Two-dimensional generalized harmonic oscillators and their Darboux partners
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2011-01-01
We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)
Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
International Nuclear Information System (INIS)
Torres del Castillo, G.F.; Tepper G, T.
2002-01-01
It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)
International Nuclear Information System (INIS)
Wang Qing; Hou Yu-Long; Jing Jian; Long Zheng-Wen
2014-01-01
In this paper, we study symmetrical properties of two-dimensional (2D) screened Dirac Hydrogen atom and isotropic harmonic oscillator with scalar and vector potentials of equal magnitude (SVPEM). We find that it is possible for both cases to preserve so(3) and su(2) dynamical symmetries provided certain conditions are satisfied. Interestingly, the conditions for preserving these dynamical symmetries are exactly the same as non-relativistic screened Hydrogen atom and screened isotropic oscillator preserving their dynamical symmetries. Some intuitive explanations are proposed. (general)
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W. P.
2009-01-01
For a closed quantum system the state operator must be a function of the Hamiltonian. When the state is degenerate, additional constants of the motion enter the play. But although it is the Weyl transform of the state operator, the Wigner function is not necessarily a function of the Weyl...... transforms of the constants of the motion. We derive conditions for which this is actually the case. The Wigner functions of the energy eigenstates of a two-dimensional isotropic harmonic oscillator serve as an important illustration....
A model of the two-dimensional quantum harmonic oscillator in an AdS{sub 3} background
Energy Technology Data Exchange (ETDEWEB)
Frick, R. [Universitaet zu Koeln, Institut fuer Theoretische Physik, Cologne (Germany)
2016-10-15
In this paper we study a model of the two-dimensional quantum harmonic oscillator in a three-dimensional anti-de Sitter background. We use a generalized Schroedinger picture in which the analogs of the Schroedinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the AdS{sub 3} spacetime. In this picture, we have a metamorphosis of the Heisenberg uncertainty relations. (orig.)
One dimension harmonic oscillator
International Nuclear Information System (INIS)
Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.
1977-01-01
The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr
Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.
2015-01-01
A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for…
Two dimensional kinetic analysis of electrostatic harmonic plasma waves
Energy Technology Data Exchange (ETDEWEB)
Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); SSR, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)
2016-06-15
Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.
SU(1,2) invariance in two-dimensional oscillator
Energy Technology Data Exchange (ETDEWEB)
Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2017-02-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Poincare' maps of impulsed oscillators and two-dimensional dynamics
International Nuclear Information System (INIS)
Lupini, R.; Lenci, S.; Gardini, L.; Urbino Univ.
1996-01-01
The Poincare' map of one-dimensional linear oscillators subject to periodic, non-linear and time-delayed impulses is shown to reduce to a family of plane maps with possible non-uniqueness of the inverse. By restricting the analysis to a convenient form of the impulse function, a variety of interesting dynamical behaviours in this family are pointed out, including multistability and homoclinic bifurcations. Critical curves of two-dimensional endomorphisms are used to identify the structure of absorbing areas and their bifurcations
International Nuclear Information System (INIS)
Taneichi, T.; Kobayashi, T.
2007-01-01
Discussion on wavelength dependent 'anharmonic' effects in a pump-probe signal for a system of wavepacket on one- and two-dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wavepacket motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spectrum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior in phase of a pump-probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump-probe signal
Gerhardts, Rolf R.
2015-11-01
Model calculations for commensurability oscillations of the low-field magnetoresistance of two-dimensional electron systems (2DES) in lateral superlattices, consisting of unit cells with an internal structure, are compared with recent experiments. The relevant harmonics of the effective modulation potential depend not only on the geometrical structure of the modulated unit cell, but also strongly on the nature of the modulation. While higher harmonics of an electrostatically generated surface modulation are exponentially damped at the position of the 2DES about 90 nm below the surface, no such damping appears for strain-induced modulation generated, e.g., by the deposition of stripes of calixarene resist on the surface before cooling down the sample.
Kozlov, I. V.; Kolesnichenko, Yu. A.
2017-07-01
We present a theoretical study of the spatial distribution of the local density of states (LDOS) and the local magnetization density (LMD) in the vicinity of a magnetic point-defect in a degenerate two-dimensional electron gas with a mixed Rashba-Dresselhaus spin-orbit coupling interaction (SOI). The dependence of the Friedel oscillations, which arise under these conditions, on the ratio of the SOI constants is investigated. We obtain asymptotic expressions for the oscillatory parts of the LDOS and the LMD, that are accurate for large distances from the defect. It is shown, that the Friedel oscillations are significantly anisotropic and contain several harmonics for certain ratios of the SOI constants. Period of the oscillations for directions along the symmetry axes of the Fermi contours are determined. Finally, we introduce a method for determining the values of the two SOI constants by measuring the period of the Friedel oscillations of the LDOS and the LMD for different harmonics.
Two dimensional (4,0) supergravity in harmonic superspace. The action and the matter couplings
International Nuclear Information System (INIS)
Lhallabi, T.; Saidi, E.H.
1988-08-01
The superfield formulation of the two dimensional (4,0) supergravity is developed using the harmonic superspace techniques. The different sets of constraints are given and their solutions are expressed in terms of a SU(2) self dual torsion superfield and harmonic prepotentials. The pure auxiliary (4,0) Einstein action generalizing the (2,0) one is written down and the most general (4,0) matter couplings are given. (author). 24 refs
The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator
International Nuclear Information System (INIS)
Borzov, V. V.; Damaskinsky, E. V.
2014-01-01
In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators
Harmonically trapped dipolar fermions in a two-dimensional square lattice
DEFF Research Database (Denmark)
Larsen, Anne-Louise G.; Bruun, Georg
2012-01-01
We consider dipolar fermions in a two-dimensional square lattice and a harmonic trapping potential. The anisotropy of the dipolar interaction combined with the lattice leads to transitions between phases with density order of different symmetries. We show that the attractive part of the dipolar...
Harmonic oscillator in Snyder space
Indian Academy of Sciences (India)
The harmonic oscillator in Snyder space is investigated in its classical and quantum versions. The classical trajectory is obtained and the semiclassical quantization from the phase space trajectories is discussed. An effective cut-off to high frequencies is found. The quantum version is developed and an equivalent usual ...
The relativistic harmonic oscillator reconsidered
International Nuclear Information System (INIS)
Hofsaess, T.
1978-01-01
The bound states of scalar quarks interacting through a scalar harmonic oscillator are investigated. In the presence of this interaction the dressed quark propagator differs substantially from the free one. This leads to a Bethe Salpeter equation which does not allow for any stable bound states of positive mass. (orig.) [de
Harmonic oscillator on a lattice
International Nuclear Information System (INIS)
Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.
1983-01-01
The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)
Chimera states in two-dimensional networks of locally coupled oscillators
Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.
2018-02-01
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera
International Nuclear Information System (INIS)
Abreu, M.P. de.
1988-01-01
An alternative pseudo-harmonics method for two-dimensional reactor calculations is presented together with some one-energy group results, namely, eigenvalue and flux reconstruction. A brief description of the Standard and Modified versions of the method is presented for critical purposes, i.e., it was intended to discuss the previously developed versions and in some sense to improve the solution of the K-th eigenvalue and flux terms of the corresponding expansions. Intense and localized perturbations, where a significant imbalance between neutron production and destruction rates exists, were simulated. Since convergence in flux and eigenvalue were achieved for all test-cases, there is a tendency to consider the alternative method to be very promising for two-dimensional calculations. (author)
High-order harmonic generation from a two-dimensional band structure
Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You
2018-04-01
In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.
International Nuclear Information System (INIS)
Wang, C M; Lei, X L
2014-01-01
We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)
International Nuclear Information System (INIS)
Grekov, D.; Kasilov, S.; Kernbichler, W.
2016-01-01
A two dimensional numerical code for computation of the electromagnetic field of a fast magnetosonic wave in a tokamak at high harmonics of the ion cyclotron frequency has been developed. The code computes the finite difference solution of Maxwell equations for separate toroidal harmonics making use of the toroidal symmetry of tokamak plasmas. The proper boundary conditions are prescribed at the realistic tokamak vessel. The currents in the RF antenna are specified externally and then used in Ampere law. The main poloidal tokamak magnetic field and the ''kinetic'' part of the dielectric permeability tensor are treated iteratively. The code has been verified against known analytical solutions and first calculations of current drive in the spherical torus are presented.
Introduction to classical and quantum harmonic oscillators
Bloch, Sylvan C
2013-01-01
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con
Density functional theory investigation of two-dimensional dipolar fermions in a harmonic trap
International Nuclear Information System (INIS)
Ustunel, Hande; Abedinpour, Saeed H; Tanatar, B
2014-01-01
We investigate the behavior of polarized dipolar fermions in a two-dimensional harmonic trap in the framework of the density functional theory (DFT) formalism using the local density approximation. We treat only a few particles interacting moderately. Important results were deduced concerning key characteristics of the system such as total energy and particle density. Our results indicate that, at variance with Coulombic systems, the exchange- correlation component was found to provide a large contribution to the total energy for a large range of interaction strengths and particle numbers. In addition, the density profiles of the dipoles are shown to display important features around the origin that is not possible to capture by earlier, simpler treatments of such systems
On oscillation and nonoscillation of two-dimensional linear differential systems
Czech Academy of Sciences Publication Activity Database
Lomtatidze, A.; Šremr, Jiří
2013-01-01
Roč. 20, č. 3 (2013), s. 573-600 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : two-dimensional system of linear ODE * oscillation * nonoscillation Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-3/gmj-2013-0025/gmj-2013-0025.xml?format=INT
On oscillation and nonoscillation of two-dimensional linear differential systems
Czech Academy of Sciences Publication Activity Database
Lomtatidze, A.; Šremr, Jiří
2013-01-01
Roč. 20, č. 3 (2013), s. 573-600 ISSN 1072-947X Institutional support: RVO:67985840 Keywords : two-dimensional system of linear ODE * oscillation * nonoscillation Subject RIV: BA - General Mathematics Impact factor: 0.340, year: 2013 http://www.degruyter.com/view/j/gmj.2013.20.issue-3/gmj-2013-0025/gmj-2013-0025. xml ?format=INT
Hall field-induced magnetoresistance oscillations of a two-dimensional electron system
International Nuclear Information System (INIS)
Kunold, A.; Torres, M.
2008-01-01
We develop a model of the nonlinear response to a dc electrical current of a two-dimensional electron system (2DES) placed on a magnetic field. Based on the exact solution to the Schroedinger equation in arbitrarily strong electric and magnetic fields, and separating the relative and guiding center coordinates, a Kubo-like formula for the current is worked out as a response to the impurity scattering. Self-consistent expressions determine the longitudinal and Hall components of the electric field in terms of the dc current. The differential resistivity displays strong Hall field-induced oscillations, in agreement with the main features of the phenomenon observed in recent experiments
Steffen, T; Tanimura, Y
The quantum Fokker-Planck equation is derived for a system nonlinearly coupled to a harmonic oscillator bath. The system-bath interaction is assumed to be linear in the bath coordinates but quadratic in the system coordinate. The relaxation induced dynamics of a harmonic system are investigated by
Self-oscillations of a two-dimensional shear flow with forcing and dissipation
López Zazueta, A.; Zavala Sansón, L.
2018-04-01
Two-dimensional shear flows continuously forced in the presence of dissipative effects are studied by means of numerical simulations. In contrast with most previous studies, the forcing is confined in a finite region, so the behavior of the system is characterized by the long-term evolution of the global kinetic energy. We consider regimes with 1 limited to develop only one vortical instability by choosing an appropriate width of the forcing band. The most relevant regime is found for Reλ > 36, in which the energy maintains a regular oscillation around a reference value. The flow configuration is an elliptical vortex tilted with respect to the forcing axis, which oscillates steadily also. Second, the flow is allowed to develop two Kelvin-Helmholtz billows and eventually more complicated structures. The regimes of the one-vortex case are observed again, except for Reλ > 135. At these values, the energy oscillates chaotically as the two vortices merge, form dipolar structures, and split again, with irregular periodicity. The self-oscillations are explained as a result of the alternate competition between forcing and dissipation, which is verified by calculating the budget terms in the energy equation. The relevance of the forcing-vs.-dissipation competition is discussed for more general flow systems.
Kilpatrick, Zachary P.; Bressloff, Paul C.
2009-01-01
We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.
Kilpatrick, Zachary P.
2009-10-29
We study the spatiotemporal dynamics of a two-dimensional excitatory neuronal network with synaptic depression. Coupling between populations of neurons is taken to be nonlocal, while depression is taken to be local and presynaptic. We show that the network supports a wide range of spatially structured oscillations, which are suggestive of phenomena seen in cortical slice experiments and in vivo. The particular form of the oscillations depends on initial conditions and the level of background noise. Given an initial, spatially localized stimulus, activity evolves to a spatially localized oscillating core that periodically emits target waves. Low levels of noise can spontaneously generate several pockets of oscillatory activity that interact via their target patterns. Periodic activity in space can also organize into spiral waves, provided that there is some source of rotational symmetry breaking due to external stimuli or noise. In the high gain limit, no oscillatory behavior exists, but a transient stimulus can lead to a single, outward propagating target wave. © Springer Science + Business Media, LLC 2009.
Bonilla, L. L.; Carretero, M.; Segura, A.
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Bonilla, L L; Carretero, M; Segura, A
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Interbasis expansions for isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)
2012-03-12
The exact solutions of the isotropic harmonic oscillator are reviewed in Cartesian, cylindrical polar and spherical coordinates. The problem of interbasis expansions of the eigenfunctions is solved completely. The explicit expansion coefficients of the basis for given coordinates in terms of other two coordinates are presented for lower excited states. Such a property is occurred only for those degenerated states for given principal quantum number n. -- Highlights: ► Exact solutions of harmonic oscillator are reviewed in three coordinates. ► Interbasis expansions of the eigenfunctions is solved completely. ► This is occurred only for those degenerated states for given quantum number n.
Quantization of the damped harmonic oscillator revisited
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiott@fma.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Fresneda, R., E-mail: fresneda@gmail.co [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Gitman, D.M., E-mail: gitman@dfn.if.usp.b [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)
2011-04-11
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: We prove the local equivalence of two damped harmonic oscillator models. We find different high energy behaviors between the two models. Based on the local equivalence, we make a simple construction of the coherent states.
Quantization of the damped harmonic oscillator revisited
International Nuclear Information System (INIS)
Baldiotti, M.C.; Fresneda, R.; Gitman, D.M.
2011-01-01
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. - Highlights: → We prove the local equivalence of two damped harmonic oscillator models. → We find different high energy behaviors between the two models. → Based on the local equivalence, we make a simple construction of the coherent states.
The generation of two-dimensional vortices by transverse oscillation of a soap film
International Nuclear Information System (INIS)
Afenchenko, V.O.; Ezersky, A.B.; Kiyashko, S.V.; Rabinovich, M.I.; Weidman, P.D.
1998-01-01
An experimental investigation of the dynamics of horizontal soap films stretched over circular or square boundaries undergoing periodic transverse oscillations at frequencies in the range 20 - 200 Hz is reported. Concomitant with modes of transverse flexural oscillations, it was observed that two-dimensional vortices in the plane of the film are excited. The vortices may be either (i) large, scaling with the size of the cavity or (ii) small, localized at a wavelength or half-wavelength of the membrane modes. In the experiments a stable generation of one, two, hor-ellipsis, ten pairs of counter-rotating vortices were observed in finite regions of amplitude-frequency parameter space. The circulation strength of vortices in a given vortex pattern increases with increasing external forcing and with decreasing soap film thickness. A theoretical model based on the wave-boundary interaction of excited Marangoni waves reveals a vorticity generation mechanism active in vibrating soap films. This model shows that vorticity is generated throughout the entire liquid volume by viscous diffusion, and qualitatively reproduces many steady vortex patterns observed in the experiment. However, the model cannot explain the existence of the sometimes intense vortices observed far from the film boundary that do not appear to be generated by diffusive processes. copyright 1998 American Institute of Physics
'quantumness' measures in the decohering harmonic oscillator
Indian Academy of Sciences (India)
We studied the behaviour under decoherence of four different measures of the distance between quantum states and classical states for the harmonic oscillator coupled to a linear Markovian bath. Three of these are relative measures, using different definitions of the distance between the given quantum states and the set of ...
Sobolev Spaces Associated to the Harmonic Oscillator
Indian Academy of Sciences (India)
We define the Hermite-Sobolev spaces naturally associated to the harmonic oscillator H = − + | x | 2 . Structural properties, relations with the classical Sobolev spaces, boundedness of operators and almost everywhere convergence of solutions of the Schrödinger equation are also considered.
Information cloning of harmonic oscillator coherent states
Indian Academy of Sciences (India)
We show that in the case of unknown harmonic oscillator coherent statesit is possible to achieve what we call perfect information cloning. By this we mean that it is still possible to make arbitrary number of copies of a state which has exactly the same information content as the original unknown coherent state. By making use ...
Laguerre polynomials by a harmonic oscillator
Baykal, Melek; Baykal, Ahmet
2014-09-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.
Laguerre polynomials by a harmonic oscillator
International Nuclear Information System (INIS)
Baykal, Melek; Baykal, Ahmet
2014-01-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)
Rabi oscillation between states of a coupled harmonic oscillator
International Nuclear Information System (INIS)
Park, Tae Jun
2003-01-01
Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves
Introduction to Classical and Quantum Harmonic Oscillators
International Nuclear Information System (INIS)
Latal, H
1997-01-01
As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)
The macroscopic harmonic oscillator and quantum measurements
International Nuclear Information System (INIS)
Hayward, R.W.
1982-01-01
A quantum mechanical description of a one-dimensional macroscopic harmonic oscillator interacting with its environment is given. Quasi-coherent states are introduced to serve as convenient basis states for application of a density matrix formalism to characterize the system. Attention is given to the pertinent quantum limits to the precision of measurement of physical observables that may provide some information on the nature of a weak classical force interacting with the oscillator. A number of ''quantum nondemolition'' schemes proposed by various authors are discussed. (Auth.)
Hyperchaotic circuit with damped harmonic oscillators
DEFF Research Database (Denmark)
Lindberg, Erik; Murali, K.; Tamasevicius, A.
2001-01-01
A simple fourth-order hyperchaotic circuit with damped harmonic oscillators is described. ANP3 and PSpice simulations including an eigenvalue study of the linearized Jacobian are presented together with a hardware implementation. The circuit contains two inductors with series resistance, two ideal...... capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...... by means of numerical integration of the appropriate differential equations....
Energy Technology Data Exchange (ETDEWEB)
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Centre Kurchatov Institute, Kurchatov Sq. 1, Moscow (Russian Federation)
2013-07-01
Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)
Generating transverse response explicitly from harmonic oscillators
Yao, Yuan; Tang, Ying; Ao, Ping
2017-10-01
We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.
Non-singular spiked harmonic oscillator
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Guardiola, R.
1990-01-01
A perturbative study of a class of non-singular spiked harmonic oscillators defined by the hamiltonian H = d sup(2)/dr sup(2) + r sup(2) + λ/r sup(α) in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. (author)
International Nuclear Information System (INIS)
Matausek, M.V.; Milosevic, M.
1986-01-01
In the present paper a generalization is performed of a procedure to solve multigroup spherical harmonics equations, which has originally been proposed and developed for one-dimensional systems in cylindrical or spherical geometry, and later extended for a special case of a two-dimensional system in r-z geometry. The expressions are derived for the axial and the radial dependence of the group values of the neutron flux moments, in the P-3 approximation of the spherical harmonics method, in a cylindrically symmetrical system with an arbitrary number of material regions in both r- and z-directions. In the special case of an axially homogeneous system, these expressions reduce to the relations derived previously. (author)
A quantum harmonic oscillator and strong chaos
International Nuclear Information System (INIS)
Oprocha, Piotr
2006-01-01
It is known that many physical systems which do not exhibit deterministic chaos when treated classically may exhibit such behaviour if treated from the quantum mechanics point of view. In this paper, we will show that an annihilation operator of the unforced quantum harmonic oscillator exhibits distributional chaos as introduced in B Schweizer and J SmItal (1994 Trans. Am. Math. Soc. 344 737-54). Our approach strengthens previous results on chaos in this model and provides a very powerful tool to measure chaos in other (quantum or classical) models
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jun [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China); College of Physics and Electronic Engineering, Henan Normal University, 453007 Xinxiang, Henan (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics, Beijing Institute of Technology and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081 (China)
2015-09-28
Simultaneous negative refraction for both the fundamental frequency (FF) and second-harmonic (SH) fields in two-dimensional nonlinear photonic crystals have been found through both the physical analysis and exact numerical simulation. By combining such a property with the phase-matching condition and strong second-order susceptibility, we have designed a SH lens to realize focusing for both the FF and SH fields at the same time. Good-quality non-near field images for both FF and SH fields have been observed. The physical mechanism for such SH focusing phenomena has been disclosed, which is different from the backward SH generation as has been pointed out in the previous investigations. In addition, the effect of absorption losses on the phenomena has also been discussed. Thus, potential applications of these phenomena to biphotonic microscopy technique are anticipated.
International Nuclear Information System (INIS)
Bruun, G.M.; Nicopoulos, V.N.; Johnson, N.F.
1997-01-01
We investigate de Haas endash van Alphen (dHvA) oscillations in the mixed state of a type-II two-dimensional superconductor within a self-consistent Gor close-quote kov perturbation scheme. Assuming that the order parameter forms a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of the perturbation theory to fourth and eighth order against an exact numerical solution of the corresponding Bogoliubov endash de Gennes equations. The perturbation theory is found to describe well the onset of superconductivity close to the transition point H c2 . Contrary to earlier calculations by other authors we do not find that the perturbative scheme predicts any maximum of the dHvA oscillations below H c2 . Instead we obtain a substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite Zeeman splitting. Furthermore, we have investigated the recently debated issue of the possibility of a sign change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and we have found good agreement. copyright 1997 The American Physical Society
Spectral inverse problem for q-deformed harmonic oscillator
Indian Academy of Sciences (India)
The supersymmetric quantization condition is used to study the wave functions of SWKB equivalent -deformed harmonic oscillator which are obtained by using only the knowledge of bound-state spectra of -deformed harmonic oscillator. We have also studied the nonuniqueness of the obtained interactions by this ...
Modelling of oscillations in two-dimensional echo-spectra of the Fenna-Matthews-Olson complex
International Nuclear Information System (INIS)
Hein, Birgit; Kreisbeck, Christoph; Kramer, Tobias; Rodríguez, Mirta
2012-01-01
Recent experimental observations of time-dependent beatings in the two-dimensional echo-spectra of light-harvesting complexes at ambient temperatures have opened up the question of whether coherence and wave-like behaviour play a significant role in photosynthesis. We carry out a numerical study of the absorption and echo-spectra of the Fenna-Matthews-Olson (FMO) complex in Chlorobium tepidum and analyse the requirements in the theoretical model needed to reproduce beatings in the calculated spectra. The energy transfer in the FMO pigment-protein complex is theoretically described by an exciton Hamiltonian coupled to a phonon bath which accounts for the pigments' electronic and vibrational excitations, respectively. We use the hierarchical equations of motions method to treat the strong couplings in a non-perturbative way. We show that the oscillations in the two-dimensional echo-spectra persist in the presence of thermal noise and static disorder. (paper)
A Look at Damped Harmonic Oscillators through the Phase Plane
Daneshbod, Yousef; Latulippe, Joe
2011-01-01
Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…
National Research Council Canada - National Science Library
Dyakonov, M
1997-01-01
The purpose of this work is to develop further the theory of novel mechanisms for generation and detection of electromagnetic radiation in the terahertz range using the plasma oscillations of the two...
Equidistance of the complex two-dimensional anharmonic oscillator spectrum: the exact solution
International Nuclear Information System (INIS)
Cannata, F; Ioffe, M V; Nishnianidze, D N
2012-01-01
We study a class of quantum two-dimensional models with complex potentials of a specific form. They can be considered as the generalization of a recently studied model with quadratic interaction not amenable to the conventional separation of variables. In the present case, the property of shape invariance provides the equidistant form of the spectrum and the algorithm to construct eigenfunctions analytically. It is shown that the Hamiltonian is non-diagonalizable, and the resolution of identity must also include the corresponding associated functions. In the specific case of anharmonic second plus fourth-order interaction, expressions for the wavefunctions and associated functions are constructed explicitly for the lowest levels, and the recursive algorithm to produce higher level wavefunctions is given. (paper)
Oscillation of two-dimensional linear second-order differential systems
International Nuclear Information System (INIS)
Kwong, M.K.; Kaper, H.G.
1985-01-01
This article is concerned with the oscillatory behavior at infinity of the solution y: [a, ∞) → R 2 of a system of two second-order differential equations, y''(t) + Q(t) y(t) = 0, t epsilon[a, ∞); Q is a continuous matrix-valued function on [a, ∞) whose values are real symmetric matrices of order 2. It is shown that the solution is oscillatory at infinity if the largest eigenvalue of the matrix integral/sub a//sup t/ Q(s) ds tends to infinity as t → ∞. This proves a conjecture of D. Hinton and R.T. Lewis for the two-dimensional case. Furthermore, it is shown that considerably weaker forms of the condition still suffice for oscillatory behavior at infinity. 7 references
Harmonic and Anharmonic Behaviour of a Simple Oscillator
O'Shea, Michael J.
2009-01-01
We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…
International Nuclear Information System (INIS)
Golubovskii, Yu B; Kozakov, R V; Wilke, C; Behnke, J; Nekutchaev, V O
2004-01-01
Time and space resolved measurements of the plasma potential in axial and radial directions in S- and P-striations in neon are performed. The measurements in different radial positions were carried out with high spatial resolution by means of simultaneous displacement of electrodes relative to the stationary probe. The plasma potential was found to be a superposition of the potentials of ionization wave and plasma oscillations relative to the electrodes. A method of decomposition of the measured spatio-temporal structure of the potential in components associated with the plasma oscillations and ionization wave propagation is proposed. A biorthogonal decomposition of the spatio-temporal structure of the potential is performed. A comparison of the decomposition results obtained by the two methods is made. The experiments revealed a two-dimensional structure of the potential field in an ionization wave. Qualitative discussions of the reasons for the occurrence of this two-dimensional structure are presented based on the analysis of the kinetic equation and the equation for the potential
Phase-matching-free parametric oscillators based on two dimensional semiconductors
Ciattoni, A.; Marini, A.; Rizza, C.; Conti, C.
2017-01-01
Optical parametric oscillators are widely-used pulsed and continuous-wave tunable sources for innumerable applications, as in quantum technologies, imaging and biophysics. A key drawback is material dispersion imposing the phase-matching condition that generally entails a complex setup design, thus hindering tunability and miniaturization. Here we show that the burden of phase-matching is surprisingly absent in parametric micro-resonators adopting monolayer transition-metal dichalcogenides as...
Coupled harmonic oscillators and their quantum entanglement
Makarov, Dmitry N.
2018-04-01
A system of two coupled quantum harmonic oscillators with the Hamiltonian H ̂=1/2 (1/m1p̂1 2+1/m2p̂2 2+A x12+B x22+C x1x2) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H ̂Ψ =i ℏ ∂/Ψ ∂ t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.
Sticky orbits of a kicked harmonic oscillator
International Nuclear Information System (INIS)
Lowenstein, J H
2005-01-01
We study a Hamiltonian dynamical system consisting of a one-dimensional harmonic oscillator kicked impulsively in 4:1 resonance with its natural frequency, with the amplitude of the kick proportional to a sawtooth function of position. For special values of the coupling parameter, the dynamical map W relating the phase-space coordinates just prior to each kick acts locally as a piecewise affine map K on a square with rational rotation number p/q. For λ = 2cos2πp/q a quadratic irrational, a recursive return-map structure allows us to completely characterize the orbits of the map K. The aperiodic orbits of this system are sticky in the sense that they spend all of their time wandering pseudo-chaotically (with strictly zero Lyapunov exponent) in the vicinity of self-similar archipelagos of periodic islands. The same recursive structure used locally for K gives us the asymptotic scaling features of long orbits of W on the infinite plane. For some coupling parameters the orbits remain bounded, but for others the distance from the origin increases as a logarithm or power of the time. In the latter case, we find examples of sub-diffusive, diffusive, super-diffusive, and ballistic power-law behavior
Symmetries of the quantum damped harmonic oscillator
International Nuclear Information System (INIS)
Guerrero, J; López-Ruiz, F F; Aldaya, V; Cossío, F
2012-01-01
For the non-conservative Caldirola–Kanai system, describing a quantum damped harmonic oscillator, a couple of constant-of-motion operators generating the Heisenberg–Weyl algebra can be found. The inclusion of the standard time evolution generator (which is not a symmetry) as a symmetry in this algebra, in a unitary manner, requires a non-trivial extension of this basic algebra and hence of the physical system itself. Surprisingly, this extension leads directly to the so-called Bateman dual system, which now includes a new particle acting as an energy reservoir. In addition, the Caldirola–Kanai dissipative system can be retrieved by imposing constraints. The algebra of symmetries of the dual system is presented, as well as a quantization that implies, in particular, a first-order Schrödinger equation. As opposed to other approaches, where it is claimed that the spectrum of the Bateman Hamiltonian is complex and discrete, we obtain that it is real and continuous, with infinite degeneracy in all regimes. (paper)
Control of Limit Cycle Oscillations of a Two-Dimensional Aeroelastic System
Directory of Open Access Journals (Sweden)
M. Ghommem
2010-01-01
Full Text Available Linear and nonlinear static feedback controls are implemented on a nonlinear aeroelastic system that consists of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. The normal form is used to investigate the Hopf bifurcation that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing limit cycle oscillations (LCO. It is shown that linear control can be used to delay the flutter onset and reduce the LCO amplitude. Yet, its required gains remain a function of the speed. On the other hand, nonlinear control can be effciently implemented to convert any subcritical Hopf bifurcation into a supercritical one and to significantly reduce the LCO amplitude.
A harmonic oscillator having “volleyball damping”
Mickens, R. E.; Oyedeji, K.; Rucker, S. A.
2006-05-01
Volleyball damping corresponds to linear damping up to a certain critical velocity, with zero damping above this value. The dynamics of a linear harmonic oscillator is investigated with this damping mechanism.
International Nuclear Information System (INIS)
Yamanaka, Shuji; Yayama, Hideki; Arai, Toshikazau; Anju Sawada, Anju; Fukuda, Akira
2013-01-01
We measured the resonance spectra of edge magnetoplasmon (EMP) oscillations in a two-dimensional (2D) electron system located on a liquid-helium surface below 1.1 K. Systematic measurements of the resonance frequency and the damping rate as a function of the lateral confinement electric field strength shows clear evidence of the oscillation mode transformation. A pronounced change corresponding to the mode transformation was observed in the damping rate. When 2D electrons are confined in a strong lateral electric field, the damping is weak. As the lateral confinement electric field is reduced below a certain threshold value, an abrupt enhancement of the damping rate is observed. We hypothesize that the weak damping mode in the strong lateral confinement electric field is the compressive density oscillation of the electrons near the edge (conventional EMP) and the strong damping mode in the weak confinement field is the coupled mode of conventional EMP and the boundary displacement wave (BDW). The observation of the strong damping in the BDW-EMP coupled mode is a manifestation of the nearly incompressible feature of strongly interacting classical electrons, which agrees with earlier theoretical predictions.
Osherovich, V. A.; Fainberg, J.
2018-01-01
We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.
A new analytical approximation to the Duffing-harmonic oscillator
International Nuclear Information System (INIS)
Fesanghary, M.; Pirbodaghi, T.; Asghari, M.; Sojoudi, H.
2009-01-01
In this paper, a novel analytical approximation to the nonlinear Duffing-harmonic oscillator is presented. The variational iteration method (VIM) is used to obtain some accurate analytical results for frequency. The accuracy of the results is excellent in the whole range of oscillation amplitude variations.
On quantum harmonic oscillator being subjected to absolute
Indian Academy of Sciences (India)
In a quantum harmonic oscillator (QHO), the energy of the oscillator increases with increased frequency. In this paper, assuming a boundary condition that the product of momentum and position, or the product of energy density and position remains constant in the QHO, it is established that a particle subjected to increasing ...
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...
International Nuclear Information System (INIS)
Polivanskij, V.P.
1989-01-01
The method to solve two-dimensional equations of neutron transport using 4P 0 -approximation is presented. Previously such approach was efficiently used for the solution of one-dimensional problems. New an attempt is made to apply the approach to solution of two-dimensional problems. Algorithm of the solution is given, as well as results of test neutron-physical calculations. A considerable as compared with diffusion approximation is shown. 11 refs
On the moment of inertia of a quantum harmonic oscillator
International Nuclear Information System (INIS)
Khamzin, A. A.; Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.
2013-01-01
An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.
Crypto-harmonic oscillator in higher dimensions: classical and quantum aspects
International Nuclear Information System (INIS)
Ghosh, Subir; Majhi, Bibhas Ranjan
2008-01-01
We study complexified harmonic oscillator models in two and three dimensions. Our work is a generalization of the work of Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) who initiated the study of these Crypto-gauge invariant models that can be related to PT-symmetric models. We show that rotational symmetry in higher spatial dimensions naturally introduces more constraints (in contrast to Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) where one deals with a single constraint) with a much richer constraint structure. Some common as well as distinct features in the study of the same Crypto-oscillator in different dimensions are revealed. We also quantize the two dimensional Crypto-oscillator
On the quantization of a nonlinear oscillator with quasi-harmonic behaviour
International Nuclear Information System (INIS)
Ranada, M.F.; Carinena, J.F.; Satander, M.
2006-01-01
Full text: (author)The quantum version of a non-linear oscillator, depending of a parameter λ, is studied. This λ-dependent system can be considered deformation of the harmonic oscillator in the sense that for λ→0 all the characteristics of the linear oscillator are recovered. This is a problem of quantization of a system with position-dependent mass and with a λ-dependent nonpolynominal rational potential. The quantization problem is solved using existence of a Killing vector, the λ-dependent Schroedinger equation is exactly solved and λ-dependent eigenenergies and eigenfunctions are obtained. The λ-dependent wave functions appear as related with a family of orthogonal polynomials that can be considered as deformations of the standard Hermite polynomials. In the second part, it is proved the superintegrability of the two-dimensional system
Fundamental and Harmonic Oscillations in Neighboring Coronal Loops
Li, Hongbo; Liu, Yu; Vai Tam, Kuan
2017-06-01
We present observations of multimode (fundamental and harmonic) oscillations in a loop system, which appear to be simultaneously excited by a GOES C-class flare. Analysis of the periodic oscillations reveals that (1) the primary loop with a period of P a ≈ 4 minutes and a secondary loop with two periods of P a ≈ 4 minutes and P b ≈ 2 minutes are detected simultaneously in closely spaced loop strands; (2) both oscillation components have their peak amplitudes near the loop apex, while in the second loop the low-frequency component P a dominates in a loop segment that is two times larger than the high-frequency component P b ; (3) the harmonic mode P b shows the largest deviation from a sinusoidal loop shape at the loop apex. We conclude that multiple harmonic modes with different displacement profiles can be excited simultaneously even in closely spaced strands, similar to the overtones of a violin string.
International Nuclear Information System (INIS)
Kosevich, Yu.A.; Syrkin, E.S.
1990-06-01
Low frequency collective oscillations in a superlattice consisting of alternating highly anisotropic layers are considered. Such superstructure may be formed in the ferroelastic near the structural phase transition by alternation of twins. For the surface waves, propagating along the layers, the conditions and the range of existence of those with the dispersion law ω∼K 1/2 , characteristics for two-dimensional plasmons, have been analyzed for a solid-state system with consideration for elastic anisotropy and retardation of acoustic waves. Such excitations ('dyadons') were used in an attempt to explain the anomalies of low temperature thermodynamic and kinetic characteristics of high-T c superconductors. We have shown that the similarity of the densities of the matching phases and the retardation of elastic waves in the crystal narrow the range of existence of dyadons, but high elastic anisotropy of the solid phases enlarges the range of existence of such excitations in solid-state systems. The example of possible crystalline geometry of the phase matching, for which there arise collective excitations of the type under consideration, is found. For transverse and longitudinal waves propagating across the layers, the existence is proved of low frequency acoustic branches separated by a wide gap from the nearest optical branches. (author). 18 refs
Predicting charmonium and bottomonium spectra with a quark harmonic oscillator
Norbury, J. W.; Badavi, F. F.; Townsend, L. W.
1986-01-01
The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.
Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams
Steely, Sidney L.
1993-01-01
The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.
Parametric Resonance in a Time-Dependent Harmonic Oscillator
Directory of Open Access Journals (Sweden)
P. N. Nesterov
2013-01-01
Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.
Phase-space treatment of the driven quantum harmonic oscillator
Indian Academy of Sciences (India)
2017-02-22
Feb 22, 2017 ... i.e., ρ(θ,q ,p |q,p,t) is a measure of the interference effects associated ... an oscillating electric field, when the initial state is cho- sen as a .... The conclusive effect is that. A±(q,p,t) ...... wave functions ±(q,p,t) stem from the time depen- dence of ..... define a two-dimensional cell in phase space, which is centred ...
QUANTUM THEORY OF DAMPED HARMONIC OSCILLATOR
African Journals Online (AJOL)
DJFLEX
However, the problem of quantum oscillator with time-varying frequency had been solved (Um et al,. 1987). The Hamiltonian of this model is usually quadratic in co-ordinates and momentum operators (Ikot et al, 2008). The quantum calculation is applied because it will give the information about the particle at intermediate ...
The forced harmonic oscillator with damping and thermal effects
International Nuclear Information System (INIS)
Menezes Franca, H. de; Thomaz, M.T.
1984-01-01
Nonperturbative quantum mechanical solutions of the forced harmonic oscillator with radiation reaction damping are obtained from previous analysis based on Stochastic Electrodynamics. The transition to excited states is shown to be to coherent states which follow the classical trajectory. The quantum Wigner distribution in phase space is constructed. All the results are extended to finite temperatures. (Author) [pt
Maximal Regularity of the Discrete Harmonic Oscillator Equation
Directory of Open Access Journals (Sweden)
Airton Castro
2009-01-01
Full Text Available We give a representation of the solution for the best approximation of the harmonic oscillator equation formulated in a general Banach space setting, and a characterization of lp-maximal regularity—or well posedness—solely in terms of R-boundedness properties of the resolvent operator involved in the equation.
Phase-space treatment of the driven quantum harmonic oscillator
Indian Academy of Sciences (India)
A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the ...
Thermal state of the general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Taking advantage of dynamical invariant operator, we derived quantum mechanical solution of general time-dependent harmonic oscillator. The uncertainty relation of the system is always larger than ħ=2 not only in number but also in the thermal state as expected. We used the diagonal elements of density operator ...
A simple mechanical model for the isotropic harmonic oscillator
International Nuclear Information System (INIS)
Nita, Gelu M
2010-01-01
A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels.
Quantum theory of damped harmonic oscillator | Antia | Global ...
African Journals Online (AJOL)
The exact solutions of the Schrödinger equation for damped harmonic oscillator with pulsating mass and modified Caldirola-Kanai Hamiltonian are evaluated. We also investigated the case of under-damped for the two models constructed and the results obtained in both cases do not violate Heisenberg uncertainty principle ...
Symmetries and conservation laws of the damped harmonic oscillator
Indian Academy of Sciences (India)
symmetries are expressed in the form of generators. We have studied the ..... For λ = 0, Iβ=1 represents the total energy of the harmonic oscillator with Uβ=1 as the time .... Ind. J. Pure Appl. Phys. 43, 479 (2005); Classical and quantum me-.
Statistical mechanics of quantum one-dimensional damped harmonic oscillator
International Nuclear Information System (INIS)
Borges, E.N.M.; Borges, O.N.; Ribeiro, L.A.A.
1985-01-01
We calculate the thermal correlation functions of the one-dimensional damped harmonic oscillator in contact with a reservoir, in an exact form by applying Green's function method. In this way the thermal fluctuations are incorporated in the Caldirola-Kanai Hamiltonian
The resonating group method in an harmonic oscillator basis
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Gignoux, C.; Ayant, Y.
1987-05-01
The scattering states for a general many body system is formulated within the resonating group method. The resulting Lippman-Schwinger equation is solved in an harmonic oscillator basis for which a number of advantages are emphasized. The analytical formula giving the free propagator in that basis is fully derived
Nonlinear analysis of a cross-coupled quadrature harmonic oscillator
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens
2005-01-01
The dynamic equations governing the cross-coupled quadrature harmonic oscillator are derived assuming quasi-sinusoidal operation. This allows for an investigation of the previously reported tradeoff between close-to-carrier phase noise and quadrature precision. The results explain how nonlinearity...
Revisiting the quantum harmonic oscillator via unilateral Fourier transforms
International Nuclear Information System (INIS)
Nogueira, Pedro H F; Castro, Antonio S de
2016-01-01
The literature on the exponential Fourier approach to the one-dimensional quantum harmonic oscillator problem is revised and criticized. It is shown that the solution of this problem has been built on faulty premises. The problem is revisited via the Fourier sine and cosine transform method and the stationary states are properly determined by requiring definite parity and square-integrable eigenfunctions. (paper)
Free Fall and Harmonic Oscillations: Analyzing Trampoline Jumps
Pendrill, Ann-Marie; Eager, David
2015-01-01
Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is…
New construction of coherent states for generalized harmonic oscillators
International Nuclear Information System (INIS)
El Baz, M.; Hassouni, Y.; Madouri, F.
2001-08-01
A dynamical algebra A q , englobing many of the deformed harmonic oscillator algebras is introduced. One of its special cases is extensively developed. A general method for constructing coherent states related to any algebra of the type A q is discussed. The construction following this method is carried out for the special case. (author)
On quantum harmonic oscillator being subjected to absolute ...
Indian Academy of Sciences (India)
On quantum harmonic oscillator being subjected to absolute potential state. SWAMI NITYAYOGANANDA. Ramakrishna Mission Ashrama, R.K. Beach, Visakhapatnam 530 003, India. E-mail: nityayogananda@gmail.com. MS received 1 May 2015; accepted 6 May 2016; published online 3 December 2016. Abstract.
Coherent states of general time-dependent harmonic oscillator
Indian Academy of Sciences (India)
Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...
Tanimura, Y; Steffen, T
2000-01-01
The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus
International Nuclear Information System (INIS)
Caetano Neto, E.S.
1976-01-01
A stationary Green function is calculated for the Schroedinger Hamiltonian of the multidimensional isotropic harmonic oscillator and for physical systems, which may, somehow, have their Hamiltonian reduced to one in the form of a harmonic oscillator, for any dimension [pt
Controllability in tunable chains of coupled harmonic oscillators
Buchmann, L. F.; Mølmer, K.; Petrosyan, D.
2018-04-01
We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N -1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most 3 N (N -1 )/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.
Controllability in tunable chains of coupled harmonic oscillators
DEFF Research Database (Denmark)
Buchmann, Lukas Filip; Mølmer, Klaus; Petrosyan, David
2018-01-01
We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N −1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach...... any desired Gaussian state requires at most 3 N ( N −1)/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can...... be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides....
Controllability in tunable chains of coupled harmonic oscillators
DEFF Research Database (Denmark)
Buchmann, Lukas Filip; Mølmer, Klaus; Petrosyan, David
2018-01-01
any desired Gaussian state requires at most 3 N ( N −1)/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled harmonic oscillators can......We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides complete access to all Gaussian states of N −1 collective modes. The proof relies on the construction of a suitable basis of cradle modes for the system. An iterative algorithm to reach...... be implemented by a number of current state-of-the-art experimental platforms, including cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides....
Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator
International Nuclear Information System (INIS)
Belendez, Augusto; Pascual, Carolina
2007-01-01
The first-order harmonic balance method via the first Fourier coefficient is used to construct two approximate frequency-amplitude relations for the relativistic oscillator for which the nonlinearity (anharmonicity) is a relativistic effect due to the time line dilation along the world line. Making a change of variable, a new nonlinear differential equation is obtained and two procedures are used to approximately solve this differential equation. In the first the differential equation is rewritten in a form that does not contain a square-root expression, while in the second the differential equation is solved directly. The approximate frequency obtained using the second procedure is more accurate than the frequency obtained with the first due to the fact that, in the second procedure, application of the harmonic balance method produces an infinite set of harmonics, while in the first procedure only two harmonics are produced. Both approximate frequencies are valid for the complete range of oscillation amplitudes, and excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. The discrepancy between the first-order approximate frequency obtained by means of the second procedure and the exact frequency never exceeds 1.6%. We also obtained the approximate frequency by applying the second-order harmonic balance method and in this case the relative error is as low 0.31% for all the range of values of amplitude of oscillation A
Verreault, René
2017-08-01
In an attempt to explain the tendency of Foucault pendula to develop elliptical orbits, Kamerlingh Onnes derived equations of motion that suggest the use of great circles on a spherical surface as a graphical illustration for an anisotropic bi-dimensional harmonic oscillator, although he did not himself exploit the idea any further. The concept of anisosphere is introduced in this work as a new means of interpreting pendulum motion. It can be generalized to the case of any two-dimensional (2-D) oscillating system, linear or nonlinear, including the case where coupling between the 2 degrees of freedom is present. Earlier pendulum experiments in the literature are revisited and reanalyzed as a test for the anisosphere approach. While that graphical method can be applied to strongly nonlinear cases with great simplicity, this part I is illustrated through a revisit of Kamerlingh Onnes' dissertation, where a high performance pendulum skillfully emulates a 2-D harmonic oscillator. Anisotropy due to damping is also described. A novel experiment strategy based on the anisosphere approach is proposed. Finally, recent original results with a long pendulum using an electronic recording alidade are presented. A gain in precision over traditional methods by 2-3 orders of magnitude is achieved.
Energy Technology Data Exchange (ETDEWEB)
Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Khmelnytskaya, K.V. [Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas s/n, C.P. 76010 Santiago de Queretaro, Qro. (Mexico)
2011-09-19
We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned. -- Highlights: → A particular Riccati solution of the classical harmonic oscillator is shifted by a constant. → Such a solution is used in the factorization brackets to get different equations of motion. → The properties of the parametric oscillators obtained in this way are examined.
International Nuclear Information System (INIS)
Zhang Guangjun; Xu Jianxue; Wang Jue; Yue Zhifeng; Zou Hailin
2009-01-01
In this paper stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator is analyzed by moment method. This kind of novel transition refers to the one among three potential well on two sides of bifurcation point of original system at the presence of internal noise. Several conclusions are drawn. First, the semi-analytical result of stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable Duffing oscillator can be obtained, and the semi-analytical result is qualitatively compatible with the one of Monte Carlo simulation. Second, a bifurcation of double-branch fixed point curves occurs in the moment equations with noise intensity as their bifurcation parameter. Third, the bifurcation of moment equations corresponds to stochastic resonance of original system. Finally, the mechanism of stochastic resonance is presented from another viewpoint through analyzing the energy transfer induced by the bifurcation of moment equation.
Predicting chaos in memristive oscillator via harmonic balance method.
Wang, Xin; Li, Chuandong; Huang, Tingwen; Duan, Shukai
2012-12-01
This paper studies the possible chaotic behaviors in a memristive oscillator with cubic nonlinearities via harmonic balance method which is also called the method of describing function. This method was proposed to detect chaos in classical Chua's circuit. We first transform the considered memristive oscillator system into Lur'e model and present the prediction of the existence of chaotic behaviors. To ensure the prediction result is correct, the distortion index is also measured. Numerical simulations are presented to show the effectiveness of theoretical results.
Time-dependent coupled harmonic oscillators: classical and quantum solutions
International Nuclear Information System (INIS)
Macedo, D.X.; Guedes, I.
2014-01-01
In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m 1 = m 2 = m 0 e γt , ω 1 = ω 01 e -γt/2 , ω 2 = ω 02 e -γt/2 and k = k 0 . (author)
Variational and perturbative schemes for a spiked harmonic oscillator
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Estevez, G.A.; Guardiola, R.
1989-01-01
A variational analysis of the spiked harmonic-oscillator Hamiltonian operator -d 2 /dx 2 + x 2 + l(l+1)/x 2 + λ |x| -α , where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schroedinger equation for the linear harmonic-oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provides accurate approximations for the ground-state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large-coupling pertubative-expansion is carried out and the contributions up to fourth order to the ground-state energy are explicitly evaluated. Numerical results are compared for the special case α=5/2. (author) [pt
First, Second Quantization and Q-Deformed Harmonic Oscillator
International Nuclear Information System (INIS)
Van Ngu, Man; Vinh, Ngo Gia; Lan, Nguyen Tri; Viet, Nguyen Ai; Thanh, Luu Thi Kim
2015-01-01
Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed. (paper)
An analogue of the Berry phase for simple harmonic oscillators
Suslov, S. K.
2013-03-01
We evaluate a variant of Berry's phase for a ‘missing’ family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables (in a natural way). Instead, it is obtained by the action of the maximal kinematical invariance group on the standard solutions. A simple closed formula for the phase (in terms of elementary functions) is found here by integration with the help of a computer algebra system.
Sakaguchi, Hidetsugu; Malomed, Boris A.
2017-10-01
We analyze the possibility of macroscopic quantum effects in the form of coupled structural oscillations and shuttle motion of bright two-component spin-orbit-coupled striped (one-dimensional, 1D) and semivortex (two-dimensional, 2D) matter-wave solitons, under the action of linear mixing (Rabi coupling) between the components. In 1D, the intrinsic oscillations manifest themselves as flippings between spatially even and odd components of striped solitons, while in 2D the system features periodic transitions between zero-vorticity and vortical components of semivortex solitons. The consideration is performed by means of a combination of analytical and numerical methods.
Levin, A D; Momtaz, Z S; Gusev, G M; Raichev, O E; Bakarov, A K
2015-11-13
We observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.
Pisot q-coherent states quantization of the harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.fr [Laboratoire APC, Univ. Paris Diderot, Sorbonne Paris Cite, 75205 Paris (France); Olmo, M.A. del, E-mail: olmo@fta.uva.es [Departamento de Fisica Teorica and IMEVA, Universidad de Valladolid, E-47005, Valladolid (Spain)
2013-03-15
We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0oscillator: localization in the configuration and in the phase spaces, angle operator, probability distributions and related statistical features, time evolution and semi-classical phase space trajectories. - Highlights: Black-Right-Pointing-Pointer Quantized version of the harmonic oscillator (HO) through a q-family of coherent states. Black-Right-Pointing-Pointer For q,0
oscillator.
International Nuclear Information System (INIS)
Alfakih, Khaled; Bloomer, Tim; Bainbridge, Samantha; Bainbridge, Gavin; Ridgway, John; Williams, Gordon; Sivananthan, Mohan
2004-01-01
Purpose: To compare left ventricular mass (LVM) as measured by two-dimensional (2D) echocardiography using two different calculation methods: truncated ellipse (TE) and area length (AL), in both fundamental and tissue harmonic imaging frequencies, to LVM as measured by, the current gold standard, cardiac magnetic resonance imaging (MRI). Turbo gradient echo (TGE) pulse sequence was utilized for MRI. Materials and methods: Thirty-two subjects with history of hypertension were recruited. The images were acquired, contours were traced and the LVM was calculated for all four different echocardiography methods as well as for the cardiac MRI method. The intra-observer variabilities were calculated. The four different echocardiography methods were compared to cardiac MRI using the method described by Bland and Altman. Results: Twenty-five subjects had adequate paired data sets. The mean LVM as measured by cardiac MRI was 162±55 g and for the four different echocardiography methods were: fundamental AL 165±55 g, harmonic AL 168±53 g, fundamental TE 148±50 g, harmonic TE 149±45 g. The intra-observer variability for cardiac MRI method, expressed as bias ± 1 standard deviation of the difference (S.D.D.), was 2.3±9.2 g and for the four different echocardiography methods were: fundamental TE 0.4±26.8 g, fundamental AL 0.6±27.0 g, harmonic TE 6.7±21.8 g, harmonic AL 6.4±22.9 g. The mean LVM for the AL method was closest to the cardiac MRI technique, while TE underestimated LVM. The 95% limits of agreement were consistently wide for all the 2D echocardiography modalities when compared with the cardiac MRI technique. Conclusion: The intra-observer variability in measurements of 2D echocardiographic LVM, together with the wide limits of agreement when compared to the gold standard (cardiac MRI) are sufficiently large to make serial estimates of LVM, of single patients or small groups of subjects, by 2D echocardiography, unreliable
Spontaneous decoherence of coupled harmonic oscillators confined in a ring
Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu
2018-04-01
We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.
Czech Academy of Sciences Publication Activity Database
Smrčka, Ludvík
2016-01-01
Roč. 77, Mar (2016), s. 108-113 ISSN 1386-9477 Institutional support: RVO:68378271 Keywords : lateral superlattices * commensurability oscillations * in-plane magnetic field Subject RIV: BE - Theoretical Physics Impact factor: 2.221, year: 2016
Isar, Aurelian
1995-01-01
The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.
Kraus representation of a damped harmonic oscillator and its application
International Nuclear Information System (INIS)
Liu Yuxi; Oezdemir, Sahin K.; Miranowicz, Adam; Imoto, Nobuyuki
2004-01-01
By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect, modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra solution. As examples and applications, we first give a Kraus representation of a single qubit whose computational basis states are defined as bosonic vacuum and single particle number states. We further discuss the environment effect on qubits whose computational basis states are defined as the bosonic odd and even coherent states. The environment effects on entangled qubits defined by two different kinds of computational basis are compared with the use of fidelity
Optimal control of a harmonic oscillator: Economic interpretations
Janová, Jitka; Hampel, David
2013-10-01
Optimal control is a popular technique for modelling and solving the dynamic decision problems in economics. A standard interpretation of the criteria function and Lagrange multipliers in the profit maximization problem is well known. On a particular example, we aim to a deeper understanding of the possible economic interpretations of further mathematical and solution features of the optimal control problem: we focus on the solution of the optimal control problem for harmonic oscillator serving as a model for Phillips business cycle. We discuss the economic interpretations of arising mathematical objects with respect to well known reasoning for these in other problems.
A Generalized Time-Dependent Harmonic Oscillator at Finite Temperature
International Nuclear Information System (INIS)
Majima, H.; Suzuki, A.
2006-01-01
We show how a generalized time-dependent harmonic oscillator (GTHO) is extended to a finite temperature case by using thermo field dynamics (TFD). We derive the general time-dependent annihilation and creation operators for the system, and obtain the time-dependent quasiparticle annihilation and creation operators for the GTHO by using the temperature-dependent Bogoliubov transformation of TFD. We also obtain the thermal state as a two-mode squeezed vacuum state in the time-dependent case as well as in the time-independent case. The general formula is derived to calculate the thermal expectation value of operators
Complex-potential description of the damped harmonic oscillator
International Nuclear Information System (INIS)
Exner, P.
1981-01-01
Multidimensional damped harmonic oscillator is treated by means of a non-selfadjoint Hamiltonian with complex potential. The latter is chosen as V(x)=xx(A-iW)x with positive matrices A, W, By a perturbation-theory argument, the corresponding Hamiltonian H=-1/2Δ+V with the natural domain is shown to be closed and such that Vsub(t)=exp(-iHt) is a continuous contractive semigroup. Explicit integral-operator form of Vsub(t) is found by use of Lie-Trotter formula [ru
Elementary derivation of the quantum propagator for the harmonic oscillator
Shao, Jiushu
2016-10-01
Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.
A method of solving simple harmonic oscillator Schroedinger equation
Maury, Juan Carlos F.
1995-01-01
A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.
Free harmonic oscillators, Jack polynomials, and Calogero-Sutherland systems
International Nuclear Information System (INIS)
Gurappa, N.; Panigrahi, Prasanta K.
2000-01-01
The algebraic structure and the relationships between the eigenspaces of the Calogero-Sutherland model (CSM) and the Sutherland model (SM) on a circle are investigated through the Cherednik operators. We find an exact connection between the simultaneous nonsymmetric eigenfunctions of the A N-1 Cherednik operators, from which the eigenfunctions of the CSM and SM are constructed, and the monomials. This construction allows us to simultaneously diagonalize both CSM and SM (after gauging away the Hamiltonians by suitable measures) and also enables us to write down a harmonic oscillator algebra involving the Cherednik operators, which yields the raising and lowering operators for both of these models. The connections of the CSM with free oscillators and the SM with free particles on a circle are established in a novel way. We also point out the subtle differences between the excitations of the CSM and the SM
The Aerodynamic Behavior of a Harmonically Oscillating Finite Sweptback Wing in Supersonic Flow
National Research Council Canada - National Science Library
Chang, Chieh-Chien
1951-01-01
By an extension of Evvard's "diaphragm" concept outside the wing tip, the present paper presents two approximate methods for calculating the aerodynamic behavior of harmonically oscillating, sweptback...
Infinite-time and finite-time synchronization of coupled harmonic oscillators
International Nuclear Information System (INIS)
Cheng, S; Ji, J C; Zhou, J
2011-01-01
This paper studies the infinite-time and finite-time synchronization of coupled harmonic oscillators with distributed protocol in the scenarios with and without a leader. In the absence of a leader, the convergence conditions and the final trajectories that each harmonic oscillator follows are developed. In the presence of a leader, it is shown that all harmonic oscillators can achieve the trajectory of the leader in finite time. Numerical simulations of six coupled harmonic oscillators are given to show the effects of the interaction function parameter, algebraic connectivity and initial conditions on the convergence time.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
International Nuclear Information System (INIS)
Chou, Chia-Chun
2016-01-01
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-10-15
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Non-unique monopole oscillations of harmonically confined Yukawa systems
Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael
2008-11-01
Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)
Raman Scattering from Higgs Mode Oscillations in the Two-Dimensional Antiferromagnet Ca_{2}RuO_{4}.
Souliou, Sofia-Michaela; Chaloupka, Jiří; Khaliullin, Giniyat; Ryu, Gihun; Jain, Anil; Kim, B J; Le Tacon, Matthieu; Keimer, Bernhard
2017-08-11
We present and analyze Raman spectra of the Mott insulator Ca_{2}RuO_{4}, whose quasi-two-dimensional antiferromagnetic order has been described as a condensate of low-lying spin-orbit excitons with angular momentum J_{eff}=1. In the A_{g} polarization geometry, the amplitude (Higgs) mode of the spin-orbit condensate is directly probed in the scalar channel, thus avoiding infrared-singular magnon contributions. In the B_{1g} geometry, we observe a single-magnon peak as well as two-magnon and two-Higgs excitations. Model calculations using exact diagonalization quantitatively agree with the observations. Together with recent neutron scattering data, our study provides strong evidence for excitonic magnetism in Ca_{2}RuO_{4} and points out new perspectives for research on the Higgs mode in two dimensions.
Corkidi, G; Montoya, F; Hernández-Herrera, P; Ríos-Herrera, W A; Müller, M F; Treviño, C L; Darszon, A
2017-09-01
Are there intracellular Ca2+ ([Ca2+]i) oscillations correlated with flagellar beating in human sperm? The results reveal statistically significant [Ca2+]i oscillations that are correlated with the human sperm flagellar beating frequency, when measured in three-dimensions (3D). Fast [Ca2+]i oscillations that are correlated to the beating flagellar frequency of cells swimming in a restricted volume have been detected in hamster sperm. To date, such findings have not been confirmed in any other mammalian sperm species. An important question that has remained regarding these observations is whether the fast [Ca2+]i oscillations are real or might they be due to remaining defocusing effects of the Z component arising from the 3D beating of the flagella. Healthy donors whose semen samples fulfill the WHO criteria between the age of 18-28 were selected. Cells from at least six different donors were utilized for analysis. Approximately the same number of experimental and control cells were analyzed. Motile cells were obtained by the swim-up technique and were loaded with Fluo-4 (Ca2+ sensitive dye) or with Calcein (Ca2+ insensitive dye). Ni2+ was used as a non-specific plasma membrane Ca2+ channel blocker. Fluorescence data and flagella position were acquired in 3D. Each cell was recorded for up to 5.6 s within a depth of 16 microns with a high speed camera (coupled to an image intensifier) acquiring at a rate of 3000 frames per second, while an oscillating objective vibrated at 90 Hz via a piezoelectric device. From these samples, eight experimental and nine control sperm cells were analyzed in both 2D and 3D. We have implemented a new system that allows [Ca2+]i measurements of the human sperm flagellum beating in 3D. These measurements reveal statistically significant [Ca2+]i oscillations that correlate with the flagellar beating frequency. These oscillations may arise from intracellular sources and/or Ca2+ transporters, as they were insensitive to external Ni2+, a non
International Nuclear Information System (INIS)
Yeh, Y.S.; Chang, T.H.; Wu, T.S.
2004-01-01
A comparative analysis between the fundamental and second cyclotron harmonics of gyrotron backward-wave oscillators (gyro-BWOs) is presented. The simulation results reveal that nonlinear field contraction is a common feature for both harmonic interactions. Besides, the electron transit angle, used to characterize the axial modes of the fundamental harmonic TE 11 mode at the start-oscillation conditions, is found to be applicable even for the second harmonic TE 21 mode. Each axial mode of either the fundamental harmonic TE 11 or the second harmonic TE 21 modes is maintained at a constant value of the electron transit angle while changing the operating parameters, such as magnetic field and beam voltage. Extensive numerical calculations are conducted for the start-oscillation currents and tuning properties. Moreover, single-mode operating regimes are suggested where the second harmonic TE 21 gyro-BWO could generate a considerable output power, comparing with the fundamental harmonic TE 11 gyro-BWO
Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot.
Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2015-11-05
Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.
International Nuclear Information System (INIS)
Woafo, P.
1999-12-01
This paper deals with the dynamics of a model describing systems consisting of the classical Van der Pol oscillator coupled gyroscopically to a linear oscillator. Both the forced and autonomous cases are considered. Harmonic response is investigated along with its stability boundaries. Condition for quenching phenomena in the autonomous case is derived. Neimark bifurcation is observed and it is found that our model shows period doubling and period-m sudden transitions to chaos. Synchronization of two and more systems in their chaotic regime is presented. (author)
High spin rotations of nuclei with the harmonic oscillator potential
International Nuclear Information System (INIS)
Cerkaski, M.; Szymanski, Z.
1978-01-01
Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)
Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!
International Nuclear Information System (INIS)
Nutku, Yavuz
2003-01-01
Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems
Refined Weyl Law for Homogeneous Perturbations of the Harmonic Oscillator
Doll, Moritz; Gannot, Oran; Wunsch, Jared
2018-02-01
Let H denote the harmonic oscillator Hamiltonian on R}^d,} perturbed by an isotropic pseudodifferential operator of order 1. We consider the Schrödinger propagator {U(t)=e^{-itH},} and find that while sing-supp Tr U(t) \\subset 2 π Z as in the unperturbed case, there exists a large class of perturbations in dimensions {d ≥ 2 for which the singularities of {Tr U(t)} at nonzero multiples of {2 π} are weaker than the singularity at t = 0. The remainder term in the Weyl law is of order {o(λ^{d-1})} , improving in these cases the {o(λ^{d-1})} remainder previously established by Helffer-Robert.
Modeling stock return distributions with a quantum harmonic oscillator
Ahn, K.; Choi, M. Y.; Dai, B.; Sohn, S.; Yang, B.
2017-11-01
We propose a quantum harmonic oscillator as a model for the market force which draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic equation governing our model is transformed into a Schrödinger equation, the solution of which features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Exchange (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an economic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between finance and econophysics literature.
Shapes of nuclear configurations in a cranked harmonic oscillator model
International Nuclear Information System (INIS)
Troudet, T.; Arvieu, R.
1980-05-01
The shapes of nuclear configurations are calculated using Slater determinants built with cranked harmonic oscillator single particle states. The nuclear forces role is played by a volume conservation condition (of the potential or of the density) in a first part. In a second part, we have used the finite range, density dependent interaction of Cogny. A very simple classification of configurations emerges in the first part, the relevant parameter being the equatorial eccentricity of the nuclear density. A critical equatorial eccentricity is obtained which governs the accession to the case for which the nucleus is oblate and symmetric around its axis of rotation. Nuclear configurations calculated in the second part observe remarkably well these behaviors
The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach
Lee, Keeyung
2009-01-01
The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…
Exact solution of a quantum forced time-dependent harmonic oscillator
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
Ertaş, Mehmet
2015-09-01
Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.
Excitation of high numbers harmonics by flows of oscillators in a periodic potential
International Nuclear Information System (INIS)
Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.
2005-01-01
It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL
Symmetries of cyclic work distributions for an isolated harmonic oscillator
International Nuclear Information System (INIS)
Ford, Ian J; Minor, David S; Binnie, Simon J
2012-01-01
We have calculated the distribution of work W done on a 1D harmonic oscillator that is initially in canonical equilibrium at temperature T, then thermally isolated and driven by an arbitrary time-dependent cyclic spring constant κ(t), and demonstrated that it satisfies P(W) = exp (βW)P( − W), where β = 1/k B T, in both classical and quantum dynamics. This differs from the celebrated Crooks relation of nonequilibrium thermodynamics, since the latter relates distributions for forward and backward protocols of driving. We show that it is a special case of a symmetry that holds for non-cyclic work processes on the isolated oscillator, and that consideration of time reversal invariance shows it to be consistent with the Crooks relation. We have verified that the symmetry holds in both classical and quantum treatments of the dynamics, but that inherent uncertainty in the latter case leads to greater fluctuations in work performed for a given process. (paper)
Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces
International Nuclear Information System (INIS)
Oyewumi, K.A.; Bangudu, E.A.
2003-01-01
Some aspects of the N-dimensional isotropic harmonic plus inverse quadratic potential were discussed. The hyperradial equation for isotropic harmonic oscillator plus inverse quadratic potential is solved by transformation into the confluent hypergeometric equation to obtain the normalized hyperradial solution. Together with the hyperangular solutions (hyperspherical harmonics), these form the complete energy eigenfunctions of the N-dimensional isotropic harmonic oscillator plus inverse quadratic potential and the energy eigenvalues are also obtained. These are dimensionally dependent. The dependence of radial solution on the dimensions or potential strength and the degeneracy of the energy levels are discussed. (author)
The quantum harmonic oscillator on a circle and a deformed quantum field theory
International Nuclear Information System (INIS)
Rego-Monteiro, M.A.
2001-05-01
We construct a deformed free quantum field theory with an standard Hilbert space based on a deformed Heisenberg algebra. This deformed algebra is a Heisenberg-type algebra describing the first levels of the quantum harmonic oscillator on a circle of large length L. The successive energy levels of this quantum harmonic oscillator on a circle of large length L are interpreted, similarly to the standard quantum one-dimensional harmonic oscillator on an infinite line, as being obtained by the creation of a quantum particle of frequency w at very high energies. (author)
A position-dependent mass harmonic oscillator and deformed space
da Costa, Bruno G.; Borges, Ernesto P.
2018-04-01
We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.
West Coast Swing Dancing as a Driven Harmonic Oscillator Model
Ferrara, Davon; Holzer, Marie; Kyere, Shirley
The study of physics in sports not only provides valuable insight for improved athletic performance and injury prevention, but offers undergraduate students an opportunity to engage in both short- and long-term research efforts. In this project, conducted by two non-physics majors, we hypothesized that a driven harmonic oscillator model can be used to better understand the interaction between two west coast swing dancers since the stiffness of the physical connection between dance partners is a known factor in the dynamics of the dance. The hypothesis was tested by video analysis of two dancers performing a west coast swing basic, the sugar push, while changing the stiffness of the physical connection. The difference in stiffness of the connection from the ideal was estimated by the leader; the position with time data from the video was used to measure changes in the amplitude and phase difference between the leader and follower. While several aspects of our results agree with the proposed model, some key characteristics do not, possibly due to the follower relying on visual leads. Corresponding author and principal investigator.
Classical and quantum mechanics of the damped harmonic oscillator
International Nuclear Information System (INIS)
Dekker, H.
1981-01-01
The relations between various treatments of the classical linearly damped harmonic oscillator and its quantization are investigated. In the course of a historical survey typical features of the problem are discussed on the basis of Havas' classical Hamiltonian and the quantum mechanical Suessmann-Hasse-Albrecht models as coined by the Muenchen/Garching nuclear physics group. It is then shown how by imposing a restriction on the classical trajectories in order to connect the Hamiltonian with the energy, the time-independent Bateman-Morse-Feshbach-Bopp Hamiltonian leads to the time-dependent Caldirola-Kanai Hamiltonian. Canonical quantization of either formulation entails a violation of Heisenberg's principle. By means of a unified treatment of both the electrical and mechanical semi-infinite transmission line, this defect is related to the disregard of additional quantum fluctuations that are intrinsically connected with the dissipation. The difficulties of these models are discussed. Then it is proved that the Bateman dual Hamiltonian is connected to a recently developed complex symplectic formulation by a simple canonical transformation. (orig.)
International Nuclear Information System (INIS)
Aguilera-Navarro, V.C.; Ley Koo, E.
The exact solution of the Schrodinger equation for the systems and the boundary condition stated in the title is constructed. The familiar cases of the ordinary harmonic oscillator and the half oscillator are immediately identified. The connection with the double oscillator is also established and is helpful to understand the energy spectrum of the latter. Similar connections can be used to study other partial oscillators. (Author) [pt
Study of the phase delay in the amplitude-modulated harmonic oscillator
International Nuclear Information System (INIS)
Krupska, Aldona; Krupski, Marcin
2003-01-01
The delayed response of a damped harmonic oscillator (RLC circuit) to a slow periodic disturbance is presented. This communication is supplementary to the paper published recently (Krupska et al 2001 Eur. J. Phys. 22 133-8)
International Nuclear Information System (INIS)
Wang Jisuo; Sun Changyong; He Jinyu
1996-01-01
The eigenstates of the higher power of the annihilation operator a qs k (k≥3) of the two-parameter deformed harmonic oscillator are constructed. Their completeness is demonstrated in terms of the qs-integration
Schwinger's formula and the partition function for the bosonic and fermionic harmonic oscillators
International Nuclear Information System (INIS)
Albuquerque, L.C. de; Farina, C.; Rabello, S.J.
1994-01-01
We use Schwinger's formula, introduced by himself in the early fifties to compute effective actions for Qed, and recently applied to the Casimir effect, to obtain the partition functions for both the bosonic and fermionic harmonic oscillators. (author)
Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation
International Nuclear Information System (INIS)
Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2016-01-01
Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)
Quantum mechanical treatment of a constrained particle on two dimensional sphere
Energy Technology Data Exchange (ETDEWEB)
Jahangiri, L., E-mail: laleh.jahangiry@yahoo.com; Panahi, H., E-mail: t-panahi@guilan.ac.ir
2016-12-15
In this work, we study the motion of a particle on two dimensional sphere. By writing the Schrodinger equation, we obtain the wave function and energy spectra for three dimensional harmonic oscillator potential plus trigonometric Rosen–Morse non-central potential. By letting three special cases for intertwining operator, we investigate the energy spectra and wave functions for Smorodinsky–Winternitz potential model.
Exact diagonalization of the D-dimensional spatially confined quantum harmonic oscillator
Directory of Open Access Journals (Sweden)
Kunle Adegoke
2016-01-01
Full Text Available In the existing literature various numerical techniques have been developed to quantize the confined harmonic oscillator in higher dimensions. In obtaining the energy eigenvalues, such methods often involve indirect approaches such as searching for the roots of hypergeometric functions or numerically solving a differential equation. In this paper, however, we derive an explicit matrix representation for the Hamiltonian of a confined quantum harmonic oscillator in higher dimensions, thus facilitating direct diagonalization.
International Nuclear Information System (INIS)
Gvozdikov, V M; Taut, M
2009-01-01
We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.
Dynamical class of a two-dimensional plasmonic Dirac system.
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
Virtanen, J.E.; Maten, ter E.J.W.; Beelen, T.G.J.; Honkala, M.; Hulkkonen, M.
2011-01-01
Poor initial conditions for Harmonic Balance (HB) analysis of freerunning oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for
Virtanen, J.E.; Maten, ter E.J.W.; Honkala, M.; Hulkkonen, M.; Günther, M.; Bartel, A.; Brunk, M.; Schoeps, S.; Striebel, M.
2012-01-01
Poor initial conditions for Harmonic Balance (HB) analysis of free-running oscillators may lead to divergence of the direct Newton-Raphson method or may prevent to find the solution within an optimization approach. We exploit time integration to obtain estimates for the oscillation frequency and for
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
International Nuclear Information System (INIS)
Oishi, Tetsutarou; Yoshinuma, Mikirou; Ida, Katsumi; Akiyama, Tsuyoshi; Minami, Takashi; Nagaoka, Kenichi; Shimizu, Akihiro; Okamura, Shoichi; Kado, Shinichiro
2008-01-01
The coherent MHD oscillation, which consists of the fundamental frequency of several kilohertz and its higher harmonics, (harmonic oscillation: HO) has been observed in Compact Helical System. HO consists of two pairs of harmonic series. One is located in the core region near the ι=0.5 rational surface (denoted as 'HO (core)'), the other is located in the edge region near the ι=1.0 rational surface (denoted as 'HO (edge)'). In the present study, bispectral analysis is applied to the fluctuation data, for which HO is measured by beam emission spectroscopy (BES) and using magnetic probes. The analysis has revealed that fundamental mode of HO in both the magnetic and core density fluctuations have phase correlation with the harmonics including fundamental oscillation, while HO in edge density fluctuation does not have such phase correlation. Mode numbers of HOs are identical for harmonic components having different frequencies, i.e., m/n=-2/1 for HO (core) and m/n=-1/1 for HO (edge). It suggests that the generation of harmonics cannot be interpreted simply as mode coupling because the summation rule for the wavenumber is not satisfied, even though the bicoherence value is significant. The bicoherence value and relative amplitude of higher harmonics correlate with each other, which suggests that bicoherence indicates the degree of distortion of the signals. (author)
Third harmonic generation by Bloch-oscillating electrons in a quasioptical array
International Nuclear Information System (INIS)
Ghosh, A.W.; Wanke, M.C.; Allen, S.J.; Wilkins, J.W.
1999-01-01
We compute the third harmonic field generated by Bloch-oscillating electrons in a quasioptical array of superlattices under THz irradiation. The third harmonic power transmitted oscillates with the internal electric field, with nodes associated with Bessel functions in eEd/ℎω. The nonlinear response of the array causes the output power to be a multivalued function of the incident laser power. The output can be optimized by adjusting the frequency of the incident pulse to match one of the Fabry-Pacute erot resonances in the substrate. Within the transmission-line model of the array, the maximum conversion efficiency is 0.1%. copyright 1999 American Institute of Physics
On the effects of a screw dislocation and a linear potential on the harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Bueno, M.J.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br
2016-09-01
Quantum effects on the harmonic oscillator due to the presence of a linear scalar potential and a screw dislocation are investigated. By searching for bound states solutions, it is shown that an Aharonov-Bohm-type effect for bound states and a restriction of the values of the angular frequency of the harmonic oscillator can be obtained, where the allowed values are determined by the topology of the screw dislocation and the quantum numbers associated with the radial modes and the angular momentum. As particular cases, the angular frequency and the energy levels associated with the ground state and the first excited state of the system are obtained.
SOLUTION OF HARMONIC OSCILLATOR OF NONLINEAR MASTER SCHRÃ–DINGER
Directory of Open Access Journals (Sweden)
T B Prayitno
2012-02-01
Full Text Available We have computed the solution of a nonrelativistic particle motion in a harmonic oscillator potential of the nonlinear master SchrÃ¶dinger equation. The equation itself is based on two classical conservation laws, the Hamilton-Jacobi and the continuity equations. Those two equations give each contribution for the definition of quantum particle. We also prove that the solution canâ€™t be normalized. Â Keywords : harmonic oscillator, nonlinear SchrÃ¶dinger.
On the connection between the hydrogen atom and the harmonic oscillator: the continuum case
International Nuclear Information System (INIS)
Kibler, M.; Negadi, T.
1983-05-01
The connection between a three-dimensional nonrelativistic hydrogen atom with positive energy and a four-dimensional isotropic harmonic oscillator with repulsive potential is established by applying Jordan-Schwinger boson calculus to the algebra of the Laplace-Runge-Lenz-Pauli vector. The spectrum generating group SO(4,2) both for the bound and free states of the three-dimensional hydrogen atom arises as a quotient of the group Sp(8,R) associated to a four-dimensional isotropic harmonic oscillator with constraint
Time-dependent Hartree approximation and time-dependent harmonic oscillator model
International Nuclear Information System (INIS)
Blaizot, J.P.
1982-01-01
We present an analytically soluble model for studying nuclear collective motion within the framework of the time-dependent Hartree (TDH) approximation. The model reduces the TDH equations to the Schroedinger equation of a time-dependent harmonic oscillator. Using canonical transformations and coherent states we derive a few properties of the time-dependent harmonic oscillator which are relevant for applications. We analyse the role of the normal modes in the time evolution of a system governed by TDH equations. We show how these modes couple together due to the anharmonic terms generated by the non-linearity of the theory. (orig.)
Information measures of a deformed harmonic oscillator in a static electric field
Nascimento, J. P. G.; Ferreira, F. A. P.; Aguiar, V.; Guedes, I.; Costa Filho, Raimundo N.
2018-06-01
The Shannon entropy and the Fischer information are calculated for an harmonic oscillator in the presence of an applied electric field (ε) in a space with metrics given by gxx-1/2 = 1 + γx. For that metric the harmonic oscillator can be mapped into a Morse potential in an Euclidean space. For ε = 0, the ground state energy decreases when γ increases. However, for certain values of ε the energy decrease can be canceled out. The dependence of the uncertainties, the entropy, and the information on the parameters γ and ε are shown.
On the Quantum Potential and Pulsating Wave Packet in the Harmonic Oscillator
International Nuclear Information System (INIS)
Dubois, Daniel M.
2008-01-01
A fundamental mathematical formalism related to the Quantum Potential factor, Q, is presented in this paper. The Schroedinger equation can be transformed to two equations depending on a group velocity and a density of presence of the particle. A factor, in these equations, was called ''Quantum Potential'' by D. Bohm and B. Hiley. In 1999, I demonstrated that this Quantum Potential, Q, can be split in two Quantum Potentials, Q 1 , and Q 2 , for which the relation, Q=Q 1 +Q 2 , holds. These two Quantum Potentials depend on a fundamental new variable, what I called a phase velocity, u, directly related to the probability density of presence of the wave-particle, given by the modulus of the wave function. This paper gives some further developments for explaining the Quantum Potential for oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator. It is shown that the two Quantum Potentials play a central role in the interpretation of quantum mechanics. A breakthrough in the formalism of the Quantum Mechanics could be provoked by the physical properties of these Quantum Potentials. The probability density of presence of the oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator is directly depending on the ratio Q 2 /Q 1 of the two Quantum Potentials. In the general case, the energy of these Gaussian wave packets is not constant, but is oscillating. The energy is given by the sum of the kinetic energy, T, the potential energy, V, and the two Quantum Potentials: E=T+V+Q 1 +Q 2 . For some conditions, given in the paper, the energy can be a constant. The first remarkable result is the fact that the first Quantum Potential, Q 1 , is related to the ground state energy, E 0 , of the Quantum Harmonic Oscillator: Q 1 =h-bar ω/2=E 0 . The second result is related to the property of the second Quantum Potential, Q 2 , which plays the role of an anti-potential, Q 2 =-V(x), where V is the harmonic oscillator potential. This Quantum Potential
International Nuclear Information System (INIS)
Howard, I A; March, N H
2010-01-01
The search for the single-particle kinetic energy functional T S [n] continues to be of major interest for density functional theory. Since it is expected to be generally applicable, exactly solvable models are of obvious interest. Here we focus on one, which is also of interest experimentally in magnetic trapping of ultracold fermion vapours. This is the model of independent harmonically trapped fermions in two dimensions. Here, the role of the von Weizsaecker inhomogeneity kinetic energy is a focal point, prompted also by the work of Delle Site (2005 J. Phys. A: Math. Gen. 38 7893).
International Nuclear Information System (INIS)
Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan
2006-01-01
The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled
International Nuclear Information System (INIS)
Martinez, D; Flores-Urbina, J C; Mota, R D; Granados, V D
2010-01-01
We apply the Schroedinger factorization to construct the ladder operators for the hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator in arbitrary dimensions. By generalizing these operators we show that the dynamical algebra for these problems is the su(1, 1) Lie algebra.
Classical and quantum position-dependent mass harmonic oscillators
International Nuclear Information System (INIS)
Cruz y Cruz, S.; Negro, J.; Nieto, L.M.
2007-01-01
The position-dependent mass oscillator is studied from both, classical and quantum mechanical points of view, in order to discuss the ambiguity on the operator ordering of the kinetic term in the quantum framework. The results are illustrated by some examples of specific mass functions
International Nuclear Information System (INIS)
Morales, J.; Ovando, G.; Pena, J. J.
2010-01-01
One of the most important scientific contributions of Professor Marcos Moshinsky has been his study on the harmonic oscillator in quantum theory vis a vis the standard Schroedinger equation with constant mass [1]. However, a simple description of the motion of a particle interacting with an external environment such as happen in compositionally graded alloys consist of replacing the mass by the so-called effective mass that is in general variable and dependent on position. Therefore, honoring in memoriam Marcos Moshinsky, in this work we consider the position-dependent mass Schrodinger equations (PDMSE) for the harmonic oscillator potential model as former potential as well as with equi-spaced spectrum solutions, i.e. harmonic oscillator isospectral partners. To that purpose, the point canonical transformation method to convert a general second order differential equation (DE), of Sturm-Liouville type, into a Schroedinger-like standard equation is applied to the PDMSE. In that case, the former potential associated to the PDMSE and the potential involved in the Schroedinger-like standard equation are related through a Riccati-type relationship that includes the equivalent of the Witten superpotential to determine the exactly solvable positions-dependent mass distribution (PDMD)m(x). Even though the proposed approach is exemplified with the harmonic oscillator potential, the procedure is general and can be straightforwardly applied to other DEs.
The study of entanglement and teleportation of the harmonic oscillator bipartite coherent states
Directory of Open Access Journals (Sweden)
A Rabeie and
2015-01-01
Full Text Available In this paper, we reproduce the harmonic oscillator bipartite coherent states with imperfect cloning of coherent states. We show that if these entangled coherent states are embedded in a vacuum environment, their entanglement is degraded but not totally lost . Also, the optimal fidelity of these states is worked out for investigating their teleportation
About the functions of the Wigner distribution for the q-deformed harmonic oscillator model
International Nuclear Information System (INIS)
Atakishiev, N.M.; Nagiev, S.M.; Djafarov, E.I.; Imanov, R.M.
2005-01-01
Full text : A q-deformed model of the linear harmonic oscillator in the Wigner phase-space is studied. It was derived an explicit expression for the Wigner probability distribution function, as well as the Wigner distribution function of a thermodynamic equilibrium for this model
Coherent states for the time dependent harmonic oscillator: the step function
International Nuclear Information System (INIS)
Moya-Cessa, Hector; Fernandez Guasti, Manuel
2003-01-01
We study the time evolution for the quantum harmonic oscillator subjected to a sudden change of frequency. It is based on an approximate analytic solution to the time dependent Ermakov equation for a step function. This approach allows for a continuous treatment that differs from former studies that involve the matching of two time independent solutions at the time when the step occurs
On the Pseudospectrum of the Harmonic Oscillator with Imaginary Cubic Potential
Czech Academy of Sciences Publication Activity Database
Novák, Radek
2015-01-01
Roč. 54, č. 11 (2015), s. 4142-4153 ISSN 0020-7748 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : pseudospectrum * harmonic oscillator * imaginary qubic potential * PT-symmetry * semiclassical method Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015
Is there a lower bound energy in the harmonic oscillator interacting with a heat bath?
International Nuclear Information System (INIS)
Arevalo Aguilar, L.M.; Almeida, N.G. de; Villas-Boas, C.J.
2003-01-01
In this Letter we investigate the lower bound energy of the usual Hamiltonian employed in Quantum Optics to model the interaction between a harmonic oscillator and a reservoir without the rotating wave approximation. We show that this model has serious inconsistencies and then we discuss the origin of these inconsistencies
Attainable conditions and exact invariant for the time-dependent harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Guasti, Manuel Fernandez [Lab. de Optica Cuantica, Dep. de Fisica, Universidad A. Metropolitana, Unidad Iztapalapa, Mexico DF, Ap. Post. 55-534 (Mexico)
2006-09-22
The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system.
Attainable conditions and exact invariant for the time-dependent harmonic oscillator
International Nuclear Information System (INIS)
Guasti, Manuel Fernandez
2006-01-01
The time-dependent oscillator equation is solved numerically for various trajectories in amplitude and phase variables. The solutions exhibit a finite time-dependent parameter whenever the squared amplitude times the derivative of the phase is invariant. If the invariant relationship does not hold, the time-dependent parameter has divergent singularities. These observations lead to the proposition that the harmonic oscillator equation with finite time-dependent parameter must have amplitude and phase solutions fulfilling the invariant relationship. Since the time-dependent parameter or the potential must be finite for any real oscillator implementation, the invariant must hold for any such physically realizable system
Microbubble generator excited by fluidic oscillator's third harmonic frequency
Czech Academy of Sciences Publication Activity Database
Tesař, Václav
2014-01-01
Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Rigorous quantum limits on monitoring free masses and harmonic oscillators
Roy, S. M.
2018-03-01
There are heuristic arguments proposing that the accuracy of monitoring position of a free mass m is limited by the standard quantum limit (SQL): σ2( X (t ) ) ≥σ2( X (0 ) ) +(t2/m2) σ2( P (0 ) ) ≥ℏ t /m , where σ2( X (t ) ) and σ2( P (t ) ) denote variances of the Heisenberg representation position and momentum operators. Yuen [Phys. Rev. Lett. 51, 719 (1983), 10.1103/PhysRevLett.51.719] discovered that there are contractive states for which this result is incorrect. Here I prove universally valid rigorous quantum limits (RQL), viz. rigorous upper and lower bounds on σ2( X (t ) ) in terms of σ2( X (0 ) ) and σ2( P (0 ) ) , given by Eq. (12) for a free mass and by Eq. (36) for an oscillator. I also obtain the maximally contractive and maximally expanding states which saturate the RQL, and use the contractive states to set up an Ozawa-type measurement theory with accuracies respecting the RQL but beating the standard quantum limit. The contractive states for oscillators improve on the Schrödinger coherent states of constant variance and may be useful for gravitational wave detection and optical communication.
Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.
2018-05-01
The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.
An easy trick to a periodic solution of relativistic harmonic oscillator
Directory of Open Access Journals (Sweden)
Jafar Biazar
2014-04-01
Full Text Available In this paper, the relativistic harmonic oscillator equation which is a nonlinear ordinary differential equation is investigated by Homotopy perturbation method. Selection of a linear operator, which is a part of the main operator, is one of the main steps in HPM. If the aim is to obtain a periodic solution, this choice does not work here. To overcome this lack, a linear operator is imposed, and Fourier series of sines will be used in solving the linear equations arise in the HPM. Comparison of the results, with those of resulted by Differential Transformation and Harmonic Balance Method, shows an excellent agreement.
Dynamical symmetries of two-dimensional systems in relativistic quantum mechanics
International Nuclear Information System (INIS)
Zhang Fulin; Song Ci; Chen Jingling
2009-01-01
The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum L. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed
International Nuclear Information System (INIS)
Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2009-01-01
In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.
López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.
2012-08-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
International Nuclear Information System (INIS)
López-Ruiz, F F; Guerrero, J; Aldaya, V; Cossío, F
2012-01-01
Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.
Forced harmonic oscillations of the Euler-Bernoulli beam with resistance forces
Directory of Open Access Journals (Sweden)
Yuriy S. Krutiy
2015-12-01
Full Text Available The important issue in the oscillation theory is the study of resistance impact on oscillatory processes. Unlike the calculations of free oscillations, that reside in determination of natural frequencies and waveshapes and unlike the calculations of forced oscillations far away from resonance, that are performing without reference to friction, the oscillations researches in vicinity of resonance need accounting of friction forces. Special attention is paid to forced transverse fluctuations in beams as an important technical problem for engineering and building. Aim: The aim of the work is constructing of analytical solution of the problem of forced transverse vibrations of a straight rod with constant cross-section, which is under the influence of the harmonic load taking into account external and internal resistances. Materials and Methods: The internal resistance is taken into account using the corrected hypothesis of Kelvin-Voigt which reflects the empirically proven fact about the frequency-independent internal friction in the material. The external friction is also considered as frequency-independent. Results: An analytical solution is built for the differential equation of forced transverse oscillations of a straight rod with constant cross-section which is under the influence of the harmonic load taking into account external and internal resistances. As a result, analytically derived formulae are presented which describe the forced dynamic oscillations and the dynamic internal forces due to the harmonic load applied to the rod thus reducing the problem with any possible fixed ends to the search of unknown integration constants represented in a form of initial parameters.
Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method
Directory of Open Access Journals (Sweden)
A. M. El-Naggar
2015-11-01
Full Text Available Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF and numerical solutions using Runge-Kutta method. The results show the presented method is potentially to solve high nonlinear oscillator equations.
Quantum entanglement in coupled harmonic oscillator systems: from micro to macro
International Nuclear Information System (INIS)
Kao, Jhih-Yuan; Chou, Chung-Hsien
2016-01-01
We investigate the entanglement dynamics of several models of coupled harmonic oscillators, whereby a number of properties concerning entanglement have been scrutinized, such as how the environment affects entanglement of a system, and death and revival of entanglement. Among them, there are two models for which we are able to vary their particle numbers easily by assuming identicalness, thereby examining how the particle number affects entanglement. We have found that the upper bound of entanglement between identical oscillators is approximately inversely proportional to the particle number. (paper)
Transformations of the perturbed two-body problem to unperturbed harmonic oscillators
Energy Technology Data Exchange (ETDEWEB)
Szebehely, V; Bond, V
1983-05-01
Singular, nonlinear, and Liapunov unstable equations are made regular and linear through transformations that change the perturbed planar problem of two bodies into unperturbed and undamped harmonic oscillators with constant coefficients, so that the stable solution may be immediately written in terms of the new variables. The use of arbitrary and special functions for the transformations allows the systematic discussion of previously introduced and novel anomalies. For the case of the unperturbed two-body problem, it is proved that if transformations are power functions of the radial variable, only the eccentric and the true anomalies (with the corresponding transformations of the radial variable) will result in harmonic oscillators. The present method significantly reduces computation requirements in autonomous space operations. 11 references.
Action-angle variables for the harmonic oscillator : ambiguity spin x duplication spin
International Nuclear Information System (INIS)
Oliveira, C.R. de; Malta, C.P.
1983-08-01
The difficulties of obtaining for the harmonic oscillator a well defined unitary transformation to action-angle variables were overcome by M. Moshinsky and T.H. Seligman through the introduction of a spinlike variable (ambiguity spin) from a classical point of view. The difficulty of defining a unitary phase operator for the harmonic oscillator was overcome by Roger G. Newton also through the introduction of a spinlike variable (named duplication spin by us) but within a quantum framework. The relation between the ambiguity spin and the duplication spin by introducing these two types of spins in the canonical transformation to action-angle variables is investigated. Doing this it is possible to obtain both well defined unitary transformation and phase operator. (Author) [pt
Zeta functions for the spectrum of the non-commutative harmonic oscillators
Ichinose, T
2004-01-01
This paper investigates the spectral zeta function of the non-commutative harmonic oscillator studied in \\cite{PW1, 2}. It is shown, as one of the basic analytic properties, that the spectral zeta function is extended to a meromorphic function in the whole complex plane with a simple pole at $s=1$, and further that it has a zero at all non-positive even integers, i.e. at $s=0$ and at those negative even integers where the Riemann zeta function has the so-called trivial zeros. As a by-product of the study, both the upper and the lower bounds are also given for the first eigenvalue of the non-commutative harmonic oscillator.
Harmonic-oscillator pattern arising from an algebraic approach to chiral symmetry
Buccella, F; Savoy, C A
1972-01-01
The Weinberg equation for the (mass)/sup 2/ operator (Q/sub 5//sup +/, (Q/sub 5//sup +/, m/sup 2/))=0, between meson states, is saturated in a perturbative approach. The generator Z of the mixing operators is completely established as Z=(W*M)/sub z/, where W is the W-spin operator and M is the co-ordinate of the three-dimensional harmonic oscillator. In a perturbative expansion of the (mass)/sup 2/ operator, the lowest term consists of two parts, the harmonic-oscillator energy and a spin-orbit coupling of the form (-1)/sup L+1/(L.S+/sup 1///sub 2 /). The resulting (mass)/sup 2/ consists of families of equispaced linearly rising trajectories. (11 refs).
Non-isospectrality of the generalized Swanson Hamiltonian and harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Midya, Bikashkali; Dube, P P; Roychoudhury, Rajkumar, E-mail: bikash.midya@gmail.com, E-mail: ppdube1@gmail.com, E-mail: raj@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)
2011-02-11
The generalized Swanson Hamiltonian H{sub GS}=w(a-tilde a-tilde{sup {dagger}}+1/2)+{alpha}{alpha}-tilde{sup 2}+{beta}a-tilde{sup {dagger}}{sup 2} with a-tilde = A(x) d/dx + B(x) can be transformed into an equivalent Hermitian Hamiltonian with the help of a similarity transformation. It is shown that the equivalent Hermitian Hamiltonian can be further transformed into the harmonic oscillator Hamiltonian so long as [a-ilde,a-tilde{sup {dagger}}]=constant. However, the main objective of this communication is to show that though the commutator of a-tilde and a-tilde{sup {dagger}} is constant, the generalized Swanson Hamiltonian is not necessarily isospectral to the harmonic oscillator. The reason for this anomaly is discussed in the framework of position-dependent mass models by choosing A(x) as the inverse square root of the mass function. (fast track communication)
On the connection between the hydrogen atom and the harmonic oscillator: the zero-energy case
International Nuclear Information System (INIS)
Kibler, M.; Negali, T.
1983-09-01
The connection between the three-dimensional hydrogen atom and a four-dimensional harmonic oscillator obtained in previous works, from an hybridization of the infinitesimal Pauli approach to the hydrogen system with the Schwinger approach to spherical and hyperbolical angular momenta, is worked out in the case of the zero-energy point of the hydrogen atom. This leads to the equivalence of the three-dimensional hydrogen problem with a four-dimensional free-particle problem involving a constraint condition. For completeness, the latter results is also derived by using the Kustaanheimo-Stiefel transformation introduced in celestial mechanics. Finally, it is shown how the Lie algebra of SO(4,2) quite naturally arises for the whole spectrum (discrete + continuum + zero-energy point) of the three-dimensional hydrogen atom from the introduction of the constraint condition into the Lie algebra of Sp(8,R) associated to the four-dimensional harmonic oscillator
Spatial growth of fundamental solutions for certain perturbations of the harmonic oscillator
DEFF Research Database (Denmark)
Jensen, Arne; Yajima, Kenji
We consider the fundamental solution for the Cauchy problem for perturbations of the harmonic oscillator by time dependent potentials, which grow at spatial infinity slower than quadratic, but faster than linear functions, and whose Hessian matrices have a fixed sign. We prove that the fundamental...... solution at resonant times grows indefinitely at spatial infinity with the algebraic growth rate, which increases indefinitely, when the growth rate of perturbations at infinity decrease from the near quadratic to the near linear ones....
Spatial growth of fundamental solutions for certain perturbations of the harmonic oscillator
DEFF Research Database (Denmark)
Jensen, Arne; Yajima, Kenji
2010-01-01
We consider the fundamental solution for the Cauchy problem for perturbations of the harmonic oscillator by time dependent potentials which grow at spatial infinity slower than quadratic but faster than linear functions and whose Hessian matrices have a fixed sign. We prove that the fundamental...... solution at resonant times grows indefinitely at spatial infinity with an algebraic growth rate, which increases indefinitely when the growth rate of perturbations at infinity decreases from the near quadratic to the near linear ones....
A non-orthogonal harmonic-oscillator basis for three-body problems
International Nuclear Information System (INIS)
Agrello, D.A.; Aguilera-Navarro, V.C.; Chacon, E.
1979-01-01
A set of harmonic-oscillator states suitable for the representation of the wave function of the bound states of a system of three identical particles, is presented. As an illustration of the possibilities of the states defined in this paper, they are applied in a variational determination of the lowest symmetric S state of 12 C, in the model of three structureless α particles interacting through the Coulomb force plus a phenomenological two-body force. (author) [pt
Derivation of exact master equation with stochastic description: dissipative harmonic oscillator.
Li, Haifeng; Shao, Jiushu; Wang, Shikuan
2011-11-01
A systematic procedure for deriving the master equation of a dissipative system is reported in the framework of stochastic description. For the Caldeira-Leggett model of the harmonic-oscillator bath, a detailed and elementary derivation of the bath-induced stochastic field is presented. The dynamics of the system is thereby fully described by a stochastic differential equation, and the desired master equation would be acquired with statistical averaging. It is shown that the existence of a closed-form master equation depends on the specificity of the system as well as the feature of the dissipation characterized by the spectral density function. For a dissipative harmonic oscillator it is observed that the correlation between the stochastic field due to the bath and the system can be decoupled, and the master equation naturally results. Such an equation possesses the Lindblad form in which time-dependent coefficients are determined by a set of integral equations. It is proved that the obtained master equation is equivalent to the well-known Hu-Paz-Zhang equation based on the path-integral technique. The procedure is also used to obtain the master equation of a dissipative harmonic oscillator in time-dependent fields.
International Nuclear Information System (INIS)
Belendez, A.; Gimeno, E.; Alvarez, M.L.; Mendez, D.I.; Hernandez, A.
2008-01-01
An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is a modification of the rational harmonic balance method in which analytical approximate solutions have rational form. This approach gives us the frequency of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems with complex nonlinearities
Energy Technology Data Exchange (ETDEWEB)
Kawamata, Shuichi, E-mail: s-kawamata@riast.osakafu-u.ac.jp; Kawamura, Yuichi [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai 599-8570 (Japan); Hibino, Akira; Tanaka, Sho [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)
2016-10-14
In order to develop optical devices for 2–3 μm wavelength regions, the InP-based InGaAs/GaAsSb type II multiple quantum well system has been investigated. By doping nitrogen into InGaAs layers, the system becomes effective in creating the optical devices with a longer wavelength. In this report, electrical transport properties are reported on the InGaAsN/GaAsSb type II system. The epitaxial layers with the single hetero or multiple quantum well structure on InP substrates are grown by the molecular beam epitaxy. The electrical resistance of samples with different nitrogen concentrations has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 6 K. The oscillation of the resistance due to the Shubnikov-de Haas (SdH) effect has been observed at each temperature. The effective mass is obtained from the temperature dependence of the amplitude of the SdH oscillations. The value of the effective mass increases from 0.048 for N = 0.0% to 0.062 for N = 1.2 and 1.5% as the nitrogen concentration increases. The mass enhancement occurs with corresponding to the reduction of the bandgap energy. These results are consistent with the band anticrossing model.
Llewellyn-Jones, D. T.; Knight, R. J.; Gebbie, H. A.
1980-07-01
A new technique of measuring absolute power exploiting an untuned cavity and Fourier spectroscopy has been used to examine the power spectrum of the harmonics and other overtones produced by a 95 GHz IMPATT oscillator. The conditions which favor the production of a rich harmonic spectrum are not those which maximize the fundamental power. Under some conditions of mismatch at the fundamental frequency it is possible to produce over 200 microW of harmonic power in the 100-200 GHz region comparable with the fundamental power from the oscillator.
Directory of Open Access Journals (Sweden)
William E Wood
Full Text Available Complex motor skills are more difficult to perform at certain points in the day (for example, shortly after waking, but the daily trajectory of motor-skill error is more difficult to predict. By undertaking a quantitative analysis of the fundamental frequency (FF and amplitude of hundreds of zebra finch syllables per animal per day, we find that zebra finch song follows a previously undescribed daily oscillation. The FF and amplitude of harmonic syllables rises across the morning, reaching a peak near mid-day, and then falls again in the late afternoon until sleep. This oscillation, although somewhat variable, is consistent across days and across animals and does not require serotonin, as animals with serotonergic lesions maintained daily oscillations. We hypothesize that this oscillation is driven by underlying physiological factors which could be shared with other taxa. Song production in zebra finches is a model system for studying complex learned behavior because of the ease of gathering comprehensive behavioral data and the tractability of the underlying neural circuitry. The daily oscillation that we describe promises to reveal new insights into how time of day affects the ability to accomplish a variety of complex learned motor skills.
International Nuclear Information System (INIS)
Santos, Marcelo Franca
2005-01-01
We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two by two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic, and state-independent manipulation of the harmonic oscillator quantum state
International Nuclear Information System (INIS)
Lo, C.F.
2009-01-01
By applying the standard analytical techniques of solving partial differential equations, we have obtained the exact solution in terms of the Fourier sine series to the time-dependent Schroedinger equation describing a quantum one-dimensional harmonic oscillator of time-dependent frequency confined in an infinite square well with the two walls moving along some parametric trajectories. Based upon the orthonormal basis of quasi-stationary wave functions, the exact propagator of the system has also been analytically derived. Special cases like (i) a confined free particle, (ii) a confined time-independent harmonic oscillator, and (iii) an aging oscillator are examined, and the corresponding time-dependent wave functions are explicitly determined. Besides, the approach has been extended to solve the case of a confined generalized time-dependent harmonic oscillator for some parametric moving boundaries as well. (general)
Relativistic corrections to one-particle neutron levels in the harmonic oscillator well
International Nuclear Information System (INIS)
Yanavichyus, A.I.
1983-01-01
Relativistic corrections to mass and potential energy for one-particle levels in the harmonic oscillator well are calculated in the first approximation of the perturbation theory. These corrections are, mainly negliqible, but they sharply increase with growth of the head and orbital quantum numbers. For the state 1s the relativistic correction is of the order of 0.01 MeV, and for 3p it is equal to 0.4 MeV. Thus, the relativistic correction for certain states approaches the energy of spin-orbital interactions and it should be taken into account in calculating the energy of one-particle levels
Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems
Abdul-Rahman, Houssam
2018-03-01
For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.
International Nuclear Information System (INIS)
Mota, R D; Granados, V D; Queijeiro, A; Garcia, J; Guzman, L
2003-01-01
We show that the supersymmetric radial ladder operators of the three-dimensional isotropic harmonic oscillator are contained in the spherical components of the creation and annihilation operators of the system. Also, we show that the constants of motion of the problem, written in terms of these spherical components, lead us to second-order radial operators. Further, we show that these operators change the orbital angular momentum quantum number by two units and are equal to those obtained by the Infeld-Hull factorization method
(1 + 1) Newton-Hooke group for the simple and damped harmonic oscillator
Brzykcy, Przemysław
2018-03-01
It is demonstrated that, in the framework of the orbit method, a simple and damped harmonic oscillator is indistinguishable at the level of an abstract Lie algebra. This opens a possibility for treating the dissipative systems within the orbit method. An in-depth analysis of the coadjoint orbits of the (1 + 1) dimensional Newton-Hooke group is presented. Furthermore, it is argued that the physical interpretation is carried by a specific realisation of the Lie algebra of smooth functions on a phase space rather than by an abstract Lie algebra.
Quantization of a free particle interacting linearly with a harmonic oscillator
International Nuclear Information System (INIS)
Mainiero, Thomas; Porter, Mason A.
2007-01-01
We investigate the quantization of a free particle coupled linearly to a harmonic oscillator. This system, whose classical counterpart has clearly separated regular and chaotic regions, provides an ideal framework for studying the quantization of mixed systems. We identify key signatures of the classically chaotic and regular portions in the quantum system by constructing Husimi distributions and investigating avoided level crossings of eigenvalues as functions of the strength and range of the interaction between the system's two components. We show, in particular, that the Husimi structure becomes mixed and delocalized as the classical dynamics becomes more chaotic
A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator
International Nuclear Information System (INIS)
Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung
2009-01-01
We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./
A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung [Department of Physics, HCMC University of Pedagogy, 280 An Duong Vuong, Ward 10, Dist. 5, Ho Chi Minh City (Viet Nam)
2009-05-01
We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./.
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.
Fundamental and Subharmonic Resonances of Harmonically Oscillation with Time Delay State Feedback
Directory of Open Access Journals (Sweden)
A.F. EL-Bassiouny
2006-01-01
Full Text Available Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated. The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.
International Nuclear Information System (INIS)
Fox, Ronald F.; Vela-Arevalo, Luz V.
2002-01-01
The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
International Nuclear Information System (INIS)
Schroer, Bert; Freie Universitaet, Berlin
2005-02-01
It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)
International Nuclear Information System (INIS)
Chaudhury, Srabanti; Chatterjee, Debarati; Cherayil, Binny J
2008-01-01
A harmonic oscillator that evolves under the action of both a systematic time-dependent force and a random time-correlated force can do work w. This work is a random quantity, and Mai and Dhar have recently shown, using the generalized Langevin equation (GLE) for the oscillator's position x, that it satisfies a fluctuation theorem. In principle, the same result could have been derived from the Fokker–Planck equation (FPE) for the probability density function, P(x,w,t), for the oscillator being at x at time t, having done work w. Although the FPE equivalent to the above GLE is easily constructed and solved, one finds, unexpectedly, that its predictions for the mean and variance of w do not agree with the fluctuation theorem. We show that to resolve this contradiction, it is necessary to construct an FPE that includes the velocity of the oscillator, v, as an additional variable. The FPE for P(x,v,w,t) does indeed yield expressions for the mean and variance of w that agree with the fluctuation theorem
International Nuclear Information System (INIS)
Belendez, A; Pascual, C; Fernandez, E; Neipp, C; Belendez, T
2008-01-01
A modified He's homotopy perturbation method is used to calculate higher-order analytical approximate solutions to the relativistic and Duffing-harmonic oscillators. The He's homotopy perturbation method is modified by truncating the infinite series corresponding to the first-order approximate solution before introducing this solution in the second-order linear differential equation, and so on. We find this modified homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. The approximate formulae obtained show excellent agreement with the exact solutions, and are valid for small as well as large amplitudes of oscillation, including the limiting cases of amplitude approaching zero and infinity. For the relativistic oscillator, only one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate frequency of less than 1.6% for small and large values of oscillation amplitude, while this relative error is 0.65% for two iterations with two harmonics and as low as 0.18% when three harmonics are considered in the second approximation. For the Duffing-harmonic oscillator the relative error is as low as 0.078% when the second approximation is considered. Comparison of the result obtained using this method with those obtained by the harmonic balance methods reveals that the former is very effective and convenient
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress
International Nuclear Information System (INIS)
Bocko, M.F.; Onofrio, R.
1996-01-01
Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves et al., 1980, Rev. Mod. Phys. 52, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. copyright 1996 The American Physical Society
The two-capacitor problem revisited: a mechanical harmonic oscillator model approach
International Nuclear Information System (INIS)
Lee, Keeyung
2009-01-01
The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that exactly half the work done by a constant applied force is dissipated irrespective of the form of dissipation mechanism when the system comes to a new equilibrium after a constant force is abruptly applied. This model is then applied to the energy loss mechanism in the capacitor charging problem or the two-capacitor problem. This approach allows a simple explanation of the energy dissipation mechanism in these problems and shows that the dissipated energy should always be exactly half the supplied energy whether that is caused by the Joule heat or by the radiation. This paper, which provides a simple treatment of the energy dissipation mechanism in the two-capacitor problem, is suitable for all undergraduate levels
ABC of ladder operators for rationally extended quantum harmonic oscillator systems
Cariñena, José F.; Plyushchay, Mikhail S.
2017-07-01
The problem of construction of ladder operators for rationally extended quantum harmonic oscillator (REQHO) systems of a general form is investigated in the light of existence of different schemes of the Darboux-Crum-Krein-Adler transformations by which such systems can be generated from the quantum harmonic oscillator. Any REQHO system is characterized by the number of separated states in its spectrum, the number of ‘valence bands’ in which the separated states are organized, and by the total number of the missing energy levels and their position. All these peculiarities of a REQHO system are shown to be detected and reflected by a trinity (A^+/- , B^+/- , C^+/-) of the basic (primary) lowering and raising ladder operators related between themselves by certain algebraic identities with coefficients polynomially-dependent on the Hamiltonian. We show that all the secondary, higher-order ladder operators are obtainable by a composition of the basic ladder operators of the trinity which form the set of the spectrum-generating operators. Each trinity, in turn, can be constructed from the intertwining operators of the two complementary minimal schemes of the Darboux-Crum-Krein-Adler transformations.
Directory of Open Access Journals (Sweden)
Cornelia A. Bulucea
2012-03-01
Full Text Available Over the last several decades, it has become increasingly accepted that the term xenobiotic relates to environmental impact, since environmental xenobiotics are understood to be substances foreign to a biological system, which did not exist in nature before their synthesis by humans. In this context, xenobiotics are persistent pollutants such as dioxins and polychlorinated biphenyls, as well as plastics and pesticides. Dangerous and unstable situations can result from the presence of environmental xenobiotics since their harmful effects on humans and ecosystems are often unpredictable. For instance, the immune system is extremely vulnerable and sensitive to modulation by environmental xenobitics. Various experimental assays could be performed to ascertain the immunotoxic potential of environmental xenobiotics, taking into account genetic factors, the route of xenobiotic penetration, and the amount and duration of exposure, as well as the wave shape of the xenobiotic. In this paper, we propose an approach for the analysis of xenobiotic metabolism using mathematical models and corresponding methods. This study focuses on a pattern depicting mathematically modeled processes of resonant absorption of a xenobiotic harmonic oscillation by an organism modulated as an absorbing oscillator structure. We represent the xenobiotic concentration degree through a spatial concentration vector, and we model and simulate the oscillating regime of environmental xenobiotic absorption. It is anticipated that the results could be used to facilitate the assessment of the processes of environmental xenobiotic absorption, distribution, biotransformation and removal within the framework of compartmental analysis, by establishing appropriate mathematical models and simulations.
International Nuclear Information System (INIS)
Xu Hao; Shi Tianjun
2011-01-01
In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)
International Nuclear Information System (INIS)
Blasone, Massimo; Jizba, Petr
2004-01-01
By using the Feynman-Hibbs prescription for the evolution amplitude, we quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. The time-dependent quantum states of such a system are constructed and discussed entirely in the framework of the classical theory. The corresponding geometric (Pancharatnam) phase is calculated and found to be directly related to the ground-state energy of the 1D linear harmonic oscillator to which the 2D system reduces under appropriate constraint
International Nuclear Information System (INIS)
Arcos-Olalla, Rafael; Reyes, Marco A.; Rosu, Haret C.
2012-01-01
We introduce an alternative factorization of the Hamiltonian of the quantum harmonic oscillator which leads to a two-parameter self-adjoint operator from which the standard harmonic oscillator, the one-parameter oscillators introduced by Mielnik, and the Hermite operator are obtained in certain limits of the parameters. In addition, a single Bernoulli-type parameter factorization, which is different from the one introduced by M.A. Reyes, H.C. Rosu, and M.R. Gutiérrez [Phys. Lett. A 375 (2011) 2145], is briefly discussed in the final part of this work. -- Highlights: ► Factorizations with operators which are not mutually adjoint are presented. ► New two-parameter and one-parameter self-adjoint oscillator operators are introduced. ► Their eigenfunctions are two- and one-parameter deformed Hermite functions.
International Nuclear Information System (INIS)
Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.
2009-01-01
The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed
Energy Technology Data Exchange (ETDEWEB)
Arcos-Olalla, Rafael, E-mail: olalla@fisica.ugto.mx [Departamento de Física, DCI Campus León, Universidad de Guanajuato, Apdo. Postal E143, 37150 León, Gto. (Mexico); Reyes, Marco A., E-mail: marco@fisica.ugto.mx [Departamento de Física, DCI Campus León, Universidad de Guanajuato, Apdo. Postal E143, 37150 León, Gto. (Mexico); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo. Postal 3-74 Tangamanga, 78231 San Luis Potosí, S.L.P. (Mexico)
2012-10-01
We introduce an alternative factorization of the Hamiltonian of the quantum harmonic oscillator which leads to a two-parameter self-adjoint operator from which the standard harmonic oscillator, the one-parameter oscillators introduced by Mielnik, and the Hermite operator are obtained in certain limits of the parameters. In addition, a single Bernoulli-type parameter factorization, which is different from the one introduced by M.A. Reyes, H.C. Rosu, and M.R. Gutiérrez [Phys. Lett. A 375 (2011) 2145], is briefly discussed in the final part of this work. -- Highlights: ► Factorizations with operators which are not mutually adjoint are presented. ► New two-parameter and one-parameter self-adjoint oscillator operators are introduced. ► Their eigenfunctions are two- and one-parameter deformed Hermite functions.
Harmonic oscillator states with integer and non-integer orbital angular momentum
International Nuclear Information System (INIS)
Land, Martin
2011-01-01
We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non
The Tucson-Melbourne Three-Body Force in a Translationally-Invariant Harmonic Oscillator Basis
Marsden, David; Navratil, Petr; Barrett, Bruce
2000-09-01
A translationally-invariant three-body basis set has been employed in shell model calculations on ^3H and ^3He including the Tucson-Melbourne form of the real nuclear three-body force. The basis consists of harmonic oscillators in Jacobi coordinates, explicitly avoiding the centre of mass drift problem in the calculations. The derivation of the three-body matrix elements and the results of large basis effective interaction shell model calculations will be presented. J. L. Friar, B. F. Gibson, G. L. Payne and S. A. Coon; Few Body Systems 5, 13 (1988) P. Navratil, G.P. Kamuntavicius and B.R. Barrett; Phys. Rev. C. 61, 044001 (2000)
From the harmonic oscillator to the A-D-E classification of conformal models
International Nuclear Information System (INIS)
Itzykson, C.
1988-01-01
Arithmetical aspects of the solution of systems involving dimensional statistical models and conformal field theory. From this perspective, the analysis of the harmonic oscillator, the free particle in a box, the rational billards is effectuated. Moreover, the description of the classification of minimal conformal models and Weiss-Lumino-Witten models, based on the simplest affine algebra is also given. Attempts to interpret and justify the appearance of A-D-E classification of algebra in W-Z-W model are made. Extensions of W-Z-W model, based on SU(N) level one, and the ways to deal with rank two Lie groups, using the arithmetics of quadratic intergers, are described
Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai
2017-06-01
Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.
Directory of Open Access Journals (Sweden)
Rong Haiwu
2014-01-01
Full Text Available The erosion of the safe basins and chaotic motions of a nonlinear vibroimpact oscillator under both harmonic and bounded random noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed. The sudden change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins, bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region, hence making the system become more unsafely and chaotic motions may occur more easily.
Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry
International Nuclear Information System (INIS)
Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.
2008-01-01
We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties
International Nuclear Information System (INIS)
Yu, Rong Mei; Zan, Li Rong; Jiao, Li Guang; Ho, Yew Kam
2017-01-01
Spatially confined atoms have been extensively investigated to model atomic systems in extreme pressures. For the simplest hydrogen-like atoms and isotropic harmonic oscillators, numerous physical quantities have been established with very high accuracy. However, the expectation value of which is of practical importance in many applications has significant discrepancies among calculations by different methods. In this work we employed the basis expansion method with cut-off Slater-type orbitals to investigate these two confined systems. Accurate values for several low-lying bound states were obtained by carefully examining the convergence with respect to the size of basis. A scaling law for was derived and it is used to verify the accuracy of numerical results. Comparison with other calculations show that the present results establish benchmark values for this quantity, which may be useful in future studies. (author)
Park, DaeKil
2018-06-01
The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.
High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier
Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.
2016-03-01
We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.
The optimal performance of a quantum refrigeration cycle working with harmonic oscillators
International Nuclear Information System (INIS)
Lin Bihong; Chen Jincan; Hua Ben
2003-01-01
The cycle model of a quantum refrigeration cycle working with many non-interacting harmonic oscillators and consisting of two isothermal and two constant-frequency processes is established. Based on the quantum master equation and semi-group approach, the general performance of the cycle is investigated. Expressions for some important performance parameters, such as the coefficient of performance, cooling rate, power input, and rate of the entropy production, are derived. Several interesting cases are discussed and, especially, the optimal performance of the cycle at high temperatures is discussed in detail. Some important characteristic curves of the cycle, such as the cooling rate versus coefficient of performance curves, the power input versus coefficient of performance curves, the cooling rate versus power input curves, and so on, are presented. The maximum cooling rate and the corresponding coefficient of performance are calculated. Other optimal performances are also analysed. The results obtained here are compared with those of an Ericsson or Stirling refrigeration cycle using an ideal gas as the working substance. Finally, the optimal performance of a harmonic quantum Carnot refrigeration cycle at high temperatures is derived easily
Stochastic and superharmonic stochastic resonances of a confined overdamped harmonic oscillator
Zhang, Lu; Lai, Li; Peng, Hao; Tu, Zhe; Zhong, Suchuan
2018-01-01
The dynamics of many soft condensed matter and biological systems is affected by space limitations, which produce some peculiar effects on the systems' stochastic resonance (SR) behavior. In this study, we propose a model where SR can be observed: a confined overdamped harmonic oscillator that is subjected to a sinusoidal driving force and is under the influence of a multiplicative white noise. The output response of the system is a periodic signal with harmonic frequencies that are odd multiples of the driving frequency. We verify the amplitude resonances at the driving frequencies and superharmonic frequencies that are equal to three, five, and seven times the driving frequency, using a numerical method based on the stochastic Taylor expansion. The synergistic effect of the multiplicative white noise, constant boundaries, and periodic driving force that can induce a SR in the output amplitude at the driving and superharmonic frequencies is found. The SR phenomenon found in this paper is sensitive to the driving amplitude and frequency, inherent potential parameter, and boundary width, thus leading to various resonance conditions. Therefore, the mechanism found could be beneficial for the characterization of these confined systems and could constitute an important tool for controlling their basic properties.
DEFF Research Database (Denmark)
Nørrelykke, Simon F; Flyvbjerg, Henrik
2011-01-01
The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...
Energy Technology Data Exchange (ETDEWEB)
Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
Li, Xiaoli; Li, Duan; Voss, Logan J; Sleigh, Jamie W
2009-11-15
Brain functions are related to neuronal networks of different sizes and distribution, and neuronal networks of different sizes oscillate at different frequencies. Thus the synchronization of neuronal networks is often reflected by cross-frequency interaction. The description of this cross-frequency interaction is therefore a crucial issue in understanding the modulation mechanisms between neuronal populations. A number of different kinds of interaction between frequencies have been reported. In this paper, we develop a general harmonic wavelet transform based bicoherence using a phase randomization method. This allows us to measure the comodulation of oscillations between different frequency bands in neuronal populations. The performance of the method is evaluated by a simulation study. The results show that the improved wavelet bicoherence method can detect a reliable phase coupling value, and also identify zero bicoherence for waves that are not phase-coupled. Spurious bicoherences can be effectively eliminated through the phase randomization method. Finally, this method is applied to electrocorticogram data recorded from rats during transitions between slow-wave sleep, rapid-eye movement sleep and waking. The phase coupling in rapid-eye movement sleep is statistically lower than that during slow-wave sleep, and slightly less than those in the wakeful state. The degree of phase coupling in rapid-eye movement sleep after slow-wave sleep is greater than in rapid-eye movement sleep prior to waking. This method could be applied to investigate the cross-frequency interactions in other physiological signals.
Improved time-dependent harmonic oscillator method for vibrationally inelastic collisions
International Nuclear Information System (INIS)
DePristo, A.E.
1985-01-01
A quantal solution to vibrationally inelastic collisions is presented based upon a linear expansion of the interaction potential around the time-dependent classical positions of all translational and vibrational degrees of freedom. The full time-dependent wave function is a product of a Gaussian translational wave packet and a multidimensional harmonic oscillator wave function, both centered around the appropriate classical position variables. The computational requirements are small since the initial vibrational coordinates are the equilibrium values in the classical trajectory (i.e., phase space sampling does not occur). Different choices of the initial width of the translational wave packet and the initial classical translational momenta are possible, and two combinations are investigated. The first involves setting the initial classical momenta equal to the quantal expectation value, and varying the width to satisfy normalization of the transition probability matrix. The second involves adjusting the initial classical momenta to ensure detailed balancing for each set of transitions, i→f and f→i, and varying the width to satisfy normalization. This choice illustrates the origin of the empirical correction of using the arithmetic average momenta as the initial classical momenta in the forced oscillator approximation. Both methods are tested for the collinear collision systems CO 2 --(He, Ne), and are found to be accurate except for near-resonant vibration--vibration exchange at low initial kinetic energies
An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
International Nuclear Information System (INIS)
Belendez, A.; Mendez, D.I.; Fernandez, E.; Marini, S.; Pascual, I.
2009-01-01
The nonlinear oscillations of a Duffing-harmonic oscillator are investigated by an approximated method based on the 'cubication' of the initial nonlinear differential equation. In this cubication method the restoring force is expanded in Chebyshev polynomials and the original nonlinear differential equation is approximated by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain explicit approximate formulas for the frequency and the solution as a function of the complete elliptic integral of the first kind and the Jacobi elliptic function, respectively. These explicit formulas are valid for all values of the initial amplitude and we conclude this cubication method works very well for the whole range of initial amplitudes. Excellent agreement of the approximate frequencies and periodic solutions with the exact ones is demonstrated and discussed and the relative error for the approximate frequency is as low as 0.071%. Unlike other approximate methods applied to this oscillator, which are not capable to reproduce exactly the behaviour of the approximate frequency when A tends to zero, the cubication method used in this Letter predicts exactly the behaviour of the approximate frequency not only when A tends to infinity, but also when A tends to zero. Finally, a closed-form expression for the approximate frequency is obtained in terms of elementary functions. To do this, the relationship between the complete elliptic integral of the first kind and the arithmetic-geometric mean as well as Legendre's formula to approximately obtain this mean are used.
Vasil'ev, M. G.
2017-02-01
A technique for measuring the crystal cross-sectional area with a weight sensor based on the difference between its readings at the extreme rod positions in the stepwise and continuous modes of modulation of the pulling rate is proposed for the low-thermal gradient Czochralski method. A change in the crystallization rate at harmonic oscillations of the pulling rate is estimated with the aim of conserving the quality of the growing crystal for this measurement method.
Quantization and instability of the damped harmonic oscillator subject to a time-dependent force
International Nuclear Information System (INIS)
Majima, H.; Suzuki, A.
2011-01-01
We consider the one-dimensional motion of a particle immersed in a potential field U(x) under the influence of a frictional (dissipative) force linear in velocity (-γx) and a time-dependent external force (K(t)). The dissipative system subject to these forces is discussed by introducing the extended Bateman's system, which is described by the Lagrangian: L=mxy-U(x+1/2 y)+U(x-1/2 y)+(γ)/2 (xy-yx)-xK(t)+yK(t), which leads to the familiar classical equations of motion for the dissipative (open) system. The equation for a variable y is the time-reversed of the x motion. We discuss the extended Bateman dual Lagrangian and Hamiltonian by setting U(x±y/2)=1/2 k(x±y/2) 2 specifically for a dual extended damped-amplified harmonic oscillator subject to the time-dependent external force. We show the method of quantizing such dissipative systems, namely the canonical quantization of the extended Bateman's Hamiltonian H. The Heisenberg equations of motion utilizing the quantized Hamiltonian H surely lead to the equations of motion for the dissipative dynamical quantum systems, which are the quantum analog of the corresponding classical systems. To discuss the stability of the quantum dissipative system due to the influence of an external force K(t) and the dissipative force, we derived a formula for transition amplitudes of the dissipative system with the help of the perturbation analysis. The formula is specifically applied for a damped-amplified harmonic oscillator subject to the impulsive force. This formula is used to study the influence of dissipation such as the instability due to the dissipative force and/or the applied impulsive force. - Highlights: → A method of quantizing dissipative systems is presented. → In order to obtain the method, we apply Bateman's dual system approach. → A formula for a transition amplitude is derived. → We use the formula to study the instability of the dissipative systems.
Exact complex integrals in two dimensions for shifted harmonic ...
Indian Academy of Sciences (India)
We use rationalization method to study two-dimensional complex dynamical systems (shifted harmonic oscillator in complex plane) on the extended comples phase space (ECPS). The role and scope of the derived invatiants in the context of various physical problems are high-lighted.
Entanglement entropy in the quantum networks of a coupled quantum harmonic oscillator
International Nuclear Information System (INIS)
Jafarizadeh, M A; Nami, S; Eghbalifam, F
2015-01-01
We investigate the entanglement of the ground state in the quantum networks that their nodes are considered as quantum harmonic oscillators. To this aim, the Schmidt numbers and entanglement entropy between two arbitrary partitions of a network are calculated.In partitioning an arbitrary graph into two parts there are some nodes in each part which are not connected to the nodes of the other part. So, these nodes of each part can be in distinct subsets. Therefore, the graph is separated into four subsets. The nodes of the first and last subsets are those which are not connected to the nodes of the other part. In theorem 1, by using the generalized Schur complement method in these four subsets, we prove that all the graphs whose connections between the two alternative subsets are complete, have the same entropy. A large number of graphs satisfy this theorem. Then the entanglement entropy in the limit of the large coupling and large size of the system is investigated in these graphs. Also, the asymptotic behaviors of the Schmidt numbers and entanglement entropy in the limit of infinite coupling are shown.One important quantity about partitioning is the conductance of the graph. The conductance of the graph is considered in various graphs. In these graphs we compare the conductance of the graph and the entanglement entropy. (paper)
International Nuclear Information System (INIS)
Zeng Bei; Zeng Jinyan
2002-01-01
It is shown that for any central potential V(r) there exist a series of conserved aphelion and perihelion vectors R-tilde=pxL-g(r)r, g(r)=rV ' (r). However, if and only if V(r) is a pure or screened Coulomb potential, R-tilde and L constitute an SO 4 algebra in the subspace spanned by the degenerate states with a given energy eigenvalue E ' . While dR/dt=0 always holds, dR ' /dt=0 holds only at the aphelia and perihelia. Moreover, the space spanning the SO 4 algebra for a screened Coulomb potential is smaller than that for a pure Coulomb potential. The relation of closed orbits for a screened Coulomb potential with that for a pure Coulomb potential is clarified. The ratio of the radial frequency ω r and angular frequency ω φ , ω r /ω φ =κ=1 for a pure Coulomb potential irrespective of the angular momentum L and energy E(<0). For a screened Coulomb potential κ is determined by the angular momentum L, and when κ is any rational number (κ<1), the orbit is closed. The situation for a pure or screened isotropic harmonic oscillator is similar
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
A new look at the quantum mechanics of the harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Kastrup, H.A.
2006-12-15
At first sight it is probably hard to believe that something new can be said about the harmonic oscillator (HO). But that is so indeed: Classically the Harmonic Oscillator (HO) is the generic example for the use of angle and action variables {phi} element of R mod 2{pi} and I>0. However, the transformation q= {radical}(2I)cos {phi}, p=-{radical}(2I)sin {phi} is only locally symplectic and singular for (q,p)=(0,0). Globally the phase space {l_brace}(q,p){r_brace} has the topological structure of the plane R{sup 2}, whereas the phase space {l_brace}({phi},I){r_brace} corresponds globally to the punctured plane R{sup 2}-(0,0) or to a simple cone S{sup 1} x R{sup +} with the tip deleted. This makes a qualitative difference as to the quantum theory of the two phase spaces: The quantizing canonical group for the plane R{sup 2} consists of the (centrally extended) translations generated by the Poisson Lie algebra basis {l_brace}q,p,1{r_brace}, whereas the corresponding canonical group of the phase space {l_brace}({phi},I){r_brace} is the group SO{up_arrow}(1,2)=Sp(2,R)/Z{sub 2}, where Sp(2,R) is the sympletic group of the plane, with the generating Poisson Lie algebra basis {l_brace}h{sub 0}=I,h{sub 1}=Icos{phi},h{sub 2}=-Isin{phi}{r_brace} which provides also the basic ''observables'' on {l_brace}({phi}, I){r_brace}. In the quantum mechanics of the ({phi},I)-model of the HO the three h{sub j} correspond to self-adjoint generators K{sub j}, j=0,1,2, of irreducible unitary representations from the positive discrete series of the group SO{up_arrow}(1,2) or one of its infinitely many covering groups, the representations parametrized by the Bargmann index k>0. This index k determines the ground state energy E{sub k,n=0}={Dirac_h}{omega}k of the ({phi},I)-Hamiltonian H(anti K)={Dirac_h}{omega}K{sub 0}. For an m-fold covering the lowest possible value for k is k=1/m, which can be made arbitrarily small by choosing m accordingly. This is not in contraction to
International Nuclear Information System (INIS)
Fueloep, L.
1987-10-01
The forceless mechanics of Hertz is a reformulation of the classical mechanics in a curved configuration space. The relationship between the forceless mechanics and the general relativity theory which uses curved Riemann spaces as well is investigated on the simple example of the harmonic oscillator. The mathematical similarities and differences and the different interpretations of similar formulas are discussed. Some formal constants of the Hertz mechanics have got concrete physical meanings in the general relativity. (D.Gy.)
International Nuclear Information System (INIS)
Mota, R D; Xicotencatl, M A; Granados, V D
2004-01-01
In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse
Mota, R. D.; Xicoténcatl, M. A.; Granados, V. D.
2004-02-01
In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.
Energy Technology Data Exchange (ETDEWEB)
Mota, R D [Unidad Profesional Interdisciplinaria de IngenierIa y TecnologIas Avanzadas, IPN. Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico DF (Mexico); Xicotencatl, M A [Departamento de Matematicas del Centro de Investigacion y Estudios Avanzados del IPN, Mexico DF, 07000 (Mexico); Granados, V D [Escuela Superior de FIsica y Matematicas, Instituto Politecnico Nacional, Ed. 9, Unidad Profesional Adolfo Lopez Mateos, 07738 Mexico DF (Mexico)
2004-02-20
In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.
International Nuclear Information System (INIS)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.; Kunold, A.
2015-01-01
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Energy Technology Data Exchange (ETDEWEB)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C. [Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Cardoso, J.L. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)
2015-11-15
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra is later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a
Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.
1995-08-01
The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.
Laas, Katrin; Mankin, Romi; Rekker, Astrid
2009-05-01
The influences of noise flatness and friction coefficient on the long-time behavior of the first two moments and the correlation function for the output signal of a harmonic oscillator with fluctuating frequency subjected to an external periodic force are considered. The colored fluctuations of the oscillator frequency are modeled as a trichotomous noise. The study is a follow up of the previous investigation of a stochastic oscillator [Phys. Rev. E 78, 031120 (2008)], where the connection between the occurrence of energetic instability and stochastic multiresonance is established. Here we report some unexpected results not considered in the previous work. Notably, we have found a nonmonotonic dependence of several stochastic resonance characteristics such as spectral amplification, variance of the output signal, and signal-to-noise ratio on the friction coefficient and on the noise flatness. In particular, in certain parameter regions spectral amplification exhibits a resonancelike enhancement at intermediate values of the friction coefficient.
CSIR Research Space (South Africa)
Grobler, TL
2012-06-01
Full Text Available . The Fourier transform and maximum-likelihood parameter estimation are used to estimate the harmonic and noise parameters of the colored simple harmonic oscillator. Two case studies in South Africa show that reliable class differentiation can be obtained...
Two-dimensional NMR spectrometry
International Nuclear Information System (INIS)
Farrar, T.C.
1987-01-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Two-dimensional metamaterial optics
International Nuclear Information System (INIS)
Smolyaninov, I I
2010-01-01
While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes
International Nuclear Information System (INIS)
Demiralp, Metin
2010-01-01
This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if the dynamic of the system is related to a set of ODEs.
Two-Dimensional Homogeneous Fermi Gases
Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning
2018-02-01
We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.
International Nuclear Information System (INIS)
Yahiaoui, Sid-Ahmed; Bentaiba, Mustapha
2014-01-01
A new SU(1,1) position-dependent effective mass coherent states (PDEM CS) related to the shifted harmonic oscillator (SHO) are deduced. This is accomplished by applying a similarity transformation to the generally deformed oscillator algebra (GDOA) generators for PDEM systems and a new set of operators that close the su(1,1) Lie algebra are constructed, being the PDEM CS of the basis for its unitary irreducible representation. From the Lie algebra generators, we evaluate the uncertainty relationship for a position and momentum-like operators in the PDEM CS and show that it is minimized in the sense of Barut–Girardello CS. We prove that the deduced PDEM CS preserve the same analytical form than those of Glauber states. As an illustration of our procedure, we depicted the 2D-probability density in the PDEM CS for SHO with the explicit form of the mass distribution with no singularities. (paper)
International Nuclear Information System (INIS)
Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.
2009-01-01
In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.
Two-dimensional time dependent Riemann solvers for neutron transport
International Nuclear Information System (INIS)
Brunner, Thomas A.; Holloway, James Paul
2005-01-01
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem
An Application of the Harmonic Oscillator Model to Verify Dunning’s Theory of the Economic Growth
Directory of Open Access Journals (Sweden)
Marcin Salamaga
2013-09-01
Full Text Available Analogies with mechanisms ruling the natural world have oft en been sought in the course of economic phenomena.Th is paper is also an attempt to combine the physical phenomenon of a harmonious oscillator withthe theory of economic growth by J. H. Dunning (1981. In his theory, Dunning distinguished stages of economicgrowth of countries that imply the dependency between the investment position of countries and theirGDP per capita, while the graph presenting this dependency reminds a trajectory of oscillating motion of adamped harmonic oscillator. Th is analogy has given inspiration to reinterpret the theory of economy on thegrounds of the mechanism of a physical model. In this paper, the harmonious oscillator motion equation wasadapted to the description of dependencies shown in the theory of economic growth by J. H. Dunning. Th emathematical solution of this equation is properly parameterised and parameters are estimated with the useof the Gauss-Newton algorithm. Th e main objective of this paper is to allocate a specifi c stage in the economicgrowth to each country on the basis of the values of parameter estimations of the proposed cyclical models ofchanges in the net investment indicator.
Two-dimensional flexible nanoelectronics
Akinwande, Deji; Petrone, Nicholas; Hone, James
2014-12-01
2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional thermofield bosonization
International Nuclear Information System (INIS)
Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.
2005-01-01
The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
International Nuclear Information System (INIS)
Silagadze, Z.K.
2007-01-01
Two-dimensional generalization of the original peak finding algorithm suggested earlier is given. The ideology of the algorithm emerged from the well-known quantum mechanical tunneling property which enables small bodies to penetrate through narrow potential barriers. We merge this 'quantum' ideology with the philosophy of Particle Swarm Optimization to get the global optimization algorithm which can be called Quantum Swarm Optimization. The functionality of the newborn algorithm is tested on some benchmark optimization problems
A new look at the harmonic oscillator problem in a finite-dimensional Hilbert space
International Nuclear Information System (INIS)
Bagchi, B.
1995-01-01
In this Letter some basic properties of a truncated oscillator are studied. By using finite-dimensional representation matrices of the truncated oscillator we construct new parasupersymmetric schemes and remark on their relevance to the transition operators of the non-interacting N-level system endowed with bosonic modes. ((orig.))
Energy Technology Data Exchange (ETDEWEB)
Kado, S. [High Temperature Plasma Center, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: kado@q.t.u-tokyo.ac.jp; Oishi, T. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoshinuma, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Takeuchi, M. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Toi, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Minami, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagaoka, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shimizu, A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Okamura, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tanaka, S. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2007-06-15
Edge harmonic oscillations (EHO) offer the potential to relax the H-mode pedestal in a tokamak, thus avoiding edge localised modes (ELM). The mode structure of the EHO in CHS was investigated using a poloidal array of beam emission spectroscopy (BES) and a magnetic probe array. The EHO exhibited a peculiar characteristic in which the first, second and third harmonics show the same wavenumber, suggesting that the propagation velocities are different. Change in the phase of higher harmonics at the time when that of the first harmonic is zero can be described as a variation along the (m, n) = (-2, 1) mode structure, though the EHO lies on the {iota} = 1 surface. This behavior leads to an oscillation that exhibits periodic dependence of shape on spatial position.
International Nuclear Information System (INIS)
Cari, C; Suparmi, A
2013-01-01
The energy eigenvalues and eigenfunctions of Schrodinger equation for three dimensional harmonic oscillator potential plus Rosen-Morse non-central potential are investigated using NU method and Romanovski polynomial. The bound state energy eigenvalues are given in a closed form and corresponding radial wave functions are expressed in associated Laguerre polynomials while angular eigen functions are given in terms of Romanovski polynomials. The Rosen-Morse potential is considered to be a perturbation factor to the three dimensional harmonic oscillator potential that causes the increase of radial wave function amplitude and decrease of angular momentum length. Keywords: Schrodinger Equation, Three dimensional Harmonic Oscillator potential, Rosen-morse non-central potential, NU method, Romanovski Polynomials
Two dimensional infinite conformal symmetry
International Nuclear Information System (INIS)
Mohanta, N.N.; Tripathy, K.C.
1993-01-01
The invariant discontinuous (discrete) conformal transformation groups, namely the Kleinian and Fuchsian groups Gamma (with an arbitrary signature) of H (the Poincare upper half-plane l) and the unit disc Delta are explicitly constructed from the fundamental domain D. The Riemann surface with signatures of Gamma and conformally invariant automorphic forms (functions) with Peterson scalar product are discussed. The functor, where the category of complex Hilbert spaces spanned by the space of cusp forms constitutes the two dimensional conformal field theory. (Author) 7 refs
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
-dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...
Application of He’s Energy Balance Method to Duffing-Harmonic Oscillators
DEFF Research Database (Denmark)
Momeni, M.; Jamshidi, j.; Barari, Amin
2011-01-01
In this article, He's energy balance method is applied for calculating angular frequencies of nonlinear Duffing oscillators. This method offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. We illustrate that the energy balance is very effective and convenient...... and does not require linearization or small perturbation. Contrary to the conventional methods, in energy balance, only one iteration leads to high accuracy of the solutions. It is predicted that the energy balance method finds wide applications in engineering problems....
Harmonic oscillations of a circular cylinder moving with constant velocity in a quiescent fluid
Jan Novaes Recica; Luiz Antonio Alcântara Pereira; Miguel Hiroo Hirata
2008-01-01
The flow around an oscillating circular cylinder which moves with constant velocity in a quiescent Newtonian fluid with constant properties is analyzed. The influences of the frequency and amplitude oscillation on the aerodynamic loads and on the Strouhal number are presented. For the numerical simulation, a cloud of discrete Lamb vortices are utilized. For each time step of the simulation, a number of discrete vortices are placed close to the body surface; the intensity of theirs is determin...
Two-dimensional electron states bound to an off-plane donor in a magnetic field
International Nuclear Information System (INIS)
Bruno-Alfonso, A; Candido, L; Hai, G-Q
2010-01-01
The states of an electron confined in a two-dimensional (2D) plane and bound to an off-plane donor impurity center, in the presence of a magnetic field, are investigated. The energy levels of the ground state and the first three excited states are calculated variationally. The binding energy and the mean orbital radius of these states are obtained as a function of the donor center position and the magnetic field strength. The limiting cases are discussed for an in-plane donor impurity (i.e. a 2D hydrogen atom) as well as for the donor center far away from the 2D plane in strong magnetic fields, which corresponds to a 2D harmonic oscillator.
Energy Technology Data Exchange (ETDEWEB)
Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)
2015-10-28
Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two dimensional solid state NMR
International Nuclear Information System (INIS)
Kentgens, A.P.M.
1987-01-01
This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing
2017-07-01
We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn
2017-07-12
Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.
Harmonic oscillations of a circular cylinder moving with constant velocity in a quiescent fluid
Directory of Open Access Journals (Sweden)
Jan Novaes Recica
2008-01-01
Full Text Available The flow around an oscillating circular cylinder which moves with constant velocity in a quiescent Newtonian fluid with constant properties is analyzed. The influences of the frequency and amplitude oscillation on the aerodynamic loads and on the Strouhal number are presented. For the numerical simulation, a cloud of discrete Lamb vortices are utilized. For each time step of the simulation, a number of discrete vortices are placed close to the body surface; the intensity of theirs is determined such as to satisfy the no-slip boundary condition.
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Ichinose, T
2004-01-01
We study the special values at $s=2$ and $3$ of the spectral zeta function $\\zeta_Q(s)$ of the non-commutative harmonic oscillator $Q(x,D_x)$ introduced in \\cite{PW1, 2}. It is shown that the series defining $\\zeta_Q(s)$ converges absolutely for Re $s>1$ and further the respective values $\\zeta_Q(2)$ and $\\zeta_Q(3)$ are represented essentially by contour integrals of the solutions, respectively, of a singly confluent Heun's ordinary differential equation and of exactly the same but an inhomogeneous equation. As a by-product of these results, we obtain integral representations of the solutions of these equations by rational functions. \\par\
International Nuclear Information System (INIS)
Kobe, D.H.
1989-01-01
The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)
International Nuclear Information System (INIS)
Mshelia, E.D.
1994-07-01
The method of normal coordinates of the theory of vibrations is used in decoupling the motion of n oscillators (1 ≤ n ≤4) representing intrinsic degrees of freedom coupled to collective motion in a quantum mechanical model that allows the determination of the probability for energy transfer from collective to intrinsic excitations in a dissipative system. (author). 21 refs
AM to PM noise conversion in a cross-coupled quadrature harmonic oscillator
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens
2006-01-01
We derive the dynamic equations governing the cross-coupled quadrature oscillator, perturbed by noise, leading to an expression for the close-in phase noise. The theory shows that a nonlinear coupling transconductance results in AM-PM noise conversion close to the carrier, which increases...
Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators
Energy Technology Data Exchange (ETDEWEB)
Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za
2013-10-15
A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.
Institute of Scientific and Technical Information of China (English)
Liu Li; Zhang Liang-Ying; Cao Li
2009-01-01
The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ_3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Orustein-Uhlenbeck (O-U) noises. 2) Changing the value of τ3, the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3)Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model.
International Nuclear Information System (INIS)
Li, Liu; Li, Cao; Liang-Ying, Zhang
2009-01-01
The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ 3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Ornstein–Uhlenbeck (O-U) noises. 2) Changing the value of τ 3 , the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3) Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model. (general)
Equilibrium: two-dimensional configurations
International Nuclear Information System (INIS)
Anon.
1987-01-01
In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7
Rectification of harmonically oscillating magnetic fields in quarter circular Josephson junctions
International Nuclear Information System (INIS)
Shaju, P.D.; Kuriakose, V.C.
2003-01-01
A novel method for rectifying harmonically varying magnetic fields is demonstrated using fluxons in quarter circular Josephson junctions (JJs). A JJ with a quarter circular geometry terminated with a load resistor at one end is found to be capable of rectifying alternating fields when biased with a constant dc current. An external magnetic field applied parallel to the dielectric barrier of the junction interacts with the edges of the junction and make asymmetric boundary conditions. These asymmetric boundary conditions facilitate fluxon penetration under a dc bias from one end of the junction in alternate half cycles of the applied field. Thus effective rectification of the field can be achieved using quarter circular JJs. This unique phenomenon is specific to this geometry and can be exploited for making superconducting magnetic field rectifiers. This proposed device is expected to have important applications in millimeter and sub-millimeter radio wave astronomy
Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts
International Nuclear Information System (INIS)
Luo, Albert C.J.; Chen Lidi
2005-01-01
In this paper, an idealized, piecewise linear system is presented to model the vibration of gear transmission systems. Periodic motions in a generalized, piecewise linear oscillator with perfectly plastic impacts are predicted analytically. The analytical predictions of periodic motion are based on the mapping structures, and the generic mappings based on the discontinuous boundaries are developed. This method for the analytical prediction of the periodic motions in non-smooth dynamic systems can give all possible periodic motions based on the adequate mapping structures. The stability and bifurcation conditions for specified periodic motions are obtained. The periodic motions and grazing motion are demonstrated. This model is applicable to prediction of periodic motion in nonlinear dynamics of gear transmission systems
Low-noise sub-harmonic injection locked multiloop ring oscillator
Weilin, Xu; Di, Wu; Xueming, Wei; Baolin, Wei; Jihai, Duan; Fadi, Gui
2016-09-01
A three-stage differential voltage-controlled ring oscillator is presented for wide-tuning and low-phase noise requirement of clock and data recovery circuit in ultra wideband (UWB) wireless body area network. To improve the performance of phase noise of delay cell with coarse and fine frequency tuning, injection locked technology together with pseudo differential architecture are adopted. In addition, a multiloop is employed for frequency boosting. Two RVCOs, the standard RVCO without the IL block and the proposed IL RVCO, were fabricated in SMIC 0.18 μm 1P6M Salicide CMOS process. The proposed IL RVCO exhibits a measured phase noise of -112.37 dBc/Hz at 1 MHz offset from the center frequency of 1 GHz, while dissipating a current of 8 mA excluding the buffer from a 1.8-V supply voltage. It shows a 16.07 dB phase noise improvement at 1 MHz offset compared to the standard topology. Project supported by the National Natural Science Foundation of China (No. 61264001), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2015GXNSFAA139301, 2014GXNSFAA118386), the Graduate Education Innovation Program of GUET (No. GDYCSZ201457), the Project of Guangxi Education Department (No. LD14066B) and the High-Level-Innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes.
Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador
2010-12-06
We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.
International Nuclear Information System (INIS)
Kamath, S.G.
1978-01-01
Arguments are presented to show that the new resonance parameters obtained by Alston-Garnjost et al. in a recent analysis of the K-barN system from 365 to 1320 MeV/c provide a prima facie case for the even-wave harmonic-oscillator theory of baryonic states in the framework of SU(6)/sub W/ x O(3). A new quantum classification of the Λ states belonging to the (70,1 - ) is also proposed
International Nuclear Information System (INIS)
Chae, Jongchul; Litvinenko, Yuri E.
2017-01-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D 2 and H α lines.
Energy Technology Data Exchange (ETDEWEB)
Chae, Jongchul [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand)
2017-08-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Directory of Open Access Journals (Sweden)
Suhufa Alfarisa
2016-03-01
Full Text Available This research aims i to determine the density profile and calculate the ground state energy of a quantum dot in two dimensions (2D with a harmonic oscillator potential using orbital-free density functional theory, and ii to understand the effect of the harmonic oscillator potential strength on the electron density profiles in the quantum dot. This study determines the total energy functional of the quantum dot that is a functional of the density that depends only on spatial variables. The total energy functional consists of three terms. The first term is the kinetic energy functional, which is the Thomas–Fermi approximation in this case. The second term is the external potential. The harmonic oscillator potential is used in this study. The last term is the electron–electron interactions described by the Coulomb interaction. The functional is formally solved to obtain the electron density as a function of spatial variables. This equation cannot be solved analytically, and thus a numerical method is used to determine the profile of the electron density. Using the electron density profiles, the ground state energy of the quantum dot in 2D can be calculated. The ground state energies obtained are 2.464, 22.26, 90.1957, 252.437, and 496.658 au for 2, 6, 12, 20, and 56 electrons, respectively. The highest electron density is localized close to the middle of the quantum dot. The density profiles decrease with the increasing distance, and the lowest density is at the edge of the quantum dot. Generally, increasing the harmonic oscillator potential strength reduces the density profiles around the center of the quantum dot.
Decay of homogeneous two-dimensional quantum turbulence
Baggaley, Andrew W.; Barenghi, Carlo F.
2018-03-01
We numerically simulate the free decay of two-dimensional quantum turbulence in a large, homogeneous Bose-Einstein condensate. The large number of vortices, the uniformity of the density profile, and the absence of boundaries (where vortices can drift out of the condensate) isolate the annihilation of vortex-antivortex pairs as the only mechanism which reduces the number of vortices, Nv, during the turbulence decay. The results clearly reveal that vortex annihilation is a four-vortex process, confirming the decay law Nv˜t-1 /3 where t is time, which was inferred from experiments with relatively few vortices in small harmonically trapped condensates.
International Nuclear Information System (INIS)
Quan, Xu; Qiang, Tian
2009-01-01
We study a two-dimensional (2D) diatomic lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers (DBs) can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the 2D discrete diatomic Klein–Gordon lattice with hard and soft on-site potentials. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers (QDBs) and chaotic discrete breathers (CDBs) by changing the amplitude of the driver. But the DBs and QDBs with symmetric and anti-symmetric profiles that are centered at a heavy atom are more stable than at a light atom, because the frequencies of the DBs and QDBs centered at a heavy atom are lower than those centered at a light atom
Two-dimensional analysis of motion artifacts, including flow effects
International Nuclear Information System (INIS)
Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.
1990-01-01
The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously
Piezoelectricity in Two-Dimensional Materials
Wu, Tao; Zhang, Hua
2015-01-01
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards
Construction of two-dimensional quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Klimek, S.; Kondracki, W.
1987-12-01
We present a sketch of the construction of the functional measure for the SU(2) quantum chromodynamics with one generation of fermions in two-dimensional space-time. The method is based on a detailed analysis of Wilson loops.
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Phase transitions in two-dimensional systems
International Nuclear Information System (INIS)
Salinas, S.R.A.
1983-01-01
Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt
Repulsion of polarized particles from two-dimensional materials
Rodríguez-Fortuño, Francisco J.; Picardi, Michela F.; Zayats, Anatoly V.
2018-05-01
Repulsion of nanoparticles, molecules, and atoms from surfaces can have important applications in nanomechanical devices, microfluidics, optical manipulation, and atom optics. Here, through the solution of a classical scattering problem, we show that a dipole source oscillating at a frequency ω can experience a robust and strong repulsive force when its near-field interacts with a two-dimensional material. As an example, the case of graphene is considered, showing that a broad bandwidth of repulsion can be obtained at frequencies for which propagation of plasmon modes is allowed 0 chemical potential tunable electrically or by chemical doping.
Two-dimensional nuclear magnetic resonance spectroscopy
International Nuclear Information System (INIS)
Bax, A.; Lerner, L.
1986-01-01
Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures
Creating tuneable microwave media from a two-dimensional lattice of re-entrant posts
Energy Technology Data Exchange (ETDEWEB)
Goryachev, Maxim; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)
2015-11-28
The potential capabilities of resonators based on two dimensional arrays of re-entrant posts is demonstrated. Such posts may be regarded as magnetically coupled lumped element microwave harmonic oscillators, arranged in a 2D lattices structure, which is enclosed in a 3D cavity. By arranging these elements in certain 2D patterns, we demonstrate how to achieve certain requirements with respect to field localisation and device spectra. Special attention is paid to symmetries of the lattices, mechanical tuning, design of areas of high localisation of magnetic energy; this in turn creates unique discrete mode spectra. We demonstrate analogies between systems designed on the proposed platform and well known physical phenomena such as polarisation, frustration, and Whispering Gallery Modes. The mechanical tunability of the cavity with multiple posts is analysed, and its consequences to optomechanical applications is calculated. One particular application to quantum memory is demonstrated with a cavity design consisting of separate resonators analogous to discrete Fabry–Pérot resonators. Finally, we propose a generalised approach to a microwave system design based on the concept of Programmable Cavity Arrays.
Origin of Hund's multiplicity rule in quasi-two-dimensional two-electron quantum dots
International Nuclear Information System (INIS)
Sako, Tokuei; Paldus, Josef; Diercksen, Geerd H. F.
2010-01-01
The origin of Hund's multiplicity rules has been studied for a system of two electrons confined by a quasi-two-dimensional harmonic-oscillator potential by relying on a full configuration interaction wave function and Cartesian anisotropic Gaussian basis sets. In terms of appropriate normal-mode coordinates the wave function factors into a product of the center-of-mass and the internal components. The 1 Π u singlet state and the 3 Π u triplet state represent the energetically lowest pair of states to which Hund's multiplicity rule applies. They are shown to involve excitations into different degrees of freedom, namely, into the center-of-mass angular mode and the internal angular mode for the singlet and triplet states, respectively. The presence of an angular nodal line in the internal space allows then the triplet state to avoid the singularity in the electron-electron interaction potential, leading to the energy lowering of the triplet state relative to its counterpart singlet state.
Zero-dimensional limit of the two-dimensional Lugiato-Lefever equation
Cardoso, Wesley B.; Salasnich, Luca; Malomed, Boris A.
2017-05-01
We study effects of tight harmonic-oscillator confinement on the electromagnetic field in a laser cavity by solving the two-dimensional Lugiato-Lefever (2D LL) equation, taking into account self-focusing or defocusing nonlinearity, losses, pump, and the trapping potential. Tightly confined (quasi-zero-dimensional) optical modes (pixels), produced by this model, are analyzed by means of the variational approximation, which provides a qualitative picture of the ensuing phenomena. This is followed by systematic simulations of the time-dependent 2D LL equation, which reveal the shape, stability, and dynamical behavior of the resulting localized patterns. In this way, we produce stability diagrams for the expected pixels. Then, we consider the LL model with the vortical pump, showing that it can produce stable pixels with embedded vorticity (vortex solitons) in remarkably broad stability areas. Alongside confined vortices with the simple single-ring structure, in the latter case the LL model gives rise to stable multi-ring states, with a spiral phase field. In addition to the numerical results, a qualitatively correct description of the vortex solitons is provided by the Thomas-Fermi approximation. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Nonlinear effects in microwave photoconductivity of two-dimensional electron systems
International Nuclear Information System (INIS)
Ryzhii, V; Suris, R
2003-01-01
We present a model for microwave photoconductivity of two-dimensional electron systems in a magnetic field which describes the effects of strong microwave and steady-state electric fields. Using this model, we derive an analytical formula for the photoconductivity associated with photon- and multi-photon-assisted impurity scattering as a function of the frequency and power of microwave radiation. According to the developed model, the microwave conductivity is an oscillatory function of the frequency of microwave radiation and the cyclotron frequency which becomes zero at the cyclotron resonance and its harmonics. It exhibits maxima and minima (with absolute negative conductivity) at microwave frequencies somewhat different from the resonant frequencies. The calculated power dependence of the amplitude of the microwave photoconductivity oscillations exhibits pronounced sublinear behaviour similar to a logarithmic function. The height of the microwave photoconductivity maxima and the depth of its minima are nonmonotonic functions of the electric field. The possibility of a strong widening of the maxima and minima due to a strong sensitivity of their parameters on the electric field and the presence of strong long-range electric-field fluctuations is pointed to. The obtained dependences are consistent with the results of the experimental observations
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Equivalence of two-dimensional gravities
International Nuclear Information System (INIS)
Mohammedi, N.
1990-01-01
The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given
Repulsively interacting fermions in a two-dimensional deformed trap with spin-orbit coupling
DEFF Research Database (Denmark)
Marchukov, O. V.; Fedorov, D. V.; Jensen, A. S.
2015-01-01
We investigate a two-dimensional system of fermions with two internal (spin) degrees of freedom. It is confined by a deformed harmonic trap and subject to a Zeeman field, Rashba or Dresselhaus one-body spin-orbit couplings and two-body short range repulsion. We obtain self-consistent mean-field $N...
Series expansion of two-dimensional fields produced by iron-core magnets
International Nuclear Information System (INIS)
Satoh, Kotaro.
1997-02-01
This paper discusses the validity of a series expansion of two-dimensional magnetic fields with harmonic functions, and suggests that the series may not converge outside of the pole gap. It also points out that this difficulty may appear due to a slow convergence of the series near to the pole edge, even within the convergent area. (author)
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly...
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-Dimensional Motions of Rockets
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Conformal invariance and two-dimensional physics
International Nuclear Information System (INIS)
Zuber, J.B.
1993-01-01
Actually, physicists and mathematicians are very interested in conformal invariance: geometric transformations which keep angles. This symmetry is very important for two-dimensional systems as phase transitions, string theory or node mathematics. In this article, the author presents the conformal invariance and explains its usefulness
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar...
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Extended Polymorphism of Two-Dimensional Material
Yoshida, Masaro; Ye, Jianting; Zhang, Yijin; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Nishizaki, Terukazu; Kobayashi, Norio; Nakano, Masaki; Iwasa, Yoshihiro
When controlling electronic properties of bulk materials, we usually assume that the basic crystal structure is fixed. However, in two-dimensional (2D) materials, atomic structure or to functionalize their properties. Various polymorphs can exist in transition metal dichalcogenides (TMDCs) from
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
International Nuclear Information System (INIS)
Wang, Chen-Wen; Zhu, Chaoyuan; Lin, Sheng-Hsien; Yang, Ling; Yu, Jian-Guo
2014-01-01
Damped harmonic oscillators are utilized to calculate Franck-Condon factors within displaced harmonic oscillator approximation. This is practically done by scaling unperturbed Hessian matrix that represents local modes of force constants for molecule in gaseous phase, and then by diagonalizing perturbed Hessian matrix it results in direct modification of Huang–Rhys factors which represent normal modes of solute molecule perturbed by solvent environment. Scaling parameters are empirically introduced for simulating absorption and fluorescence spectra of an isolated solute molecule in solution. The present method is especially useful for simulating vibronic spectra of polycyclic aromatic hydrocarbon molecules in which hydrogen atom vibrations in solution can be scaled equally, namely the same scaling factor being applied to all hydrogen atoms in polycyclic aromatic hydrocarbons. The present method is demonstrated in simulating solvent enhanced X 1 A g ↔ A 1 B 1u absorption and fluorescence spectra of perylene (medium-sized polycyclic aromatic hydrocarbon) in benzene solution. It is found that one of six active normal modes v 10 is actually responsible to the solvent enhancement of spectra observed in experiment. Simulations from all functionals (TD) B3LYP, (TD) B3LYP35, (TD) B3LYP50, and (TD) B3LYP100 draw the same conclusion. Hence, the present method is able to adequately reproduce experimental absorption and fluorescence spectra in both gas and solution phases
Few helium atoms in quasi two-dimensional space
International Nuclear Information System (INIS)
Kilic, Srecko; Vranjes, Leandra
2003-01-01
Two, three and four 3 He and 4 He atoms in quasi two-dimensional space above graphite and cesium surfaces and in 'harmonic' potential perpendicular to the surface have been studied. Using some previously examined variational wave functions and the Diffusion Monte Carlo procedure, it has been shown that all molecules: dimers, trimers and tetramers, are bound more strongly than in pure two- and three-dimensional space. The enhancement of binding with respect to unrestricted space is more pronounced on cesium than on graphite. Furthermore, for 3 He 3 ( 3 He 4 ) on all studied surfaces, there is an indication that the configuration of a dimer and a 'free' particle (two dimers) may be equivalently established
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
International Nuclear Information System (INIS)
Sarkar, P.; Bhattacharyya, S.P.
1995-01-01
The effects of quartic anharmonicity on the quantum dynamics of a linear oscillator with time-dependent force constant (K) or harmonic frequency (ω) are studied both perturbatively and numerically by the time-dependent Fourier grid Hamiltonian method. In the absence of anharmonicity, the ground-state population decreases and the population of an accessible excited state (k = 2.4, 6 ... ) increases with time. However, when anharmonicity is introduced, both the ground- and excited-state populations show typical oscillations. For weak coupling, the population of an accessible excited state at a certain instant of time (short) turns out to be a parabolic function of the anharmonic coupling constant (λ), when all other parameters of the system are kept fixed. This parabolic nature of the excited-state population vs. the λ profile is independent of the specific form of the time dependence of the force constant, K t . However, it depends upon the rate at which K t relaxes. For small anharmonic coupling strength and short time scales, the numerical results corroborate expectations based on the first-order time-dependent perturbative analysis, using a suitably repartitioned Hamiltonian that makes H 0 time-independent. Some of the possible experimental implications of our observations are analyzed, especially in relation to intensity oscillations observed in some charge-transfer spectra in systems in which the dephasing rates are comparable with the time scale of the electron transfer. 21 refs., 7 figs., 1 tab
Confined catalysis under two-dimensional materials
Li, Haobo; Xiao, Jianping; Fu, Qiang; Bao, Xinhe
2017-01-01
Small spaces in nanoreactors may have big implications in chemistry, because the chemical nature of molecules and reactions within the nanospaces can be changed significantly due to the nanoconfinement effect. Two-dimensional (2D) nanoreactor formed under 2D materials can provide a well-defined model system to explore the confined catalysis. We demonstrate a general tendency for weakened surface adsorption under the confinement of graphene overlayer, illustrating the feasible modulation of su...
Two-Dimensional Extreme Learning Machine
Directory of Open Access Journals (Sweden)
Bo Jia
2015-01-01
(BP networks. However, like many other methods, ELM is originally proposed to handle vector pattern while nonvector patterns in real applications need to be explored, such as image data. We propose the two-dimensional extreme learning machine (2DELM based on the very natural idea to deal with matrix data directly. Unlike original ELM which handles vectors, 2DELM take the matrices as input features without vectorization. Empirical studies on several real image datasets show the efficiency and effectiveness of the algorithm.
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Bennett, Charles L [Livermore, CA
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Mechanical exfoliation of two-dimensional materials
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
International Nuclear Information System (INIS)
Kretzschmar, Martin
1999-01-01
When a Penning trap is operated with an additional quadrupole driving field with a frequency that equals a suitable combination (sum or difference) of the frequencies of the fundamental modes of motion (modified cyclotron, magnetron and axial frequency), then a periodic conversion of the participating modes into each other is observed, strongly resembling the Rabi oscillations in a 2-level atom driven by a laser field tuned to the transition frequency. This investigation attempts to understand on a fundamental level how and why the motion of a classical particle in a macroscopic apparatus can be truely analogous to the oscillations of states of quantum mechanical 2-level systems (2-level atom or magnetic resonance). Ion motion in a Penning trap with an additional quadrupole driving field is described in a quantum mechanical frame work. The Heisenberg equations of motion for the creation and annihilation operators of the interacting oscillators have been explicitly solved, the time development operator of the Schroedinger picture has been determined. The driving field provides for two types of intermode interaction: Type I preserves the total number of excitation quanta present in the two interacting modes, the system oscillates between the modes with a frequency corresponding to the Rabi frequency in two-level systems. Type II preserves the difference of the numbers of excitation quanta present in the two interacting modes, it causes the ion motion to become unbounded. The two types of interaction are associated in a natural way with a SU(2) and a SU(1,1) Lie algebra. The three generators of these algebras form a vector operator that we denote as the Bloch vector operator. The Hilbert space decomposes in a natural way into invariant subspaces, finite dimensional in the case of type I interaction (SU(2)-algebra) and infinite dimensional in the case of type II interaction (SU(1,1)-algebra). The physics of the 2-level atom in the laser field can be described in the 2
Chimera patterns in two-dimensional networks of coupled neurons
Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp
2017-03-01
We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.
Paramonov, Guennaddi K.; Saalfrank, Peter
2018-05-01
The non-Born-Oppenheimer quantum dynamics of p p μ and p d μ molecular ions excited by ultrashort, superintense VUV laser pulses polarized along the molecular axis (z ) is studied by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional (3D) model, including the internuclear distance R and muon coordinates z and ρ , a transversal degree of freedom. It is shown that in both p p μ and p d μ , muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation values , , and demonstrate "post-laser-pulse" oscillations in both p p μ and p d μ . In the case of p d μ , the post-laser-pulse oscillations of and appear as shaped "echo pulses." Power spectra, which are related to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the acceleration form. For p d μ it is found that there exists a unique characteristic frequency ωoscp d μ representing both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest themselves by very sharp maxima in the corresponding power spectra of p d μ . The homonuclear p p μ ion does not possess such a unique characteristic frequency. The "exact" dynamics and power, and HHG spectra of the 3D model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion.
International Nuclear Information System (INIS)
Mikkelsen, H.H.; Flyvbjerg, H.
1991-05-01
The time-dependent Schroedinger equation for a Coulomb collision between a heavy point charge and a harmonically bound electron is solved exactly numerically. The energy transferred to the electron is studied as a function of impact parameter and projectile charge. Special attention is given to the Barkas effect, and the transition from light ion to heavy ion stopping. All results are compared with classical and recent approximate results, whose precision and ranges of validity are discussed. (orig.)
Drifting plasmons in open two-dimensional channels: modal analysis
International Nuclear Information System (INIS)
Sydoruk, O
2013-01-01
Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)
International Nuclear Information System (INIS)
Santos Coelho, Leandro dos; Mariani, Viviana Cocco
2008-01-01
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature
Energy Technology Data Exchange (ETDEWEB)
dos Santos Coelho, Leandro [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil); Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)
2008-11-15
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature. (author)
Energy Technology Data Exchange (ETDEWEB)
Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br; Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: viviana.mariani@pucpr.br
2008-11-15
Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature.
International Nuclear Information System (INIS)
Ayvaz, Muzaffer; Demiralp, Metin
2011-01-01
In this study, the optimal control equations for one dimensional quantum harmonic oscillator under the quadratic control operators together with linear dipole polarizability effects are constructed in the sense of Heisenberg equation of motion. A numerical technique based on the approximation to the non-commuting quantum mechanical operators from the fluctuation free expectation value dynamics perspective in the classical limit is also proposed for the solution of optimal control equations which are ODEs with accompanying boundary conditions. The dipole interaction of the system is considered to be linear, and the observable whose expectation value will be suppressed during the control process is considered to be quadratic in terms of position operator x. The objective term operator is also assumed to be quadratic.
International Nuclear Information System (INIS)
Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen
2007-01-01
The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals
Vector (two-dimensional) magnetic phenomena
International Nuclear Information System (INIS)
Enokizono, Masato
2002-01-01
In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)
Two-dimensional Semiconductor-Superconductor Hybrids
DEFF Research Database (Denmark)
Suominen, Henri Juhani
This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...
Optimized two-dimensional Sn transport (BISTRO)
International Nuclear Information System (INIS)
Palmiotti, G.; Salvatores, M.; Gho, C.
1990-01-01
This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Airy beams on two dimensional materials
Imran, Muhammad; Li, Rujiang; Jiang, Yuyu; Lin, Xiao; Zheng, Bin; Dehdashti, Shahram; Xu, Zhiwei; Wang, Huaping
2018-05-01
We propose that quasi-transverse-magnetic (quasi-TM) Airy beams can be supported on two dimensional (2D) materials. By taking graphene as a typical example, the solution of quasi-TM Airy beams is studied under the paraxial approximation. The analytical field intensity in a bilayer graphene-based planar plasmonic waveguide is confirmed by the simulation results. Due to the tunability of the chemical potential of graphene, the self-accelerating behavior of the quasi-TM Airy beam can be steered effectively. 2D materials thus provide a good platform to investigate the propagation of Airy beams.
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Energy Technology Data Exchange (ETDEWEB)
Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)
2006-07-15
The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.
Jana, Subrata; Samal, Prasanjit
2018-01-01
The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.
Decoherence in two-dimensional quantum walks
International Nuclear Information System (INIS)
Oliveira, A. C.; Portugal, R.; Donangelo, R.
2006-01-01
We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk
Study of two-dimensional interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1990-04-01
An eddy viscosity model describing enstrophy transfer in two-dimensional turbulence is presented. This model is similar to that of Canuto et al. and provides an equation for the energy spectral function F(k) as a function of the energy input rate to the system per unit wavenumber, γ s (k). In the enstrophy-transfer inertial range, F(k)∝ k -3 is predicted by the model. The eddy viscosity model is applied to the interchange turbulence of a plasma in shearless magnetic field. Numerical simulation of the two-dimensional interchange turbulence demonstrates that the energy spectrum in the high wavenumber region is well described by this model. The turbulent transport driven by the interchange turbulence is expressed in terms of the Nusselt number Nu, the Rayleigh number Ra and Prantl number Pr in the same manner as that of thermal convection problem. When we use the linear growth rate for γ s (k), our theoretical model predicts that Nu ∝ (Ra·Pr) 1/2 for a constant background pressure gradient and Nu ∝ (Ra·Pr) 1/3 for a self-consistent background pressure profile with the stress-free slip boundary conditions. The latter agrees with our numerical result showing Nu ∝ Ra 1/3 . (author)
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Czech Academy of Sciences Publication Activity Database
Tichý, V.; Kuběna, Aleš Antonín; Skála, L.
2012-01-01
Roč. 90, č. 6 (2012), s. 503-513 ISSN 0008-4204 Institutional support: RVO:67985556 Keywords : Schroninger equation * partial differential equation * analytic solution * anharmonic oscilator * double-well Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kubena-analytic energies and wave functions of the two-dimensional schrodinger equation.pdf
Wake structure and thrust generation of a flapping foil in two-dimensional flow
DEFF Research Database (Denmark)
Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis
2017-01-01
We present a combined numerical (particle vortex method) and experimental (soap film tunnel) study of a symmetric foil undergoing prescribed oscillations in a two-dimensional free stream. We explore pure pitching and pure heaving, and contrast these two generic types of kinematics. We compare...... measurements and simulations when the foil is forced with pitching oscillations, and we find a close correspondence between flow visualisations using thickness variations in the soap film and the numerically determined vortex structures. Numerically, we determine wake maps spanned by oscillation frequency...
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Two-dimensional simulation of sintering process
International Nuclear Information System (INIS)
Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.
1996-01-01
The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Pressure of two-dimensional Yukawa liquids
International Nuclear Information System (INIS)
Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin
2016-01-01
A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)
Two dimensional nanomaterials for flexible supercapacitors.
Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi
2014-05-21
Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.
Geometrical aspects of solvable two dimensional models
International Nuclear Information System (INIS)
Tanaka, K.
1989-01-01
It was noted that there is a connection between the non-linear two-dimensional (2D) models and the scalar curvature r, i.e., when r = -2 the equations of motion of the Liouville and sine-Gordon models were obtained. Further, solutions of various classical nonlinear 2D models can be obtained from the condition that the appropriate curvature two form Ω = 0, which suggests that these models are closely related. This relation is explored further in the classical version by obtaining the equations of motion from the evolution equations, the infinite number of conserved quantities, and the common central charge. The Poisson brackets of the solvable 2D models are specified by the Virasoro algebra. 21 refs
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two-dimensional phase fraction charts
International Nuclear Information System (INIS)
Morral, J.E.
1984-01-01
A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams
Two-dimensional motions of rockets
International Nuclear Information System (INIS)
Kang, Yoonhwan; Bae, Saebyok
2007-01-01
We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
), a strategy for the fabrication of 2D heterostructures must be developed. Here we demonstrate a novel approach for the bottom-up synthesis of TMDC monolayers, namely Pulsed Laser Deposition (PLD) combined with a sulfur evaporation beam. PLD relies on the use of a pulsed laser (ns pulse duration) to induce...... material transfer from a solid source (such as a sintered target of MoS2) to a substrate (such as Si or sapphire). The deposition rate in PLD is typically much less than a monolayer per pulse, meaning that the number of MLs can be controlled by a careful selection of the number of laser pulses......Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Farner, Snorre; Vergez, Christophe; Kergomard, Jean; Lizée, Aude
2006-03-01
The harmonic balance method (HBM) was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying any periodic solution, whether stable or unstable, without care of particular initial conditions in time. A computer program for solving general problems involving nonlinearly coupled exciter and resonator, HARMBAL, has been developed based on the HBM. The method as well as convergence improvements and continuation facilities are thoroughly presented and discussed in the present paper. Applications of the method are demonstrated, especially on problems with severe difficulties of convergence: the Helmholtz motion (square signals) of single-reed instruments when no losses are taken into account, the reed being modeled as a simple spring.
Resonant spin Hall effect in two dimensional electron gas
Shen, Shun-Qing
2005-03-01
Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169
Coulomb crystallites from harmonically confined charged bosons in two dimensions
International Nuclear Information System (INIS)
Mese, A I; Okan, S E; Capuzzi, P; Akdeniz, Z; Tosi, M P
2008-01-01
We exploit rotational-symmetry breaking in the one-body density to examine the formation of structures in systems of N strongly coupled charged bosons with logarithmic repulsions inside isotropic two-dimensional harmonic traps, with N in the range from 2 to 7. The results serve as a map for ordered arrangements of vortices in a trapped Bose-Einstein condensate. Two types of N-body wavefunctions are assumed: (i) a permanent |ψ WM > of N identical Gaussian orbitals centred at variationally determined sites, and (ii) a permanent |ψ SM > of N orthogonal orbitals built from harmonic-oscillator energy eigenstates. With increasing coupling strength, the bosons in the |ψ WM > orbitals localize into polygonal-ringlike crystalline patterns ('Wigner molecules'), whereas the wavefunctions |ψ SM / describe low energy excited states containing delocalized bosons as in supersolid crystallites ('supermolecules'). For N = 2 at strong coupling both states describe a Wigner dimer
Electronic Transport in Two-Dimensional Materials
Sangwan, Vinod K.; Hersam, Mark C.
2018-04-01
Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Seismic isolation of two dimensional periodic foundations
International Nuclear Information System (INIS)
Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.
2014-01-01
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional transport of tokamak plasmas
International Nuclear Information System (INIS)
Hirshman, S.P.; Jardin, S.C.
1979-01-01
A reduced set of two-fluid transport equations is obtained from the conservation equations describing the time evolution of the differential particle number, entropy, and magnetic fluxes in an axisymmetric toroidal plasma with nested magnetic surfaces. Expanding in the small ratio of perpendicular to parallel mobilities and thermal conductivities yields as solubility constraints one-dimensional equations for the surface-averaged thermodynamic variables and magnetic fluxes. Since Ohm's law E +u x B =R', where R' accounts for any nonideal effects, only determines the particle flow relative to the diffusing magnetic surfaces, it is necessary to solve a single two-dimensional generalized differential equation, (partial/partialt) delpsi. (delp - J x B) =0, to find the absolute velocity of a magnetic surface enclosing a fixed toroidal flux. This equation is linear but nonstandard in that it involves flux surface averages of the unknown velocity. Specification of R' and the cross-field ion and electron heat fluxes provides a closed system of equations. A time-dependent coordinate transformation is used to describe the diffusion of plasma quantities through magnetic surfaces of changing shape
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Buckled two-dimensional Xene sheets.
Molle, Alessandro; Goldberger, Joshua; Houssa, Michel; Xu, Yong; Zhang, Shou-Cheng; Akinwande, Deji
2017-02-01
Silicene, germanene and stanene are part of a monoelemental class of two-dimensional (2D) crystals termed 2D-Xenes (X = Si, Ge, Sn and so on) which, together with their ligand-functionalized derivatives referred to as Xanes, are comprised of group IVA atoms arranged in a honeycomb lattice - similar to graphene but with varying degrees of buckling. Their electronic structure ranges from trivial insulators, to semiconductors with tunable gaps, to semi-metallic, depending on the substrate, chemical functionalization and strain. More than a dozen different topological insulator states are predicted to emerge, including the quantum spin Hall state at room temperature, which, if realized, would enable new classes of nanoelectronic and spintronic devices, such as the topological field-effect transistor. The electronic structure can be tuned, for example, by changing the group IVA element, the degree of spin-orbit coupling, the functionalization chemistry or the substrate, making the 2D-Xene systems promising multifunctional 2D materials for nanotechnology. This Perspective highlights the current state of the art and future opportunities in the manipulation and stability of these materials, their functions and applications, and novel device concepts.
Magnetohydrodynamic waves in two-dimensional prominences embedded in coronal arcades
International Nuclear Information System (INIS)
Terradas, J.; Soler, R.; Díaz, A. J.; Oliver, R.; Ballester, J. L.
2013-01-01
Solar prominence models used so far in the analysis of MHD waves in two-dimensional structures are quite elementary. In this work, we calculate numerically magnetohydrostatic models in two-dimensional configurations under the presence of gravity. Our interest is in models that connect the magnetic field to the photosphere and include an overlying arcade. The method used here is based on a relaxation process and requires solving the time-dependent nonlinear ideal MHD equations. Once a prominence model is obtained, we investigate the properties of MHD waves superimposed on the structure. We concentrate on motions purely two-dimensional, neglecting propagation in the ignorable direction. We demonstrate how, by using different numerical tools, we can determine the period of oscillation of stable waves. We find that vertical oscillations, linked to fast MHD waves, are always stable and have periods in the 4-10 minute range. Longitudinal oscillations, related to slow magnetoacoustic-gravity waves, have longer periods in the range of 28-40 minutes. These longitudinal oscillations are strongly influenced by the gravity force and become unstable for short magnetic arcades.
Dynamics of two-dimensional solitary vortices in a low-β plasma with convective motion
International Nuclear Information System (INIS)
Makino, Mitsuhiro; Kamimura, Tetsuo; Taniuti, Tosiya.
1980-12-01
Numerical studies of the Hasegawa-Mima equation, derived in the context of drift waves but equivalent to the quasigeostrophic vortex potential equation for Rossby waves, show the stable properties of solitary vortices which are two dimensional, localized, steady and translating solutions of this same equation. A solitary vortex can propagate only in the direction (x-direction) perpendicular to the density gradient. When this solitary vortex solution is inclined at some angle with respect to the x-axis, its propagation direction oscillates in the x and y plane. In two dimensional collisions, i.e. head-on collision and overtaking, solitary vortices interact two-dimensionally and recover their initial shapes at the end of both types of collisions. (author)
Two dimensional electron systems for solid state quantum computation
Mondal, Sumit
consideration the heterostructure design while predicting sample quality. The possibility of quantum scattering time being an indicator of the strength of the nu=5/2 gap was investigated. The existing method of extracting quantum lifetime from the low-field Shubnikov-de Haas oscillations leads to unreliable extraction of quantum lifetime in high-mobility two dimensional electron samples potentially because an underlying assumption in the method that the amplitude of the density of states oscillations at low magnetic fields is negligible compared to the zero-field density of states might not hold true in case of high-mobility 2DES. A modified method was developed by relaxing the assumption which resulted in meaningful extraction of quantum lifetimes in all the high-mobility samples probed in the study. A correlation between the extracted quantum lifetime and the nu=5/2 activation gap was not discovered within the limited set of samples probed.
Directory of Open Access Journals (Sweden)
Halimatus Sa’diyah
2017-12-01
Full Text Available The purpose of this research is to analyze of students' difficulties on the material elasticity and harmonic oscillation in the inquiry-based physics learning. It has eight stages. They are the orientation, the problem formulation, the formulation of hypotheses, the data obtaining, the testing hypotheses, conclusions, the implementation of the conclusions and generalizations, and the reflection stage. This research determines the student's learning difficulties on the each stage. The subject of this research is all of the students in X IPA 4 SMA N Sambungmacan Sragen. The amount of this research subject is thirty students. The method used in this research is descriptive qualitative. The data acquired with the learning process observation, the student's response questionnaire, and the student's cognitive tests. The results show that the student has difficulty in analyzing the elasticity and the force of deviation, speed, and acceleration concept, illustrates hooke law, and the matter's modulus elasticity. The difficult stages of the inquiry-based physics learning are the problem formulation, the formulation of hypotheses, the data obtaining, the testing hypotheses, conclusions, the implementation of the conclusions and generalizations, and the reflection stage.
Energy Technology Data Exchange (ETDEWEB)
Marquette, Ian, E-mail: i.marquette@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Quesne, Christiane, E-mail: cquesne@ulb.ac.be [Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels (Belgium)
2016-05-15
The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent P{sub IV}, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed X{sub m{sub 1,m{sub 2,…,m{sub k}}}} Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.
International Nuclear Information System (INIS)
Howard, I.A.; March, N.H.; Nieto, L.M.
2002-01-01
In 1959, March and Young (Nucl. Phys. 12 237) rewrote the equation of motion for the Dirac density matrix γ(x, x 0 ) in terms of sum and difference variables. Here, γ(r-bar, r-bar 0 ) for the d-dimensional isotropic harmonic oscillator for an arbitrary number of closed shells is shown to satisfy, using the variables vertical bar r-bar + r-bar 0 vertical bar/2 and vertical bar r-bar - r-bar 0 vertical bar/2, a generalized partial differential equation embracing the March-Young equation for d=1. As applications, we take in turn the cases d=1, 2, 3 and 4, and obtain both the density matrix γ (r-bar, r-bar 0 ) and the diagonal density ρ(r)=γ(r-bar, r-bar 0 ) vertical bar r-bar 0 =r-bar, this diagonal element already being known to satisfy a third-order linear homogeneous differential equation for d=1 through 3. Some comments are finally made on the d-dimensional kinetic energy density, which is important for first-principles density functional theory in allowing one to bypass one-particle Schroedinger equations (the so-called Slater-Kohn-Sham equations). (author)
Stochastic aspects of two-dimensional vibration diagnostics
International Nuclear Information System (INIS)
Pazsit, I.; Antonopoulos-Domis, M.; Gloeckler, O.
1985-01-01
The aim of this paper is to investigate the stochastic features of two-dimensional lateral damped oscillations of PWR core internals, that are induced by random force components. It is also investigated how these vibrating components, or the forces giving rise to the vibrations could be diagnosed through the analysis of displacement or neutron noise signals. The approach pursued here is to select a realisation of the random force components, then the equations of the motion are integrated and the time history of displacement components is obtained. From here various statistical descriptors of the motion, such as trajectory pattern, spectra and PDF functions, etc. can be calculated. It was investigated how these statistical descriptors depend on the characteristics of the driving force for both stationary and non-stationary cases. A conclusion of possible diagnostical relevance is that, under certain circumstances, the PDF functions could be an indicator of whether a particular peak in the corresponding power spectra belongs to a resonance in system transfer or rather a resonance in the external driving force. (author)
Kolmogorov flow in two dimensional strongly coupled dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)
2014-07-15
Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.
Stochastic aspects of two-dimensional vibration diagnostics
International Nuclear Information System (INIS)
Pazsit, I.; Antonopoulos-Domis, M.; Glockler, O.
1984-01-01
The aim of this paper is to investigate the stochastic features of two-dimensional lateral damped oscillations of PWR core internals that are induced by random force components. It is also investigated how these vibrating components, or the forces giving rise to the vibrations, could be diagnosed through the analysis of displacement or neutron noise signals. The approach pursued here is to select a realisation of the random force components, then the equations of the motion are integrated and the time history of displacement components is obtained. From here various statistical descriptors of the motion, such as trajectory pattern, spectra and PDF functions etc., can be calculated. It was investigated how these statistical descriptors depend on the characteristics of the driving force for both stationary and non-stationary cases. A conclusion of possible diagnostical relevance is that, under certain circumstances, the PDF functions could be an indicator of whether a particular peak in the corresponding power spectra belongs to a resonance in system transfer or rather a resonance in the external driving force
Stochastic aspects of two-dimensional vibration diagnostics
International Nuclear Information System (INIS)
Pazsit, I.; Gloeckler, O.
1984-01-01
The aim of this paper is to investigate the stochastic features of two-dimensional lateral damped oscillations of PWR core internals that are induced by random force components. It is also investigated how these vibrating components, or the forces giving rise to the vibrations, could be diagnosed through the analysis of displacement or neutron noise signals. The approach pursued here is to select a realisation of the random force components, then the equations of the motion ar integrated and the time history of displacement components is obtained. From here various statistical descriptors of the motion, such as trajectory pattern, spectra and PDF functions etc., can be calculated. It was investigated how these statistical descriptors depend on the characteristics of the driving force for both stationary and non-stationary cases. A conclusion of possible diagnostical relevance is that, under certain circumstances, the PDF functions could be an indicator of whether a particular peak in the corresponding power spectra belongs to a resonance in system transfer or rather a resonance in the external driving force. (author)
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science
Two-dimensional vibrational-electronic spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)
2015-10-21
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a
International Nuclear Information System (INIS)
Moura, A.R.; Pereira, A.R.; Moura-Melo, W.A.; Pires, A.S.T.
2008-01-01
We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Neel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the 'mass center' of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size
Mechanical analog of the synchrotron, illustrating phase stability and two-dimensional focusing
International Nuclear Information System (INIS)
Alvarez, L.W.; Smits, R.; Senecal, G.
1975-01-01
A steel ball bounces in synchronism with a vertically oscillating piston. The piston surface is a hardened steel disk on which the ball bounces; two-dimensional horizontal focusing is provided by the concavity of the surface. The period of oscillation can be varied over a 3:1 range with the amplitude kept constant. As the period is increased, the ball bounces higher. As the period is decreased, the ball bounces lower, contrary to the intuition of most observers. The model illustrates the important properties of synchrotron accelerators. (3 figures)
Modeling A.C. Electronic Transport through a Two-Dimensional Quantum Point Contact
International Nuclear Information System (INIS)
Aronov, I.E.; Beletskii, N.N.; Berman, G.P.; Campbell, D.K.; Doolen, G.D.; Dudiy, S.V.
1998-01-01
We present the results on the a.c. transport of electrons moving through a two-dimensional (2D) semiconductor quantum point contact (QPC). We concentrate our attention on the characteristic properties of the high frequency admittance (ωapproximately0 - 50 GHz), and on the oscillations of the admittance in the vicinity of the separatrix (when a channel opens or closes), in presence of the relaxation effects. The experimental verification of such oscillations in the admittance would be a strong confirmation of the semi-classical approach to the a.c. transport in a QPC, in the separatrix region
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Quantum entanglement and phase transition in a two-dimensional photon-photon pair model
International Nuclear Information System (INIS)
Zhang Jianjun; Yuan Jianhui; Zhang Junpei; Cheng Ze
2013-01-01
We propose a two-dimensional model consisting of photons and photon pairs. In the model, the mixed gas of photons and photon pairs is formally equivalent to a two-dimensional system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phases. Using the variational method, we discuss the quantum phase transition of the mixed gas and obtain the critical coupling line analytically. Moreover, we also find that the phase transition of the photon gas can be interpreted as enhanced second harmonic generation. We then discuss the entanglement between photons and photon pairs. Additionally, we also illustrate how the entanglement between photons and photon pairs can be associated with the phase transition of the system.
Two-dimensional model of a freely expanding plasma
International Nuclear Information System (INIS)
Khalid, Q.
1975-01-01
The free expansion of an initially confined plasma is studied by the computer experiment technique. The research is an extension to two dimensions of earlier work on the free expansion of a collisionless plasma in one dimension. In the two-dimensional rod model, developed in this research, the plasma particles, electrons and ions are modeled as infinitely long line charges or rods. The line charges move freely in two dimensions normal to their parallel axes, subject only to a self-consistent electric field. Two approximations, the grid approximation and the periodic boundary condition are made in order to reduce the computation time. In the grid approximation, the space occupied by the plasma at a given time is divided into boxes. The particles are subject to an average electric field calculated for that box assuming that the total charge within each box is located at the center of the box. However, the motion of each particle is exactly followed. The periodic boundary condition allows us to consider only one-fourth of the total number of particles of the plasma, representing the remaining three-fourths of the particles as symmetrically placed images of those whose positions are calculated. This approximation follows from the expected azimuthal symmetry of the plasma. The dynamics of the expansion are analyzed in terms of average ion and electron positions, average velocities, oscillation frequencies and relative distribution of energy between thermal, flow and electric field energies. Comparison is made with previous calculations of one-dimensional models which employed plane, spherical or cylindrical sheets as charged particles. In order to analyze the effect of the grid approximation, the model is solved for two different grid sizes and for each grid size the plasma dynamics is determined. For the initial phase of expansion, the agreement for the two grid sizes is found to be good
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
Solution of the two-dimensional spectral factorization problem
Lawton, W. M.
1985-01-01
An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; van Heijst, G.J.F.
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
Two-dimensional Navier-Stokes turbulence in bounded domains
Clercx, H.J.H.; Heijst, van G.J.F.
2009-01-01
In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the
den Hartog, S.G.; Wees, B.J.van; Klapwijk, T.M; Nazarov, Y.V.; Borghs, G.
1997-01-01
We have investigated the bias-voltage dependence of the phase-dependent differential resistance of a disordered T-shaped two-dimensional electron gas coupled to two superconducting terminals. The resistance oscillations first increase upon lowering the energy. For bias voltages below the Thouless
International Nuclear Information System (INIS)
Laukhin, V.N.; Audouard, A.; Rakoto, H.; Broto, J.M.; Goze, F.; Coffe, G.; Brossard, L.; Redoules, J.P.; Kartsovnik, M.V.; Kushch, N.D.; Buravov, L.I.; Khomenko, A.G.; Yagubskii, E.B.; Askenazy, S.; Pari, P.
1995-01-01
Temperature dependence of the resistivity in various crystallographic directions and high pulsed field magnetoresistance of organic metal α-(ET) 2 TlHg(SeCN) 4 have been studied at temperatures down to 80 mK. Giant Shubnikov-de Haas oscillations, which are attributed to the two-dimensional nature of the cylindrical Fermi surface with a very small warping along the direction of the lowest conductivity have been observed. Four harmonics of the fast oscillations with fundamental frequency F 0 =653±3 T and slow frequency oscillations with F s =38±5 T have been revealed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Laukhin, V.N. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France)]|[Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Audouard, A. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Rakoto, H. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Broto, J.M. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Goze, F. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Coffe, G. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Brossard, L. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Redoules, J.P. [Service National des Champs Magnetiques Pulses du CNRS et Laboratoire de Physique des Solides, URA CNRS 074, Complexe Scientifique de Rangueil, 31077 Toulouse (France); Kartsovnik, M.V. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Kushch, N.D. [Institute of Chemical Physics in Chernogolovka, Russian Academy of Sciences, Chernogolovka, MD 142432 (Russian Federation); Buravov, L.I.
1995-05-01
Temperature dependence of the resistivity in various crystallographic directions and high pulsed field magnetoresistance of organic metal {alpha}-(ET){sub 2}TlHg(SeCN){sub 4} have been studied at temperatures down to 80 mK. Giant Shubnikov-de Haas oscillations, which are attributed to the two-dimensional nature of the cylindrical Fermi surface with a very small warping along the direction of the lowest conductivity have been observed. Four harmonics of the fast oscillations with fundamental frequency F{sub 0}=653{+-}3 T and slow frequency oscillations with F{sub s}=38{+-}5 T have been revealed. (orig.).
Gauge dependence and new kind of two-dimensional gravity theory with trivial quantum corrections
International Nuclear Information System (INIS)
Banin, A.T.; Shapiro, I.L.
1993-12-01
We search for the new kinds of classical potentials in two-dimensional induced gravity, which provide the triviality of the one-loop quantum corrections. First of all the gauge dependence of the effective potential is studied. The unique effective potential, introduced by Vilkovisly in 1984 is found to manifest the gauge dependence due to some unusual properties of the theory under consideration. Then we take the gauge of harmonical type, which provides the one-loop finiteness off shell, and then the solution for the required classical potential is found. (author). 35 refs
Influence of disorder and magnetic field on conductance of “sandwich” type two dimensional system
Directory of Open Access Journals (Sweden)
Long LIU
2017-04-01
Full Text Available In order to discuss the transport phenomena and the physical properties of the doping of the disorder system under magnetic field, the electron transport in a two-dimensional system is studied by using Green function and scattering matrix theory. Base on the two-dimensional lattice model, the phenomenon of quantized conductance of the "sandwich" type electronic system is analyzed. The contact between the lead and the scatterer reduce the system's conductance, and whittle down the quantum conductance stair-stepping phenomenon; when an external magnetic field acts on to the system, the conductance presents a periodicity oscillation with the magnetic field. The intensity of this oscillation is related to the energy of the electron;with the increase of the impurity concentration, the conductance decreases.In some special doping concentration, the conductance of the system can reach the ideal step value corresponding to some special electron energy. The result could provide reference for further study of the conductance of the "sandwich" type two dimensional system.
Takahashi, Daisuke A.; Ohashi, Keisuke; Fujimori, Toshiaki; Nitta, Muneto
2017-08-01
Bose-Einstein condensates (BECs) confined in a two-dimensional (2D) harmonic trap are known to possess a hidden 2D Schrödinger symmetry, that is, the Schrödinger symmetry modified by a trapping potential. Spontaneous breaking of this symmetry gives rise to a breathing motion of the BEC, whose oscillation frequency is robustly determined by the strength of the harmonic trap. In this paper, we demonstrate that the concept of the 2D Schrödinger symmetry can be applied to predict the nature of three-dimensional (3D) collective modes propagating along a condensate confined in an elongated trap. We find three kinds of collective modes whose existence is robustly ensured by the Schrödinger symmetry, which are physically interpreted as one breather mode and two Kelvin-ripple complex modes, i.e., composite modes in which the vortex core and the condensate surface oscillate interactively. We provide analytical expressions for the dispersion relations (energy-momentum relation) of these modes using the Bogoliubov theory [D. A. Takahashi and M. Nitta, Ann. Phys. 354, 101 (2015), 10.1016/j.aop.2014.12.009]. Furthermore, we point out that these modes can be interpreted as "quasi-massive-Nambu-Goldstone (NG) modes", that is, they have the properties of both quasi-NG and massive NG modes: quasi-NG modes appear when a symmetry of a part of a Lagrangian, which is not a symmetry of a full Lagrangian, is spontaneously broken, while massive NG modes appear when a modified symmetry is spontaneously broken.
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-10-07
The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.
Discrete elastic model for two-dimensional melting.
Lansac, Yves; Glaser, Matthew A; Clark, Noel A
2006-04-01
We present a network model for the study of melting and liquid structure in two dimensions, the first in which the presence and energy of topological defects (dislocations and disclinations) and of geometrical defects (elemental voids) can be independently controlled. Interparticle interaction is via harmonic springs and control is achieved by Monte Carlo moves which springs can either be orientationally "flipped" between particles to generate topological defects, or can be "popped" in force-free shape, to generate geometrical defects. With the geometrical defects suppressed the transition to the liquid phase occurs via disclination unbinding, as described by the Kosterlitz-Thouless-Halperin-Nelson-Young model and found in soft potential two-dimensional (2D) systems, such as the dipole-dipole potential [H. H. von Grünberg, Phys. Rev. Lett. 93, 255703 (2004)]. By contrast, with topological defects suppressed, a disordering transition, the Glaser-Clark condensation of geometrical defects [M. A. Glaser and N. A. Clark, Adv. Chem. Phys. 83, 543 (1993); M. A. Glaser, (Springer-Verlag, Berlin, 1990), Vol. 52, p. 141], produces a state that accurately characterizes the local liquid structure and first-order melting observed in hard-potential 2D systems, such as hard disk and the Weeks-Chandler-Andersen (WCA) potentials (M. A. Glaser and co-workers, see above). Thus both the geometrical and topological defect systems play a role in melting. The present work introduces a system in which the relative roles of topological and geometrical defects and their interactions can be explored. We perform Monte Carlo simulations of this model in the isobaric-isothermal ensemble, and present the phase diagram as well as various thermodynamic, statistical, and structural quantities as a function of the relative populations of geometrical and topological defects. The model exhibits a rich phase behavior including hexagonal and square crystals, expanded crystal, dodecagonal quasicrystal
Functional inks and printing of two-dimensional materials.
Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique
2018-05-08
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Third sound in one and two dimensional modulated structures
International Nuclear Information System (INIS)
Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.
1996-01-01
An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
From ordinary to discrete quantum mechanics: The Charlier oscillator and its coalgebra symmetry
Energy Technology Data Exchange (ETDEWEB)
Latini, D., E-mail: latini@fis.uniroma3.it [Department of Mathematics and Physics and INFN, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy); Riglioni, D. [Department of Mathematics and Physics, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy)
2016-10-14
The coalgebraic structure of the harmonic oscillator is used to underline possible connections between continuous and discrete superintegrable models which can be described in terms of SUSY discrete quantum mechanics. A set of 1-parameter algebraic transformations is introduced in order to generate a discrete representation for the coalgebraic harmonic oscillator. This set of transformations is shown to play a role in the generalization of classical orthogonal polynomials to the realm of discrete orthogonal polynomials in the Askey scheme. As an explicit example the connection between Hermite and Charlier oscillators, that share the same coalgebraic structure, is presented and a two-dimensional maximally superintegrable version of the Charlier oscillator is constructed. - Highlights: • We construct a discrete quantum version of the harmonic oscillator. • We solve the spectral problem on the lattice. • We introduce the coalgebra symmetry in real discrete Quantum Mechanics (rdQM). • The coalgebra is used to extend the system to higher dimensions preserving its superintegrability. • We explicitly write down a discrete version of both the angular momentum and the Demkov–Fradkin Tensor.
Multisoliton formula for completely integrable two-dimensional systems
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations
Two-dimensional electronic femtosecond stimulated Raman spectroscopy
Directory of Open Access Journals (Sweden)
Ogilvie J.P.
2013-03-01
Full Text Available We report two-dimensional electronic spectroscopy with a femtosecond stimulated Raman scattering probe. The method reveals correlations between excitation energy and excited state vibrational structure following photoexcitation. We demonstrate the method in rhodamine 6G.
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
International Nuclear Information System (INIS)
Vilk, Y.M.
1992-01-01
This thesis is concerned with theoretical studies of various manybody correlation effects in two-dimensional electron systems, with application to electrons in quantum well structures (QW) and electrons on the surface of liquid helium. The author investigates the influence of correlation effects on escape rates of electrons from the 2D electron liquid and crystal on the helium surface. Within the framework of a harmonic lattice model the effective potential for the escaping electron as a function of the electron density and the external pressing or pulling electric field is found. This approach takes into account the deformation effects in the electron system. It is shown that under realistic experimental conditions the correlation correction can completely dominate the physics of the escaping electrons. The calculated concentration dependence of the escape rate of surface electrons is in excellent agreement with experiments in both thermal-activated and tunneling regimes. The thesis describes studies of the optical luminescence spectra of two types of magnetoplasma realized in QW: a charged electron plasma and a neutral electron-hole plasma, in the context of a mean field approximation. It is shown that strong enhancements in oscillator strengths are associated with excitons between different Landau levels. The strongest effect is found near the chemical potential and is analogous to the x-ray singularities well known in metals. The theory also predicts the existence of plateaus in the concentration dependence of transition energies in the sufficiently strong magnetic field. These plateaus are associated with the change in the filling factor: at the strongest field, while the filling of the level is varied, the transition energy between Landau levels i e - i h (i e = i h = i) remains constant. With decreasing magnetic fields, the plateau disappears and the transition energy increases with the filling of the Landau level
Topological aspect of disclinations in two-dimensional crystals
International Nuclear Information System (INIS)
Wei-Kai, Qi; Tao, Zhu; Yong, Chen; Ji-Rong, Ren
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given. (the physics of elementary particles and fields)
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Study on two-dimensional induced signal readout of MRPC
International Nuclear Information System (INIS)
Wu Yucheng; Yue Qian; Li Yuanjing; Ye Jin; Cheng Jianping; Wang Yi; Li Jin
2012-01-01
A kind of two-dimensional readout electrode structure for the induced signal readout of MRPC has been studied in both simulation and experiments. Several MRPC prototypes are produced and a series of test experiments have been done to compare with the result of simulation, in order to verify the simulation model. The experiment results are in good agreement with those of simulation. This method will be used to design the two-dimensional signal readout mode of MRPC in the future work.
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT...prospects for a variety of emerging applications in a broad range of fields, such as electronics, energy conversion and storage, catalysis and polymer
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons
Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.
2018-05-01
We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.
Collimation of a thulium atomic beam by two-dimensional optical molasses
Energy Technology Data Exchange (ETDEWEB)
Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N
2013-04-30
The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)
Magnetic anisotropy of two-dimensional nanostructures: Transition-metal triangular stripes
International Nuclear Information System (INIS)
Dorantes-Davila, J.; Villasenor-Gonzalez, P.; Pastor, G.M.
2005-01-01
The magnetic anisotropy energy (MAE) of one-dimensional stripes having infinite length and triangular lateral structure are investigated in the framework of a self-consistent tight-binding method. One observes discontinuous changes in the easy magnetization direction along the crossover from one to two dimensions. The MAE oscillates as a function of stripe width and depends strongly on the considered transition metal (TM). The MAE of the two-leg ladder is strongly reduced as compared to that of the monoatomic chain and the convergence to the two-dimensional limit is rather slow
New edge magnetoplasmon for a two-dimensional electron gas in a ring geometry
International Nuclear Information System (INIS)
Proetto, C.R.
1992-09-01
The dynamical response of a classical two-dimensional electron gas confined in a ring geometry under a perpendicular magnetic field is analysed. Within the hydrodynamical approach and in the strong magnetic field limit, a new set of antidot edge magnetoplasmons is obtained, corresponding to density oscillations circulating along the inner boundary of the ring and whose frequency increases with magnetic field. The associated self-induced distribution of densities and currents are presented, together with an analysis of the size dependence of these perimeter waves. (author). 15 refs, 4 figs
SIMULATIONS OF VISCOUS ACCRETION FLOW AROUND BLACK HOLES IN A TWO-DIMENSIONAL CYLINDRICAL GEOMETRY
Energy Technology Data Exchange (ETDEWEB)
Lee, Seong-Jae; Hyung, Siek [School of Science Education (Astronomy), Chungbuk National University, Chungbuk 28644 (Korea, Republic of); Chattopadhyay, Indranil; Kumar, Rajiv [ARIES, Manora Peak, Nainital-263002, Uttarakhand (India); Ryu, Dongsu, E-mail: seong@chungbuk.ac.kr [Department of Physics, School of Natural Sciences UNIST, Ulsan 44919 (Korea, Republic of)
2016-11-01
We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
Traditional Semiconductors in the Two-Dimensional Limit.
Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B
2018-02-23
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
Two-dimensional analytic weighting functions for limb scattering
Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.
2017-10-01
Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.
Energy Technology Data Exchange (ETDEWEB)
Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Pokhabov, D. A.; Bakarov, A. K. [Siberian Branch of the Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation)
2017-01-15
The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposure to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Velocity and Dispersion for a Two-Dimensional Random Walk
International Nuclear Information System (INIS)
Li Jinghui
2009-01-01
In the paper, we consider the transport of a two-dimensional random walk. The velocity and the dispersion of this two-dimensional random walk are derived. It mainly show that: (i) by controlling the values of the transition rates, the direction of the random walk can be reversed; (ii) for some suitably selected transition rates, our two-dimensional random walk can be efficient in comparison with the one-dimensional random walk. Our work is motivated in part by the challenge to explain the unidirectional transport of motor proteins. When the motor proteins move at the turn points of their tracks (i.e., the cytoskeleton filaments and the DNA molecular tubes), some of our results in this paper can be used to deal with the problem. (general)
Harmonic analysis on local fields and adelic spaces. I
International Nuclear Information System (INIS)
Osipov, D V; Parshin, A N
2008-01-01
We develop harmonic analysis on the objects of a category C 2 of infinite-dimensional filtered vector spaces over a finite field. This category includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. As the main result, we construct the theory of the Fourier transform on these objects and obtain two-dimensional Poisson formulae
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Pair Interaction of Dislocations in Two-Dimensional Crystals
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
International Nuclear Information System (INIS)
Stathaki, P.T.; Constantinides, A.G.
1994-01-01
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging
Densis. Densimetric representation of two-dimensional matrices
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)
Two-dimensional QCD in the Coulomb gauge
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefed'ev, A.V.
2002-01-01
Various aspects of the 't Hooft model for two-dimensional QCD in the limit of infinite number of colours in the Coulomb gauge are discussed. The properties of mesonic excitations are studied, with special emphasis on the pion. Attention is paid to the dual role of the pion. which, while a genuine qq-bar state, is a Goldstone boson of two-dimensional QCD as well. In particular, the validity of the soft-pion theorems is demonstrated. It is shown that the Coulomb gauge is the most suitable choice for the study of hadronic observables involving pions [ru
Quantum Communication Through a Two-Dimensional Spin Network
International Nuclear Information System (INIS)
Wang Zhaoming; Gu Yongjian
2012-01-01
We investigate the state or entanglement transfer through a two-dimensional spin network. We show that for state transfer, better fidelity can be gained along the diagonal direction but for entanglement transfer, when the initial entanglement is created along the boundary, the concurrence is more inclined to propagate along the boundary. This behavior is produced by quantum mechanical interference and the communication quality depends on the precise size of the network. For some number of sites, the fidelity in a two-dimensional channel is higher than one-dimensional case. This is an important result for realizing quantum communication through high dimension spin chain networks.
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
Energy Technology Data Exchange (ETDEWEB)
Stathaki, P T; Constantinides, A G [Signal Processing Section, Department of Electrical and Electronic Engineering, Imperial College, Exhibition Road, London SW7 2BT, UK (United Kingdom)
1994-12-31
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging. 7 refs, 2 figs.
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Chaotic dynamics in two-dimensional noninvertible maps
Mira, Christian; Cathala, Jean-Claude; Gardini, Laura
1996-01-01
This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
International Nuclear Information System (INIS)
Yuece, Cem
2003-01-01
In this paper, the problem of the charged harmonic plus an inverse harmonic oscillator with time-dependent mass and frequency in a time-dependent electromagnetic field is investigated. It is reduced to the problem of the inverse harmonic oscillator with time-independent parameters and the exact wave function is obtained
Bayan, Sayan; Gogurla, Narendar; Midya, Anupam; Singha, Achintya; Ray, Samit K
2017-12-01
We demonstrate surface plasmon induced enhancement and tunablilty in optical emission properties of two dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets through the attachment of gold (Au) nanoparticles. Raman spectroscopy has revealed surface enhanced Raman scattering that arises due to the combined effect of the charge transfer process and localized surface plasmon induced enhancement in electromagnetic field, both occurring at the nanoparticle-nanosheet interface. Photoluminescence studies suggest that at an optimal concentration of nanoparticles, the emission intensity can be enhanced, which is maximum within the 500-525 nm region. Further, the fabricated electroluminescent devices reveal that the emission feature can be tuned from bluish-green to red (∼160 nm shift) upon attaching Au nanoparticles. We propose that the π*→π transition in g-C 3 N 4 can trigger surface plasmon oscillation in Au, which subsequently increases the excitation process in the nanosheets and results in enhanced emission in the green region of the photoluminescence spectrum. On the other hand, electroluminescence of g-C 3 N 4 can induce plasmon oscillation more efficiently and thus can lead to red emission from Au nanoparticles through the radiative damping of particle plasmons. The influence of nanoparticle size and coverage on the emission properties of two dimensional g-C 3 N 4 , nanosheets has also been studied in detail.
Vectorized Matlab Codes for Linear Two-Dimensional Elasticity
Directory of Open Access Journals (Sweden)
Jonas Koko
2007-01-01
Full Text Available A vectorized Matlab implementation for the linear finite element is provided for the two-dimensional linear elasticity with mixed boundary conditions. Vectorization means that there is no loop over triangles. Numerical experiments show that our implementation is more efficient than the standard implementation with a loop over all triangles.
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Interior design of a two-dimensional semiclassical black hole
Levanony, Dana; Ori, Amos
2009-10-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
On final states of two-dimensional decaying turbulence
Yin, Z.
2004-01-01
Numerical and analytical studies of final states of two-dimensional (2D) decaying turbulence are carried out. The first part of this work is trying to give a definition for final states of 2D decaying turbulence. The functional relation of ¿-¿, which is frequently adopted as the characterization of
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Inter-layer Cooper pairing of two-dimensional electrons
International Nuclear Information System (INIS)
Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo
1987-01-01
The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
First principles calculation of two dimensional antimony and antimony arsenide
Energy Technology Data Exchange (ETDEWEB)
Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2016-05-23
This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Theory of the one- and two-dimensional electron gas
International Nuclear Information System (INIS)
Emery, V.J.
1987-01-01
Two topics are discussed: (1) the competition between 2k/sub F/ and 4k/sub F/ charge state waves in a one-dimensional electron gas and (2) a two-dimensional model of high T/sub c/ superconductivity in the oxides
Two-dimensional turbulent flows on a bounded domain
Kramer, W.
2006-01-01
Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures
Exterior calculus and two-dimensional supersymmetric models
International Nuclear Information System (INIS)
Sciuto, S.
1980-01-01
An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
Construction of superpotentials for two-dimensional classical super systems (for N. 2) is carried ... extensively used for the case of non-linear partial differential equation by various authors. [3,4–7,12 ..... found to be integrable just by accident.