WorldWideScience

Sample records for two-dimensional gas flow

  1. Gas-kinetic numerical schemes for one- and two-dimensional inner flows

    Institute of Scientific and Technical Information of China (English)

    Zhi-hui LI; Lin BI; Zhi-gong TANG

    2009-01-01

    Several kinds of explicit and implicit finite-difference schemes directly solving the discretized velocity distribution functions are designed with precision of different orders by analyzing the inner characteristics of the gas-kinetic numerical algorithm for Boltzmann model equation.The peculiar flow phenomena and mechanism from various flow regimes are revealed in the numerical simulations of the unsteady Sod shock-tube problems and the two-dimensional channel flows with different Knudsen numbers.The numerical remainder-effects of the difference schemes are investigated and analyzed based on the computed results.The ways of improving the computational efficiency of the gaskinetic numerical method and the computing principles of difference discretization are discussed.

  2. The Characteristics Method Applied to Stationary Two-Dimensional and Rotationally Symmetrical Gas Flows

    Science.gov (United States)

    Pfeiffer, F.; Meyer-Koenig, W.

    1949-01-01

    By means of characteristics theory, formulas for the numerical treatment of stationary compressible supersonic flows for the two-dimensional and rotationally symmetrical cases have been obtained from their differential equations.

  3. Bouncing, rolling, energy flows, and cluster formation in a two-dimensional vibrated granular gas

    Science.gov (United States)

    Pérez-Ángel, Gabriel; Nahmad-Molinari, Yuri

    2011-10-01

    We study the formation of crystalline clusters for a two-dimensional (2D) sinusoidally vibrated granular gas, with maximum vertical acceleration smaller than gravity, using fully 3D simulations. It is found that this phenomenon arises from the spontaneous segregation of the granulate into two dynamical modes: one of grains that bounce in synchrony with the motion of the sustaining plate (“bouncers”) and another of grains that cease to bounce and simply rolls on the plate, without ever loosing contact with it (“rollers”). These two dynamical categories are quite robust with respect to perturbations. The populations for bouncers and rollers depend on the preparation of the granulate and can be made to take arbitrary values in all the range of accelerations where both dynamical modes are present. It is found that the dynamical mode with the largest population coalesces in clusters under the influence of the other mode, whose grains act as a higher pressure gas that compresses the clusters. In this way it is possible to produce clusters of rollers or clusters of bouncers. A gas made of grains from only one dynamical class shows only weak density fluctuations. When the occupation fractions for both modes are similar, one observes segregation and clusters of both types. The clustering of the gas is monitored using both the average coordination number and the local hexatic order parameter ψ6. Energy flows in the plane are monitored, and it is shown that roller-bouncer collisions increase horizontal kinetic energy, while all other types of collisions reduce this energy. We find that friction with the substrate is the main sink of horizontal energy for these granular gases.

  4. Programmed automation of modulator cold jet flow for comprehensive two-dimensional gas chromatographic analysis of vacuum gas oils.

    Science.gov (United States)

    Rathbun, Wayne

    2007-01-01

    A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types.

  5. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies

    Science.gov (United States)

    Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh

    1991-01-01

    This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.

  6. Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies

    Science.gov (United States)

    Fuller, Franklyn B.

    1961-01-01

    The method described is an inverse one; the shock shape is chosen and the solution proceeds downstream to a body. Bodies blunter than circular cylinders are readily accessible, and any adiabatic index can be chosen. The lower limit to the free-stream Mach number available in any case is determined by the extent of the subsonic field, which in turn depends upon the body shape. Some discussion of the stability of the numerical processes is given. A set of solutions for flows about circular cylinders at several Mach numbers and several values of the adiabatic index is included.

  7. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies

    Science.gov (United States)

    Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh

    1991-01-01

    This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.

  8. Determination of aromatic sulphur compounds in heavy gas oil by using (low-)flow modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Franchina, Flavio Antonio; Machado, Maria Elisabete; Tranchida, Peter Quinto; Zini, Cláudia Alcaraz; Caramão, Elina Bastos; Mondello, Luigi

    2015-03-27

    The present research is focused on the development of a flow-modulated comprehensive two-dimensional gas chromatography-triple quadrupole mass spectrometry (FM GC × GC-MS/MS) method for the determination of classes of aromatic organic sulphur compounds (benzothiophenes, dibenzothiophenes, and benzonaphthothiophene) in heavy gas oil (HGO). The MS/MS instrument was used to provide both full-scan and multiple-reaction-monitoring (MRM) data. Linear retention index (LRI) ranges were used to define the MRM windows for each chemical class. Calibration solutions (internal standard: 1-fluoronaphthalene) were prepared by using an HGO sample, depleted of S compounds. Calibration information was also derived for the thiophene class (along with MRM and LRI data), even though such constituents were not present in the HGO. Linearity was satisfactory over the analyzed concentration range (1-100 mg/L); intra-day precision for the lowest calibration point was always below 17%. Accuracy was also satisfactory, with a maximum percentage error of 3.5% (absolute value) found among the S classes subjected to (semi-)quantification. The highest limit of quantification was calculated to be 299 μg/L (for the C1-benzothiophene class), while the lowest was 21 μg/L (for the C4-benzothiophene class).

  9. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  10. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  11. Flow-modulated comprehensive two-dimensional gas chromatography combined with a vacuum ultraviolet detector for the analysis of complex mixtures.

    Science.gov (United States)

    Zoccali, Mariosimone; Schug, Kevin A; Walsh, Phillip; Smuts, Jonathan; Mondello, Luigi

    2017-05-12

    The present paper is focused on the use of a vacuum ultraviolet absorption spectrometer (VUV) for gas chromatography (GC), within the context of flow modulated comprehensive two-dimensional gas chromatography (FM GC×GC). The features of the VUV detector were evaluated through the analysis of petrochemical and fatty acids samples. Besides responding in a predictable fashion via Beer's law principles, the detector provides additional spectroscopic information for qualitative analysis. Virtually all chemical species absorb and have unique gas phase absorption features in the 120-240nm wavelength range monitored. The VUV detector can acquire up to 90 full range absorption spectra per second, allowing its coupling with comprehensive two-dimensional gas chromatography. This recent form of detection can address specific limitations related to mass spectrometry (e.g., identification of isobaric and isomeric species with very similar mass spectra or labile chemical compounds), and it is also able to deconvolute co-eluting peaks. Moreover, it is possible to exploit a pseudo-absolute quantitation of analytes based on pre-recorded absorption cross-sections for target analytes, without the need for traditional calibration. Using this and the other features of the detector, particular attention was devoted to the suitability of the FM GC×GC-VUV system toward qualitative and quantitative analysis of bio-diesel fuel and different kinds of fatty acids. Satisfactory results were obtained in terms of tailing factor (1.1), asymmetry factor (1.1), and similarity (average value 97%), for the FAMEs mixtures analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  13. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  14. Two dimensional axisymmetric smooth lattice Ricci flow

    CERN Document Server

    Brewin, Leo

    2015-01-01

    A lattice based method will be presented for numerical investigations of Ricci flow. The method will be applied to the particular case of 2-dimensional axially symmetric initial data on manifolds with S^2 topology. Results will be presented that show that the method works well and agrees with results obtained using contemporary finite difference methods.

  15. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  16. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  17. ACCRETION DISKS IN TWO-DIMENSIONAL HOYLE-LYTTLETON FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, John M., E-mail: John_Blondin@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States)

    2013-04-20

    We investigate the flip-flop instability observed in two-dimensional planar hydrodynamic simulations of Hoyle-Lyttleton accretion in the case of an accreting object with a radius much smaller than the nominal accretion radius, as one would expect in astrophysically relevant situations. Contrary to previous results with larger accretors, accretion from a homogenous medium onto a small accretor is characterized by a robust, quasi-Keplerian accretion disk. For gas with a ratio of specific heats of 5/3, such a disk remains locked in one direction for a uniform ambient medium. The accretion flow is more variable for gas with a ratio of specific heats of 4/3, with more dynamical interaction of the disk flow with the bow shock leading to occasional flips in the direction of rotation of the accretion disk. In both cases the accretion of angular momentum is determined by the flow pattern behind the accretion shock rather than by the parameters of the upstream flow.

  18. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  19. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f

  20. Phase separation under two-dimensional Poiseuille flow.

    Science.gov (United States)

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  1. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  2. Numerical Study of Two-Dimensional Viscous Flow over Dams

    Institute of Scientific and Technical Information of China (English)

    王利兵; 刘宇陆; 涂敏杰

    2003-01-01

    In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.

  3. Mean flow generation in rotating anelastic two-dimensional convection

    CERN Document Server

    Currie, Laura K

    2016-01-01

    We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.

  4. Statistical mechanics of two-dimensional and geophysical flows

    CERN Document Server

    Bouchet, Freddy

    2011-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...

  5. AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.

  6. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M

    1993-01-01

    Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  7. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175

    2009-01-01

    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  8. Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems

    Science.gov (United States)

    Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish

    2015-12-01

    This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.

  9. Extension of the approximate two-dimensional electron gas formulation

    Science.gov (United States)

    Pierret, R. F.

    1985-07-01

    The functional two-dimensional electron gas (2DEG) formalism employed in the analysis of modulation-doped field-effect transistors is extended to properly account for the bulk charge and to more accurately model sub- and near-threshold behavior. The implemented changes basically transform the functional formulation from an above-threshold formalism for lightly doped structures to one of additional utility which automatically approaches expected limits under widely divergent conditions. Sample computations of the surface carrier concentration, relevant energy level positionings, and the semiconductor depletion width as a function of surface potential and doping are also presented and examined. These computations exhibit the general utility of the extended theory and provide an indirect evaluation of the standard two-level 2DEG theory.

  10. Polarons and molecules in a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Zöllner, Sascha; Bruun, Georg Morten; Pethick, C. J.

    2011-01-01

    We study an impurity atom in a two-dimensional Fermi gas using variational wave functions for (i) an impurity dressed by particle-hole excitations (polaron) and (ii) a dimer consisting of the impurity and a majority atom. In contrast to three dimensions, where similar calculations predict a sharp...... transition to a dimer state with increasing interspecies attraction, we show that the polaron Ansatz always gives a lower energy. However, the exact solution for a heavy impurity reveals that both a two-body bound state and distortions of the Fermi sea are crucial. This reflects the importance of particle......-hole pairs in lower dimensions and makes simple variational calculations unreliable. We show that the energy of an impurity gives important information about its dressing cloud, for which both Ansätze give inaccurate results....

  11. Diffusion in the two-dimensional nonoverlapping Lorentz gas

    Science.gov (United States)

    James, Corinne P.; Evans, Glenn T.

    1987-10-01

    The self-diffusion coefficient, velocity autocorrelation function, and distribution of collision times for a two-dimensional nonoverlapping Lorentz gas were calculated using molecular dynamics simulation. The systems studied covered a range of densities, from a packing fraction (πNr2/L2) of 0.01 to 0.8. Self-diffusion coefficients were found to agree to all densities with kinetic theory predictions [A. Weijland and J. M. J. van Leeuwen, Physica 38, 35 (1968)] if the radial distribution function (rdf) was taken into account. The density dependence of the decay of the velocity autocorrelation function was qualitatively different from that predicted by kinetic theory. The distribution of collision times was nearly exponential for all but the highest density studied.

  12. Quantum magnetotransport in a modulated two-dimensional electron gas

    Science.gov (United States)

    Park, Tae-ik; Gumbs, Godfrey

    1997-09-01

    Quantum mechanical calculations of the magnetotransport coefficients of a modulated two-dimensional electron gas in a perpendicular magnetic field are presented using the Kubo method. The model modulation potential used is such that the effect of the steepness of the potential and its strength on the band part of the longitudinal resistivity ρxxand the Hall resistivity ρxycould be studied. In the extreme limit of a very steep potential, a two-dimensional square array of antidots is simulated. Impurity scattering is included in the self-consistent t-matrix approximation. The results show that for a strong lateral superlattice potential, ρxyis quenched in the low magnetic field regime and as the magnetic field increases there is a large negative Hall resistivity. The intensity of this negative peak is suppressed as the strength of the modulation potential is decreased. It is also shown that the height of the negative peak depends on the steepness of the potential. The longitudinal resistivity also has some interesting features. There are Aharonov-Bohm oscillations and a double peak structure which depends on both the strength of the modulation potential as well as its slope. The numerical results show that the position and intensity of the lower peak is not very sensitive to a change in the strength of the lattice potential or its steepness. However, the upper peak is greatly reduced when the lattice potential is diminished in strength. The double peak feature in ρxxand the negative peak and quenching of the Hall effect at low magnetic fields have been observed experimentally for antidots in both the quasiclassical and quantum regimes.

  13. Design considerations for pulsed-flow comprehensive two-dimensional GC: dynamic flow model approach.

    Science.gov (United States)

    Harvey, Paul McA; Shellie, Robert A; Haddad, Paul R

    2010-04-01

    A dynamic flow model, which maps carrier gas pressures and carrier gas flow rates through the first dimension separation column, the modulator sample loop, and the second dimension separation column(s) in a pulsed-flow modulation comprehensive two-dimensional gas chromatography (PFM-GCxGC) system is described. The dynamic flow model assists design of a PFM-GCxGC modulator and leads to rapid determination of pneumatic conditions, timing parameters, and the dimensions of the separation columns and connecting tubing used to construct the PFM-GCxGC system. Three significant innovations are introduced in this manuscript, which were all uncovered by using the dynamic flow model. A symmetric flow path modulator improves baseline stability, appropriate selection of the flow restrictors in the first dimension column assembly provides a generally more stable and robust system, and these restrictors increase the modulation period flexibility of the PFM-GCxGC system. The flexibility of a PFM-GCxGC system resulting from these innovations is illustrated using the same modulation interface to analyze Special Antarctic Blend (SAB) diesel using 3 s and 9 s modulation periods.

  14. Epi-two-dimensional flow and generalized enstrophy

    CERN Document Server

    Yoshida, Zensho

    2016-01-01

    The conservation of the enstrophy ($L^2$ norm of the vorticity $\\omega$) plays an essential role in the physics and mathematics of two-dimensional (2D) Euler fluids. Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized enstrophy $\\int_{\\Sigma(t)} f(\\omega/\\rho)\\rho\\, d^2 x$, ($f$ an arbitrary smooth function, $\\rho$ the density, and $\\Sigma(t)$ an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the helicity $\\int_{M} {V}\\cdot\\omega\\,d^3x$, ($V$ the flow velocity, $\\omega=\

  15. Flow of foams in two-dimensional disordered porous media

    Science.gov (United States)

    Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team

    2015-11-01

    Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.

  16. Thin films flowing down inverted substrates: two dimensional flow

    CERN Document Server

    Lin, Te-sheng

    2009-01-01

    We consider free surface instabilities of films flowing on inverted substrates within the framework of lubrication approximation. We allow for the presence of fronts and related contact lines, and explore the role which they play in instability development. It is found that a contact line, modeled by a commonly used precursor film model, leads to free surface instabilities of convective type without any additional natural or excited perturbations. A single parameter D=(3Ca)^{1/3}cot\\alpha, where Ca is the capillary number and \\alpha is the inclination angle, is identified as a governing parameter in the problem. This parameter may be interpreted to reflect the combined effect of inclination angle, film thickness, Reynolds number and the fluid flux. Variation of D leads to change of the wave-like properties of the instabilities, allowing to observe traveling wave behavior, mixed waves, and the waves resembling solitary ones.

  17. Quantum holographic encoding in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  18. EXPERIMENTAL INVESTIGATION ON TWO-DIMENSIONAL UNSTEADY COLD FLOW IN MPC EXHAUST MANIFOLD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gas flow in exhaust manifolds has much effect on scavenge, pumping loss and exhaust energy utilization of turbocharged diesel engines. This paper presented experimental investigation on two-dimensional unsteady flow in MPC(modular pulse converter) exhaust manifold model. The pressure and velocity distributions in six sections of the manifold model were measured when the diesel engine was motored. The probe with slitted sleeve was used to determine flow direction. The experimental results show that velocity distributions vary with place and time; the pressure traces at different points of the same section are not different obviously.

  19. Macroporous polymer monoliths as second dimension columns in comprehensive two-dimensional gas chromatography: a feasibility study

    NARCIS (Netherlands)

    D. Peroni; R.J. Vonk; W. van Egmond; H.-G. Janssen

    2012-01-01

    When the typical column combinations are used, comprehensive two-dimensional gas chromatography (GC × GC) suffers from the impossibility to operate both dimensions at their optimum carrier gas velocities at the same time. This as a result of the flow mismatch caused by the different dimensions of th

  20. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  1. Current-injection in a ballastic multiterminal superconductor/two-dimensional electron gas Josephson junction

    NARCIS (Netherlands)

    Schäpers, Th.; Guzenko, V.A.; Müller, R.P.; Golubov, A.A.; Brinkman, A.; Crecelius, G.; Kaluza, A.; Lüth, H.

    2003-01-01

    We study the suppression of the critical current in a multi-terminal superconductor/two-dimensional electron gas/superconductor Josephson junction by means of hot carrier injection. As a superconductor Nb is used, while the two-dimensional electron gas is located in a strained InGaAs/InP heterostruc

  2. Two-dimensional gas of massless Dirac fermions in graphene.

    Science.gov (United States)

    Novoselov, K S; Geim, A K; Morozov, S V; Jiang, D; Katsnelson, M I; Grigorieva, I V; Dubonos, S V; Firsov, A A

    2005-11-10

    Quantum electrodynamics (resulting from the merger of quantum mechanics and relativity theory) has provided a clear understanding of phenomena ranging from particle physics to cosmology and from astrophysics to quantum chemistry. The ideas underlying quantum electrodynamics also influence the theory of condensed matter, but quantum relativistic effects are usually minute in the known experimental systems that can be described accurately by the non-relativistic Schrödinger equation. Here we report an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation. The charge carriers in graphene mimic relativistic particles with zero rest mass and have an effective 'speed of light' c* approximately 10(6) m s(-1). Our study reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions. In particular we have observed the following: first, graphene's conductivity never falls below a minimum value corresponding to the quantum unit of conductance, even when concentrations of charge carriers tend to zero; second, the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; and third, the cyclotron mass m(c) of massless carriers in graphene is described by E = m(c)c*2. This two-dimensional system is not only interesting in itself but also allows access to the subtle and rich physics of quantum electrodynamics in a bench-top experiment.

  3. A two-dimensional model for gas mixing in the upper dilute zone of a circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, M.; Schoenfelder, H.; Werther, J. [Technical University of Hamburg-Harburg, Hamburg (Germany)

    1995-10-01

    A two-dimensional two-phase flow model for gas/solid flow and gas mixing in the upper zone of a circulating fluidized bed is described. Continuous functions are used to describe variations of local flow parameters horizontally and vertically. Numerical values of dispersion parameters and interfacial mass transfer coefficients are derived from the results of tracer gas mixing experiments. There is good agreement between calculated and measured tracer gas profiles in the upper dilute zone of the circulating fluidized bed. The model is applicable to calculation of chemical reactions in CFB risers. 37 refs., 26 figs., 3 tabs.

  4. The two-dimensional Godunov scheme and what it means for macroscopic pedestrian flow models

    NARCIS (Netherlands)

    Van Wageningen-Kessels, F.L.M.; Daamen, W.; Hoogendoorn, S.P.

    2015-01-01

    An efficient simulation method for two-dimensional continuum pedestrian flow models is introduced. It is a two-dimensional and multi-class extension of the Go-dunov scheme for one-dimensional road traffic flow models introduced in the mid 1990’s. The method can be applied to continuum pedestrian flo

  5. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    Science.gov (United States)

    2015-06-01

    adiabatic wall flows over compression ramps and flows with shock impingements. The new correlations are derived from existing numerical data and...developed for 2D, laminar adiabatic wall flows over compression ramps and flows with shock impingements. These correlations are derived from existing...characterizing the influence of shocks and compression ramps on flat plate flows is presented. New correlations for laminar compressive interactions on

  6. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  7. Theory of a Nearly Two-Dimensional Dipolar Bose Gas

    Science.gov (United States)

    2016-05-11

    optical data storage, and quantum computing. Today , BECs can be made with a variety of atomic species, including Chromium (Cr) [8] and the rare-earth...out many of these experiments. However, the experi- ments involved atoms that possess negligible dipole moments (like the alkali atoms ). Today , there...gases of bosonic atoms at ultracold, but finite temperatures. Under these circumstances, the gas can undergo a phase transition to a purely quantum

  8. Dipolar quantum electrodynamics of the two-dimensional electron gas

    Science.gov (United States)

    Todorov, Yanko

    2015-03-01

    Similarly to a previous work on the homogeneous electron gas [Y. Todorov, Phys. Rev. B 89, 075115 (2014), 10.1103/PhysRevB.89.075115], we apply the Power-Zienau-Wooley (PZW) formulation of the quantum electrodynamics to the case of an electron gas quantum confined by one-dimensional potential. We provide a microscopic description of all collective plasmon modes of the gas, oscillating both along and perpendicular to the direction of quantum confinement. Furthermore, we study the interaction of the collective modes with a photonic structure, planar metallic waveguide, by using the full expansion of the electromagnetic field into normal modes. We show how the boundary conditions for the electromagnetic field influence both the transverse light-matter coupling and the longitudinal particle-particle interactions. The PZW descriptions appear thus as a convenient tool to study semiconductor quantum optics in geometries where quantum-confined particles interact with strongly confined electromagnetic fields in microresonators, such as the ones used to achieve the ultrastrong light-matter coupling regime.

  9. Bubble dynamics in a two-dimensional gas-solid fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Related referential studies on gas-solid two-phase flows were briefly reviewed. Bubble ascending in a two-dimensional (2D) gas-solid fluidized bed was studied both experimentally and numerically. A modified continuum model expressed in the conservation form was used in numerical simulation. Solid-phase pressure was modeled via local sound speed; gas-phase turbulence was described by the K-ε two-equation model. The modified implicit multiphase formulation (IMF) scheme was used to solve the model equations in 2D Cartesian/cylindrical coordinates. The bubble ascending velocity and particle motion in the 2D fluidized bed were measured using the photochromic dye activation (PDA) technique, which was based on UV light activation of particles impregnated with the dye. Effects of bed height and superficial gas velocity on bubble formation and ascent were investigated numerically. The numerically obtained bubble ascending velocities were compared with experimental measurements. Gas bubble in jetting gas-solids fluidized bed was also simulated numerically.

  10. Screening phase transitions in two-dimensional Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Gallavotti, G.; Nicolo, F.

    1984-07-01

    Infrared properties of a Coulomb gas in two dimensions and with fixed ultraviolet cutoff are studied. The existence of infinitely many thresholds Tu = 1/Ke 1/8 pi (1-1/zu)sup-1 in the interval of temperatures 1/Ke1/8 pi, 1/4 pi, where K is the Boltzmann constant and e = /e/ is the charge of the positive particle, is proved. Such thresholds are conjectured to reflect a sequence of transitions from a pure multipole phase (the Koesterlitz-Thouless region) to the plasma phase via an infinite number of intermediate phases. Mathematically the free energy becomes more and more differentiable as a function of the activity lambda, near lambda = 0, as the temperature decreases.

  11. Heterodyne Hall effect in a two-dimensional electron gas

    Science.gov (United States)

    Oka, Takashi; Bucciantini, Leda

    2016-10-01

    We study the hitherto unaddressed phenomenon of the quantum Hall effect with a magnetic and electric field oscillating in time with resonant frequencies. This phenomenon highlights an example of a heterodyne device with the magnetic field acting as a driving force, and it is analyzed in detail in its classical and quantum versions using Floquet theory. A bulk current flowing perpendicularly to the applied electric field is found, with a frequency shifted by integer multiples of the driving frequency. When the ratio of the cyclotron and driving frequency takes special values, the electron's classical trajectory forms a loop and the effective mass diverges, while in the quantum case we find an analog of the Landau quantization. A possible realization using metamaterial plasmonics is discussed.

  12. Ferroelectric control of two dimensional electron gas in oxide heterointerface

    Science.gov (United States)

    Thanh, Tra Vu; Chen, Jhih-Wei; Yeh, Chao-Hui; Chen, Yi-Chun; Wu, Chung-Lin; Lin, Jiunn Yuan; Chu, Ying-Hao

    2012-02-01

    Oxide heterointerfaces are emerging as one of the most exciting materials systems in condensed-matter science. One remarkable example is the LaAlO3 /SrTiO3 (LAO/STO) interface, a model system in which a highly mobile electron gas forms between two band insulators. Our study to manipulate the conductivity at this interface by using ferroeletricity of Pb(Zr,Ti)O3. Our transport data strongly suggests that down polarization direction depletes the conducting interface of LAO/STO. After switching the polarization direction (up), it becomes accumulation. In addition, our experiments show there is obvious the band structure changed by cross-sectional scanning tunneling microscopy and combining with X-ray photoelectron spectroscopy (XPS) measurements. The transport properties are measured to build up the connection between macroscopic properties and local electronic structures that have been applied to study this structure. Controlling the conductivity of this oxide interface suggests that this technique may not only extend more generally to other oxide systems but also open much potential to ferroelectric field effect transistors.

  13. Flow Modelling for partially Cavitating Two-dimensional Hydrofoils

    DEFF Research Database (Denmark)

    Krishnaswamy, Paddy

    2001-01-01

    The present work addresses te computational analysis of partial sheet hydrofoil cavitation in two dimensions. Particular attention is given to the method of simulating the flow at the end of the cavity. A fixed-length partially cavitating panel method is used to predict the height of the re...... of the model and comparing the present calculations with numerical results. The flow around the partially cavitating hydrofoil with a re-entrant jet has also been treated with a viscous/inviscid interactive method. The viscous flow model is based on boundary layer theory applied on the compound foil......, consisting of the union of the cavity and the hydrofoil surface. The change in the flow direction in the cavity closure region is seen to have a slightly adverse effect on the viscous pressure distribution. Otherwise, it is seen that the viscous re-entrant jet solution compares favourably with experimental...

  14. Two-Dimensional Turbulent Separated Flow. Volume 1

    Science.gov (United States)

    1985-06-01

    of detached turbulent boundary layers, even when the sign of U is changed to account for mean backflows. Thus, earlier researchers, such as Kuhn and...Turbulent Shear Layer," Third Symposium on Turbulent Shear Flows, pp. 16.23-16.29. Hillier, R., Latour , M.E.M.P., and Cherry, N.J. (1983), "Unsteady...344. Kuhn , G.D. and Nielsen, J.N. (1971), "An Analytical Method for Calculating Turbulent Separated Flows Due to Adverse Pressure Gradients

  15. Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow

    CERN Document Server

    Hagan, Jonathan

    2013-01-01

    The present study is concerned with the stability of a flow of viscous conducting liquid driven by pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart -- plane Poiseuille flow, is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $Re_n=2939$ without the magnetic field and from $Re_n\\sim6.50\\times10^3Ha$ in a sufficiently strong magnetic field defined by the Hartmann number $Ha.$ Although the latter value is by a factor of seven lower than the linear stability threshold $Re_l\\sim4.83\\times10^4Ha$,it is still more by an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow.

  16. Two-Dimensional Graphs Moving by Mean Curvature Flow

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing Yi; LI Jia Yu; TIAN Gang

    2002-01-01

    A surface Σ is a graph in R4 if there is a unit constant 2-form ω on R4 such that initial surface, then the mean curvature flow has a global solution and the scaled surfaces converge to a self-similar solution. A surface ∑ is a graph in M1 × M2 where M1 and M2 are Riemann surfaces,surface with scalar curvature R, v0 ≥1/√2 on the initial surface, then the mean curvature flow has a global solution and it sub-converges to a minimal surface, if, in addition, R ≥ 0 it converges to a totally geodesic surface which is holomorphic.

  17. Two dimensional RG flows and Yang-Mills instantons

    CERN Document Server

    Gava, Edi; Narain, K S

    2010-01-01

    We study RG flow solutions in (1,0) six dimensional supergravity coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a semisimple group $G$. We turn on $G$ instanton gauge fields, with instanton number $N$, in the conformally flat part of the 6D metric. The solution interpolates between two (4,0) supersymmetric $AdS_3\\times S^3$ backgrounds with two different values of $AdS_3$ and $S^3$ radii and describes an RG flow in the dual 2D SCFT. For the single instanton case and $G=SU(2)$, there exist a consistent reduction ansatz to three dimensions, and the solution in this case can be interpreted as an uplifted 3D solution. Correspondingly, we present the solution in the framework of N=4 $(SU(2)\\ltimes \\mathbf{R}^3)^2$ three dimensional gauged supergravity. The flows studied here are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension two in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in ty...

  18. Efficient solution of two-dimensional steady separated flows

    Science.gov (United States)

    Napolitano, M.

    This work is concerned with the numerical solution of 2D incompressible steady laminar separated flows at moderate-to-high values of Re. The vorticity-stream function Navier-Stokes equations, as well as approximate models based upon the boundary-layer theory, will be considered. The main objective of the paper is to present the development of an efficient approach for solving a class of problems usually referred to as high Re weakly separated flows. A description is given of a block-alternating-direction-implicit method, which applies the approximate factorization scheme of Beam and Warming to the vorticity-stream function equations, using the delta form of the deferred correction procedure of Khosla and Rubin to combine the stability of upwind schemes with the accuracy of central differences. The logical steps which led to the development of a more efficient incremental block-line Gauss-Seidel method and to a simple multigrid strategy particularly suited for this kind of numerical scheme are then outlined. Finally, benchmark-quality solutions for separated flows inside diffusers and channels with smooth as well as sudden expansions are presented.

  19. Blast shocks in quasi-two-dimensional supersonic granular flows.

    Science.gov (United States)

    Boudet, J F; Cassagne, J; Kellay, H

    2009-11-27

    In a thin, dilute, and fast flowing granular layer, the impact of a small sphere generates a fast growing hole devoid of matter. The growth of this hole is studied in detail, and its dynamics is found to mimic that of blast shocks in gases. This dynamics can be decomposed into two stages: a fast initial stage (the blast) and a slower growth regime whose growth velocity is given by the speed of sound in the medium used. A simple model using ingredients already invoked for the case of blast shocks in gases but including the inelastic nature of collisions between grains accounts accurately for our results. The system studied here allows for a detailed study of the full dynamics of a blast as it relaxes from a strong to a weak shock and later to an acoustic disturbance.

  20. Topology of streamlines and vorticity contours for two - dimensional flows

    DEFF Research Database (Denmark)

    Andersen, Morten

    Considering a coordinate-free formulation of helical symmetry rather than more traditional definitions based on coordinates, we discuss basic properties of helical vector fields and compare results from the literature. For inviscid flow where a velocity field is generated by a sum of helical vortex...... generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Phys. Fluids 25, 1982) contains an infinite sum of modified Bessel functions. Using the approach by Okulov (Russ. J. Eng. Thermophys. 5, 1995) we obtain a closed-form approximation...... by a point vortex above a wall in inviscid fluid. There is no reason to a priori expect equivalent results of the three vortex definitions. However, the study is mainly motivated by the findings of Kudela & Malecha (Fluid Dyn. Res. 41, 2009) who find good agreement between the vorticity and streamlines...

  1. Numerical simulation of two-dimensional steady granular flows in rotating drum: On surface flow rheology

    Science.gov (United States)

    Renouf, M.; Bonamy, D.; Dubois, F.; Alart, P.

    2005-10-01

    The rheology of two-dimensional steady surface flow of cohesionless cylinders in a rotating drum is investigated through nonsmooth contact dynamics simulations. Profiles of volume fraction, translational and angular velocity, rms velocity, strain rate, and stress tensor are measured at the midpoint along the length of the surface-flowing layer, where the flow is generally considered as steady and homogeneous. Analysis of these data and their interrelations suggest the local inertial number—defined as the ratio between local inertial forces and local confinement forces—to be the relevant dimensionless parameter to describe the transition from the quasistatic part of the packing to the flowing part at the surface of the heap. Variations of the components of the stress tensor as well as the ones of rms velocity as a function of the inertial number are analyzed within both the quasistatic and the flowing phases. Their implications are discussed.

  2. Stability of a Two-Dimensional Poiseuille-Type Flow for a Viscoelastic Fluid

    Science.gov (United States)

    Endo, Masakazu; Giga, Yoshikazu; Götz, Dario; Liu, Chun

    2017-03-01

    A viscoelastic flow in a two-dimensional layer domain is considered. An L 2-stability of the Poiseuille-type flow is established provided that both Poiseuille flow and perturbation is sufficiently small. Our analysis is based on a stream function formulation introduced by Lin et al. (Commun Pure Appl Math 58(11):1437-1471, 2005).

  3. Observation of Spin Coulomb Drag in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.P.

    2011-08-19

    An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, {+-} {h_bar}/2 (conventionally {up_arrow}, {down_arrow}), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions.

  4. Direct Measurement of the Band Structure of a Buried Two-Dimensional Electron Gas

    DEFF Research Database (Denmark)

    Miwa, Jill; Hofmann, Philip; Simmons, Michelle Y.;

    2013-01-01

    We directly measure the band structure of a buried two dimensional electron gas (2DEG) using angle resolved photoemission spectroscopy. The buried 2DEG forms 2 nm beneath the surface of p-type silicon, because of a dense delta-type layer of phosphorus n-type dopants which have been placed there. ...

  5. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    2002-01-01

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet two

  6. Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    J. Mommers; G. Pluimakers; J. Knooren; T. Dutriez; S. van der Wal

    2013-01-01

    In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column len

  7. Collective modes of a quasi-two-dimensional Bose condensate in large gas parameter regime

    Indian Academy of Sciences (India)

    S R Mishra; S P Ram; Arup Banerjee

    2007-06-01

    We have theoretically studied the collective modes of a quasi-two-dimensional (Q2D) Bose condensate in the large gas parameter regime by using a formalism which treats the interaction energy beyond the mean-field approximation. The results show that incorporation of this higher order term leads to significant modifications in the mode frequencies.

  8. Comprehensive two-dimensional gas chromatography for the analysis of organohalogenated micro-contaminants

    NARCIS (Netherlands)

    Korytar, P.; Haglund, P.; Boer, de J.; Brinkman, U.A.Th.

    2006-01-01

    We explain the principles of comprehensive two-dimensional gas chromatography (GC × GC), and discuss key instrumental aspects - with emphasis on column combinations and mass spectrometric detection. As the main item of interest, we review the potential of GC × GC for the analysis of organohalogenate

  9. Lattice gas dynamics: application to driven vortices in two dimensional superconductors.

    Science.gov (United States)

    Gotcheva, Violeta; Wang, Albert T J; Teitel, S

    2004-06-18

    A continuous time Monte Carlo lattice gas dynamics is developed to model driven steady states of vortices in two dimensional superconducting networks. Dramatic differences are found when compared to a simpler Metropolis dynamics. Subtle finite size effects are found at low temperature, with a moving smectic that becomes unstable to an anisotropic liquid on sufficiently large length scales.

  10. Spin and charge transport in a gated two dimensional electron gas

    NARCIS (Netherlands)

    Lerescu, Alexandru Ionut

    2007-01-01

    The work presented in this thesis is centered around the idea of how one can inject, transport and detect the electron's spin in a two dimensional electron gas (a semiconductor heterostructure). Metal based spintronic devices have been established to be the easy way to implement spintronic concepts

  11. Model of two-dimensional electron gas formation at ferroelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio

    2015-07-01

    The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.

  12. Comprehensive two-dimensional gas chromatography for the analysis of organohalogenated micro-contaminants

    NARCIS (Netherlands)

    Korytar, P.; Haglund, P.; Boer, de J.; Brinkman, U.A.Th.

    2006-01-01

    We explain the principles of comprehensive two-dimensional gas chromatography (GC × GC), and discuss key instrumental aspects - with emphasis on column combinations and mass spectrometric detection. As the main item of interest, we review the potential of GC × GC for the analysis of organohalogenate

  13. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas

    NARCIS (Netherlands)

    Houten, H. van; Beenakker, C.W.J.; Williamson, J.G.; Broekaart, M.E.I.; Loosdrecht, P.H.M. van; Wees, B.J. van; Mooij, J.E.; Foxon, C.T.; Harris, J.J.

    1989-01-01

    Transverse electron focusing in a two-dimensional electron gas is investigated experimentally and theoretically for the first time. A split Schottky gate on top of a GaAs-AlxGa1–xAs heterostructure defines two point contacts of variable width, which are used as injector and collector of ballistic el

  14. Quantitative analysis of target components by comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mispelaar, V.G. van; Tas, A.C.; Smilde, A.K.; Schoenmakers, P.J.; Asten, A.C. van

    2003-01-01

    Quantitative analysis using comprehensive two-dimensional (2D) gas chromatography (GC) is still rarely reported. This is largely due to a lack of suitable software. The objective of the present study is to generate quantitative results from a large GC x GC data set, consisting of 32 chromatograms. I

  15. A Robust Thermal Modulator for Comprehensive Two-Dimensional Gas Chromatography

    NARCIS (Netherlands)

    Geus, de H.J.; Boer, de J.

    1999-01-01

    In comprehensive two dimensional gas chromatography (GCxGC), two capillary columns are connected in series through an interface known as a 'thermal modulator'. This device transforms effluent from the first capillary column into a series of sharp injection-like chemical pulses suitable for high-spee

  16. Spin-polarized transport in a two-dimensional electron gas with interdigital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.-M.; Nitta, Junsaku; Jensen, Ane

    2001-01-01

    Ferromagnetic contacts on a high-mobility, two-dimensional electron gas (2DEG) in a narrow gap semiconductor with strong spin-orbit interaction are used to investigate spin-polarized electron transport. We demonstrate the use of magnetized contacts to preferentially inject and detect specific spin...

  17. Thermodynamics of Two-Dimensional Electron Gas in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    V. I. Nizhankovskii

    2011-01-01

    Full Text Available Change of the chemical potential of electrons in a GaAs-AlGa1−As heterojunction was measured in magnetic fields up to 6.5 T at several temperatures from 2.17 to 12.3 K. A thermodynamic equation of state of two-dimensional electron gas well describes the experimental results.

  18. Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions

    DEFF Research Database (Denmark)

    Valiente, Manuel; Zinner, Nikolaj Thomas; Mølmer, Klaus

    2011-01-01

    We present universal relations for a two-dimensional Fermi gas with pairwise contact interactions. The derivation of these relations is made possible by obtaining the explicit form of a generalized function—selector—in the momentum representation. The selector implements the short-distance bounda...

  19. Pixel-based analysis of comprehensive two-dimensional gas chromatograms (color plots) of petroleum

    DEFF Research Database (Denmark)

    Furbo, Søren; Hansen, Asger B.; Skov, Thomas;

    2014-01-01

    We demonstrate how to process comprehensive two-dimensional gas chromatograms (GC × GC chromatograms) to remove nonsample information (artifacts), including background and retention time shifts. We also demonstrate how this, combined with further reduction of the influence of irrelevant informati...

  20. Local approximation for contour dynamics in effectively two-dimensional ideal electron-magnetohydrodynamic flows

    DEFF Research Database (Denmark)

    Ruban, V.P.; Senchenko, Sergey

    2004-01-01

    The evolution of piecewise constant distributions of a conserved quantity related to the frozen-in canonical vorticity in effectively two-dimensional incompressible ideal EMHD flows is analytically investigated by the Hamiltonian method. The study includes the case of axisymmetric flows with zero...

  1. Computation of two-dimensional isothermal flow in shell-and-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, L.N.; Galpin, P.F.; Brown, J.D.; Frisina, V.

    1983-07-01

    A computational procedure is outlined whereby two-dimensional isothermal shell-side flow distributions can be calculated for tube bundles having arbitrary boundaries and flow blocking devices, such as sealing strips, defined in arbitrary locations. The procedure is described in some detail and several computed results are presented to illustrate the robustness and generality of the method. 11 figs.

  2. From spin flip excitations to the spin susceptibility enhancement of a two-dimensional electron gas.

    Science.gov (United States)

    Perez, F; Aku-leh, C; Richards, D; Jusserand, B; Smith, L C; Wolverson, D; Karczewski, G

    2007-07-13

    The g-factor enhancement of the spin-polarized two-dimensional electron gas was measured directly over a wide range of spin polarizations, using spin flip resonant Raman scattering spectroscopy on two-dimensional electron gases embedded in Cd(1-x)Mn(x)Te semimagnetic quantum wells. At zero Raman transferred momentum, the single-particle spin flip excitation, energy Z*, coexists in the Raman spectrum with the spin flip wave of energy Z, the bare giant Zeeman splitting. We compare the measured g-factor enhancement with recent spin-susceptibility enhancement theories and deduce the spin-polarization dependence of the mass renormalization.

  3. Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions

    Energy Technology Data Exchange (ETDEWEB)

    Valiente, Manuel; Zinner, Nikolaj T.; Moelmer, Klaus [Lundbeck Foundation Theoretical Center for Quantum System Research, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)

    2011-12-15

    We present universal relations for a two-dimensional Fermi gas with pairwise contact interactions. The derivation of these relations is made possible by obtaining the explicit form of a generalized function--selector--in the momentum representation. The selector implements the short-distance boundary condition between two fermions in a straightforward manner and leads to simple derivations of the universal relations, in the spirit of Tan's original method for the three-dimensional gas.

  4. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase

    CERN Document Server

    Lu, Jian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-01-01

    Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  5. New insight into flow development and two dimensionality of turbulent channel flows

    Science.gov (United States)

    Vinuesa, Ricardo; Bartrons, Eduard; Chiu, Daniel; Dressler, Kristofer M.; Rüedi, J.-D.; Suzuki, Yasumasa; Nagib, Hassan M.

    2014-06-01

    The experimental conditions required for a turbulent channel flow to be considered fully developed and nominally two dimensional remain a challenging objective. In this study, we show that the flow obtained in a high-aspect-ratio channel facility cannot be reproduced by direct numerical simulations (DNSs) of spanwise-periodic channel flows; therefore, we reserve the term "channel" for spanwise-periodic DNSs and denote the experimental flow by the term "duct." Oil film interferometry (OFI) and static pressure measurements were carried out over the range in an adjustable-geometry duct flow facility. Three-dimensional effects were studied by considering different aspect ratio (AR) configurations and also by fixing the AR and modifying the hydraulic diameter of the section. The conditions at the centerplane of the duct were characterized through the local skin friction from the OFI and the centerline velocity at four different streamwise locations and through the wall shear based on the streamwise global pressure gradient. The skin friction obtained from pressure gradient overestimated the local shear measurements obtained from the OFI and did not reproduce the same AR dependence observed with OFI. Differences between the local and global techniques were also reflected in the flow development. For the range of Reynolds numbers tested, the development length of high-aspect-ratio ducts scales with the duct full-height and is around , much larger than the values of around 100-150 H previously reported in the literature.

  6. Interaction of two-dimensional turbulence with a sheared channel flow: a numerical study

    Science.gov (United States)

    Kamp, Leon; Marques Rosas Fernandes, Vitor; van Heijst, Gertjan; Clercx, Herman

    2015-11-01

    Interaction of large-scale flows with turbulence is of fundamental and widespread importance in geophysical fluid dynamics and also, more recently for the dynamics of fusion plasma. More specifically the interplay between two-dimensional turbulence and so-called zonal flows has gained considerable interest because of its relevance for transport and associated barriers. We present numerical results on the interaction of driven two-dimensional turbulence with typical sheared channel flows (Couette and Poiseuille). It turns out that a linear shear rate that is being sustained by moving channel walls (Couette flow) is far more effective in suppressing turbulence and associated transport than a Poiseuille flow. We explore the mechanisms behind this in relation to the width of the channel and the strength of the shear of the background flow. Also the prominent role played by the no-slip boundaries and the Reynolds stress is discussed.

  7. On the existence of two-dimensional nonlinear steady states in plane Couette flow

    CERN Document Server

    Rincon, Francois

    2007-01-01

    The problem of two-dimensional steady nonlinear dynamics in plane Couette flow is revisited using homotopy from either plane Poiseuille flow or from plane Couette flow perturbed by a small symmetry-preserving identity operator. Our results show that it is not possible to obtain the nonlinear plane Couette flow solutions reported by Cherhabili and Ehrenstein [Eur. J. Mech. B/Fluids, 14, 667 (1995)] using their Poiseuille-Couette homotopy. We also demonstrate that the steady solutions obtained by Mehta and Healey [Phys. Fluids, 17, 4108 (2005)] for small symmetry-preserving perturbations are influenced by an artefact of the modified system of equations used in their paper. However, using a modified version of their model does not help to find plane Couette flow solution in the limit of vanishing symmetry-preserving perturbations either. The issue of the existence of two-dimensional nonlinear steady states in plane Couette flow remains unsettled.

  8. Two dimensional heat transfer problem in flow boiling in a rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2015-01-01

    Full Text Available The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.

  9. Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow

    Science.gov (United States)

    Nakagawa, Masafumi; Harada, Atsushi

    Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones

  10. Two-dimensional cellular automaton model of traffic flow with open boundaries

    CERN Document Server

    Tadaki, S I

    1996-01-01

    A two-dimensional cellular automaton model of traffic flow with open boundaries are investigated by computer simulations. The outflow of cars from the system and the average velocity are investigated. The time sequences of the outflow and average velocity have flicker noises in a jamming phase. The low density behavior are discussed with simple jam-free approximation.

  11. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1999-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of nonlinear coordinate...

  12. Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries

    DEFF Research Database (Denmark)

    Brøns, Morten; Hartnack, Johan Nicolai

    1998-01-01

    Streamline patterns and their bifurcations in two-dimensional incompressible flow are investigated from a topological point of view. The velocity field is expanded at a point in the fluid, and the expansion coefficients are considered as bifurcation parameters. A series of non-linear coordinate...

  13. Fission-gas release at extended burnups: effect of two-dimensional heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Yu, S.D. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada); Lau, J.H.K

    2000-09-01

    To better simulate the performance of high-burnup CANDU fuel, a two-dimensional model for heat transfer between the pellet and the sheath has been added to the computer code ELESTRES. The model covers four relative orientations of the pellet and the sheath and their impacts on heat transfer and fission-gas release. The predictions of the code were compared to a database of 27 experimental irradiations involving extended burnups and normal burnups. The calculated values of fission gas release matched the measurements to an average of 94%. Thus, the two-dimensional heat transfer model increases the versatility of the ELESTRES code to better simulate fuels at normal as well as at extended burnups. (author)

  14. [Determination of aromatics in light petroleum products by comprehensive two-dimensional gas chromatography].

    Science.gov (United States)

    Li, Yanyan

    2006-07-01

    In recent years, comprehensive two-dimensional gas chromatography (GC x GC) have been used widely, and the applications of this technique to many fields have already been reported. In the standard method of oil analysis, the concentrations of aromatics and naphthalene hydrocarbons in light petroleum products must be detected by more than two methods. Mono-aromatics, di-aromatics etc. in light petroleum products were detected only by comprehensive two-dimensional gas chromatography. After the proper selection of column system and optimization of chromatographic conditions, the method can achieve the group separations of paraffins, olefins, naphthenes, aromatics with 1 to 2 rings and some target components in light petroleum products with good reproducibility and good precision. The recoveries of standard compounds were 89.5% - 106.1%, and the relative standard deviations of repeatedly detecting the components were all lower than 5.8%. It took only 30 min to finish a determination.

  15. Magnetoresistance of a two-dimensional electron gas in a random magnetic field

    DEFF Research Database (Denmark)

    Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil

    1994-01-01

    We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surf...... on the surface of the sample. A theoretical explanation in excellent agreement with the experiment is given within the framework of the semiclassical Boltzmann equation. © 1994 The American Physical Society...

  16. A New Class of Resonances at the Edge of the Two Dimensional Electron Gas

    OpenAIRE

    Zhitenev, N. B.; Brodsky, M; Ashoori, R. C.; Melloch, M. R.

    1996-01-01

    We measure the frequency dependent capacitance of a gate covering the edge and part of a two-dimensional electron gas in the quantum Hall regime. In applying a positive gate bias, we create a metallic puddle under the gate surrounded by an insulating region. Charging of the puddle occurs via electron tunneling from a metallic edge channel. Analysis of the data allows direct extraction of this tunneling conductance. Novel conductance resonances appear as a function of gate bias. Samples with g...

  17. Interaction of a Surface Acoustic Wave with a Two-dimensional Electron Gas

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-Jie; ZHAO Hu; YU Yue

    2005-01-01

    When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.

  18. Interaction-induced huge magnetoresistance in a high mobility two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, L.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, D-30167 Hannover (Germany); Gornyi, I. V. [Institut für Nanotechnologie, Karlsruher Institut of Technology, D-76021 Karlsruhe (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93053 Regensburg (Germany); Wegscheider, W. [ETH Zürich (Switzerland)

    2013-12-04

    A strong negative magnetoresistance is observed in a high-mobility two-dimensional electron gas in a GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum well. We discuss that the negative magnetoresistance consists of a small peak induced by a combination of two types of disorder and a huge magnetoresistance explained by the interaction correction to the conductivity for mixed disorder.

  19. Numerical Investigation of Dynamic Effects on Unsteady Flow Measurements Using a Two-Dimensional Probe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The dynamic effects in measurements of unsteady flow when using a probe with quasi-steady calibration curves has been investigated in this paper by numerical simulation of the compressible flow around a fixed two-dimensional 3-hole probe. The unsteady velocity and pressure distributions, as well as the hole-pressures, are calculated for high frequency flow variations. The measurement errors caused by the dynamic effects indicate that considerable measurement errors may occur for high frequency flow fluctuation, e.g., 2000Hz, especially, when the flow around the probe head approaches separation. This work shows how numerical simulation can be used to investigate and correct for the dynamic effects.

  20. On the origins of vortex shedding in two-dimensional incompressible flows

    Science.gov (United States)

    Boghosian, M. E.; Cassel, K. W.

    2016-12-01

    An exegesis of a novel mechanism leading to vortex splitting and subsequent shedding that is valid for two-dimensional incompressible, inviscid or viscous, and external or internal or wall-bounded flows, is detailed in this research. The mechanism, termed the vortex shedding mechanism (VSM) is simple and intuitive, requiring only two coincident conditions in the flow: (1) the existence of a location with zero momentum and (2) the presence of a net force having a positive divergence. Numerical solutions of several model problems illustrate causality of the VSM. Moreover, the VSM criteria is proved to be a necessary and sufficient condition for a vortex splitting event in any two-dimensional, incompressible flow. The VSM is shown to exist in several canonical problems including the external flow past a circular cylinder. Suppression of the von Kármán vortex street is demonstrated for Reynolds numbers of 100 and 400 by mitigating the VSM.

  1. DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features.

    Science.gov (United States)

    Venetsanos, A G; Bartzis, J G; Würtz, J; Papailiou, D D

    2003-04-25

    A two-dimensional shallow layer model has been developed to predict dense gas dispersion, under realistic conditions, including complex features such as two-phase releases, obstacles and inclined ground. The model attempts to predict the time and space evolution of the cloud formed after a release of a two-phase pollutant into the atmosphere. The air-pollutant mixture is assumed ideal. The cloud evolution is described mathematically through the Cartesian, two-dimensional, shallow layer conservation equations for mixture mass, mixture momentum in two horizontal directions, total pollutant mass fraction (vapor and liquid) and mixture internal energy. Liquid mass fraction is obtained assuming phase equilibrium. Account is taken in the conservation equations for liquid slip and eventual liquid rainout through the ground. Entrainment of ambient air is modeled via an entrainment velocity model, which takes into account the effects of ground friction, ground heat transfer and relative motion between cloud and surrounding atmosphere. The model additionally accounts for thin obstacles effects in three ways. First a stepwise description of the obstacle is generated, following the grid cell faces, taking into account the corresponding area blockage. Then obstacle drag on the passing cloud is modeled by adding flow resistance terms in the momentum equations. Finally the effect of extra vorticity generation and entrainment enhancement behind obstacles is modeled by adding locally into the entrainment formula without obstacles, a characteristic velocity scale defined from the obstacle pressure drop and the local cloud height.The present model predictions have been compared against theoretical results for constant volume and constant flux gravity currents. It was found that deviations of the predicted cloud footprint area change with time from the theoretical were acceptably small, if one models the frictional forces between cloud and ambient air, neglecting the Richardson

  2. Coexistence of two dissipative mechanisms in two-dimensional turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Romain Nguyen van [FB Mathematik und Informatik, Freie Universitaet, Berlin (Germany); Farge, Marie [LMD-CNRS-IPSL, ENS Paris (France); Schneider, Kai, E-mail: rnguyen@zedat.fu-berlin.de [M2P2-CNRS, Universite d' Aix-Marseille (France)

    2011-12-22

    Two distinct dissipative mechanisms occurring in two-dimensional fully developed turbulent flows in the limit of vanishing viscosity have been highlighted by means of direct numerical simulation. First, molecular energy dissipation is triggered by the production of localized vortices at the walls. Second, instabilities intrinsic to the flow itself generate a noisy component which can be quantified by wavelet analysis. The possibilities of competition and coexistence of the two mechanisms are discussed.

  3. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    OpenAIRE

    Changyuan Zhai; Chunjiang Zhao; Xiu Wang; Ning Wang; Wei Zou; Wei Li

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultras...

  4. Transition to two-dimensionality in magnetohydrodynamic turbulent Taylor-Couette flow.

    Science.gov (United States)

    Zhao, Yurong; Tao, Jianjun; Zikanov, Oleg

    2014-03-01

    Transition from a Taylor-Couette turbulent flow to a completely two-dimensional axisymmetric turbulent state is realized numerically by increasing gradually the strength of the azimuthal magnetic field produced by electric current flowing through the axial rod. With the increase of the Hartmann number, the Taylor-vortex-like structures shrink, move closer to the inner cylinder, and turn into unsteady but perfect tori at sufficiently high Hartmann numbers.

  5. TWO-DIMENSIONAL PLANE WATER FLOW AND WATER QUALITY DISTRIBUTION IN BOSTEN LAKE

    Institute of Scientific and Technical Information of China (English)

    Feng Min-quan; Zhou Xiao-de; Zheng Bang-min; Min Tao; Zhao Ke-yu

    2003-01-01

    The two-dimensional plane water flow and water quality was developed by using the techniques of coordinate transformation, alternating directions, staggered grid, linear recurrence, and implicit scheme in the study of large water body in lakes. The model was proved to be suitable for treating the irregular boundary and predicting quickly water flow and water quality. The application of the model to the Bosten Lake in Xinjiang Uygur Autonomous Region of China shows that it is reasonable and practicable.

  6. Double-Humped Transverse Density Profile in Two-Dimensional Chute Flow with Rough Sidewalls

    Institute of Scientific and Technical Information of China (English)

    HU Guo-Qi; ZHANG Xun-Sheng; BAO De-Song; TANG Xiao-Wei

    2006-01-01

    @@ We study a two-dimensional granular rapid flow with rough sidewalls stuck with the same size discs by molecular dynamics simulation. A transient state of the double-humped density profile in the flowing process has been found, which appears and moves as travelling wave and is the same as the phenomena in the recent experiments [Acta Phys. Sin. 53 (2004) 3389 (in Chinese)].

  7. On Berezinskii-Kosterlitz-Thouless phase transition and universal breathing mode in two dimensional photon gas

    OpenAIRE

    Vyas, Vivek M.; Panigrahi, Prasanta. K.; Banerji, J.

    2013-01-01

    A system of two dimensional photon gas has recently been realized experimentally. It is pointed out that this setup can be used to observe a universal breathing mode of photon gas. It is shown that a modification in the experimental setup would open up a possibility of observing the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in such a system. It is shown that the universal jump in the superfluid density of light in the output channel can be used as an unambiguous signature for the...

  8. On Berezinskii-Kosterlitz-Thouless phase transition and universal breathing mode in two dimensional photon gas

    CERN Document Server

    Vyas, Vivek M; Banerji, J

    2013-01-01

    A system of two dimensional photon gas has recently been realized experimentally. It is pointed out that this setup can be used to observe a universal breathing mode of photon gas. It is shown that a modification in the experimental setup would open up a possibility of observing the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in such a system. It is shown that the universal jump in the superfluid density of light in the output channel can be used as an unambiguous signature for the experimental verification of the BKT transition.

  9. Cromatografia gasosa bidimensional abrangente (GC × GC Comprehensive two-dimensional gas chromatography (GC × GC

    Directory of Open Access Journals (Sweden)

    Marcio Pozzobon Pedroso

    2009-01-01

    Full Text Available This paper presents the fundamental principles, instrumentation and selected applications of comprehensive two-dimensional gas chromatography (GC × GC. In this technique, introduced in 1991, two capillary columns are coupled and proper modulating interfaces continuously collect the eluate from the first column, transferring it to the second column. The result is a geometric increment in the chromatographic resolution, ensuring separation of extremely complex mixtures in time periods shorter or comparable to those of analysis using conventional gas chromatography and with better detectabilities and sensitivities.

  10. Qualitative and quantitative analysis of vetiver essential oils by comprehensive two-dimensional gas chromatography and comprehensive two-dimensional gas chromatography/mass spectrometry.

    Science.gov (United States)

    Filippi, Jean-Jacques; Belhassen, Emilie; Baldovini, Nicolas; Brevard, Hugues; Meierhenrich, Uwe J

    2013-05-03

    Vetiver essential oils (VEO) are important raw ingredients used in perfume industry, entering the formula of numerous modern fragrances. Vetiver oils are considered to be among the most complex essential oils, resulting most of the time in highly coeluted chromatograms whatever the analytical technique. In this context, conventional gas chromatography has failed to provide a routine tool for the accurate qualitative and quantitative analysis of their constituents. Applying comprehensive two-dimensional gas chromatography techniques (GC×GC-FID/MS) afforded the mean to separate efficiently vetiver oil constituents in order to identify them in a more reliable way. Moreover, this is the first time that a complete true quantitation of each constituent is carried out on such complex oils by means of internal calibration. Finally, we have studied the influence of the injection mode on the determined chemical composition, and showed that several alcohols underwent dehydration under defined chromatographic conditions (splitless mode) usually recommended for quantitation purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Observation of a pairing pseudogap in a two-dimensional Fermi gas.

    Science.gov (United States)

    Feld, Michael; Fröhlich, Bernd; Vogt, Enrico; Koschorreck, Marco; Köhl, Michael

    2011-11-30

    Pairing of fermions is ubiquitous in nature, underlying many phenomena. Examples include superconductivity, superfluidity of (3)He, the anomalous rotation of neutron stars, and the crossover between Bose-Einstein condensation of dimers and the BCS (Bardeen, Cooper and Schrieffer) regime in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems show even more subtle effects, many of which are not understood at a fundamental level. Most striking is the (as yet unexplained) phenomenon of high-temperature superconductivity in copper oxides, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, it is not understood how the many-body pairing is established at high temperature, and whether it precedes superconductivity. Here we report the observation of a many-body pairing gap above the superfluid transition temperature in a harmonically trapped, two-dimensional atomic Fermi gas in the regime of strong coupling. Our measurements of the spectral function of the gas are performed using momentum-resolved photoemission spectroscopy, analogous to angle-resolved photoemission spectroscopy in the solid state. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases.

  12. Modeling two-dimensional water flow and bromide transport in a heterogeneous lignitic mine soil

    Energy Technology Data Exchange (ETDEWEB)

    Buczko, U.; Gerke, H.H. [Brandenburg University of Technology, Cottbus (Germany)

    2006-02-15

    Water and solute fluxes in lignitic mine soils and in many other soils are often highly heterogeneous. Here, heterogeneity reflects dumping-induced inclined structures and embedded heterogeneous distributions of sediment mixtures and of lignitic fragments. Such two-scale heterogeneity effects may be analyzed through the application of two-dimensional models for calculating water and solute fluxes. The objective of this study was to gain more insight to what extent spatial heterogeneity of soil hydraulic parameters contributes to preferential flow at a lignitic mine soil. The simulations pertained to the 'Barenbrucker Hohe' site in Germany where previously water fluxes and applied tracers had been monitored with a cell lysimeter, and from where a soil block had been excavated for detailed two-dimensional characterization of the hydraulic parameters using pedotransfer functions. Based on those previous studies, scenarios with different distributions of hydraulic parameters were simulated. The results show that spatial variability of hydraulic parameters alone can hardly explain the observed flow patterns. The observed preferential flow at the site was probably caused by additional factors such as hydrophobicity, the presence of root channels, anisotropy in the hydraulic conductivity, and heterogeneous root distributions. To study the relative importance of these other factors by applying two-dimensional flow models to such sites, the experimental database must be improved. Single-continuum model approaches may be insufficient for such sites.

  13. MOFAT: A two-dimensional finite element program for multiphase flow and multicomponent transport. Program documentation and user's guide

    Science.gov (United States)

    Katyal, A. K.; Kaluarachchi, J. J.; Parker, J. C.

    1991-05-01

    The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The required inputs for flow and transport analysis are described. Detailed instructions for creating data files needed to run the program and examples of input and output files are given in appendices.

  14. Characterizing Mixing in a Quasi-Two-Dimensional Flow using Persistent Homology

    Science.gov (United States)

    Tithof, Jeffrey; Kelley, Douglas

    2016-11-01

    Fluid mixing is a tremendously important phenomenon present in numerous physical systems, both natural and human-made. Describing, understanding, and predicting the mixing behavior of fluid flows poses an immense challenge. In this work, we explore the utility of topological data analysis in quantifying fluid mixing. We analyze Eulerian and Lagrangian quantities obtained from a quasi-two-dimensional flow realized by driving a thin layer of fluid with electromagnetic forces. Our analysis employs persistent homology, which offers a unique framework for quantifying topological features associated with connectivity in the fluid flow. Preliminary results suggest that this topological approach offers new physical insight, complementing existing methods for quantifying fluid mixing.

  15. Two Dimensional Subsonic Euler Flows Past a Wall or a Symmetric Body

    Science.gov (United States)

    Chen, Chao; Du, Lili; Xie, Chunjing; Xin, Zhouping

    2016-08-01

    The existence and uniqueness of two dimensional steady compressible Euler flows past a wall or a symmetric body are established. More precisely, given positive convex horizontal velocity in the upstream, there exists a critical value {ρ_cr} such that if the incoming density in the upstream is larger than {ρ_cr}, then there exists a subsonic flow past a wall. Furthermore, {ρ_cr} is critical in the sense that there is no such subsonic flow if the density of the incoming flow is less than {ρ_cr}. The subsonic flows possess large vorticity and positive horizontal velocity above the wall except at the corner points on the boundary. Moreover, the existence and uniqueness of a two dimensional subsonic Euler flow past a symmetric body are also obtained when the incoming velocity field is a general small perturbation of a constant velocity field and the density of the incoming flow is larger than a critical value. The asymptotic behavior of the flows is obtained with the aid of some integral estimates for the difference between the velocity field and its far field states.

  16. Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows

    OpenAIRE

    Yatou, Hiroki

    2010-01-01

    We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, th...

  17. Group classification of steady two-dimensional boundary-layer stagnation-point flow equations

    OpenAIRE

    Nadjafikhah, Mehdi; Hejazi, Seyed Reza

    2010-01-01

    Lie symmetry group method is applied to study the boundary-layer equations for two-dimensional steady flow of an incompressible, viscous fluid near a stagnation point at a heated stretching sheet placed in a porous medium equation. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra symmetries is determined.

  18. Analytical Studies of Two-Dimensional Channel Turbulent Flow Subjected to Coriolis Force

    OpenAIRE

    鬼頭, 修己; 中林, 功一; キトウ, オサミ; Kito, Osami

    1992-01-01

    Coriolis effects on fully developed turbulent flow in a two-dimensional channel rotating about an axis perpendicular to its axis are considered. The Coriolis force has stabilizing/destabilizing effects on turbulence, and the mean velocity distribution changes accordingly. Experimental and numerical studies on the velocity characteristics have already been conducted by other researchers for various conditions. However, we cannot assemble the overall picture of the Coriolis effect on the veloci...

  19. An immersed interface method for two-dimensional modelling of stratified flow in pipes

    OpenAIRE

    Berthelsen, Petter Andreas

    2004-01-01

    This thesis deals with the construction of a numerical method for solving two-dimensional elliptic interface problems, such as fully developed stratified flow in pipes. Interface problems are characterized by its non-smooth and often discontinuous behaviour along a sharp boundary separating the fluids or other materials. Classical numerical schemes are not suitable for these problems due to the irregular geometry of the interface. Standard finite difference discretization across the interface...

  20. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    Science.gov (United States)

    Kolokolov, I. V.

    2017-03-01

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  1. Determination of two-dimensional magnetostatic equilibria and analogous Euler flows

    Science.gov (United States)

    Linardatos, D.

    1993-01-01

    A modified computational procedure with an improved time-stepping algorithm for two-dimensional magnetic relaxation is developed. The procedure is used to determine a family of flows in a closed (square) domain with a single elliptic stagnation point. In addition, the problem of saddle point collapse is investigated, and the tendency to form discontinuities is confirmed in the manner described by Bajer (1989).

  2. Prandtl's Boundary Layer Equation for Two-Dimensional Flow: Exact Solutions via the Simplest Equation Method

    Directory of Open Access Journals (Sweden)

    Taha Aziz

    2013-01-01

    Full Text Available The simplest equation method is employed to construct some new exact closed-form solutions of the general Prandtl's boundary layer equation for two-dimensional flow with vanishing or uniform mainstream velocity. We obtain solutions for the case when the simplest equation is the Bernoulli equation or the Riccati equation. Prandtl's boundary layer equation arises in the study of various physical models of fluid dynamics. Thus finding the exact solutions of this equation is of great importance and interest.

  3. Kinetic Theory of a Confined Quasi-Two-Dimensional Gas of Hard Spheres

    Directory of Open Access Journals (Sweden)

    J. Javier Brey

    2017-02-01

    Full Text Available The dynamics of a system of hard spheres enclosed between two parallel plates separated a distance smaller than two particle diameters is described at the level of kinetic theory. The interest focuses on the behavior of the quasi-two-dimensional fluid seen when looking at the system from above or below. In the first part, a collisional model for the effective two-dimensional dynamics is analyzed. Although it is able to describe quite well the homogeneous evolution observed in the experiments, it is shown that it fails to predict the existence of non-equilibrium phase transitions, and in particular, the bimodal regime exhibited by the real system. A critical revision analysis of the model is presented , and as a starting point to get a more accurate description, the Boltzmann equation for the quasi-two-dimensional gas has been derived. In the elastic case, the solutions of the equation verify an H-theorem implying a monotonic tendency to a non-uniform steady state. As an example of application of the kinetic equation, here the evolution equations for the vertical and horizontal temperatures of the system are derived in the homogeneous approximation, and the results compared with molecular dynamics simulation results.

  4. Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble

    Directory of Open Access Journals (Sweden)

    Hang Liu

    2015-04-01

    Full Text Available Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied.

  5. Piezoelectric Electromechanical Coupling in Nanomechanical Resonators with a Two-Dimensional Electron Gas

    Science.gov (United States)

    Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.

    2016-07-01

    The electrical response of a two-dimensional electron gas to vibrations of a nanomechanical cantilever containing it is studied. Vibrations of perpendicularly oriented cantilevers are experimentally shown to oppositely change the conductivity near their bases. This indicates the piezoelectric nature of electromechanical coupling. A physical model is developed, which quantitatively explains the experiment. It shows that the main origin of the conductivity change is a rapid change in the mechanical stress on the boundary between suspended and nonsuspended areas, rather than the stress itself.

  6. Electromechanical coupling in suspended nanomechanical resonators with a two-dimensional electron gas

    Science.gov (United States)

    Shevyrin, A. A.; Pogosov, A. G.; Bakarov, A. K.; Shklyaev, A. A.

    2017-06-01

    A physical model describing the piezoelectric-effect-mediated influence of bending of a thin suspended cantilever with a two-dimensional electron gas on the conductivity is proposed. The model shows that the conductivity change is almost entirely caused by the rapid change in mechanical stress near the boundary of suspended and non-suspended areas, rather than by the stress itself. An experiment confirming that the electromechanical coupling is associated with the piezoelectric effect is performed. The experimentally measured conductance sensitivity to the cantilever’s vibrations agree with the developed physical model.

  7. Ultra-low-temperature cooling of two-dimensional electron gas

    Science.gov (United States)

    Xia, J. S.; Adams, E. D.; Shvarts, V.; Pan, W.; Stormer, H. L.; Tsui, D. C.

    2000-05-01

    A new design has been used for cooling GaAs/Al xGa 1- xAs sample to ultra-low-temperatures. The sample, with electrical contacts directly soldered to the sintered silver powder heat exchangers, was immersed in liquid 3He, which was cooled by a PrNI 5 nuclear refrigerator. The data analysis shows that the two-dimensional electron gas (2DEG) was cooled to 4.0 mK at the refrigerator base temperature Tb of 2.0 mK. The design with heat exchanger cooling is applicable to any ultra-low-temperature transport measurements of 2DEG system.

  8. Spin injection into a two-dimensional electron gas using inter-digital-ferromagnetic contacts

    DEFF Research Database (Denmark)

    Hu, C.M.; Nitta, J.; Jensen, Ane;

    2002-01-01

    We present a model that describes the spin injection across a single interface with two electrodes. The spin-injection rate across a typical hybrid junction made of ferromagnet (FM) and a two-dimensional electron gas (2DEG) is found at the percentage level. We perforin spin-injection-detection ex......-injection-detection experiment on devices with two ferromagnetic contacts on a 2DEG confined in an InAs quantum well. A spin-injection rate of 4.5% is estimated from the measured magnetoresistance....

  9. Quantum spin-glass transition in the two-dimensional electron gas

    Indian Academy of Sciences (India)

    Subir Sachdev

    2002-02-01

    We discuss the possibility of spin-glass order in the vicinity of the unexpected metallic state of the two-dimensional electron gas in zero applied magnetic field. An average ferromagnetic moment may also be present, and the spin-glass order then resides in the plane orthogonal to the ferromagnetic moment. We argue that a quantum transition involving the destruction of the spin-glass order in an applied in-plane magnetic field offers a natural explanation of some features of recent magnetoconductance measurements. We present a quantum field theory for such a transition and compute its mean field properties.

  10. Electrically Detected Magnetic Resonance of Neutral Donors Interacting with a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lo, C. C.; Lang, V.; George, R. E.; Morton, J. J. L.; Tyryshkin, A. M.; Lyon, A.; Bokor, J.; Schenkel, T.

    2011-04-20

    We have measured the electrically detected magnetic resonance of donor-doped silicon field-effect transistors in resonant X- (9.7 GHz) and W-band (94 GHz) microwave cavities. The two-dimensional electron gas (2DEG) resonance signal increases by two orders of magnitude from X- to W-band, while the donor resonance signals are enhanced by over one order of magnitude. Bolometric effects and spin-dependent scattering are inconsistent with the observations. We propose that polarization transfer from the donor to the 2DEG is the main mechanism giving rise to the spin resonance signals.

  11. Photon-assisted spin transport in a two-dimensional electron gas

    OpenAIRE

    Fistul, M. V.; Efetov, K. B.

    2007-01-01

    We study spin-dependent transport in a two-dimensional electron gas subject to an external step-like potential $V(x)$ and irradiated by an electromagnetic field (EF). In the absence of EF the electronic spectrum splits into spin sub-bands originating from the "Rashba" spin-orbit coupling. We show that the resonant interaction of propagating electrons with the component EF parallel to the barrier induces a \\textit{% non-equilibrium dynamic gap} $(2\\Delta_{R})$ between the spin sub-bands. Exist...

  12. Thermodynamic magnetization of two-dimensional electron gas measured over wide range of densities

    OpenAIRE

    Reznikov, M.; Kuntsevich, A. Yu.; Teneh, N.; Pudalov, V. M.

    2011-01-01

    We report measurements of dm/dn in Si MOSFET, where m is the magnetization of the two-dimensional electron gas and n is its density. We extended the density range of measurements from well in the metallic to deep in the insulating region. The paper discusses in detail the conditions under which this extension is justified, as well as the corrections one should make to extract dm/dn properly. At low temperatures, dm/dn was found to be strongly nonlinear already in weak magnetic fields, on a sc...

  13. Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.

  14. Resonant Peak Splitting for Ballistic Conductance in Two-Dimensional Electron Gas Under Electromagnetic Modulation

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-Zhi; YAN Xiao-Hong

    2000-01-01

    By developing a transfer-matrix method, the resonant peaks splitting of ballistic conductance are investigated into the two-dimensional electron gas system with both electric and magnetic modulations of nanoscale periods. It is found that there exists the n-fold resonant peak splitting for ballistic conductance through n perpendicular magnetic barriers to n electric barriers. With a combination of m magnetic barriers and n electric barriers by increasing the amplitude of electric field, the folds of the splitting would shift from m - 1 to n - 1.

  15. The two-dimensional alternative binary L-J system: liquid-gas phase diagram

    Institute of Scientific and Technical Information of China (English)

    张陟; 陈立溁

    2003-01-01

    A two-dimensional (2D) binary system without considering the Lennard-Jones (L-J) potential has been studied by using the Collins model. In this paper, we introduce the L-J potential into the 2D binary system and consider the existence of the holes that are called the "molecular fraction". The liquid-gas phase diagram of the 2D alternative binary L-J system is obtained. The results are quite analogous to the behaviour of 3D substances.

  16. Diffusivity and weak clustering in a quasi-two-dimensional granular gas.

    Science.gov (United States)

    Perera-Burgos, J A; Pérez-Ángel, G; Nahmad-Molinari, Y

    2010-11-01

    We present results from a detailed simulation of a quasi-two-dimensional dissipative granular gas, kept in a noncondensed steady state via vertical shaking over a rough substrate. This gas shows a weak power-law decay in the tails of its pair distribution functions, indicating clustering. This clustering depends monotonically on the dissipation coefficient and disappears when the sphere-sphere collisions are conservative. Clustering is also sensitive to the packing fraction. This gas also displays the standard nonequilibrium characteristics of similar systems, including non-Maxwellian velocity distributions. The diffusion coefficients are calculated over all the conditions of the simulations, and it is found that diluted gases are more diffusive for smaller restitution coefficients.

  17. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    Science.gov (United States)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-08-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  18. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  19. Device for two-dimensional gas-phase separation and characterization of ion mixtures

    Science.gov (United States)

    Tang, Keqi; Shvartsburg, Alexandre A.; Smith, Richard D.

    2006-12-12

    The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.

  20. Flow Rate in the Discharge of a Two-dimensional Silo

    Science.gov (United States)

    Zuriguel, I.; Janda, A.; Garcimartín, A.; Maza, D.

    2009-06-01

    We present an experimental study of the flow rate in the discharge of a flat bottomed two-dimensional silo. The results of the flow rate dependence on the size of the orifice evidence that the Beverloo expression is not valid for small outlet sizes. This behavior is related with the properties of the flow rate which has been found to fluctuate in a gaussian like form for large orifices. On the contrary, for small orifices extreme events appear at zero flow rates causing a significant slow down of the average flow rate. These events are explained in terms of the existence of arches that block the outlet instantaneously but are unstable to permanently halt the flow.

  1. Two-dimensional surface river flow patterns measured with paired RiverSondes

    Science.gov (United States)

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.

    2008-01-01

    Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.

  2. Two-dimensional hydrodynamic flow focusing in a microfluidic platform featuring a monolithic integrated glass micronozzle

    Science.gov (United States)

    Liu, Yifan; Shen, Yusheng; Duan, Lian; Yobas, Levent

    2016-10-01

    Two-dimensional hydrodynamic flow focusing is demonstrated through a microfluidic device featuring a monolithic integrated glass micronozzle inside a flow-focusing geometry. Such a coaxial configuration allows simple one-step focusing of a sample fluid stream, jetted from the micronozzle tip, in both in-plane and out-of-plane directions. The width of the focused filament can be precisely controlled and further scaled down to the submicrometer regime to facilitate rapid hydrodynamic mixing. Fluorescence quenching experiments reveal ultra-fast microsecond mixing of the denaturant into the focused filament. This device offers new possibilities to a set of applications such as the study of protein folding kinetics.

  3. Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow.

    Science.gov (United States)

    Seshasayanan, Kannabiran; Alexakis, Alexandros

    2016-01-01

    We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.

  4. Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation

    Science.gov (United States)

    Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.

    2012-12-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same

  5. Implementation of the Log-Conformation Formulation for Two-Dimensional Viscoelastic Flow

    CERN Document Server

    Jensen, K E; Okkels, F

    2015-01-01

    We have implemented the log-conformation method for two-dimensional viscoelastic flow in COMSOL, a commercial high-level finite element package. The code is verified for an Oldroyd-B fluid flowing past a confined cylinder. We are also able to describe the well-known bistability of the viscoelastic flow in a cross-slot geometry for a FENE-CR fluid, and we describe the changes required for performing simulations with the Phan-Thien-Tanner (PTT), Giesekus and FENE-P models. Finally, we calculate the flow of a FENE-CR fluid in a geometry with three in- and outlets. The implementation is included in the supplementary material, and we hope that it can inspire new as well as experienced researchers in the field of differential constitutive equations for viscoelastic flow.

  6. Phase correlations and quasicondensate in a two-dimensional ultracold Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Tempere, J., E-mail: jacques.tempere@uantwerpen.be [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States); Klimin, S.N. [Theory of Quantum and Complex Systems, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen (Belgium)

    2015-02-15

    The interplay between dimensionality, coherence and interaction in superfluid Fermi gases is analyzed by the phase correlation function of the field of fermionic pairs. We calculate this phase correlation function for a two-dimensional superfluid Fermi gas with s-wave interactions within the Gaussian pair fluctuation formalism. The spatial behavior of the correlation function is shown to exhibit a rapid (exponential) decay at short distances and a characteristic algebraic decay at large distances, with an exponent matching that expected from the Berezinskii–Kosterlitz–Thouless theory of 2D Bose superfluids. We conclude that the Gaussian pair fluctuation approximation is able to capture the physics of quasi-long-range order in two-dimensional Fermi gases. - Highlights: • The phase correlation functions for an ultracold Fermi gas in 2D are calculated. • The decay of the correlation functions is algebraic at long distances. • The Gaussian pair fluctuation approach is shown to capture the quasicondensate physics in 2D Fermi gases.

  7. A Numerical Scheme Based on an Immersed Boundary Method for Compressible Turbulent Flows with Shocks: Application to Two-Dimensional Flows around Cylinders

    Directory of Open Access Journals (Sweden)

    Shun Takahashi

    2014-01-01

    Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.

  8. Properties of two-dimensional electron gas containing self-organized quantum antidots

    Science.gov (United States)

    Vasilyev, Yu.; Suchalkin, S.; Zundel, M.; Heisenberg, D.; Eberl, K.; von Klitzing, K.

    1999-11-01

    A nonuniform two-dimensional electron gas in a heterojunction with inserted self-organized electrically inactive dots (acting as antidots) has been fabricated by molecular-beam epitaxy of AlGaAs/AlInAs/GaAs layer sequences. Transport measurements give the ratio of the transport mobility to the quantum mobility less than four, which suggests that the dominant scattering at low magnetic fields is the short-range scattering from the lateral potential of the antidots. Far-infrared cyclotron resonance (CR) spectra show an absorption mode as narrow as 0.5 cm-1 at high magnetic fields associated with the high-mobility electron gas formed between the antidot islands and confined in the lateral directions. The confinement energy of 14 cm-1 is derived from the CR spectra.

  9. Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice

    Energy Technology Data Exchange (ETDEWEB)

    Budantsev, M. V., E-mail: budants@isp.nsc.ru; Lavrov, R. A.; Pogosov, A. G.; Zhdanov, E. Yu.; Pokhabov, D. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2011-02-15

    Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0-0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called 'memory effects,' are discussed.

  10. One- and two-dimensional Stirling machine simulation using experimentally generated reversing flow turbuulence models

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, L.F. [Univ. of Minnesota, Minneapolis, MN (United States)

    1990-08-01

    The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.

  11. Water-channel study of flow and turbulence past a two-dimensional array of obstacles

    CERN Document Server

    Di Bernardino, Annalisa; Leuzzi, Giovanni; Querzoli, Giorgio

    2016-01-01

    A neutral boundary layer was generated in the laboratory to analyze the mean velocity field and the turbulence field within and above an array of two-dimensional obstacles simulating an urban canopy. Different geometrical configurations were considered in order to investigate the main characteristics of the flow as a function of the aspect ratio (AR) of the canopy. To this end, a summary of the two-dimensional fields of the fundamental turbulence parameters is given for AR ranging from 1 to 2. The results show that the flow field depends strongly on AR only within the canyon, while the outer flow seems to be less sensitive to this parameter. This is not true for the vertical momentum flux, which is one of the parameters most affected by AR, both within and outside the canyon. The experiments also indicate that, when (i.e. the skimming flow regime), the roughness sub-layer extends up to a height equal to 1.25 times the height of the obstacles (H), surmounted by an inertial sub-layer that extends up to 2.7 H. I...

  12. Hydrodynamic aspects of premixed flame stripes in two-dimensional stagnation-point flows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Sohrab, S.H. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering

    1995-06-01

    The behavior of cellular premixed flames of rich butane-air in the two-dimensional stagnation-point flow configuration has been investigated. It is found that the stretching of the cellular flame results in the alignment f the ridge (extinction) and the trough (combustion) zones of the individual cells such as to form a series of parallel flame stripes. The number of flame stripes as a function of the equivalence ratio for three different mean velocities at the nozzle have been determined. Through the introduction of a generalized form of the stream function periodic velocity fields are obtained as the exact solutions of the Euler equation for the nonreactive finite-jet two-dimensional stagnation flow. The predicted periodic velocity profiles are confirmed by the experimental observation of the streamlines in nonreactive flow made visible by laser-sheet lighting. The observed average size of the flame stripes is found to be in good agreement with the predicted value. Similar periodic velocity profiles are also obtained for the viscous flow within the laminar boundary layer by treatment of the unsteady vorticity equation first described by Taylor. The results support an earlier prediction by Williams that cellular flame structures that are affected mainly by diffusive-thermal phenomena may in fact be initiated by the hydrodynamic instability.

  13. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    Science.gov (United States)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  14. NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.

  15. Wake structure and thrust generation of a flapping foil in two-dimensional flow

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2017-01-01

    We present a combined numerical (particle vortex method) and experimental (soap film tunnel) study of a symmetric foil undergoing prescribed oscillations in a two-dimensional free stream. We explore pure pitching and pure heaving, and contrast these two generic types of kinematics. We compare...... measurements and simulations when the foil is forced with pitching oscillations, and we find a close correspondence between flow visualisations using thickness variations in the soap film and the numerically determined vortex structures. Numerically, we determine wake maps spanned by oscillation frequency...

  16. Two-dimensional motion of unstable steps induced by flow in solution

    OpenAIRE

    Sato, Masahide

    2011-01-01

    By carrying out Monte Carlo simulation, we study step instabilities during crystal growth from solution. In previous studies [M. Sato. J. Phys. Soc. Jpn. 79 (2010) 064606; M. Sato, J. Cryst. Growth 318 (2011) 5; M. Sato. J. Phys. Soc. Jpn. 80 (2011) 024604], we used a one-dimensional model, so that we were unable to study another type of instability, step wandering. In this research, we use a two-dimensional model to study both step wandering and step bunching. When the flow of solutes is in ...

  17. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    CERN Document Server

    Kolokolov, Igor

    2016-01-01

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time what contradicts to the statements present in literature. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor-Kraichnan-Kazantsev model. These tensors demonstrate highly intermittent statistics of the field fluctuations both in space and time.

  18. Two-dimensional numerical simulation of flow around three-stranded rope

    Science.gov (United States)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  19. Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

    Directory of Open Access Journals (Sweden)

    K.-P. Heue

    2008-11-01

    Full Text Available In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

    Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.

  20. On the use of wall functions as boundary conditions for two-dimensional separated compressible flows

    Science.gov (United States)

    Viegas, J. R.; Rubesin, M. W.; Horstman, C. C.

    1985-01-01

    A new and improved wall function method for compressible turbulent flows has been developed and tested. This method is applicable to attached and separated flows, to both high- and low-Reynolds number flows, and to flows with adiabatic and nonadiabatic surfaces. This wall function method has been applied to the Launder-Spalding k-epsilon two-equation model of turbulence. The tests consist of comparisons of calculated and experimental results for: (1) an axisymmetrical transonic shock-wave/boundary-wave interaction flow at low Reynolds number in an adiabatic tube, (2) an axisymmetrical high-Reynolds number transonic flow over a nonadiabatic bump, and (3) a two-dimensional supersonic high-Reynolds number flow on a nonadiabatic deflected flap. Each of these experiments had significant regions of flow separation. The calculations are performed with an implicit algorithm that solves the Reynolds-averaged Navier-Stokes equations. It is shown that the results obtained agree very well with the data for the complex compressible flows tested.

  1. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    D'Archivio, Angelo Antonio; Incani, Angela; Ruggieri, Fabrizio

    2011-01-01

    In this paper, we use a quantitative structure-retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column ((1) t (R) and (2) t (R), respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for (1) t (R) and (2) t (R) from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling (1) t (R) and (2) t (R), respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model (1) t (R) and (2) t (R) without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive

  2. The direct enstrophy cascade of two-dimensional soap film flows

    CERN Document Server

    Rivera, Mike; Ecke, Robert

    2013-01-01

    We investigate the direct enstrophy cascade of two-dimensional decaying turbulence in a flowing soap film channel. We use a coarse-graining approach that allows us to resolve the nonlinear dynamics and scale-coupling simultaneously in scale and in space. From our data, we calculate the transfer of enstrophy across scale $\\ell$ at every point $\\bx$ in the flow domain. We verify an exact relation due to Eyink (1995) between traditional 3rd-order structure function and the enstrophy flux obtained by coarse-graining. We also present experimental evidence that enstrophy cascades to smaller (larger) scales with a 60% (40%) probability, in support of theoretical predictions by Merilees & Warn (1975). Using an Eulerian coherent structure identification technique, we then determine the effect of flow topology on the enstrophy cascade. A key finding is that "centers" are inefficient at transferring enstrophy between scales, in contrast to "saddle" regions which transfer enstrophy to small scales with high efficienc...

  3. Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows

    CERN Document Server

    Venaille, Antoine

    2010-01-01

    Using explicit analytical computations, generic occurrence of inequivalence between two or more statistical ensembles is obtained for a large class of equilibrium states of two-dimensional and geophysical turbulent flows. The occurrence of statistical ensemble inequivalence is shown to be related to previously observed phase transitions in the equilibrium flow topology. We find in these turbulent flow equilibria, two mechanisms for the appearance of ensemble equivalences, that were not observed in any physical systems before. These mechanisms are associated respectively with second-order azeotropy (simultaneous appearance of two second-order phase transitions), and with bicritical points (bifurcation from a first-order to two second-order phase transition lines). The important roles of domain geometry, of topography, and of a screening length scale (the Rossby radius of deformation) are discussed. It is found that decreasing the screening length scale (making interactions more local) surprisingly widens the r...

  4. A characteristic mapping method for two-dimensional incompressible Euler flows

    Science.gov (United States)

    Yadav, Badal; Mercier, Olivier; Nave, Jean-Christophe; Schneider, Kai

    2016-11-01

    We propose an efficient semi-Lagrangian method for solving the two-dimensional incompressible Euler equations with high precision on a coarse grid. The new approach evolves the flow map using the gradient-augmented level set method (GALSM). Since the flow map can be decomposed into submaps (each over a finite time interval), the error can be controlled by choosing the remapping times appropriately. This leads to a numerical scheme that has exponential resolution in linear time. The computational efficiency and the high precision of the method are illustrated for a vortex merger and a four mode flow. Comparisons with a Cauchy-Lagrangian method are also presented. KS thankfully acknowledges financial support from the French Research Federation for Fusion Studies within the framework of the European Fusion Development Agreement (EFDA).

  5. Solution of Two-Dimensional Viscous Flow Driven by Motion of Flexible Walls

    Directory of Open Access Journals (Sweden)

    Mohamed Gad-el-Hak

    2010-03-01

    Full Text Available An exact solution of the Navier–Stokes equations for a flow driven by motion of flexible wall is developed. A simple two-dimensional channel with deforming walls is considered as domain. The governing equations are linearized for low Reynolds number and large Womersley number Newtonian flows. Appropriate boundary conditions for general deformation are decomposed into harmonic excitations in space by Fourier series decomposition. A model of harmonic boundary deformation is considered and results are compared with computational fluid dynamics predictions. The results of velocity profiles across the channel and the centerline velocities of the channel are in good agreement with CFD solution. The analytical model developed provides quantitative descriptions of the flow field for a wide spectrum of actuating frequnecy and boundary conditions. The presented model can be used as an effective framework for preliminary design and optimization of displacement micropumps and other miniature applications.

  6. Development and Design of a Single-Stage Cryogenic Modulator for Comprehensive Two-Dimensional Gas Chromatography.

    Science.gov (United States)

    Mostafa, Ahmed; Górecki, Tadeusz

    2016-05-17

    A new liquid nitrogen-based single-stage cryogenic modulator was developed and characterized. In addition, a dedicated liquid nitrogen delivery system was developed. A well-defined restriction placed inside a deactivated fused silica capillary was used to increase the cooling surface area and provide very efficient trapping. At the same time, it enabled modulation of the carrier gas flow owing to changes in gas viscosity with temperature. Gas flow is almost unimpeded at the trapping temperature but reduced to nearly zero at the desorption temperature, which prevents analyte breakthrough. Peak widths for n-alkanes of 30-40 ms at half height were obtained. Most importantly, even the solvent peak could be modulated, which is not feasible with any commercially available thermal modulator. Evaluation of the newly developed system in two-dimensional gas chromatography (GC × GC) separations of some real samples such as regular gasoline and diesel fuel showed that the analytical performance of this single-stage modulator is fully competitive to those of the more complicated dual-stage modulators.

  7. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Science.gov (United States)

    Gómez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodríguez, A.

    2003-10-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8×8 cm2 with a pixel size of 1.27×1.27 mm2. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  8. Hydrodynamics for a model of a confined quasi-two-dimensional granular gas.

    Science.gov (United States)

    Brey, J Javier; Buzón, V; Maynar, P; García de Soria, M I

    2015-05-01

    The hydrodynamic equations for a model of a confined quasi-two-dimensional gas of smooth inelastic hard spheres are derived from the Boltzmann equation for the model, using a generalization of the Chapman-Enskog method. The heat and momentum fluxes are calculated to Navier-Stokes order, and the associated transport coefficients are explicitly determined as functions of the coefficient of normal restitution and the velocity parameter involved in the definition of the model. Also an Euler transport term contributing to the energy transport equation is considered. This term arises from the gradient expansion of the rate of change of the temperature due to the inelasticity of collisions, and it vanishes for elastic systems. The hydrodynamic equations are particularized for the relevant case of a system in the homogeneous steady state. The relationship with previous works is analyzed.

  9. Realization and Characterization of a Curved Two-dimensional Electron Gas

    Science.gov (United States)

    Shaji, Nakul; Deneke, Christoph

    2005-03-01

    Using the built-in strain from lattice mismatch between Al0.33Ga0.67As and In0.2Ga0.8As as a bending force, a strip of two-dimensional electron gas (2DEG) in an AlxGa1-xAs/GaAs/AlxGa1-xAs heterostructure is curved into a tube when released from the substrate by wet etching. A variety of mesoscopic quantum devices can be defined in such curved 2DEG structures. This technology opens the door for investigating geometry-dependent electron transport under non-uniform magnetic fields. We have defined Hall bar patterns from a sheet of 2DEG using both optical and electron-beam lithography. The sample characterization under an external magnetic field will be discussed.

  10. Modulation techniques and applications in comprehensive two-dimensional gas chromatography (GC x GC)

    Energy Technology Data Exchange (ETDEWEB)

    Pursch, Matthias [Dow Deutschland GmbH and Co. OHG, Analytical Sciences, 77836 Rheinmuenster (Germany); Sun, Kefu; Winniford, Bill; Weber, Andy [Dow Chemical Company, Analytical Sciences, Freeport, TX 77541 (United States); Cortes, Hernan; McCabe, Terry [Dow Chemical Company, Analytical Sciences, Midland MI 48667 (United States); Luong, Jim [Dow Canada, Analytical Sciences, Fort Saskatchewan (Canada)

    2002-07-01

    More than a decade after Phillips' first published work this article reviews recent developments in comprehensive two-dimensional gas chromatography (GC x GC). Special attention is devoted to the further development and diversity of modulation devices. These include heated sweepers, cryofocused modulators, and a variety of diaphragm valve-switching strategies. It is demonstrated that all modulation approaches can be very well suited to GC x GC, depending on the particular application. Diaphragm-valve modulation is very powerful for volatile organic compounds. Slotted heater and cryofocused modulation are preferred for samples that contain non-volatile components. Applications ranging from petroleum to environmental and biological samples are illustrated. Extension of the technique to GC x GC-mass spectrometry (MS) is also discussed and trends for future research activity are pointed out. (orig.)

  11. Automated multivariate analysis of comprehensive two-dimensional gas chromatograms of petroleum

    DEFF Research Database (Denmark)

    Skov, Søren Furbo

    Petroleum is an economically and industrially important resource. Crude oil must be refined before use to ensure suitable properties of the product. Among the processes used in this refining is distillation and desulfurization. In order to optimize these processes, it is essential to understand...... them. Comprehensive two-dimensional gas chromatography (GCGC) is a method for analyzing the volatile parts of a sample. It can separate hundreds or thousands of compounds based on their boiling point, polarity and polarizability. This makes it ideally suited for petroleum analysis. The number...... impossible to find it. For a special class of models, multi-way models, unique solutions often exist, meaning that the underlying phenomena can be found. I have tested this class of models on GCGC data from petroleum and conclude that more work is needed before they can be automated. I demonstrate how...

  12. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas.

    Science.gov (United States)

    Smolka, Stephan; Wuester, Wolf; Haupt, Florian; Faelt, Stefan; Wegscheider, Werner; Imamoglu, Ataç

    2014-10-17

    Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities.

  13. Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment

    Science.gov (United States)

    Barmashova, T. V.; Mart'yanov, K. A.; Makhalov, V. B.; Turlapov, A. V.

    2016-02-01

    By controling interparticle interactions, it is possible to transform a fermionic system into a bosonic system and vice versa, while preserving quantum degeneracy. Evidence of such a transformation may be found by monitoring the pressure and interference. The Fermi pressure is an indication of the fermion?ic character of a system, while the interference implies a nonzero order parameter and Bose condensation. Lowering from three to two spatial dimensions introduces new physics and makes the system more difficult to describe due to the increased fluctuations and the reduced applicability of mean field methods. An experiment with a two-dimensional ultracold atomic gas shows a crossover between the Bose and Fermi limits, as evident from the value of pressure and from the interference pattern, and provides data to test models of 2D Fermi and Bose systems, including the most-difficult-to-model strongly coupled systems.

  14. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    Science.gov (United States)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  15. Hidden long-range order in a two-dimensional spin-orbit coupled Bose gas

    CERN Document Server

    Su, Shih-Wei; Gou, Shih-Chuan; Liao, Renyuan; Fialko, Oleksandr; Brand, Joachim

    2016-01-01

    A two-dimensional spin-orbit coupled Bose gas is shown to simultaneously possess quasi and true long-range orders in the total and relative phases, respectively. The total phase undergoes a conventional Berenzinskii- Kosterlitz-Thouless transition, where an quasi long-range order is expected. Additionally, the relative phase undergoes an Ising-type transition building up true long-range order, which is induced by the anisotropic spin- orbit coupling. Based on the Bogoliubov approach, expressions for the total- and relative-phase fluctuations are derived analytically for the low temperature regime. Numerical simulations of the stochastic projected Gross- Pitaevskii equation give a good agreement with the analytical predictions.

  16. Optimization of micro-strip gas chamber as two-dimensional neutron detector using gadolinium converter

    Energy Technology Data Exchange (ETDEWEB)

    Masaoka, Sei; Nakamura, Tatsuya; Yamagishi, Hideshi; Soyama, Kazuhiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    A micro-strip gas chamber (MSGC) has been developing as a two-dimensional position sensitive neutron detector for neutron scattering experiments using high-intensity pulsed-neutron source in a high-intensity proton accelerator facility. MSGC is required for the high count rate, high detective efficiency, high positional resolution, stabilization and covering large area. Our purpose in this paper is to verify the proper of Gadolinium as MSGC converter. First, the basic property of Gadolinium converter was examined by simple experiments using a zero-dimensional neutron detector on the purpose of deriving the detective efficiency. Second, the optimization of the arrangement of a capillary plate in MSGC has been done by simulation on the MSGC using Gadolinium converter. As a result of that, it has been proved that Gadolinium can be theoretically used as a converter of MSGC. (author)

  17. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  18. A two-dimensional CA model for traffic flow with car origin and destination

    Science.gov (United States)

    In-nami, Junji; Toyoki, Hiroyasu

    2007-05-01

    Dynamic phase transitions in a two-dimensional traffic flow model defined on a decorated square-lattice are studied numerically. The square-lattice point and the decorated site denote intersections and roads, respectively. In the present model, a car has a finite deterministic path between the origin and the destination, which is assigned to the car from the beginning. In this new model, we found a new phase between the free-flow phase and the frozen-jam phase that is absent from previous models. The new model is characterized by the persistence of a macroscopic cluster. Furthermore, the behavior in this macroscopic cluster phase is classified into three regions characterized by the shape of the cluster. The boundary of the three regions is phenomenologically estimated. When the trip length is short and the car density is high, both ends of the belt-like cluster connect to each other through the periodic boundary with some probability. This type of cluster is classified topologically as a string on a two-dimensional torus.

  19. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flow

    Science.gov (United States)

    Hsu, Li-Chieh

    The spectral element method is a high order discretization scheme for the solution of nonlinear partial differential equations. The method draws its strengths from the finite element method for geometrical flexibility and spectral methods for high accuracy. Although the method is, in theory, very powerful for complex phenomena such as transitional flows, its practical implementation is limited by the arbitrary choice of domain discretization. For instance, it is hard to estimate the appropriate number of elements for a specific case. Selection of regions to be refined or coarsened is difficult especially as the flow becomes more complex and memory limits of the computer are stressed. We present an adaptive spectral element method in which the grid is automatically refined or coarsened in order to capture underresolved regions of the domain and to follow regions requiring high resolution as they develop in time. The objective is to provide the best and most efficient solution to a time-dependent nonlinear problem by continually optimizing resource allocation. The adaptivity is based on an error estimator which determines which regions need more resolution. The solution strategy is as follows: compute an initial solution with a suitable initial mesh, estimate errors in the solution locally in each element, modify the mesh according to the error estimators, interpolate old mesh solutions onto the new elements, and resume the numerical solution process. A two-dimensional adaptive spectral element method for the direct simulation of incompressible flows has been developed. The adaptive algorithm effectively diagnoses and refines regions of the flow where complexity of the solution requires increased resolution. The method has been demonstrated on two-dimensional examples in heat conduction, Stokes and Navier-Stokes flows.

  20. The flow of an aqueous foam through a two-dimensional porous medium

    Science.gov (United States)

    Dollet, B.; Jones, S. A.; Géraud, B.; Meheust, Y.; Cox, S. J.; Cantat, I.

    2013-12-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soils: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that applications might benefit of. In particular, viscous dissipation arises mostly from the contact zones between the soap films and the walls, which results in peculiar friction laws allowing the foam to invade narrow pores more efficiently than Newtonian fluids would. We investigate the flow of a two-dimensional foam in three geometrical configurations. The flow velocity field and pressure field can both be reconstructed from the kinematics of the foam bubbles. We first consider a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow behavior is highly dependent on the foam structure within the narrowest of the two channels [1]; consequently, the flux ratio between the two channels exhibits a non-monotonic dependence on the ratio of their widths. We then consider two parallel channels that are respectively convergent and divergent. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels; these deformations strongly impact the foam/wall friction, and consequently the flux distribution between the two channels, causing flow irreversibility. We quantitatively predict the flux ratio as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam. We then study how film-wall friction, capillary pressures and bubble deformation impact the flow of a foam in a two-dimensional porous medium consisting of randomly

  1. Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows.

    Science.gov (United States)

    Mamatsashvili, G R; Gogichaishvili, D Z; Chagelishvili, G D; Horton, W

    2014-04-01

    We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity), and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by a transient growth mechanism due to shear flow non-normality. This mechanism appears to be essentially anisotropic in the spectral (wave-number) plane and operates mainly for spatial Fourier harmonics with streamwise wave numbers less than the ratio of flow shear to Alfvén speed, kymagnetohydrodynamic (MHD) turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows: to the bypass concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in the wave-number plane [as occurs in the related hydrodynamic flow; see Horton et al., Phys. Rev. E 81, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.

  2. Thermalization of a two-dimensional photon gas in a polymeric host matrix

    Science.gov (United States)

    Schmitt, Julian; Damm, Tobias; Vewinger, Frank; Weitz, Martin; Klaers, Jan

    2012-07-01

    We investigate thermodynamic properties of a two-dimensional photon gas confined by a dye-filled optical microcavity. A thermally equilibrated state of the photon gas is achieved by radiative coupling to a heat bath that is realized with dye molecules embedded in a polymer at room temperature. The chemical potential of the gas is freely adjustable. The optical microcavity consisting of two curved mirrors induces both a non-vanishing effective photon mass and a harmonic trapping potential for the photons. While previous experiments of our group have used liquid dye solutions, the measurements described here are based on dye molecules incorporated into a polymer host matrix. The solid state material allows a simplified operation of the experimental scheme. We furthermore describe studies of fluorescence properties of dye-doped polymers, and verify the applicability of Kennard-Stepanov theory in this system. In the future, dye-based solid state systems hold promise for the realization of single-mode light sources in thermal equilibrium based on Bose-Einstein condensation of photons, as well as for solar energy concentrators.

  3. Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows

    CERN Document Server

    Yatou, Hiroki

    2010-01-01

    We find three types of steady solutions and remarkable flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Reynolds (Re) and Weissenberg (Wi) numbers using direct numerical simulations with spectral element method. The solutions are called "convective", "transition", and "elastic" in ascending order of Wi. In the convective region in the Re-Wi parameter space, the convective effect and the pressure gradient balance on average. As Wi increases, the elastic effect becomes suddenly comparable and the first transition sets in. Through the transition, a separation vortex disappears and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; The viscous drag significantly drops and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic eff...

  4. Finite-time barriers to front propagation in two-dimensional fluid flows

    CERN Document Server

    Mahoney, John R

    2015-01-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear", introduced by Farazmand, Blazevski, and Haller [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our techniqu...

  5. Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo.

    Science.gov (United States)

    Janda, A; Harich, R; Zuriguel, I; Maza, D; Cixous, P; Garcimartín, A

    2009-03-01

    We present experimental results obtained with a two-dimensional silo discharging under gravity through an orifice at the flat bottom. High-speed measurements provide enough time resolution to detect every single bead that goes out and this allows the measurement of the flow rate in short-time windows. Two different regimes are clearly distinguished: one for large orifices, which can be described by Gaussian fluctuations, and another for small orifices, in which extreme events appear. The frontier between those two regimes coincides with the outlet size below which jamming events are frequent. Moreover, it is shown that the power spectrum of the flow-rate oscillations is not dominated by any particular frequency.

  6. A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Toreja, A J; Uddin, R

    2002-10-21

    A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.

  7. Improved modeling and numerics to solve two-dimensional elliptic fluid flow and heat transfer problems

    Science.gov (United States)

    Chan, B. C.

    1986-05-01

    A basic, limited scope, fast-running computer model is presented for the solution of two-dimensional, transient, thermally-coupled fluid flow problems. This model is to be the module in the SSC (an LMFBR thermal-hydraulic systems code) for predicting complex flow behavior, as occurs in the upper plenum of the loop-type design or in the sodium pool of the pool-type design. The nonlinear Navier-Stokes equations and the two-equation (two-variable) transport model of turbulence are reduced to a set of linear algebraic equations in an implicit finite difference scheme, based on the control volume approach. These equations are solved iteratively in a line-by-line procedure using the tri-diagonal matrix algorithm. The results of calculational examplers are shown in the computer-generated plots.

  8. Numerical Algorithms for Two-Dimensional Dry Granular Flow with Deformable Elastic Grain

    Energy Technology Data Exchange (ETDEWEB)

    Boateng, H A; Elander, V; Jin, C; Li, Y; Vasquez, P; Fast, P

    2005-08-11

    The authors consider the dynamics of interacting elastic disks in the plane. This is an experimentally realizable two-dimensional model of dry granular flow where the stresses can be visualized using the photoelastic effect. As the elastic disks move in a vacuum, they interact through collisions with each other and with the surrounding geometry. Because of the finite propagation speed of deformations inside each grain it can be difficult to capture computationally even simple experiments involving just a few interacting grains. The goal of this project is to improve our ability to simulate dense granular flow in complex geometry. They begin this process by reviewing some past work, how they can improve upon previous work. the focus of this project is on capturing the elastic dynamics of each grain in an approximate, computationally tractable, model that can be coupled to a molecular dynamics scheme.

  9. A minimum action method for small random perturbations of two-dimensional parallel shear flows

    Science.gov (United States)

    Wan, Xiaoliang

    2013-02-01

    In this work, we develop a parallel minimum action method for small random perturbations of Navier-Stokes equations to solve the optimization problem given by the large deviation theory. The Freidlin-Wentzell action functional is discretized by hp finite elements in time direction and spectral methods in physical space. A simple diagonal preconditioner is constructed for the nonlinear conjugate gradient solver of the optimization problem. A hybrid parallel strategy based on MPI and OpenMP is developed to improve numerical efficiency. Both h- and p-convergence are obtained when the discretization error from physical space can be neglected. We also present preliminary results for the transition in two-dimensional Poiseuille flow from the base flow to a non-attenuated traveling wave.

  10. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))

    1990-10-01

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.

  11. Enhanced Transport of Passive Tracers In A Time Periodic Two-dimensional Flow

    Science.gov (United States)

    Boffetta, G.; Cencini, M.; Espa, S.; Musacchio, S.

    , investigating systems in which the second condition is violated is much more inter- esting. With this purpose, some experiments have shown how superdiffusion arises in a two-dimensional quasi-geostrophic (planetary-type) flow, where particles can jump for very long time in the same direction performing a Levy flight (Castiglione et al., 2001 ). Moreover, two recent papers (Vulpiani, 1998; Solomon, 2001) show how, also in very simple two-dimensional, time and space periodic cellular flows,anomalous diffusive behaviours can appear. In this paper we present an experimental study of transport in an electromagnetically forced time periodic two-dimensional flow. The flow is generated by applying an electromagnetic forcing on a thin layer of an elec- trolyte solution and reveals in a square grid of alternating vortices. Time dependence can be easily obtained by changing the time dependence of the electric fields. In par- ticular, considering certain values of the imposed oscillation frequencies, particles can display very long jump. Particle Tracking Velocimetry (PTV) is used to measure the flow field. This technique is the most suitable for studying dispersion phenomena in a Lagrangian framework allowing the direct evaluation of particle displacements and related quantities (Cenedese, Querzoli; 2000). Moreover, due to the characteristics of the analyzed flow and to the improvement of the tracking procedure, we have been able to track a great number of particles for time intervals greater than the charac- teristic time-scales of the flow. In order to characterize the time correlations we will evaluate the so-called jumps probabilities with memory which represent the probabil- ities to jump in a given direction conditioned to having experienced jumps in the same direction at previous times. Such statistics will revealed very useful and suitable for detecting the onset of the aforementioned correlations. 2

  12. Uncertainty analysis of quasi-two-dimensional flow simulation in compound channels with overbank flows

    OpenAIRE

    Riahi-Madvar, Hossien; Ayyoubzadeh, Seyed Ali; Namin, Masoud Montazeri; Seifi, Akram

    2011-01-01

    Flow in compound channels with overbank flows becomes more complex because of shear interactions between flows in main channel and flood plains, lateral momentum transfer and secondary flows. Compound channels have interesting applications in flood control, civil engineering and environmental management. Because it is difficult to obtain sufficiently accurate and comprehensive understandings of flow in natural compound rivers, the developed models of flow in overbank flows have many uncertain...

  13. GIS-based two-dimensional numerical simulation of rainfall-induced debris flow

    Directory of Open Access Journals (Sweden)

    C. Wang

    2008-02-01

    Full Text Available This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.

  14. GIS-based two-dimensional numerical simulation of rainfall-induced debris flow

    Science.gov (United States)

    Wang, C.; Li, S.; Esaki, T.

    2008-02-01

    This paper aims to present a useful numerical method to simulate the propagation and deposition of debris flow across the three dimensional complex terrain. A depth-averaged two-dimensional numerical model is developed, in which the debris and water mixture is assumed to be continuous, incompressible, unsteady flow. The model is based on the continuity equations and Navier-Stokes equations. Raster grid networks of digital elevation model in GIS provide a uniform grid system to describe complex topography. As the raster grid can be used as the finite difference mesh, the continuity and momentum equations are solved numerically using the finite difference method. The numerical model is applied to simulate the rainfall-induced debris flow occurred in 20 July 2003, in Minamata City of southern Kyushu, Japan. The simulation reproduces the propagation and deposition and the results are in good agreement with the field investigation. The synthesis of numerical method and GIS makes possible the solution of debris flow over a realistic terrain, and can be used to estimate the flow range, and to define potentially hazardous areas for homes and road section.

  15. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    Changyuan Zhai

    2015-10-01

    Full Text Available Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.

  16. Two-dimensional automatic measurement for nozzle flow distribution using improved ultrasonic sensor.

    Science.gov (United States)

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-10-16

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.

  17. Experimental Observation of Exact Coherent Structures in a Weakly Turbulent Quasi-Two-Dimensional Flow

    Science.gov (United States)

    Suri, Balachandra; Tithof, Jeffrey; Pallantla, Ravi Kumar; Grigoriev, Roman; Schatz, Michael

    2015-11-01

    The dynamical systems approach to fluid turbulence relies on understanding the role of unstable, non-chaotic solutions - such as equilibria, traveling waves, and periodic orbits - of the Navier-Stokes equations. These solutions, called Exact Coherent Structures, exist in the same parameter regime as turbulence, but being unstable, are observed in experiments only as short transients. In this talk, we present experimental evidence for the existence and dynamical relevance of unstable equilibria in a weakly turbulent quasi-two-dimensional (Q2D) Kolmogorov flow. In the experiment, this Q2D flow is generated in an electromagnetically driven shallow layer of electrolyte. The numerical simulations, however, use a strictly 2D model which incorporates the effects of the finite thickness of the fluid layer in the experiment. During its evolution, there are instances when the dynamics of a weakly turbulent flow slow down, rather dramatically. Using experimental flow fields from such instances, and by means of a Newton-Solver, we numerically compute several unstable equilibria. Additionally, using numerical simulations, we show that the dynamics of a turbulent flow in the neighbourhood of an equilibrium are accurately described by the unstable manifold of the equilibrium. This work is supported in part by the National Science Foundation under grants CBET-0900018, and CMMI-1234436.

  18. Coherent Structures in Turbulent Flow over Two-Dimensional River Dunes

    CERN Document Server

    Omidyeganeh, Mohammad

    2011-01-01

    We performed large-eddy simulations of the flow over a typical two-dimensional dune geometry at laboratory scale (the Reynolds number based on the average channel height and mean velocity is 18,900) using the Lagrangian dynamic eddy-viscosity subgrid-scale model. The flow separates at the dune crest and reattaches downstream on the bed (at x=5.7h). A favorable pressure gradient accelerates the flow over the stoss-side (the upward-sloping region for x > 8h) and an unfavorable gradient for x < 8h decelerates the flow over the lee-side of the dune. Due to the separation of the flow, a shear layer is generated after the crest that expands in the wake region towards the next dune. The outer-layer turbulence structures are visualized through isosurfaces of pressure fluctuations colored by distance to the surface. Spanwise vortices are generated in the shear layer separating from the crest due to the Kelvin-Helmholtz instability. They are convected downstream and either interact with the wall or rise to the surfa...

  19. Determination of toxaphene enantiomers by comprehensive two-dimensional gas chromatography with electron-capture detection.

    Science.gov (United States)

    Bordajandi, Luisa R; Ramos, Lourdes; González, María José

    2006-09-01

    Comprehensive two-dimensional gas chromatography with micro electron-capture detection (GC x GC-microECD) has been evaluated for the enantioseparation of five chiral toxaphenes typically found in real-life samples (Parlar 26, 32, 40, 44 and 50). From the two enantioselective beta-cyclodextrin-based columns evaluated as first dimension column, BGB-176SE and BGB-172, the latter provided the best results and was further combined with three non-enantioselective columns in the second dimension: HT-8, BPX-50 and Supelcowax-10. The combination BGB-172 x BPX-50 was finally selected because it provided a complete separation among all enantiomers. A satisfactory repeatability and reproducibility of the retention times in both the first and the second dimension were observed for all target compounds (RSDs below 0.8%, n = 4). Linear responses in the tested range of 10-200 pg/microl and limits of detection in the range of 2-6 pg/microl were obtained. The repeatability and reproducibility at a concentration of 100 pg/microl, evaluated as the RSDs calculated for the enantiomeric fraction (EF), was better than 11% (n = 4) in all instances. The feasibility of the method developed for real-life analyses was illustrated by the determination of the enantiomeric ratios and concentration levels of the test compounds in four commercial fish oil samples. These results were compared to those obtained by heart-cut multidimensional gas chromatography using the same enantioselective column.

  20. Thermalization of a two-dimensional photonic gas in a `white wall' photon box

    Science.gov (United States)

    Klaers, Jan; Vewinger, Frank; Weitz, Martin

    2010-07-01

    Bose-Einstein condensation, the macroscopic accumulation of bosonic particles in the energetic ground state below a critical temperature, has been demonstrated in several physical systems. The perhaps best known example of a bosonic gas, blackbody radiation, however exhibits no Bose-Einstein condensation at low temperatures. Instead of collectively occupying the lowest energy mode, the photons disappear in the cavity walls when the temperature is lowered-corresponding to a vanishing chemical potential. Here we report on evidence for a thermalized two-dimensional photon gas with a freely adjustable chemical potential. Our experiment is based on a dye-filled optical microresonator, acting as a `white wall' box for photons. Thermalization is achieved in a photon-number-conserving way by photon scattering off the dye molecules, and the cavity mirrors provide both an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. As a striking example of the unusual system properties, we demonstrate a yet unobserved light concentration effect into the centre of the confining potential, an effect with prospects for increasing the efficiency of diffuse solar light collection.

  1. A laterally averaged two-dimensional simulation of unsteady supersaturated total dissolved gas in deep reservoir

    Institute of Scientific and Technical Information of China (English)

    FENG Jing-jie; LI Ran; YANG Hui-xia; LI Jia

    2013-01-01

    Elevated levels of the Total Dissolved Gas (TDG) may be reached downstream of dams,leading to increased incidences of gas bubble diseases in fish.The supersaturated TDG dissipates and transports more slowly in reservoirs than in natural rivers because of the greater depth and the lower turbulence,which endangers the fish more seriously.With consideration of the topographical characteristics of a deep reservoir,a laterally averaged two-dimensional unsteady TDG model for deep reservoir is proposed.The dissipation process of the TDG inside the waterbody and the mass transfer through the free surface are separately modeled with different functions in the model.Hydrodynamics equations are solved coupling with those of water temperature and density.The TDG concentration is calculated based on the density current field.A good agreement is found in the simulation of the Dachaoshan Reservoir between the simulation results and the field data of the hydrodynamics parameters and the TDG distribution in the vertical direction and their unsteady evolution with time.The hydrodynamics parameters,the temperature and the TDG concentration are analyzed based on the simulation results.This study demonstrates that the model can be used to predict the evolutions of hydrodynamics parameters,the temperature and the TDG distribution in a deep reservoir with unsteady inflow and outflow.The results can be used in the study of the mitigation measures of the supersaturated TDG.

  2. Density of states in a two-dimensional electron gas: Impurity bands and band tails

    Science.gov (United States)

    Gold, A.; Serre, J.; Ghazali, A.

    1988-03-01

    We calculate the density of states of a two-dimensional electron gas in the presence of charged impurities within Klauder's best multiple-scattering approach. The silicon metal-oxide-semiconductor (MOS) system with impurities at the interface is studied in detail. The finite extension of the electron wave function into the bulk is included as well as various dependences of the density of states on the electron, the depletion, and the impurity densities. The transition from an impurity band at low impurity concentration to a band tail at high impurity concentration is found to take place at a certain impurity concentration. If the screening parameter of the electron gas is decreased, the impurity band shifts to lower energy. For low impurity density we find excited impurity bands. Our theory at least qualitatively explains conductivity and infrared-absorption experiments on impurity bands in sodium-doped MOS systems and deep band tails in the gap observed for high doping levels in these systems.

  3. Flow of a two-dimensional aqueous foam in two parallel channels

    Science.gov (United States)

    Jones, S.; Cantat, I.; Dollet, B.; Meheust, Y.

    2012-04-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species that are initially present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have pecular flow properties that might be used in order to reach regions of the medium that are normally the least permeable. We study here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we study the behaviour of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. The corresponding pressure drop along each channel is calculated based on theoretical arguments involving both (i) a dynamic pressure drop, which is controlled by bubble-wall friction, and (ii) possibly a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. The flow behaviour of the foam happens to not uniquely be determined by the channel width, as would be the case for a Newtonian fluid, but also to be highly dependent on the foam structure within the narrowest of the two channel, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected. We try to define a corresponding medium permeability and compare it to the permeability expected for the flow of a standard newtonian fluid in the same geometry.

  4. Numerical Investigation on Two-dimensional Boundary Layer Flow with Transition

    Institute of Scientific and Technical Information of China (English)

    Yong Zhao; Tianlin Wang; Zhi Zong

    2014-01-01

    As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows’ simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition’s behavior.

  5. A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows

    CERN Document Server

    Mininni, P D; Pouquet, A G

    2004-01-01

    We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...

  6. Experimental Analysis of Two-Dimensional Pedestrian Flow in front of the Bottleneck

    CERN Document Server

    cek, Marek Buká\\v; Krbálek, Milan

    2014-01-01

    This contribution presents experimental study of two-dimensional pedestrian flow with the aim to capture the pedestrian behaviour within the cluster formed in front of the bottleneck. Two experiments of passing through a room with one entrance and one exit were arranged according to phase transition study in Ezaki et al. (2012), the inflow rate was regulated to obtain different walking modes. By means of automatic image processing, pedestrians' paths are extracted from camera records to get actual velocity and local density. Macroscopic information is extracted by means of virtual detector and leaving times of pedestrians. The pedestrian's behaviour is evaluated by means of density and velocity. Different approaches of measurement are compared using several fundamental diagrams. Two phases of crowd behaviour have been recognized and the phase transition was described.

  7. Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field.

    Science.gov (United States)

    Alexakis, Alexandros

    2011-11-01

    The magnetohydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of nine runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two-dimensional (2D) (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three-dimensional (3D) MHD fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependences are demonstrated by the varying parameters of the simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes k(//)=0.

  8. Two-Dimensional River Flow Patterns Observed with a Pair of UHF Radar System

    Directory of Open Access Journals (Sweden)

    Yidong Hou

    2017-01-01

    Full Text Available A pair of ultrahigh-frequency (UHF radars system for measuring the two-dimensional river flow patterns is presented. The system consists of two all-digital UHF radars with exactly the same hardware structure, operating separately at 329–339 MHz and 341–351 MHz. The adoption of direct radio frequency (RF sampling technique and digital pulse compression simplifies the structure of radar system and eliminates the distortion introduced by the analog mixer, which improves the SNR and dynamic range of the radar. The field experiment was conducted at Hanjiang River, Hubei province, China. Over a period of several weeks, the radar-derived surface velocity has been very highly correlated with the measurements of EKZ-I, with a correlation coefficient of 0.958 and a mean square error of 0.084 m/s.

  9. Simulations of Viscous Accretion Flow around Black Holes in Two-Dimensional Cylindrical Geometry

    CERN Document Server

    Lee, Seong-Jae; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-01-01

    We simulate shock-free and shocked viscous accretion flow onto a black hole in a two dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian Total Variation Diminishing (LTVD) and remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. Inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any QPO-like activity developed. The steady state shocked solution in the inviscid, as well as, in the viscous regime, matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. Such oscillation of the inner part of disk is interpreted as the source of QPO in hard X-rays observed in micro-qua...

  10. Turbulence models and Reynolds analogy for two-dimensional supersonic compression ramp flow

    Science.gov (United States)

    Wang, Chi R.; Bidek, Maleina C.

    1994-01-01

    Results of the application of turbulence models and the Reynolds analogy to the Navier-Stokes computations of Mach 2.9 two-dimensional compression ramp flows are presented. The Baldwin-Lomax eddy viscosity model and the kappa-epsilon turbulence transport equations for the turbulent momentum flux modeling in the Navier-Stokes equations are studied. The Reynolds analogy for the turbulent heat flux modeling in the energy equation was also studied. The Navier-Stokes equations and the energy equation were numerically solved for the flow properties. The Reynolds shear stress, the skin friction factor, and the surface heat transfer rate were calculated and compared with their measurements. It was concluded that with a hybrid kappa-epsilon turbulence model for turbulence modeling, the present computations predicted the skin friction factors of the 8 deg and 16 deg compression ramp flows and with the turbulent Prandtl number Pr(sub t) = 0.93 and the ratio of the turbulent thermal and momentum transport coefficients mu(sub q)/mu(sub t) = 2/Prt, the present computations also predicted the surface heat transfer rates beneath the boundary layer flow of the 16 compression ramp.

  11. Wake Effects on Drift in Two-Dimensional Inviscid Incompressible Flows

    CERN Document Server

    Melkoumian, Sergei

    2014-01-01

    This investigation analyzes the effect of vortex wakes on the Lagrangian displacement of particles induced by the passage of an obstacle in a two-dimensional incompressible and inviscid fluid. In addition to the trajectories of individual particles, we also study their drift and the corresponding total drift areas in the F\\"oppl and Kirchhoff potential flow models. Our findings, which are obtained numerically and in some regimes are also supported by asymptotic analysis, are compared to the wakeless potential flow which serves as a reference. We show that in the presence of the F\\"oppl vortex wake some of the particles follow more complicated trajectories featuring a second loop. The appearance of an additional stagnation point in the F\\"oppl flow is identified as a source of this effect. It is also demonstrated that, while the total drift area increases with the size of the wake for large vortex strengths, it is actually decreased for small circulation values. On the other hand, the Kirchhoff flow model is s...

  12. The onset of thermal instability of a two-dimensional hydromagnetic stagnation point flow

    Energy Technology Data Exchange (ETDEWEB)

    Amaouche, Mustapha; Bouda, Faical Nait [Laboratoire de physique theorique, Universite de Bejaia, Route de Targua Ouzemour Bejaia (Algeria); Sadat, Hamou [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)

    2005-10-01

    The aim of the present paper is to examine the effects of a constant magnetic field on the thermal instability of a two-dimensional stagnation point flow. First, it is shown that a basic flow, described by an exact solution of the full Navier-Stokes equations exists under some conditions relating the orientation of the magnetic field in the plane of motion to the obliqueness of free stream. The stability of the basic flow is then investigated in the usual fashion by making use of the normal mode decomposition. The resulting eigenvalue problem is solved numerically by means of a pseudo spectral collocation method based upon Laguerre's functions. The use of this procedure is warranted by the exponential damping of disturbances far from the boundary layer and the appropriate distribution of the roots of Laguerre's polynomials to treat boundary layer problems. It is found through the calculation of neutral stability curves that magnetic field acts to increase the stability of the basic flow. (author)

  13. Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter

    Science.gov (United States)

    Jiménez-Lozano, Joel; Sen, Mihir; Dunn, Patrick F.

    2009-04-01

    Particle motion in an unsteady peristaltic fluid flow is analyzed. The fluid is incompressible and Newtonian in a two-dimensional planar geometry. A perturbation method based on a small ratio of wave height to wavelength is used to obtain a closed-form solution for the fluid velocity field. This analytical solution is used in conjunction with an equation of motion for a small rigid sphere in nonuniform flow taking Stokes drag, virtual mass, Faxén, Basset, and gravity forces into account. Fluid streamlines and velocity profiles are calculated. Theoretical values for pumping rates are compared with available experimental data. An application to ureteral peristaltic flow is considered since fluid flow in the ureter is sometimes accompanied by particles such as stones or bacteriuria. Particle trajectories for parameters that correspond to calcium oxalates for calculosis and Escherichia coli type for bacteria are analyzed. The findings show that retrograde or reflux motion of the particles is possible and bacterial transport can occur in the upper urinary tract when there is a partial occlusion of the wave. Dilute particle mixing is also investigated, and it is found that some of the particles participate in the formation of a recirculating bolus, and some of them are delayed in transit and eventually reach the walls. This can explain the failure of clearing residuals from the upper urinary tract calculi after successful extracorporeal shock wave lithotripsy. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.

  14. Numerical simulation of two-dimensional fluid flow with strong shocks

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, P.; Colella, P.

    1984-04-01

    Results of an extensive comparison of numerical methods for simulating hydrodynamics are presented and discussed. This study focuses on the simulation of fluid flows with strong shocks in two dimensions. By ''strong shocks,'' we here refer to shocks in which there is substantial entropy production. For the case of shocks in air, we therefore refer to Mach numbers of three and greater. For flows containing such strong shocks we find that a careful treatment of flow discontinuities is of greatest importance in obtaining accurate numerical results. Three aproaches to treating discontinuities in the flow are discussed-artificial viscosity, blending of low- and high-order-accurate fluxes, and the use of nonlinear solutions to Riemann's problem. The advantages and disadvantages of each approach are discussed and illustrated by computed results for three test problems. In this comparison we have focused our attention entirely upon the performance of schemes for differencing the hydrodynamic equations. We have regarded the nature of the grid upon which such differencing schemes are applied as an independent issue outside the scope of this work. Therefore we have restricted our study to the case of uniform, square computational zones in Cartesian coordinates. For simplicity we have further restricted our attention to two-dimensional difference schemes which are built out of symmetrized products of one-dimensional difference operators.

  15. Pressure Tuning of First Dimension Columns in Comprehensive Two-Dimensional Gas Chromatography.

    Science.gov (United States)

    Sharif, Khan M; Kulsing, Chadin; Marriott, Philip J

    2016-09-20

    The experimental approach and mechanism of pressure tuning (PT) are introduced for the first stage of a comprehensive two-dimensional gas chromatography (GC × GC) separation. The PT-GC × GC system incorporates a first dimension ((1)D) coupled column ensemble comprising a pair of (1)D columns ((1)D1 and (1)D2) connected via a microfluidic splitter device, allowing variable decompression of carrier gas across each (1)D column, and a conventional (2)D narrow bore column. By variation of junction pressure between the (1)D1 and (1)D2 columns, tunable total (1)D retentions of analytes are readily derived. Separations of a standard mixture comprising a number of different chemical classes (including alkanes, monoaromatics, alcohols, aldehydes, ketones, and esters) and Australian tea tree oil (TTO) were studied as practical examples of the PT-GC × GC system application. This illustrated the change of analyte retention time with experimental conditions depending on void time and retention on the different columns. In addition to void time change, variation of carrier gas relative decompression in the (1)D ensemble leads to tunable contribution of the (1)D1/(1)D2 columns that changes apparent polarity and selectivity of the ensemble. The resulting changes in (1)D elution order further altered elution temperature and thus retention of each analyte on the (2)D column in temperature-programmed GC × GC. 2D orthogonality measurements were then conducted to evaluate overall separation performance under application of different (1)D junction pressure. As a result, distribution and selectivity of particular target compounds, monoterpenes, sesquiterpenes, and oxygenated terpenes in 2D space, and thus orthogonality, could be adequately tuned. This indicates the potential of PT-GC × GC to be applicable for practical sample separation and provides a general approach to tune selectivity of target compounds.

  16. Dual-RiverSonde measurements of two-dimensional river flow patterns

    Science.gov (United States)

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Stumpner, P.; Burau, J.R.

    2008-01-01

    Two-dimensional river flow patterns have been measured using a pair of RiverSondes in two experiments in the Sacramento-San Joaquin River Delta system of central California during April and October 2007. An experiment was conducted at Walnut Grove, California in order to explore the use of dual RiverSondes to measure flow patterns at a location which is important in the study of juvenile fish migration. The data available during the first experiment were limited by low wind, so a second experiment was conducted at Threemile Slough where wind conditions and surface turbulence historically have resulted in abundant data. Both experiments included ADCP near-surface velocity measurements from either manned or unmanned boats. Both experiments showed good comparisons between the RiverSonde and ADCP measurements. The flow conditions at both locations are dominated by tidal effects, with partial flow reversal at Walnut Grove and complete flow reversal at Threemile Slough. Both systems showed complex flow patterns during the flow reversals. Quantitative comparisons between the RiverSondes and an ADCP on a manned boat at Walnut Grove showed mean differences of 4.5 cm/s in the u (eastward) and 7.6 cm/s in the v (northward) components, and RMS differences of 14.7 cm/s in the u component and 21.0 cm/s in the v component. Quantitative comparisons between the RiverSondes and ADCPs on autonomous survey vessels at Threemile Slough showed mean differences of 0.007 cm/s in the u component and 0.5 cm/s in the v component, and RMS differences of 7.9 cm/s in the u component and 13.5 cm/s in the v component after obvious outliers were removed. ?? 2008 IEEE.

  17. The flow of a foam in a two-dimensional porous medium

    Science.gov (United States)

    Géraud, Baudouin; Jones, Siân. A.; Cantat, Isabelle; Dollet, Benjamin; Méheust, Yves

    2016-02-01

    Foams have been used for decades as displacing fluids for enhanced oil recovery and aquifer remediation, and more recently, for remediation of the vadose zone, in which case foams carry chemical amendments. Foams are better injection fluids than aqueous solutions due to their low sensitivity to gravity and because they are less sensitive to permeability heterogeneities, thus allowing a more uniform sweep. The latter aspect results from their peculiar rheology, whose understanding motivates the present study. We investigate foam flow through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. The local foam structure is recorded in situ, which provides a measure of the spatial distribution of bubble velocities and sizes at regular time intervals. The flow exhibits a rich phenomenology including preferential flow paths and local flow nonstationarity (intermittency) despite the imposed permanent global flow rate. Moreover, the medium selects the bubble size distribution through lamella division-triggered bubble fragmentation. Varying the mean bubble size of the injected foam, its water content, and mean velocity, we characterize those processes systematically. In particular, we measure the spatial evolution of the distribution of bubble areas, and infer the efficiency of bubble fragmentation depending on the various control parameters. We furthermore show that the distributions of bubble sizes and velocities are correlated. This study sheds new light on the local rheology of foams in porous media and opens the way toward quantitative characterization of the relationship between medium geometry and foam flow properties. It also suggests that large-scale models of foam flows in the subsurface should account for the correlation between bubble sizes and velocities.

  18. One- and two-dimensional modelling of overland flow in semiarid shrubland, Jornada basin, New Mexico

    Science.gov (United States)

    Howes, David A.; Abrahams, Athol D.; Pitman, E. Bruce

    2006-03-01

    Two distributed parameter models, a one-dimensional (1D) model and a two-dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event-based and represent each watershed by an array of 1-m2 cells, in which the cell size is approximately equal to the average area of the shrubs.Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite-difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second-order predictor-corrector finite-difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions.The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large-scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration.

  19. VNAP2: a computer program for computation of two-dimensional, time-dependent, compressible, turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Cline, M.C.

    1981-08-01

    VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  20. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Yang, Luyi

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This thesis presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed

  1. Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows.

    Science.gov (United States)

    Yatou, Hiroki

    2010-09-01

    We numerically find three types of steady solutions of viscoelastic flows and flow pattern transitions between them in a two-dimensional wavy-walled channel for low to moderate Weissenberg (Wi) and Reynolds (Re) numbers using a spectral element method. The solutions are called "convective," "transition," and "elastic" in ascending order of Wi. In the convective region in the Wi-Re parameter space, convective effect and pressure gradient balance on average. As Wi increases, elastic effect becomes comparable, and the first transition sets in. Through the transition, a separation vortex disappears, and a jet flow induced close to the wall by the viscoelasticity moves into the bulk; the viscous drag significantly drops, and the elastic wall friction rises sharply. This transition is caused by an elastic force in the streamwise direction due to the competition of the convective and elastic effects. In the transition region, the convective and elastic effects balance. When the elastic effect becomes greater than the convective effect, the second transition occurs but it is relatively moderate. The second transition seems to be governed by the so-called Weissenberg effect. These transitions are not sensitive to driving forces. By a scaling analysis, it is shown that the stress component is proportional to the Reynolds number on the boundary of the first transition in the Wi-Re space. This scaling coincides well with the numerical result.

  2. Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models

    Science.gov (United States)

    Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle

    2016-04-05

    Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.

  3. Unsteady Free-surface Waves Due to a Submerged Body in Two-dimensional Oseen Flows

    Institute of Scientific and Technical Information of China (English)

    LUDong-qiang; AllenT.CHWANG

    2004-01-01

    The two-dimensional unsteady free-surface waves due to a submerged body moving in an incompressible viscous fluid of infinite depth is considered.The disturbed flow is governed by the unsteadyOseen equations with the kinematic and dynamic boundary conditions linearized for the free-surface waves.Accordingly, the body is mathematically simulated by an Oseenlet with a periodically oscillating strength.By means of Fourier transforms,the exact solution for the free-surface waves is expressed by an integral with a complex dispersion function, which explicitly shows that the wave dynamics is characterized by a Reynolds number and a Strouhal number.By applying Lighthill's theorem, asymptotic representations are derived for the far-field waves with a sub-critical and a super-critical Strouhal number. It is found that the generated waves due to the oscillating Oseenlet consist of the steady-state and transient responses. For the viscous flow with a sub-critical Strouhal number, there exist four waves: three propagate downstream while one propagates upstream.However, for the viscous flow with a super-critical Strouhal number, there exist two waves only,which propagate downstream.

  4. Two-dimensional relativistic space charge limited current flow in the drift space

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-04-15

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  5. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas

    CERN Document Server

    Karl, Markus

    2016-01-01

    Universal scaling behavior in the relaxation dynamics of an isolated two-dimensional Bose gas is studied by means of semi-classical stochastic simulations of the Gross-Pitaevskii model. The system is quenched far out of equilibrium by imprinting vortex defects into an otherwise phase-coherent condensate. A strongly anomalous non-thermal fixed point is identified, associated with a slowed decay of the defects in the case that the dissipative coupling to the thermal background noise is suppressed. At this fixed point, a large anomalous exponent $\\eta \\simeq -3$ and, related to this, a large dynamical exponent $z \\simeq 5$ are identified. The corresponding power-law decay is found to be consistent with three-vortex-collision induced loss. The article discusses these aspects of non-thermal fixed points in the context of phase-ordering kinetics and coarsening dynamics, thus relating phenomenological and analytical approaches to classifying far-from-equilibrium scaling dynamics with each other. In particular, a clo...

  6. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas

    Science.gov (United States)

    Karl, Markus; Gasenzer, Thomas

    2017-09-01

    Universal scaling behavior in the relaxation dynamics of an isolated two-dimensional Bose gas is studied by means of semi-classical stochastic simulations of the Gross–Pitaevskii model. The system is quenched far out of equilibrium by imprinting vortex defects into an otherwise phase-coherent condensate. A strongly anomalous non-thermal fixed point is identified, associated with a slowed decay of the defects in the case that the dissipative coupling to the thermal background noise is suppressed. At this fixed point, a large anomalous exponent η ≃ -3 and, related to this, a large dynamical exponent z≃ 5 are identified. The corresponding power-law decay is found to be consistent with three-vortex-collision induced loss. The article discusses these aspects of non-thermal fixed points in the context of phase-ordering kinetics and coarsening dynamics, thus relating phenomenological and analytical approaches to classifying far-from-equilibrium scaling dynamics with each other. In particular, a close connection between the anomalous scaling exponent η, introduced in a quantum-field theoretic approach, and conservation-law induced scaling in classical phase-ordering kinetics is revealed. Moreover, the relation to superfluid turbulence as well as to driven stationary systems is discussed.

  7. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  8. Forensic profiling of sassafras oils based on comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Schäffer, M; Gröger, T; Pütz, M; Zimmermann, R

    2013-06-10

    Safrole, the main compound in the essential oil of several plants of the Laurel family (Lauraceae), and its secondary product piperonylmethylketone are the predominantly used precursors for the illicit synthesis of 3,4-methylenedioxymethamphetamine (MDMA) which is, in turn, the most common active ingredient in Ecstasy tablets. Analytical methods with adequate capacity to identify links and origin of precursors, such as safrole, provide valuable information for drug-related police intelligence. Authentic sassafras oil samples from police seizures were subjected to comparative analysis based on their chemical profiles obtained by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). The enhanced separation power and increased sensitivity of GC × GC allowed for the detection of minor compounds present in the essential oils which were of particular interest in case of very pure samples whose impurity profiles were not very pronounced. Discrimination of such samples was still possible even in the absence of characteristic main compounds.

  9. Comprehensive two-dimensional gas chromatographic separations with a temperature programmed microfabricated thermal modulator.

    Science.gov (United States)

    Collin, William R; Nuñovero, Nicolas; Paul, Dibyadeep; Kurabayashi, Katsuo; Zellers, Edward T

    2016-04-29

    Comprehensive two-dimensional gas chromatography (GC×GC) with a temperature-programmed microfabricated thermal modulator (μTM) is demonstrated. The 0.78 cm(2), 2-stage μTM chip with integrated heaters and a PDMS coated microchannel was placed in thermal contact with a solid-state thermoelectric cooler and mounted on top of a bench scale GC. It was fluidically coupled through heated interconnects to an upstream first-dimension ((1)D) PDMS-coated capillary column and a downstream uncoated capillary or second-dimension ((2)D) PEG-coated capillary. A mixture of n-alkanes C6-C10 was separated isothermally and the full-width-at-half-maximum (fwhm) values of the modulated peaks were assessed as a function of the computer-controlled minimum and maximum stage temperatures of μTM, Tmin and Tmax, respectively. With Tmin and Tmax fixed at -25 and 100°C, respectively, modulated peaks of C6 and C7 had fwhm valuesthermal modulator. Replacing the PDMS phase in the μTM with a trigonal-tricationic room temperature ionic liquid eliminated the bleed observed with the PDMS, but also reduced the capacity for several test compounds. Regardless, the demonstrated capability to independently temperature program this low resource μTM enhances its versatility and its promise for use in bench-scale GC×GC systems.

  10. Superfluidity and relaxation dynamics of a laser-stirred two-dimensional Bose gas

    Science.gov (United States)

    Singh, Vijay Pal; Weitenberg, Christof; Dalibard, Jean; Mathey, Ludwig

    2017-04-01

    We investigate the superfluid behavior of a two-dimensional (2D) Bose gas of 87Rb atoms using classical field dynamics. In the experiment by R. Desbuquois et al. [Nat. Phys. 8, 645 (2012), 10.1038/nphys2378], a 2D quasicondensate in a trap is stirred with a blue-detuned laser beam along a circular path around the trap center. Here, we study this experiment from a theoretical perspective. The heating induced by stirring increases rapidly above a velocity vc, which we define as the critical velocity. We identify the superfluid, the crossover, and the thermal regime by a finite, a sharply decreasing, and a vanishing critical velocity, respectively. We demonstrate that the onset of heating occurs due to the creation of vortex-antivortex pairs. A direct comparison of our numerical results to the experimental ones shows a good agreement, if a systematic shift of the critical phase-space density is included. We relate this shift to the absence of thermal equilibrium between the condensate and the thermal wings, which were used in the experiment to extract the temperature. We expand on this observation by studying the full relaxation dynamics between the condensate and the thermal cloud.

  11. Analysis of siloxanes in hydrocarbon mixtures using comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Ghosh, Abhijit; Seeley, Stacy K; Nartker, Steven R; Seeley, John V

    2014-09-19

    A comprehensive two-dimensional gas chromatography (GC×GC) method for separating siloxanes from hydrocarbons has been developed using a systematic process. First, the retention indices of a set of siloxanes and a set of hydrocarbons were determined on 6 different stationary phases. The retention indices were then used to model GC×GC separation on 15 different stationary phase pairs. The SPB-Octyl×DB-1 pair was predicted to provide the best separation of the siloxanes from the hydrocarbons. The efficacy of this stationary phase pair was experimentally tested by performing a GC×GC analysis of gasoline spiked with siloxanes and by analyzing biogas obtained from a local wastewater treatment facility. The model predictions agreed well with the experimental results. The SPB-Octyl×DB-1 stationary phase pair constrained the hydrocarbons to a narrow range of secondary retention times and fully isolated the siloxanes from the hydrocarbon band. The resulting GC×GC method allows siloxanes to be resolved from complex mixtures of hydrocarbons without requiring the use of a selective detector.

  12. Electrical transport of an AlGaN/GaN two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Saxler, A.; Debray, P.; Perrin, R. [and others

    2000-07-01

    An Al{sub x}Ga{sub 1{minus}x}N/GaN two-dimensional electron gas structure with x = 0.13 deposited by molecular beam epitaxy on a GaN layer grown by organometallic vapor phase epitaxy on a sapphire substrate was characterized. Hall effect measurements gave a sheet electron concentration of 5.1x10{sup 12} cm{sup {minus}2} and a mobility of 1.9 x 10{sup 4} cm{sup 2}/Vs at 10 K. Mobility spectrum analysis showed single-carrier transport and negligible parallel conduction at low temperatures. The sheet carrier concentrations determined from Shubnikov-de Haas magnetoresistance oscillations were in good agreement with the Hall data. The electron effective mass was determined to be 0.21 {+-} 0.006 m{sub 0} based on the temperature dependence of the amplitude of Shubnikov-de Haas oscillations. The quantum lifetime was about one-fifth of the transport lifetime of 2.3 x 10{sup {minus}12} s.

  13. Analysis of oxidised heavy paraffininc products by high temperature comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Potgieter, H; Bekker, R; Beigley, J; Rohwer, E

    2017-08-04

    Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Noble gas adsorption in two-dimensional zeolites: a combined experimental and density functional theory study

    Science.gov (United States)

    Wang, Mengen; Zhong, Jianqiang; Boscoboinik, Jorge Anibal; Lu, Deyu

    Zeolites are important industrial catalysts with porous three-dimensional structures. The catalytically active sites are located inside the pores, thus rendering them inaccessible for surface science measurements. We synthesized a two-dimensional (2D) zeolite model system, consisting of an (alumino)silicate bilayer weakly bound to a Ru (0001) surface. The 2D zeolite is suitable for surface science studies; it allows a detailed characterization of the atomic structure of the active site and interrogation of the model system during the catalytic reaction. As an initial step, we use Ar adsorption to obtain a better understanding of the atomic structure of the 2D zeolite. In addition, atomic level studies of rare gas adsorption and separation by zeolite are important for its potential application in nuclear waste sequestration. Experimental studies found that Ar atoms can be trapped inside the 2D-zeolite, raising an interesting question on whether Ar atoms are trapped inside the hexagonal prism nano-cages or at the interface between the (alumino)silicate bilayer and Ru(0001), or both. DFT calculations using van der Waals density functionals were carried out to determine the preferred Ar adsorption sites and the corresponding adsorption energies. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  15. Comprehensive two-dimensional gas chromatography for determination of the terpenes profile of blue honeysuckle berries.

    Science.gov (United States)

    Kupska, Magdalena; Chmiel, Tomasz; Jędrkiewicz, Renata; Wardencki, Waldemar; Namieśnik, Jacek

    2014-01-01

    Terpenes are the main group of secondary metabolites, which play essential role in human. The establishment of the terpenes profile of berries of different blue honeysuckle cultivars was achieved by headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GC×GC-TOFMS). The berries were found to contain 44 terpenes identified by GC×GC-TOFMS. From these, 10 were previously reported in blueberries. According to their chemical structure, the compounds were organised in different groups: monoterpene hydrocarbons and monoterpene oxygen-containing compounds (oxides, alcohols, aldehydes, and ketones). Positive identification of some of the compounds was performed using authentic standards, while tentative identification of the compounds was based on deconvoluted mass spectra and comparison of linear retention indices (LRI) with literature values. The major components of volatile fraction were monoterpenes, such as eucalyptol, linalool and p-cymene. Furthermore, quantitative analysis showed that eucalyptol was the most abundant bioactive terpene in analysed berries (12.4-418.2 μg/L).

  16. Magnetic oscillations in two-dimensional Dirac systems and Shear viscosity and spin diffusion in a two-dimensional Fermi gas

    NARCIS (Netherlands)

    Küppersbusch, C.S.

    2015-01-01

    In the first part of the thesis I derive a full quantitative formula which describes the amplitude and frequency of magnetic oscillations in two-dimensional Dirac systems. The investigations are on the basis of graphene, but they generally also hold for other two-dimensional Dirac systems. Starting

  17. Visualization of three-dimensional incompressible flows by quasi-two-dimensional divergence-free projections in arbitrary flow regions

    Science.gov (United States)

    Gelfgat, Alexander Yu.

    2016-08-01

    A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field onto three coordinate planes is revisited. An alternative and more general way to compute the projections is proposed. The approach is based on the Chorin projection combined with a SIMPLE-like iteration. Compared to the previous methodology based on divergence-free Galerkin-Chebyshev bases, this technique, formulated in general curvilinear coordinates, is applicable to any flow region and allows for faster computations. To illustrate this visualization method, examples in Cartesian and spherical coordinates, as well as post-processing of experimental 3D-PTV data, are presented.

  18. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    Science.gov (United States)

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-07

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  19. Turbulent Friction in the Boundary Layer of a Flat Plate in a Two-Dimensional Compressible Flow at High Speeds

    Science.gov (United States)

    Frankl, F.; Voishel, V.

    1943-01-01

    In the present report an investigation is made on a flat plate in a two-dimensional compressible flow of the effect of compressibility and heating on the turbulent frictional drag coefficient in the boundary layer of an airfoil or wing radiator. The analysis is based on the Prandtl-Karman theory of the turbulent boundary later and the Stodola-Crocco, theorem on the linear relation between the total energy of the flow and its velocity. Formulas are obtained for the velocity distribution and the frictional drag law in a turbulent boundary later with the compressibility effect and heat transfer taken into account. It is found that with increase of compressibility and temperature at full retardation of the flow (the temperature when the velocity of the flow at a given point is reduced to zero in case of an adiabatic process in the gas) at a constant R (sub x), the frictional drag coefficient C (sub f) decreased, both of these factors acting in the same sense.

  20. A two-dimensional parabolic model for vertical annular two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.M.; Toledo, A. Alvarez; Paladino, E.E. [Graduate Program in Mechanical Engineering, Universidade Federal de Rio Grande do Norte, Natal, RN (Brazil)], e-mail: emilio@ct.ufrn.br

    2010-07-01

    This work presents a solution algorithm for predicting hydrodynamic parameters for developing and equilibrium, adiabatic, annular, vertical two-phase flow. It solves mass and momentum transport differential equations for both the core and the liquid film across their entire domains. Thus, the velocity and shear stress distributions from the tube center to the wall are obtained, together with the average film thickness and the pressure gradient, making no use of empirical closure relations nor assuming any known velocity profile to solve the triangular relationship in the liquid film. The model was developed using the Finite Volume Method and an iterative procedure is proposed to solve all flow variables for given phase superficial velocities. The procedure is validated against the analytical solution for laminar flow and experimental data for gas-liquid turbulent flow with entrainment. For the last case, an algebraic turbulence model is used for turbulent viscosity calculation for both, liquid film and gas core. (author)

  1. Two dimensional analysis of low pressure flows in the annulus region between two concentric cylinders.

    Science.gov (United States)

    Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil

    2016-01-01

    A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.

  2. Amino acid analysis by using comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Mayadunne, Renuka; Nguyen, Thuy-Tien; Marriott, Philip J

    2005-06-01

    The separation characteristics of alkylchloroformate-derivatised amino acids (AAs) by using comprehensive two-dimensional gas chromatography (GCxGC) is reported. The use of a low-polarity/polar column set did not provide as good a separation performance as that achieved with a polar/non-polar column set, where the latter appeared to provide less correlation over the separation space. The degree of component correlation in each column set was estimated by using the correlation coefficient (r(2); for (1)t(R) and (2)t(R) data) with the low-polarity/polar and polar/low-polarity sets returning correlation coefficients of 0.86, and 0.00 respectively, under the respective conditions employed for the experiments. The 1.5-m non-polar (2)D column (0.1-mm ID; 0.1-mum film thickness) gave peak halfwidths of the order of 50-80 ms. Linearity of detection was good, over a three order of magnitude concentration range, with typical lower detection limit of ca. 0.01 mg L(-1), compared with 0.5 mg L(-1) for normal GC operation with splitless injection. The method was demonstrated for analysis of AAs in a range of food and beverage products, including wine, beer and honey. The major AA in these samples was proline. The Heineken beer sample had a relatively more complex and more abundant AA content compared with the other beer sample. The wine and honey samples also gave a range of AA compounds. Repetition of the sample preparation/analysis procedure for the honey sample gave acceptable reproducibility for individual AAs.

  3. Allergic asthma exhaled breath metabolome: a challenge for comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Caldeira, M; Perestrelo, R; Barros, A S; Bilelo, M J; Morête, A; Câmara, J S; Rocha, S M

    2012-09-07

    Allergic asthma represents an important public health issue, most common in the paediatric population, characterized by airway inflammation that may lead to changes in volatiles secreted via the lungs. Thus, exhaled breath has potential to be a matrix with relevant metabolomic information to characterize this disease. Progress in biochemistry, health sciences and related areas depends on instrumental advances, and a high throughput and sensitive equipment such as comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-ToFMS) was considered. GC×GC-ToFMS application in the analysis of the exhaled breath of 32 children with allergic asthma, from which 10 had also allergic rhinitis, and 27 control children allowed the identification of several hundreds of compounds belonging to different chemical families. Multivariate analysis, using Partial Least Squares-Discriminant Analysis in tandem with Monte Carlo Cross Validation was performed to assess the predictive power and to help the interpretation of recovered compounds possibly linked to oxidative stress, inflammation processes or other cellular processes that may characterize asthma. The results suggest that the model is robust, considering the high classification rate, sensitivity, and specificity. A pattern of six compounds belonging to the alkanes characterized the asthmatic population: nonane, 2,2,4,6,6-pentamethylheptane, decane, 3,6-dimethyldecane, dodecane, and tetradecane. To explore future clinical applications, and considering the future role of molecular-based methodologies, a compound set was established to rapid access of information from exhaled breath, reducing the time of data processing, and thus, becoming more expedite method for the clinical purposes.

  4. Thermodynamic-based retention time predictions of endogenous steroids in comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Silva, Aline C A; Ebrahimi-Najafadabi, Heshmatollah; McGinitie, Teague M; Casilli, Alessandro; Pereira, Henrique M G; Aquino Neto, Francisco R; Harynuk, James J

    2015-05-01

    This work evaluates the application of a thermodynamic model to comprehensive two-dimensional gas chromatography (GC × GC) coupled with time-of-flight mass spectrometry for anabolic agent investigation. Doping control deals with hundreds of drugs that are prohibited in sports. Drug discovery in biological matrices is a challenging task that requires powerful tools when one is faced with the rapidly changing designer drug landscape. In this work, a thermodynamic model developed for the prediction of both primary and secondary retention times in GC × GC has been applied to trimethylsilylated hydroxyl (O-TMS)- and methoxime-trimethylsilylated carbonyl (MO-TMS)-derivatized endogenous steroids. This model was previously demonstrated on a pneumatically modulated GC × GC system, and is applied for the first time to a thermally modulated GC × GC system. Preliminary one-dimensional experiments allowed the calculation of thermodynamic parameters (ΔH, ΔS, and ΔC p ) which were successfully applied for the prediction of the analytes' interactions with the stationary phases of both the first-dimension column and the second-dimension column. The model was able to predict both first-dimension and second-dimension retention times with high accuracy compared with the GC × GC experimental measurements. Maximum differences of -8.22 s in the first dimension and 0.4 s in the second dimension were encountered for the O-TMS derivatives of 11β-hydroxyandrosterone and 11-ketoetiocholanolone, respectively. For the MO-TMS derivatives, the largest discrepancies were from testosterone (9.65 ) for the first-dimension retention times and 11-keto-etiocholanolone (0.4 s) for the second-dimension retention times.

  5. Reentrant resistance and giant Andreev back scattering in a two-dimensional electron gas coupled to superconductors

    NARCIS (Netherlands)

    den Hartog, Sander; Wees, B.J. van; Nazarov, Yu.V.; Klapwijk, T.M.; Borghs, G.

    1998-01-01

    We first present the bias-voltage dependence of the superconducting phase-dependent reduction in the differential resistance of a disordered T-shaped two-dimensional electron gas (2DEG) coupled to two superconductors. This reduction exhibits a reentrant behavior, since it first increases upon loweri

  6. Attempt to unravel the composition of toxaphene by comprehensive two-dimensional gas chromatography with selective detection

    NARCIS (Netherlands)

    Korytar, P.; Stee, van L.L.P.; Leonards, P.E.G.; Boer, de J.; Brinkman, U.A.Th.

    2003-01-01

    Comprehensive two-dimensional gas chromatography (GCxGC) coupled with micro electron-capture and time-of-flight mass spectrometric (TOF-MS) detection has been used to analyse technical toxaphene. An HP-1xHT-8 column combination yielded highly structured chromatograms and revealed a complex mixture o

  7. Four-terminal magnetoresistance of a two-dimensional electron-gas constriction in the ballistic regime

    NARCIS (Netherlands)

    Houten, H. van; Beenakker, C.W.J.; Loosdrecht, P.H.M. van; Thornton, T.J.; Ahmed, H.; Pepper, M.; Foxon, C.T.; Harris, J.J.

    1988-01-01

    A novel negative magnetoresistance effect is found in four-terminal measurements of the voltage drop across a short constriction of variable width in a high-mobility two-dimensional electron gas. The effect is interpreted as the suppression by a magnetic field of the geometrical constriction resista

  8. Classification of highly similar crude oils using data sets from comprehensive two-dimensional gas chromatography and multivariate techniques

    NARCIS (Netherlands)

    Mispelaar, V.G. van; Smilde, A.K.; Noord, O.E. de; Blomberg, J.; Schoenmakers, P.J.

    2005-01-01

    Comprehensive two-dimensional gas chromatography (GC × GC) has proven to be an extremely powerful separation technique for the analysis of complex volatile mixtures. This separation power can be used to discriminate between highly similar samples. In this article we will describe the use of GC × GC

  9. The Two-Dimensional Supersonic Flow and Mixing with a Perpendicular Injection in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam

    2003-01-01

    A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.

  10. Simulations of Viscous Accretion Flow around Black Holes in a Two-dimensional Cylindrical Geometry

    Science.gov (United States)

    Lee, Seong-Jae; Chattopadhyay, Indranil; Kumar, Rajiv; Hyung, Siek; Ryu, Dongsu

    2016-11-01

    We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.

  11. Integration of complementary circuits and two-dimensional electron gas in a Si/SiGe heterostructure

    Science.gov (United States)

    Lu, T. M.; Lee, C.-H.; Tsui, D. C.; Liu, C. W.

    2010-06-01

    We have realized complementary devices on an undoped Si/SiGe substrate where both two-dimensional electrons and holes can be induced capacitively. The design of the heterostructure and the fabrication process are reported. Magnetotransport measurements show that the induced two-dimensional electron gas exhibits the quantum Hall effect characteristics. A p-channel field-effect transistor is characterized and the operation of an inverter is demonstrated. The proof-of-principle experiment shows the feasibility of integrating complementary logic circuits with quantum devices.

  12. PHYSALIS: a new method for particle flow simulation. Part III: convergence analysis of two-dimensional flows

    Science.gov (United States)

    Huang, Huaxiong; Takagi, Shu

    2003-08-01

    In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local (near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to potential and Stokes flows. However, they are also relevant to Navier-Stokes flows, heat conduction in composite media, and other problems.

  13. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Luyi [Univ. of California, Berkeley, CA (United States)

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly

  14. Self Organized Criticality in a two dimensional Cellular Automaton model of a magnetic flux tube with background flow

    CERN Document Server

    Danila, Bogdan; Mocanu, Gabriela

    2015-01-01

    We investigate the transition to Self Organized Criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a Self Organized Critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one dimensional signatures in the magnetic two dimensional system, once the Self Organized Critical regime is established. The applications of the model for the study of Gamma Ray Bursts is briefly considered, and it is shown that some astrophysical paramet...

  15. Three-body recombination in a quasi-two-dimensional quantum gas

    Science.gov (United States)

    Huang, Bo; Zenesini, Alessandro; Grimm, Rudolf

    2016-05-01

    Quantum three-body recombination in three-dimensional systems is influenced by a series of weakly bound trimers known as Efimov states, which are induced by short-range interactions and exhibit a discrete scaling symmetry. On the other hand, two-dimensional systems with contact interactions are characterized by continuous scale invariance and support no Efimov physics. This raises questions about the behaviour of three-body recombination in the transition from three to two dimensions. We use ultracold caesium atoms trapped in anisotropic potentials formed by a pair of counter-propagating laser beams to experimentally investigate three-body recombination in quasi-two-dimensional systems with tunable confinement and tunable interactions. In our recent experiments, we observed a smooth transition of the three-body recombination rate coefficient from a three-dimensional to a deeply quasi-two-dimensional system. A comparison between the results obtained near two Feshbach resonances indicates a universal behaviour of three-body recombination in the quasi-two-dimensional regime. Austrian Science Fund FWF within project P23106.

  16. Mineral oil in human tissues, part II: characterization of the accumulated hydrocarbons by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Biedermann, Maurus; Barp, Laura; Kornauth, Christoph; Würger, Tanja; Rudas, Margaretha; Reiner, Angelika; Concin, Nicole; Grob, Koni

    2015-02-15

    Mineral oil hydrocarbons are by far the largest contaminant in the human body. Their composition differs from that in the mineral oils humans are exposed to, and varies also between different tissues of the same individual. Using the presently best technique for characterizing the composition of mineral oil hydrocarbons, comprehensive two-dimensional gas chromatography (GC×GC), the hydrocarbons in human tissues were compared to those of various mineral oils. This provided information about the strongly accumulated species and might give hints on the flow path through the human body. The selectivity of accumulation is probably also of interest for the risk assessment of synthetic hydrocarbons (polyolefins). GC×GC grouped the MOSH into classes of n-alkanes, paraffins with a low degree of branching, multibranched paraffins and naphthenes (alkylated cyclic hydrocarbons) with 1-4 rings. Metabolic elimination was observed for constituents of all these classes, but was selective within each class. The MOSH in the subcutaneous abdominal fat tissues and the mesenteric lymph nodes (MLN) had almost the same composition and included the distinct signals observed in mineral oil, though in reduced amounts relative to the cloud of unresolved hydrocarbons. The MOSH in the liver and the spleen were different from those in the MLN and fat tissue, but again with largely identical composition for a given individual. Virtually all constituents forming distinct signals were eliminated, leaving an unresolved residue of highly isomerized hydrocarbons.

  17. Adjustment of roughness sublayer in turbulent flows over two-dimensional idealised roughness elements

    Science.gov (United States)

    HO, Yat-Kiu; LIU, Chun-Ho

    2015-04-01

    The atmospheric boundary layer (ABL) immediately above the urban canopy is the roughness sublayer (RSL). In this layer, flows and turbulence are strongly affected by the roughness elements beneath, e.g. building obstacles. The wind flows over urban areas could be represented by conventional logarithmic law of the wall (log-law) in the neutrally stratified ABL. However, in the RSL region, the vertical wind profile deviates from that predicted from log-law and the effect could be extended from ground level up to several canopy heights. As a result, the Monin-Obukhov similarity theory (MOST) fails and an additional length scale is required to describe the flows. The key aim of this study is to introduce a simple wind profile model which accounts for the effect of the RSL in neutral stratification using wind tunnel experiments. Profile measurements of wind speeds and turbulence quantities over various two-dimensional (2D) idealised roughness elements are carried out in an open-circuit wind tunnel with test section of size 560 mm (width) × 560 mm (height) × 6 m (length). The separation between the roughness elements is varied systematically so that ten different types of surface forms are adopted. The velocity measurements are obtained by hot-wire anemometry using X-probe design (for UW- measurements) with a constant temperature anemometer. For each configuration, eight vertical profiles are collected over the canopy, including solid boundaries and cavities of the roughness elements. Firstly, we compute the measurement results using conventional MOST to determine different roughness parameters. Afterwards, we derive the RSL height from the Reynolds stress profiles. Since the profiles taken from different locations of the canopy are eventually converged with increasing height, we use this 'congregated height' to define the RSL height. Next, we introduce an alternative function, i.e. power-law function, instead of MOST, to describe the velocity profile in attempt to

  18. The Second Las Cruces Trench Experiment: Experimental Results and Two-Dimensional Flow Predictions

    Science.gov (United States)

    Hills, R. G.; Wierenga, P. J.; Hudson, D. B.; Kirkland, M. R.

    1991-10-01

    As part of a comprehensive field study designed to provide data to test stochastic and deterministic models of water flow and contaminant transport in the vadose zone, several trench experiments were performed in the semiarid region of southern New Mexico. The first trench experiment is discussed by Wierenga et al. (this issue). During the second trench experiment, a 1.2 m wide by 12 m long area on the north side of and parallel to a 26.4 m long by 4.8 m wide by 6m deep trench was irrigated with water containing tracers using a carefully controlled drip irrigation system. The irrigated area was heavily instrumented with tensiometers and neutron probe access tubes to monitor water movement, and with suction samplers to monitor solute transport. Water containing tritium and bromide was. applied during the first 11.5 days of the study. Thereafter, water was applied without tracers for an additional 64 days. Both water movement and tracer movement were monitored in the subsoil during infiltration and redistribution. The experimental results indicate that water and bromide moved fairly uniformly during infiltration and the bromide moved ahead of the tritium due to anion exclusion during redistribution. Comparisons between measurements and predictions made with a two-dimensional model show qualitative agreement for two of the three water content measurement planes. Model predictions of tritium and bromide transport were not as satisfactory. Measurements of both tritium and bromide show localized areas of high relative concentrations and a large downward motion of bromide relative to tritium during redistribution. While the simple deterministic model does show larger downward motions for bromide than for tritium during redistribution, it does not predict the high concentrations of solute observed during infiltration, nor can it predict the heterogeneous behavior observed for tritium during infiltration and for bromide during redistribution.

  19. Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.

    Science.gov (United States)

    Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter

    2012-04-01

    This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

  20. The TUBES algorithm for the exact representation of advective transport in a two-dimensional discretized flow field

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Cabral, M.C. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    Current Lagrangian models for simulating advective transport of trace species in a discretized two-dimensional flow field use simplified descriptions of tracer sources, receptors and flow paths. When 'forward trajectories' are used, a diffuse source spread over a two-dimensional grid cell is treated as a single point source located at the cell's center, and its flow is projected in the downflow direction by a line. When 'backward trajectories' are used, each cell is treated as a point receptor and flow is projected back in time in the upflow direction by a line. In both cases, two-dimensional sources or receptors are treated as zero dimensional, and two-dimensional flow tubes are replaced by one-dimensional lines. While these simplifications may be acceptable in some cases, they can generate large errors when the flow field contains regions of considerable divergence of flow directions, or when fine scales are used. A new algorithm is introduced, called TUBES, which provides an exact solution to advective transport in a discretized two-dimensional flow field. TUBES uses two-dimensional flow tubes whose width expands and contracts over directionally divergent and convergent regions of the flow field, respectively. TUBES has applications in a wide variety of the earth sciences, including atmospheric science, oceanography, and surface and groundwater hydrology. (orig.) [German] Gegenwaertige Lagrange-Modelle zur Simulation advektiver Transporte von Tracern in einem diskretisierten zweidimensionalen Stroemungsfeld verwenden vereinfachte Beschreibungen der Quellen, Rezeptoren und Transportwege. Bei der Verwendung vorwaerts gerichteter Trajektorien ('forward trajectories') werden diffusive Quellen, die ueber eine zweidimensionale Gitterzelle verteilt sind, als Punktquelle behandelt, und der Transport mit der Stroemung erfolgt entlang einer Linie. Bei der Verwendung rueckwaerts gerichteter Trajektorien ('backward trajectories

  1. Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings - Theory and experiment

    Science.gov (United States)

    Olson, L. E.; Dvorak, F. A.

    1976-01-01

    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary-layer and potential-flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary-layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.

  2. Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings: Theory and experiment

    Science.gov (United States)

    Olson, L. E.; Dvorak, F. A.

    1975-01-01

    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.

  3. Complete elution of vacuum gas oil resins by comprehensive high-temperature two-dimensional gas chromatography.

    Science.gov (United States)

    Boursier, Laure; Souchon, Vincent; Dartiguelongue, Cyril; Ponthus, Jérémie; Courtiade, Marion; Thiébaut, Didier

    2013-03-08

    The development of efficient conversion processes requires extended knowledge on vacuum gas oils (VGOs). Among these processes, hydrocracking is certainly one of the best suited to meet the increasing demand on high quality diesel fuels. Most of refractory and inhibiting compounds towards hydrocracking and especially nitrogen containing compounds are contained in a fraction of the VGO called the resin fraction, which corresponds to the most polar fraction of a VGO obtained by liquid chromatography (LC) fractionation on a silica column. However, the lack of resolution observed through existing analytical methods does not allow a detailed characterization of these fractions. A recent study showed that comprehensive high temperature two-dimensional gas chromatography (HT-GC×GC) methods could be optimized in order to elute heavy compounds. This method was implemented for the analysis of VGO resin fractions and complete elution was reached. Firstly, the method was validated through repeatability, accuracy, linearity and response factors calculations. Four VGO resin fractions were analyzed and their HT-GC×GC simulated distillation curves were compared to their GC simulated distillation (GC-SimDist) curves. This comparison showed that the method allows complete elution of most of the analyzed VGO resin fractions. However, a detailed characterization of these fractions is not yet obtained due to the very large number of heteroatomic and aromatic species that a flame ionization detector can detect. Current work aims at increasing the selectivity of GC×GC by using heteroatom selective detectors in order to improve the characterization of such products.

  4. Terahertz magneto-optical spectroscopy of a two-dimensional hole gas

    Energy Technology Data Exchange (ETDEWEB)

    Kamaraju, N., E-mail: nkamaraju@lanl.gov; Taylor, A. J.; Prasankumar, R. P., E-mail: rpprasan@lanl.gov [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Pan, W.; Reno, J. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Ekenberg, U. [Semiconsultants, Brunnsgrnd 12, SE-18773 Täby (Sweden); Gvozdić, D. M. [School of Electrical Engineering, University of Belgrade, Belgrade 11120 (Serbia); Boubanga-Tombet, S. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai (Japan); Upadhya, P. C. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Electro-Optics Systems, Indian Space Research Organization, Bangalore 560058 (India)

    2015-01-19

    Two-dimensional hole gases (2DHGs) have attracted recent attention for their unique quantum physics and potential applications in areas including spintronics and quantum computing. However, their properties remain relatively unexplored, motivating the use of different techniques to study them. We used terahertz magneto-optical spectroscopy to investigate the cyclotron resonance frequency in a high mobility 2DHG, revealing a nonlinear dependence on the applied magnetic field. This is shown to be due to the complex non-parabolic valence band structure of the 2DHG, as verified by multiband Landau level calculations. We also find that impurity scattering dominates cyclotron resonance decay in the 2DHG, in contrast with the dominance of superradiant damping in two-dimensional electron gases. Our results shed light on the properties of 2DHGs, motivating further studies of these unique 2D nanosystems.

  5. Collective modes of a two-dimensional spin-1/2 Fermi gas in a harmonic trap

    DEFF Research Database (Denmark)

    Baur, Stefan; Vogt, Enrico; Köhl, Michael

    2013-01-01

    We derive analytical expressions for the frequency and damping of the lowest collective modes of a two-dimensional Fermi gas using kinetic theory. For strong coupling, we furthermore show that pairing correlations overcompensate the effects of Pauli blocking on the collision rate for a large rang...... the experimental bounds results in a damping of the breathing mode which is comparable to what is observed, even for a scale-invariant system....

  6. Two-Dimensional Gas Chromatography-Mass Spectrometry to Determine Composition of the Pro ducts of Waste Tire Pyrolysis

    OpenAIRE

    Gertsiuk, M.M.; Kovalchuk, T.; Kapral, K.; Lysychenko, G.V.

    2014-01-01

    The method of two-dimensional gas chromatography cou pled with mass-spectrometry detection was used for determination of pyrolysis liquid — a mixture of pyrolysis products of waste tires. 6500 organic compounds have been identified: the saturated, unsaturated, aromatic hydrocarbons, the derivatives of thiophene, cyclic aminocompounds. By its composition pyrolytic liquid is close to the diesel fuel and can be used as the alternative fuel.

  7. Two-Dimensional Gas Chromatography-Mass Spectrometry to Determine Composition of the Pro ducts of Waste Tire Pyrolysis

    Directory of Open Access Journals (Sweden)

    Gertsiuk, M.M.

    2014-03-01

    Full Text Available The method of two-dimensional gas chromatography cou pled with mass-spectrometry detection was used for determination of pyrolysis liquid — a mixture of pyrolysis products of waste tires. 6500 organic compounds have been identified: the saturated, unsaturated, aromatic hydrocarbons, the derivatives of thiophene, cyclic aminocompounds. By its composition pyrolytic liquid is close to the diesel fuel and can be used as the alternative fuel.

  8. Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces

    Science.gov (United States)

    Ho, Yat-Kiu; Liu, Chun-Ho

    2013-04-01

    Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results

  9. Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow

    Science.gov (United States)

    Froessling, Nils

    1958-01-01

    The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.

  10. 水坝绕流的数值研究%Numerical Study of Two-Dimensional Viscous Flow over Dams

    Institute of Scientific and Technical Information of China (English)

    王利兵; 刘宇陆; 涂敏杰

    2003-01-01

    In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.

  11. Mixed valence as a necessary criteria for quasi-two dimensional electron gas in oxide hetero-interfaces

    Science.gov (United States)

    Singh, Vijeta; Pulikkotil, J. J.

    2017-02-01

    The origin of quasi-two dimensional electron gas at the interface of polar-nonpolar oxide hetero-structure, such as LaAlO3/SrTiO3, is debated over electronic reconstruction and defects/disorder models. Common to these models is the partial valence transformation of substrate Ti ions from its equilibrium 4 + state to an itinerant 3 + state. Given that the Hf ions have a lower ionization potential than Ti due to the 4 f orbital screening, one would expect a hetero-interface conductivity in the polar-nonpolar LaAlO3/SrHfO3 system as well. However, our first principles calculations show the converse. Unlike the Ti3+ -Ti4+ valence transition which occur at a nominal energy cost, the barrier energy associated with its isoelectronic Hf3+ -Hf4+ counterpart is very high, hence suppressing the formation of quasi-two dimensional electron gas at LaAlO3/SrHfO3 hetero-interface. These calculations, therefore, emphasize on the propensity of mixed valence at the interface as a necessary condition for an oxide hetero-structure to exihibit quasi two-dimensional electron gas.

  12. Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field

    CERN Document Server

    Gallet, Basile

    2015-01-01

    We investigate the behavior of flows, including turbulent flows, driven by a horizontal body-force and subject to a vertical magnetic field, with the following question in mind: for very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2D, with no dependence along the vertical? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number Rm << 1: we prove that the flow becomes exactly 2D asymptotically in time, regardless of the initial condition and provided the interaction parameter N is larger than a threshold value. We call this property "absolute two-dimensionalization": the attractor of the system is necessarily a (possibly turbulent) 2D flow. We then consider the full-magnetohydrodynamic equations and we prove that, for low enough Rm and large enough N, the flow becomes exactly two-dimensional in the long-time limit provided the initial vertically-de...

  13. Second-order phase transition in two-dimensional cellular automaton model of traffic flow containing road sections

    Science.gov (United States)

    Shi, Xiao-Qiu; Wu, Yi-Qi; Li, Hong; Zhong, Rui

    2007-11-01

    Two-dimensional cellular automaton model has been broadly researched for traffic flow, as it reveals the main characteristics of the traffic networks in cities. Based on the BML models, a first-order phase transition occurs between the low-density moving phase in which all cars move at maximal speed and the high-density jammed phase in which all cars are stopped. However, it is not a physical result of a realistic system. We propose a new traffic rule in a two-dimensional traffic flow model containing road sections, which reflects that a car cannot enter into a road crossing if the road section in front of the crossing is occupied by another car. The simulation results reveal a second-order phase transition that separates the free flow phase from the jammed phase. In this way the system will not be entirely jammed (“don’t block the box” as in New York City).

  14. MOFAT: A two-dimensional finite-element program for multiphase flow and multicomponent transport. Program documentation and user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, A.K.; Kaluarachchi, J.J.; Parker, J.C.

    1991-05-01

    The manual describes a two-dimensional finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. Flow and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are considered by the program. The program can simulate flow only or coupled flow and transport. The flow module can be used to analyze two phases, water and NAPL, with the gas phase held at constant pressure, or explicit three-phase flow of water, NAPL, and gas at various pressures. The transport module can handle up to five components which partition among water, NAPL, gas and solid phases assuming either local equilibrium or first-order mass transfer. Three phase permeability-saturation-capillary pressure relations are defined by an extension of the van Genuchten model. The governing equations are solved using an efficient upstream-weighted finite element scheme. The report describes the required inputs for flow analysis and transport analysis. Time dependent boundary conditions for flow and transport analysis can be handled by the program and are described in the report. Detailed instructions for creating data files needed to run the program and example input and output files are given in appendices.

  15. Exact two-body solutions and quantum defect theory of two-dimensional dipolar quantum gas

    Science.gov (United States)

    Jie, Jianwen; Qi, Ran

    2016-10-01

    In this paper, we provide the two-body exact solutions of the two-dimensional (2D) Schrödinger equation with isotropic +/- 1/{r}3 interactions. An analytic quantum defect theory is constructed based on these solutions and it is applied to investigate the scattering properties as well as two-body bound states of an ultracold polar molecules confined in a quasi-2D geometry. Interestingly, we find that for the attractive case, the scattering resonance happens simultaneously in all partial waves, which has not been observed in other systems. The effect of this feature on the scattering phase shift across such resonances is also illustrated.

  16. Enantioselective comprehensive two-dimensional gas chromatography. A route to elucidate the authenticity and origin of Rosa damascena Miller essential oils.

    Science.gov (United States)

    Krupčík, Ján; Gorovenko, Roman; Špánik, Ivan; Sandra, Pat; Armstrong, Daniel W

    2015-10-01

    The analysis of Bulgarian and Turkish Rosa damascena Miller essential oils was performed by flow-modulated comprehensive two-dimensional gas chromatography using simultaneous detection of the second column effluent by flame ionization and quadrupole mass spectrometric detection. Enantioselective separations were obtained by running the samples on 2,3-di-O-ethyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin column as the first column and on polyethylene glycol as the second column. The determination of enantiomeric or diastereomeric excess of some terpenoic solutes is a possible route for quality or authenticity control as well as for the elucidation of the country of origin.

  17. Pseudogap Phenomena Near the BKT Transition of a Two-Dimensional Ultracold Fermi Gas in the Crossover Region

    Science.gov (United States)

    Matsumoto, M.; Hanai, R.; Inotani, D.; Ohashi, Y.

    2017-06-01

    We investigate strong-coupling properties of a two-dimensional ultracold Fermi gas in the normal phase. In the three-dimensional case, it has been shown that the so-called pseudogap phenomena can be well described by a (non-self-consistent) T-matrix approximation (TMA). In the two-dimensional case, while this strong-coupling theory can explain the pseudogap phenomenon in the strong-coupling regime, it unphysically gives large pseudogap size in the crossover region, as well as in the weak-coupling regime. We show that this difficulty can be overcome when one improves TMA to include higher-order pairing fluctuations within the framework of a self-consistent T-matrix approximation (SCTMA). The essence of this improvement is also explained. Since the observation of the BKT transition has recently been reported in a two-dimensional ^6{Li} Fermi gas, our results would be useful for the study of strong-coupling physics associated with this quasi-long-range order.

  18. Adaptivity techniques for the computation of two-dimensional viscous flows using structured meshes

    Science.gov (United States)

    Szmelter, J.; Evans, A.; Weatherill, N. P.

    In this paper three different adaptivity techniques have been investigated on the base of structured meshes. All the techniques indicate the significance of using adaptivity for improving computational results. In particular, the technique of combining point enrichment and node movement strategies offers the best compromise. Although, the work presented here used two-dimensional structured meshes, the techniques can be readily applied to hybrid and unstructured meshes. Also, preliminary three-dimensional numerical results have been already obtained by coauthors.

  19. Determination of diamondoids in crude oils using gas purge microsyringe extraction with comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Wanfeng; Zhu, Shukui; Pang, Liling; Gao, Xuanbo; Zhu, Gang-Tian; Li, Donghao

    2016-12-23

    Based on a homemade device, gas purge microsyringe extraction (GP-MSE) of crude oil samples was developed for the first time. As a simple, fast, low-cost, sensitive and solvent-saving technique, GP-MSE provides some outstanding advantages over the widely used sample preparation methods for crude oils such as column chromatography (ASTM D2549). Several parameters affecting extraction efficiency were optimized, including extraction temperature, extraction time, extraction solvent, condensing temperature and purge gas flow rate. With the optimized GP-MSE conditions, several real crude oil samples were extracted, and trace diamondoids were determined using comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). In total, more than 100 diamondoids were detected and 27 marker compounds were identified and quantified accurately. The limits of detection (LODs, S/N=3) were less than 0.08μg/L for all diamondoids. The relative standard deviation (RSD) was below 8%, ranging from 1.1 to 7.6%. The linearity of the developed method was in the range of 0.5-100.0μg/L with correlation coefficients (R(2)) more than 0.996. The recoveries obtained at spiking 50μg/L were between 81 and 108% for diamondoids in crude oil samples. The developed method can also be extended to the analysis of other components in crude oils and other complex matrices.

  20. Numerical method of the Riemann problem for two-dimensional multi-fluid flows with general equation of state

    Institute of Scientific and Technical Information of China (English)

    Bai Jing-Song; Zhang Zhan-Ji; Li Ping; Zhong Min

    2006-01-01

    Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.

  1. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron Gas

    Science.gov (United States)

    Huard; Cox; Saminadayar; Arnoult; Tatarenko

    2000-01-01

    The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects.

  2. Magnetoelectronic transport of the two-dimensional electron gas in CdSe single quantum wells

    Indian Academy of Sciences (India)

    P K Ghosh; A Ghosal; D Chattopadhyay

    2009-02-01

    Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are calculated with a numerical iterative technique in the framework of Fermi–Dirac statistics. Lattice scatterings due to polar-mode longitudinal optic (LO) phonons, and acoustic phonons via deformation potential and piezoelectric couplings, are considered together with background and remote ionized impurity interactions. The parallel mode of piezoelectric scattering is found to contribute more than the perpendicular mode. We observe that the Hall mobility decreases with increasing temperature but increases with increasing channel width. The magnetoresistance coefficient is found to decrease with increasing temperature and increase with increasing magnetic field in the classical region.

  3. Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas

    DEFF Research Database (Denmark)

    Michiardi, Matteo; Bianchi, Marco; Dendzik, Maciej

    2015-01-01

    Near-surface two-dimensional electron gases on the topological insulator Bi$_2$Te$_2$Se are induced by electron doping and studied by angle-resolved photoemission spectroscopy. A pronounced spin-orbit splitting is observed for these states. The $k$-dependent splitting is strongly anisotropic...... Rashba Hamiltonian. However, a $\\mathbf{k} \\cdot \\mathbf{p}$ model that includes the possibility of band structure anisotropy as well as both isotropic and anisotropic third order Rashba splitting can explain the results. The isotropic third order contribution to the Rashba Hamiltonian is found...... to be negative, reducing the energy splitting at high $k$. The interplay of band structure, higher order Rashba effect and tuneable doping offers the opportunity to engineer not only the size of the spin-orbit splitting but also its direction....

  4. [Characterization of aromatic hydrocarbons in heavy gas oil using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry].

    Science.gov (United States)

    Guo, Kun; Zhou, Jian; Liu, Zelong

    2012-02-01

    An analytical method for separating and identifying the aromatic hydrocarbons in heavy gas oil using comprehensive two-dimensional gas chromatography (GC x GC) coupled to time-of-flight mass spectrometry (TOF MS) was established. The two-dimensional distribution by ring number of the aromatic hydrocarbons was obtained. Besides phenanthrene and methyl-phenanthrene, many other polycyclic aromatic hydrocarbons (PAHs) such as pyrene and benzo [a] anthracene were identified by using the retention times, standard mass spectra or literature reports. The method was successfully applied to the hydrotreating process of heavy gas oil and the hydrotreated products of phenanthrene, pyrene were identified. This method provided technical support for the characterization of aromatic hydrocarbons in heavy gas oil and the investigation of hydrogenation mechanism of polycyclic aromatic hydrocarbons. Compared with the conventional method, gas chromatography coupled to mass spectrometry (GC-MS), the GC x GC-TOF MS method illustrated the obvious advantages for heavy gas oil analysis.

  5. On calculation of quasi-two-dimensional divergence-free projections for visualization of three-dimensional incompressible flows

    OpenAIRE

    Gelfgat, Alexander

    2015-01-01

    A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows...

  6. Remark on Single Exponential Bound of the Vorticity Gradient for the Two-Dimensional Euler Flow Around a Corner

    Science.gov (United States)

    Itoh, Tsubasa; Miura, Hideyuki; Yoneda, Tsuyoshi

    2016-09-01

    In this paper, we consider the two-dimensional Euler flow under a simple symmetry condition, with hyperbolic structure in a unit square {D = {(x_1,x_2):0 < x_1+x_2 < √{2},0 < -x_1+x_2 < √{2}}}. It is shown that the Lipschitz estimate of the vorticity on the boundary is at most a single exponential growth near the stagnation point.

  7. Coupling Navier-stokes and Cahn-hilliard Equations in a Two-dimensional Annular flow Configuration

    KAUST Repository

    Vignal, Philippe

    2015-06-01

    In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes- Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated with this method can have higher-order continuity, and allow to directly discretize the higher- order operators present in the equation. The discretization is implemented in PetIGA-MF, a high-performance framework for discrete differential forms. We present solutions in a two- dimensional annulus, and model spinodal decomposition under shear flow.

  8. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development

    OpenAIRE

    2015-01-01

    A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A ButlereVolmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of elect...

  9. Fourier solution of two-dimensional Navier Stokes equation with periodic boundary conditions and incompressible flow

    CERN Document Server

    Kuiper, Logan K

    2016-01-01

    An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.

  10. Numerical Simulation of the Flow around Two-dimensional Partially Cavitating Hydrofoils

    Institute of Scientific and Technical Information of China (English)

    Fahri Celik; Yasemin Arikan Ozden; Sakir Bal

    2014-01-01

    In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.

  11. Numerical simulation of the flow around two-dimensional partially cavitating hydrofoils

    Science.gov (United States)

    Celik, Fahri; Ozden, Yasemin Arikan; Bal, Sakir

    2014-09-01

    In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by the use of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.

  12. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  13. One-dimensional lattices topologically equivalent to two-dimensional lattices within the context of the lattice gas model

    Science.gov (United States)

    Costanza, E. F.; Costanza, G.

    2016-10-01

    Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a rectangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.

  14. Second-Order Phase Transition in the Two-Dimensional Classical Lattice Coulomb Gas of Half-Integer Charges

    Institute of Scientific and Technical Information of China (English)

    罗孟波; 陈庆虎; 许祝安; 焦正宽

    2001-01-01

    The second-order phase transition in the two-dimensional (2D) classical Coulomb gas of half-integer charges on a square lattice is investigated by using Monte Carlo simulations. Based on the finite-size scaling analysis,we estimate the second-order phase transition temperature Tc and the static critical exponents β and v with a new numerical analysis method. More precise critical temperature Tc = 0.1311(2) and critical exponents β/ν = 0.1152(12) and ν = 0.857(15) are obtained. The estimated value of ν indicates that the charge lattice melting transition is different from the pure 2D Ising transition.

  15. Optical probing of the metal-to-insulator transition in a two-dimensional high-mobility electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Dionigi, F; Rossella, F; Bellani, V [Dipartimento di Fisica ' A Volta' and CNISM, Universita degli Studi di Pavia, 27100 Pavia (Italy); Amado, M [GISC and Departamento de Fisica de Materiales, Universidad Complutense, 28040 Madrid (Spain); Diez, E [Laboratorio de Bajas Temperaturas, Universidad de Salamanca, 37008 Salamanca (Spain); Kowalik, K [Laboratoire National des Champs Magnetiques Intenses, CNRS, 38042 Grenoble (France); Biasiol, G [Istituto Officina dei Materiali CNR, Laboratorio TASC, 34149 Trieste (Italy); Sorba, L, E-mail: vittorio.bellani@unipv.it [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56126 Pisa (Italy)

    2011-06-15

    We study the quantum Hall liquid and the metal-insulator transition in a high-mobility two-dimensional electron gas, by means of photoluminescence and magnetotransport measurements. In the integer and fractional regime at {nu}>1/3, by analyzing the emission energy dispersion we probe the magneto-Coulomb screening and the hidden symmetry of the electron liquid. In the fractional regime above {nu}=1/3, the system undergoes metal-to-insulator transition, and in the insulating phase the dispersion becomes linear with evidence of an increased renormalized mass.

  16. Hole-Hole Interaction Effect in the Conductance of the Two-Dimensional Hole Gas in the Ballistic Regime

    OpenAIRE

    Proskuryakov, Y. Y.; Savchenko, A. K.; Safonov, S. S.; Pepper, M; Simmons, M.Y.; Ritchie, D. A.

    2001-01-01

    On a high mobility two-dimensional hole gas (2DHG) in a GaAs/GaAlAs heterostructure we study the interaction correction to the Drude conductivity in the ballistic regime, $k_BT\\tau /\\hbar $ $>1$. It is shown that the 'metallic' behaviour of the resistivity ($d\\rho /dT>0$) of the low-density 2DHG is caused by hole-hole interaction effect in this regime. We find that the temperature dependence of the conductivity and the parallel-field magnetoresistance are in agreement with this description, a...

  17. Magnetocapacitance oscillations and thermoelectric effect in a two-dimensional electron gas irradiated by microwaves

    Science.gov (United States)

    Levin, A. D.; Gusev, G. M.; Raichev, O. E.; Momtaz, Z. S.; Bakarov, A. K.

    2016-07-01

    To study the influence of microwave irradiation on two-dimensional electrons, we apply a method based on capacitance measurements in GaAs quantum well samples where the gate covers a central part of the layer. We find that the capacitance oscillations at high magnetic fields, caused by the oscillations of thermodynamic density of states, are not essentially modified by microwaves. However, in the region of fields below 1 T, we observe another set of oscillations, with the period and the phase identical to those of microwave-induced resistance oscillations. The phenomenon of microwave-induced capacitance oscillations is explained in terms of violation of the Einstein relation between conductivity and the diffusion coefficient in the presence of microwaves, which leads to a dependence of the capacitor charging on the anomalous conductivity. We also observe microwave-induced oscillations in the capacitive response to periodic variations of external heating. These oscillations appear due to the thermoelectric effect and are in antiphase with microwave-induced resistance oscillations because of the Corbino-like geometry of our experimental setup.

  18. Observation of mesoscopic crystalline structures in a two-dimensional Rydberg gas

    CERN Document Server

    Schauß, Peter; Endres, Manuel; Fukuhara, Takeshi; Hild, Sebastian; Omran, Ahmed; Pohl, Thomas; Gross, Christian; Kuhr, Stefan; Bloch, Immanuel

    2012-01-01

    The ability to control and tune interactions in ultracold atomic gases has paved the way towards the realization of new phases of matter. Whereas experiments have so far achieved a high degree of control over short-ranged interactions, the realization of long-range interactions would open up a whole new realm of many-body physics and has become a central focus of research. Rydberg atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many orders of magnitude larger than for ground state atoms. Consequently, the mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example are quantum crystals, composed of coherent superpositions of different spatially ordered configurations of collective excitations. Here we report on the direct measurement of strong correlations in a laser excited two-dimensional atomic Mott insulator using high-resolution, in-situ Rydberg atom imag...

  19. Two-Dimensional Riemann Solver for Euler Equations of Gas Dynamics

    Science.gov (United States)

    Brio, M.; Zakharian, A. R.; Webb, G. M.

    2001-02-01

    We construct a Riemann solver based on two-dimensional linear wave contributions to the numerical flux that generalizes the one-dimensional method due to Roe (1981, J. Comput. Phys.43, 157). The solver is based on a multistate Riemann problem and is suitable for arbitrary triangular grids or any other finite volume tessellations of the plane. We present numerical examples illustrating the performance of the method using both first- and second-order-accurate numerical solutions. The numerical flux contributions are due to one-dimensional waves and multidimensional waves originating from the corners of the computational cell. Under appropriate CFL restrictions, the contributions of one-dimensional waves dominate the flux, which explains good performance of dimensionally split solvers in practice. The multidimensional flux corrections increase the accuracy and stability, allowing a larger time step. The improvements are more pronounced on a coarse mesh and for large CFL numbers. For the second-order method, the improvements can be comparable to the improvements resulting from a less diffusive limiter.

  20. Coupled two-dimensional edge plasma and neutral gas modeling of tokamak scrape-off-layers

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R. [North Carolina State Univ., Raleigh, NC (United States)

    1992-08-01

    The objective of this study is to devise a detailed description of the tokamak scrape-off-layer (SOL), which includes the best available models of both the plasma and neutral species and the strong coupling between the two in many SOL regimes. A good estimate of both particle flux and heat flux profiles at the limiter/divertor target plates is desired. Peak heat flux is one of the limiting factors in determining the survival probability of plasma-facing-components at high power levels. Plate particle flux affects the neutral flux to the pump, which determines the particle exhaust rate. A technique which couples a two-dimensional (2-D) plasma and a 2-D neutral transport code has been developed (coupled code technique), but this procedure requires large amounts of computer time. Relevant physics has been added to an existing two-neutral-species model which takes the SOL plasma/neutral coupling into account in a simple manner (molecular physics model), and this model is compared with the coupled code technique mentioned above. The molecular physics model is benchmarked against experimental data from a divertor tokamak (DIII-D), and a similar model (single-species model) is benchmarked against data from a pump-limiter tokamak (Tore Supra). The models are then used to examine two key issues: free-streaming-limits (ion energy conduction and momentum flux) and the effects of the non-orthogonal geometry of magnetic flux surfaces and target plates on edge plasma parameter profiles.

  1. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves.

    Science.gov (United States)

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I

    2014-04-01

    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  2. A two-dimensional Fermi gas in the BEC-BCS crossover

    Energy Technology Data Exchange (ETDEWEB)

    Ries, Martin Gerhard

    2016-01-21

    This thesis reports on the preparation of a 2D Fermi gas in the BEC-BCS crossover and the observation of the BKT transition into a quasi long-range ordered superfluid phase. The pair momentum distribution of the gas is probed by means of a matter-wave focusing technique which relies on time-of-flight evolution in a weak harmonic potential. This distribution holds the coherence properties of the gas. The quasi long-range ordered phase manifests itself as a sharp low-momentum peak. The temperature where it forms is identified as the transition temperature. By tuning the temperature and the interaction strength, the phase diagram of the 2D Fermi gas in the BEC-BCS crossover is mapped out. The phase coherence is investigated in a self-interference experiment. Furthermore, algebraic decay of correlations is observed in the trap average of the first order correlation function, which is obtained from the Fourier transform of the pair momentum distribution. This is in qualitative agreement with predictions of homogeneous theory for the superfluid phase in a 2D gas. The presented results provide a foundation for future experimental and theoretical studies of strongly correlated 2D Fermi gases. They might thus help to elucidate complex systems such as the electron gas in high-T{sub c} superconductors.

  3. A solution of two-dimensional magnetohydrodynamic flow using the finite volume method

    Directory of Open Access Journals (Sweden)

    Naceur Sonia

    2014-01-01

    Full Text Available This paper presents the two dimensional numerical modeling of the coupling electromagnetic-hydrodynamic phenomena in a conduction MHD pump using the Finite volume Method. Magnetohydrodynamic problems are, thus, interdisciplinary and coupled, since the effect of the velocity field appears in the magnetic transport equations, and the interaction between the electric current and the magnetic field appears in the momentum transport equations. The resolution of the Maxwell's and Navier Stokes equations is obtained by introducing the magnetic vector potential A, the vorticity z and the stream function y. The flux density, the electromagnetic force, and the velocity are graphically presented. Also, the simulation results agree with those obtained by Ansys Workbench Fluent software.

  4. Water Impact of Rigid Wedges in Two-Dimensional Fluid Flow

    Directory of Open Access Journals (Sweden)

    Sawan Shah

    2015-01-01

    Full Text Available A combined experimental and numerical investigation was conducted into impact of rigid wedges on water in two-dimensional fluid conditions. Drop test experiments were conducted involving symmetric rigid wedges of varying angle and mass impacted onto water. The kinematic behaviour of the wedge and water was characterised using high-speed video. Numerical models were analysed in LS-DYNA® that combined regions of Smoothed Particle Hydrodynamics particles and a Lagrangian element mesh. The analysis captured the majority of experimental results and trends, within the bounds of experimental variance. Further, the combined modelling technique presented a highly attractive combination of computational efficiency and accuracy, making it a suitable candidate for aircraft ditching investigations.

  5. A new technique for calculating reentry base heating. [analysis of laminar base flow field of two dimensional reentry body

    Science.gov (United States)

    Meng, J. C. S.

    1973-01-01

    The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.

  6. Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid

    CERN Document Server

    Machicoane, Nathanaël; Cortet, Pierre-Philippe

    2016-01-01

    We characterize the two-dimensionalization process in the turbulent flow produced by an impeller rotating at a rate $\\omega$ in a fluid rotating at a rate $\\Omega$ around the same axis for Rossby number $Ro=\\omega/\\Omega$ down to $10^{-2}$. The flow can be described as the superposition of a large-scale vertically invariant global rotation and small-scale shear layers detached from the impeller blades. As $Ro$ decreases, the large-scale flow is subjected to azimuthal modulations. In this regime, the shear layers can be described in terms of wakes of inertial waves traveling with the blades, originating from the velocity difference between the non-axisymmetric large-scale flow and the blade rotation. The wakes are well defined and stable at low Rossby number, but they become disordered at $Ro$ of order of 1. This experiment provides insight into the route towards pure two-dimensionalization induced by a background rotation for flows driven by a non-axisymmetric rotating forcing.

  7. [Characterization of compounds in crude oils by gas purge micro-syringe extraction coupled to comprehensive two-dimensional gas chromatography].

    Science.gov (United States)

    Tong, Ting; Zhang, Wanfeng; Li, Donghao; Zhao, Jinhua; Chang, Zhenyang; Gao, Xuanbo; Dai, Wei; He, Sheng; Zhu, Shukui

    2014-10-01

    A novel sample pretreatment method, gas purge micro-syringe extraction (GP- MSE), coupled to comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOFMS) has been developed for the characterization of volatile and semi-volatile compounds in crude oils. In the sample pretreatment process, the analytes were carried to the microsyringe barrel by inert gas, and at the same time, trapped by an organic solvent. The whole process of extraction takes less than 10 min, and only 20 μL of organic solvent was needed. Using two custom standard solutions containing alkanes and polycyclic aromatic hydrocarbons (PAHs), the influences of the extraction conditions were investigated. The optimized conditions were as follows: 5 mg crude oil, 20 μL hexane (extraction solvent), extraction for 3 min at 300 °C, condensation temperature set at -2 °C, gas flow rate set at 2 mL/min. Under the optimized conditions, a real crude oil sample was extracted and then analyzed in detail. It showed that the proposed method was very effective in simultaneously analyzing the normal and branched alkanes, cycloalkanes, aromatic hydrocarbons, and biomarkers of crude oil such as steranes and terpanes. The recoveries obtained ranged from 82.0% to 107.3% and the detection limits ranged from 34 to 93 μg/L. The correlation coefficients (R2) were more than 0.99. The relative standard deviations (RSDs, n = 5) for all the analytes were below 10%. The results indicate that the proposed method is suitable for the characterization of volatile and semi-volatile compounds in crude oils with easy operation, high sensitivity and efficiency.

  8. Analysis of cave atmospheres by comprehensive two-dimensional gas chromatography (GC×GC with flame ionization detection (FID

    Directory of Open Access Journals (Sweden)

    Ryan C. Blase

    2015-03-01

    Full Text Available In this paper, we describe a simple method for sampling, pre-concentrating, and separating volatile and semi-volatile components from two different cave atmospheres. Sampling is performed by capturing a volume of cave atmosphere in a Tedlar bag or Suma canister for sample storage and transport back to the laboratory. Loading a portion of the sample on a multi-bed sorption trap allows for sample pre-concentration prior to separation and detection of components on a comprehensive two-dimensional gas chromatograph (GC×GC. Comparison of two Texas caves reveals the power of comprehensive two-dimensional gas chromatography (GC×GC for volatile separation and detection, and to our knowledge marks the first use of GC×GC for the analysis of cave atmospheres. Analysis of the results revealed 138 and 146 chromatographic signals over an S/N threshold of 500 and direct comparison of the two samples revealed 50 identical chromatographic signals. This study is a first step toward demonstrating the ability of GC×GC to separate the complex volatiles and semi-volatiles in the cave atmosphere as a fingerprinting tool.

  9. Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2015-01-02

    Many foods are contaminated by hydrocarbons of mineral oil or synthetic origin. High performance liquid chromatography on-line coupled with gas chromatography and flame ionization detection (HPLC-GC-FID) is a powerful tool for the quantitative determination, but it would often be desirable to obtain more information about the type of hydrocarbons in order to identify the source of the contamination and specify pertinent legislation. Comprehensive two-dimensional gas chromatography (GC×GC) is shown to produce plots distinguishing mineral oil saturated hydrocarbons (MOSH) from polymer oligomeric saturated hydrocarbons (POSH) and characterizing the degree of raffination of a mineral oil. The first dimension separation occurred on a phenyl methyl polysiloxane, the second on a dimethyl polysiloxane. Mass spectrometry (MS) was used for identification, FID for quantitative determination. This shows the substantial advances in chromatography to characterize complex hydrocarbon mixtures even as contaminants in food.

  10. Multi-scale coupling strategy for fully two-dimensional and depth-averaged models for granular flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Domnik, Birte; Miller, Stephen A.

    2013-04-01

    We developed a full two-dimensional Coulomb-viscoplastic model and applied it for inclined channel flows of granular materials from initiation to their deposition. The model includes the basic features and observed phenomena in dense granular flows like the exhibition of a yield strength and a non-zero slip velocity. A pressure-dependent yield strength is proposed to account for the frictional nature of granular materials. The yield strength can be related to the internal friction angle of the material and plays an important role, for example, in deposition processes. The interaction of the flow with the solid boundary is modelled by a pressure and rate-dependent Coulomb-viscoplastic sliding law. We developed an innovative multi-scale strategy to couple the full two-dimensional, non depth-averaged model (N-DAM) with a one-dimensional, depth-averaged model (DAM). The coupled model reduces computational complexity dramatically by using DAM only in regions with smooth changes of flow variables. The numerics uses N-DAM in regions where depth-averaging becomes inaccurate, for instance, in the initiation and deposition regions, and (particularly) when the flow hits an obstacle or a defense structure. In these regions, momentum transfer must be, and is, considered in all directions. We observe very high coupling performance, and show that the numerical results deviate only slightly from results of the much more cumbersome full two-dimensional model. This shows that the coupled model, which retains all the basic physics of the flow, is an attractive alternative to an expensive, full two-dimensional simulations. We compare simulation results with different experimental data for shock waves appearing in rapid granular flows down inclined channels and impacting a wall. The model predicts the evolution of the strong shock wave and the impact force on a rigid wall for different inclination angles and sliding surfaces. It is demonstrated that the internal friction angle plays an

  11. Jamming of particles in a two-dimensional fluid-driven flow

    Science.gov (United States)

    Guariguata, Alfredo; Pascall, Masika A.; Gilmer, Matthew W.; Sum, Amadeu K.; Sloan, E. Dendy; Koh, Carolyn A.; Wu, David T.

    2012-12-01

    The jamming of particles under flow is of critical importance in a broad range of natural and industrial settings, such as the jamming of ice in rivers, or the plugging of suspended solids in pipeline transport. Relatively few studies have been carried out on jamming of suspended particles under flow, in comparison to the many studies on jamming in gravity-driven flows that have revealed various features of the jamming process. Fluid-driven particle flows differ in several aspects from gravity-driven flows, particularly in being compatible with a range of particle concentrations and velocities. Additionally, there are fluid-particle interactions and hydrodynamic effects. To investigate particle jamming in fluid-driven flows, we have performed both experiments and computer simulations on the flow of circular particles floating over water in an open channel with a restriction. We determined the flow-rate boundary for a dilute-to-dense flow transition, similar to that seen in gravity-driven flows. The maximum particle throughput increased for larger restriction sizes consistent with a Beverloo equation form over the entire range of particle mixtures and restriction sizes. The exponent of ˜3/2 in the Beverloo equation is consistent with approximately constant acceleration of grains due to fluid drag in the immediate region of the opening. We verified that the jamming probability from the dense flow gave a geometric distribution in the number of particles escaping before a jam. The probability of jamming in both experiments and simulations was found to be dependent on the ratio of channel opening to particle size, but only weakly dependent on the fluid flow velocity. Flow entrance effects were measured and observed to affect the jamming probability, and dependence on particle friction coefficient was determined from simulation. A comprehensive model for the jamming probability integrating these observations from the different flow regimes was shown to be in good

  12. Quantum anomaly, universal relations, and breathing mode of a two-dimensional Fermi gas.

    Science.gov (United States)

    Hofmann, Johannes

    2012-05-01

    In this Letter, we show that the classical SO(2,1) symmetry of a harmonically trapped Fermi gas in two dimensions is broken by quantum effects. The anomalous correction to the symmetry algebra is given by a two-body operator that is well known as the contact. Taking into account this modification, we are able to derive the virial theorem for the system and a universal relation for the pressure of a homogeneous gas. The existence of an undamped breathing mode is associated with the classical symmetry. We provide an estimate for the anomalous frequency shift of this oscillation at zero temperature and compare the result with a recent experiment by [E. Vogt et al., Phys. Rev. Lett. 108, 070404 (2012)]. Discrepancies are attributed to finite temperature effects.

  13. ONE- AND TWO-DIMENSIONAL COUPLED HYDRODYNAMICS MODEL FOR DAM BREAK FLOW

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1-D and 2-D mathematical models for dam break flow were established and verified with the measured data in laboratory. The 1-D and 2-D models were then coupled, and used to simulate the dam break flow from the reservoir tail to the dam site, the propagation of dam break waves in the downstream channel, and the submergence of dam break flow in the downstream town with the hydrodynamics method. As a numerical example, the presented model was employed to simulate dam break flow of a hydropower station under construction. In simulation, different dam-break durations, upstream flows and water levels in front of dam were considered, and these influencing factors of dam break flow were analyzed, which could be referenced in planning and designing hydropower stations.

  14. Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot

    CERN Document Server

    Denker, C; Tritschler, A; Yurchyshyn, V

    2007-01-01

    In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to a...

  15. The CABARET method for a weakly compressible fluid flows in one- and two-dimensional implementations

    Science.gov (United States)

    Kulikov, Yu M.; Son, E. E.

    2016-11-01

    The CABARET method implementation for a weakly compressible fluid flow is in the focus of present paper. Testing both one-dimensional pressure balancing problem and a classical plane Poiseuille flow, we analyze this method in terms of discontinuity resolution, dispersion and dissipation. The method is proved to have an adequate convergence to an analytical solution for a velocity profile. We also show that a flow formation process represents a set of self-similar solutions under varying pressure differential and sound speed.

  16. Direct Imaging of Charge Density Modulation in Switchable Two-Dimensional Electron Gas at the Oxide Hetero-Interfaces by Using Electron Bean Inline Holography

    Science.gov (United States)

    2015-08-16

    SUPPLEMENTARY NOTES 14. ABSTRACT The recent discovery of a two-dimensional electron gas (2DEG) at the interface between insulating perovskite ...3/10/2015 Abstract The recent discovery of a two-dimensional electron gas (2DEG) at the interface between insulating perovskite oxides SrTiO3...associated charge distributions in semiconductor materials, and therefore regarded as the only tool that can completely visualize the spatial

  17. Unstable shear flows in two dimensional strongly correlated liquids - a hydrodynamic and molecular dynamics study

    Science.gov (United States)

    Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin

    2016-11-01

    In Navier-Stokes fluids, shear flows are known to become unstable leading to instability and eventually to turbulence. A class of flow namely, Kolmogorov Flows (K-Flows) exhibit such transition at low Reynolds number. Using fluid and molecular dynamics, we address the physics of transition from laminar to turbulent regime in strongly correlated-liquids such as in multi-species plasmas and also in naturally occurring plasmas with K-Flows as initial condition. A 2D phenomenological generalized hydrodynamic model is invoked wherein the effect of strong correlations is incorporated via a viscoelastic memory. To study the stability of K-Flows or in general any shear flow, a generalized eigenvalue solver has been developed along with a spectral solver for the full nonlinear set of fluid equations. A study of the linear and nonlinear features of K-Flow in incompressible and compressible limit exhibits cyclicity and nonlinear pattern formation in vorticity. A first principles based molecular dynamics simulation of particles interacting via Yukawa potential is performed with features such as configurational and kinetic thermostats for K-Flows. This work reveals several interesting similarities and differences between hydrodynamics and molecular dynamics studies.

  18. Two Dimensional Spin-Polarized Electron Gas at the Oxide Interfaces

    OpenAIRE

    Nanda, B. R. K.; Satpathy, S.

    2008-01-01

    The formation of a novel spin-polarized 2D electron gas at the LaMnO$_3$ monolayer embedded in SrMnO$_3$ is predicted from the first-principles density-functional calculations. The La (d) electrons become confined in the direction normal to the interface in the potential well of the La layer, serving as a positively-charged layer of electron donors. These electrons mediate a ferromagnetic alignment of the Mn t$_{2g}$ spins near the interface via the Anderson-Hasegawa double exchange and becom...

  19. An accurate predictor-corrector HOC solver for the two dimensional Riemann problem of gas dynamics

    Science.gov (United States)

    Gogoi, Bidyut B.

    2016-10-01

    The work in the present manuscript is concerned with the simulation of twodimensional (2D) Riemann problem of gas dynamics. We extend our recently developed higher order compact (HOC) method from one-dimensional (1D) to 2D solver and simulate the problem on a square geometry with different initial conditions. The method is fourth order accurate in space and second order accurate in time. We then compare our results with the available benchmark results. The comparison shows an excellent agreement of our results with the existing ones in the literature. Being a finite difference solver, it is quite straight-forward and simple.

  20. Temperature and velocity field of the two-dimensional transverse hot-air jet in a freestream flow.

    Science.gov (United States)

    Tatom, J. W.; Cooper, M. A.; Hayden, T. K.

    1972-01-01

    Experimental investigation of the low subsonic, two-dimensional transverse hot-air jet. In the study jet-to-freestream angles of 90, 120, 135, and 150 deg and jet-to-freestream velocity ratios of 5, 10, and 20 were investigated. In the tests the jet velocity and temperature fields were measured using a temperature-compensated hot-wire anemometer. Photographs of the flowfield were also made. The tests results are compared with the available data and analysis. Results indicate a relatively minor deflection of the freestream by the jet and the presence of a large separated flow region behind the jet.

  1. Single-particle detection of virus simulants under microfluidic flow with two-dimensional photonic crystals (Conference Presentation)

    Science.gov (United States)

    Miller, Benjamin L.; Baker, James E.; Sriram, Rashmi

    2017-05-01

    Because of their compatibility with standard CMOS fabrication, small footprint, and exceptional sensitivity, Two-Dimensional Photonic Crystals (2D PhCs) have been posited as attractive components for the development of real-time integrated photonic virus sensors. While detection of single virus-sized particles by 2D PhCs has been demonstrated, specific recognition of a virus simulant under conditions relevant to sensor use (including aqueous solution and microfluidic flow) has remained an unsolved challenge. This talk will describe the design and testing of a W1 waveguide-coupled 2D PhC in the context of addressing that challenge.

  2. Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse

    Science.gov (United States)

    Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration

    Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.

  3. Wake Behavior behind Turbine Cascades in Compressible Two-Dimensional Flows

    Directory of Open Access Journals (Sweden)

    Kurz Rainer

    2005-01-01

    Full Text Available The goal of the paper is to describe wake parameters of wakes from turbine cascades in compressible flows especially in planes where the leading edge of the following blade row would be located. Data from experiments with turbine cascades in compressible flow will be used to derive a theoretical approach which describes the wake growth and the recovery of the velocity deficit. The theory is based on similarity assumptions. The derived equations depend on simple and readily available parameters such as overall losses, exit angle, and Mach or Laval number. In compressible turbine flows, the influence of the inviscid flow field is of great importance. In this paper, an approach to take this influence into account when determining the behavior of the wake is presented. Correlations for basic characteristics of wakes in compressible flows are not readily available. Such correlations are necessary as input to unsteady flow and heat transfer calculation procedures for turbomachine blades. Based on available data on wake behavior in the compressible flow behind turbine blades, the correlations presented describe the wake behavior from the trailing edge to the confluence of the wakes of adjacent blades.

  4. The effect of magnetic field on mean flow generation by rotating two-dimensional convection

    CERN Document Server

    Currie, Laura K

    2016-01-01

    Motivated by the significant interaction of convection, rotation and magnetic field in many astrophysical objects, we investigate the interplay between large-scale flows driven by rotating convection and an imposed magnetic field. We utilise a simple model in two dimensions comprised of a plane layer that is rotating about an axis inclined to gravity. It is known that this setup can result in strong mean flows; we numerically examine the effect of an imposed horizontal magnetic field on such flows. We show that increasing the field strength in general suppresses the time-dependent mean flows, but in some cases it organises them leading to stronger time-averaged flows. Further, we discuss the effect of the field on the correlations responsible for driving the flows and the competition between Reynolds and Maxwell stresses. A change in behaviour is observed when the (fluid and magnetic) Prandtl numbers are decreased. In the smaller Prandtl number regime, it is shown that significant mean flows can persist even ...

  5. Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet

    Directory of Open Access Journals (Sweden)

    FEROZ AHMED SOOMRO

    2016-10-01

    Full Text Available Present paper investigates 2D (Two-Dimensional stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations. Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.

  6. Cross-flow blowing of a two-dimensional stationary arc.

    Science.gov (United States)

    Bose, T. K.

    1971-01-01

    It is demonstrated in an analysis that the electrons emitted from the cathode undergo collisions with the heavy particles and are deflected in the flow direction by the component of a collisional force associated with the relative difference in flow velocities between electrons and heavy particles. The resultant motion of the electrons describing the arc is thus caused by a combined action of the collisional force that results from the externally applied electric field. An expression is given which enables computation of the arc shape to be made provided the velocity distribution of the cross-flow and the distribution of the externally applied electric field are prescribed.

  7. Nonparallel stability of two-dimensional nonuniformly heated boundary-layer flows

    Science.gov (United States)

    Nayfeh, A. H.; El-Hady, N. M.

    1979-01-01

    An analysis is presented for the linear stability of water boundary-layer flows over nonuniformly flat plates. Included in the analysis are disturbances due to velocity, pressure, temperatures, density, and transport properties as well as variations of the liquid properties with temperature. The method of multiple scales is used to account for the nonparallelism of the mean flow. In contrast with previous analyses, the nonsimilarity of the mean flow is taken into account. No analysis agrees, even qualitatively, with the experimental data when similar profiles are used. However, both the parallel and nonparallel results qualitatively agree with the experimental results of Strazisar and Reshotko when nonsimilar profiles are used.

  8. Two dimensional numerical simulation of gas discharges: comparison between particle-in-cell and FCT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C; Castellanos, A [Departamento de Electronica y Electromagnetismo, Facultad de Fisica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Pontiga, F [Departamento de Fisica Aplicada II, EUAT, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: cshoyo@us.es

    2008-10-21

    Two different numerical techniques have been applied to the numerical integration of equations modelling gas discharges: a finite-difference flux corrected transport (FD-FCT) technique and a particle-in-cell (PIC) technique. The PIC technique here implemented has been specifically designed for the simulation of 2D electrical discharges using cylindrical coordinates. The development and propagation of a streamer between two parallel electrodes has been used as a convenient test to compare the performance of both techniques. In particular, the phase velocity of the cathode directed streamer has been used to check the internal consistency of the numerical simulations. The results obtained from the two techniques are in reasonable agreement with each other, and both techniques have proved their ability to follow the high gradients of charge density and electric field present in this type of problems. Moreover, the streamer velocities predicted by the simulation are in accordance with the typical experimental values.

  9. A high density two-dimensional electron gas in an oxide heterostructure on Si (001

    Directory of Open Access Journals (Sweden)

    E. N. Jin

    2014-11-01

    Full Text Available We present the growth and characterization of layered heterostructures comprised of LaTiO3 and SrTiO3 epitaxially grown on Si (001. Magnetotransport measurements show that the sheet carrier densities of the heterostructures scale with the number of LaTiO3/SrTiO3 interfaces, consistent with the presence of an interfacial 2-dimensional electron gas (2DEG at each interface. Sheet carrier densities of 8.9 × 1014 cm−2 per interface are observed. Integration of such high density oxide 2DEGs on silicon provides a bridge between the exceptional properties and functionalities of oxide 2DEGs and microelectronic technologies.

  10. Numerical simulation of two-dimensional corner flows in a circulating water channel with guide vanes

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Y.; Nishimoto, H.; Tamashima, M.; Yamazaki, R. [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan); Wang, G.

    1998-09-04

    A Navier-Stokes procedure is developed based on the Finite Volume Method to simulate the 2-D comer flows in a CWC. The staggered grid is adopted and a new method is presented to coupling the velocities and the pressure when the grid lines change direction by 90deg. The turbulince is approximated using {kappa} - {epsilon} model and a transfinite algebraic method is used to generate the body fitted coordinates. After validation of the computer code, the corner flows in a CWC was calculated and the effect of guide vanes was investigated. For laminar flows, the guide vanes may restrain the separations on the inner side but not so effective on the outside; for turbulent flows, separations on the inner side disappeared even without guide vanes but still remained on the outside. By incorporating guide vanes, the separation can be effectively controlled. 6 refs., 13 figs.

  11. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    Science.gov (United States)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  12. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.

    Science.gov (United States)

    Fadnes, Solveig; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse

    2014-10-01

    High-frame-rate ultrasound speckle tracking was used for quantification of peak velocity in shunt flows resulting from septal defects in congenital heart disease. In a duplex acquisition scheme implemented on a research scanner, unfocused transmit beams and full parallel receive beamforming were used to achieve a frame rate of 107 frames/s for full field-of-view flow images with high accuracy, while also ensuring high-quality focused B-mode tissue imaging. The setup was evaluated in vivo for neonates with atrial and ventricular septal defects. The shunt position was automatically tracked in B-mode images and further used in blood speckle tracking to obtain calibrated shunt flow velocities throughout the cardiac cycle. Validation toward color flow imaging and pulsed wave Doppler with manual angle correction indicated that blood speckle tracking could provide accurate estimates of shunt flow velocities. The approach was less biased by clutter filtering compared with color flow imaging and was able to provide velocity estimates beyond the Nyquist range. Possible placements of sample volumes (and angle corrections) for conventional Doppler resulted in a peak shunt velocity variations of 0.49-0.56 m/s for the ventricular septal defect of patient 1 and 0.38-0.58 m/s for the atrial septal defect of patient 2. In comparison, the peak velocities found from speckle tracking were 0.77 and 0.33 m/s for patients 1 and 2, respectively. Results indicated that complex intraventricular flow velocity patterns could be quantified using high-frame-rate speckle tracking of both blood and tissue movement. This could potentially help increase diagnostic accuracy and decrease inter-observer variability when measuring peak velocity in shunt flows. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Measuring two-dimensional components of a flow velocity vector using a hot-wire probe.

    Science.gov (United States)

    Kiełbasa, Jan

    2007-08-01

    The article presents a single-hot-wire probe adapted to detect the direction of flow velocity. The modification consists of the introduction of a third support which allows to measure voltage at the central point of the wire. The sign of voltage difference DeltaU between both parts of the wire is the measure of the direction of flow velocity in a system of coordinates associated with the probe.

  14. Wake Behavior behind Turbine Cascades in Compressible Two-Dimensional Flows

    OpenAIRE

    2005-01-01

    The goal of the paper is to describe wake parameters of wakes from turbine cascades in compressible flows especially in planes where the leading edge of the following blade row would be located. Data from experiments with turbine cascades in compressible flow will be used to derive a theoretical approach which describes the wake growth and the recovery of the velocity deficit. The theory is based on similarity assumptions. The derived equations depend on simple and readily available parameter...

  15. Ensemble Distribution for Immiscible Two-Phase Flow in Two-Dimensional Networks

    CERN Document Server

    Savani, Isha; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex

    2016-01-01

    An ensemble distribution has been constructed to describe steady immiscible two-phase flow of two incompressible fluids in a network. The system is ergodic. The distribution relates the time that a bubble of the non-wetting fluid spends in a link to the local volume flow. The properties of the ensemble distribution are tested by two-phase flow simulations at the pore-scale for capillary numbers ranging from 0.1 to 0.001. It is shown that the distribution follows the postulated dependence on the local flow for Ca = 0.01 and 0.001. The distribution is used to compute the global flow performance of the network. In particular, we find the expression for the overall mobility of the system using the ensemble distribution. The entropy production at the scale of the network is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. The distribution can be used to obtain macroscopic variables from local network information, for a practical range of capillary...

  16. A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network.

    Science.gov (United States)

    Que, Ruiyi; Zhu, Rong

    2013-12-31

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.

  17. A Two-Dimensional Flow Sensor with Integrated Micro Thermal Sensing Elements and a Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Ruiyi Que

    2013-12-01

    Full Text Available This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.

  18. Moderately converging ion and electron flows in two-dimensional diodes

    Science.gov (United States)

    Cavenago, M.

    2012-11-01

    Flow of particles in diodes is solved selfconsistently assuming an approximated system of flow lines, that can be easily represented by an analytic transformation in a complex plane, with assumed uniformity in the third spatial direction. Beam current compression is tunable by an angle parameter α0; transformed coordinate lines are circular arcs, exactly matching to the curved cathode usually considered by rectilinear converging flows. The curvature of flow lines allows to partly balance the transverse effect of space charge. A self-contained discussion of the whole theory is reported, ranging from analytical solution for selfconsistent potential to electrode drawing to precise numerical simulation, which serves as a verification and as an illustration of typical electrode shapes. Motion and Poisson equation are written in a curved flow line system and their approximate consistency is shown to imply an ordinary differential equation for the beam edge potential. Transformations of this equation and their series solutions are given and discussed, showing that beam edge potential has a maximum, so supporting both diode (with α0 ≅ π/3) and triode design. Numerical simulations confirm the consistency of these solution. Geometrical details of diode design are discussed: the condition of a zero divergence beam, with the necessary anode lens effect included, is written and solved, as a function of beam compression; accurate relations for diode parameters and perveance are given. Weakly relativistic effects including self-magnetic field are finally discussed as a refinement.

  19. Periodic dislocation dynamics in two-dimensional concentrated emulsion flowing in a tapered microchannel

    Science.gov (United States)

    Gai, Ya; Leong, Chia Min; Cai, Wei; Tang, Sindy K. Y.

    2016-11-01

    Here we report a surprising order in concentrated emulsion when flowing as a monolayer in a tapered microfluidic channel. The flow of droplets in micro-channels can be non-trivial, and may lead to unexpected phenomena such as long-period oscillations and chaos. Previously, there have been studies on concentrated emulsions in straight channels and channels with bends. The dynamics of how drops flow and rearrange in a tapered geometry has not yet been characterized. At sufficiently slow flow rates, the drops arrange into a hexagonal lattice. At a given x-position, the time-averaged droplet velocities are uniform. The instantaneous drop velocities, however, reveal a different, wave-like pattern. Within the rearrangement zone where the number of rows of drops decreases from N to N-1, there is always a drop moved faster than the others. Close examination reveals the anomalous velocity profile arises from a series of dislocations that are both spatial and temporal periodic. To our knowledge, such reproducible dislocation motion has not been reported before. Our results are useful in novel flow control and mixing strategies in droplet microfluidics as well as modeling crystal plasticity in low-dimensional nanomaterials.

  20. Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus.

    Science.gov (United States)

    Hantao, Leandro Wang; Toledo, Bruna Regina; Ribeiro, Fabiana Alves de Lima; Pizetta, Marilia; Pierozzi, Caroline Geraldi; Furtado, Edson Luiz; Augusto, Fabio

    2013-11-15

    In this paper it is reported the use of the chromatographic profiles from volatile fractions of plant clones - in this case, hybrids of Eucalyptus grandis×Eucalyptus urophylla - to determine specimens susceptible to rust disease. The analytes were isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography combined to fast quadrupole mass spectrometry (GC×GC-qMS). Parallel Factor Analysis (PARAFAC) was employed for estimate the correlation between the chromatographic profiles and resistance against Eucalyptus rust, after preliminary variable selection performed by Fisher ratio analysis. The proposed method allowed the differentiation between susceptible and non-susceptible clones and determination of three resistance biomarkers. This approach can be a valuable alternative for the otherwise time-consuming and labor-intensive methods commonly used.

  1. Liquid-Gated High Mobility and Quantum Oscillation of the Two-Dimensional Electron Gas at an Oxide Interface.

    Science.gov (United States)

    Zeng, Shengwei; Lü, Weiming; Huang, Zhen; Liu, Zhiqi; Han, Kun; Gopinadhan, Kalon; Li, Changjian; Guo, Rui; Zhou, Wenxiong; Ma, Haijiao Harsan; Jian, Linke; Venkatesan, Thirumalai; Ariando

    2016-04-26

    Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here, we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO3/SrTiO3 (LAO/STO) interface through ionic liquid-assisted electric field effect. With a change of the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19 380 cm(2)/(V s) are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces, which exhibit quantum phenomena, could be obtained by ionic liquid-assisted field effect.

  2. Effect of In Composition on Two-Dimensional Electron Gas in Wurtzite AlGaN/InGaN Heterostructures

    Institute of Scientific and Technical Information of China (English)

    KIM Bong-Hwan; PARK Seoung-Hwan; LEE Jung-Hee; MOON Yong-Tae

    2010-01-01

    @@ The effect of In composition on two-dimensional electron gas in wurtzite AIGaN/InGaN heterostructures is theoretically investigated.The sheet carrier density is shown to increase nearly linearly with In mole fraction x,due to the increase in the polarization charge at the AlGaN/InGaN interface.The electron sheet density is enhanced with the doping in the AlGaN layer.The sheet carrier density is as high as 3.7 × 1013 cm-2 at the donor density of 10 x 1018 cm-3 for the HEMT structure with x = 0.3.The contribution of additional donor density on the electron sheet density is nearly independent of the In mole fraction.

  3. Hole-hole interaction effect in the conductance of the two-dimensional hole gas in the ballistic regime.

    Science.gov (United States)

    Proskuryakov, Y Y; Savchenko, A K; Safonov, S S; Pepper, M; Simmons, M Y; Ritchie, D A

    2002-08-12

    On a high-mobility two-dimensional hole gas (2DHG) in a GaAs/GaAlAs heterostructure we study the interaction correction to the Drude conductivity in the ballistic regime, k(B)Ttau/ variant Planck's over 2pi >1. It is shown that the "metallic" behavior of the resistivity (drho/dT>0) of the low-density 2DHG is caused by the hole-hole interaction effect in this regime. We find that the temperature dependence of the conductivity and the parallel-field magnetoresistance are in agreement with this description, and determine the Fermi-liquid interaction constant Fsigma0 which controls the sign of drho/dT.

  4. Development of an ultra-fast data-acquisition system for a two-dimensional microstrip gas chamber.

    Science.gov (United States)

    Ochi, A; Tanimori, T; Nishi, Y; Aoki, S; Nishi, Y

    1998-05-01

    A high-performance data-acquisition system has been developed in order to obtain time-resolved sequential images from a two-dimensional microstrip gas chamber (MSGC). This was achieved using fully digital processing with a synchronized pipeline method. Complex logical circuits for processing large numbers of signals are mounted on a small number of complex programmable logic devices. The system is operated with a 10 MHz synchronous clock, and has the capability of handling more than 3 x 10(6) counts s(-1) for asynchronous events. The system was examined using a 5 x 5 cm MSGC and the recently developed 10 x 10 cm MSGC (1024 outputs); the anticipated performances were achieved.

  5. Bound states of a negative test charge due to many-body effects in the two-dimensional electron gas

    Science.gov (United States)

    Ghazali, A.; Gold, A.

    1995-12-01

    Bound states of a negative test electron in the low-density regime of the two-dimensional electron gas are obtained when many-body effects (exchange and correlation) are incorporated in the screening function via the local-field correction. Using the Green's-function method and a variational method we determine the energies and the wave functions of the ground state and the excited states as functions of the electron density. For high electron density no bound state is found. Below a critical density the number and the energy of bound states increase with decreasing electron density. The ground state is described by the wave function ψ2s~r exp(-r/α).

  6. New families of flows between two-dimensional conformal field theories

    CERN Document Server

    Dorey, P; Tateo, R; Dorey, Patrick; Dunning, Clare; Tateo, Roberto

    2000-01-01

    We present evidence for the existence of infinitely-many new families of renormalisation group flows between the nonunitary minimal models of conformal field theory. These are associated with perturbations by the $\\phi_{21}$ and In all of the new flows, the finite-volume effective central charge is a non-monotonic function of the system size. The evolution of this effective central charge is studied by means of a nonlinear integral equation, a massless variant of an equation recently found to describe certain massive perturbations of these same models. We also observe that a similar non-monotonicity arises in the more familiar $\\phi_{13}$ perturbations, when the flows induced are between nonunitary minimal models.

  7. Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows

    CERN Document Server

    Gallet, Basile

    2015-01-01

    We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about a vertical axis and driven by a vertically invariant horizontal body-force. This system admits vertically invariant solutions that satisfy the 2D Navier-Stokes equation. At high Reynolds number and without global rotation, such solutions are usually unstable to three-dimensional perturbations. By contrast, for strong enough global rotation, we prove rigorously that the 2D (and possibly turbulent) solutions are stable to vertically dependent perturbations: the flow becomes 2D in the long-time limit. These results shed some light on several fundamental questions of rotating turbulence: for arbitrary Reynolds number and small enough Rossby number, the system is attracted towards purely 2D flow solutions, which display no energy dissipation anomaly and no cyclone-anticyclone asymmetry. Finally, these results challenge the applicability of wave turbulence theory to describe stationary rotating turbulence in bounded domains.

  8. Two dimensional analytical solution for a partially vegetated compound channel flow

    Institute of Scientific and Technical Information of China (English)

    HUAI Wen-xin; XU Zhi-gang; YANG Zhong-hua; ZENG Yu-hong

    2008-01-01

    The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item. The compound channel is di- vided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vege- tated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical so- lution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.

  9. A Finite-Element Solution of the Navier-Stokes Equations for Two-Dimensional and Axis-Symmetric Flow

    Directory of Open Access Journals (Sweden)

    Sven Ø. Wille

    1980-04-01

    Full Text Available The finite element formulation of the Navier-Stokes equations is derived for two-dimensional and axis-symmetric flow. The simple triangular, T6, isoparametric element is used. The velocities are interpolated by quadratic polynomials and the pressure is interpolated by linear polynomials. The non-linear simultaneous equations are solved iteratively by the Newton-Raphson method and the element matrix is given in the Newton-Raphson form. The finite element domain is organized in substructures and an equation solver which works on each substructure is specially designed. This equation solver needs less storage in the computer and is faster than the traditional banded equation solver. To reduce the amount of input data an automatic mesh generator is designed. The input consists of the coordinates of eight points defining each substructure with the corresponding boundary conditions. In order to interpret the results they are plotted on a calcomp plotter. Examples of plots of the velocities, the streamlines and the pressure inside a two-dimensional flow divider and an axis-symmetric expansion of a tube are shown for various Reynolds numbers.

  10. Determining indicator toxaphene congeners in soil using comprehensive two-dimensional gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhu, Shuai; Gao, Lirong; Zheng, Minghui; Liu, Huimin; Zhang, Bing; Liu, Lidan; Wang, Yiwen

    2014-01-01

    Toxaphene, which is a broad spectrum chlorinated pesticide, is a complex mixture of several hundred congeners, mainly polychlorinated bornanes. Quantifying toxaphene in environmental samples is difficult because of its complexity, and because each congener has a different response factor. Toxaphene chromatograms acquired using one-dimensional gas chromatography (1DGC) show that this technique cannot be used to separate all of the toxaphene congeners. We developed and validated a sensitive and quantitative method for determining three indicator toxaphene congeners in soil using an isotope dilution/comprehensive two-dimensional gas chromatography-tandem mass spectrometry (GC × GC-MS). The samples were extracted using accelerated solvent extraction, and then the extracts were purified using silica gel columns. (13)C₁₀-labeled Parlar 26 and 50 were used as internal standards and (13)C₁₀-labeled Parlar 62 was used as an injection standard. The sample extraction and purification treatments and the GC × GC-MS parameters were optimized. Subsequently the samples were determined by GC × GC-MS. The limits of detection for Parlar 26, 50, and 62 were 0.6 pg/g, 0.4 pg/g, and 1.0 pg/g (S/N=3), respectively, and the calibration curves had good linear correlations between 50 and 1000 μg/L (r(2)>0.99). Comprehensive two-dimensional GC gave substantial improvements over one-dimensional GC in the toxaphene analysis. We analyzed soil samples containing trace quantities of toxaphene to demonstrate that the developed method could be used to analyze toxaphene in environmental samples.

  11. Fundamental interactions of vortical structures with boundary layers in two-dimensional flows

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Lynov, Jens-Peter

    1991-01-01

    in the vorticity-stream function representation for bounded geometries. Fundamental processes connected to vorticity detachment from the boundary layers caused by the proximity of vortical structures are described. These processes include enstrophy enhancement of the main flow during bursting events, and pinning...

  12. On calculation of quasi-two-dimensional divergence-free projections for visualization of three-dimensional incompressible flows

    CERN Document Server

    Gelfgat, Alexander

    2015-01-01

    A visualization of three-dimensional incompressible flows by divergence-free quasi-two-dimensional projections of the velocity field on three coordinate planes was recently proposed. The projections were calculated using divergence-free Galerkin bases, which resulted in the whole procedure being complicated and CPU-time consuming. Here we propose an alternative way based on the Chorin projection combined with a SIMPLE-like iteration. The approach proposed is much easier in realization, allows for faster computations, and can be generalized for arbitrary curvilinear orthogonal coordinates. To illustrate the visualization method, examples of flow visualization in cylindrical and spherical coordinates, as well as post-processing of experimental 3D-PTV data are presented.

  13. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    Science.gov (United States)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  14. ANALYSIS OF WATER QUALITY IN SHALLOW LAKES WITH A TWO-DIMENSIONAL FLOW-SEDIMENT MODEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The governing equation for sediment pollutions was derived based on the turbulent diffusion of pollutants in shallow lakes. Coupled with shallow water equations, a depth-averaged 2-D flow and water quality model was developed. By means of the conservation law, a proposed differential equation for the change of sediment pollutants was linked to the 2-D equations. Under the framework of the finite volume method, the Osher approximate Riemann solver was employed to solve the equations. An analytical resolution was used to examine the model capabilities. Simulated results matched the exact solutions especially well. As an example, the simulation of CODMn in the Wuli Lake, a part of the Taihu lake, was conducted, which led to reasonable results. This study provides a new approach and a practical tool for the simulation of flow and water quality in shallow lakes.

  15. Unstable manifold computations for the two-dimensional plane Poiseuille flow

    Energy Technology Data Exchange (ETDEWEB)

    Casas, Pablo S. [Universidad Politecnica de Cataluna, Departamento de Matematica Aplicada I, Barcelona (Spain); Jorba, Angel [Universidad de Barcelona, Departamento de Matematica Aplicada y Analisis, Barcelona (Spain)

    2004-11-01

    We follow the unstable manifold of periodic and quasi-periodic solutions in time for the Poiseuille problem, using two formulations: holding a constant flux or mean pressure gradient. By means of a numerical integrator of the Navier-Stokes equations, we let the fluid evolve from an initially perturbed unstable solution until the fluid reaches an attracting state. Thus, we detect several connections among different configurations of the flow such as laminar, periodic, quasi-periodic with two or three basic frequencies, and more complex sets that we have not been able to classify. These connections make possible the location of new families of solutions, usually hard to find by means of numerical continuation of curves, and show the richness of the dynamics of the Poiseuille flow. (orig.)

  16. Two-dimensional nonstationary flow of a conducting fluid, induced by a rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, A.B.

    1977-07-01

    An examination is made of a full induction problem on the planar movement of a conducting fluid in a rotating magnetic field. The solution to this problem is sought by the method of degradation into Fourier series by harmonics of the rotating field. The initial system of partial differential equations is reduced to the system 2+1 of normal differential equations that bind the amplitudes of function harmonics and electrical vector potential. A solution to the problem for small anti ..omega.. was found with an accuracy up to the second approximation. The unsteadiness of flow was found to be manifested in a form of induced cross-sectional waves, traveling along the stream tubes of this flow at a speed that is equal to the phase velocity of the magnetic field. The appearance of wave effects is explained by considerations of symmetry. 5 references, 1 figure.

  17. Identifying the Flow Physics and Modeling Transient Forces on Two-Dimensional Wings

    Science.gov (United States)

    2016-09-02

    becomes smaller relative to the random component of the error (indicated by the size of the confidence ellipse). This means that the modifications to...understanding the dynamics of these unsteady flows, and uses state-of-the-art techniques, both for measuring these phenomena in experiments (using an...art techniques, both for measuring these phenomena in experiments (using an unsteady wind tunnel at IIT), and for analyzing the data and developing

  18. Interplay between Rashba spin-orbit coupling and adiabatic rotation in a two-dimensional Fermi gas

    Science.gov (United States)

    Doko, E.; Subaşı, A. L.; Iskin, M.

    2017-01-01

    We explore the trap profiles of a two-dimensional atomic Fermi gas in the presence of a Rashba spin-orbit coupling and under an adiabatic rotation. We first consider a noninteracting gas and show that the competition between the effects of Rashba coupling on the local density of single-particle states and the Coriolis effects caused by rotation gives rise to a characteristic ring-shaped density profile that survives at experimentally accessible temperatures. Furthermore, Rashba splitting of the Landau levels gives the density profiles a ziggurat shape in the rapid-rotation limit. We then consider an interacting gas under the BCS mean-field approximation for local pairing, and study the pair-breaking mechanism that is induced by the Coriolis effects on superfluidity, where we calculate the critical rotation frequencies both for the onset of pair breaking and for the complete destruction of superfluidity in the system. In particular, by comparing the results of a fully-quantum-mechanical Bogoliubov-de Gennes approach with those of a semiclassical local-density approximation, we construct extensive phase diagrams for a wide range of parameter regimes in the trap where the aforementioned competition may, e.g., favor an outer normal edge that is completely phase separated from the central superfluid core by vacuum.

  19. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    Science.gov (United States)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  20. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-10-31

    The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.

  1. Analytic Approximate Solutions for Unsteady Two-Dimensional and Axisymmetric Squeezing Flows between Parallel Plates

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Rashidi

    2008-01-01

    Full Text Available The flow of a viscous incompressible fluid between two parallel plates due to the normal motion of the plates is investigated. The unsteady Navier-Stokes equations are reduced to a nonlinear fourth-order differential equation by using similarity solutions. Homotopy analysis method (HAM is used to solve this nonlinear equation analytically. The convergence of the obtained series solution is carefully analyzed. The validity of our solutions is verified by the numerical results obtained by fourth-order Runge-Kutta.

  2. Statistical theory of reversals in two-dimensional confined turbulent flows

    CERN Document Server

    Shukla, Vishwanath; Brachet, Marc

    2016-01-01

    It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a confined 2D Navier-Stokes flow with bottom friction and a spatially periodic forcing. In particular, the random reversals of the large scale circulation on the turbulent background involve bifurcations of the probability distribution function of the large-scale circulation velocity that are described by the related microcanonical distribution which displays transitions from gaussian to bimodal and broken ergodicity. A minimal 13-mode model reproduces these results.

  3. The orientation field of fibers advected by a two-dimensional chaotic flow

    Science.gov (United States)

    Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg

    2016-11-01

    We examine the orientation of slender fibers advected by a 2D chaotic flow. The orientation field of these fibers show fascinating structures called scar lines, where they rotate by π over short distances. We use the standard map as a convenient model to represent a time-periodic 2D incompressible fluid flow. To understand the fiber orientation field, we consider the stretching field, given by the eigenvalues and eigenvectors of the Cauchy-Green strain tensors. The eigenvector field is strongly aligned with the fibers over almost the entire field, but develops topological singularities at certain points which do not exist in the advected fiber field. The singularities are points that have experienced zero stretching, and the number of such points increases rapidly with time. A key feature of both the fiber orientation and the eigenvector field are the scar lines. We show that certain scar lines form from fluid elements that are initially stretched in one direction and then stretched in an orthogonal direction to cancel the initial stretching. The scar lines that satisfy this condition contain the singularities of the eigenvector field. These scar lines highlight the major differences between the passive director field and the much more widely studied passive scalar field.

  4. AQMAN; linear and quadratic programming matrix generator using two-dimensional ground-water flow simulation for aquifer management modeling

    Science.gov (United States)

    Lefkoff, L.J.; Gorelick, S.M.

    1987-01-01

    A FORTRAN-77 computer program code that helps solve a variety of aquifer management problems involving the control of groundwater hydraulics. It is intended for use with any standard mathematical programming package that uses Mathematical Programming System input format. The computer program creates the input files to be used by the optimization program. These files contain all the hydrologic information and management objectives needed to solve the management problem. Used in conjunction with a mathematical programming code, the computer program identifies the pumping or recharge strategy that achieves a user 's management objective while maintaining groundwater hydraulic conditions within desired limits. The objective may be linear or quadratic, and may involve the minimization of pumping and recharge rates or of variable pumping costs. The problem may contain constraints on groundwater heads, gradients, and velocities for a complex, transient hydrologic system. Linear superposition of solutions to the transient, two-dimensional groundwater flow equation is used by the computer program in conjunction with the response matrix optimization method. A unit stress is applied at each decision well and transient responses at all control locations are computed using a modified version of the U.S. Geological Survey two dimensional aquifer simulation model. The program also computes discounted cost coefficients for the objective function and accounts for transient aquifer conditions. (Author 's abstract)

  5. Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states

    CERN Document Server

    Naso, A; Dubrulle, B

    2009-01-01

    A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. The vorticity fluctuations are Gaussian while the mean flow is characterized by a linear $\\overline{\\omega}-\\psi$ relationship. Furthermore, the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. A new class of relaxation equations towards the statistical equilibrium state is derived. These equations can provide an effective description of the dynamics towards equilibrium or serve as numerical algorithms to determin...

  6. Inversion for basal friction coefficients with a two-dimensional flow line model using Tikhonov regularization

    Directory of Open Access Journals (Sweden)

    Yuri V. Konovalov

    2012-09-01

    Full Text Available We present results of basal friction coefficient inversion. The inversion was performed by a 2D flow line model for one of the four fast flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago. The input data for the performance of both the forward and the inverse problems included synthetic aperture radar interferometry ice surface velocities, ice surface elevations and ice thicknesses obtained by airborne measurements (all were taken from Dowdeswell et al., 2002. Numerical experiments with: i different sea level shifts; and ii randomly perturbed friction coefficient have been carried out in the forward problem. The impact of sea level changes on vertical distribution of horizontal velocity and on shear stress distribution near the ice front has been investigated in experiments with different sea level shifts. The experiments with randomly perturbed friction coefficient have revealed that the modeled surface velocity is weakly sensitive to the perturbations and, therefore, the inverse problem should be considered ill posed. To mitigate ill posedness of the inverse problem, Tikhonov’s regularization was applied. The regularization parameter was determined from the relation of the discrepancy between observed and modeled velocities to the regularization parameter. The inversion was performed for both linear and non-linear sliding laws. The inverted spatial distributions of the basal friction coefficient are similar for both sliding laws. The similarity between these inverted distributions suggests that the changes in the friction coefficient are accompanied by appropriate water content variations at the glacier base.

  7. Two-dimensional finite volume method for dam-break flow simulation

    Institute of Scientific and Technical Information of China (English)

    M.ALIPARAST

    2009-01-01

    A numerical model based upon a second-order upwind cell-center finite volume method on unstructured triangular grids is developed for solving shallow water equations.The assumption of a small depth downstream instead of a dry bed situation changes the wave structure and the propagation speed of the front which leads to incorrect results.The use of Harten-Lax-vau Leer (HLL) allows handling of wet/dry treatment.By usage of the HLL approximate Riemann solver,also it make possible to handle discontinuous solutions.As the assumption of a very small depth downstream of the dam can change the nature of the dam break flow problem which leads to incorrect results,the HLL approximate Riemann solver is used for the computation of inviscid flux functions,which makes it possible to handle discontinuous solutions.A multidimensional slope-limiting technique is applied to achieve second-order spatial accuracy and to prevent spurious oscillations.To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary,the friction source terms are treated in a fully implicit way.A third-order Runge-Kutta method is used for the time integration of semi-discrete equations.The developed numerical model has been applied to several test cases as well as to real flows.The tests are tested in two cases:oblique hydraulic jump and experimental dam break in converging-diverging flume.Numerical tests proved the robustness and accuracy of the model.The model has been applied for simulation of dam break analysis of Torogh in Irun.And finally the results have been used in preparing EAP (Emergency Action Plan).

  8. Critical Stokes number for the capture of inertial particles by recirculation cells in two-dimensional quasisteady flows

    Science.gov (United States)

    Verjus, Romuald; Angilella, Jean-Régis

    2016-05-01

    Inertial particles are often observed to be trapped, temporarily or permanently, by recirculation cells which are ubiquitous in natural or industrial flows. In the limit of small particle inertia, determining the conditions of trapping is a challenging task, as it requires a large number of numerical simulations or experiments to test various particle sizes or densities. Here, we investigate this phenomenon analytically and numerically in the case of heavy particles (e.g., aerosols) at low Reynolds number, to derive a trapping criterion that can be used both in analytical and numerical velocity fields. The resulting criterion allows one to predict the characteristics of trapped particles as soon as single-phase simulations of the flow are performed. Our analysis is valid for two-dimensional particle-laden flows in the vertical plane, in the limit where the particle inertia, the free-fall terminal velocity, and the flow unsteadiness can be treated as perturbations. The weak unsteadiness of the flow generally induces a chaotic tangle near heteroclinic or homoclinic cycles if any, leading to the apparent diffusion of fluid elements through the boundary of the cell. The critical particle Stokes number Stc below which aerosols also enter and exit the cell in a complex manner has been derived analytically, in terms of the flow characteristics. It involves the nondimensional curvature-weighted integral of the squared velocity of the steady fluid flow along the dividing streamline of the recirculation cell. When the flow is unsteady and St>Stc , a regular motion takes place due to gravity and centrifugal effects, like in the steady case. Particles driven towards the interior of the cell are trapped permanently. In contrast, when the flow is unsteady and St

  9. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    Science.gov (United States)

    Tessarolo, Nathalia S; dos Santos, Luciana R M; Silva, Raphael S F; Azevedo, Débora A

    2013-03-01

    The liquid product obtained via the biomass flash pyrolysis is commonly called bio-oil or pyrolysis oil. Bio-oils can be used as sources for chemicals or as fuels, primarily in mixtures or emulsions with fossil fuels. A detailed chemical characterization of bio-oil is necessary to determine its potential uses. Such characterization demands a powerful analytical technique such as comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). Limited chemical information can be obtained from conventional gas chromatography coupled mass spectrometry (GC-MS) because of the large number of compounds and coelutions. Thus, GC×GC-TOFMS was used for the individual identification of bio-oil components from two samples prepared via the flash pyrolysis of empty palm fruit bunch and pine wood chips. To the best of our knowledge, few papers have reported comprehensive two-dimensional gas chromatography (GC×GC) for bio-oil analysis. Many classes of compounds such as phenols, benzenediols, cyclopentenones, furanones, indanones and alkylpyridines were identified. Several coelutions present in the GC-MS were resolved using GC×GC-TOFMS. Many peaks were detected for the samples by GC-MS (~166 and 129), but 631 and 857 were detected by GC×GC-TOFMS, respectively. The GC×GC-TOFMS analyses indicated that the major classes of components (analytes>0.5% relative area) in the two bio-oil samples are ketones, cyclopentenones, furanones, furans, phenols, benzenediols, methoxy- and dimethoxy-phenols and sugars. In addition, esters, aldehydes and pyridines were found for sample obtained from empty palm fruit bunch, while alcohols and cyclopentanediones were found in sample prepared from pine wood chips indicating different composition profiles due to the biomass sources. The elucidation of the composition of empty fruit bunch and pine wood chips bio-oils indicates that these oils are suitable for the production of value-added chemicals. The

  10. Lipidic ionic liquid stationary phases for the separation of aliphatic hydrocarbons by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Nan, He; Zhang, Cheng; O'Brien, Richard A; Benchea, Adela; Davis, James H; Anderson, Jared L

    2017-01-20

    Lipidic ionic liquids (ILs) possessing long alkyl chains as well as low melting points have the potential to provide unique selectivity as well as wide operating ranges when used as stationary phases in gas chromatography. In this study, a total of eleven lipidic ILs containing various structural features (i.e., double bonds, linear thioether chains, and cyclopropanyl groups) were examined as stationary phases in comprehensive two dimensional gas chromatography (GC×GC) for the separation of nonpolar analytes in kerosene. N-alkyl-N'-methyl-imidazolium-based ILs containing different alkyl side chains were used as model structures to investigate the effects of alkyl moieties with different structural features on the selectivities and operating temperature ranges of the IL-based stationary phases. Compared to a homologous series of ILs containing saturated side chains, lipidic ILs exhibit improved selectivity toward the aliphatic hydrocarbons in kerosene. The palmitoleyl IL provided the highest selectivity compared to all other lipidic ILs as well as the commercial SUPELCOWAX 10 column. The linoleyl IL containing two double bonds within the alkyl side chain showed the lowest chromatographic selectivity. The lipidic IL possessing a cyclopropanyl group within the alkyl moiety exhibited the highest thermal stability. The Abraham solvation parameter model was used to evaluate the solvation properties of the lipidic ILs. This study provides the first comprehensive examination into the relation between lipidic IL structure and the resulting solvation characteristics. Furthermore, these results establish a basis for applying lipidic ILs as stationary phases for solute specific separations in GC×GC.

  11. Using comprehensive two-dimensional gas chromatography to explore the geochemistry of the Santa Barbara oil seeps

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Christopher; Nelson, Robert

    2013-03-27

    The development of comprehensive two-dimensional gas chromatography (GC x GC) has expanded the analytical window for studying complex mixtures like oil. Compared to traditional gas chromatography, this technology separates and resolves at least an order of magnitude more compounds, has a much larger signal to noise ratio, and sorts compounds based on their chemical class; hence, providing highly refined inventories of petroleum hydrocarbons in geochemical samples that was previously unattainable. In addition to the increased resolution afforded by GC x GC, the resulting chromatograms have been used to estimate the liquid vapor pressures, aqueous solubilities, octanol-water partition coefficients, and vaporization enthalpies of petroleum hydrocarbons. With these relationships, powerful and incisive analyses of phase-transfer processes affecting petroleum hydrocarbon mixtures in the environment are available. For example, GC x GC retention data has been used to quantitatively deconvolve the effects of phase transfer processes such as water washing and evaporation. In short, the positive attributes of GC x GC-analysis have led to a methodology that has revolutionized the analysis of petroleum hydrocarbons. Overall, this research has opened numerous fields of study on the biogeochemical "genetics" (referred to as petroleomics) of petroleum samples in both subsurface and surface environments. Furthermore, these new findings have already been applied to the behavior of oil at other seeps as well, for petroleum exploration and oil spill studies.

  12. Comprehensive two-dimensional gas chromatography coupled with fast sulphur-chemiluminescence detection: implications of detector electronics.

    Science.gov (United States)

    Blomberg, Jan; Riemersma, Toby; van Zuijlen, Manfred; Chaabani, Hassan

    2004-09-24

    Within the petrochemical industry, there has been a growing interest in methods capable of providing detailed information on the distribution of sulphur-containing compounds in various product streams, going down to the level of separating and quantifying individual sulphur species. Since no single capillary gas chromatographic column is able to perform this separation, a refuge to multi-dimensional separation techniques has to be taken. In this respect, comprehensive two-dimensional gas chromatography (GC x GC) coupled with sulphur chemiluminescence detection (SCD) has shown to be highly promising. It has been suggested, however, that the detector volume of an SCD restricts its potential to keep up with the fast second-dimension separations of contemporary GC x GC. In this paper, we will demonstrate that the lack of speed of the SCD does not originate from its physical dimensions, but is largely determined by the speed of the electronics used. Additionally, some typical examples will be presented to illustrate the potential of GC x GC coupled with fast SCD.

  13. Two-dimensional time-dependent modelling of fume formation in a pulsed gas metal arc welding process

    Science.gov (United States)

    Boselli, M.; Colombo, V.; Ghedini, E.; Gherardi, M.; Sanibondi, P.

    2013-06-01

    Fume formation in a pulsed gas metal arc welding (GMAW) process is investigated by coupling a time-dependent axi-symmetric two-dimensional model, which takes into account both droplet detachment and production of metal vapour, with a model for fume formation and transport based on the method of moments for the solution of the aerosol general dynamic equation. We report simulative results of a pulsed process (peak current = 350 A, background current 30 A, period = 9 ms) for a 1 mm diameter iron wire, with Ar shielding gas. Results showed that metal vapour production occurs mainly at the wire tip, whereas fume formation is concentrated in the fringes of the arc in the spatial region close to the workpiece, where metal vapours are transported by convection. The proposed modelling approach allows time-dependent tracking of fumes also in plasma processes where temperature-time variations occur faster than nanoparticle transport from the nucleation region to the surrounding atmosphere, as is the case for most pulsed GMAW processes.

  14. Analysis of special surfactants by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.

    Science.gov (United States)

    Wulf, Volker; Wienand, Nils; Wirtz, Michaela; Kling, Hans-Willi; Gäb, Siegmar; Schmitz, Oliver J

    2010-01-29

    Multidimensional gas-chromatographic analyses of olesochemically based nonionic, anionic and several cationic surfactants in industrial cleaners are demonstrated. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry allows the simultaneous determination of fatty alcohols, fatty alcohol sulphates and alkyl polyglucosides. In addition, the determination of fatty alcohol ethoxylates up to C(10)EO(8) (highest degree of ethoxylation) and C(18)EO(5) (longest C-chain at an ethoxylation degree of five) and the analysis of fatty alcohol alkoxylates that contain ethoxy (EO) and propoxy (PO) groups could be realized. Because of decomposition in the injector and a weak EI-fragmentation, cationic surfactants such as alkyl benzyl dimethyl ammonium chloride could also be identified by their characteristic fragments. Thermogravimetric analyses confirmed that the temperature in a normal GC injector is not high enough to cause thermal decomposition of esterquats. However, we could demonstrate that a modified silylation procedure forms decomposition products of esterquats in the GC injector which are detectable by GCxGC-(TOF)MS and allows the identification of such GC-atypical analytes.

  15. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach.

    NARCIS (Netherlands)

    Hoomans, B.P.B.; Kuipers, J.A.M.; Briels, Willem J.; van Swaaij, Willibrordus Petrus Maria

    1996-01-01

    A discrete particle model of a gas-fluidised bed has been developed and in this the two-dimensional motion of the individual, spherical particles was directly calculated from the forces acting on them, accounting for the interaction between the particles and the interstitial gas phase. Our collision

  16. Proteomic Analysis of Colorectal Cancer: Prefractionation Strategies Using two-Dimensional Free-Flow Electrophoresis

    Directory of Open Access Journals (Sweden)

    Richard J. Simpson

    2006-04-01

    Full Text Available This review deals with the application of a new prefractionation tool, free-flow electrophoresis (FFE, for proteomic analysis of colorectal cancer (CRC. CRC is a leading cause of cancer death in the Western world. Early detection is the single most important factor influencing outcome of CRC patients. If identified while the disease is still localized, CRC is treatable. To improve outcomes for CRC patients there is a pressing need to identify biomarkers for early detection (diagnostic markers, prognosis (prognostic indicators, tumour responses (predictive markers and disease recurrence (monitoring markers. Despite recent advances in the use of genomic analysis for risk assessment, in the area of biomarker identification genomic methods alone have yet to produce reliable candidate markers for CRC. For this reason, attention is being directed towards proteomics as a complementary analytical tool for biomarker identification. Here we describe a proteomics separation tool, which uses a combination of continuous FFE, a liquid-based isoelectric focusing technique, in the first dimension, followed by rapid reversed-phase HPLC (1–6 min/analysis in the second dimension. We have optimized imaging software to present the FFE/RP-HPLC data in a virtual 2D gel-like format. The advantage of this liquid based fractionation system over traditional gel-based fractionation systems is the ability to fractionate large quantity protein samples. Unlike 2D gels, the method is applicable to both high-Mr proteins and small peptides, which are difficult to separate, and in the case of peptides, are not retained in standard 2D gels.

  17. PHYSALIS: a new method for particle simulation. Part II: two-dimensional Navier-Stokes flow around cylinders

    Science.gov (United States)

    Takagi, S.; Og˜uz, H. N.; Zhang, Z.; Prosperetti, A.

    2003-05-01

    This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to "transfer" the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forthcoming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.

  18. Wall interference in a two-dimensional-flow wind tunnel, with consideration of the effect of compressibility

    Science.gov (United States)

    Allen, H Julian; Vincenti, Walter G

    1944-01-01

    Theoretical tunnel-wall corrections are derived for an airfoil of finite thickness and camber in a two-dimensional-flow wind tunnel. The theory takes account of the effects of the wake of the airfoil and of the compressibility of the fluid, and is based upon the assumption that the chord of the airfoil is small in comparison with the height of the tunnel. Consideration is given to the phenomenon of choking at high speeds and its relation to the tunnel-wall corrections. The theoretical results are compared with the small amount of low-speed experimental data available and the agreement is seen to be satisfactory, even for relatively large values of the chord-height ratio.

  19. Considerations on the effect of wind-tunnel walls on oscillating air forces for two-dimensional subsonic compressible flow

    Science.gov (United States)

    Runyan, Harry L; Watkins, Charles E

    1953-01-01

    This report treats the effect of wind-tunnel walls on the oscillating two-dimensional air forces in a compressible medium. The walls are simulated by the usual method of placing images at appropriate distances above and below the wing. An important result shown is that, for certain conditions of wing frequency, tunnel height, and Mach number, the tunnel and wing may form a resonant system so that the forces on the wing are greatly changed from the condition of no tunnel walls. It is pointed out that similar conditions exist for three-dimensional flow in circular and rectangular tunnels and apparently, within certain Mach number ranges, in tunnels of nonuniform cross section or even in open tunnels or jets.

  20. Random attractors in $H^1$ for stochastic two dimensional micropolar fluid flows with spatial-valued noises

    Directory of Open Access Journals (Sweden)

    Wenqiang Zhao

    2014-11-01

    Full Text Available This work studies the long-time behavior of two-dimensional micropolar fluid flows perturbed by the generalized time derivative of the infinite dimensional Wiener processes. Based on the omega-limit compactness argument as well as some new estimates of solutions, it is proved that the generated random dynamical system admits an H^1-random attractor which is compact in H^1 space and attracts all tempered random subsets of L^2 space in H^1 topology. We also give a general abstract result which shows that the continuity condition and absorption of the associated random dynamical system in H^1 space is not necessary for the existence of random attractor in H^1 space.

  1. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes through Two-Dimensional Radiation-Magnetohydrodynamic Simulations

    CERN Document Server

    Ohsuga, Ken

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...

  2. 1r2dinv: A finite-difference model for inverse analysis of two dimensional linear or radial groundwater flow

    Science.gov (United States)

    Bohling, G.C.; Butler, J.J.

    2001-01-01

    We have developed a program for inverse analysis of two-dimensional linear or radial groundwater flow problems. The program, 1r2dinv, uses standard finite difference techniques to solve the groundwater flow equation for a horizontal or vertical plane with heterogeneous properties. In radial mode, the program simulates flow to a well in a vertical plane, transforming the radial flow equation into an equivalent problem in Cartesian coordinates. The physical parameters in the model are horizontal or x-direction hydraulic conductivity, anisotropy ratio (vertical to horizontal conductivity in a vertical model, y-direction to x-direction in a horizontal model), and specific storage. The program allows the user to specify arbitrary and independent zonations of these three parameters and also to specify which zonal parameter values are known and which are unknown. The Levenberg-Marquardt algorithm is used to estimate parameters from observed head values. Particularly powerful features of the program are the ability to perform simultaneous analysis of heads from different tests and the inclusion of the wellbore in the radial mode. These capabilities allow the program to be used for analysis of suites of well tests, such as multilevel slug tests or pumping tests in a tomographic format. The combination of information from tests stressing different vertical levels in an aquifer provides the means for accurately estimating vertical variations in conductivity, a factor profoundly influencing contaminant transport in the subsurface. ?? 2001 Elsevier Science Ltd. All rights reserved.

  3. Characterization of the left atrial vortex flow by two-dimensional transesophageal contrast echocardiography using particle image velocimetry.

    Science.gov (United States)

    Park, Kyu-Hwan; Son, Jang-Won; Park, Won-Jong; Lee, Sang-Hee; Kim, Ung; Park, Jong-Seon; Shin, Dong-Gu; Kim, Young-Jo; Choi, Jung-Hyun; Houle, Helene; Vannan, Mani A; Hong, Geu-Ru

    2013-01-01

    This article is the first clinical investigation of the quantitative left atrial (LA) vortex flow by two-dimensional (2-D) transesophageal contrast echocardiography (2-D-TECE) using vector particle image velocimetry (PIV). The aims of this study were to assess the feasibility of LA vortex flow analysis and to characterize and quantify the LA vortex flow in controls and in patients with atrial fibrillation (AF). Thirty-five controls and 30 patients with AF underwent transesophageal contrast echocardiography. The velocity vector was estimated by particle image velocimetry. The morphology and pulsatility of the LA vortex flow were compared between the control and AF groups. In all patients, quantitative LA vortex flow analysis was feasible. In the control group, multiple, pulsatile, compact and elliptical-shaped vortices were seen in the periphery of the LA. These vortices were persistently maintained and vectors were directed toward the atrioventricular inflow. In the AF group, a large, merged, lower pulsatile and round-shaped vortex was observed in the center of the LA. In comparisons of vortex parameters, the relative strength was significantly lower in the AF group (1.624 ± 0.501 vs. 2.105 ± 0.226, p < 0.001). It is feasible to characterize and quantify the LA vortex flow by transesophageal contrast echocardiography in patients with AF, which offers a new method to obtain additional information on LA hemodynamics. The approach has the potential for early detection of the LA dysfunction and in decisions regarding treatment strategy and guiding anticoagulation treatment in patients with AF.

  4. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state.

    Science.gov (United States)

    Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H

    2015-10-01

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  5. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    Energy Technology Data Exchange (ETDEWEB)

    Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)

    2015-10-15

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  6. Determination of disease biomarkers in Eucalyptus by comprehensive two-dimensional gas chromatography and multivariate data analysis.

    Science.gov (United States)

    Hantao, Leandro Wang; Aleme, Helga Gabriela; Passador, Martha Maria; Furtado, Edson Luiz; Ribeiro, Fabiana Alves de Lima; Poppi, Ronei Jesus; Augusto, Fabio

    2013-03-01

    In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC×GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte.

  7. The low-temperature mobility of two-dimensional electron gas in AlGaN/GaN heterostructures

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin-Feng; Mao Wei; Zhang Jin-Cheng; Hao Yue

    2008-01-01

    To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scattering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGan/GaN interface roughness increases due to the stress accumulation in AlGaN layer.

  8. The mobility of two-dimensional electron gas in AlGaN/GaN heterostructures with varied Al content

    Institute of Scientific and Technical Information of China (English)

    ZHANG JinFeng; HAO Yue; ZHANG JinCheng; NI JinYu

    2008-01-01

    The mobility of the two-dimensional electron gas (2DEG) in AlGaN/GaN hetero-structures changes significantly with AI content in the AlGaN barrier layer, while few mechanism analyses focus on it. Theoretical calculation and analysis of the 2DEG mobility in AlGaN/GaN heterostructures with varied Al content are carried out based on the recently reported experimental data. The 2DEG mobility is modeled analytically as the total effects of the scattering mechanisms including acoustic deformation-potential, piezoelectric, polar optic phonon, alloy disorder, interface roughness, dislocation and remote modulation doping scattering. We show that the increase of the 2DEG density, caused by the ascension of the Al content in the barrier layer, is a dominant factor that leads to the changes of the individual scat-tering processes. The change of the 2DEG mobility with Al content are mainly de-termined by the interface roughness scattering and the alloy disorder scattering at 77 K, and the polar optic phonon scattering and the interface roughness scattering at the room temperature. The calculated function of the interface roughness pa-rameters on the Al content shows that the stress caused AlGaN/GaN interface degradation at higher Al content is an important factor in the limitation of the in-terface roughness scattering on the 2DEG mobility in AlGaN/GaN heterostructures with high Al content.

  9. Characterization of the Clostridium difficile volatile metabolome using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    Science.gov (United States)

    Rees, Christiaan A; Shen, Aimee; Hill, Jane E

    2016-12-15

    Clostridium difficile is a bacterial pathogen capable of causing life-threatening infections of the gastrointestinal tract characterized by severe diarrhea. Exposure to certain classes of antibiotics, advanced age, and prolonged hospitalizations are known risk factors for infection by this organism. Anecdotally, healthcare providers have reported that they can smell C. difficile infections in their patients, and several studies have suggested that there may indeed be an olfactory signal associated with C. difficile-associated diarrhea. In this study, we sought to characterize the volatile molecules produced by an epidemic strain of C. difficile (R20291) using headspace solid-phase microextraction (HS-SPME) followed by two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). We report on a set of 77 volatile compounds, of which 59 have not previously been associated with C. difficile growth in vitro. Amongst these reported compounds, we detect both straight-chain and branched-chain carboxylic acids, as well as p-cresol, which have been the primary foci of C. difficile volatile metabolomic studies to-date. We additionally report on novel sulfur-containing and carbonyl-containing molecules that have not previously been reported for C. difficile. With the identification of these novel C. difficile-associated volatile compounds, we demonstrate the superior resolution and sensitivity of GC×GC-TOFMS relative to traditional GC-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    Directory of Open Access Journals (Sweden)

    H. J. Harsan Ma

    2015-08-01

    Full Text Available The two-dimensional electron gas (2DEG formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO3 (LAO and non-polar SrTiO3 (STO. Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La0.5Sr0.5TiO3 (LSTO layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  11. Two-Dimensional Electron Gas at SrTiO3-Based Oxide Heterostructures via Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Sang Woon Lee

    2016-01-01

    Full Text Available Two-dimensional electron gas (2DEG at an oxide interface has been attracting considerable attention for physics research and nanoelectronic applications. Early studies reported the formation of 2DEG at semiconductor interfaces (e.g., AlGaAs/GaAs heterostructures with interesting electrical properties such as high electron mobility. Besides 2DEG formation at semiconductor junctions, 2DEG was realized at the interface of an oxide heterostructure such as the LaAlO3/SrTiO3 (LAO/STO heterojunction. The origin of 2DEG was attributed to the well-known “polar catastrophe” mechanism in oxide heterostructures, which consist of an epitaxial LAO layer on a single crystalline STO substrate among proposed mechanisms. Recently, it was reported that the creation of 2DEG was achieved using the atomic layer deposition (ALD technique, which opens new functionality of ALD in emerging nanoelectronics. This review is focused on the origin of 2DEG at oxide heterostructures using the ALD process. In particular, it addresses the origin of 2DEG at oxide interfaces based on an alternative mechanism (i.e., oxygen vacancies.

  12. A comparison of the transport properties of bilayer graphene,monolayer graphene, and two-dimensional electron gas

    Institute of Scientific and Technical Information of China (English)

    Sun Li-Feng; Dong Li-Min; Wu Zhi-Fang; Fang Chao

    2013-01-01

    we studied and compared the transport properties of charge carriers in bilayer graphene,monolayer graphene,and the conventional semiconductors (the two-dimensional electron gas (2DEG)).It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene.However,resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene,which do not occur in the 2DEG.Furthermore,there are tunneling and forbidden regions in the transmission spectrum for each material,and the division of the two regions has been given in the work.The tunneling region covers a wide range of the incident energy for the two graphene systems,but only exists under specific conditions for the 2DEG.The counterparts of the transmission in the conductance profile are also given for the three materials,which may be used as high-performance devices based on the bilayer graphene.

  13. Characterization of incense smoke by solid phase microextraction—Comprehensive two-dimensional gas chromatography (GC×GC)

    Science.gov (United States)

    Tran, Tin C.; Marriott, Philip J.

    Comprehensive two-dimensional gas chromatography in tandem with flame ionization detection (GC×GC-FID) was used for the qualitative fingerprint characterisation of four different types of powdered incense headspace (H/S), and incense smoke. Volatile organic compounds (VOCs) in the incense powder and smoke were extracted by using solid phase microextraction (SPME) with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) 65 μm fiber. Low-polarity/polar, and polar/non-polar phase combinations were tested to contrast the GC×GC separation of components in these two column sets. A total of 324 compounds were tentatively identified, with more than 100 compounds in incense powders and more than 200 compounds in the incense smoke, by using GC coupled to quadrupole mass spectrometric detection. Identification required at least 90% match with the NIST library; otherwise they were considered as unidentified. The smoke stream comprised compounds originating from the incense powder, and combustion products such as PAH, N-heterocyclics, and furans. However, GC×GC was able to separate many more volatile compounds (possibly hundreds more) present in the complex smoke samples, many of which cannot be separated by conventional 1D-GC; this is a direct consequence of the high-resolution power of GC×GC. GC×GC fingerprint comparison of powder H/S with smoke allows facile subtraction of the former from the latter to assist identification of compounds generated from burning incense.

  14. Andreev reflection and bound state formation in a ballistic two-dimensional electron gas probed by a quantum point contact

    Science.gov (United States)

    Irie, Hiroshi; Todt, Clemens; Kumada, Norio; Harada, Yuichi; Sugiyama, Hiroki; Akazaki, Tatsushi; Muraki, Koji

    2016-10-01

    We study coherent transport and bound state formation of Bogoliubov quasiparticles in a high-mobility I n0.75G a0.25As two-dimensional electron gas (2DEG) coupled to a superconducting Nb electrode by means of a quantum point contact (QPC) as a tunable single-mode probe. Below the superconducting critical temperature of Nb, the QPC shows a single-channel conductance greater than the conductance quantum 2 e2/h at zero bias, which indicates the presence of Andreev-reflected quasiparticles, time-reversed states of the injected electron, returning back through the QPC. The marked sensitivity of the conductance enhancement to voltage bias and perpendicular magnetic field suggests a mechanism analogous to reflectionless tunneling—a hallmark of phase-coherent transport, with the boundary of the 2DEG cavity playing the role of scatterers. When the QPC transmission is reduced to the tunneling regime, the differential conductance vs bias voltage probes the single-particle density of states in the proximity area. Measured conductance spectra show a double peak within the superconducting gap of Nb, demonstrating the formation of Andreev bound states in the 2DEG. Both of these results, obtained in the open and closed geometries, underpin the coherent nature of quasiparticles, i.e., phase-coherent Andreev reflection at the InGaAs/Nb interface and coherent propagation in the ballistic 2DEG.

  15. High-Throughput Design of Two-Dimensional Electron Gas Systems Based on Polar/Nonpolar Perovskite Oxide Heterostructures

    Science.gov (United States)

    Yang, Kesong; Nazir, Safdar; Behtash, Maziar; Cheng, Jianli

    2016-10-01

    The two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides such as LaAlO3 and SrTiO3 (STO) is of fundamental and practical interest because of its novel interfacial conductivity and its promising applications in next-generation nanoelectronic devices. Here we show that a group of combinatorial descriptors that characterize the polar character, lattice mismatch, band gap, and the band alignment between the perovskite-oxide-based band insulators and the STO substrate, can be introduced to realize a high-throughput (HT) design of SrTiO3-based 2DEG systems from perovskite oxide quantum database. Equipped with these combinatorial descriptors, we have carried out a HT screening of all the polar perovskite compounds, uncovering 42 compounds of potential interests. Of these, Al-, Ga-, Sc-, and Ta-based compounds can form a 2DEG with STO, while In-based compounds exhibit a strain-induced strong polarization when deposited on STO substrate. In particular, the Ta-based compounds can form 2DEG with potentially high electron mobility at (TaO2)+/(SrO)0 interface. Our approach, by defining materials descriptors solely based on the bulk materials properties, and by relying on the perovskite-oriented quantum materials repository, opens new avenues for the discovery of perovskite-oxide-based functional interface materials in a HT fashion.

  16. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications

    Science.gov (United States)

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-02-01

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al2O3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and VB.

  17. Attempt to unravel the composition of toxaphene by comprehensive two-dimensional gas chromatography with selective detection.

    Science.gov (United States)

    Korytár, P; van Stee, L L P; Leonards, P E G; de Boer, J; Brinkman, U A Th

    2003-04-25

    Comprehensive two-dimensional gas chromatography (GC x GC) coupled with micro electron-capture and time-of-flight mass spectrometric (TOF-MS) detection has been used to analyse technical toxaphene. An HP-1 x HT-8 column combination yielded highly structured chromatograms and revealed a complex mixture of over 1000 compounds what is significantly higher number than in any study before. The analysis of a mixture of 23 individual congeners and TOF-MS evaluation of technical toxaphene showed that the chromatogram is structured according to the number of chlorine substituents in a molecule. The nature of the compounds (bornane and camphene) does not appear to have any influence. The sum of the peak areas of all congeners in each group was calculated using laboratory-written software; based on these results, the composition of technical toxaphene as a function of the number of chlorine substituents was provisionally calculated and was found that hepta- and octachlorinated compounds represents 75% of the total toxaphene area.

  18. Fluctuations in an ordered c (2×2) two-dimensional lattice-gas system with repulsive interactions

    Science.gov (United States)

    Argyrakis, P.; Chumak, A. A.; Maragakis, M.

    2005-06-01

    Fluctuations of the particle density in an ordered c(2×2) two-dimensional lattice-gas system are studied both analytically and by means of Monte Carlo simulations. The ordering is caused by a strong interparticle repulsive interaction resulting in the second order phase transition. The lattice of adsorption sites is divided into two sublattices (almost filled and almost empty sublattices) each of which contains a small number of structural “defects,” i.e., vacancies and excess particles. The relaxation of the correlation function of fluctuations turns out to be governed by two different functions. This peculiarity is to be contrasted with the traditional fluctuation theory which predicts the existence of a single damping constant, determined by the collective diffusion coefficient. A specific thesis of the proposed approach is that transport phenomena in ordered systems may be described in terms of both displacements and generation-recombination of structural defects. Accordingly, the correlation function of fluctuations depends on diffusion coefficients of two defect species as well as on the generation-recombination frequency. Our theory reduces to the usual one when fluctuations occur under local equilibrium conditions, i.e., for a sufficiently large size of probe areas and not too great values of interaction parameter. The analytical results agree well with those obtained in the Monte Carlo framework.

  19. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure

    Science.gov (United States)

    Zhongxin, Zheng; Jiandong, Sun; Yu, Zhou; Zhipeng, Zhang; Hua, Qin

    2015-10-01

    The broadband terahertz (THz) emission from drifting two-dimensional electron gas (2DEG) in an AlGaN/GaN heterostructure at 6 K is reported. The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the ‘shallow water’ plasma instability mechanism in 2DEG. Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed. Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons. Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment. It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field. A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission. Project supported by the National Basic Research Program of China (No. G2009CB929303), the National Natural Science Foundation of China (No. 61271157), the China Postdoctoral Science Foundation (No. 2014M551678), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1301054B).

  20. Screened test-charge - test-charge interaction in the two-dimensional electron gas: bound states

    Science.gov (United States)

    Gold, A.; Ghazali, A.

    1997-08-01

    We study the test-charge - test-charge interaction when screening effects of a two-dimensional electron gas are taken into account. The Schrödinger equation is solved in the momentum space by diagonalizing the corresponding matrix and the results are compared with variational calculations. For two positive (or negative) test-charges bound states are obtained for low electron densities when many-body effects are incorporated in the screening function. For a density larger than a critical density, 0953-8984/9/32/011/img5 (0953-8984/9/32/011/img6 is the Wigner - Seitz parameter), no bound states are found. Below the critical density, 0953-8984/9/32/011/img7, the number of bound states and their energy increase with decreasing density and the ground-state binding energy saturates near 0953-8984/9/32/011/img8. Finite-width effects for quantum wells are also discussed. We present new results for bound states between a positive and a negative test charge and we discuss effects of exchange and correlation on the binding energies.

  1. Quantification of real thermal, catalytic, and hydrodeoxygenated bio-oils via comprehensive two-dimensional gas chromatography with mass spectrometry.

    Science.gov (United States)

    Silva, Raquel V S; Tessarolo, Nathalia S; Pereira, Vinícius B; Ximenes, Vitor L; Mendes, Fábio L; de Almeida, Marlon B B; Azevedo, Débora A

    2017-03-01

    The elucidation of bio-oil composition is important to evaluate the processes of biomass conversion and its upgrading, and to suggest the proper use for each sample. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) is a widely applied analytical approach for bio-oil investigation due to the higher separation and resolution capacity from this technique. This work addresses the issue of analytical performance to assess the comprehensive characterization of real bio-oil samples via GC×GC-TOFMS. The approach was applied to the individual quantification of compounds of real thermal (PWT), catalytic process (CPO), and hydrodeoxygenation process (HDO) bio-oils. Quantification was performed with reliability using the analytical curves of oxygenated and hydrocarbon standards as well as the deuterated internal standards. The limit of quantification was set at 1ngµL(-1) for major standards, except for hexanoic acid, which was set at 5ngµL(-1). The GC×GC-TOFMS method provided good precision (bio-oil samples. Sugars, furans, and alcohols appear as the major constituents of the PWT, CPO, and HDO samples, respectively. In order to obtain bio-oils with better quality, the catalytic pyrolysis process may be a better option than hydrogenation due to the effective reduction of oxygenated compound concentrations and the lower cost of the process, when hydrogen is not required to promote deoxygenation in the catalytic pyrolysis process.

  2. Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications

    Science.gov (United States)

    Kawarada, Hiroshi; Yamada, Tetsuya; Xu, Dechen; Tsuboi, Hidetoshi; Kitabayashi, Yuya; Matsumura, Daisuke; Shibata, Masanobu; Kudo, Takuya; Inaba, Masafumi; Hiraiwa, Atsushi

    2017-01-01

    Complementary power field effect transistors (FETs) based on wide bandgap materials not only provide high-voltage switching capability with the reduction of on-resistance and switching losses, but also enable a smart inverter system by the dramatic simplification of external circuits. However, p-channel power FETs with equivalent performance to those of n-channel FETs are not obtained in any wide bandgap material other than diamond. Here we show that a breakdown voltage of more than 1600 V has been obtained in a diamond metal-oxide-semiconductor (MOS) FET with a p-channel based on a two-dimensional hole gas (2DHG). Atomic layer deposited (ALD) Al2O3 induces the 2DHG ubiquitously on a hydrogen-terminated (C-H) diamond surface and also acts as both gate insulator and passivation layer. The high voltage performance is equivalent to that of state-of-the-art SiC planar n-channel FETs and AlGaN/GaN FETs. The drain current density in the on-state is also comparable to that of these two FETs with similar device size and VB. PMID:28218234

  3. High-temperature two-dimensional gas chromatography of hydrocarbons up to nC60 for analysis of vacuum gas oils.

    Science.gov (United States)

    Dutriez, Thomas; Courtiade, Marion; Thiébaut, Didier; Dulot, Hugues; Bertoncini, Fabrice; Vial, Jérôme; Hennion, Marie-Claire

    2009-04-03

    In a tense energetic context, the characterization of heavy petroleum fractions becomes essential. Conventional comprehensive two-dimensional gas chromatography (2D-GC or GCxGC) is widely used for middle distillates analysis, but only a few applications are devoted to these heavier fractions. In this paper, it is shown how the optimization of GCxGC separation allowed the determination of suitable high-temperature (HT) conditions, adjusting column properties and operating conditions. 2D separations were evaluated using 2D separation criteria and a new concept of 2D asymmetry (As(2D)). New HT conditions allowed the extension of GCxGC range of applications to heavier hydrocarbons, up to nC(60). A first application of high-temperature two-dimensional gas chromatography (HT-2D-GC) to a full vacuum gas oil (VGO) feed stock is described. Comparisons with other standardized methods illustrate the high potential of HT-2D-GC for heavy fractions analysis.

  4. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated porous media

    Science.gov (United States)

    Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.

    1999-04-01

    We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.

  5. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment

    KAUST Repository

    Duddu, Ravindra

    2009-05-01

    We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.

  6. Two dimensional modelling of flood flows and suspended sedimenttransport: the case of the Brenta River, Veneto (Italy

    Directory of Open Access Journals (Sweden)

    P. Martini

    2004-01-01

    Full Text Available The paper presents a numerical model for the simulation of flood waves and suspended sediment transport in a lowland river basin of North Eastern Italy. The two dimensional depth integrated momentum and continuity equations are modified to take into account the bottom irregularities that strongly affect the hydrodynamics in partially dry areas, as for example, in the first stages of an inundation process or in tidal flow. The set of equations are solved with a standard Galerkin finite element method using a semi-implicit numerical scheme where the effects of both the small channel network and the regulation devices on the flood wave propagation are accounted for. Transport of suspended sediment and bed evolution are coupled with the hydrodynamics using an appropriate form of the advection-dispersion equation and Exner's equation. Applications to a case study are presented in which the effects of extreme flooding on the Brenta River (Italy are examined. Urban and rural flood risk areas are identified and the effects of a alleviating action based on a diversion channel flowing into Venice Lagoon are simulated. The results show that this solution strongly reduces the flood risk in the downstream areas and can provide an important source of sediment for the Venice Lagoon. Finally, preliminary results of the sediment dispersion due to currents and waves in the Venice Lagoon are presented.

  7. Modeling performance of a two-dimensional capsule in a microchannel flow: long-term lateral migration.

    Science.gov (United States)

    Li, Hua; Ma, Gang

    2010-08-01

    The long-term lateral migration of a two-dimensional elastic capsule in a microchannel is studied numerically in this paper. The numerical method combines a finite volume technique for solving the fluid problem with a front tracking technique for capturing and tracking the capsule membrane. The capsule is modeled as a liquid medium enclosed by a thin membrane which has linear elastic properties. The capsule, whose initial shape is circle and which starts from a near-center position or a near-wall position, experiences tilting and membrane tank-treading, and migrates laterally when moving along the surrounding flow. The lateral migration demonstrates the existence of lift effect of surrounding flow on moving capsule. Before capsule approaches to the microchannel centerline closely, lower membrane dilation modulus and lower viscosity ratio tend to result in faster lateral migration. The initial position also influences the performance behavior of capsule, despite the lateral migration of capsule is a quasisteady process. Small difference in capsule behavior when capsule is not near to the microchannel centerline might lead to significant difference in capsule behavior when capsule approaches closely to the centerline. When capsules are near to microchannel wall, the effect of the wall on capsule behavior might dominate, leading to relatively faster lateral migration. When capsules are not far from microchannel centerline, the effect of the nonlinearity of Poiseuille flow might dominate, resulting in relatively slower lateral movement. When capsules are located closely to the centerline, they behave differently, where the reason still remains poorly understood and it will be one of our future studies. The comparison between the capsule behavior from the present simulation and that by the migration law proposed by Coupier [Phys. Fluids 20, 111702 (2008)] shows that the behavioral agreement for near-wall capsule is better than that for near-center capsule, and the best

  8. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Michael Phillips

    Full Text Available BACKGROUND: Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOF MS has been proposed as a powerful new tool for multidimensional analysis of complex chemical mixtures. We investigated GCxGC-TOF MS as a new method for identifying volatile organic compounds (VOCs in normal human breath. METHODS: Samples of alveolar breath VOCs and ambient room air VOC were collected with a breath collection apparatus (BCA onto separate sorbent traps from 34 normal healthy volunteers (mean age = 40 yr, SD = 17 yr, male/female = 19/15. VOCs were separated on two serial capillary columns separated by a cryogenic modulator, and detected with TOF MS. The first and second dimension columns were non-polar and polar respectively. RESULTS: BCA collection combined with GC×GC-TOF MS analysis identified approximately 2000 different VOCs in samples of human breath, many of which have not been previously reported. The 50 VOCs with the highest alveolar gradients (abundance in breath minus abundance in ambient room air mostly comprised benzene derivatives, acetone, methylated derivatives of alkanes, and isoprene. CONCLUSIONS: Collection and analysis of breath VOCs with the BCA-GC×GC-TOF MS system extended the size of the detectable human volatile metabolome, the volatome, by an order of magnitude compared to previous reports employing one-dimensional GC-MS. The size of the human volatome has been under-estimated in the past due to coelution of VOCs in one-dimensional GC analytical systems.

  9. Negative differential conductivity induced current instability in two-dimensional electron gas system in high magnetic fields

    Science.gov (United States)

    Lee, Ching-Ping; Komiyama, Susumu; Chen, Jeng-Chung

    2015-03-01

    High mobility two-dimensional electron gas (2DEG) formed in the interface of a GaAs/AlGaAs hetero-structure in high magnetic field (B) exhibits interring nonlinear response either under microwave radiation or to a dc electric field (E). It is general believed that this kind nonlinear behavior is closely related to the occurrence of negative-differential conductance (NDC) in the presence of strong B and E. We observe a new type NDC state driven by a direct current above a threshold value (Ith) applied to a 2DEG as a function of B at relatively high temperatures (T). A current instability is observed in 2DEG system at high B ~6-8 T and at high T ~ 20- 30 K while the applied current is over Ith. The longitudinal voltage Vxx shows sub-linear behavior with the increase of I. As the current exceed Ith, Vxx suddenly drops a ΔVxx and becomes irregular associated with the appearance of hysteresis with sweeping I. We find that Ith increases with the increase of B and of T; meanwhile, ΔVxx is larger at higher B but lower T. Data analysis suggest that the onset of voltage fluctuation can be described by a NDC model proposed by Kurosawa et al. in 1976. The general behaviors of T and B dependence of current instability are analog to those recently reported at lower both T and B. This consistence suggests the same genuine mechanism of NDC phenomena observed in 2DEG system.

  10. Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    de Godoy, Luiz Antonio Fonseca; Hantao, Leandro Wang; Pedroso, Marcio Pozzobon; Poppi, Ronei Jesus; Augusto, Fabio

    2011-08-05

    The use of multivariate curve resolution (MCR) to build multivariate quantitative models using data obtained from comprehensive two-dimensional gas chromatography with flame ionization detection (GC×GC-FID) is presented and evaluated. The MCR algorithm presents some important features, such as second order advantage and the recovery of the instrumental response for each pure component after optimization by an alternating least squares (ALS) procedure. A model to quantify the essential oil of rosemary was built using a calibration set containing only known concentrations of the essential oil and cereal alcohol as solvent. A calibration curve correlating the concentration of the essential oil of rosemary and the instrumental response obtained from the MCR-ALS algorithm was obtained, and this calibration model was applied to predict the concentration of the oil in complex samples (mixtures of the essential oil, pineapple essence and commercial perfume). The values of the root mean square error of prediction (RMSEP) and of the root mean square error of the percentage deviation (RMSPD) obtained were 0.4% (v/v) and 7.2%, respectively. Additionally, a second model was built and used to evaluate the accuracy of the method. A model to quantify the essential oil of lemon grass was built and its concentration was predicted in the validation set and real perfume samples. The RMSEP and RMSPD obtained were 0.5% (v/v) and 6.9%, respectively, and the concentration of the essential oil of lemon grass in perfume agreed to the value informed by the manufacturer. The result indicates that the MCR algorithm is adequate to resolve the target chromatogram from the complex sample and to build multivariate models of GC×GC-FID data. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. High-Throughput Computational Design of Advanced Functional Materials: Topological Insulators and Two-Dimensional Electron Gas Systems

    Science.gov (United States)

    Yang, Kesong

    As a rapidly growing area of materials science, high-throughput (HT) computational materials design is playing a crucial role in accelerating the discovery and development of novel functional materials. In this presentation, I will first introduce the strategy of HT computational materials design, and take the HT discovery of topological insulators (TIs) as a practical example to show the usage of such an approach. Topological insulators are one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. Here I will show that, by defining a reliable and accessible descriptor, which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28 TIs (some of them already known) in five different symmetry families. Next, I will talk about our recent research work on the HT computational design of the perovskite-based two-dimensional electron gas (2DEG) systems. The 2DEG formed on the perovskite oxide heterostructure (HS) has potential applications in next-generation nanoelectronic devices. In order to achieve practical implementation of the 2DEG in the device design, desired physical properties such as high charge carrier density and mobility are necessary. Here I show that, using the same strategy with the HT discovery of TIs, by introducing a series of combinatorial descriptors, we have successfully identified a series of candidate 2DEG systems based on the perovskite oxides. This work provides another exemplar of applying HT computational design approach for the discovery of advanced functional materials.

  12. Enantiomeric separation and quantification of ephedrine-type alkaloids in herbal materials by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Wang, Min; Marriott, Philip J; Chan, Wing-Hong; Lee, Albert W M; Huie, Carmen W

    2006-04-21

    The separation of ephedrine-type alkaloids and their enantiomers in raw herbs and commercial herbal products was investigated by carrying out enantioselective separation in the first-dimension column (containing beta-cyclodextrin as the chiral selector) of a comprehensive two-dimensional gas chromatography (GC x GC) system, whereas a polar polyethylene glycol capillary column was used for separation in the second dimension. Naturally occurring ephedrine-type alkaloids and their synthetic analogues (enantiomeric counterparts) were adequately resolved from each other, as well as from potential interference species in the sample matrix using GC x GC, whereas single column GC analysis was unable to separate all the alkaloids of interest. Detection limits in the order of 0.1-1.3 microg/mL and linearity of calibration with R(2)>or=0.999 over approximately the range of 0.5-100 microg/mL for the quantitative determination of various ephedrine-type alkaloids were obtained. The commercial herbal products tested contained mostly (-)-ephedrine, (+)-pseudoephedrine, (-)-N-methylephedrine and (-)-norephedrine, with concentrations in the range of 40-2100, 0-1,300, 15-300 and 0-30 microg/g of the product, respectively, and repeatability of analysis was generally in the range of 1-5%. The present GCxGC method is effective and useful for the determination of the dosage levels of the principle ephedrine-type alkaloids in commercial health supplements and complex raw herb formulations, as well the differentiation of ephedrine-containing products that were derived from natural plant or synthetic sources, e.g., simply by visualizing the presence or absence of the enantiomeric pairs of (+/-) ephedrine and (+/-)-N-methylephedrine in the GC x GC chromatograms.

  13. Hydrocarbon Specificity During Aerobic oil Biodegradation Revealed in Marine Microcosms With the use of Comprehensive, Two-Dimensional Gas Chromatography.

    Science.gov (United States)

    Wardlaw, G. D.; Reddy, C. M.; Nelson, R. K.; Valentine, D. L.

    2008-12-01

    In 2003 the National Research Council reported more than 380 million gallons of oil is emitted into the ocean each year from natural seepage and as a result of anthropogenic activities. Many of the hydrocarbons making up this oil are persistent and toxic to marine life. Petroleum emitted into biologically sensitive areas can lead to environmental stress and ecosystem collapse. As a result many studies and a substantial amount of resources have been devoted to creating efficient and effective remediation tools and developing a better understanding of natural hydrocarbon weathering processes occurring in marine environments. The goal of this study is to elucidate patterns and extent of aerobic hydrocarbon degradation in marine sediments. In order to assess the specific molecular transformations occurring in petroleum emitted into oxic marine environments, we prepared microcosm experiments using sediments and seawater collected from the natural oil seeps offshore Coal Oil Point, California. Petroleum recovered from Platform Holly in the Santa Barbara Channel, was added to a sediment-seawater mixture and the microcosm bottles were allowed to incubate under aerobic conditions for slightly more than 100 days. Comprehensive, two-dimensional gas chromatography was employed in this study to quantify changes in the concentrations of individual hydrocarbon compounds because of the increased resolution and resolving power provided with this robust analytical method. We show significant hydrocarbon mass loss due to aerobic biodegradation for hundreds of tracked compounds in the microcosm bottles. The results shown here provide quantitative evidence for broad-scale metabolic specificity during aerobic hydrocarbon degradation in surface and shallow subsurface marine sediments.

  14. A data acquisition system for two-dimensional position sensitive micropattern gas detectors with delay-line readout

    Energy Technology Data Exchange (ETDEWEB)

    Hanu, A.R., E-mail: hanua@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada); NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Prestwich, W.V.; Byun, S.H. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4K1 (Canada)

    2015-04-21

    We present a data acquisition (DAQ) system for two-dimensional position sensitive micropattern gas detectors using the delay-line method for readout. The DAQ system consists of a field programmable gate array (FPGA) as the main data processor and our time-to-digital (TDC) mezzanine card for making time measurements. We developed the TDC mezzanine card around the Acam TDC-GPX ASIC and it features four independent stop channels referenced to a common start, a typical timing resolution of ~81 ps, and a 17-bit measurement range, and is compliant with the VITA 57.1 standard. For our DAQ system, we have chosen the Xilinx SP601 development kit which features a single Spartan 6 FPGA, 128 MB of DDR2 memory, and a serial USB interface for communication. Output images consist of 1024×1024 square pixels, where each pixel has a 32-bit depth and corresponds to a time difference of 162 ps relative to its neighbours. When configured for a 250 ns acquisition window, the DAQ can resolve periodic event rates up to 1.8×10{sup 6} Hz without any loses and will report a maximum event rate of 6.11×10{sup 5} Hz for events whose arrival times follow Poisson statistics. The integral and differential non-linearities have also been measured and are better than 0.1% and 1.5%, respectively. Unlike commercial units, our DAQ system implements the delay-line image reconstruction algorithm entirely in hardware and is particularly attractive for its modularity, low cost, ease of integration, excellent linearity, and high throughput rate.

  15. Analysis of sex pheromone gland content of individual Symmetrischema tangolias by means of direct gland introduction into a two-dimensional gas chromatograph

    NARCIS (Netherlands)

    Griepink, F.C.; Drijfhout, F.P.; Beek, van T.A.; Visser, H.J.; Groot, de C.P.G.M.

    2000-01-01

    The amounts and ratios of the four constituents of the sex pheromone gland of the moth Symmetrischema tangolias were measured during a 24-hr dark–light cycle. A new approach was followed that involved the direct introduction of sex pheromone glands into the liner of a two-dimensional gas chromatogra

  16. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC–TOFMS)

    NARCIS (Netherlands)

    Weldegergis, B.T.; Villiers, de A.; McNeish, C.; Seethapathy, S.; Mostafa, A.; Górecki, T.; Crouch, A.M.

    2011-01-01

    As part of the ongoing research into the chemical composition of the uniquely South African wine cultivar Pinotage, the volatile composition of nine young wines of this cultivar was investigated using comprehensive two-dimensional gas chromatography (GC × GC) in combination with time-of-flight mass

  17. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC–TOFMS)

    NARCIS (Netherlands)

    Weldegergis, B.T.; Villiers, de A.; McNeish, C.; Seethapathy, S.; Mostafa, A.; Górecki, T.; Crouch, A.M.

    2011-01-01

    As part of the ongoing research into the chemical composition of the uniquely South African wine cultivar Pinotage, the volatile composition of nine young wines of this cultivar was investigated using comprehensive two-dimensional gas chromatography (GC × GC) in combination with time-of-flight mass

  18. Effects of anisotropy and magnetic fields on the specific heat of a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot

    Institute of Scientific and Technical Information of China (English)

    Zhai Zhi-Yuan; Li Yu-Qi; Pan Xiao-Yin

    2012-01-01

    We investigate the effects due to anisotropy and magnetic field interaction for a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot.The specific heat is studied with varying temperature,anisotropy,and magnetic field strength.The cases without and with the inclusion of the spin Zeeman interaction are considered.

  19. Two-dimensional aligned-field magnetofluiddynamic flow. I Steady incompressible flow with non-zero charge density

    Science.gov (United States)

    Yin, W.-L.

    1984-04-01

    It is shown that, in the case of non-zero charge density, the class of steady, plane, incompressible, aligned-fluid magnetofluiddynamic flows contains no rotational motions. Therefore, this class of flows is exhausted by the irrotational solutions of Kingston and Power.

  20. Numerical Simulation of Particle Flow Motion in a Two-Dimensional Modular Pebble-Bed Reactor with Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Guodong Liu

    2013-01-01

    Full Text Available Modular pebble-bed nuclear reactor (MPBNR technology is promising due to its attractive features such as high fuel performance and inherent safety. Particle motion of fuel and graphite pebbles is highly associated with the performance of pebbled-bed modular nuclear reactor. To understand the mechanism of pebble’s motion in the reactor, we numerically studied the influence of number ratio of fuel and graphite pebbles, funnel angle of the reactor, height of guide ring on the distribution of pebble position, and velocity by means of discrete element method (DEM in a two-dimensional MPBNR. Velocity distributions at different areas of the reactor as well as mixing characteristics of fuel and graphite pebbles were investigated. Both fuel and graphite pebbles moved downward, and a uniform motion was formed in the column zone, while pebbles motion in the cone zone was accelerated due to the decrease of the cross sectional flow area. The number ratio of fuel and graphite pebbles and the height of guide ring had a minor influence on the velocity distribution of pebbles, while the variation of funnel angle had an obvious impact on the velocity distribution. Simulated results agreed well with the work in the literature.

  1. NUMERICAL SIMULATION OF UNSTEADY TURBULENT FLOW INDUCED BY TWO-DIMENSIONAL ELEVATOR CAR AND COUNTER WEIGHT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ=0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed (U0=2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied (δ=0.1m, U0=2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.

  2. AlGaAs/GaAs two-dimensional electron gas structures studied by photo reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guillen Cervantes, A; Rivera Alvarez, Z; Hernandez, F; Huerta, J. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico); Mendez Garcia, V. H.; Lastras Martinez, A.; Zamora, L.; Saucedo, N. [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Melendez Lira, M; Lopez, M [Instituto Politecnico Nacional, Mexico, D.F. (Mexico)

    2001-12-01

    Al{sub x} Ga{sub 1}-x As/GaAs two-dimensional electron gas (2-DEG) heterostructures were fabricated by molecular beam epitaxy in three different laboratories. The samples were characterized by room temperature Photo reflectance (PR) spectroscopy and measurements at 77 K. Internal electric fields were detected by the presence of Franz-Keldysh (FK) oscillations in the PR spectra. >From a FK analysis we obtained the GaAs band-gap energy and the built-in electric field strength in each sample. On the other hand, in the energy region corresponding to Al{sub x} Ga{sub 1}-x As a broad PR signal was registered typical of a highly doped material. Using the third derivative theory we obtained the Al{sub x} Ga{sub 1}-x As band-gap energy, and from this value the Al concentration in the samples. Results showed that the sample with highest electron mobility exhibited the lowest internal electric field strength. [Spanish] Se fabricaron heteroestructuras del tipo Al{sub x} Ga{sub 1}-x As/GaAs con un gas de electrones en dos dimensiones por medio de epitaxia de haces moleculares en tres laboratorios diferentes. Las muestras se caracterizaron por fotorreflectancia (FR) a temperatura ambiente y por mediciones del efecto mayor a 77 K. Campos electricos internos se detectaron por la presencia de oscilaciones Franz-Leldysh (FK) en los espectros de FR. Del analisis de las oscilaciones FK obtuvimos la energia de la brecha prohibida del GaAs y la intensidad del campo electrico interno en cada muestra. Por otra parte, en la region de energia correspondiente al Al{sub x} Ga{sub 1}-x As observamos una senal de FR ancha, tipica de un material altamente impurificado. Usando la teoria de la tercera derivada, obtuvimos el valor de la brecha de energia del Al{sub x}Ga{sub 1}-xAs, y de este valor la concentracion de Al en las muestras. Los resultados mostraron que la estructura con el valor de movilidad electronica mas alto tiene la intensidad de campo electrico interno mas baja.

  3. Diverse effects of two-dimensional and step flow growth mode induced microstructures on the magnetic anisotropies of SrRuO[subscript3] thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y.Z.; Chmaissem, O.; Kolesnik, S.; Ullah, A.; Lurio, L.B.; Brown, D.E.; Brady, J.; Dabrowski, B.; Kimball, C.W.; Haji-Sheikh, M.; Genis, A.P. (NIU)

    2010-12-03

    Geometrical anisotropy axes of diverse SrRuO{sub 3} (SRO) films grown by random and directional two-dimensional and step flow modes are determined and their characteristic angular magnetizations are understood in terms of growth mode induced structural effects. Two-dimensional SRO films possess single-crystal-like structural qualities. Angular magnetization measurements show sharp minima and indicate the films easy axis to be in the [310] direction. In contrast, examination of step flow SRO films shows the presence of degenerate multiple in-plane domains and the anisotropy axis in a direction close to [110] even though directional surface steps are clearly visible.

  4. Organophosphorus pesticide and ester analysis by using comprehensive two-dimensional gas chromatography with flame photometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangping; Li, Dengkun; Li, Jiequan [Nanjing Centre for Disease Control and Prevention, Zizhulin Street, Gulou 210003, Nanjing (China); Rose, Gavin [Department of Environment and Primary Industries, Macleod Centre, Ernest Jones Drive, Macleod, Vic 3085 (Australia); Marriott, Philip J., E-mail: philip.marriott@monash.edu [Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton 3800 (Australia)

    2013-12-15

    Highlights: • GC × GC-FPD(P-mode) was applied to detection of 37 phosphorus (P)-containing compounds. • The method improves resolution of P-compounds that coelute in the first dimension. • P-compounds are analyzed with excellent sensitivity supported by cryogenic modulation. • The FPD(P-mode) selectivity allows analysis in high hydrocarbon (H/C) matrix. • Soil samples and spiked chemical weapon compounds in H/C matrix are readily screened. -- Abstract: Thirty-seven phosphorus (P)-containing compounds comprising organophosphorus pesticides and organophosphate esters were analyzed by using comprehensive two-dimensional gas chromatography with flame photometric detection in P mode (GC × GC-FPD(P)), with a non-polar/moderately polar column set. A suitable modulation temperature and period was chosen based on experimental observation. A number of co-eluting peak pairs on the {sup 1}D column were well separated in 2D space. Excellent FPD(P) detection selectivity, responding to compounds containing the P atom, produces clear 2D GC × GC plots with little interference from complex hydrocarbon matrices. Limits of detection (LOD) were within the range of 0.0021–0.048 μmol L{sup −1}, and linear calibration correlation coefficients (R{sup 2}) for all 37 P-compounds were at least 0.998. The P-compounds were spiked in 2% diesel and good reproducibility for their response areas and retention times was obtained. Spiked recoveries were 88%–157% for 5 μg L{sup −1} and 80%–138% for 10 μg L{sup −1} spiked levels. Both {sup 1}t{sub R} and {sup 2}t{sub R} shifts were noted when the content of diesel was in excess of 5% in the matrix. Soil samples were analyzed by using the developed method; some P-compounds were positively detected. In general, this study shows that GC × GC-FPD(P) is an accurate, sensitive and simple method for P-compound analysis in complicated environmental samples.

  5. Multidimensional gas chromatography for the detailed PIONA analysis of heavy naphtha: hyphenation of an olefin trap to comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Vendeuvre, Colombe; Bertoncini, Fabrice; Espinat, Didier; Thiébaut, Didier; Hennion, Marie-Claire

    2005-10-07

    A multidimensional method providing the composition of a heavy naphtha in paraffins, isoparaffins, olefins, naphthenes, and aromatics (PIONA) in the C8-C14 range is presented. The analytical set-up consists in a silver modified silica olefin trap on-line coupled to comprehensive two-dimensional gas chromatography (GC x GC). In this configuration, hydrocarbons are separated, in gaseous state, in two fractions, saturate and unsaturate, each fraction being subsequently analysed by GC or by GC x GC. The resolution between saturates and olefins was found to be improved compared to a single GC x GC run. The characterisation of the olefin trap highlights the benefits and the limits related to the use of that stationary phase as a double bond selective fractionation medium.

  6. LLUVIA-II: A program for two-dimensional, transient flow through partially saturated porous media; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, R.R.; Hopkins, P.L.

    1992-08-01

    LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification.

  7. Gas speed flow transducer

    Directory of Open Access Journals (Sweden)

    Godovaniouk V. N.

    2011-08-01

    Full Text Available The design of a gas speed flow transducer using the coupling of gas speed and heat streams within the transducer itself is proposed. To maintain the heat balance between two thermoresistors under gas stream at different temperatures, it provides energy consumption monitoring. The detailed combined planar technology for the transducer production is presented. The worked-out measurement procedure allows to make measurements in the temperature range. Information enough to organize production of cheap, reliable and precise gas speed flow transducers is given.

  8. Vacuum ultraviolet absorption spectroscopy in combination with comprehensive two-dimensional gas chromatography for the monitoring of volatile organic compounds in breath gas: A feasibility study.

    Science.gov (United States)

    Gruber, Beate; Groeger, Thomas; Harrison, Dale; Zimmermann, Ralf

    2016-09-16

    Vacuum ultraviolet (VUV) absorption spectroscopy was recently introduced as a new detection system for one, as well as comprehensive two-dimensional gas chromatography (GC×GC) and successfully applied to the analysis of various analytes in several matrices. In this study, its suitability for the analysis of breath metabolites was investigated and the impact of a finite volume of the absorption cell and makeup gas pressure was evaluated for volatile analytes in terms of sensitivity and chromatographic resolution. A commercial available VUV absorption spectrometer was coupled to GC×GC and applied to the analysis of highly polar volatile organic compounds (VOCs). Breath gas samples were acquired by needle trap micro extraction (NTME) during a glucose challenge and analysed by the applied technique. Regarding qualitative and quantitative information, the VGA-100 is compatible with common GC×GC detection systems like FID and even TOFMS. Average peak widths of 300ms and LODs in the lower ng range were achieved using GC×GC-VUV. Especially small oxygenated breath metabolites show intense and characteristic absorption patterns in the VUV region. Challenge responsive VOCs could be identified and monitored during a glucose challenge. The new VUV detection technology might especially be of benefit for applications in clinical research.

  9. Terahertz signal detection in a short gate length field-effect transistor with a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Vostokov, N. V., E-mail: vostokov@ipm.sci-nnov.ru; Shashkin, V. I. [Institute for Physics of Microstructures of the Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia and N. I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation)

    2015-11-28

    We consider the problem of non-resonant detection of terahertz signals in a short gate length field-effect transistor having a two-dimensional electron channel with zero external bias between the source and the drain. The channel resistance, gate-channel capacitance, and quadratic nonlinearity parameter of the transistor during detection as a function of the gate bias voltage are studied. Characteristics of detection of the transistor connected in an antenna with real impedance are analyzed. The consideration is based on both a simple one-dimensional model of the transistor and allowance for the two-dimensional distribution of the electric field in the transistor structure. The results given by the different models are discussed.

  10. Measurements and analysis of Hall effect of a two dimensional electron gas in the close proximity of a superconducting YBa2Cu3O(7 - x) film

    Science.gov (United States)

    Tseng, M. Z.; Jiang, W. N.; Hu, E. L.

    1994-09-01

    A direct integration of YBa2Cu3O(7 - x) and a two dimensional electron gas Hall probe was made possible through the use of a MgO buffer layer. We demonstrate the use of this structure for the measurements of the magnetization hysteresis of a superconducting YBa2Cu3O(7 - x) thin film, and we make an estimate of the sensitivity and resolution that can be achieved with this probe structure. The close proximity of the YBa2Cu3O(7 - x) to the two dimensional electron gas (approximately 1700 A) allows sensitive measurements of interactions between the two; more importantly, closer superconductor-semiconductor spacing can be achieved without severe compromise of the component material quality.

  11. Model the nonlinear instability of wall-bounded shear flows as a rare event: a study on two-dimensional Poiseuille flow

    Science.gov (United States)

    Wan, Xiaoliang; Yu, Haijun; Weinan, E.

    2015-05-01

    In this work, we study the nonlinear instability of two-dimensional (2D) wall-bounded shear flows from the large deviation point of view. The main idea is to consider the Navier-Stokes equations perturbed by small noise in force and then examine the noise-induced transitions between the two coexisting stable solutions due to the subcritical bifurcation. When the amplitude of the noise goes to zero, the Freidlin-Wentzell (F-W) theory of large deviations defines the most probable transition path in the phase space, which is the minimizer of the F-W action functional and characterizes the development of the nonlinear instability subject to small random perturbations. Based on such a transition path we can define a critical Reynolds number for the nonlinear instability in the probabilistic sense. Then the action-based stability theory is applied to study the 2D Poiseuille flow in a short channel.

  12. Comparison of column phase configurations for comprehensive two dimensional gas chromatographic analysis of crude oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.C.; Harynuk, J.; Marriott, P. [RMIT University, Melbourne (Australia). Dept. of Applied Chemistry; Logan, G.A.; Grosjean, E. [Geoscience Australia, Canberra (Australia); Ryan, D. [Charles Sturt University, Wagga Wagga (Australia). School of Science and Technology

    2006-09-15

    An inverted phase (polar to non-polar) column set has been compared with a non-polar to polar column set for the GC x GC separation of petroleum hydrocarbons. This column configuration is shown to provide greatly enhanced resolution for less polar compounds and makes greater use of the two dimensional separation space. It improves resolution of a greater number of components within one analysis and offers new possibilities for crude oil fingerprinting. (Author)

  13. Hydrologic Analysis and Two-Dimensional Simulation of Flow at State Highway 17 crossing the Gasconade River near Waynesville, Missouri

    Science.gov (United States)

    Huizinga, Richard J.

    2008-01-01

    In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade

  14. Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per

    2014-01-01

    position; all points in space within a cone with a full opening angle of 1208 can be reached from about 8mout to some hundred meters depending on the range resolution required. The first two-dimensional mean wind fields measured in a horizontal plane and in a vertical plane below a hovering search...

  15. Elucidation of the aroma compositions of Zhenjiang aromatic vinegar using comprehensive two dimensional gas chromatography coupled to time-of-flight mass spectrometry and gas chromatography-olfactometry.

    Science.gov (United States)

    Zhou, Zhilei; Liu, Shuangping; Kong, Xiangwei; Ji, Zhongwei; Han, Xiao; Wu, Jianfeng; Mao, Jian

    2017-03-03

    In this work, a method to characterize the aroma compounds of Zhenjiang aromatic vinegar (ZAV) was developed using comprehensive two dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS) and gas chromatography olfactometry (GC-O). The column combination was optimized and good separation was achieved. Structured chromatograms of furans and pyrazines were obtained and discussed. A total of 360 compounds were tentatively identified based on mass spectrum match factors, structured chromatogram and linear retention indices comparison. The most abundant class in number was ketones. A large number of esters, furans and derivatives, aldehydes and alcohols were also detected. The odor-active components were identified by comparison of the reported odor of the identified compounds with the odor of corresponding GC-O region. The odorants of methanethiol, 2-methyl-propanal, 2-methyl-butanal/3-methyl-butanal, octanal, 1-octen-3-one, dimethyl trisulfide, trimethyl-pyrazine, acetic acid, 3-(methylthio)-propanal, furfural, benzeneacetaldehyde, 3-methyl-butanoic acid/2-methyl-butanoic acid and phenethyl acetate were suspected to be the most potent. About half of them were identified as significant aroma constituents in ZAV for the first time. Their contribution to specific sensory attribute of ZAJ was also studied. The results indicated that the presented method is suitable for characterization of ZAV aroma constituents. This study also enriches our knowledge on the components and aroma of ZAV.

  16. Chemical characterization of aromatic compounds in extra heavy gas oil by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.

    Science.gov (United States)

    Avila, Bárbara M F; Pereira, Ricardo; Gomes, Alexandre O; Azevedo, Débora A

    2011-05-27

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the characterization of aromatic compounds present in extra heavy gas oil (EHGO) from Brazil. Individual identification of EHGO compounds was successfully achieved in addition to group-type separation on the chromatographic plane. Many aromatic hydrocarbons, especially polycyclic aromatic hydrocarbons and sulfur compounds, were detected and identified, such as chrysenes, phenanthrenes, perylenes, benzonaphthothiophenes and alkylbenzonaphthothiophenes. In addition, triaromatic steroids, methyl-triaromatic steroids, tetrahydrochrysenes and tetraromatic pentacyclic compounds were present in the EHGO aromatic fractions. Considering the roof-tile effect observed for many of these compound classes and the high number of individual compounds identified, GC×GC-TOFMS is an excellent technique to characterize the molecular composition of the aromatic fraction from EHGO samples. Moreover, data processing allowed the quantification of aromatic compounds, in class and individually, using external standards. EHGO data were obtained in μgg(-1), e.g., benzo[a]pyrene were in the range 351 to 1164μgg(-1). Thus, GC×GC-TOFMS was successfully applied in EHGO quantitative analysis.

  17. Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids from manufactured gas plants by reversed phase comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    McGregor, Laura A; Gauchotte-Lindsay, Caroline; Daéid, Niamh Nic; Thomas, Russell; Daly, Paddy; Kalin, Robert M

    2011-07-22

    Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique.

  18. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    Science.gov (United States)

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  19. Enhancement of plume dilution in two-dimensional and three-dimensional porous media by flow focusing in high-permeability inclusions

    Science.gov (United States)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo

    2015-07-01

    In porous media, lateral mass exchange exerts a significant influence on the dilution of solute plumes in quasi steady state. This process is one of the main mechanisms controlling transport of continuously emitted conservative tracers in groundwater and is fundamental for the understanding of many degradation processes. We investigate the effects of high-permeability inclusions on transverse mixing in three-dimensional versus two-dimensional systems by experimental, theoretical, and numerical analyses. Our results show that mixing enhancement strongly depends on the system dimensionality and on the parameterization used to model transverse dispersion. In particular, no enhancement of transverse mixing would occur in three-dimensional media if the local transverse dispersion coefficient was uniform and flow focusing in both transverse directions was identical, which is fundamentally different from the two-dimensional case. However, the velocity and grain size dependence of the transverse dispersion coefficient and the correlation between hydraulic conductivity and grain size lead to prevailing mixing enhancement within the inclusions, regardless of dimensionality. We perform steady state bench-scale experiments with multiple tracers in three-dimensional and quasi two-dimensional flow-through systems at two different velocities (1 and 5 m/d). We quantify transverse mixing by the flux-related dilution index and compare the experimental results with model simulations. The experiments confirm that, although dilution is larger in three-dimensional systems, the enhancement of transverse mixing due to flow focusing is less effective than in two-dimensional systems. The spatial arrangement of the high-permeability inclusions significantly affects the degree of mixing enhancement. We also observe more pronounced compound-specific effects in the dilution of solute plumes in three-dimensional porous media than in two-dimensional ones.

  20. Gas flow characteristics in straight silicon microchannels

    Institute of Scientific and Technical Information of China (English)

    丁英涛; 姚朝晖; 沈孟育

    2002-01-01

    Experiments have been conducted to investigate nitrogen gas flow characteristics through four trapezoidal sili-con microchannels with different hydraulic diameters. The volume flow rate and pressure ratio are measured in theexperiments. It is found that the friction coefficient is no longer a constant, which is different from the conventionaltheory. The characteristics are first explained by the theoretical analysis. A simplified rectangular model (rectangularstraight channel model) is then proposed. The experimental results are compared with the theoretical predictions basedon the simplified rectangular model and the two-dimensional flow between the parallel-plate model which was usuallyuse The difference between the experimental data and the theoretical predictions is found in the high-pressure ratiocasesx. The influence of the gas compressibility effect based on the Boltzmann gas kinetic analysis method is studiedto interpret the discrepancy. We discuss two important factors affecting the application extent of different predictionmodels.

  1. Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures

    Science.gov (United States)

    Schöche, S.; Shi, Junxia; Boosalis, A.; Kühne, P.; Herzinger, C. M.; Woollam, J. A.; Schaff, W. J.; Eastman, L. F.; Schubert, M.; Hofmann, T.

    2011-02-01

    The free-charge carrier mobility, sheet density, and effective mass of a two-dimensional electron gas are exemplarily determined in the spectral range from 640 GHz to 1 THz in a AlGaN/GaN heterostructure using the optical-Hall effect at room temperature. Complementary midinfrared spectroscopic ellipsometry measurements are performed for analysis of heterostructure constituents layer thickness, phonon mode, and free-charge carrier parameters. The electron effective mass is determined to be (0.22±0.04)m0. The high-frequency sheet density and carrier mobility parameters are in good agreement with results from dc electrical Hall effect measurements, indicative for frequency-independent carrier scattering mechanisms of the two-dimensional carrier distribution.

  2. Linear stability of horizontal, laminar fully developed, quasi-two-dimensional liquid metal duct flow under a transverse magnetic field and heated from below

    Science.gov (United States)

    Vo, Tony; Pothérat, Alban; Sheard, Gregory J.

    2017-03-01

    This study considers the linear stability of Poiseuille-Rayleigh-Bénard flows subjected to a transverse magnetic field, to understand the instabilities that arise from the complex interaction between the effects of shear, thermal stratification, and magnetic damping. This fundamental study is motivated in part by the desire to enhance heat transfer in the blanket ducts of nuclear fusion reactors. In pure magnetohydrodynamic flows, the imposed transverse magnetic field causes the flow to become quasi-two-dimensional and exhibit disturbances that are localized to the horizontal walls. However, the vertical temperature stratification in Rayleigh-Bénard flows feature convection cells that occupy the interior region, and therefore the addition of this aspect provides an interesting point for investigation. The linearized governing equations are described by the quasi-two-dimensional model proposed by Sommeria and Moreau [J. Fluid Mech. 118, 507 (1982), 10.1017/S0022112082001177], which incorporates a Hartmann friction term, and the base flows are considered fully developed and one-dimensional. The neutral stability curves for critical Reynolds and Rayleigh numbers, Rec and Rac, respectively, as functions of Hartmann friction parameter H have been obtained over 10-2≤H ≤104 . Asymptotic trends are observed as H →∞ following Rec∝H1 /2 and Rac∝H . The linear stability analysis reveals multiple instabilities which alter the flow both within the Shercliff boundary layers and the interior flow, with structures consistent with features from plane Poiseuille and Rayleigh-Bénard flows.

  3. Determination of scale-invariant equations of state without fitting parameters: application to the two-dimensional Bose gas across the Berezinskii-Kosterlitz-Thouless transition.

    Science.gov (United States)

    Desbuquois, Rémi; Yefsah, Tarik; Chomaz, Lauriane; Weitenberg, Christof; Corman, Laura; Nascimbène, Sylvain; Dalibard, Jean

    2014-07-11

    We present a general "fit-free" method for measuring the equation of state (EoS) of a scale-invariant gas. This method, which is inspired from the procedure introduced by Ku et al. [Science 335, 563 (2012)] for the unitary three-dimensional Fermi gas, provides a general formalism which can be readily applied to any quantum gas in a known trapping potential, in the frame of the local density approximation. We implement this method on a weakly interacting two-dimensional Bose gas across the Berezinskii-Kosterlitz-Thouless transition and determine its EoS with unprecedented accuracy in the critical region. Our measurements provide an important experimental benchmark for classical-field approaches which are believed to accurately describe quantum systems in the weakly interacting but nonperturbative regime.

  4. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  5. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Bovet, N.; Trier, Felix

    2013-01-01

    The discovery of two-dimensional electron gases at the heterointerface between two insulating perovskite-type oxides, such as LaAlO3 and SrTiO3, provides opportunities for a new generation of all-oxide electronic devices. Key challenges remain for achieving interfacial electron mobilities much be...... confined within a layer of 0.9 nm in proximity to the interface. Our findings pave the way for studies of mesoscopic physics with complex oxides and design of high-mobility all-oxide electronic devices.......The discovery of two-dimensional electron gases at the heterointerface between two insulating perovskite-type oxides, such as LaAlO3 and SrTiO3, provides opportunities for a new generation of all-oxide electronic devices. Key challenges remain for achieving interfacial electron mobilities much...... beyond the current value of approximately 1,000 cm2V-1 s-1 (at low temperatures). Here we create a new type of two-dimensional electron gas at the heterointerface between SrTiO3 and a spinel g-Al2O3 epitaxial film with compatible oxygen ions sublattices. Electron mobilities more than one order...

  6. Offline coupling of high-speed counter-current chromatography and gas chromatography/mass spectrometry generates a two-dimensional plot of toxaphene components.

    Science.gov (United States)

    Kapp, Thomas; Vetter, Walter

    2009-11-20

    High-speed counter-current chromatography (HSCCC), a separation technique based solely on the partitioning of solutes between two immiscible liquid phases, was applied for the fractionation of technical toxaphene, an organochlorine pesticide which consists of a complex mixture of structurally closely related compounds. A solvent system (n-hexane/methanol/water 34:24:1, v/v/v) was developed which allowed to separate compounds of technical toxaphene (CTTs) with excellent retention of the stationary phase (S(f) = 88%). Subsequent analysis of all HSCCC fractions by gas chromatography coupled to electron-capture negative ion mass spectrometry (GC/ECNI-MS) provided a wealth of information regarding separation characteristics of HSCCC and the composition of technical toxaphene. The visualization of the large amount of data obtained from the offline two-dimensional HSCCC-GC/ECNI-MS experiment was facilitated by the creation of a two-dimensional (2D) contour plot. The contour plot not only provided an excellent overview of the HSCCC separation progress, it also illustrated the differences in selectivity between HSCCC and GC. The results of this proof-of-concept study showed that the 2D chromatographic approach involving HSCCC facilitated the separation of CTTs that coelute in unidimensional GC. Furthermore, the creation of 2D contour plots may provide a useful means of enhancing data visualization for other offline two-dimensional separations.

  7. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  8. Evolution and structure of the plasma of current sheets forming in two-dimensional magnetic fields with a null line at low initial gas ionization and their interpretation

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.

    2012-04-01

    An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10-4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.

  9. One-dimensional lattices topologically equivalent to two-dimensional lattices within the context of the lattice gas model. II The triangular lattice

    Science.gov (United States)

    Costanza, E. F.; Costanza, G.

    2016-12-01

    Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.

  10. Onset of quantum criticality in the topological-to-nematic transition in a two-dimensional electron gas at filling factor ν =5 /2

    Science.gov (United States)

    Schreiber, K. A.; Samkharadze, N.; Gardner, G. C.; Biswas, Rudro R.; Manfra, M. J.; Csáthy, G. A.

    2017-07-01

    Under hydrostatic pressure, the ground state of a two-dimensional electron gas at ν =5 /2 changes from a fractional quantum Hall state to the stripe phase. By measuring the energy gap of the fractional quantum Hall state and of the onset temperature of the stripe phase, we mapped out a phase diagram of these competing phases in the pressure-temperature plane. Our data highlight the dichotomy of two descriptions of the half-filled Landau level near the quantum critical point: one based on electrons and another on composite fermions.

  11. Acoustic phonon-limited resistivity of spin-orbit coupled two-dimensional electron gas: the deformation potential and piezoelectric scattering.

    Science.gov (United States)

    Biswas, Tutul; Ghosh, Tarun Kanti

    2013-01-23

    We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.

  12. Suppression of the two-dimensional electron gas in LaGaO3/SrTiO3 by cation intermixing

    KAUST Repository

    Nazir, S.

    2013-12-03

    Cation intermixing at the n-type polar LaGaO 3 /SrTiO 3 (001) interface is investigated by first principles calculations. Ti"Ga, Sr"La, and SrTi"LaGa intermixing are studied in comparison to each other, with a focus on the interface stability. We demonstrate in which cases intermixing is energetically favorable as compared to a clean interface. A depopulation of the Ti 3d xy orbitals under cation intermixing is found, reflecting a complete suppression of the two-dimensional electron gas present at the clean interface.

  13. One-dimensional lattices topologically equivalent to two-dimensional lattices within the context of the lattice gas model, III. The hexagonal lattice

    Science.gov (United States)

    Costanza, E. F.; Costanza, G.

    2017-02-01

    Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.

  14. Full evaporation dynamic headspace in combination with selectable one-dimensional/two-dimensional gas chromatography-mass spectrometry for the determination of suspected fragrance allergens in cosmetic products.

    Science.gov (United States)

    Devos, Christophe; Ochiai, Nobuo; Sasamoto, Kikuo; Sandra, Pat; David, Frank

    2012-09-14

    Suspected fragrance allergens were determined in cosmetic products using a combination of full evaporation-dynamic headspace (FEDHS) with selectable one-dimensional/two-dimensional GC-MS. The full evaporation dynamic headspace approach allows the non-discriminating extraction and injection of both apolar and polar fragrance compounds, without contamination of the analytical system by high molecular weight non-volatile matrix compounds. The method can be applied to all classes of cosmetic samples, including water containing matrices such as shower gels or body creams. In combination with selectable (1)D/(2)D GC-MS, consisting of a dedicated heart-cutting GC-MS configuration using capillary flow technology (CFT) and low thermal mass GC (LTM-GC), a highly flexible and easy-to-use analytical solution is offered. Depending on the complexity of the perfume fraction, analyses can be performed in one-dimensional GC-MS mode or in heart-cutting two-dimensional GC-MS mode, without the need of hardware reconfiguration. The two-dimensional mode with independent temperature control of the first and second dimension column is especially useful to confirm the presence of detected allergen compounds when mass spectral deconvolution is not possible.

  15. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3

    Science.gov (United States)

    Santander-Syro, A. F.; Fortuna, F.; Bareille, C.; Rödel, T. C.; Landolt, G.; Plumb, N. C.; Dil, J. H.; Radović, M.

    2014-12-01

    Two-dimensional electron gases (2DEGs) forming at the interfaces of transition metal oxides exhibit a range of properties, including tunable insulator-superconductor-metal transitions, large magnetoresistance, coexisting ferromagnetism and superconductivity, and a spin splitting of a few meV (refs , ). Strontium titanate (SrTiO3), the cornerstone of such oxide-based electronics, is a transparent, non-magnetic, wide-bandgap insulator in the bulk, and has recently been found to host a surface 2DEG (refs , , , ). The most strongly confined carriers within this 2DEG comprise two subbands, separated by an energy gap of 90 meV and forming concentric circular Fermi surfaces. Using spin- and angle-resolved photoemission spectroscopy (SARPES), we show that the electron spins in these subbands have opposite chiralities. Although the Rashba effect might be expected to give rise to such spin textures, the giant splitting of almost 100 meV at the Fermi level is far larger than anticipated. Moreover, in contrast to a simple Rashba system, the spin-polarized subbands are non-degenerate at the Brillouin zone centre. This degeneracy can be lifted by time-reversal symmetry breaking, implying the possible existence of magnetic order. These results show that confined electronic states at oxide surfaces can be endowed with novel, non-trivial properties that are both theoretically challenging to anticipate and promising for technological applications.

  16. Absence of localization in disordered two-dimensional electron gas at weak magnetic field and strong spin-orbit coupling

    Science.gov (United States)

    Su, Ying; Wang, C.; Avishai, Y.; Meir, Yigal; Wang, X. R.

    2016-09-01

    The one-parameter scaling theory of localization predicts that all states in a disordered two-dimensional system with broken time reversal symmetry are localized even in the presence of strong spin-orbit coupling. While at constant strong magnetic fields this paradigm fails (recall the quantum Hall effect), it is believed to hold at weak magnetic fields. Here we explore the nature of quantum states at weak magnetic field and strongly fluctuating spin-orbit coupling, employing highly accurate numerical procedure based on level spacing distribution and transfer matrix technique combined with one parameter finite-size scaling hypothesis. Remarkably, the metallic phase, (known to exist at zero magnetic field), persists also at finite (albeit weak) magnetic fields, and eventually crosses over into a critical phase, which has already been confirmed at high magnetic fields. A schematic phase diagram drawn in the energy-magnetic field plane elucidates the occurrence of localized, metallic and critical phases. In addition, it is shown that nearest-level statistics is determined solely by the symmetry parameter β and follows the Wigner surmise irrespective of whether states are metallic or critical.

  17. Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas

    Science.gov (United States)

    Luo, Xuebing; Zhou, Kezhao; Zhang, Zhidong

    2016-11-01

    We use the path-integral formalism to investigate the vortex properties of a quasi-two dimensional (2D) Fermi superfluid system trapped in an optical lattice potential. Within the framework of mean-field theory, the cooper pair density, the atom number density, and the vortex core size are calculated from weakly interacting BCS regime to strongly coupled while weakly interacting BEC regime. Numerical results show that the atoms gradually penetrate into the vortex core as the system evolves from BEC to BCS regime. Meanwhile, the presence of the optical lattice allows us to analyze the vortex properties in the crossover from three-dimensional (3D) to 2D case. Furthermore, using a simple re-normalization procedure, we find that the two-body bound state exists only when the interaction is stronger than a critical one denoted by G c which is obtained as a function of the lattice potential’s parameter. Finally, we investigate the vortex core size and find that it grows with increasing interaction strength. In particular, by analyzing the behavior of the vortex core size in both BCS and BEC regimes, we find that the vortex core size behaves quite differently for positive and negative chemical potentials. Project supported by the National Natural Science Foundation of China (Grant Nos. 51331006, 51590883, and 11204321) and the Project of Chinese Academy of Sciences (Grant No. KJZD-EW-M05-3).

  18. Conductivity of the two-dimensional electron gas at LaAlO3/SrTiO3 interface

    Science.gov (United States)

    Kirichenko, E. V.; Stephanovich, V. A.; Dugaev, V. K.

    2017-02-01

    We propose an analytical theory of metallic conductivity in the two-dimensional (2D) LaAlO3/SrTiO3 (LAO/STO) interface. For that we consider the electron-phonon interaction at the interface. The electronic part is taken from our previous work [Phys. Chem. Chem. Phys. 18, 2104 (2016), 10.1039/C5CP06627A], considering the conditions for the interfacial charge carrier (electron or hole) to become itinerant. The second ingredient deals with the atomic oscillations localized near the interface and decaying rapidly at its both sides, which can be regarded as 2D acoustic phonons. The dispersion of such phonons depends on the characteristics of phonon spectra of LAO and STO. Calculating the corresponding scattering rate by Fermi's golden rule, we show that the resulting resistivity (i.e., inverse conductivity) has typical metallic character, growing linearly with temperature and tending to zero (without defects forming so-called residual resistivity) at T →0 . The results of our calculations are in agreement with available experimental data.

  19. An efficient, direct finite difference method for computing sound propagation in arbitrarily shaped two-dimensional and axisymmetric ducts without flow

    Science.gov (United States)

    Chakravarthy, S.

    1978-01-01

    An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.

  20. Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack

    Science.gov (United States)

    Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio

    An investigation is made of the relationships between the gas channel height, the gas-flow characteristics, and the gas-diffusion characteristics in a plate heat-exchanger type molten carbonate fuel cell stack. Effects of the gas channel height on the uniformity and pressure loss of the gas flow are evaluated by numerical analysis using a computational fluid dynamics code. The effects of the gas channel height on the distribution of the reactive gas concentration in the direction perpendicular to the channel flow are evaluated by an analytical solution of the two-dimensional concentration transport equation. Considering the results for uniformity and pressure loss of the gas flow, and for distribution of the reactive gas concentration, the appropriate gas channel height in the molten carbonate fuel cell stack is investigated.

  1. Qualitative analysis of Copaifera oleoresin using comprehensive two-dimensional gas chromatography and gas chromatography with classical and cold electron ionisation mass spectrometry.

    Science.gov (United States)

    Wong, Yong Foo; Uekane, Thais M; Rezende, Claudia M; Bizzo, Humberto R; Marriott, Philip J

    2016-12-16

    Improved separation of both sesquiterpenes and diterpenic acids in Copaifera multijuga Hayne oleoresin, is demonstrated by using comprehensive two-dimensional gas chromatography (GC×GC) coupled to accurate mass time-of-flight mass spectrometry (accTOFMS). GC×GC separation employs polar phases (including ionic liquid phases) as the first dimension ((1)D) column, combined with a lower polarity (2)D phase. Elution temperatures (Te) of diterpenic acids (in methyl ester form, DAME) increased as the (1)D McReynolds' polarity value of the column phase decreased. Since Te of sesquiterpene hydrocarbons decreased with increased polarity, the very polar SLB-IL111 (1)D phase leads to excessive peak broadening in the (2)D apolar phase due to increased second dimension retention ((2)tR). The combination of SLB-IL59 with a nonpolar column phase was selected, providing reasonable separation and low Te for sesquiterpenes and DAME, compared to other tested column sets, without excessive (2)tR. Identities of DAME were aided by both soft (30eV) electron ionisation (EI) accurate mass TOFMS analysis and supersonic molecular beam ionisation (cold EI) TOFMS, both which providing less fragmentation and increased relative abundance of molecular ions. The inter-relation between EI energies, emission current, signal-to-noise and mass error for the accurate mass measurement of DAME are reported. These approaches can be used as a basis for conducting of GC×GC with soft EI accurate mass measurement of terpenes, particularly for unknown phytochemicals.

  2. Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two-dimensional gas-chromatography coupled to multiple detectors.

    Science.gov (United States)

    Toraman, Hilal E; Dijkmans, Thomas; Djokic, Marko R; Van Geem, Kevin M; Marin, Guy B

    2014-09-12

    The detailed compositional characterization of plastic waste pyrolysis oil was performed with comprehensive two-dimensional GC (GC×GC) coupled to four different detectors: a flame ionization detector (FID), a sulfur chemiluminescence detector (SCD), a nitrogen chemiluminescence detector (NCD) and a time of flight mass spectrometer (TOF-MS). The performances of different column combinations were assessed in normal i.e. apolar/mid-polar and reversed configurations for the GC×GC-NCD and GC×GC-SCD analyses. The information obtained from the four detectors and the use of internal standards, i.e. 3-chlorothiophene for the FID and the SCD and 2-chloropyridine for the NCD analysis, enabled the identification and quantification of the pyrolysis oil in terms of both group type and carbon number: hydrocarbon groups (n-paraffins, iso-paraffins, olefins and naphthenes, monoaromatics, naphthenoaromatics, diaromatics, naphthenodiaromatics, triaromatics, naphthenotriaromatics and tetra-aromatics), nitrogen (nitriles, pyridines, quinolines, indole, caprolactam, etc.), sulfur (thiols/sulfides, thiophenes/disulfides, benzothiophenes, dibenzothiophenes, etc.) and oxygen containing compounds (ketones, phenols, aldehydes, ethers, etc.). Quantification of trace impurities is illustrated for indole and caprolactam. The analyzed pyrolysis oil included a significant amount of nitrogen containing compounds (6.4wt%) and to a lesser extent sulfur containing compounds (0.6wt%). These nitrogen and sulfur containing compounds described approximately 80% of the total peak volume for respectively the NCD and SCD analysis. TOF-MS indicated the presence of the oxygen containing compounds. However only a part of the oxygen containing compounds (2.5wt%) was identified because of their low concentrations and possible overlap with the complex hydrocarbon matrix as no selective detector or preparative separation for oxygen compounds was used.

  3. Heat transfer in the flow of a cold, two-dimensional vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

  4. Effect of wall suction on the stability of compressible subsonic flows over smooth two-dimensional backward-facing steps

    Science.gov (United States)

    Al-Maaitah, Ayman A.; Nayfeh, Ali H.; Ragab, Saad A.

    1989-01-01

    The effect of suction on the stability of compressible flows over backward-facing steps is investigated. Mach numbers up to 0.8 are considered. The results show that continuous suction stabilizes the flow outside the separation bubble, but it destabilizes the flow inside it. Nevertheless, the overall N factor decreases as the suction level increases due to the considerable reduction of the separation bubble. For the same suction flow rate, properly distributed suction strips stabilize the flow more than continuous suction. The size of the separation bubble, and hence its effect on the instability can be considerably reduced by placing strips with high suction velocities in the separation region.

  5. Two-dimensional gas chromatography and trilinear partial least squares for the quantitative analysis of aromatic and naphthene content in naphtha.

    Science.gov (United States)

    Prazen, B J; Johnson, K J; Weber, A; Synovec, R E

    2001-12-01

    Quantitative analysis of naphtha samples is demonstrated using comprehensive two-dimensional gas chromatography (GC x GC) and chemometrics. This work is aimed at providing a GC system for the quantitative and qualitative analysis of complex process streams for process monitoring and control. The high-speed GC x GC analysis of naphtha is accomplished through short GC columns, high carrier gas velocities, and partial chromatographic peak resolution followed by multivariate quantitative analysis. Six min GC x GC separations are analyzed with trilinear partial least squares (tri-PLS) to predict the aromatic and naphthene (cycloalkanes) content of naphtha samples. The 6-min GC x GC separation time is over 16 times faster than a single-GC-column standard method in which a single-column separation resolves the aromatic and naphthene compounds in naphtha and predicts the aromatic and naphthene percent concentrations through addition of the resolved signals. Acceptable quantitative precision is provided by GC x GC/tri-PLS.

  6. Identification and quantification of alkene-based drilling fluids in crude oils by comprehensive two-dimensional gas chromatography with flame ionization detection.

    Science.gov (United States)

    Reddy, Christopher M; Nelson, Robert K; Sylva, Sean P; Xu, Li; Peacock, Emily A; Raghuraman, Bhavani; Mullins, Oliver C

    2007-04-27

    Comprehensive two-dimensional gas chromatography with flame ionization detection (GC x GC-FID) was used to measure alkene-based drilling fluids in crude oils. Compared to one-dimensional gas chromatography, GC x GC-FID is more robust for detecting alkenes due to the increased resolution afforded by second dimension separations. Using GC x GC-FID to analyze four oil samples from one reservoir contaminated with the same drilling fluid, C(15), C(16), C(17), C(18) and C(20) alkenes were identified. The drilling fluid that contaminated these samples also differed from another commercially obtained fluid, which only contained C(16) and C(18) alkenes. These results should motivate the petroleum industry to consider GC x GC-FID for measuring drilling fluids.

  7. Coupled One and Two Dimensional Model for River Network Flow and Sediment Transport%一二维耦合河网水沙模型研究

    Institute of Scientific and Technical Information of China (English)

    吕文丽; 张旭

    2011-01-01

    Based on previous research, a new one and two-dimensional coupled model of river water and sediment was proposed.With reference to the three-level solution for one-dimensional river network water mode, the two-dimensional river section will be generalized to river section within the river network.One and two dimensional coupled river network sediment model will be established with the balance of flow amount and sediment transport.The model sets up the chasing relationship between variables of water level and sediment content at the end and first section to further establish matrix equations of the whole one and two-dimensional river network node water level and sediment content.Though the verification and calculation for generalized river network from Datong to Zhenjiang in the lower reaches of the Yangtze River, it is found that the model is of great practical value.%借鉴河网水流的三级解法,将二维河段概化为河网内部河段,通过河网节点流量和输沙量的平衡,建立一二维耦合河网水沙模型.模型采用全隐式方法建立二维河段以首末断面的水位和含沙量为中间变量的矩阵追赶关系,进而建立整个一二维河网的节点水位及含沙量的矩阵方程组.对方程组的求解,可实现一二维水沙模型的耦合求解.通过对长江下游大通至镇江概化河网的验证计算,表明模型具有很好的实用价值.

  8. Two-dimensional simulation of Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect are directly simulated by a mixed finite element method.A temperature perturbation is used as an initial disturbed source for the basic parallel flows.The whole spatio-temporal evolution of the binary fluid flows is exhibited:initially only the disturbed mode with the wavenumber k=π is amplified while others are damped.and continuously the amplified mode grows further and the nonlinear effect becomes important;after a nonlinear evolution transition the flow system evolves finally into a periodic right traveling wave.

  9. A Unified Two-Dimensional Approach to the Calculation of Three- Dimensional Hypersonic Flows, with Application to Bodies of Revolution

    Science.gov (United States)

    1955-01-01

    8217rinRE-DifMENSONAL HtYPERtSONIC 15.W indicated-flow-separation oin the leewardl side of (lie body for excellent agreemelnt in tlie plano of symmlletry...REIMARKS b~ound~ary layers may, inl like imanner, prove useful il- pie - A mnethod of characteristics employing p)ressure and-flow deigdrednesoa

  10. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants.

  11. Tailoring the Two Dimensional Electron Gas at Polar ABO3/SrTiO3 Interfaces for Oxide Electronics

    Science.gov (United States)

    Li, Changjian; Liu, Zhiqi; Lü, Weiming; Wang, Xiao Renshaw; Annadi, Anil; Huang, Zhen; Zeng, Shengwei; Ariando; Venkatesan, T.

    2015-08-01

    The 2D electron gas at the polar/non-polar oxide interface has become an important platform for several novel oxide electronic devices. In this paper, the transport properties of a wide range of polar perovskite oxide ABO3/SrTiO3 (STO) interfaces, where ABO3 includes LaAlO3, PrAlO3, NdAlO3, NdGaO3 and LaGaO3 in both crystalline and amorphous forms, were investigated. A robust 4 unit cell (uc) critical thickness for metal insulator transition was observed for crystalline polar layer/STO interface while the critical thickness for amorphous ones was strongly dependent on the B site atom and its oxygen affinity. For the crystalline interfaces, a sharp transition to the metallic state (i.e. polarization catastrophe induced 2D electron gas only) occurs at a growth temperature of 515 °C which corresponds to a critical relative crystallinity of ~70 ± 10% of the LaAlO3 overlayer. This temperature is generally lower than the metal silicide formation temperature and thus offers a route to integrate oxide heterojunction based devices on silicon.

  12. Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity.

    Science.gov (United States)

    Shahriari, S; Kadem, L; Rogers, B D; Hassan, I

    2012-11-01

    This paper aims to extend the application of smoothed particle hydrodynamics (SPH), a meshfree particle method, to simulate flow inside a model of the heart's left ventricle (LV). This work is considered the first attempt to simulate flow inside a heart cavity using a meshfree particle method. Simulating this kind of flow, characterized by high pulsatility and moderate Reynolds number using SPH is challenging. As a consequence, validation of the computational code using benchmark cases is required prior to simulating the flow inside a model of the LV. In this work, this is accomplished by simulating an unsteady oscillating flow (pressure amplitude: A = 2500 N ∕ m(3) and Womersley number: W(o)  = 16) and the steady lid-driven cavity flow (Re = 3200, 5000). The results are compared against analytical solutions and reference data to assess convergence. Then, both benchmark cases are combined and a pulsatile jet in a cavity is simulated and the results are compared with the finite volume method. Here, an approach to deal with inflow and outflow boundary conditions is introduced. Finally, pulsatile inlet flow in a rigid model of the LV is simulated. The results demonstrate the ability of SPH to model complex cardiovascular flows and to track the history of fluid properties. Some interesting features of SPH are also demonstrated in this study, including the relation between particle resolution and sound speed to control compressibility effects and also order of convergence in SPH simulations, which is consistently demonstrated to be between first-order and second-order at the moderate Reynolds numbers investigated.

  13. Use of variable weighting to eliminate numerical diffusion in two-dimensional two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lasseter, T.J.; Karakas, M.

    1982-01-01

    A simple numerical method has been developed that largely eliminates numerical diffusion errors associated with saturation discontinuities or shocks for two-phase flow in one and two dimensions. The important aspect of the approach is the computation of a variable weighting factor for the interface fractional flow between grid blocks. The approach appears to be generalizable to the multicomponent, multidimensional case including gravity and capilarity. 5 refs.

  14. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  15. Quantification of trace O-containing compounds in GTL process samples via Fischer-Tropsch reaction by comprehensive two-dimensional gas chromatography/mass spectrometry.

    Science.gov (United States)

    Fernandes, Daniella R; Pereira, Vinícius B; Stelzer, Karen T; Gomes, Alexandre O; Neto, Francisco R Aquino; Azevedo, Débora A

    2015-11-01

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was successfully applied to eight real Brazilian Fischer-Tropsch (FT) product samples for the quantitative analysis of O-containing compounds. It not only allowed identifying and quantifying simultaneously a large number of O-containing compounds but also resolved many co-eluting components, such as carboxylic acids, which co-elute in one-dimensional gas chromatography. The homologous series of alcohols and carboxylic acids as trimethylsilyl derivatives were detected and identified at trace levels. The absolute quantification of each compound was accomplished with reliability using analytical curves. Linear alcohols (from C5 to C19), branched alcohols (C6-C13) and carboxylic acids (C4 to C12) were obtained in the range of 1.58 mg g(-1) to 14.75 mg g(-1), 0.51 mg g(-1) to 1.12 mg g(-1) and 0.21 mg g(-1) to 1.63 mg g(-1) of FT product samples, respectively. GC×GC-TOFMS provided a linear range (from 0.3 ng µL(-1) to 10 ng µL(-1)), good precision (gas-to-liquid technologies from natural gas and guide the choice of an FT conversion process that generates clean products with higher added value.

  16. Magneto-Hydrodynamic Flow in a Two-Dimensional Inclined Rectangular Enclosure Heated and Cooled on Adjacent Walls

    Directory of Open Access Journals (Sweden)

    M.N Kherief

    2016-01-01

    Full Text Available Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined rectangular enclosure heated from one side and cooled from the adjacent side was considered. The governing equations were solved numerically for the stream function, vorticity and temperature using the finite-volume method for various Grashof and Hartman numbers and inclination angles and magnetic field directions. The results show that the orientation and the strength and direction of the magnetic field have significant effects on the flow and temperature fields. Counterclockwise inclination induces the formation of multiple eddies inside the enclosure significantly affecting the temperature field. Circulation inside the enclosure and therefore the convection become stronger as the Grashof number increases while the magnetic field suppresses the convective flow and the heat transfer rate.

  17. History independence of steady state in simultaneous two-phase flow through two-dimensional porous media.

    Science.gov (United States)

    Erpelding, Marion; Sinha, Santanu; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen

    2013-11-01

    It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

  18. Comprehensive two-dimensional gas chromatography in combination with rapid scanning quadrupole mass spectrometry in perfume analysis.

    Science.gov (United States)

    Mondello, Luigi; Casillia, Alessandro; Tranchida, Peter Quinto; Dugo, Giovanni; Dugo, Paola

    2005-03-04

    Single column gas chromatography (GC) in combination with a flame ionization detector (FID) and/or a mass spectrometer is routinely employed in the determination of perfume profiles. The latter are to be considered medium to highly complex matrices and, as such, can only be partially separated even on long capillaries. Inevitably, several monodimensional peaks are the result of two or more overlapping components, often hindering reliable identification and quantitation. The present investigation is based on the use of a comprehensive GC (GC x GC) method, in vacuum outlet conditions, for the near to complete resolution of a complex perfume sample. A rapid scanning quadrupole mass spectrometry (qMS) system, employed for the assignment of GC x GC peaks, supplied high quality mass spectra. The validity of the three-dimensional (3D) GC x GC-qMS application was measured and compared to that of GC-qMS analysis on the same matrix. Peak identification, in all applications, was achieved through MS spectra library matching and the interactive use of linear retention indices (LRI).

  19. Cooperative Reformable Channel System with Unique Recognition of Small Gas Molecules in a two-dimensional ZIF-membrane

    Science.gov (United States)

    Motevalli, Benyamin; Taherifar, Neda; Liu, Zhe

    We report a cooperative reformable channel system in a coordination porous polymer, named as ZIF-L. Three types of local flexible ligands coexist in the crystal structure of this polymer, resulting in ultra-flexibility. The reformable channel is able to regulate permeation of a nonspherical guest molecule, such as N2 or CO2, based on its longer molecular dimension, which is in a striking contrast to conventional molecular sieves that regulate the shorter cross-sectional dimension of the guest molecules. Our density functional theory (DFT) calculations reveal that the guest molecule induces dynamic motion of the flexible ligands, leading to the channel reformation, and then the guest molecule reorientates itself to fit in the reformed channel. Such a unique ``induced fit-in'' mechanism causes the gas molecule to pass through 6 membered-ring windows in the c- crystal direction of ZIF-L with its longer axis parallel to the window plane. Our experimental permeance of N2 through the ZIF-L membranes is about three times greater than that of CO2, supporting the DFT simulation predictions.

  20. In Silico Modeling of Hundred Thousand Experiments for Effective Selection of Ionic Liquid Phase Combinations in Comprehensive Two-Dimensional Gas Chromatography.

    Science.gov (United States)

    Nolvachai, Yada; Kulsing, Chadin; Marriott, Philip J

    2016-02-16

    The selection of the best column sets is one of the most tedious processes in comprehensive two-dimensional gas chromatography (GC × GC) where a multitude of choices of column sets could be employed for an individual sample analysis. We demonstrate analyte/stationary phase dependent selection approaches based on the linear solvation energy relationship (LSER), which is a reliable concept for the study of interaction mechanisms and retention prediction with a large database pool of columns and compounds. Good correlations between our predicted results, with experimental results reported in the literature, were obtained. The developed approaches were applied to the simulation of 157 920 individual experiments in GC × GC, focusing on the application of 30 nonionic liquid and 111 ionic liquid (IL) stationary phases for separation of some example sets of model compounds present in practical samples. The best column sets for each sample separation could then be extracted according to maximizing orthogonality, which estimates the quality of separation.

  1. Two-dimensional electron gas in the regime of strong light-matter coupling: Dynamical conductivity and all-optical measurements of Rashba and Dresselhaus coupling

    Science.gov (United States)

    Yudin, Dmitry; Shelykh, Ivan A.

    2016-10-01

    A nonperturbative interaction of an electronic system with a laser field can substantially modify its physical properties. In particular, in two-dimensional (2D) materials with a lack of inversion symmetry, the achievement of a regime of strong light-matter coupling allows direct optical tuning of the strength of the Rashba spin-orbit interaction (SOI). Capitalizing on these results, we build a theory of the dynamical conductivity of a 2D electron gas with both Rashba and Dresselhaus SOIs coupled to an off-resonant high-frequency electromagnetic wave. We argue that strong light-matter coupling modifies qualitatively the dispersion of the electrons and can be used as a powerful tool to probe and manipulate the coupling strengths and adjust the frequency range where optical conductivity is essentially nonzero.

  2. Comprehensive two-dimensional gas chromatography for enhanced analysis of naphthas: new column combination involving permethylated cyclodextrin in the second dimension.

    Science.gov (United States)

    Adam, Frédérick; Vendeuvre, Colombe; Bertoncini, Fabrice; Thiébaut, Didier; Espinat, Didier; Hennion, Marie-Claire

    2008-01-18

    A new column association using comprehensive two-dimensional gas chromatography for the detailed molecular analysis of hydrocarbon mixtures is reported in this paper. In order to compare the impact of two different secondary columns, a novel column combination relying on a GC x 2GC system was used. This system is based on a non-polar first column (PONA) combined with both a permethylated beta-cyclodextrin (beta-Dex 120) stationary phase and a polysilphenylensiloxane (BPX 50) in the second dimension. Compared to BPX 50 stationary phase, the implementation of beta-cyclodextrin columns as the second dimension was found to improve the resolution between paraffins and naphthenes in the naphtha range but not in the middle distillate range. Attempts to improve the results and to understand the interaction mechanism remained unsuccessful. Therefore, the benefits of the beta-Dex 120-column are only demonstrated on heavy naphtha cut for the quantitation of hydrocarbons.

  3. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry reveals the correlation between chemical compounds in Japanese sake and its organoleptic properties.

    Science.gov (United States)

    Takahashi, Kei; Kabashima, Fumie; Tsuchiya, Fumihiko

    2016-03-01

    Japanese sake is a traditional alcoholic beverage composed of a wide variety of metabolites, which give it many types of tastes and flavors. Previously, we have reported that medium-chain fatty acids contribute to a fatty odor in sake (Takahashi, K., et al., J. Agric. Food Chem., 62, 8478-8485, 2014). In this study, we have reanalyzed the data obtained using two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. The relationship between the chemical components in sake and specific organoleptic properties such as off-flavor and quality has been explored. This led to the identification of the type of chemical compounds present and an assessment of the numerous candidate compounds that correlate with such organoleptic properties in sake. This research provides important fundamental knowledge for the sake-brewing industry. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Spin beam splitter based on Goos-Haenchen shifts in two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Mao-Wang; Huang, Xin-Hong; Zhang, Gui-Lin; Chen, Sai-Yan [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2012-11-15

    We present a theoretical study on the spin-dependent Goos-Haenchen (GH) effect in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal (SM) stripes. The GH shifts for spin electron beams across this device are calculated with the help of the stationary phase method. It is shown that the GH shift of spin-up beam is significantly different from that of spin-down beam, i.e., this device shows up a considerable spin polarization effect in GH shifts of electron beams. It also is shown that both magnitude and sign of spin polarization of GH shifts are closely related to the stripe width, the magnetic strength and the gated voltage under SM stripe. These interesting properties not only provide an effective method of spin injection for spintronics application, but also give rise to a tunable spin beam splitter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Van Look, Dirk; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-02-27

    Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLC-GCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29-C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.

  6. Quantum transport in two dimensional electron gas/p-wave superconductor junction with Rashba spin–orbit coupling at the interface and in the normal layer

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadkhani, R., E-mail: rmkhani@znu.ac.ir; Hassanloo, Gh.

    2014-11-01

    We have studied the tunneling conductance of a clean two dimensional electron gas/p- wave superconductor junction with Rashba spin–orbit coupling (RSOC) which is present in the normal layer and at the interface. Using the extended Blonder–Tinkham–Klapwijk formalism we have found that the subgap conductance peaks are shifted to a nonzero bias by RSOC at the interface which are the same as Ref. [1]. It is shown that for low insulating barrier and in the absence of the interface RSOC, the tunneling conductance decreases within energy gap with increasing of the RSOC in the normal layer while for high insulating barrier it enhances by increase of the RSOC. We have also shown that the RSOC inside the normal cannot affect the location of the subgap conductance peaks shifted by the interface RSOC.

  7. Analysis of Salvinorin A in plants, water, and urine using solid-phase microextraction-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    Science.gov (United States)

    Barnes, Brian B; Snow, Nicholas H

    2012-02-24

    Salvinorin A, a psychoactive hallucinogen, and related compounds, were analyzed in plants, water, and urine using liquid-liquid extraction (LLE), solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-ToFMS). A semi-qualitative study of the extraction of Salvinorin A and analogs from Salvia divinorum plants by LLE showed ppb levels of Salvinorin A and several analogs in the leaves and stems of S. divinorum plants, much lower than expected. Quantitative analysis of Salvinorin A spiked into water and urine showed much better figures of merit for SPME than LLE, with limit of detection of about 5 ng/mL, linear range from 8 to 500 ng/mL and precision about ±10% for the SPME-based analyses using external standard quantitation. GC×GC-ToFMS was especially effective in separating the peaks of interest from matrix and chromatographic interferences.

  8. Transport properties of the two-dimensional electron gas in GaN/AlGaN heterostructures grown by ammonia molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Pogosov, A.G.; Budantsev, M.V.; Lavrov, R.A.; Mansurov, V.G.; Nikitin, A.Yu.; Preobrazhenskii, V.V.; Zhuravlev, K.S. [Institute of Semiconductor Physics, 13 Lavrentiev Avenue, 630090 Novosibirsk (Russian Federation)

    2006-07-15

    Transport properties of the two-dimensional electron gas in AlGaN/GaN heterostructures grown by ammonia molecular-beam epitaxy are experimentally investigated. Conventional Hall and Shubnikov-de Haas measurements as well as investigations of quantum transport phenomena are reported. It is found that negative magnetoresistance (NMR) caused by weak localization demonstrates an unusual behavior at low temperature (1.8 K). The observed NMR cannot be described by the ordinary theory of quantum corrections to conductivity based on a single phase breaking time {tau}{sub {phi}}. The anomalous NMR behavior can be explained by the presence of two occupied quantum subbands, characterized by their own phase breaking times {tau} {sub {phi}} {sub 1} and {tau} {sub {phi}} {sub 2}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Donor-Like Surface Traps on Two-Dimensional Electron Gas and Current Collapse of AlGaN/GaN HEMTs

    Science.gov (United States)

    Yu, Chen-hui; Luo, Qing-zhou; Luo, Xiang-dong; Liu, Pei-sheng

    2013-01-01

    The effect of donor-like surface traps on two-dimensional electron gas (2DEG) and drain current collapse of AlGaN/GaN high electron mobility transistors (HEMTs) has been investigated in detail. The depletion of 2DEG by the donor-like surface states is shown. The drain current collapse is found to be more sensitive to the addition of positive surface charges. Surface trap states with higher energy levels result in weaker current collapse and faster collapse process. By adopting an optimized backside doping scheme, the electron density of 2DEG has been improved greatly and the current collapse has been greatly eliminated. These results give reference to the improvement in device performance of AlGaN/GaN HEMTs. PMID:24348195

  10. Two-dimensional electron gas generated by La-doping at SrTiO3(001 surface: A first-principles study

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-06-01

    Full Text Available We carried out first-principles calculations to study the electronic properties of SrO-terminated and TiO2-terminated SrTiO3(001 surfaces with La-doping at the surface. We find that an intrinsic lower-lying state at the SrO-terminated surface can accommodate a two-dimensional electron gas (2DEG. By introducing La-doping at the SrO-terminated surface the energy position of the surface state and the 2DEG density can be tuned by changing the doping concentration. The higher the La-doping concentration, the lower the lower-lying state and the higher the 2DEG density. This 2DEG has a small effective mass and hopefully shows a high mobility.

  11. Patterning the two dimensional electron gas at the LaAlO3/SrTiO3 interface by structured Al capping

    Science.gov (United States)

    Zhou, Y.; Wang, P.; Luan, Z. Z.; Shi, Y. J.; Jiang, S. W.; Ding, H. F.; Wu, D.

    2017-04-01

    We demonstrate an approach for patterning a quasi-two dimensional electron gas (q-2DEG) at the interface of LaAlO3 (LAO) and SrTiO3 (STO) utilizing a structured Al capping layer. The capping of Al enables the formation of q-2DEG at the interface of 1-3 unit cells (uc) of LAO on STO, which was originally insulating before capping. The properties of the q-2DEG induced by the Al capping layer are essentially the same as those of q-2DEG without Al. Therefore, we can pattern q-2DEG by simply patterning the Al film on LAO (2 or 3 uc)/STO using a one-step liftoff process. Our approach circumvents the difficulty of direct patterning of oxide materials and provides a simple and robust patterning method for future device applications based on complex oxide interfaces.

  12. Predictive Control over Charge Density in the Two-Dimensional Electron Gas at the Polar-Nonpolar NdTiO3/SrTiO3 Interface

    Science.gov (United States)

    Xu, Peng; Ayino, Yilikal; Cheng, Christopher; Pribiag, Vlad S.; Comes, Ryan B.; Sushko, Peter V.; Chambers, Scott A.; Jalan, Bharat

    2016-09-01

    Through systematic control of the Nd concentration, we show that the carrier density of the two-dimensional electron gas (2DEG) in SrTiO3/NdTiO3/SrTiO3(001 ) can be modulated over a wide range. We also demonstrate that the NdTiO3 in heterojunctions without a SrTiO3 cap is degraded by oxygen absorption from air, resulting in the immobilization of donor electrons that could otherwise contribute to the 2DEG. This system is, thus, an ideal model to understand and control the insulator-to-metal transition in a 2DEG based on both environmental conditions and film-growth processing parameters.

  13. Photoluminescence Investigation of Two-Dimensional Electron Gas in an Undoped AlxGa1-xN/GaN Heterostructure

    Institute of Scientific and Technical Information of China (English)

    HAN Xiu-Xun; WU Jie-Jun; LI Jie-Min; CONG Guang-Wei; LIU Xiang-Lin; ZHU Qin-Sheng; WANG Zhan-Guo

    2005-01-01

    @@ Low-temperature photoluminescence measurement is performed on an undoped Alx Ga1-xN/GaN heterostructure. Temperature-dependent Hall mobility confirms the formation of two-dimensional electron gas (2DEG) near the heterointerface. A weak photoluminescence (PL) peak with the energy of ~79meV lower than the free exciton (FE) emission of bulk GaN is related to the radiative recombination between electrons confined in the triangular well and the holes near the flat-band region of GaN. Its identification is supported by the solution of coupled one-dimensional Poisson and Schrodinger equations. When the temperature increases, the red shift of the 2DEG related emission peak is slower than that of the FE peak. The enhanced screening effect coming from the increasing 2DEG concentration and the varying electron distribution at two lowest subbands as a function of temperature account for such behaviour.

  14. Subband Structure of a Two-Dimensional Electron Gas Formed at the Polar Surface of the Strong Spin-Orbit Perovskite KTaO3

    Energy Technology Data Exchange (ETDEWEB)

    King, P.D.C.

    2012-03-01

    We demonstrate the formation of a two-dimensional electron gas (2DEG) at the (100) surface of the 5d transition-metal oxide KTaO{sub 3}. From angle-resolved photoemission, we find that quantum confinement lifts the orbital degeneracy of the bulk band structure and leads to a 2DEG composed of ladders of subband states of both light and heavy carriers. Despite the strong spin-orbit coupling, we find no experimental signatures of a Rashba spin splitting, which has important implications for the interpretation of transport measurements in both KTaO{sub 3}- and SrTiO{sub 3}-based 2DEGs. The polar nature of the KTaO{sub 3}(100) surface appears to help mediate formation of the 2DEG as compared to non-polar SrTiO{sub 3}(100).

  15. Two-Dimensional MHD Numerical Simulations of Magnetic Reconnection Triggered by A Supernova Shock in Interstellar Medium, Generation of X-Ray Gas in Galaxy

    CERN Document Server

    Tanuma, S; Kudoh, T; Shibata, K; Tanuma, Syuniti; Yokoyama, Takaaki; Kudoh, Takahiro; Shibata, Kazunari

    2001-01-01

    We examine the magnetic reconnection triggered by a supernova (or a point explosion) in interstellar medium, by performing two-dimensional resistive magnetohydrodynamic (MHD) numerical simulations with high spatial resolution. We found that the magnetic reconnection starts long after a supernova shock (fast-mode MHD shock) passes a current sheet. The current sheet evolves as follows: (i) Tearing-mode instability is excited by the supernova shock, and the current sheet becomes thin in its nonlinear stage. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) ``Secondary tearing-mode instability'' occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs and anomalous resistivity sets in, because gas density decreases in the current sheet. Petschek type reconnection starts and heats interste...

  16. Quantitative analysis of biodiesel in blends of biodiesel and conventional diesel by comprehensive two-dimensional gas chromatography and multivariate curve resolution.

    Science.gov (United States)

    Mogollon, Noroska Gabriela Salazar; Ribeiro, Fabiana Alves de Lima; Lopez, Monica Mamian; Hantao, Leandro Wang; Poppi, Ronei Jesus; Augusto, Fabio

    2013-09-24

    In this paper, a method to determine the composition of blends of biodiesel with mineral diesel (BXX) by multivariate curve resolution with Alternating Least Squares (MRC-ALS) combined to comprehensive two-dimensional gas chromatography with Flame Ionization Detection (GC×GC-FID) is presented. Chromatographic profiles of BXX blends produced with biodiesels from different sources were used as input data. An initial evaluation carried out after multiway principal component analysis (MPCA) was used to reveal regions of the chromatograms were the signal was likely to be dependent on the concentration of biodiesel, regardless its vegetable source. After this preliminary step MCR-ALS modeling was carried out only using relevant parts of the chromatograms. The resulting procedure was able to predict accurately the concentration of biodiesel in the BXX samples regardless of its origin.

  17. Numerical Model of Formaldehyde Photo-Oxidation in a Two Dimensional Flow Field Over Cylindrical UV Light Sources

    Science.gov (United States)

    2012-05-10

    light (Schmelzle, 1994 and Albano , 1994). The kinetic mechanisms were incorporated into the flow field model by introducing the species mass... Albano , M., 1994. Computer Simulation of a Photolytic Reactor to Study the Effects of a Variety of Wavelengths, A Thesis in Environmental Pollution

  18. PHYSALIS: a new method for particle simulation: Part II: two-dimensional Navier–Stokes flow around cylinders

    NARCIS (Netherlands)

    Takagi, S.; Oguz, H.N.; Zhang, Z.; Prosperetti, A.

    2003-01-01

    This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a local analytic representation valid near the particle to “transfer” the no-slip condition from the particle surface to the adjacent grid nodes. In this way the geometric complexity ari

  19. Comprehensive two-dimensional gas chromatography - time-of-flight mass spectrometry and simultaneous electron capture detection/nitrogen phosphorous detection for incense analysis

    Science.gov (United States)

    Tran, Tin C.; Marriott, Philip J.

    This study reports comprehensive two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry detection (GC × GC/TOFMS) for characterisation and identification of components generated by four different types of powdered incense headspace (H/S) and incense smoke. GC × GC/TOFMS allowed simultaneous separation and identification of compounds emitted into the atmosphere as a result of combustion of incense powder. The smoke stream comprised compounds originating from the incense powder, and combustion products such as saturated and unsaturated hydrocarbons, essential oil type compounds, nitromusks, fatty acid methyl esters (FAMEs), polycyclic aromatic hydrocarbons (PAHs, which possibly include oxygenated and nitrated PAH), N-heterocyclics, pyrans and furans, which were detected and tentatively identified by GC × GC/TOFMS. GC × GC-electron capture detector/nitrogen phosphorous detector (ECD/NPD) potentially offers the prospect of providing selective chemical compositional information of incense powder and smoke, such as nitrogen-containing (N-containing) and halogenated compounds. Results of GC×GC-ECD/NPD showed that both incense powder and smoke generated emission of N-containing and halogenated compounds. A significant number of halogenated and N-containing compounds were emitted during the incomplete combustion of incense. However, one further objective of this paper is to demonstrate the capacity of comprehensive two-dimensional gas chromatography coupled to specific and/or selective detectors such as those used in this study (GC × GC-ECD/NPD) for the detection of particular classes of compounds such as N-containing and halogenated compounds at trace level concentrations in complex smoke samples.

  20. Application of a quantitative structure retention relationship approach for the prediction of the two-dimensional gas chromatography retention times of polycyclic aromatic sulfur heterocycle compounds.

    Science.gov (United States)

    Gieleciak, Rafal; Hager, Darcy; Heshka, Nicole E

    2016-03-11

    Information on the sulfur classes present in petroleum is a key factor in determining the value of refined products and processing behavior in the refinery. A large part of the sulfur present is included in polycyclic aromatic sulfur heterocycles (PASHs), which in turn are difficult to desulfurize. Furthermore, some PASHs are potentially more mutagenic and carcinogenic than polycyclic aromatic hydrocarbons, PAHs. All of this calls for improved methods for the identification and quantification of individual sulfur species. Recent advances in analytical techniques such as comprehensive two-dimensional gas chromatography (GC×GC) have enabled the identification of many individual sulfur species. However, full identification of individual components, particularly in virgin oil fractions, is still out of reach as standards for numerous compounds are unavailable. In this work, a method for accurately predicting retention times in GC×GC using a QSRR (quantitative structure retention relationship) method was very helpful for the identification of individual sulfur compounds. Retention times for 89 saturated, aromatic, and polyaromatic sulfur-containing heterocyclic compounds were determined using two-dimensional gas chromatography. These retention data were correlated with molecular descriptors generated with CODESSA software. Two independent QSRR relationships were derived for the primary as well as the secondary retention characteristics. The predictive ability of the relationships was tested by using both independent sets of compounds and a cross-validation technique. When the corresponding chemical standards are unavailable, the equations developed for predicting retention times can be used to identify unknown chromatographic peaks by matching their retention times with those of sulfur compounds of known molecular structure.