geological conditions is achieved by using individual program modules representing geological processes which can be switched on and off depending on the data available for a specific simulation experiment. The code incorporates a module for clastic and carbonate sedimentation, taking into account the impact of clastic sediment supply on carbonate production. A maximum of four different sediment types, which may be mixed during sedimentation, can be defined. Compaction and fluid flow are coupled through the consolidation equation and the nonlinear form of the equation of state for porosity, allowing nonequilibrium compaction and overpressuring to be calculated. Instead of empirical porosity-effective stress equations, a physically consistent consolidation model is applied which incorporates a porosity dependent sediment compressibility. Transient solute transport and heat flow are calculated as well, applying calculated fluid flow rates from the hydraulic model. As a measure for hydrocarbon generation, the Time-Temperature Index (TTI) is calculated. Three postprocessing programs are available to provide graphic output in Post

  16. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  17. Two-dimensional simulations of steady perforated-plate stabilized premixed flames

    KAUST Repository

    Altay, H. Murat

    2010-03-17

    The objective of this work is to examine the impact of the operating conditions and the perforated-plate design on the steady, lean premixed flame characteristics. We perform two-dimensional simulations of laminar flames using a reduced chemical kinetics mechanism for methane-air combustion, consisting of 20 species and 79 reactions. We solve the heat conduction problem within the plate, allowing heat exchange between the gas mixture and the solid plate. The physical model is based on a zero-Mach-number formulation of the axisymmetric compressible conservation equations. The results suggest that the flame consumption speed, the flame structure, and the flame surface area depend significantly on the equivalence ratio, mean inlet velocity, the distance between the perforated-plate holes and the plate thermal conductivity. In the case of an adiabatic plate, a conical flame is formed, anchored near the corner of the hole. When the heat exchange between themixture and the plate is finite, the flame acquires a Gaussian shape stabilizing at a stand-off distance, that grows with the plate conductivity. The flame tip is negatively curved; i.e. concave with respect to the reactants. Downstream of the plate, the flame base is positively curved; i.e. convex with respect to the reactants, stabilizing above a stagnation region established between neighboring holes. As the plate\\'s thermal conductivity increases, the heat flux to the plate decreases, lowering its top surface temperature. As the equivalence ratio increases, the flame moves closer to the plate, raising its temperature, and lowering the flame stand-off distance. As the mean inlet velocity increases, the flame stabilizes further downstream, the flame tip becomes sharper, hence raising the burning rate at that location. The curvature of the flame base depends on the distance between the neighboring holes; and the flame there is characterized by high concentration of intermediates, like carbon monoxide. © 2010 Taylor

  18. Numerical simulation of two-phase flow around flatwater competition kayak design-evolution models.

    Science.gov (United States)

    Mantha, Vishveshwar R; Silva, António J; Marinho, Daniel A; Rouboa, Abel I

    2013-06-01

    The aim of the current study was to analyze the hydrodynamics of three kayaks: 97-kg-class, single-rower, flatwater sports competition, full-scale design evolution models (Nelo K1 Vanquish LI, LII, and LIII) of M.A.R. Kayaks Lda., Portugal, which are among the fastest frontline kayaks. The effect of kayak design transformation on kayak hydrodynamics performance was studied by the application of computational fluid dynamics (CFD). The steady-state CFD simulations where performed by application of the k-omega turbulent model and the volume-of-fluid method to obtain two-phase flow around the kayaks. The numerical result of viscous, pressure drag, and coefficients along with wave drag at individual average race velocities was obtained. At an average velocity of 4.5 m/s, the reduction in drag was 29.4% for the design change from LI to LII and 15.4% for the change from LII to LIII, thus demonstrating and reaffirming a progressive evolution in design. In addition, the knowledge of drag hydrodynamics presented in the current study facilitates the estimation of the paddling effort required from the athlete during progression at different race velocities. This study finds an application during selection and training, where a coach can select the kayak with better hydrodynamics.

  19. Transversal expansion study in the Landau hydrodynamic

    International Nuclear Information System (INIS)

    Pottag, F.W.

    1984-01-01

    The system of equations in the frame of Landau's hydrodynamical model for multiparticle production at high energies is studied. Taking as a first approximation the one-dimensional exact due to Khalatnikov, and a special set of curvilinear coordinates, the radial part is separated from the longitudinal one in the equations of motion, and a system of partial differential equations (non-linear, hyperbolic) is obtained for the radial part. These equations are solved numerically by the method of caracteristics. The hydrodynamical variables are obtained over all the three-dimensional-flow region as well as its variation with the mass of the initially expanding system. Both, the transverse rapidity distribution of the fluid and the inclusive particle distribution at 90 0 in the center of mass system, are calculated. The last one is compared with recent experimental data. (author) [pt

  20. Hydrodynamics Modeling of Khung Krabaen Lagoon, Chanthaburi Province, Thailand

    Directory of Open Access Journals (Sweden)

    Tanuspong Pokavanich

    2018-01-01

    Full Text Available Khung Krabaen Lagoon (KKBL is a small low-inflow water body. There are vast areas of tidal flat occupied nearly 60% of the lagoon that host some of the most productive seagrass habitats in the region. The lagoon is surrounded by mangrove forest and intensive shrimp farms behind it. The KKBL was used as an intake and recipient water for the farms. However due some shrimp disease epidemics and possibly deteriorated water quality, the farms are now taking the intake water from the outer sea through very expensive (to construct and to maintain irrigation system. Objective of this study is to investigate the KKBL’s hydrodynamics using a numerical simulation model validated with measured data. The simulation model was setup two-dimensionally based on the Delft3D model. Results suggested that water currents inside, at the mouth and at the outer sea of the lagoon are mainly governed by tide and wind. Offshore of the lagoon, there are strong tidal currents flowing along northwest and southeast direction. The tidal currents flow into the lagoon through its mouth before dispersion rapidly inside the lagoon. Mean circulation largely varied seasonally and had direct correlations outer sea seasonal mean currents and the monsoons.