Plymen, Roger; Robinson, Paul
1995-01-01
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and operator algebras, the presentation is self-contained with complete proofs, many of which offer a fresh perspective on the subject.
International Nuclear Information System (INIS)
Exner, P.; Kolerov, G.I.
1980-01-01
A Hilbert space of paths, the elements of which are determined by trigonometric series, was proposed and used recently by Truman. This space is shown to consist precisely of all absolutely continuous paths ending in the origin with square-integrable derivatives
Hilbert-type inequalities for Hilbert space operators | Krnic ...
African Journals Online (AJOL)
In this paper we establish a general form of the Hilbert inequality for positive invertible operators on a Hilbert space. Special emphasis is given to such inequalities with homogeneous kernels. In some general cases the best possible constant factors are also derived. Finally, we obtain the improvement of previously deduced ...
Teleportation schemes in infinite dimensional Hilbert spaces
International Nuclear Information System (INIS)
Fichtner, Karl-Heinz; Freudenberg, Wolfgang; Ohya, Masanori
2005-01-01
The success of quantum mechanics is due to the discovery that nature is described in infinite dimension Hilbert spaces, so that it is desirable to demonstrate the quantum teleportation process in a certain infinite dimensional Hilbert space. We describe the teleportation process in an infinite dimensional Hilbert space by giving simple examples
Weaving Hilbert space fusion frames
Neyshaburi, Fahimeh Arabyani; Arefijamaal, Ali Akbar
2018-01-01
A new notion in frame theory, so called weaving frames has been recently introduced to deal with some problems in signal processing and wireless sensor networks. Also, fusion frames are an important extension of frames, used in many areas especially for wireless sensor networks. In this paper, we survey the notion of weaving Hilbert space fusion frames. This concept can be had potential applications in wireless sensor networks which require distributed processing using different fusion frames...
Frames and bases in tensor products of Hilbert spaces and Hilbert C ...
Indian Academy of Sciences (India)
In this article, we study tensor product of Hilbert *-modules and Hilbert spaces. We show that if is a Hilbert -module and is a Hilbert -module, then tensor product of frames (orthonormal bases) for and produce frames (orthonormal bases) for Hilbert A ⊗ B -module E ⊗ F , and we get more results. For Hilbert ...
Means of Hilbert space operators
Hiai, Fumio
2003-01-01
The monograph is devoted to a systematic study of means of Hilbert space operators by a unified method based on the theory of double integral transformations and Peller's characterization of Schur multipliers. General properties on means of operators such as comparison results, norm estimates and convergence criteria are established. After some general theory, special investigations are focused on three one-parameter families of A-L-G (arithmetic-logarithmic-geometric) interpolation means, Heinz-type means and binomial means. In particular, norm continuity in the parameter is examined for such means. Some necessary technical results are collected as appendices.
Structure of Hilbert space operators
Jiang, Chunlan
2006-01-01
This book exposes the internal structure of non-self-adjoint operators acting on complex separable infinite dimensional Hilbert space, by analyzing and studying the commutant of operators. A unique presentation of the theorem of Cowen-Douglas operators is given. The authors take the strongly irreducible operator as a basic model, and find complete similarity invariants of Cowen-Douglas operators by using K -theory, complex geometry and operator algebra tools. Sample Chapter(s). Chapter 1: Background (153 KB). Contents: Jordan Standard Theorem and K 0 -Group; Approximate Jordan Theorem of Opera
Rigged Hilbert spaces for chaotic dynamical systems
International Nuclear Information System (INIS)
Suchanecki, Z.; Antoniou, I.; Bandtlow, O.F.
1996-01-01
We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. copyright 1996 American Institute of Physics
Quantum theory in complex Hilbert space
International Nuclear Information System (INIS)
Sharma, C.S.
1988-01-01
The theory of complexification of a real Hilbert space as developed by the author is scrutinized with the aim of explaining why quantum theory should be done in a complex Hilbert space in preference to real Hilbert space. It is suggested that, in order to describe periodic motions in stationary states of a quantum system, the mathematical object modelling a state of a system should have enough points in it to be able to describe explicit time dependence of a periodic motion without affecting the probability distributions of observables. Heuristic evidence for such an assumption comes from Dirac's theory of interaction between radiation and matter. If the assumption is adopted as a requirement on the mathematical model for a quantum system, then a real Hilbert space is ruled out in favour of a complex Hilbert space for a possible model for such a system
A constructive presentation of rigged Hilbert spaces
International Nuclear Information System (INIS)
Celeghini, Enrico
2015-01-01
We construct a rigged Hilbert space for the square integrable functions on the line L2(R) adding to the generators of the Weyl-Heisenberg algebra a new discrete operator, related to the degree of the Hermite polynomials. All together, continuous and discrete operators, constitute the generators of the projective algebra io(2). L 2 (R) and the vector space of the line R are shown to be isomorphic representations of such an algebra and, as both these representations are irreducible, all operators defined on the rigged Hilbert spaces L 2 (R) or R are shown to belong to the universal enveloping algebra of io(2). The procedure can be extended to orthogonal and pseudo-orthogonal spaces of arbitrary dimension by tensorialization.Circumventing all formal problems the paper proposes a kind of toy model, well defined from a mathematical point of view, of rigged Hilbert spaces where, in contrast with the Hilbert spaces, operators with different cardinality are allowed. (paper)
Hilbert space methods in partial differential equations
Showalter, Ralph E
1994-01-01
This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
Theory of linear operators in Hilbert space
Akhiezer, N I
1993-01-01
This classic textbook by two mathematicians from the USSR's prestigious Kharkov Mathematics Institute introduces linear operators in Hilbert space, and presents in detail the geometry of Hilbert space and the spectral theory of unitary and self-adjoint operators. It is directed to students at graduate and advanced undergraduate levels, but because of the exceptional clarity of its theoretical presentation and the inclusion of results obtained by Soviet mathematicians, it should prove invaluable for every mathematician and physicist. 1961, 1963 edition.
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
Transverse entanglement migration in Hilbert space
International Nuclear Information System (INIS)
Chan, K. W.; Torres, J. P.; Eberly, J. H.
2007-01-01
We show that, although the amount of mutual entanglement of photons propagating in free space is fixed, the type of correlations between the photons that determine the entanglement can dramatically change during propagation. We show that this amounts to a migration of entanglement in Hilbert space, rather than real space. For the case of spontaneous parametric down-conversion, the migration of entanglement in transverse coordinates takes place from modulus to phase of the biphoton state and back again. We propose an experiment to observe this migration in Hilbert space and to determine the full entanglement
κ-Minkowski representations on Hilbert spaces
International Nuclear Information System (INIS)
Agostini, Alessandra
2007-01-01
The algebra of functions on κ-Minkowski noncommutative space-time is studied as algebra of operators on Hilbert spaces. The representations of this algebra are constructed and classified. This new approach leads to a natural construction of integration in κ-Minkowski space-time in terms of the usual trace of operators
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
Energy Technology Data Exchange (ETDEWEB)
Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
International Nuclear Information System (INIS)
Agaltsov, A. D.; Novikov, R. G.
2014-01-01
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given
Spectral Theory of Operators on Hilbert Spaces
Kubrusly, Carlos S
2012-01-01
This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Space is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathemat
The role of the rigged Hilbert space in quantum mechanics
International Nuclear Information System (INIS)
Madrid, Rafael de la
2005-01-01
There is compelling evidence that, when a continuous spectrum is present, the natural mathematical setting for quantum mechanics is the rigged Hilbert space rather than just the Hilbert space. In particular, Dirac's braket formalism is fully implemented by the rigged Hilbert space rather than just by the Hilbert space. In this paper, we provide a pedestrian introduction to the role the rigged Hilbert space plays in quantum mechanics, by way of a simple, exactly solvable example. The procedure will be constructive and based on a recent publication. We also provide a thorough discussion on the physical significance of the rigged Hilbert space
Reproducing kernel Hilbert spaces of Gaussian priors
Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.
2008-01-01
We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described
Invariant Hilbert spaces of holomorphic functions
Faraut, J; Thomas, EGF
1999-01-01
A Hilbert space of holomorphic functions on a complex manifold Z, which is invariant under a group G of holomorphic automorphisms of Z, can be decomposed into irreducible subspaces by using Choquet theory. We give a geometric condition on Z and G which implies that this decomposition is multiplicity
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Hilbert space; Koopman–von Neumann theory; classical electrodynamics. PACS No. 03.50. ... The paper is divided into four sections. Section 2 .... construction of Sudarshan is to be contrasted with that of Koopman and von Neumann. ..... ture from KvN and [16] in this formulation is to define new momentum and coordinate.
Vertical integration from the large Hilbert space
Erler, Theodore; Konopka, Sebastian
2017-12-01
We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.
Elements of Hilbert spaces and operator theory
Vasudeva, Harkrishan Lal
2017-01-01
The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compressio...
Convexity Of Inversion For Positive Operators On A Hilbert Space
International Nuclear Information System (INIS)
Sangadji
2001-01-01
This paper discusses and proves three theorems for positive invertible operators on a Hilbert space. The first theorem gives a comparison of the generalized arithmetic mean, generalized geometric mean, and generalized harmonic mean for positive invertible operators on a Hilbert space. For the second and third theorems each gives three inequalities for positive invertible operators on a Hilbert space that are mutually equivalent
International Nuclear Information System (INIS)
Jack, B.; Leach, J.; Franke-Arnold, S.; Ireland, D. G.; Padgett, M. J.; Yao, A. M.; Barnett, S. M.; Romero, J.
2010-01-01
We use spatial light modulators (SLMs) to measure correlations between arbitrary superpositions of orbital angular momentum (OAM) states generated by spontaneous parametric down-conversion. Our technique allows us to fully access a two-dimensional OAM subspace described by a Bloch sphere, within the higher-dimensional OAM Hilbert space. We quantify the entanglement through violations of a Bell-type inequality for pairs of modal superpositions that lie on equatorial, polar, and arbitrary great circles of the Bloch sphere. Our work shows that SLMs can be used to measure arbitrary spatial states with a fidelity sufficient for appropriate quantum information processing systems.
Resonances, scattering theory and rigged Hilbert spaces
International Nuclear Information System (INIS)
Parravicini, G.; Gorini, V.; Sudarshan, E.C.G.
1979-01-01
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free, in, and out eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian; the singularities of the out eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of complete sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the out eigenvectors. The free, in and out eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee-Friedrichs model. 48 references
Semiclassical propagation: Hilbert space vs. Wigner representation
Gottwald, Fabian; Ivanov, Sergei D.
2018-03-01
A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.
Frames and bases in tensor products of Hilbert spaces and Hilbert C ...
Indian Academy of Sciences (India)
[14] Heil C E and Walnut D F, Continuous and discrete wavelet transforms, SIAM Review 31. (1989) 628–666. [15] Khosravi A and Asgari M S, Frames and bases in tensor product of Hilbert spaces, Int. J. Math. 4(6) (2003) 527–538. [16] Lance E C, Hilbert C. ∗. -modules – a toolkit for operator algebraists, London Math. Soc.
Unstable quantum states and rigged Hilbert spaces
International Nuclear Information System (INIS)
Gorini, V.; Parravicini, G.
1978-10-01
Rigged Hilbert space techniques are applied to the quantum mechanical treatment of unstable states in nonrelativistic scattering theory. A method is discussed which is based on representations of decay amplitudes in terms of expansions over complete sets of generalized eigenvectors of the interacting Hamiltonian, corresponding to complex eigenvalues. These expansions contain both a discrete and a continuum contribution. The former corresponds to eigenvalues located at the second sheet poles of the S matrix, and yields the exponential terms in the survival amplitude. The latter arises from generalized eigenvectors associated to complex eigenvalues on background contours in the complex plane, and gives the corrections to the exponential law. 27 references
Quantum vacuum energy in two dimensional space-times
International Nuclear Information System (INIS)
Davies, P.C.W.; Fulling, S.A.
1977-01-01
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)
Quantum vacuum energy in two dimensional space-times
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics
1977-04-21
The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.
Open superstring field theory on the restricted Hilbert space
International Nuclear Information System (INIS)
Konopka, Sebastian; Sachs, Ivo
2016-01-01
It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture −3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.
Quantum mechanics in an evolving Hilbert space
Artacho, Emilio; O'Regan, David D.
2017-03-01
Many basis sets for electronic structure calculations evolve with varying external parameters, such as moving atoms in dynamic simulations, giving rise to extra derivative terms in the dynamical equations. Here we revisit these derivatives in the context of differential geometry, thereby obtaining a more transparent formalization, and a geometrical perspective for better understanding the resulting equations. The effect of the evolution of the basis set within the spanned Hilbert space separates explicitly from the effect of the turning of the space itself when moving in parameter space, as the tangent space turns when moving in a curved space. New insights are obtained using familiar concepts in that context such as the Riemann curvature. The differential geometry is not strictly that for curved spaces as in general relativity, a more adequate mathematical framework being provided by fiber bundles. The language used here, however, will be restricted to tensors and basic quantum mechanics. The local gauge implied by a smoothly varying basis set readily connects with Berry's formalism for geometric phases. Generalized expressions for the Berry connection and curvature are obtained for a parameter-dependent occupied Hilbert space spanned by nonorthogonal Wannier functions. The formalism is applicable to basis sets made of atomic-like orbitals and also more adaptative moving basis functions (such as in methods using Wannier functions as intermediate or support bases), but should also apply to other situations in which nonorthogonal functions or related projectors should arise. The formalism is applied to the time-dependent quantum evolution of electrons for moving atoms. The geometric insights provided here allow us to propose new finite-difference time integrators, and also better understand those already proposed.
Eigenfunction expansions and scattering theory in rigged Hilbert spaces
Energy Technology Data Exchange (ETDEWEB)
Gomez-Cubillo, F [Dpt. de Analisis Matematico, Universidad de Valladolid. Facultad de Ciencias, 47011 Valladolid (Spain)], E-mail: fgcubill@am.uva.es
2008-08-15
The work reviews some mathematical aspects of spectral properties, eigenfunction expansions and scattering theory in rigged Hilbert spaces, laying emphasis on Lippmann-Schwinger equations and Schroedinger operators.
Quantum holonomy theory and Hilbert space representations
Energy Technology Data Exchange (ETDEWEB)
Aastrup, Johannes [Mathematisches Institut, Universitaet Hannover (Germany); Moeller Grimstrup, Jesper [QHT Gruppen, Copenhagen Area (Denmark)
2016-11-15
We present a new formulation of quantum holonomy theory, which is a candidate for a non-perturbative and background independent theory of quantum gravity coupled to matter and gauge degrees of freedom. The new formulation is based on a Hilbert space representation of the QHD(M) algebra, which is generated by holonomy-diffeomorphisms on a 3-dimensional manifold and by canonical translation operators on the underlying configuration space over which the holonomy-diffeomorphisms form a non-commutative C*-algebra. A proof that the state that generates the representation exist is left for later publications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Multipliers for continuous frames in Hilbert spaces
International Nuclear Information System (INIS)
Balazs, P; Bayer, D; Rahimi, A
2012-01-01
In this paper, we examine the general theory of continuous frame multipliers in Hilbert space. These operators are a generalization of the widely used notion of (discrete) frame multipliers. Well-known examples include anti-Wick operators, STFT multipliers or Calderón–Toeplitz operators. Due to the possible peculiarities of the underlying measure spaces, continuous frames do not behave quite as their discrete counterparts. Nonetheless, many results similar to the discrete case are proven for continuous frame multipliers as well, for instance compactness and Schatten-class properties. Furthermore, the concepts of controlled and weighted frames are transferred to the continuous setting. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
A note on tensor fields in Hilbert spaces
Directory of Open Access Journals (Sweden)
LEONARDO BILIOTTI
2002-06-01
Full Text Available We discuss and extend to infinite dimensional Hilbert spaces a well-known tensoriality criterion for linear endomorphisms of the space of smooth vector fields in n.Discutimos e estendemos para espaços de Hilbert um critério de tensorialidade para endomorfismos do espaço dos campos vetoriais em Rpot(n.
ON STRONG AND WEAK CONVERGENCE IN n-HILBERT SPACES
Directory of Open Access Journals (Sweden)
Agus L. Soenjaya
2014-03-01
Full Text Available We discuss the concepts of strong and weak convergence in n-Hilbert spaces and study their properties. Some examples are given to illustrate the concepts. In particular, we prove an analogue of Banach-Saks-Mazur theorem and Radon-Riesz property in the case of n-Hilbert space.
Few helium atoms in quasi two-dimensional space
International Nuclear Information System (INIS)
Kilic, Srecko; Vranjes, Leandra
2003-01-01
Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established
Intertwined Hamiltonians in two-dimensional curved spaces
International Nuclear Information System (INIS)
Aghababaei Samani, Keivan; Zarei, Mina
2005-01-01
The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle
Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao
2014-12-01
Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.
Hilbert space, Poincare dodecahedron and golden mean transfiniteness
International Nuclear Information System (INIS)
El Naschie, M.S.
2007-01-01
A rather direct connection between Hilbert space and E-infinity theory is established via an irrational-transfinite golden mean topological probability. Subsequently the ramifications for Kleinian modular spaces and the cosmological Poincare Dodecahedron proposals are considered
Isometric Reflection Vectors and Characterizations of Hilbert Spaces
Directory of Open Access Journals (Sweden)
Donghai Ji
2014-01-01
Full Text Available A known characterization of Hilbert spaces via isometric reflection vectors is based on the following implication: if the set of isometric reflection vectors in the unit sphere SX of a Banach space X has nonempty interior in SX, then X is a Hilbert space. Applying a recent result based on well-known theorem of Kronecker from number theory, we improve this by substantial reduction of the set of isometric reflection vectors needed in the hypothesis.
Introduction to Hilbert space and the theory of spectral multiplicity
Halmos, Paul R
2017-01-01
Concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. A background in measure theory is the sole prerequisite. 1957 edition.
Alabiso, Carlo
2015-01-01
This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...
Diagonalization of Bounded Linear Operators on Separable Quaternionic Hilbert Space
International Nuclear Information System (INIS)
Feng Youling; Cao, Yang; Wang Haijun
2012-01-01
By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schroedinger equation in quaternionic quantum mechanics.
On Some Fractional Stochastic Integrodifferential Equations in Hilbert Space
Directory of Open Access Journals (Sweden)
Hamdy M. Ahmed
2009-01-01
Full Text Available We study a class of fractional stochastic integrodifferential equations considered in a real Hilbert space. The existence and uniqueness of the Mild solutions of the considered problem is also studied. We also give an application for stochastic integropartial differential equations of fractional order.
Ad Hoc Physical Hilbert Spaces in Quantum Mechanics
Czech Academy of Sciences Publication Activity Database
Fernandez, F. M.; Garcia, J.; Semorádová, Iveta; Znojil, Miloslav
2015-01-01
Roč. 54, č. 12 (2015), s. 4187-4203 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum mechanics * physical Hilbert spaces * ad hoc inner product * singular potentials regularized * low lying energies Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015
Topology as fluid geometry two-dimensional spaces, volume 2
Cannon, James W
2017-01-01
This is the second of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The second volume deals with the topology of 2-dimensional spaces. The attempts encountered in Volume 1 to understand length and area in the plane lead to examples most easily described by the methods of topology (fluid geometry): finite curves of infinite length, 1-dimensional curves of positive area, space-filling curves (Peano curves), 0-dimensional subsets of the plane through which no straight path can pass (Cantor sets), etc. Volume 2 describes such sets. All of the standard topological results about 2-dimensional spaces are then proved, such as the Fundamental Theorem of Algebra (two...
A Hilbert space structure on Banach algebras
International Nuclear Information System (INIS)
Mohammad, N.; Thaheem, A.B.
1988-08-01
In this note we define an inner product on ''reduced'' Banach *-algebras via a measure on the set of positive functionals. It is shown here that the resultant inner product space is a topological algebra and also a completeness condition is obtained. (author). 9 refs
The Hilbert Series of the One Instanton Moduli Space
Benvenuti, Sergio; Mekareeya, Noppadol; 10.1007
2010-01-01
The moduli space of k G-instantons on R^4 for a classical gauge group G is known to be given by the Higgs branch of a supersymmetric gauge theory that lives on Dp branes probing D(p + 4) branes in Type II theories. For p = 3, these (3 + 1) dimensional gauge theories have N = 2 supersymmetry and can be represented by quiver diagrams. The F and D term equations coincide with the ADHM construction. The Hilbert series of the moduli spaces of one instanton for classical gauge groups is easy to compute and turns out to take a particularly simple form which is previously unknown. This allows for a G invariant character expansion and hence easily generalisable for exceptional gauge groups, where an ADHM construction is not known. The conjectures for exceptional groups are further checked using some new techniques like sewing relations in Hilbert Series. This is applied to Argyres-Seiberg dualities.
The method of moments and nested Hilbert spaces in quantum mechanics
International Nuclear Information System (INIS)
Adeniyi Bangudu, E.
1980-08-01
It is shown how the structures of a nested Hilbert space Hsub(I), associated with a given Hilbert space Hsub(O), may be used to simplify our understanding of the effects of parameters, whose values have to be chosen rather than determined variationally, in the method of moments. The result, as applied to non-relativistic quartic oscillator and helium atom, is to associate the parameters with sequences of Hilbert spaces, while the error of the method of moments relative to the variational method corresponds to a nesting operator of the nested Hilbert space. Difficulties hindering similar interpretations in terms of rigged Hilbert space structures are highlighted. (author)
Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces
Yukawa, Masahiro
2014-01-01
We propose a novel adaptive learning algorithm based on iterative orthogonal projections in the Cartesian product of multiple reproducing kernel Hilbert spaces (RKHSs). The task is estimating/tracking nonlinear functions which are supposed to contain multiple components such as (i) linear and nonlinear components, (ii) high- and low- frequency components etc. In this case, the use of multiple RKHSs permits a compact representation of multicomponent functions. The proposed algorithm is where t...
Lorentz covariant tempered distributions in two-dimensional space-time
International Nuclear Information System (INIS)
Zinov'ev, Yu.M.
1989-01-01
The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed
International Nuclear Information System (INIS)
Saveliev, M.V.
1983-01-01
In the framework of the algebraic approach a construction of exactly integrable two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space Rsub(N) of an arbitrary dimension is presented. The construction is based on a reformulation of the Gauss, Peterson-Codazzi and Ricci equations in the form of a Lax-type representation in two-dimensional space. Here the Lax pair operators take the values in algebra SO(N)
Moretti, Valter; Oppio, Marco
As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the
Geodesics on a hot plate: an example of a two-dimensional curved space
International Nuclear Information System (INIS)
Erkal, Cahit
2006-01-01
The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion
Geodesics on a hot plate: an example of a two-dimensional curved space
Energy Technology Data Exchange (ETDEWEB)
Erkal, Cahit [Department of Geology, Geography, and Physics, University of Tennessee, Martin, TN 38238 (United States)
2006-07-01
The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion.
Aveiro method in reproducing kernel Hilbert spaces under complete dictionary
Mai, Weixiong; Qian, Tao
2017-12-01
Aveiro Method is a sparse representation method in reproducing kernel Hilbert spaces (RKHS) that gives orthogonal projections in linear combinations of reproducing kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets in the underlying RKHS. In fact, in general spaces, uniqueness sets are not easy to be identified, let alone the convergence speed aspect with Aveiro Method. To avoid those difficulties we propose an anew Aveiro Method based on a dictionary and the matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be in relation to the recently proposed, the so called Pre-Orthogonal Greedy Algorithm (P-OGA) involving completion of a given dictionary. The new method is called Aveiro Method Under Complete Dictionary (AMUCD). The complete dictionary consists of all directional derivatives of the underlying reproducing kernels. We show that, under the boundary vanishing condition, bring available for the classical Hardy and Paley-Wiener spaces, the complete dictionary enables an efficient expansion of any given element in the Hilbert space. The proposed method reveals new and advanced aspects in both the Aveiro Method and the greedy algorithm.
Real analysis measure theory, integration, and Hilbert spaces
Stein, Elias M
2005-01-01
Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After
Geometry of quantum dynamics in infinite-dimensional Hilbert space
Grabowski, Janusz; Kuś, Marek; Marmo, Giuseppe; Shulman, Tatiana
2018-04-01
We develop a geometric approach to quantum mechanics based on the concept of the Tulczyjew triple. Our approach is genuinely infinite-dimensional, i.e. we do not restrict considerations to finite-dimensional Hilbert spaces, contrary to many other works on the geometry of quantum mechanics, and include a Lagrangian formalism in which self-adjoint (Schrödinger) operators are obtained as Lagrangian submanifolds associated with the Lagrangian. As a byproduct we also obtain results concerning coadjoint orbits of the unitary group in infinite dimensions, embedding of pure states in the unitary group, and self-adjoint extensions of symmetric relations.
On convergence of nuclear and correlation operators in Hilbert space
International Nuclear Information System (INIS)
Kubrusly, C.S.
1985-01-01
The convergence of sequences of nuclear operators on a separable Hilbert space is studied. Emphasis is given to trace-norm convergence, which is a basic property in stochastic systems theory. Obviously trace-norm convergence implies uniform convergence. The central theme of the paper focus the opposite way, by investigating when convergence in a weaker topology turns out to imply convergence in a stronger topology. The analysis carried out here is exhaustive in the following sense. All possible implications within a selected set of asymptotic properties for sequences of nuclear operators are established. The special case of correlation operators is also considered in detail. (Author) [pt
Perturbation for Frames for a Subspace of a Hilbert Space
DEFF Research Database (Denmark)
Christensen, Ole; deFlicht, C.; Lennard, C.
1997-01-01
We extend a classical result stating that a sufficiently small perturbation$\\{ g_i \\}$ of a Riesz sequence $\\{ f_i \\}$ in a Hilbert space $H$ is again a Riesz sequence. It turns out that the analog result for a frame does not holdunless the frame is complete. However, we are able to prove a very...... similarresult for frames in the case where the gap between the subspaces$\\overline{span} \\{f_i \\}$ and $\\overline{span} \\{ g_i \\}$ is small enough. We give a geometric interpretation of the result....
Explicit signal to noise ratio in reproducing kernel Hilbert spaces
DEFF Research Database (Denmark)
Gomez-Chova, Luis; Nielsen, Allan Aasbjerg; Camps-Valls, Gustavo
2011-01-01
This paper introduces a nonlinear feature extraction method based on kernels for remote sensing data analysis. The proposed approach is based on the minimum noise fraction (MNF) transform, which maximizes the signal variance while also minimizing the estimated noise variance. We here propose...... an alternative kernel MNF (KMNF) in which the noise is explicitly estimated in the reproducing kernel Hilbert space. This enables KMNF dealing with non-linear relations between the noise and the signal features jointly. Results show that the proposed KMNF provides the most noise-free features when confronted...
Friedrichs systems in a Hilbert space framework: Solvability and multiplicity
Antonić, N.; Erceg, M.; Michelangeli, A.
2017-12-01
The Friedrichs (1958) theory of positive symmetric systems of first order partial differential equations encompasses many standard equations of mathematical physics, irrespective of their type. This theory was recast in an abstract Hilbert space setting by Ern, Guermond and Caplain (2007), and by Antonić and Burazin (2010). In this work we make a further step, presenting a purely operator-theoretic description of abstract Friedrichs systems, and proving that any pair of abstract Friedrichs operators admits bijective extensions with a signed boundary map. Moreover, we provide sufficient and necessary conditions for existence of infinitely many such pairs of spaces, and by the universal operator extension theory (Grubb, 1968) we get a complete identification of all such pairs, which we illustrate on two concrete one-dimensional examples.
Convex analysis and monotone operator theory in Hilbert spaces
Bauschke, Heinz H
2017-01-01
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, ma...
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Hamiltonian and physical Hilbert space in polymer quantum mechanics
International Nuclear Information System (INIS)
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A
2007-01-01
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so-called polymer representation of the Heisenberg-Weyl (HW) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
International Nuclear Information System (INIS)
Luks, A.; Perinova, V.
1993-01-01
A suitable ordering of phase exponential operators has been compared with the antinormal ordering of the annihilation and creation operators of a single mode optical field. The extended Wigner function for number and phase in the enlarged Hilbert space has been used for the derivation of the Wigner function for number and phase in the original Hilbert space. (orig.)
The use of virtual reality to reimagine two-dimensional representations of three-dimensional spaces
Fath, Elaine
2015-03-01
A familiar realm in the world of two-dimensional art is the craft of taking a flat canvas and creating, through color, size, and perspective, the illusion of a three-dimensional space. Using well-explored tricks of logic and sight, impossible landscapes such as those by surrealists de Chirico or Salvador Dalí seem to be windows into new and incredible spaces which appear to be simultaneously feasible and utterly nonsensical. As real-time 3D imaging becomes increasingly prevalent as an artistic medium, this process takes on an additional layer of depth: no longer is two-dimensional space restricted to strategies of light, color, line and geometry to create the impression of a three-dimensional space. A digital interactive environment is a space laid out in three dimensions, allowing the user to explore impossible environments in a way that feels very real. In this project, surrealist two-dimensional art was researched and reimagined: what would stepping into a de Chirico or a Magritte look and feel like, if the depth and distance created by light and geometry were not simply single-perspective illusions, but fully formed and explorable spaces? 3D environment-building software is allowing us to step into these impossible spaces in ways that 2D representations leave us yearning for. This art project explores what we gain--and what gets left behind--when these impossible spaces become doors, rather than windows. Using sketching, Maya 3D rendering software, and the Unity Engine, surrealist art was reimagined as a fully navigable real-time digital environment. The surrealist movement and its key artists were researched for their use of color, geometry, texture, and space and how these elements contributed to their work as a whole, which often conveys feelings of unexpectedness or uneasiness. The end goal was to preserve these feelings while allowing the viewer to actively engage with the space.
Dynamics of a neuron model in different two-dimensional parameter-spaces
Rech, Paulo C.
2011-03-01
We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.
Continuous Slice Functional Calculus in Quaternionic Hilbert Spaces
Ghiloni, Riccardo; Moretti, Valter; Perotti, Alessandro
2013-04-01
The aim of this work is to define a continuous functional calculus in quaternionic Hilbert spaces, starting from basic issues regarding the notion of spherical spectrum of a normal operator. As properties of the spherical spectrum suggest, the class of continuous functions to consider in this setting is the one of slice quaternionic functions. Slice functions generalize the concept of slice regular function, which comprises power series with quaternionic coefficients on one side and that can be seen as an effective generalization to quaternions of holomorphic functions of one complex variable. The notion of slice function allows to introduce suitable classes of real, complex and quaternionic C*-algebras and to define, on each of these C*-algebras, a functional calculus for quaternionic normal operators. In particular, we establish several versions of the spectral map theorem. Some of the results are proved also for unbounded operators. However, the mentioned continuous functional calculi are defined only for bounded normal operators. Some comments on the physical significance of our work are included.
Characterizing sequential isomorphisms on Hilbert-space effect algebras
International Nuclear Information System (INIS)
Hou Jinchuan; He Kan; Qi Xiaofei
2010-01-01
Let * be any sequential product on the Hilbert-space effect algebra E(H) with dim H≥2, and Φ:E(H)→E(H) be a bijective map. We show that if Φ satisfies Φ(A*B) = Φ(A)*Φ(B) for A,B element of E(H), then there is either a unitary or an anti-unitary operator U such that Φ(A) = UAU† for every A element of E(H). Let g:[0,1]→{λ|λ element of C, |λ|=0 or 1} be a Borel function satisfying g(0) = 0, g(1) = 1 and let us define a binary operation lozenge g on E(H) by A lozenge g B = A 1/2 g(A)Bg(A)†A 1/2 , where T† denotes the conjugate of the operator T. We also show that a bijective map Φ:E(H)→E(H) satisfies Φ(A lozenge g B) = Φ(A) lozenge g Φ(B) for A,B element of E(H) if and only if there is either a unitary or an anti-unitary operator U such that Φ(A) = UAU† for every A element of E(H).
Neutrino stress tensor regularization in two-dimensional space-time
International Nuclear Information System (INIS)
Davies, P.C.W.; Unruh, W.G.
1977-01-01
The method of covariant point-splitting is used to regularize the stress tensor for a massless spin 1/2 (neutrino) quantum field in an arbitrary two-dimensional space-time. A thermodynamic argument is used as a consistency check. The result shows that the physical part of the stress tensor is identical with that of the massless scalar field (in the absence of Casimir-type terms) even though the formally divergent expression is equal to the negative of the scalar case. (author)
Two-Dimensional Space-Time Dependent Multi-group Diffusion Equation with SLOR Method
International Nuclear Information System (INIS)
Yulianti, Y.; Su'ud, Z.; Waris, A.; Khotimah, S. N.
2010-01-01
The research of two-dimensional space-time diffusion equations with SLOR (Successive-Line Over Relaxation) has been done. SLOR method is chosen because this method is one of iterative methods that does not required to defined whole element matrix. The research is divided in two cases, homogeneous case and heterogeneous case. Homogeneous case has been inserted by step reactivity. Heterogeneous case has been inserted by step reactivity and ramp reactivity. In general, the results of simulations are agreement, even in some points there are differences.
State-space representation of instationary two-dimensional airfoil aerodynamics
Energy Technology Data Exchange (ETDEWEB)
Meyer, Marcus; Matthies, Hermann G. [Institute of Scientific Computing, Technical University Braunschweig, Hans-Sommer-Str. 65, Braunschweig 38106 (Germany)
2004-03-01
In the aero-elastic analysis of wind turbines the need to include a model of the local, two-dimensional instationary aerodynamic loads, commonly referred to as dynamic stall model, has become obvious in the last years. In this contribution an alternative choice for such a model is described, based on the DLR model. Its derivation is governed by the flow physics, thus enabling interpolation between different profile geometries. An advantage of the proposed model is its state-space form, i.e. a system of differential equations, which facilitates the important tasks of aeroelastic stability and sensitivity investigations. The model is validated with numerical calculations.
Conformal symmetry in two-dimensional space: recursion representation of conformal block
International Nuclear Information System (INIS)
Zamolodchikov, A.B.
1988-01-01
The four-point conformal block plays an important part in the analysis of the conformally invariant operator algebra in two-dimensional space. The behavior of the conformal block is calculated in the present paper in the limit in which the dimension Δ of the intermediate operator tends to infinity. This makes it possible to construct a recursion relation for this function that connects the conformal block at arbitrary Δ to the blocks corresponding to the dimensions of the zero vectors in the degenerate representations of the Virasoro algebra. The relation is convenient for calculating the expansion of the conformal block in powers of the uniformizing parameters q = i π tau
States in the Hilbert space formulation and in the phase space formulation of quantum mechanics
International Nuclear Information System (INIS)
Tosiek, J.; Brzykcy, P.
2013-01-01
We consider the problem of testing whether a given matrix in the Hilbert space formulation of quantum mechanics or a function considered in the phase space formulation of quantum theory represents a quantum state. We propose several practical criteria for recognising states in these two versions of quantum physics. After minor modifications, they can be applied to check positivity of any operators acting in a Hilbert space or positivity of any functions from an algebra with a ∗-product of Weyl type. -- Highlights: ► Methods of testing whether a given matrix represents a quantum state. ► The Stratonovich–Weyl correspondence on an arbitrary symplectic manifold. ► Criteria for checking whether a function on a symplectic space is a Wigner function
Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry
International Nuclear Information System (INIS)
Machacek, M.E.; McCliment, E.R.
1975-01-01
It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components
Wiener-Hopf operators on spaces of functions on R+ with values in a Hilbert space
Petkova, Violeta
2006-01-01
A Wiener-Hopf operator on a Banach space of functions on R+ is a bounded operator T such that P^+S_{-a}TS_a=T, for every positive a, where S_a is the operator of translation by a. We obtain a representation theorem for the Wiener-Hopf operators on a large class of functions on R+ with values in a separable Hilbert space.
Hilbert spaces contractively included in the Hardy space of the bidisk
Alpay, D.; Bolotnikov, V.; Dijksma, A.; Sadosky, C.
We study the reproducing kernel Hilbert spaces h(D-2,S) with kernels of the form I-S(z(1),z(2)>)S(w(1),w(2))*/(1-z(1)w(1)*) (1-z(2)w(2)*) where S(z(1),z(2)) is a Schur function of two variables z(1),z(2)is an element of D. They are analogs of the spaces h(D,S) with reproducing kernel
Generalized Polar Decompositions for Closed Operators in Hilbert Spaces and Some Applications
Gesztesy, Fritz; Malamud, Mark; Mitrea, Marius; Naboko, Serguei
2008-01-01
We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.
Positive-definite functions and unitary representations of locally compact groups in a Hilbert space
International Nuclear Information System (INIS)
Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M.
1977-08-01
It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.
2014-01-19
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.; Nurbekyan, Levon
2014-01-01
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
Dynamics of a neuron model in different two-dimensional parameter-spaces
International Nuclear Information System (INIS)
Rech, Paulo C.
2011-01-01
We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades. - Research highlights: → We report parameter-spaces obtained for the Hindmarsh-Rose neuron model. → Regardless of the combination of parameters, a typical scenario is preserved. → The scenario presents a comb-shaped chaotic region immersed in a periodic region. → Periodic regions near the chaotic region are in period-adding bifurcation cascades.
Directory of Open Access Journals (Sweden)
Haiwen Li
2018-01-01
Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.
An introduction of gauge field by the Lie-isotopic lifting of the Hilbert space
International Nuclear Information System (INIS)
Nishioka, M.
1984-01-01
It is introduced the gauge field by the Lie-isotopic lifting of the Hilbert space. Our method is different from other's in that the commutator between the isotropic element and the generators of the Lie algebra does not vanish in our case, but vanishes in other cases. Our method uses the Lie-isotopic lifting of the Hilbert space, but others do not use it
Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields
International Nuclear Information System (INIS)
Albeverio, S.; Brzezniak, Z.
1994-01-01
We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)
Soft and hard classification by reproducing kernel Hilbert space methods.
Wahba, Grace
2002-12-24
Reproducing kernel Hilbert space (RKHS) methods provide a unified context for solving a wide variety of statistical modelling and function estimation problems. We consider two such problems: We are given a training set [yi, ti, i = 1, em leader, n], where yi is the response for the ith subject, and ti is a vector of attributes for this subject. The value of y(i) is a label that indicates which category it came from. For the first problem, we wish to build a model from the training set that assigns to each t in an attribute domain of interest an estimate of the probability pj(t) that a (future) subject with attribute vector t is in category j. The second problem is in some sense less ambitious; it is to build a model that assigns to each t a label, which classifies a future subject with that t into one of the categories or possibly "none of the above." The approach to the first of these two problems discussed here is a special case of what is known as penalized likelihood estimation. The approach to the second problem is known as the support vector machine. We also note some alternate but closely related approaches to the second problem. These approaches are all obtained as solutions to optimization problems in RKHS. Many other problems, in particular the solution of ill-posed inverse problems, can be obtained as solutions to optimization problems in RKHS and are mentioned in passing. We caution the reader that although a large literature exists in all of these topics, in this inaugural article we are selectively highlighting work of the author, former students, and other collaborators.
A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space
International Nuclear Information System (INIS)
Kaplitskii, V M
2014-01-01
The function Ψ(x,y,s)=e iy Φ(−e iy ,s,x), where Φ(z,s,v) is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation, where s=1/2+iλ. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space L 2 (Π), where Π=(0,1)×(0,2π). We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of Ψ(x,y,s). We discuss sufficient conditions for these formal solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function. Bibliography: 15 titles
Quantization of coset space σ-models coupled to two-dimensional gravity
International Nuclear Information System (INIS)
Korotkin, D.; Samtleben, H.
1996-07-01
The mathematical framework for an exact quantization of the two-dimensional coset space σ-models coupled to dilaton gravity, that arise from dimensional reduction of gravity and supergravity theories, is presented. The two-time Hamiltonian formulation is obtained, which describes the complete phase space of the model in the whole isomonodromic sector. The Dirac brackets arising from the coset constraints are calculated. Their quantization allows to relate exact solutions of the corresponding Wheeler-DeWitt equations to solutions of a modified (Coset) Knizhnik-Zamolodchikov system. On the classical level, a set of observables is identified, that is complete for essential sectors of the theory. Quantum counterparts of these observables and their algebraic structure are investigated. Their status in alternative quantization procedures is discussed, employing the link with Hamiltonian Chern-Simons theory. (orig.)
Alpay, Daniel
2015-01-01
This is an exercises book at the beginning graduate level, whose aim is to illustrate some of the connections between functional analysis and the theory of functions of one variable. A key role is played by the notions of positive definite kernel and of reproducing kernel Hilbert space. A number of facts from functional analysis and topological vector spaces are surveyed. Then, various Hilbert spaces of analytic functions are studied.
Superintegrability in two-dimensional Euclidean space and associated polynomial solutions
International Nuclear Information System (INIS)
Kalnins, E.G.; Miller, W. Jr; Pogosyan, G.S.
1996-01-01
In this work we examine the basis functions for those classical and quantum mechanical systems in two dimensions which admit separation of variables in at least two coordinate systems. We do this for the corresponding systems defined in Euclidean space and on the two dimensional sphere. We present all of these cases from a unified point of view. In particular, all of the spectral functions that arise via variable separation have their essential features expressed in terms of their zeros. The principal new results are the details of the polynomial base for each of the nonsubgroup base, not just the subgroup cartesian and polar coordinate case, and the details of the structure of the quadratic algebras. We also study the polynomial eigenfunctions in elliptic coordinates of the N-dimensional isotropic quantum oscillator. 28 refs., 1 tab
Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space
Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng
2017-09-01
A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.
Some means inequalities for positive operators in Hilbert spaces
Directory of Open Access Journals (Sweden)
Jin Liang
2017-01-01
Full Text Available Abstract In this paper, we obtain two refinements of the ordering relations among Heinz means with different parameters via the Taylor series of some hyperbolic functions and by the way, we derive new generalizations of Heinz operator inequalities. Moreover, we establish a matrix version of Heinz inequality for the Hilbert-Schmidt norm. Finally, we introduce a weighted multivariate geometric mean and show that the weighted multivariate operator geometric mean possess several attractive properties and means inequalities.
Positioning with stationary emitters in a two-dimensional space-time
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out
Space Inside a Liquid Sphere Transforms into De Sitter Space by Hilbert Radius
Rabounski, Dmitri; Borissova, Larissa
2010-04-01
Consider space inside a sphere of incompressible liquid, and space surrounding a mass-point. Metrics of the spaces were deduced in 1916 by Karl Schwarzschild. 1) Our calculation shows that a liquid sphere can be in the state of gravitational collapse (g00 = 0) only if its mass and radius are close to those of the Universe (M = 8.7x10^55 g, a = 1.3x10^28 cm). However if the same mass is presented as a mass-point, the radius of collapse rg (Hilbert radius) is many orders lesser: g00 = 0 realizes in a mass-point's space by other conditions. 2) We considered a liquid sphere whose radius meets, formally, the Hilbert radius of a mass-point bearing the same mass: a = rg, however the liquid sphere is not a collapser (see above). We show that in this case the metric of the liquid sphere's internal space can be represented as de Sitter's space metric, wherein λ = 3/a^2 > 0: physical vacuum (due to the λ-term) is the same as the field of an ideal liquid where ρ0 0 (the mirror world liquid). The gravitational redshift inside the sphere is produced by the non-Newtonian force of repulsion (which is due to the λ-term, λ = 3/a^2 > 0); it is also calculated.
Asymptotic behaviour of unbounded trajectories for some non-autonomous systems in a Hilbert space
International Nuclear Information System (INIS)
Djafari Rouhani, B.
1990-07-01
The asymptotic behaviour of unbounded trajectories for non expansive mappings in a real Hilbert space and the extension to more general Banach spaces and to nonlinear contraction semi-group have been studied by many authors. In this paper we study the asymptotic behaviour of unbounded trajectories for a quasi non-autonomous dissipative systems. 26 refs
Noise-induced phase space transport in two-dimensional Hamiltonian systems.
Pogorelov, I V; Kandrup, H E
1999-08-01
First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.
Positioning in a flat two-dimensional space-time: The delay master equation
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales-Lladosa, Juan Antonio
2010-01-01
The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); ibid.74, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here, generic relativistic positioning systems in the Minkowski plane are studied. The information that can be obtained from the data received by a user of the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the user from specific sets of data received by the user.
International Nuclear Information System (INIS)
Das, S.R.; Mukherji, S.
1994-01-01
We study black hole formation in a model of two dimensional dilaton gravity and 24 massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receding to infinity at the speed of light whenever the total energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, and asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the horizon, even though the freely falling observer does not. This is an aspect of black hole complementarity relating directly to quantum gravity effects. (author). 30 refs, 4 figs
Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa
2017-12-01
Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.
Massive quantum field theory in two-dimensional Robertson-Walker space-time
International Nuclear Information System (INIS)
Bunch, T.S.; Christensen, S.M.; Fulling, S.A.
1978-01-01
The stress tensor of a massive scalar field, as an integral over normal modes (which are not mere plane waves), is regularized by covariant point separation. When the expectation value in a Parker-Fulling adiabatic vacuum state is expanded in the limit of small curvature-to-mass ratios, the series coincides in each order with the Schwinger-DeWitt-Christensen proper-time expansion. The renormalization ansatz suggested by these expansions (which applies to arbitrary curvature-to-mass ratios and arbitrary quantum state) can be implemented at the integrand level for practical computations. The renormalized tensor (1) passes in the massless limit, for appropriate choice of state, to the known vacuum stress of a massless field, (2) agrees with the explicit results of Bernard and Duncan for a special model, and (3) has a nonzero vacuum expectation value in the two-dimensional ''Milne universe'' (flat space in hyperbolic coordinates). Following Wald, we prove that the renormalized tensor is conserved and point out that there is no arbitrariness in the renormalization procedure. The general approach of this paper is applicable to four-dimensional models
Chen, Hao; Lv, Wen; Zhang, Tongtong
2018-05-01
We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.
Frames in super Hilbert modules
Directory of Open Access Journals (Sweden)
Mehdi Rashidi-Kouchi
2018-01-01
Full Text Available In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to
Ahn, Junyeong; Yang, Bohm-Jung
2017-04-01
We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.
Noise-induced phase space transport in two-dimensional Hamiltonian systems
International Nuclear Information System (INIS)
Pogorelov, I.V.; Kandrup, H.E.
1999-01-01
First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which open-quotes stickyclose quotes chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become open-quotes unstuckclose quotes much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation. copyright 1999 The American Physical Society
A New General Iterative Method for a Finite Family of Nonexpansive Mappings in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Singthong Urailuk
2010-01-01
Full Text Available We introduce a new general iterative method by using the -mapping for finding a common fixed point of a finite family of nonexpansive mappings in the framework of Hilbert spaces. A strong convergence theorem of the purposed iterative method is established under some certain control conditions. Our results improve and extend the results announced by many others.
Two New Iterative Methods for a Countable Family of Nonexpansive Mappings in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Hu Changsong
2010-01-01
Full Text Available We consider two new iterative methods for a countable family of nonexpansive mappings in Hilbert spaces. We proved that the proposed algorithms strongly converge to a common fixed point of a countable family of nonexpansive mappings which solves the corresponding variational inequality. Our results improve and extend the corresponding ones announced by many others.
Hilbert space representation of the SOq(N)-covariant Heisenberg algebra
International Nuclear Information System (INIS)
Hebecker, A.; Weich, W.
1993-01-01
The differential calculus on SO q (N)-covariant quantum planes is rewritten in polar co-ordinates. Thus a Hilbert space formulation of q-deformed quantum mechanics can be developed particularly suitable for spherically symmetric potentials. The simplest case of a free particle is solved showing a discrete energy spectrum. (orig.)
Weighted Traffic Equilibrium Problem in Non Pivot Hilbert Spaces with Long Term Memory
International Nuclear Information System (INIS)
Giuffre, Sofia; Pia, Stephane
2010-01-01
In the paper we consider a weighted traffic equilibrium problem in a non-pivot Hilbert space and prove the equivalence between a weighted Wardrop condition and a variational inequality with long term memory. As an application we show, using recent results of the Senseable Laboratory at MIT, how wireless devices can be used to optimize the traffic equilibrium problem.
Tensor algebra over Hilbert space: Field theory in classical phase space
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt
Enhancement of Solar Cell Efficiency for Space Applications Using Two-Dimensional Photonic Crystals
Directory of Open Access Journals (Sweden)
Postigo P.A.
2017-01-01
with the area of photonic crystal patterning has been clearly observed. Finally, a low-cost nanofabrication procedure to obtain high quality two-dimensional photonic crystals in large areas (up to square cm is described.
Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment
International Nuclear Information System (INIS)
El Naschie, M.S.
2006-01-01
On the one hand, a rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space and as we move to the second quantization, a Fock space. On the other hand, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we utilize some novel reinterpretations of basic E (∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. Proceeding in this way, we gain a better understanding of the physico-mathematical structure of quantum spacetime which is at the heart of the paradoxical and non-intuitive outcome of the famous quantum two-slit gedanken experiment
A simple proof to an extension of a theorem of A. Pazy in Hilbert space
International Nuclear Information System (INIS)
Djafari Rouhani, B.
1990-08-01
We prove that if (x n ) n≥0 is a non expansive sequence in a Hilbert space H, the sequence ( n x n ) n≥1 converges strongly in H to the element of minimum norm in the closed convex hull of the sequence (x n+1 -x n ) n≥0 . This result was previously proved; the proof we give here is even much simpler and can be extended to a Banach space. 29 refs
Estimates of solutions of certain classes of second-order differential equations in a Hilbert space
International Nuclear Information System (INIS)
Artamonov, N V
2003-01-01
Linear second-order differential equations of the form u''(t)+(B+iD)u'(t)+(T+iS)u(t)=0 in a Hilbert space are studied. Under certain conditions on the (generally speaking, unbounded) operators T, S, B and D the correct solubility of the equation in the 'energy' space is proved and best possible (in the general case) estimates of the solutions on the half-axis are obtained
Relativistic resonances as non-orthogonal states in Hilbert space
Blum, W
2003-01-01
We analyze the energy-momentum properties of relativistic short-lived particles with the result that they are characterized by two 4-vectors: in addition to the familiar energy-momentum vector (timelike) there is an energy-momentum 'spread vector' (spacelike). The wave functions in space and time for unstable particles are constructed. For the relativistic properties of unstable states we refer to Wigner's method of Poincare group representations that are induced by representations of the space-time translation and rotation groups. If stable particles, unstable particles and resonances are treated as elementary objects that are not fundamentally different one has to take into account that they will not generally be orthogonal to each other in their state space. The scalar product between a stable and an unstable state with otherwise identical properties is calculated in a particular Lorentz frame. The spin of an unstable particle is not infinitely sharp but has a 'spin spread' giving rise to 'spin neighbors'....
Fermion emission in a two-dimensional black hole space-time
International Nuclear Information System (INIS)
Wanders, G.
1994-01-01
We investigate massless fermion production by a two-dimensional dilatonic black hole. Our analysis is based on the Bogoliubov transformation relating the outgoing fermion field observed outside the black hole horizon to the incoming field present before the black hole creation. It takes full account of the fact that the transformation is neither invertible nor unitarily implementable. The particle content of the outgoing radiation is specified by means of inclusive probabilities for the detection of sets of outgoing fermions and antifermions in given states. For states localized near the horizon these probabilities characterize a thermal equilibrium state. The way the probabilities become thermal as one approaches the horizon is discussed in detail
Alternative structures and bi-Hamiltonian systems on a Hilbert space
International Nuclear Information System (INIS)
Marmo, G; Scolarici, G; Simoni, A; Ventriglia, F
2005-01-01
We discuss transformations generated by dynamical quantum systems which are bi-unitary, i.e. unitary with respect to a pair of Hermitian structures on an infinite-dimensional complex Hilbert space. We introduce the notion of Hermitian structures in generic relative position. We provide a few necessary and sufficient conditions for two Hermitian structures to be in generic relative position to better illustrate the relevance of this notion. The group of bi-unitary transformations is considered in both the generic and the non-generic case. Finally, we generalize the analysis to real Hilbert spaces and extend to infinite dimensions results already available in the framework of finite-dimensional linear bi-Hamiltonian systems
Bulk entanglement gravity without a boundary: Towards finding Einstein's equation in Hilbert space
Cao, ChunJun; Carroll, Sean M.
2018-04-01
We consider the emergence from quantum entanglement of spacetime geometry in a bulk region. For certain classes of quantum states in an appropriately factorized Hilbert space, a spatial geometry can be defined by associating areas along codimension-one surfaces with the entanglement entropy between either side. We show how radon transforms can be used to convert these data into a spatial metric. Under a particular set of assumptions, the time evolution of such a state traces out a four-dimensional spacetime geometry, and we argue using a modified version of Jacobson's "entanglement equilibrium" that the geometry should obey Einstein's equation in the weak-field limit. We also discuss how entanglement equilibrium is related to a generalization of the Ryu-Takayanagi formula in more general settings, and how quantum error correction can help specify the emergence map between the full quantum-gravity Hilbert space and the semiclassical limit of quantum fields propagating on a classical spacetime.
Controlled G-Frames and Their G-Multipliers in Hilbert spaces
Rahimi, Asghar; Fereydooni, Abolhassan
2012-01-01
Multipliers have been recently introduced by P. Balazs as operators for Bessel sequences and frames in Hilbert spaces. These are operators that combine (frame-like) analysis, a multiplication with a fixed sequence (called the symbol) and synthesis. Weighted and controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator Also g-frames are the most popular generalization of frames that include almost all of the frame extens...
Response to the Comment by G. Emch on projective group representations in quaternionic Hilbert space
International Nuclear Information System (INIS)
Adler, S.L.
1996-01-01
We discuss the differing definitions of complex and quaternionic projective group representations employed by us and by Emch. The definition of Emch (termed here a strong projective representation) is too restrictive to accommodate quaternionic Hilbert space embeddings of complex projective representations. Our definition (termed here a weak projective representation) encompasses such embeddings, and leads to a detailed theory of quaternionic, as well as complex, projective group representations. copyright 1996 American Institute of Physics
Nonrelativistic multichannel quantum scattering theory in a two Hilbert space formulation
International Nuclear Information System (INIS)
Chandler, C.
1977-08-01
A two-Hilbert-space form of an abstract scattering theory specifically applicable to multichannel quantum scattering problems is outlined. General physical foundations of the theory are reviewed. Further topics discussed include the invariance principle, asymptotic completeness of the wave operators, representations of the scattering operator in terms of transition operators and fundamental equations that these transition operators satisfy. Outstanding problems, including the difficulties of including Coulomb interactions in the theory, are pointed out. (D.P.)
Approximately dual frames in Hilbert spaces and applications to Gabor frames
Christensen, Ole; Laugesen, Richard S.
2011-01-01
Approximately dual frames are studied in the Hilbert space setting. Approximate duals are easier to construct than classical dual frames, and can be tailored to yield almost perfect reconstruction. Bounds on the deviation from perfect reconstruction are obtained for approximately dual frames constructed via perturbation theory. An alternative bound is derived for the rich class of Gabor frames, by using the Walnut representation of the frame operator to estimate the deviation from equality in...
Limit distribution function of inhomogeneities in regions with random boundary in the Hilbert space
International Nuclear Information System (INIS)
Rasulova, M.Yu.; Tashpulatov, S.M.
2004-10-01
The interaction of charged particle systems with a membrane consisting of nonhomogeneities which are randomly distributed by the same law in the vicinity of appropriate sites of a planax crystal lattice is studied. A system of equations for the self-consistent potential U 1 (x,ξ 0 ,..., ξ N ,...) and the density of induced charges σ(x,ξ 0 ,...,ξ N ,...) is solved on Hilbert space. (author)
INFORMATIVE ENERGY METRIC FOR SIMILARITY MEASURE IN REPRODUCING KERNEL HILBERT SPACES
Directory of Open Access Journals (Sweden)
Songhua Liu
2012-02-01
Full Text Available In this paper, information energy metric (IEM is obtained by similarity computing for high-dimensional samples in a reproducing kernel Hilbert space (RKHS. Firstly, similar/dissimilar subsets and their corresponding informative energy functions are defined. Secondly, IEM is proposed for similarity measure of those subsets, which converts the non-metric distances into metric ones. Finally, applications of this metric is introduced, such as classification problems. Experimental results validate the effectiveness of the proposed method.
Quantum limits to information about states for finite dimensional Hilbert space
International Nuclear Information System (INIS)
Jones, K.R.W.
1990-01-01
A refined bound for the correlation information of an N-trial apparatus is developed via an heuristic argument for Hilbert spaces of arbitrary finite dimensionality. Conditional upon the proof of an easily motivated inequality it was possible to find the optimal apparatus for large ensemble quantum Inference, thereby solving the asymptotic optimal state determination problem. In this way an alternative inferential uncertainty principle, is defined which is then contrasted with the usual Heisenberg uncertainty principle. 6 refs
Covariant loops and strings in a positive definite Hilbert space
International Nuclear Information System (INIS)
Rohrlich, F.
1977-01-01
Relativistic loops and strings are defined in the conventional way as solutions of a one-dimensional wave equation with certain boundary conditions and satisfying the orthogonal gauge conditions. Conventional pseudo-Cartesian co-ordinates (rather than null-plane co-ordinates) are used. The creation and annihilation operator four-vector αsub(μ)sup(+) and αsub(m) are required to be spacelike (orthogonal to the total momentum Psup(μ), so that the resulting Fock space is positive definite. This requirements is shown to be mathematically consistent with Poincare' invariance and to impose no additional physical constraints on the system. It can be implemented in a canonical realization of the Poincare' algebra as a condition on a state vectors, or in a noncanonical realization as an operator equation, as is done here. The space is further restricted by the Virasoro conditions to a physical subspace PHI which is of course also positive definite. In this way there arises no critical-dimension problem and Poincare' invariance holds also in 3+1 dimensions. The energy and spin spectra are the same as usual, leading to linear Regge trajectories, except that there are no tachyons and no zero mass states. The leading Regge trajectory has negative intercept
Directory of Open Access Journals (Sweden)
Ailawalia Praveen
2015-01-01
Full Text Available The purpose of this paper is to study the two dimensional deformation of fibre reinforced micropolar thermoelastic medium in the context of Green-Lindsay theory of thermoelasticity. A mechanical force is applied along the interface of fluid half space and fibre reinforced micropolar thermoelastic half space. The normal mode analysis has been applied to obtain the exact expressions for displacement component, force stress, temperature distribution and tangential couple stress. The effect of anisotropy and micropolarity on the displacement component, force stress, temperature distribution and tangential couple stress has been depicted graphically.
Directory of Open Access Journals (Sweden)
George Isac
2004-01-01
Full Text Available In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that this development is possible if we use the viable solutions of differential inclusions. We use also pseudomonotone operators.
Four-dimensional hilbert curves for R-trees
DEFF Research Database (Denmark)
Haverkort, Herman; Walderveen, Freek van
2011-01-01
Two-dimensional R-trees are a class of spatial index structures in which objects are arranged to enable fast window queries: report all objects that intersect a given query window. One of the most successful methods of arranging the objects in the index structure is based on sorting the objects...... according to the positions of their centers along a two-dimensional Hilbert space-filling curve. Alternatively, one may use the coordinates of the objects' bounding boxes to represent each object by a four-dimensional point, and sort these points along a four-dimensional Hilbert-type curve. In experiments...
Effective realistic interactions for low momentum Hilbert spaces
International Nuclear Information System (INIS)
Weber, Dennis
2012-01-01
Realistic nucleon-nucleon potentials are an essential ingredient of modern microscopic many-body calculations. These potentials can be represented in two different ways: operator representation or matrix element representation. In operator representation the potential is represented by a set of quantum mechanical operators while in matrix element representation it is defined by the matrix elements in a given basis. Many modern potentials are constructed directly in matrix element representation. While the matrix element representation can be calculated from the operator representation, the determination of the operator representation from the matrix elements is more difficult. Some methods to solve the nuclear many-body problem, such as Fermionic Molecular Dynamics (FMD) or the Green's Function Monte Carlo (GFMC) method, however require explicitly the operator representation of the potential, as they do not work in a fixed many-body basis. It is therefore desirable to derive an operator representation also for the interactions given by matrix elements. In this work a method is presented which allows the derivation of an approximate operator representation starting from the momentum space partial wave matrix elements of the interaction. For that purpose an ansatz for the operator representation is chosen. The parameters in the ansatz are determined by a fit to the partial wave matrix elements. Since a perfect reproduction of the matrix elements in general cannot be achieved with a finite number of operators and the quality of the results depends on the choice of the ansatz, the obtained operator representation is tested in nuclear many-body calculations and the results are compared with those from the initial interaction matrix elements. For the calculation of the nucleon-nucleon scattering phase shifts and the deuteron properties a computer code written within this work is used. For larger nuclei the No Core Shell Model (NCSM) and FMD are applied. The described
Radiation from a moving mirror in two dimensional space-time: conformal anomaly
International Nuclear Information System (INIS)
Fulling, S.A.; Davies, P.C.W.
1976-01-01
The energy-momentum tensor is calculated in the two dimensional quantum theory of a massless scalar field influenced by the motion of a perfectly reflecting boundary (mirror). The simple model system evidently can provide insight into more sophisticated processes, such as particle production in cosmological models and exploding black holes. In spite of the conformally static nature of the problem, the vacuum expectation value of the tensor for an arbitrary mirror trajectory exhibits a non-vanishing radiation flux (which may be readily computed). The expectation value of the instantaneous energy flux is negative when the proper acceleration of the mirror is increasing, but the total energy radiated during a bounded mirror motion is positive. A uniformly accelerating mirror does not radiate; however, the quantization does not coincide with the treatment of that system as a 'static universe'. The calculation of the expectation value requires a regularization procedure of covariant separation of points (in products of field operators) along time-like geodesics; more naive methods do not yield the same answers. A striking example involving two mirrors clarifies the significance of the conformal anomaly. (author)
The kinematical Hilbert space of loop quantum gravity from BF theories
International Nuclear Information System (INIS)
Cianfrani, Francesco
2011-01-01
In this work, it is demonstrated how the kinematical Hilbert space of loop quantum gravity (LQG) can be inferred from the configuration space of BF theories via the imposition of the Hamiltonian constraints. In particular, it is outlined how the projection to the representations associated with Ashtekar-Barbero connections provides the correct procedure to implement second-class constraints and the corresponding nontrivial induced symplectic structure. Then, the reduction to SU(2) invariant intertwiners is analyzed and the properties of LQG states under Lorentz transformations are discussed.
Real-space mapping of a disordered two-dimensional electron system in the quantum Hall regime
International Nuclear Information System (INIS)
Hashimoto, K; Hirayama, Y; Wiebe, J; Wiesendanger, R; Inaoka, T; Morgenstern, M
2011-01-01
By using scanning tunnelling spectroscopy, we study the influence of potential disorder on an adsorbate-induced two-dimensional electron system in the integer quantum Hall regime. The real-space imaged local density of states exhibits transition from localized drift states encircling the potential minima to another type of localized drift states encircling the potential maxima. While the former states show regular round shapes, the latter have irregular-shaped patterns. This difference is induced by different sources for the potential minima and maxima, i.e., substrate donors and an inhomogeneous distribution of the adsorbates, respectively.
Quantum computation via local control theory: Direct sum vs. direct product Hilbert spaces
International Nuclear Information System (INIS)
Sklarz, Shlomo E.; Tannor, David J.
2006-01-01
The central objective in any quantum computation is the creation of a desired unitary transformation; the mapping that this unitary transformation produces between the input and output states is identified with the computation. In [S.E. Sklarz, D.J. Tannor, arXiv:quant-ph/0404081 (submitted to PRA) (2004)] it was shown that local control theory can be used to calculate fields that will produce such a desired unitary transformation. In contrast with previous strategies for quantum computing based on optimal control theory, the local control scheme maintains the system within the computational subspace at intermediate times, thereby avoiding unwanted decay processes. In [S.E. Sklarz et al.], the structure of the Hilbert space had a direct sum structure with respect to the computational register and the mediating states. In this paper, we extend the formalism to the important case of a direct product Hilbert space. The final equations for the control algorithm for the two cases are remarkably similar in structure, despite the fact that the derivations are completely different and that in one case the dynamics is in a Hilbert space and in the other case the dynamics is in a Liouville space. As shown in [S.E. Sklarz et al.], the direct sum implementation leads to a computational mechanism based on virtual transitions, and can be viewed as an extension of the principles of Stimulated Raman Adiabatic Passage from state manipulation to evolution operator manipulation. The direct product implementation developed here leads to the intriguing concept of virtual entanglement - computation that exploits second-order transitions that pass through entangled states but that leaves the subsystems nearly separable at all intermediate times. Finally, we speculate on a connection between the algorithm developed here and the concept of decoherence free subspaces
Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.
Stępień, Grzegorz
2018-03-17
The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.
Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space
Directory of Open Access Journals (Sweden)
Grzegorz Stępień
2018-03-01
Full Text Available The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems—interior and exterior orientation of sensors—to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data. The accuracy of the results in the laboratory test is on the level of 10−6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author’s 2017 Total Free Station (TFS transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation—MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.
Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM
2007-12-15
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
Construction of rigged Hilbert spaces to describe resonances and virtual states
International Nuclear Information System (INIS)
Gadella, M.
1983-01-01
In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t > 0 and the other for t < 0, hence showing the irreversibility of the decaying process
Classical and quantum contents of solvable game theory on Hilbert space
International Nuclear Information System (INIS)
Cheon, Taksu; Tsutsui, Izumi
2006-01-01
A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation
Strong Convergence of Hybrid Algorithm for Asymptotically Nonexpansive Mappings in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Juguo Su
2012-01-01
Full Text Available The hybrid algorithms for constructing fixed points of nonlinear mappings have been studied extensively in recent years. The advantage of this methods is that one can prove strong convergence theorems while the traditional iteration methods just have weak convergence. In this paper, we propose two types of hybrid algorithm to find a common fixed point of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. One is cyclic Mann's iteration scheme, and the other is cyclic Halpern's iteration scheme. We prove the strong convergence theorems for both iteration schemes.
Directory of Open Access Journals (Sweden)
Mourad Kerboua
2014-12-01
Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.
Construction of rigged Hilbert spaces to describe resonances and virtual states
International Nuclear Information System (INIS)
Gadella, M.
1984-01-01
In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t>0 and the other for t<0, hence showing the irreversibility of the decaying process. (orig.)
On knottings in the physical Hilbert space of LQG as given by the EPRL model
International Nuclear Information System (INIS)
Bahr, Benjamin
2011-01-01
We consider the EPRL spin foam amplitude for arbitrary embedded two-complexes. Choosing a definition of the face- and edge amplitudes which lead to spin foam amplitudes invariant under trivial subdivisions, we investigate invariance properties of the amplitude under consistent deformations, which are deformations of the embedded two-complex where faces are allowed to pass through each other in a controlled way. Using this surprising invariance, we are able to show that the physical Hilbert space, as defined by the sum over all spin foams, contains no information about knotting classes of graphs anymore.
Recipes for stable linear embeddings from Hilbert spaces to R^m
Puy, Gilles; Davies, Michael; Gribonval, Remi
2017-01-01
We consider the problem of constructing a linear map from a Hilbert space H (possibly infinite dimensional) to Rm that satisfies a restricted isometry property (RIP) on an arbitrary signal model, i.e., a subset of H. We present a generic framework that handles a large class of low-dimensional subsets but also unstructured and structured linear maps. We provide a simple recipe to prove that a random linear map satisfies a general RIP with high probability. We also describe a generic technique ...
Recipes for stable linear embeddings from Hilbert spaces to R^m
Puy, Gilles; Davies, Mike; Gribonval, Rémi
2015-01-01
We consider the problem of constructing a linear map from a Hilbert space $\\mathcal{H}$ (possibly infinite dimensional) to $\\mathbb{R}^m$ that satisfies a restricted isometry property (RIP) on an arbitrary signal model $\\mathcal{S} \\subset \\mathcal{H}$. We present a generic framework that handles a large class of low-dimensional subsets but also unstructured and structured linear maps. We provide a simple recipe to prove that a random linear map satisfies a general RIP on $\\mathcal{S}$ with h...
An Hilbert space approach for a class of arbitrage free implied volatilities models
Brace, A.; Fabbri, G.; Goldys, B.
2007-01-01
We present an Hilbert space formulation for a set of implied volatility models introduced in \\cite{BraceGoldys01} in which the authors studied conditions for a family of European call options, varying the maturing time and the strike price $T$ an $K$, to be arbitrage free. The arbitrage free conditions give a system of stochastic PDEs for the evolution of the implied volatility surface ${\\hat\\sigma}_t(T,K)$. We will focus on the family obtained fixing a strike $K$ and varying $T$. In order to...
Non-Euclidean geometry and curvature two-dimensional spaces, volume 3
Cannon, James W
2017-01-01
This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, wh...
Geometry of lengths, areas, and volumes two-dimensional spaces, volume 1
Cannon, James W
2017-01-01
This is the first of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The first volume begins with length measurement as dominated by the Pythagorean Theorem (three proofs) with application to number theory; areas measured by slicing and scaling, where Archimedes uses the physical weights and balances to calculate spherical volume and is led to the invention of calculus; areas by cut and paste, leading to the Bolyai-Gerwien theorem on squaring polygons; areas by counting, leading to the theory of continued fractions, the efficient rational approximation of real numbers, and Minkowski's theorem on convex bodies; straight-edge and compass constructions, giving c...
Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki
2012-01-01
For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.
Directory of Open Access Journals (Sweden)
Kentaro Inoue
Full Text Available BACKGROUND: For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. RESULTS: We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. CONCLUSIONS: Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.
International Nuclear Information System (INIS)
Chen, G.S.; Christenson, J.M.
1985-01-01
In this paper, the authors present some initial results from an investigation of the application of a locally one-dimensional (LOD) finite difference method to the solution of the two-dimensional, two-group reactor kinetics equations. Although the LOD method is relatively well known, it apparently has not been previously applied to the space-time kinetics equations. In this investigation, the LOD results were benchmarked against similar computational results (using the same computing environment, the same programming structure, and the same sample problems) obtained by the TWIGL program. For all of the problems considered, the LOD method provided accurate results in one-half to one-eight of the time required by the TWIGL program
Probing the liquid and solid phases in closely spaced two-dimensional systems
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ding
2014-03-06
Gas, liquid and solid phases are the most common states of matter in our daily encountered 3-dimensional space. The school example is the H{sub 2}O molecule with its phases vapor, water and ice. Interestingly, electrons - with their point-like nature and negative charges - can also organize themselves under certain conditions to bear properties of these three common phases. At relatively high temperature, where Boltzmann statistics prevails, the ensemble of electrons without interactions can be treated as a gas of free particles. Cooling down the system, this electron gas condenses into a Fermi liquid. Finally, as a result of the repulsive Coulomb forces, electrons try to avoid each other by maximizing their distances. When the Coulomb interaction becomes sufficiently strong, a regular lattice emerges - an electron solid. The story however does not end here. Nature has much more in store for us. Electronic systems in fact exhibit a large variety of phases induced by spatial confinement, an external magnetic field, Coulomb interactions, or interactions involving degrees of freedom other than charge such as spin and valley. Here in this thesis, we restrict ourselves to the study of electrons in a 2-dimenisonal (2D) plane. Already in such a 2D electron system (2DES), several distinct states of matter appear: integer and fractional quantum Hall liquids, the 2D Wigner solid, stripe and bubble phases etc. In 2DES it is sufficient to sweep the perpendicular magnetic field to pass from one of these phases into another. Experimentally, many of these phases can be revealed by simply measuring the resistance. For a quantum Hall state, the longitudinal resistance vanishes, while the Hall resistance exhibits a plateau. The quantum Hall plateau is a manifestation of localization induced by the inevitable sample disorder. Coulomb interaction can also play an important role to localize charges. Even in the disorder-free case, electrons - more precisely quasi-particles in the
Probing the liquid and solid phases in closely spaced two-dimensional systems
International Nuclear Information System (INIS)
Zhang, Ding
2014-01-01
Gas, liquid and solid phases are the most common states of matter in our daily encountered 3-dimensional space. The school example is the H 2 O molecule with its phases vapor, water and ice. Interestingly, electrons - with their point-like nature and negative charges - can also organize themselves under certain conditions to bear properties of these three common phases. At relatively high temperature, where Boltzmann statistics prevails, the ensemble of electrons without interactions can be treated as a gas of free particles. Cooling down the system, this electron gas condenses into a Fermi liquid. Finally, as a result of the repulsive Coulomb forces, electrons try to avoid each other by maximizing their distances. When the Coulomb interaction becomes sufficiently strong, a regular lattice emerges - an electron solid. The story however does not end here. Nature has much more in store for us. Electronic systems in fact exhibit a large variety of phases induced by spatial confinement, an external magnetic field, Coulomb interactions, or interactions involving degrees of freedom other than charge such as spin and valley. Here in this thesis, we restrict ourselves to the study of electrons in a 2-dimenisonal (2D) plane. Already in such a 2D electron system (2DES), several distinct states of matter appear: integer and fractional quantum Hall liquids, the 2D Wigner solid, stripe and bubble phases etc. In 2DES it is sufficient to sweep the perpendicular magnetic field to pass from one of these phases into another. Experimentally, many of these phases can be revealed by simply measuring the resistance. For a quantum Hall state, the longitudinal resistance vanishes, while the Hall resistance exhibits a plateau. The quantum Hall plateau is a manifestation of localization induced by the inevitable sample disorder. Coulomb interaction can also play an important role to localize charges. Even in the disorder-free case, electrons - more precisely quasi-particles in the partially
International Nuclear Information System (INIS)
Roberds, R.M.
1975-01-01
A space-angle synthesis (SAS) method has been developed for treating the steady-state, two-dimensional transport of neutrons and gamma rays from a point source of simulated nuclear weapon radiation in air. The method was validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a state-of-the-art, discrete-ordinates code. In the SAS method, the energy dependence of the Boltzmann transport equation was treated in the standard multigroup manner. The angular dependence was treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals which analytically integrated the transport equation over all angles. The weighted-residual approach was analogous to the conventional spherical-harmonics (P/sub N/) method with the exception that the tailored expansion allowed for more rapid convergence than a spherical-harmonics P 1 expansion and resulted in a greater degree of accuracy. The trial functions used in the expansion were odd and even combinations of selected trial solutions, the trial solutions being shaped ellipsoids which approximated the angular distribution of the neutron flux in one-dimensional space. The parameters which described the shape of the ellipsoid varied with energy group and the spatial medium, only, and were obtained from a one-dimensional discrete-ordinates calculation. Thus, approximate transport solutions were made available for all two-dimensional problems of a certain class by using tabulated parameters obtained from a single, one-dimensional calculation
The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory
International Nuclear Information System (INIS)
Ding You; Rovelli, Carlo
2010-01-01
A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit). We also generalize the definition of the volume operator in the spin-foam model to the Lorentzian signature and show that it matches the one of loop quantum gravity, as in the Euclidean case.
The Schrödinger–Robinson inequality from stochastic analysis on a complex Hilbert space
International Nuclear Information System (INIS)
Khrennikov, Andrei
2013-01-01
We explored the stochastic analysis on a complex Hilbert space to show that one of the cornerstones of quantum mechanics (QM), namely Heisenberg's uncertainty relation, can be derived in the classical probabilistic framework. We created a new mathematical representation of quantum averages: as averages with respect to classical random fields. The existence of a classical stochastic model matching with Heisenberg's uncertainty relation makes the connection between classical and quantum probabilistic models essentially closer. In real physical situations, random fields are valued in the L 2 -space. Hence, although we model QM and not QFT, the classical systems under consideration have an infinite number of degrees of freedom. And in our modeling, infinite-dimensional stochastic analysis is the basic mathematical tool. (comment)
Fano, Guido
2017-01-01
This book is designed to make accessible to nonspecialists the still evolving concepts of quantum mechanics and the terminology in which these are expressed. The opening chapters summarize elementary concepts of twentieth century quantum mechanics and describe the mathematical methods employed in the field, with clear explanation of, for example, Hilbert space, complex variables, complex vector spaces and Dirac notation, and the Heisenberg uncertainty principle. After detailed discussion of the Schrödinger equation, subsequent chapters focus on isotropic vectors, used to construct spinors, and on conceptual problems associated with measurement, superposition, and decoherence in quantum systems. Here, due attention is paid to Bell’s inequality and the possible existence of hidden variables. Finally, progression toward quantum computation is examined in detail: if quantum computers can be made practicable, enormous enhancements in computing power, artificial intelligence, and secure communication will result...
International Nuclear Information System (INIS)
Khrennikov, A.
2005-01-01
We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)
Energy Technology Data Exchange (ETDEWEB)
Zhang, Z Y [College of Metrological Technology and Engineering, China Jiliang University, Hangzhou (China); Luo, J X [Zhejiang Radio Factory, Zhejiang (China)
2006-10-15
In order to provide a design method of the capacitive displacement transducer and to improve its measuring performance it is desperately needed to offer a refined mathematic model of the transducer of mulitiphase drive and phase-modulated. On the basis of fully considering its characteristic of digital signals, first it is found that their actual waveforms and space-time characteristics could be tersely represented by matrixes [u{sub ij}], [c{sub j}] and [v{sub i}], and corresponding matrix elements u{sub ij}, c{sub j} and v{sub i} through deeply analyzing space-time and quantum characteristics of their mulitiphase driving signals U{sub i}(t), capacitive coupling signals C{sub j}(x) and output signal V(t). and space-time transform function possessed by U(x,t) itself. Then the basic expression of the relations of the transducer is derived, which is expressed by matrixes, thereby the characteristics of space-time transform and phase modulation are brought to light. The demodulation process and demodulated waveforms and its characteristics in the transducer are also expressed by demodulated matrixes [b{sub ij}]. Finally, the reason for the principle and periodic error produced in the transducer is revealed by sampling matrix [s{sub ij}]. Thus the full process of the produce of driving signals, modulation, demodulation and space-time transform that happen in the transducer, also waveforms and characteristics of various signals in the process are concisely expressed by two-dimensional space-time matrixes. Experimental results indicate that the use of the mathematical model enables its resolving power to reach 1 {mu}m, and the mathematical model proposed is an all-things-considered model to express processes that happen in the transducer.
Parallel magnetic resonance imaging as approximation in a reproducing kernel Hilbert space
International Nuclear Information System (INIS)
Athalye, Vivek; Lustig, Michael; Martin Uecker
2015-01-01
In magnetic resonance imaging data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. To understand and design k-space sampling patterns, a theoretical framework is needed to analyze how well arbitrary sampling patterns reconstruct unsampled k-space using receive coil information. As shown here, reconstruction from samples at arbitrary locations can be understood as approximation of vector-valued functions from the acquired samples and formulated using a reproducing kernel Hilbert space with a matrix-valued kernel defined by the spatial sensitivities of the receive coils. This establishes a formal connection between approximation theory and parallel imaging. Theoretical tools from approximation theory can then be used to understand reconstruction in k-space and to extend the analysis of the effects of samples selection beyond the traditional image-domain g-factor noise analysis to both noise amplification and approximation errors in k-space. This is demonstrated with numerical examples. (paper)
3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries
DEFF Research Database (Denmark)
Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah
2014-01-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA...
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Regularization in Hilbert space under unbounded operators and general source conditions
International Nuclear Information System (INIS)
Hofmann, Bernd; Mathé, Peter; Von Weizsäcker, Heinrich
2009-01-01
The authors study ill-posed equations with unbounded operators in Hilbert space. This setup has important applications, but only a few theoretical studies are available. First, the question is addressed and answered whether every element satisfies some general source condition with respect to a given self-adjoint unbounded operator. This generalizes a previous result from Mathé and Hofmann (2008 Inverse Problems 24 015009). The analysis then proceeds to error bounds for regularization, emphasizing some specific points for regularization under unbounded operators. The study finally reviews two examples within the light of the present study, as these are fractional differentiation and some Cauchy problems for the Helmholtz equation, both studied previously and in more detail by U Tautenhahn and co-authors
Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Cho Yeol
2011-01-01
Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
Energy Technology Data Exchange (ETDEWEB)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at [University of Innsbruck, Department of Mathematics (Austria); Tuffaha, Amjad, E-mail: atufaha@aus.edu [American University of Sharjah, Department of Mathematics (United Arab Emirates)
2017-06-15
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solution of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.
Blanchard, Philippe
2015-01-01
The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...
International Nuclear Information System (INIS)
Sumadi A H A; H, Zainuddin
2014-01-01
Using Isham's group-theoretic quantization scheme, we construct the canonical groups of the systems on the two-dimensional sphere and one-dimensional complex projective space, which are homeomorphic. In the first case, we take SO(3) as the natural canonical Lie group of rotations of the two-sphere and find all the possible Hamiltonian vector fields, and followed by verifying the commutator and Poisson bracket algebra correspondences with the Lie algebra of the group. In the second case, the same technique is resumed to define the Lie group, in this case SU (2), of CP'.We show that one can simply use a coordinate transformation from S 2 to CP 1 to obtain all the Hamiltonian vector fields of CP 1 . We explicitly show that the Lie algebra structures of both canonical groups are locally homomorphic. On the other hand, globally their corresponding canonical groups are acting on different geometries, the latter of which is almost complex. Thus the canonical group for CP 1 is the double-covering group of SO(3), namely SU(2). The relevance of the proposed formalism is to understand the idea of CP 1 as a space of where the qubit lives which is known as a Bloch sphere
International Nuclear Information System (INIS)
Chen Lijen; Lefebvre, Bertrand; Torbert, Roy B.; Daughton, William S.
2011-01-01
Based on two-dimensional fully kinetic simulations that resolve the electron diffusion layer in undriven collisionless magnetic reconnection with zero guide field, this paper reports the existence and evolution of an inversion layer of bipolar electric fields, its corresponding phase-space structure (an electron-hole layer), and the implication to collisionless dissipation. The inversion electric field layer is embedded in the layer of bipolar Hall electric field and extends throughout the entire length of the electron diffusion layer. The electron phase-space hole structure spontaneously arises during the explosive growth phase when there exist significant inflows into the reconnection layer, and electrons perform meandering orbits across the layer while being cyclotron-turned toward the outflow directions. The cyclotron turning of meandering electrons by the magnetic field normal to the reconnection layer is shown to be a primary factor limiting the current density in the region where the reconnection electric field is balanced by the gradient (along the current sheet normal) of the off-diagonal electron pressure-tensor.
Cheng, Rongjun; Sun, Fengxin; Wei, Qi; Wang, Jufeng
2018-02-01
Space-fractional advection-dispersion equation (SFADE) can describe particle transport in a variety of fields more accurately than the classical models of integer-order derivative. Because of nonlocal property of integro-differential operator of space-fractional derivative, it is very challenging to deal with fractional model, and few have been reported in the literature. In this paper, a numerical analysis of the two-dimensional SFADE is carried out by the element-free Galerkin (EFG) method. The trial functions for the SFADE are constructed by the moving least-square (MLS) approximation. By the Galerkin weak form, the energy functional is formulated. Employing the energy functional minimization procedure, the final algebraic equations system is obtained. The Riemann-Liouville operator is discretized by the Grünwald formula. With center difference method, EFG method and Grünwald formula, the fully discrete approximation schemes for SFADE are established. Comparing with exact results and available results by other well-known methods, the computed approximate solutions are presented in the format of tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error is computed and the proposed method has reasonable convergence rates in spatial and temporal discretizations.
International Nuclear Information System (INIS)
Gessner, W.; Ernst, V.
1980-01-01
The indefinite metric space O/sub M/ of the covariant form of the quantized Maxwell field M is analyzed in some detail. S/sub M/ contains not only the pre-Hilbert space X 0 of states of transverse photons which occurs in the Gupta--Bleuler formalism of the free M, but a whole rosette of continuously many, isomorphic, complete, pre-Hilbert spaces L/sup q/ disjunct up to the zero element o of S/sub M/. The L/sup q/ are the maximal subspaces of S/sub M/ which allow the usual statistical interpretation. Each L/sup q/ corresponds uniquely to one square integrable, spatial distribution j/sup o/(x) of the total charge Q=0. If M is in any state from L/sup q/, the bare charge j 0 (x) appears to be inseparably dressed by the quantum equivalent of its proper, classical Coulomb field E(x). The vacuum occurs only in the state space L 0 of the free Maxwell field. Each L/sup q/ contains a secondary rosette of continuously many, up to o disjunct, isomorphic Hilbert spaces H/sub g//sup q/ related to different electromagnetic gauges. The space H/sub o//sup q/, which corresponds to the Coulomb gauge within the Lorentz gauge, plays a physically distinguished role in that only it leads to the usual concept of energy. If M is in any state from H/sub g//sup q/, the bare 4-current j 0 (x), j(x), where j(x) is any square integrable, transverse current density in space, is endowed with its proper 4-potential which depends on the chosen gauge, and with its proper, gauge independent, Coulomb--Oersted field E(x), B(x). However, these fields exist only in the sense of quantum mechanical expectation values equipped with the corresponding field fluctuations. So they are basically different from classical electromagnetic fields
Virasoro algebra with central charge c=1 on the horizon of a two-dimensional-Rindler space-time
International Nuclear Information System (INIS)
Moretti, Valter; Pinamonti, Nicola
2004-01-01
Using the holographic machinery built up in a previous work, we show that the hidden SL(2,R) symmetry of a scalar quantum field propagating in a Rindler space-time admits an enlargement in terms of a unitary positive-energy representation of Virasoro algebra defined in the Fock representation. That representation has central charge c=1. The Virasoro algebra of operators gets a manifest geometrical meaning if referring to the holographically associated quantum field theory on the horizon: It is nothing but a representation of the algebra of vector fields defined on the horizon equipped with a point at infinity. All that happens provided the Virasoro ground energy hcoloneμ 2 /2 vanishes and, in that case, the Rindler Hamiltonian is associated with a certain Virasoro generator. If a suitable regularization procedure is employed, for h=1/2, the ground state of that generator seems to correspond to a thermal state when examined in the Rindler wedge, taking the expectation value with respect to Rindler time. Finally, under Wick rotation in Rindler time, the pair of quantum field theories which are built up on the future and past horizon defines a proper two-dimensional conformal quantum field theory on a cylinder
Quantization of systems with temporally varying discretization. I. Evolving Hilbert spaces
International Nuclear Information System (INIS)
Höhn, Philipp A.
2014-01-01
A temporally varying discretization often features in discrete gravitational systems and appears in lattice field theory models subject to a coarse graining or refining dynamics. To better understand such discretization changing dynamics in the quantum theory, an according formalism for constrained variational discrete systems is constructed. While this paper focuses on global evolution moves and, for simplicity, restricts to flat configuration spaces R N , a Paper II [P. A. Höhn, “Quantization of systems with temporally varying discretization. II. Local evolution moves,” J. Math. Phys., e-print http://arxiv.org/abs/arXiv:1401.7731 [gr-qc].] discusses local evolution moves. In order to link the covariant and canonical picture, the dynamics of the quantum states is generated by propagators which satisfy the canonical constraints and are constructed using the action and group averaging projectors. This projector formalism offers a systematic method for tracing and regularizing divergences in the resulting state sums. Non-trivial coarse graining evolution moves lead to non-unitary, and thus irreversible, projections of physical Hilbert spaces and Dirac observables such that these concepts become evolution move dependent on temporally varying discretizations. The formalism is illustrated in a toy model mimicking a “creation from nothing.” Subtleties arising when applying such a formalism to quantum gravity models are discussed
Directory of Open Access Journals (Sweden)
Ehab Malkawi
2014-01-01
Full Text Available The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.
International Nuclear Information System (INIS)
Bach, A.
1981-01-01
A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)
Directory of Open Access Journals (Sweden)
Farshid Mirzaee
2014-06-01
Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.
International Nuclear Information System (INIS)
Sokolov, S.N.; Tret'yak, V.I.
1985-01-01
The Lagrangian relativistic theory in the two-dimensional space-time in the front form of dynamics is formulated and its connections with the predictive mechanics, with the Hamiltonian description, and with the Fokker-type action theory are established. The relations are found in a closed form without using formal expansions. The existence of mathematical limitations on a magnitude of Lagrangians of two-particle interactions is shown
International Nuclear Information System (INIS)
Ovsiyu, E.M.
2012-01-01
Exact solutions of the Schrodinger equation in the two-dimensional Riemannian space of negative curvature, the hyperbolic Lobachevsky plane, in the presence of an external magnetic field, which is an analog of a uniform magnetic field in the Minkowski space, are constructed. The description uses the cylindrical and quasi-Cartesian coordinates. The quasi-Cartesian coordinates determine the Poincare half-plane. In the both coordinate systems, the Schrodinger equation is solved exactly, the wave functions are constructed. A generalized formula for energy levels is found, which describes the quantized motion of a particle in a magnetic field in the Lobachevsky plane. (authors)
Directory of Open Access Journals (Sweden)
Zhou Yinying
2014-01-01
Full Text Available We introduce a hybrid iterative scheme for finding a common element of the set of common fixed points for a family of infinitely nonexpansive mappings, the set of solutions of the varitional inequality problem and the equilibrium problem in Hilbert space. Under suitable conditions, some strong convergence theorems are obtained. Our results improve and extend the corresponding results in (Chang et al. (2009, Min and Chang (2012, Plubtieng and Punpaeng (2007, S. Takahashi and W. Takahashi (2007, Tada and Takahashi (2007, Gang and Changsong (2009, Ying (2013, Y. Yao and J. C. Yao (2007, and Yong-Cho and Kang (2012.
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
International Nuclear Information System (INIS)
Gallego-Castillo, Cristobal; Bessa, Ricardo; Cavalcante, Laura; Lopez-Garcia, Oscar
2016-01-01
Wind power probabilistic forecast is being used as input in several decision-making problems, such as stochastic unit commitment, operating reserve setting and electricity market bidding. This work introduces a new on-line quantile regression model based on the Reproducing Kernel Hilbert Space (RKHS) framework. Its application to the field of wind power forecasting involves a discussion on the choice of the bias term of the quantile models, and the consideration of the operational framework in order to mimic real conditions. Benchmark against linear and splines quantile regression models was performed for a real case study during a 18 months period. Model parameter selection was based on k-fold crossvalidation. Results showed a noticeable improvement in terms of calibration, a key criterion for the wind power industry. Modest improvements in terms of Continuous Ranked Probability Score (CRPS) were also observed for prediction horizons between 6 and 20 h ahead. - Highlights: • New online quantile regression model based on the Reproducing Kernel Hilbert Space. • First application to operational probabilistic wind power forecasting. • Modest improvements of CRPS for prediction horizons between 6 and 20 h ahead. • Noticeable improvements in terms of Calibration due to online learning.
Two-dimensional T2 distribution mapping in rock core plugs with optimal k-space sampling.
Xiao, Dan; Balcom, Bruce J
2012-07-01
Spin-echo single point imaging has been employed for 1D T(2) distribution mapping, but a simple extension to 2D is challenging since the time increase is n fold, where n is the number of pixels in the second dimension. Nevertheless 2D T(2) mapping in fluid saturated rock core plugs is highly desirable because the bedding plane structure in rocks often results in different pore properties within the sample. The acquisition time can be improved by undersampling k-space. The cylindrical shape of rock core plugs yields well defined intensity distributions in k-space that may be efficiently determined by new k-space sampling patterns that are developed in this work. These patterns acquire 22.2% and 11.7% of the k-space data points. Companion density images may be employed, in a keyhole imaging sense, to improve image quality. T(2) weighted images are fit to extract T(2) distributions, pixel by pixel, employing an inverse Laplace transform. Images reconstructed with compressed sensing, with similar acceleration factors, are also presented. The results show that restricted k-space sampling, in this application, provides high quality results. Copyright © 2012 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Arik, M.
1991-01-01
It is shown that the differential calculus of Wess and Zumino for the quantum hyperplane is intimately related to the q-difference operator acting on the n-dimensional complex space C n . An explicit transformation relates the variables and the q-difference operators on C n to the variables and the quantum derivatives on the quantum hyperplane. For real values of the quantum parameter q, the consideration of the variables and the derivatives as hermitean conjugates yields a quantum deformation of the Bargmann-Segal Hilbert space of analytic functions on C n . Physically such a system can be interpreted as the quantum deformation of the n dimensional harmonic oscillator invariant under the unitary quantum group U q (n) with energy eigenvalues proportional to the basic integers. Finally, a construction of the variables and quantum derivatives on the quantum hyperplane in terms of variables and ordinary derivatives on C n is presented. (orig.)
Incoherent control and entanglement for two-dimensional coupled systems
International Nuclear Information System (INIS)
Romano, Raffaele; D'Alessandro, Domenico
2006-01-01
We investigate accessibility and controllability of a quantum system S coupled to a quantum probe P, both described by two-dimensional Hilbert spaces, under the hypothesis that the external control affects only P. In this context accessibility and controllability properties describe to what extent it is possible to drive the state of the system S by acting on P and using the interaction between the two systems. We give necessary and sufficient conditions for these properties and we discuss the relation with the entangling capability of the interaction between S and P. In particular, we show that controllability can be expressed in terms of the SWAP and √(SWAP) operators acting on the composite system
Yuji, NAKAWAKI; Azuma, TANAKA; Kazuhiko, OZAKI; Division of Physics and Mathematics, Faculty of Engineering Setsunan University; Junior College of Osaka Institute of Technology; Faculty of General Education, Osaka Institute of Technology
1994-01-01
Gauge Equivalence of the A_3=0 (axial) gauge to the Coulomb gauge is directly verified in QED. For that purpose a pair of conjugate zero-norm fields are introduced. This enables us to construct a canonical formulation in the axial gauge embedded in the indefinite metric Hilbert space in such a way that the Feynman rules are not altered. In the indefinite metric Hilbert space we can implement a gauge transformation, which otherwise has to be carried out only by hand, as main parts of a canonic...
Inoue, Yuuji; Yoneyama, Masami; Nakamura, Masanobu; Takemura, Atsushi
2018-06-01
The two-dimensional Cartesian turbo spin-echo (TSE) sequence is widely used in routine clinical studies, but it is sensitive to respiratory motion. We investigated the k-space orders in Cartesian TSE that can effectively reduce motion artifacts. The purpose of this study was to demonstrate the relationship between k-space order and degree of motion artifacts using a moving phantom. We compared the degree of motion artifacts between linear and asymmetric k-space orders. The actual spacing of ghost artifacts in the asymmetric order was doubled compared with that in the linear order in the free-breathing situation. The asymmetric order clearly showed less sensitivity to incomplete breath-hold at the latter half of the imaging period. Because of the actual number of partitions of the k-space and the temporal filling order, the asymmetric k-space order of Cartesian TSE was superior to the linear k-space order for reduction of ghosting motion artifacts.
Nakamura, M; Kitayama, K
1998-05-10
Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance.
DOT-IV two-dimensional discrete ordinates transport code with space-dependent mesh and quadrature
International Nuclear Information System (INIS)
Rhoades, W.A.; Simpson, D.B.; Childs, R.L.; Engle, W.W. Jr.
1979-01-01
DOT IV is designed to allow very large problems to be solved on a wide range of computers and memory arrangements. New flexibility in both space-mesh and directional-quadrature specification is allowed. For example, the radial mesh in an R-Z problem can vary with axial position. The directional quadrature can vary with both space and energy group. Several features improve performance on both deep penetration and criticality problems. The program has been checked and used extensively on several types of computers. All of the features have been insured operable except the following two, which must not be used: criticality searches and P/sub L/ variable by group or material. Diffusion theory problems must not use internal or external boundary sources, variable mesh, or variable quadrature. A diffusion iteration cannot produce internal boundary source output or ''angular flux tape.'' The P 1 module is very limited. The special geometries, INGEOM greater than or equal to 10, have not been completely checked and are not guaranteed. 7 figures, 1 table
Leonhardt, Juri; Teutenberg, Thorsten; Buschmann, Greta; Gassner, Oliver; Schmidt, Torsten C
2016-11-01
For the identification of the optimal column combinations, a comparative orthogonality study of single columns and columns coupled in series for the first dimension of a microscale two-dimensional liquid chromatographic approach was performed. In total, eight columns or column combinations were chosen. For the assessment of the optimal column combination, the orthogonality value as well as the peak distributions across the first and second dimension was used. In total, three different methods of orthogonality calculation, namely the Convex Hull, Bin Counting, and Asterisk methods, were compared. Unfortunately, the first two methods do not provide any information of peak distribution. The third method provides this important information, but is not optimal when only a limited number of components are used for method development. Therefore, a new concept for peak distribution assessment across the separation space of two-dimensional chromatographic systems and clustering detection was developed. It could be shown that the Bin Counting method in combination with additionally calculated histograms for the respective dimensions is well suited for the evaluation of orthogonality and peak clustering. The newly developed method could be used generally in the assessment of 2D separations. Graphical Abstract ᅟ.
On the exact spectra of two electrons confined by two-dimensional quantum dots
International Nuclear Information System (INIS)
Soldatov, A.V.; Bogolubov Jr, N.N.
2005-12-01
Applicability of the method of intermediate problems to investigation of the energy spectrum and eigenstates of a two- electron two-dimensional quantum dot (QD) formed by a parabolic confining potential is discussed. It is argued that the method of intermediate problems, which provides convergent improvable lower bound estimates for eigenvalues of linear half-bound Hermitian operators in Hilbert space, can be fused with the classical Rayleigh-Ritz variational method and stochastic variational method thus providing an efficient tool of verification of the results obtained so far by various analytical and numerical methods being of current usage for studies of quantum dot models. (author)
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
Emergence of geometry: A two-dimensional toy model
International Nuclear Information System (INIS)
Alfaro, Jorge; Espriu, Domene; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral Lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D)xGL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zweibein is generated from a topological theory without any preexisting metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several nonstandard features this simple toy model appears to be renormalizable and at long distances is described by an effective Lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared regulator. The low-energy expansion is valid for momenta k>M, i.e. for supra-horizon scales. We briefly discuss a possible implementation of a similar mechanism in four dimensions.
The emergence of geometry: a two-dimensional toy model
Alfaro, Jorge; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
International Nuclear Information System (INIS)
Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut
2014-01-01
To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.
Energy Technology Data Exchange (ETDEWEB)
Ucar, Murat; Guryildirim, Melike; Tokgoz, Nil; Kilic, Koray; Borcek, Alp; Oner, Yusuf; Akkan, Koray; Tali, Turgut [School of Medicine, Gazi University, Ankara (Turkey)
2014-12-15
To compare the accuracy of diagnosing aqueductal patency and image quality between high spatial resolution three-dimensional (3D) high-sampling-efficiency technique (sampling perfection with application optimized contrast using different flip angle evolutions [SPACE]) and T2-weighted (T2W) two-dimensional (2D) turbo spin echo (TSE) at 3-T in patients with hydrocephalus. This retrospective study included 99 patients diagnosed with hydrocephalus. T2W 3D-SPACE was added to the routine sequences which consisted of T2W 2D-TSE, 3D-constructive interference steady state (CISS), and cine phase-contrast MRI (PC-MRI). Two radiologists evaluated independently the patency of cerebral aqueduct and image quality on the T2W 2D-TSE and T2W 3D-SPACE. PC-MRI and 3D-CISS were used as the reference for aqueductal patency and image quality, respectively. Inter-observer agreement was calculated using kappa statistics. The evaluation of the aqueductal patency by T2W 3D-SPACE and T2W 2D-TSE were in agreement with PC-MRI in 100% (99/99; sensitivity, 100% [83/83]; specificity, 100% [16/16]) and 83.8% (83/99; sensitivity, 100% [67/83]; specificity, 100% [16/16]), respectively (p < 0.001). No significant difference in image quality between T2W 2D-TSE and T2W 3D-SPACE (p = 0.056) occurred. The kappa values for inter-observer agreement were 0.714 for T2W 2D-TSE and 0.899 for T2W 3D-SPACE. Three-dimensional-SPACE is superior to 2D-TSE for the evaluation of aqueductal patency in hydrocephalus. T2W 3D-SPACE may hold promise as a highly accurate alternative treatment to PC-MRI for the physiological and morphological evaluation of aqueductal patency.
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
Directory of Open Access Journals (Sweden)
Kan Li
2018-04-01
Full Text Available This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM speech processing as well as neuromorphic implementations based on spiking neural network (SNN, yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR regime.
Li, Kan; Príncipe, José C
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.
Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces
International Nuclear Information System (INIS)
Khrennikov, Andrei
2010-01-01
One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical random fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.
AUTHOR|(CDS)2080070; Hebbeker, Thomas
2017-07-07
The discovery of a new particle consistent with the standard model Higgs boson at the Large Hadron Collider in 2012 completed the standard model of particle physics (SM). Despite its remarkable success many questions remain unexplained. Numerous theoretical models, predicting the existence of new heavy particles, provide answers to these unresolved questions and are tested at high energy experiments such as the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). In this thesis a model independent search method for new particles in two-dimensional mass space in events with missing transverse energy is presented using 19.7 $\\mbox{fb}^{-1}$ of proton-proton collision data recorded by the CMS detector at a centre of mass energy $\\sqrt{s}$ = 8 TeV at the LHC. The analysis searches for signatures of pair-produced new heavy particles $\\mbox{T}^\\prime$ which decay further into unknown heavy particles $\\mbox{W}^\\prime$ and SM quarks $q$ ($\\mbox{T}^\\prime\\overline{\\mbox{T}^\\prime} \\rightarrow {...
Coherent states on Hilbert modules
International Nuclear Information System (INIS)
Ali, S Twareque; Bhattacharyya, T; Roy, S S
2011-01-01
We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.
International Nuclear Information System (INIS)
Hermann, M.R.; Langhoff, P.W.
1983-01-01
Explicit Hilbert-space techniques are reported for construction of the discrete and continuum Schroedinger states required in atomic and molecular photoexcitation and/or photoionization studies. These developments extend and clarify previously described moment-theory methods for determinations of photoabsorption cross sections from discrete basis-set calculations to include explicit construction of underlying wave functions. The appropriate Stieltjes-Tchebycheff excitation and ionization functions of nth order are defined as Radau-type eigenstates of an appropriate operator in an n-term Cauchy-Lanczos basis. The energies of these states are the Radau quadrature points of the photoabsorption cross section, and their (reciprocal) norms provide the corresponding quadrature weights. Although finite-order Stieltjes-Tchebycheff functions are L 2 integrable, and do not have asymptotic spatial tails in the continuous spectrum, the Radau quadrature weights nevertheless provide information for normalization in the conventional Dirac delta-function sense. Since one Radau point can be placed anywhere in the spectrum, appropriately normalized convergent approximations to any of the discrete or continuum Schroedinger states are obtained from the development. Connections with matrix partitioning methods are established, demonstrating that nth-order Stieltjes-Tchebycheff functions are optical-potential solutions of the matrix Schroedinger equation in the full Cauchy-Lanczos basis
Potoček, Václav; Miatto, Filippo M; Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Liapis, Andreas C; Oi, Daniel K L; Boyd, Robert W; Jeffers, John
2015-10-16
In 1924 David Hilbert conceived a paradoxical tale involving a hotel with an infinite number of rooms to illustrate some aspects of the mathematical notion of "infinity." In continuous-variable quantum mechanics we routinely make use of infinite state spaces: here we show that such a theoretical apparatus can accommodate an analog of Hilbert's hotel paradox. We devise a protocol that, mimicking what happens to the guests of the hotel, maps the amplitudes of an infinite eigenbasis to twice their original quantum number in a coherent and deterministic manner, producing infinitely many unoccupied levels in the process. We demonstrate the feasibility of the protocol by experimentally realizing it on the orbital angular momentum of a paraxial field. This new non-Gaussian operation may be exploited, for example, for enhancing the sensitivity of NOON states, for increasing the capacity of a channel, or for multiplexing multiple channels into a single one.
International Nuclear Information System (INIS)
Schroer, Bert; FU-Berlin
2012-02-01
Massive quantum matter of prescribed spin permits infinitely many possibilities of covariantization in terms of spinorial (undotted/dotted) pointlike fields, whereas massless nite helicity representations lead to large gap in this spinorial spectrum which for s=1 excludes vector potentials. Since the nonexistence of such pointlike generators is the result of a deep structural clash between modular localization and the Hilbert space setting of QT, there are two ways out: gauge theory which sacrifices the Hilbert space and keeps the pointlike formalism and the use of string like potentials which allows to preserve the Hilbert space. The latter setting contains also string-localized charge-carrying operators whereas the gauge theoretic formulation is limited to point-like generated observables. This description also gives a much better insight into the Higgs mechanism which leads to a revival of the more physical 'Schwinger-Higgs' screening idea. The new formalism is not limited to m=0, s=1, it leads to renormalizable inter- actions in the sense of power-counting for all s in massless representations. The existence of string like vector potentials is preempted by the Aharonov-Bohm effect in QFT; it is well-known that the use of pointlike vector potentials in Stokes theorem would with lead to wrong results. Their use in Maxwell's equations is known to lead to zero Maxwell charge. The role of string-localization in the problem behind the observed invisibility and confinement of gluons and quarks leads to new questions and problems. (author)
Variational Inequalities in Hilbert Spaces with Measures and Optimal Stopping Problems
International Nuclear Information System (INIS)
Barbu, Viorel; Marinelli, Carlo
2008-01-01
We study the existence theory for parabolic variational inequalities in weighted L 2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L 2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coefficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs
Truncated Hilbert Space Approach for the 1+1D phi^4 Theory
CERN. Geneva
2016-01-01
(an informal seminar, not a regular string seminar) We used the massive analogue of the truncated conformal space approach to study the broken phase of the 1+1 dimensional scalar phi^4 model in finite volume, similarly to the work by S. Rychkov and L. Vitale. In our work, the finite size spectrum was determined numerically using an effective eigensolver routine, which was followed by a simple extrapolation in the cutoff energy. We analyzed both the periodic and antiperiodic sectors. The results were compared with semiclassical and Bethe-Yang results as well as perturbation theory. We obtained the coupling dependence of the infinite volume breather and kink masses for moderate couplings. The results fit well with semiclassics and perturbative estimations, and confirm the conjecture of Mussardo that at most two neutral excitations can exist in the spectrum. We believe that improving our method with the renormalization procedure of Rychkov et al. enables to measure further interesting quantities such as decay ra...
N-body quantum scattering theory in two Hilbert spaces. VII. Real-energy limits
International Nuclear Information System (INIS)
Chandler, C.; Gibson, A.G.
1994-01-01
A study is made of the real-energy limits of approximate solutions of the Chandler--Gibson equations, as well as the real-energy limits of the approximate equations themselves. It is proved that (1) the approximate time-independent transition operator T π (z) and an auxiliary operator M π (z), when restricted to finite energy intervals, are trace class operators and have limits in trace norm for almost all values of the real energy; (2) the basic dynamical equation that determines the operator M π (z), when restricted to the space of trace class operators, has a real-energy limit in trace norm for almost all values of the real energy; (3) the real-energy limit of M π (z) is a solution of the real-energy limit equation; (4) the diagonal (on-shell) elements of the kernels of the real-energy limit of T π (z) and of all solutions of the real-energy limit equation exactly equal the on-shell transition operator, implying that the real-energy limit equation uniquely determines the physical transition amplitude; and (5) a sequence of approximate on-shell transition operators converges strongly to the exact on-shell transition operator. These mathematically rigorous results are believed to be the most general of their type for nonrelativistic N-body quantum scattering theories
Directory of Open Access Journals (Sweden)
Ali Hadi Abdulwahid
2016-12-01
Full Text Available Nowadays, the use of distributed generation (DG has increased because of benefits such as increased reliability, reduced losses, improvement in the line capacity, and less environmental pollution. The protection of microgrids, which consist of generation sources, is one of the most crucial concerns of basic distribution operators. One of the key issues in this field is the protection of microgrids against permanent and temporary failures by improving the safety and reliability of the network. The traditional method has a number of disadvantages. The reliability and stability of a power system in a microgrid depend to a great extent on the efficiency of the protection scheme. The application of Artificial Intelligence approaches was introduced recently in the protection of distribution networks. The fault detection method depends on differential relay based on Hilbert Space-Based Power (HSBP theory to achieve fastest primary protection. It is backed up by a total harmonic distortion (THD detection method that takes over in case of a failure in the primary method. The backup protection would be completely independent of the main protection. This is rarely attained in practice. This paper proposes a new algorithm to improve protection performance by adaptive network-based fuzzy inference system (ANFIS. The protection can be obtained in a novel way based on this theory. An advantage of this algorithm is that the protection system operates in fewer than two cycles after the occurrence of the fault. Another advantage is that the error detection is not dependent on the selection of threshold values, and all types of internal fault can identify and show that the algorithm operates correctly for all types of faults while preventing unwanted tripping, even if the data were distorted by current transformer (CT saturation or by data mismatches. The simulation results show that the proposed circuit can identify the faulty phase in the microgrid quickly and
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
International Nuclear Information System (INIS)
Tóth, László; Matsuda, Hiroyuki; Matsui, Fumihiko; Goto, Kentaro; Daimon, Hiroshi
2012-01-01
We propose a new 1π sr Wide Acceptance Angle Electrostatic Lens (WAAEL), which works as a photoemission electron microscope (PEEM), a highly sensitive display-type electron energy and two-dimensional angular distribution analyzer. It can display two-dimensional angular distributions of charged particles within the acceptance angle of ±60° that is much larger than the largest acceptance angle range so far and comparable to the display-type spherical mirror analyzer developed by Daimon et al. . It has good focusing capabilities with 5-times magnification and 27(4) μm lateral-resolution. The relative energy resolution is typically from 2 to 5×10 -3 depending on the diameter of energy aperture and the emission area on the sample. Although, the lateral resolution of the presented lens is far from those are available nowadays, but this is the first working model that can form images using charged particles collected from 1π sr wide acceptance angle. The realization of such lens system is one of the first possible steps towards reaching the field of imaging type atomic resolution electron microscopy Feynman et al. Here some preliminary results are shown.
International Nuclear Information System (INIS)
Loubenets, Elena R.
2015-01-01
We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence of this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Compact Hilbert Curve Index Algorithm Based on Gray Code
Directory of Open Access Journals (Sweden)
CAO Xuefeng
2016-12-01
Full Text Available Hilbert curve has best clustering in various kinds of space filling curves, and has been used as an important tools in discrete global grid spatial index design field. But there are lots of redundancies in the standard Hilbert curve index when the data set has large differences between dimensions. In this paper, the construction features of Hilbert curve is analyzed based on Gray code, and then the compact Hilbert curve index algorithm is put forward, in which the redundancy problem has been avoided while Hilbert curve clustering preserved. Finally, experiment results shows that the compact Hilbert curve index outperforms the standard Hilbert index, their 1 computational complexity is nearly equivalent, but the real data set test shows the coding time and storage space decrease 40%, the speedup ratio of sorting speed is nearly 4.3.
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
2013-01-01
David Hilbert was one of the great mathematicians who expounded the centrality of their subject in human thought. In this collection of essays, Wilfried Sieg frames Hilbert's foundational work, from 1890 to 1939, in a comprehensive way and integrates it with modern proof theoretic investigations. Ten essays are devoted to the analysis of classical as well as modern proof theory; three papers on the mathematical roots of Hilbert's work precede the analytical core, and three final essays exploit an open philosophical horizon for reflection on the nature of mathematics in the 21st century.
Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.
Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay
2017-12-12
The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14 cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Directory of Open Access Journals (Sweden)
F. O. Isiogugu
2016-01-01
Full Text Available The strong convergence of a hybrid algorithm to a common element of the fixed point sets of multivalued strictly pseudocontractive-type mappings and the set of solutions of an equilibrium problem in Hilbert spaces is obtained using a strict fixed point set condition. The obtained results improve, complement, and extend the results on multivalued and single-valued mappings in the contemporary literature.
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Quantum mechanics in Hilbert space
Prugovecki, Eduard
1981-01-01
A critical presentation of the basic mathematics of nonrelativistic quantum mechanics, this text is suitable for courses in functional analysis at the advanced undergraduate and graduate levels. Its readable and self-contained form is accessible even to students without an extensive mathematical background. Applications of basic theorems to quantum mechanics make it of particular interest to mathematicians working in functional analysis and related areas.This text features the rigorous proofs of all the main functional-analytic statements encountered in books on quantum mechanics. It fills the
Hilbert space and quantum mechanics
Gallone, Franco
2015-01-01
The topics of this book are the mathematical foundations of non-relativistic quantum mechanics and the mathematical theory they require. The main characteristic of the book is that the mathematics is developed assuming familiarity with elementary analysis only. Moreover, all the proofs are carried out in detail. These features make the book easily accessible to readers with only the mathematical training offered by undergraduate education in mathematics or in physics, and also ideal for individual study. The principles of quantum mechanics are discussed with complete mathematical accuracy and an effort is made to always trace them back to the experimental reality that lies at their root. The treatment of quantum mechanics is axiomatic, with definitions followed by propositions proved in a mathematical fashion. No previous knowledge of quantum mechanics is required. This book is designed so that parts of it can be easily used for various courses in mathematics and mathematical physics, as suggested in the Pref...
Functional Analysis: Entering Hilbert Space
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
in a new chapter on Fredholm theory (Chapter 6). Fredholm theory originates in pioneering work of the Swedish mathematician Erik Ivar Fred-holm on integral equations, which inspired the study of a new class of bounded linear operators, known as Fredholm operators. Chapter 6 presents the basic elements...
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...
Two-dimensional ion effects in relativistic diodes
International Nuclear Information System (INIS)
Poukey, J.W.
1975-01-01
In relativistic diodes, ions are emitted from the anode plasma. The effects and properties of these ions are studied via a two-dimensional particle simulation code. The space charge of these ions enhances the electron emission, and this additional current (including that of the ions, themselves) aids in obtaining superpinched electron beams for use in pellet fusion studies. (U.S.)
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Hilbert schemes of points on some classes surface singularities
Gyenge, Ádám
2016-01-01
We study the geometry and topology of Hilbert schemes of points on the orbifold surface [C^2/G], respectively the singular quotient surface C^2/G, where G is a finite subgroup of SL(2,C) of type A or D. We give a decomposition of the (equivariant) Hilbert scheme of the orbifold into affine space strata indexed by a certain combinatorial set, the set of Young walls. The generating series of Euler characteristics of Hilbert schemes of points of the singular surface of type A or D is computed in...
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
Lectures on Hilbert schemes of points on surfaces
Nakajima, Hiraku
1999-01-01
This beautifully written book deals with one shining example: the Hilbert schemes of points on algebraic surfaces ... The topics are carefully and tastefully chosen ... The young person will profit from reading this book. --Mathematical Reviews The Hilbert scheme of a surface X describes collections of n (not necessarily distinct) points on X. More precisely, it is the moduli space for 0-dimensional subschemes of X of length n. Recently it was realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory--even theoretical physics. The discussion in the book reflects this feature of Hilbert schemes. One example of the modern, broader interest in the subject is a construction of the representation of the infinite-dimensional Heisenberg algebra, i.e., Fock space. This representation has been studied extensively in the literature in connection with affine Lie algebras, conformal field...
International Nuclear Information System (INIS)
Ritus, V.I.
1999-01-01
The changes in the action (and thus the vacuum conservation amplitudes) in the proper-time representation are found for an accelerated mirror interacting with scalar and spinor vacuum fields in 1+1 space. They are shown to coincide to within a factor of e 2 with changes in the action of electric and scalar charges accelerated in 3+1 space. This coincidence is attributed to the fact that the Bose and Fermi pairs emitted by a mirror have the same spins 1 and 0 as do the photons and scalar quanta emitted by charges. It is shown that the propagation of virtual pairs in 1+1 space can be described by the causal Green's function Δ f (z,μ) of the wave equation for 3+1 space. This is because the pairs can have any positive mass and their propagation function is represented by an integral of the causal propagation function of a massive particle in 1+1 space over mass which coincides with Δ f (z,μ). In this integral the lower limit μ is chosen small, but nonzero, to eliminate the infrared divergence. It is shown that the real and imaginary parts of the change in the action are related by dispersion relations, in which a mass parameter serves as the dispersion variable. They are a consequence of the same relations for Δ f (z,μ). Therefore, the emergence of a real part in the change in the action is a direct consequence of causality, according to which Re Δ f (z,μ)≠0 only for timelike and lightlike intervals
Algebraic isomorphism in two-dimensional anomalous gauge theories
International Nuclear Information System (INIS)
Carvalhaes, C.G.; Belvedere, L.V.; Filho, H.B.; Natividade, C.P.
1997-01-01
The operator solution of the anomalous chiral Schwinger model is discussed on the basis of the general principles of Wightman field theory. Some basic structural properties of the model are analyzed taking a careful control on the Hilbert space associated with the Wightman functions. The isomorphism between gauge noninvariant and gauge invariant descriptions of the anomalous theory is established in terms of the corresponding field algebras. We show that (i) the Θ-vacuum representation and (ii) the suggested equivalence of vector Schwinger model and chiral Schwinger model cannot be established in terms of the intrinsic field algebra. copyright 1997 Academic Press, Inc
Quantum hall fluid on fuzzy two dimensional sphere
International Nuclear Information System (INIS)
Luo Xudong; Peng Dantao
2004-01-01
After reviewing the Haldane's description about the quantum Hall effect on the fuzzy two-sphere S 2 , authors construct the noncommutative algebra on the fuzzy sphere S 2 and the Moyal structure of the Hilbert space. By constructing noncommutative Chern-Simons theory of the incompressible Hall fluid on the fuzzy sphere and solving the Gaussian constraint with quasiparticle source, authors find the Calogero matrix on S 2 and the complete set of the Laughlin wave function for the lowest Landau level, and this wave function is expressed by the generalized Jack polynomials in terms of spinor coordinates. (author)
Wigner functions from the two-dimensional wavelet group.
Ali, S T; Krasowska, A E; Murenzi, R
2000-12-01
Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
International Nuclear Information System (INIS)
Sanchez, Richard.
1980-11-01
This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
Hilbert W*-modules and coherent states
International Nuclear Information System (INIS)
Bhattacharyya, T; Roy, S Shyam
2012-01-01
Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
International Nuclear Information System (INIS)
Belvedere, L.V.; Souza Dutra, A. de; Natividade, C.P.; Queiroz, A.F. de
2002-01-01
Using a synthesis of the functional integral and operator approaches we discuss the fermion-boson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED 2 with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED 2 with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Θ-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content
Experimental two-dimensional quantum walk on a photonic chip.
Tang, Hao; Lin, Xiao-Feng; Feng, Zhen; Chen, Jing-Yuan; Gao, Jun; Sun, Ke; Wang, Chao-Yue; Lai, Peng-Cheng; Xu, Xiao-Yun; Wang, Yao; Qiao, Lu-Feng; Yang, Ai-Lin; Jin, Xian-Min
2018-05-01
Quantum walks, in virtue of the coherent superposition and quantum interference, have exponential superiority over their classical counterpart in applications of quantum searching and quantum simulation. The quantum-enhanced power is highly related to the state space of quantum walks, which can be expanded by enlarging the photon number and/or the dimensions of the evolution network, but the former is considerably challenging due to probabilistic generation of single photons and multiplicative loss. We demonstrate a two-dimensional continuous-time quantum walk by using the external geometry of photonic waveguide arrays, rather than the inner degree of freedoms of photons. Using femtosecond laser direct writing, we construct a large-scale three-dimensional structure that forms a two-dimensional lattice with up to 49 × 49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum walks using heralded single photons and single photon-level imaging. We analyze the quantum transport properties via observing the ballistic evolution pattern and the variance profile, which agree well with simulation results. We further reveal the transient nature that is the unique feature for quantum walks of beyond one dimension. An architecture that allows a quantum walk to freely evolve in all directions and at a large scale, combining with defect and disorder control, may bring up powerful and versatile quantum walk machines for classically intractable problems.
GPM GROUND VALIDATION TWO-DIMENSIONAL VIDEO DISDROMETER (2DVD) IPHEX V1
National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) IPHEx dataset was collected during the GPM Ground Validation Integrated Precipitation and...
GPM GROUND VALIDATION TWO-DIMENSIONAL VIDEO DISDROMETER (2DVD) IFLOODS V1
National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) IFloodS dataset was collected during the GPM Ground Validation Iowa Flood Studies (IFloodS) field...
NAMMA TWO-DIMENSIONAL STEREO PROBE AND CLOUD PARTICLE IMAGER V1
National Aeronautics and Space Administration — This Cloud Microphysics dataset consists of data from two probes used to measure the size, shape, and concentration of cloud particles; the two-dimensional stereo...
On the background independence of two-dimensional topological gravity
Imbimbo, Camillo
1995-04-01
We formulate two-dimensional topological gravity in a background covariant Lagrangian framework. We derive the Ward identities which characterize the dependence of physical correlators on the background world-sheet metric defining the gauge-slice. We point out the existence of an "anomaly" in Ward identitites involving correlators of observables with higher ghost number. This "anomaly" represents an obstruction for physical correlators to be globally defined forms on moduli space which could be integrated in a background independent way. Starting from the anomalous Ward identities, we derive "descent" equations whose solutions are cocycles of the Lie algebra of the diffeomorphism group with values in the space of local forms on the moduli space. We solve the descent equations and provide explicit formulas for the cocycles, which allow for the definition of background independent integrals of physical correlators on the moduli space.
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Periodic trajectories for two-dimensional nonintegrable Hamiltonians
International Nuclear Information System (INIS)
Davies, K.T.R.
1990-02-01
I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs
Morphology of bipolar planetary nebulae. I. Two-dimensional spectrophotometry
International Nuclear Information System (INIS)
Pascoli, G.
1990-01-01
Two-dimensional spectrophotometric observations of bipolar planetary nebulae were performed by using a CCD detector mounted at the Cassegrain focus of either 1.54 m Danish Telescope or 2.2 m German Telescope at La Silla (ESO) in Chile. Emission lines have been selected with the help of narrow band-pass interference filters (Δλ∼ 10 - 20 A). Isophotal maps in various lines Hα, [NII] λ 6584, [OIII] λ 5007 and [SII] λλ 6717-6731 are presented. Particular attention has been given to scrutinize the symmetries inside a few bipolar planetary nebulae, in order to subsequently investigate their space structure
Two-dimensional approach to relativistic positioning systems
International Nuclear Information System (INIS)
Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio
2006-01-01
A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out
Topological freeness for Hilbert bimodules
DEFF Research Database (Denmark)
Kwasniewski, Bartosz
2014-01-01
It is shown that topological freeness of Rieffel’s induced representation functor implies that any C*-algebra generated by a faithful covariant representation of a Hilbert bimodule X over a C*-algebra A is canonically isomorphic to the crossed product A ⋊ X ℤ. An ideal lattice description...
Lectures on Hilbert modular varieties and modular forms
Goren, Eyal Z
2001-01-01
This book is devoted to certain aspects of the theory of p-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of p-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelian varieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of p-adic Hilbert modular forms and the geometry of moduli spaces of abelian varieties are related. This relation is used to study q-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-exper...
Two-dimensional simulation of sintering process
International Nuclear Information System (INIS)
Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.
1996-01-01
The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Pressure of two-dimensional Yukawa liquids
International Nuclear Information System (INIS)
Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin
2016-01-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Geometrical aspects of solvable two dimensional models
International Nuclear Information System (INIS)
Tanaka, K.
1989-01-01
It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
Two-dimensional motions of rockets
International Nuclear Information System (INIS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Computing Instantaneous Frequency by normalizing Hilbert Transform
Huang, Norden E.
2005-05-31
This invention presents Normalized Amplitude Hilbert Transform (NAHT) and Normalized Hilbert Transform(NHT), both of which are new methods for computing Instantaneous Frequency. This method is designed specifically to circumvent the limitation set by the Bedorsian and Nuttal Theorems, and to provide a sharp local measure of error when the quadrature and the Hilbert Transform do not agree. Motivation for this method is that straightforward application of the Hilbert Transform followed by taking the derivative of the phase-angle as the Instantaneous Frequency (IF) leads to a common mistake made up to this date. In order to make the Hilbert Transform method work, the data has to obey certain restrictions.
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
Classical symmetries of some two-dimensional models
International Nuclear Information System (INIS)
Schwarz, J.H.
1995-01-01
It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, supersymmetrization, and quantum effects. However, as a first step, this paper only considers classical bosonic theories in flat space-time. Even though the algebra of hidden symmetries of principal chiral models is confirmed to include a Kac-Moody algebra (or a current algebra on a circle), it is argued that a better interpretation is provided by a doubled current algebra on a semi-circle (or line segment). Neither the circle nor the semi-circle bears any apparent relationship to the physical space. For symmetric space models the line segment viewpoint is shown to be essential, and special boundary conditions need to be imposed at the ends. The algebra of hidden symmetries also includes Virasoro-like generators. For both principal chiral models and symmetric space models, the hidden symmetry stress tensor is singular at the ends of the line segment. (orig.)
Liquid identification by Hilbert spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Lyatti, M; Divin, Y; Poppe, U; Urban, K, E-mail: M.Lyatti@fz-juelich.d, E-mail: Y.Divin@fz-juelich.d [Forschungszentrum Juelich, 52425 Juelich (Germany)
2009-11-15
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T{sub c} Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Liquid identification by Hilbert spectroscopy
Lyatti, M.; Divin, Y.; Poppe, U.; Urban, K.
2009-11-01
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- Tc Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Liquid identification by Hilbert spectroscopy
International Nuclear Information System (INIS)
Lyatti, M; Divin, Y; Poppe, U; Urban, K
2009-01-01
Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T c Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.
Two-dimensional computer simulation of high intensity proton beams
Lapostolle, Pierre M
1972-01-01
A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).
Electronic Transport in Two-Dimensional Materials
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional transport of tokamak plasmas
International Nuclear Information System (INIS)
Hirshman, S.P.; Jardin, S.C.
1979-01-01
A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator
International Nuclear Information System (INIS)
Borzov, V. V.; Damaskinsky, E. V.
2014-01-01
In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators
Two-Dimensional Impact Reconstruction Method for Rail Defect Inspection
Directory of Open Access Journals (Sweden)
Jie Zhao
2014-01-01
Full Text Available The safety of train operating is seriously menaced by the rail defects, so it is of great significance to inspect rail defects dynamically while the train is operating. This paper presents a two-dimensional impact reconstruction method to realize the on-line inspection of rail defects. The proposed method utilizes preprocessing technology to convert time domain vertical vibration signals acquired by wireless sensor network to space signals. The modern time-frequency analysis method is improved to reconstruct the obtained multisensor information. Then, the image fusion processing technology based on spectrum threshold processing and node color labeling is proposed to reduce the noise, and blank the periodic impact signal caused by rail joints and locomotive running gear. This method can convert the aperiodic impact signals caused by rail defects to partial periodic impact signals, and locate the rail defects. An application indicates that the two-dimensional impact reconstruction method could display the impact caused by rail defects obviously, and is an effective on-line rail defects inspection method.
International Nuclear Information System (INIS)
Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra
2014-01-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
Exponential Hilbert series of equivariant embeddings
Johnson, Wayne A.
2018-01-01
In this article, we study properties of the exponential Hilbert series of a $G$-equivariant projective variety, where $G$ is a semisimple, simply-connected complex linear algebraic group. We prove a relationship between the exponential Hilbert series and the degree and dimension of the variety. We then prove a combinatorial identity for the coefficients of the polynomial representing the exponential Hilbert series. This formula is used in examples to prove further combinatorial identities inv...
Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.
Yang, Yuting; Jiang, Hua; Hang, Zhi Hong
2018-01-25
Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.
Two-dimensional plasma photonic crystals in dielectric barrier discharge
International Nuclear Information System (INIS)
Fan Weili; Dong Lifang; Zhang Xinchun
2010-01-01
A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.
Electrical conductivity of quasi-two-dimensional foams.
Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina
2015-04-01
Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science
Two-dimensional vibrational-electronic spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
Clustering in Hilbert simplex geometry
Nielsen, Frank
2017-04-03
Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.
International Nuclear Information System (INIS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A.K.; Polivanov, M.C.
1993-01-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. The authors demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schroedinger equation as an example, it is shown that all types of solutions of the linear problem, as well as spectral data known in the literature, are given as specific values of this unique function - the resolvent function. A new form of the inverse problem is formulated. 7 refs
Two-dimensional PCA-based human gait identification
Chen, Jinyan; Wu, Rongteng
2012-11-01
It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.
International Nuclear Information System (INIS)
Tseytlin, A.A.
1993-01-01
We consider a two-dimensional sigma model with a (2+N)-dimensional Minkowski signature target space metric having a covariantly constant null Killing vector. We study solutions of the conformal invariance conditions in 2+N dimensions and find that generic solutions can be represented in terms of the RG flow in N-dimensional 'transverse space' theory. The resulting conformal invariant sigma model is interpreted as a quantum action of the two-dimensional scalar ('dilaton') quantum gravity model coupled to a (non-conformal) 'transverse' sigma model. The conformal factor of the two-dimensional metric is identified with a light-cone coordinate of the (2+N)-dimensional sigma model. We also discuss the case when the transverse theory is conformal (with or without the antisymmetric tensor background) and reproduce in a systematic way the solutions with flat transverse space known before. (orig.)
Regularization methods for ill-posed problems in multiple Hilbert scales
International Nuclear Information System (INIS)
Mazzieri, Gisela L; Spies, Ruben D
2012-01-01
Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. (paper)
Two-Dimensional Distributed Velocity Collision Avoidance
2014-02-11
place (i.e., in the global problem space) as much as possible in an effort to simplify the process/description. Additionally, to make some of the...guide agents without collision in the vast majority of cases. NAWCWD TP 8786 31 7.0 REFERENCES 1. P. L. Franchi . “Near Misses Between
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
IAS Admin
time domain, allowing the application of multiple pulses and giving rise to the subject ... case of saturation, change the intensity of 'nearest-neighbours-in- space' by .... and I reached Zürich to work in the 'joint' project for one year. I was given a ...
Two dimensional kicked quantum Ising model: dynamical phase transitions
International Nuclear Information System (INIS)
Pineda, C; Prosen, T; Villaseñor, E
2014-01-01
Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)
Lagrangian statistics in weakly forced two-dimensional turbulence.
Rivera, Michael K; Ecke, Robert E
2016-01-01
Measurements of Lagrangian single-point and multiple-point statistics in a quasi-two-dimensional stratified layer system are reported. The system consists of a layer of salt water over an immiscible layer of Fluorinert and is forced electromagnetically so that mean-squared vorticity is injected at a well-defined spatial scale ri. Simultaneous cascades develop in which enstrophy flows predominately to small scales whereas energy cascades, on average, to larger scales. Lagrangian correlations and one- and two-point displacements are measured for random initial conditions and for initial positions within topological centers and saddles. Some of the behavior of these quantities can be understood in terms of the trapping characteristics of long-lived centers, the slow motion near strong saddles, and the rapid fluctuations outside of either centers or saddles. We also present statistics of Lagrangian velocity fluctuations using energy spectra in frequency space and structure functions in real space. We compare with complementary Eulerian velocity statistics. We find that simultaneous inverse energy and enstrophy ranges present in spectra are not directly echoed in real-space moments of velocity difference. Nevertheless, the spectral ranges line up well with features of moment ratios, indicating that although the moments are not exhibiting unambiguous scaling, the behavior of the probability distribution functions is changing over short ranges of length scales. Implications for understanding weakly forced 2D turbulence with simultaneous inverse and direct cascades are discussed.
6th Hilbert's problem and S.Lie's infinite groups
International Nuclear Information System (INIS)
Konopleva, N.P.
1999-01-01
The progress in Hilbert's sixth problem solving is demonstrated. That became possible thanks to the gauge field theory in physics and to the geometrical treatment of the gauge fields. It is shown that the fibre bundle spaces geometry is the best basis for solution of the problem being discussed. This talk has been reported at the International Seminar '100 Years after Sophus Lie' (Leipzig, Germany)
Quantum mechanics: why complex Hilbert space?
Cassinelli, G; Lahti, P
2017-11-13
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Hilbert space theory of classical electrodynamics
Indian Academy of Sciences (India)
Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.
Quantum mechanics: why complex Hilbert space?
Cassinelli, G.; Lahti, P.
2017-10-01
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Compressing the hidden variable space of a qubit
International Nuclear Information System (INIS)
Montina, Alberto
2011-01-01
In previously exhibited hidden variable models of quantum state preparation and measurement, the number of continuous hidden variables describing the actual state of single realizations is never smaller than the quantum state manifold dimension. We introduce a simple model for a qubit whose hidden variable space is one-dimensional, i.e., smaller than the two-dimensional Bloch sphere. The hidden variable probability distributions associated with quantum states satisfy reasonable criteria of regularity. Possible generalizations of this shrinking to an N-dimensional Hilbert space are discussed.
Global Gauge Anomalies in Two-Dimensional Bosonic Sigma Models
Gawȩdzki, Krzysztof; Suszek, Rafał R.; Waldorf, Konrad
2011-03-01
We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma models with a Wess-Zumino term in the action. Such a term is related to a background closed 3-form H on the target space. More exactly, the sigma-model Feynman amplitudes of classical fields are associated to a bundle gerbe with connection of curvature H over the target space. Under conditions that were unraveled more than twenty years ago, the classical amplitudes may be coupled to the topologically trivial gauge fields of the symmetry group in a way which assures infinitesimal gauge invariance. We show that the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge anomalies that we fully classify. The general results are illustrated on the example of the WZW and the coset models of conformal field theory. The latter are shown to be inconsistent in the presence of global anomalies. We introduce a notion of equivariant gerbes that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields, including the ones in non-trivial principal bundles. Obstructions to the existence of equivariant gerbes and their classification are discussed. The choice of different equivariant structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambiguities in the gauged amplitudes. An explicit construction of gerbes equivariant with respect to the adjoint symmetries over compact simply connected simple Lie groups is given.
Parallel processing of two-dimensional Sn transport calculations
International Nuclear Information System (INIS)
Uematsu, M.
1997-01-01
A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation
Soap film flows: Statistics of two-dimensional turbulence
International Nuclear Information System (INIS)
Vorobieff, P.; Rivera, M.; Ecke, R.E.
1999-01-01
Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R λ ∼100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in k space consistent with the k -3 spectrum of the Kraichnan endash Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. copyright 1999 American Institute of Physics
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Solution of the two-dimensional spectral factorization problem
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; van Heijst, G.J.F.
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; Heijst, van G.J.F.
2009-01-01
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Two dimensional model for coherent synchrotron radiation
Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.
2013-01-01
Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.
Non-Linear Non Stationary Analysis of Two-Dimensional Time-Series Applied to GRACE Data, Phase II
National Aeronautics and Space Administration — The proposed innovative two-dimensional (2D) empirical mode decomposition (EMD) analysis was applied to NASA's Gravity Recovery and Climate Experiment (GRACE)...
A two-dimensional embedded-boundary method for convection problems with moving boundaries
Y.J. Hassen (Yunus); B. Koren (Barry)
2010-01-01
htmlabstractIn this work, a two-dimensional embedded-boundary algorithm for convection problems is presented. A moving body of arbitrary boundary shape is immersed in a Cartesian finite-volume grid, which is fixed in space. The boundary surface is reconstructed in such a way that only certain fluxes
Power Spectral Density and Hilbert Transform
2016-12-01
there is 1.3 W of power. How much bandwidth does a pure sine wave require? The bandwidth of an ideal sine wave is 0 Hz. How do you represent a 1-W...the Hilbert transform. 2.3 Hilbert Transform The Hilbert transform is a math function used to convert a real function into an analytic signal...The math operation minus 2 means to move 2 steps back on the number line. For minus –2, we move 2 steps backwards from –2, which is the same as
Two-dimensional effects in the problem of tearing modes control by electron cyclotron current drive
International Nuclear Information System (INIS)
Comisso, L.; Lazzaro, E.
2010-01-01
The design of means to counteract robustly the classical and neoclassical tearing modes in a tokamak by localized injection of an external control current requires an ever growing understanding of the physical process, beyond the Rutherford-type zero-dimensional models. Here a set of extended magnetohydrodynamic nonlinear equations for four continuum fields is used to investigate the two-dimensional effects in the response of the reconnecting modes to specific inputs of the localized external current. New information is gained on the space- and time-dependent effects of the external action on the two-dimensional structure of magnetic islands, which is very important to formulate applicable control strategies.
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Third sound in one and two dimensional modulated structures
International Nuclear Information System (INIS)
Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.
1996-01-01
An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation
Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.
2012-01-01
The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).
Tunable states of interlayer cations in two-dimensional materials
International Nuclear Information System (INIS)
Sato, K.; Numata, K.; Dai, W.; Hunger, M.
2014-01-01
The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed
Critical phenomena in quasi-two-dimensional vibrated granular systems.
Guzmán, Marcelo; Soto, Rodrigo
2018-01-01
The critical phenomena associated to the liquid-to-solid transition of quasi-two-dimensional vibrated granular systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical properties are associated to the fourfold bond-orientational order parameter χ_{4}, which measures the level of square crystallization of the system. Previous experimental results have shown that the transition of χ_{4}, when varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of the order parameter is β=1/2, for various system sizes, in complete agreement with the experimental results. However, the fluctuations of χ_{4} do not show any critical behavior, probably due to crossover effects by the close presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous, limited by one critical point, indicating that two is the lower dimension for having a tricritical point.
Photon management in two-dimensional disordered media.
Vynck, Kevin; Burresi, Matteo; Riboli, Francesco; Wiersma, Diederik S
2012-12-01
Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists of the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a new approach for high-extraction-efficiency light-emitting diodes.
Two-dimensional NMR spectroscopy. Applications for chemists and biochemists
International Nuclear Information System (INIS)
Croasmun, W.R.; Carlson, R.M.K.
1987-01-01
Two-dimensional nuclear magnetic resonance spectroscopy (2-D NMR) has become a very powerful class of experiments (in the hands of an adept scientist) with broad adaptability to new situations. It is the product of a happy marriage between modern pulse FT-NMR technology, with its large memory and high-speed computers, and the physicists and chemists who love to manipulate spin systems. Basic 2-D experiments are now a standard capability of modern NMR spectrometers, and this timely book intends to make 2-D NMR users of those who are familiar with normal 1-D NMR. The 2-D NMR goal is correlation of the lines of the observed NMR spectrum with other properties of the system. This book deals with applications to high-resolution spectrum analysis, utilizing either coupling between the NMR-active nuclei or chemical exchange to perform the correlation. The coupling can be scalar (through bonds) or direct through space (within 5 A). The coupling may be homonuclear (between like nuclei) or heteronuclear
Tunable states of interlayer cations in two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)
2014-03-31
The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.
The planiverse computer contact with a two-dimensional world
Dewdney, Alexander Keewatin
2000-01-01
When The Planiverse ?rst appeared 16 years ago, it caught more than a few readers off guard. The line between willing suspension of dis- lief and innocent acceptance, if it exists at all, is a thin one. There were those who wanted to believe, despite the tongue-in-cheek subtext, that we had made contact with a two-dimensional world called Arde, a di- shaped planet embedded in the skin of a vast, balloon-shaped space called the planiverse. It is tempting to imagine that those who believed, as well as those who suspended disbelief, did so because of a persuasive consistency in the cosmology and physics of this in?nitesimally thin universe, and x preface to the millennium edition in its bizarre but oddly workable organisms. This was not just your r- of-the-mill universe fashioned out of the whole cloth of wish-driven imagination. The planiverse is a weirder place than that precisely - cause so much of it was “worked out” by a virtual team of scientists and technologists. Reality, even the pseudoreality of su...
Two-dimensional materials for novel liquid separation membranes
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-01
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as
A two-dimensional mathematical model of percutaneous drug absorption
Directory of Open Access Journals (Sweden)
Kubota K
2004-06-01
Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady
Two-dimensional materials for novel liquid separation membranes.
Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng
2016-08-19
Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as
A two-step Hilbert transform method for 2D image reconstruction
International Nuclear Information System (INIS)
Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D
2004-01-01
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained
Multisoliton formula for completely integrable two-dimensional systems
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations
Two-dimensional electronic femtosecond stimulated Raman spectroscopy
Directory of Open Access Journals (Sweden)
Ogilvie J.P.
2013-03-01
Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Exactly integrable two-dimensional dynamical systems related with supersymmetric algebras
International Nuclear Information System (INIS)
Leznov, A.N.
1983-01-01
A wide class of exactly integrable dynamical systems in two-dimensional space related with superalgebras, which generalize supersymmetric Liouville equation, is constructed. The equations can be interpretated as nonlinearly interacting Bose and Fermi fields belonging within classical limit to even and odd parts of the Grassman space. Explicit expressions for the solutions of the constructed systems are obtained on the basis of standard perturbation theory
Topological aspect of disclinations in two-dimensional crystals
International Nuclear Information System (INIS)
Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Study on two-dimensional induced signal readout of MRPC
International Nuclear Information System (INIS)
Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin
2012-01-01
A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.
An explicit formula for the Hilbert symbol for Honda groups in a multidimensional local field
International Nuclear Information System (INIS)
Vostokov, S V; Lorenz, F
2003-01-01
Based on the pairing on Cartier curves explicitly constructed in the previous paper of the authors, an explicit formula for the Hilbert symbol is constructed in a multidimensional local field of characteristic zero with residue field of positive characteristic on the formal module of a one-dimensional Honda formal group. In the proof a Shafarevich basis on the formal module is constructed, and so-called integer μ-modules in two-dimensional local rings of a special form ( μ-rings) are studied
Two-dimensional model of a freely expanding plasma
International Nuclear Information System (INIS)
Khalid, Q.
1975-01-01
The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good
Periodic trajectories for a two-dimensional nonintegrable Hamiltonian
International Nuclear Information System (INIS)
Baranger, M.; Davies, K.T.R.
1987-01-01
A numerical study is made of the classical periodic trajectories for the two-dimensional nonintegrable Hamiltonian H = 1/2(p 2 /sub x/+p 2 /sub y/)+(y-1/2x 2 ) 2 +0.05 x 2 . In addition to x--y pictures of the trajectories, E--tau (energy--period) plots of the periodic families are presented. Efforts have been ade to include all trajectories with short periods and all simple branchings of these trajectories. The monodromy matrix has been calculated in all cases, and from it the stability properties are derived. The topology of the E--tau plot has been explored, with the following results. One family may have several stable regions. The plot is not completely connected; there are islands. The plot is not a tree; there are cycles. There are isochronous branchings, period-doublings, and period-multiplyings of higher orders, and examples of each of these are presented. There is often more than one branch issuing from a branch point. Some general empirical rules are inferred. In particular, the existence of isochronous branching is seen to be a consequence of the symmetry of the Hamiltonian. All these results agree with the general classification of possible branchings derived in Ref. [10]. (M. A. M. de Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davies, in preparation). Finally, some nonperiodic trajectories are calculated to illustrate the fact that stable periodic trajectories lie in ''regular'' regions of phase space, while unstable ones lie in ''chaotic'' regions
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
Two-dimensional analytic weighting functions for limb scattering
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Dynamical class of a two-dimensional plasmonic Dirac system.
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Velocity and Dispersion for a Two-Dimensional Random Walk
International Nuclear Information System (INIS)
Li Jinghui
2009-01-01
In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Pair Interaction of Dislocations in Two-Dimensional Crystals
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
International Nuclear Information System (INIS)
Stathaki, P.T.; Constantinides, A.G.
1994-01-01
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging
Densis. Densimetric representation of two-dimensional matrices
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)
Two-dimensional QCD in the Coulomb gauge
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefed'ev, A.V.
2002-01-01
Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru
Quantum Communication Through a Two-Dimensional Spin Network
International Nuclear Information System (INIS)
Wang Zhaoming; Gu Yongjian
2012-01-01
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
Energy Technology Data Exchange (ETDEWEB)
Stathaki, P T; Constantinides, A G [Signal Processing Section, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK (United Kingdom)
1994-12-31
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging. 7 refs, 2 figs.
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Chaotic dynamics in two-dimensional noninvertible maps
Mira, Christian; Cathala, Jean-Claude; Gardini, Laura
1996-01-01
This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Hilbert schemes of points and Heisenberg algebras
International Nuclear Information System (INIS)
Ellingsrud, G.; Goettsche, L.
2000-01-01
Let X [n] be the Hilbert scheme of n points on a smooth projective surface X over the complex numbers. In these lectures we describe the action of the Heisenberg algebra on the direct sum of the cohomologies of all the X [n] , which has been constructed by Nakajima. In the second half of the lectures we study the relation of the Heisenberg algebra action and the ring structures of the cohomologies of the X [n] , following recent work of Lehn. In particular we study the Chern and Segre classes of tautological vector bundles on the Hilbert schemes X [n] . (author)
Two dimensional analysis of MHD generator by means of equivalent circuit
International Nuclear Information System (INIS)
Yoshida, Masaharu; Umoto, Juro
1975-01-01
The authors report on the method analyzing generally the MHD generator by means of the equivalent circuit including the negative resistance. At first, they divide the duct space into many space elements, and for each space element they derive the fundamental equivalent four-terminal circuit which satisfies the two-dimensional Ohm's law. Next, they make an attempt to apply the equivalent circuits to the typical MHD generators such as diagonal, Faraday and Hall generators considering the boundary layer in the duct and the wall leakage current. Using their analysis, the current density, Joul's heat, generated and output electrical powers, electrical efficiency etc. in the generator can be fairly easily calculated. (auth.)
Cryptanalysis of a cryptosystem based on discretized two-dimensional chaotic maps
International Nuclear Information System (INIS)
Solak, Ercan; Cokal, Cahit
2008-01-01
Recently, an encryption algorithm based on two-dimensional discretized chaotic maps was proposed [Xiang et al., Phys. Lett. A 364 (2007) 252]. In this Letter, we analyze the security weaknesses of the proposal. Using the algebraic dependencies among system parameters, we show that its effective key space can be shrunk. We demonstrate a chosen-ciphertext attack that reveals a portion of the key
STRUYA a code for two-dimensional fluid flow analysis with and without structure coupling
International Nuclear Information System (INIS)
Katz, F.W.; Schlechtendahl, E.G.; Stoelting, K.
1979-11-01
STRUYA is a code for two-dimensional subsonic and supersonic flow analysis. Both Eulerian and Lagrangian grids are allowed. In the third dimension the flow domain may be bounded by a moving wall. The wall movement may be prescribed in a time-and space varying way or computed by a structural model. STRUYA offers a general scheme for adapting various structural models. As a standard feature it includes a cylindrical shell model (CYLDY2). (orig.) [de
Vectorized Matlab Codes for Linear Two-Dimensional Elasticity
Directory of Open Access Journals (Sweden)
Jonas Koko
2007-01-01
Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Interior design of a two-dimensional semiclassical black hole
Levanony, Dana; Ori, Amos
2009-10-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
On final states of two-dimensional decaying turbulence
Yin, Z.
2004-01-01
Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ¿-¿, which is frequently adopted as the characterization of
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Inter-layer Cooper pairing of two-dimensional electrons
International Nuclear Information System (INIS)
Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo
1987-01-01
The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
Two-dimensional generalized harmonic oscillators and their Darboux partners
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2011-01-01
We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)
First principles calculation of two dimensional antimony and antimony arsenide
Energy Technology Data Exchange (ETDEWEB)
Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2016-05-23
This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Theory of the one- and two-dimensional electron gas
International Nuclear Information System (INIS)
Emery, V.J.
1987-01-01
Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides
Two-dimensional turbulent flows on a bounded domain
Kramer, W.
2006-01-01
Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures
Exterior calculus and two-dimensional supersymmetric models
International Nuclear Information System (INIS)
Sciuto, S.
1980-01-01
An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
Construction of superpotentials for two-dimensional classical super systems (for N. 2) is carried ... extensively used for the case of non-linear partial differential equation by various authors. [3,4–7,12 ..... found to be integrable just by accident.
Quantitative optical mapping of two-dimensional materials
DEFF Research Database (Denmark)
Jessen, Bjarke S.; Whelan, Patrick R.; Mackenzie, David M. A.
2018-01-01
The pace of two-dimensional materials (2DM) research has been greatly accelerated by the ability to identify exfoliated thicknesses down to a monolayer from their optical contrast. Since this process requires time-consuming and error-prone manual assignment to avoid false-positives from image...
Temperature maxima in stable two-dimensional shock waves
International Nuclear Information System (INIS)
Kum, O.; Hoover, W.G.; Hoover, C.G.
1997-01-01
We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith model for strong shock waves in dilute three-dimensional gases. copyright 1997 The American Physical Society
Two-dimensional molecular line transfer for a cometary coma
Szutowicz, S.
2017-09-01
In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).
Sub-Nanometer Channels Embedded in Two-Dimensional Materials
Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.
2017-01-01
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2
Coherent Electron Focussing in a Two-Dimensional Electron Gas.
Houten, H. van; Wees, B.J. van; Mooij, J.E.; Beenakker, C.W.J.; Williamson, J.G.; Foxon, C.T.
1988-01-01
The first experimental realization of ballistic point contacts in a two-dimensional electron gas for the study of transverse electron focussing by a magnetic field is reported. Multiple peaks associated with skipping orbits of electrons reflected specularly by the channel boundary are observed. At
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run-l...
Interior design of a two-dimensional semiclassical black hole
International Nuclear Information System (INIS)
Levanony, Dana; Ori, Amos
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
Two-dimensional profiling of Xanthomonas campestris pv. viticola ...
African Journals Online (AJOL)
However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. ... havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre glass in the three dimensional form; We also have Pencil, Charcoal Pastel and, Acrylic oil-paint in two dimensional form.
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...
Mass relations for two-dimensional classical configurations
International Nuclear Information System (INIS)
Tataru-Mihai, P.
1980-01-01
Using the two-dimensional sigma-nonlinear models as a framework mass relations for classical configurations of instanton/soliton type are derived. Our results suggest an interesting differential-geometric interpretation of the mass of a classical configuration in terms of the topological characteristics of an associated manifold. (orig.)
Seismically constrained two-dimensional crustal thermal structure of ...
Indian Academy of Sciences (India)
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...
Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy
Jansen, Thomas L. C.; Knoester, Jasper
We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,
Two-dimensional NMR studies of allyl palladium complexes of ...
Indian Academy of Sciences (India)
Administrator
h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Two-dimensional position sensitive Si(Li) detector
International Nuclear Information System (INIS)
Walton, J.T.; Hubbard, G.S.; Haller, E.E.; Sommer, H.A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n + resisitive layer for one contact and a boron implanted p + resistive layer for the second contact. A position resolution of the order of 100 μm is indicated
A TWO-DIMENSIONAL POSITION SENSITIVE SI(LI) DETECTOR
Energy Technology Data Exchange (ETDEWEB)
Walton, Jack T.; Hubbard, G. Scott; Haller, Eugene E.; Sommer, Heinrich A.
1978-11-01
Circular, large-area two-dimensional Si(Li) position sensitive detectors have been fabricated. The detectors employ a thin lithium-diffused n{sup +} resistive layer for one contact and a boron implanted p{sup +} resistive layer for the second contact. A position resolution of the order of 100 {micro}m is indicated.
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Linkage analysis by two-dimensional DNA typing
te Meerman, G J; Mullaart, E; Meulen ,van der Martin; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J
1993-01-01
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core
Proximity Induced Superconducting Properties in One and Two Dimensional Semiconductors
DEFF Research Database (Denmark)
Kjærgaard, Morten
This report is concerned with the properties of one and two dimensional semiconducting materials when brought into contact with a superconductor. Experimentally we study the 2D electron gas in an InGaAs/InAs heterostructure with aluminum grown in situ on the surface, and theoretically we show tha...
Two-Dimensional Charge Transport in Disordered Organic Semiconductors
Brondijk, J. J.; Roelofs, W. S. C.; Mathijssen, S. G. J.; Shehu, A.; Cramer, T.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M.
2012-01-01
We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides
Noninteracting beams of ballistic two-dimensional electrons
International Nuclear Information System (INIS)
Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.
1991-01-01
We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels
Two-dimensional dissipation in third sound resonance
International Nuclear Information System (INIS)
Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana
1981-01-01
The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)
Graphene: a promising two-dimensional support for heterogeneous catalysts
Directory of Open Access Journals (Sweden)
Xiaobin eFan
2015-01-01
Full Text Available Graphene has many advantages that make it an attractive two-dimensional (2D support for heterogeneous catalysts. It not only allows the high loading of targeted catalytic species, but also facilitates the mass transfer during the reaction processes. These advantages, along with its unique physical and chemical properties, endow graphene great potential as catalyst support in heterogeneous catalysis.
Two-dimensional interpolation with experimental data smoothing
International Nuclear Information System (INIS)
Trejbal, Z.
1989-01-01
A method of two-dimensional interpolation with smoothing of time statistically deflected points is developed for processing of magnetic field measurements at the U-120M field measurements at the U-120M cyclotron. Mathematical statement of initial requirements and the final result of relevant algebraic transformations are given. 3 refs
Tunneling between parallel two-dimensional electron liquids
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; MacDonald, A. H.
361/362, - (1996), s. 167-170 ISSN 0039-6028. [International Conference on the Electronic Properties of Two Dimensional Systems /11./. Nottingham, 07.08.1995-11.08.1995] R&D Projects: GA ČR GA202/94/1278 Grant - others:INT(XX) 9106888 Impact factor: 2.783, year: 1996
Influence of index contrast in two dimensional photonic crystal lasers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner
2010-01-01
The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavity...
Two-Dimensional Tellurene as Excellent Thermoelectric Material
Sharma, Sitansh; Singh, Nirpendra; Schwingenschlö gl, Udo
2018-01-01
We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...
Patched Green's function techniques for two-dimensional systems
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Lin, Jun
2015-01-01
We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...
Nonlinear dynamic characterization of two-dimensional materials
Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.
2017-01-01
Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's
Transient two-dimensional flow in porous media
International Nuclear Information System (INIS)
Sharpe, L. Jr.
1979-01-01
The transient flow of an isothermal ideal gas from the cavity formed by an underground nuclear explosion is investigated. A two-dimensional finite element method is used in analyzing the gas flow. Numerical results of the pressure distribution are obtained for both the stemming column and the surrounding porous media
Two-dimensional QCD as a model for strong interaction
International Nuclear Information System (INIS)
Ellis, J.
1977-01-01
After an introduction to the formalism of two-dimensional QCD, its applications to various strong interaction processes are reviewed. Among the topics discussed are spectroscopy, deep inelastic cross-sections, ''hard'' processes involving hadrons, ''Regge'' behaviour, the existence of the Pomeron, and inclusive hadron cross-sections. Attempts are made to abstracts features useful for four-dimensional QCD phenomenology. (author)
Two-dimensional gel electrophoresis analysis of different parts of ...
African Journals Online (AJOL)
Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...
Two-dimensional optimization of free-electron-laser designs
Prosnitz, D.; Haas, R.A.
1982-05-04
Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Kubo conductivity of a strongly magnetized two-dimensional plasma.
Montgomery, D.; Tappert, F.
1971-01-01
The Kubo formula is used to evaluate the bulk electrical conductivity of a two-dimensional guiding-center plasma in a strong dc magnetic field. The particles interact only electrostatically. An ?anomalous' electrical conductivity is derived for this system, which parallels a recent result of Taylor and McNamara for the coefficient of spatial diffusion.
Bayesian approach for peak detection in two-dimensional chromatography
Vivó-Truyols, G.
2012-01-01
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual
Equilibrium spherically curved two-dimensional Lennard-Jones systems
Voogd, J.M.; Sloot, P.M.A.; van Dantzig, R.
2005-01-01
To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N < 800) equilibrium configu- rations are traced
Giant 1/f noise in two-dimensional polycrystalline media
International Nuclear Information System (INIS)
Snarskii, A.; Bezsudnov, I.
2008-01-01
The behaviour of excess (1/f noise) in two-dimensional polycrystalline media is investigated. On the base of current trap model, it is shown that there exists a certain anisotropy value of conductivity tensor for polycrystalline media when the amplitude of 1/f noise becomes giant
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.
1992-11-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.
The OMPS Limb Profiler Instrument: Two-Dimensional Retrieval Algorithm
Rault, Didier F.
2010-01-01
The upcoming Ozone Mapper and Profiler Suite (OMPS), which will be launched on the NPOESS Preparatory Project (NPP) platform in early 2011, will continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance (which is due to the scattering of solar photons by air molecules, aerosol and Earth surface) in the ultra-violet (UV), visible and near infrared, from 285 to 1000 nm. The LP simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each covering a vertical tangent height range of 100 km and each horizontally spaced by 250 km in the cross-track direction. Measurements are made every 19 seconds along the orbit track, which corresponds to a distance of about 150km. Several data analysis tools are presently being constructed and tested to retrieve ozone and aerosol vertical distribution from limb radiance measurements. The primary NASA algorithm is based on earlier algorithms developed for the SOLSE/LORE and SAGE III limb scatter missions. All the existing retrieval algorithms rely on a spherical symmetry assumption for the atmosphere structure. While this assumption is reasonable in most of the stratosphere, it is no longer valid in regions of prime scientific interest, such as polar vortex and UTLS regions. The paper will describe a two-dimensional retrieval algorithm whereby the ozone distribution is simultaneously retrieved vertically and horizontally for a whole orbit. The retrieval code relies on (1) a forward 2D Radiative Transfer code (to model limb
Quantum Hilbert matrices and orthogonal polynomials
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Berg, Christian
2009-01-01
Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...
Hilbert's Grand Hotel with a series twist
Wijeratne, Chanakya; Mamolo, Ami; Zazkis, Rina
2014-08-01
This paper presents a new twist on a familiar paradox, linking seemingly disparate ideas under one roof. Hilbert's Grand Hotel, a paradox which addresses infinite set comparisons is adapted and extended to incorporate ideas from calculus - namely infinite series. We present and resolve several variations, and invite the reader to explore his or her own variations.
Notes on Hilbert and Cauchy Matrices
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav
2010-01-01
Roč. 432, č. 1 (2010), s. 351-356 ISSN 0024-3795 Institutional research plan: CEZ:AV0Z10300504 Keywords : Hilbert matrix * Cauchy matrix * combined matrix * AT-property Subject RIV: BA - General Mathematics Impact factor: 1.005, year: 2010
Noise properties of Hilbert transform evaluation
Czech Academy of Sciences Publication Activity Database
Pavlíček, Pavel; Svak, V.
2015-01-01
Roč. 26, č. 8 (2015), s. 085207 ISSN 0957-0233 R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : Hilbert transform * noise * measurement uncertainty * white -light interferometry * fringe-pattern analysis Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.492, year: 2015
A relative Hilbert-Mumford criterion
DEFF Research Database (Denmark)
Gulbrandsen, Martin G.; Halle, Lars Halvard; Hulek, Klaus
2015-01-01
We generalize the classical Hilbert-Mumford criteria for GIT (semi-)stability in terms of one parameter subgroups of a linearly reductive group G over a field k, to the relative situation of an equivariant, projective morphism X -> Spec A to a noetherian k-algebra A. We also extend the classical...
Theory and experiments on Peano and Hilbert curve RFID tags
McVay, John; Hoorfar, Ahmad; Engheta, Nader
2006-05-01
Recently, there has been considerable interest in the area of Radio Frequency Identification (RFID) and Radio Frequency Tagging (RFTAG). This emerging area of interest can be applied for inventory control (commercial) as well as friend/foe identification (military) to name but a few. The current technology can be broken down into two main groups, namely passive and active RFID tags. Utilization of Space-Filling Curve (SFC) geometries, such as the Peano and Hilbert curves, has been recently investigated for use in completely passive RFID applications [1, 2]. In this work, we give an overview of our work on the space-filling curves and the potential for utilizing the electrically small, resonant characteristics of these curves for use in RFID technologies with an emphasis on the challenging issues involved when attempting to tag conductive objects. In particular, we investigate the possible use of these tags in conjunction with high impedance ground-planes made of Hilbert or Peano curve inclusions [3, 4] to develop electrically small RFID tags that may also radiate efficiently, within close proximity of large conductive objects [5].
Anisotropic strain in YBa2Cu3O7-δ films analysed by deconvolution of two-dimensional intensity data
International Nuclear Information System (INIS)
Broetz, J.; Fuess, H.
2001-01-01
The influence of the instrumental resolution on two-dimensional reflection profiles of epitaxic YBa 2 Cu 3 O 7-δ films on SrTiO 3 (001) has been studied in order to investigate the strain in the superconducting films. The X-ray diffraction intensity data were obtained by two-dimensional scans in reciprocal space (q-scan). Since the reflection broadening caused by the apparatus differs for each position in reciprocal space, a highly crystalline substrate was used as a standard. Thus it was possible to measure a standard very close to the YBa 2 Cu 3 O 7-δ reflections in reciprocal space. The two-dimensional deconvolution of reflections by a new computer program revealed an anisotropic strain of the two twinning systems of the film. (orig.)
Commentaries on Hilbert's Basis Theorem | Apine | Science World ...
African Journals Online (AJOL)
The famous basis theorem of David Hilbert is an important theorem in commutative algebra. In particular the Hilbert's basis theorem is the most important source of Noetherian rings which are by far the most important class of rings in commutative algebra. In this paper we have used Hilbert's theorem to examine their unique ...
Application of synthesis methods to two-dimensional fast reactor transient study
International Nuclear Information System (INIS)
Izutsu, Sadayuki; Hirakawa, Naohiro
1978-01-01
Space time synthesis and time synthesis codes were developed and applied to the space-dependent kinetics benchmark problem of a two-dimensional fast reactor model, and it was found both methods are accurate and economical for the fast reactor kinetics study. Comparison between the space time synthesis and the time synthesis was made. Also, in space time synthesis, the influence of the number of trial functions on the error and on the computing time and the effect of degeneration of expansion coefficients are investigated. The matrix factorization method is applied to the inversion of the matrix equation derived from the synthesis equation, and it is indicated that by the use of this scheme space-dependent kinetics problem of a fast reactor can be solved efficiently by space time synthesis. (auth.)
nth roots with Hilbert-Schmidt defect operator of normal contractions
International Nuclear Information System (INIS)
Duggal, B.P.
1992-08-01
Let T be a normal contraction (on a complex separable Hilbert space H into itself) with an nth root A such that the defect operator D A =(1-A*A) 1/2 is of the Hilbert-Schmidt class C 2 . Then either A is normal or A is similar to a normal contraction. In the case in which T is hyponormal, A n =T and D A is an element of C 2 , A is a ''coupling'' of a contraction similar to a normal contraction and a contraction which is the quasi-affine transform of a unilateral shift. These results are applied to prove a (Putnam-Fuglede type) commutatively theorem for operator valued roots of commutative analytic functions and hyponormal contractions T which have an nth root with Hilbert-Schmidt defect operator. 23 refs
Experimental Investigation of a Direct Methanol Fuel Cell with Hilbert Fractal Current Collectors
Directory of Open Access Journals (Sweden)
Jing-Yi Chang
2014-01-01
Full Text Available The Hilbert curve is a continuous type of fractal space-filling curve. This fractal curve visits every point in a square grid with a size of 2×2, 4×4, or any other power of two. This paper presents Hilbert fractal curve application to direct methanol fuel cell (DMFC current collectors. The current collectors are carved following first, second, and third order Hilbert fractal curves. These curves give the current collectors different free open ratios and opening perimeters. We conducted an experimental investigation into DMFC performance as a function of the free open ratio and opening perimeter on the bipolar plates. Nyquist plots of the bipolar plates are made and compared using electrochemical impedance spectroscopy (EIS experiments to understand the phenomena in depth. The results obtained in this paper could be a good reference for future current collector design.
H-SLAM: Rao-Blackwellized Particle Filter SLAM Using Hilbert Maps
Directory of Open Access Journals (Sweden)
Guillem Vallicrosa
2018-05-01
Full Text Available Occupancy Grid maps provide a probabilistic representation of space which is important for a variety of robotic applications like path planning and autonomous manipulation. In this paper, a SLAM (Simultaneous Localization and Mapping framework capable of obtaining this representation online is presented. The H-SLAM (Hilbert Maps SLAM is based on Hilbert Map representation and uses a Particle Filter to represent the robot state. Hilbert Maps offer a continuous probabilistic representation with a small memory footprint. We present a series of experimental results carried both in simulation and with real AUVs (Autonomous Underwater Vehicles. These results demonstrate that our approach is able to represent the environment more consistently while capable of running online.
Intrinsic two-dimensional states on the pristine surface of tellurium
Li, Pengke; Appelbaum, Ian
2018-05-01
Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.
Crystallization of SHARPIN using an automated two-dimensional grid screen for optimization
International Nuclear Information System (INIS)
Stieglitz, Benjamin; Rittinger, Katrin; Haire, Lesley F.
2012-01-01
The expression, purification and crystallization of an N-terminal fragment of SHARPIN are reported. Diffraction-quality crystals were obtained using a two-dimensional grid-screen seeding technique. An N-terminal fragment of human SHARPIN was recombinantly expressed in Escherichia coli, purified and crystallized. Crystals suitable for X-ray diffraction were obtained by a one-step optimization of seed dilution and protein concentration using a two-dimensional grid screen. The crystals belonged to the primitive tetragonal space group P4 3 2 1 2, with unit-cell parameters a = b = 61.55, c = 222.81 Å. Complete data sets were collected from native and selenomethionine-substituted protein crystals at 100 K to 2.6 and 2.0 Å resolution, respectively
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
International Nuclear Information System (INIS)
Zunino, Luciano; Ribeiro, Haroldo V.
2016-01-01
The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.
Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra
Mcleod, M. G.
1983-01-01
Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.
Novel effects of strains in graphene and other two dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Amorim, B., E-mail: amorim.bac@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Department of Physics and Center of Physics, University of Minho, P-4710-057, Braga (Portugal); Cortijo, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Juan, F. de [Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Grushin, A.G. [Max-Planck-Institut fur Physik komplexer Systeme, 01187 Dresden (Germany); Guinea, F. [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); IMDEA Nanociencia Calle de Faraday, 9, Cantoblanco, 28049, Madrid (Spain); Donostia International Physics Center (DIPC), 20018 San Sebastián (Spain); Gutiérrez-Rubio, A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Ochoa, H. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Donostia International Physics Center (DIPC), 20018 San Sebastián (Spain); Parente, V. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); IMDEA Nanociencia Calle de Faraday, 9, Cantoblanco, 28049, Madrid (Spain); Roldán, R.; San-Jose, P.; Schiefele, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Sturla, M. [IFLP-CONICET. Departamento de Física, Universidad Nacional de La Plata, (1900) La Plata (Argentina); Vozmediano, M.A.H. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)
2016-03-03
The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent theoretical and experimental work shows the influence of strains in many properties of graphene not considered before, such as electronic transport, spin–orbit coupling, the formation of Moiré patterns and optics. There is also significant evidence of anharmonic effects, which can modify the structural properties of graphene. These phenomena are not restricted to graphene, and they are being intensively studied in other two dimensional materials, such as the transition metal dichalcogenides. We review here recent developments related to the role of strains in the structural and electronic properties of graphene and other two dimensional compounds.
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown
Energy Technology Data Exchange (ETDEWEB)
Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)
2016-01-04
Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.
Quasi-two-dimensional thermoelectricity in SnSe
Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.
2018-01-01
Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.