WorldWideScience

Sample records for two-dimensional fourier filter

  1. Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters

    National Research Council Canada - National Science Library

    Robert M. Pasternack; Zhen Qian; Jing-Yi Zheng; Dimitris N. Metaxas; Nada N. Boustany

    2009-01-01

    .... The method consists of applying an optical Fourier filter bank consisting of Gabor-like filters of varying periods and extracting the optimum filter period that maximizes the filtered object signal...

  2. Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters.

    Science.gov (United States)

    Pasternack, Robert M; Qian, Zhen; Zheng, Jing-Yi; Metaxas, Dimitris N; Boustany, Nada N

    2009-07-06

    We use optical Gabor-like filtering implemented with a digital micromirror device to achieve nanoscale sensitivity to changes in the size of finite and periodic objects imaged at low resolution. The method consists of applying an optical Fourier filter bank consisting of Gabor-like filters of varying periods and extracting the optimum filter period that maximizes the filtered object signal. Using this optimum filter period as a measure of object size, we show sensitivity to a 7.5 nm change in the period of a chirped phase mask with period around 1 microm. We also show 30 nm sensitivity to change in the size of polystyrene spheres with diameters around 500 nm. Unlike digital post-processing our optical processing method retains its sensitivity when implemented at low magnification in undersampled images. Furthermore, the optimum Gabor filter period found experimentally is linearly related to sphere diameter over the range 0.46 microm-1 microm and does not rely on a predictive scatter model such as Mie theory. The technique may have applications in high throughput optical analysis of subcellular morphology to study organelle function in living cells.

  3. Design and implementation in VHDL code of the two-dimensional fast Fourier transform for frequency filtering, convolution and correlation operations

    Energy Technology Data Exchange (ETDEWEB)

    Vilardy, Juan M; Giacometto, F; Torres, C O; Mattos, L, E-mail: vilardy.juan@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)

    2011-01-01

    The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.

  4. Two-dimensional fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    DeFlores, Lauren; Tokmakoff, Andrei

    2016-10-25

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  5. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  6. Coordinate axes, location of origin, and redundancy for the one and two-dimensional discrete Fourier transform

    Science.gov (United States)

    Ioup, G. E.; Ioup, J. W.

    1985-01-01

    Appendix 4 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer discusses coordinate axes, location of origin, and redundancy for the one- and two-dimensional Fourier transform for complex and real data.

  7. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  8. Two-dimensional Fourier transform ESR correlation spectroscopy

    Science.gov (United States)

    Gorcester, Jeff; Freed, Jack H.

    1988-04-01

    We describe our pulsed two-dimensional Fourier transform ESR experiment and demonstrate its applicabilty for the double resonance of motionally narrowed nitroxides. Multiple pulse irradiation of the entire nitroxide spectrum enables the correlation of two precessional periods, allowing observation of cross correlations between hyperfine lines introduced by magnetization transfer in the case of a three-pulse experiment (2D ELDOR), or coherence transfer in the case of a two-pulse experiment (COSY). Cross correlations are revealed by the presence of cross peaks which connect the autocorrelation lines appearing along the diagonal ω1=ω2. The amplitudes of these cross peaks are determined by the rates of magnetization transfer in the 2D ELDOR experiment. The density operator theory for the experiment is outlined and applied to the determination of Heisenberg exchange (HE) rates in 2,2,6,6-tetramethyl-4-piperidone-N-oxyl-d15 (PD-tempone) dissolved in toluene-d8. The quantitative accuracy of this experiment is established by comparison with the HE rate measured from the dependence of the spin echo T2 on nitroxide concentration.

  9. Design of two-dimensional digital filters using neural networks

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaohua; He Yigang

    2005-01-01

    A new approach for the design of two-dimensional (2-D) linear phase FIR digital filters based on a new neural networks algorithm (NNA) is provided. A compact expression for the transfer function of a 2-D linear phase FIR filter is derived based on its frequency response characteristic, and the NNA, based on minimizing the square-error in the frequency-domain, is established according to the compact expression. To illustrate the stability of the NNA, the convergence theorem is presented and proved. Design examples are also given, and the results show that the ripple is considerably small in passband and stopband, and the NNA-based method is of powerful stability and requires quite little amount of computations.

  10. Filtering and control for classes of two-dimensional systems

    CERN Document Server

    Wu, Ligang

    2015-01-01

    This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: ·         general theory and methods of analysis and optimal synthesis for 2-D systems; and ·         application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...

  11. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  12. Optical imaging process based on two-dimensional Fourier transform for synthetic aperture imaging ladar

    Science.gov (United States)

    Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei

    2013-09-01

    The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.

  13. Fourier solution of two-dimensional Navier Stokes equation with periodic boundary conditions and incompressible flow

    CERN Document Server

    Kuiper, Logan K

    2016-01-01

    An approximate solution to the two dimensional Navier Stokes equation with periodic boundary conditions is obtained by representing the x any y components of fluid velocity with complex Fourier basis vectors. The chosen space of basis vectors is finite to allow for numerical calculations, but of variable size. Comparisons of the resulting approximate solutions as they vary with the size of the chosen vector space allow for extrapolation to an infinite basis vector space. Results suggest that such a solution, with the full basis vector space and which would give the exact solution, would fail for certain initial velocity configurations when initial velocity and time t exceed certain limits.

  14. Construction of Two-Dimensional Compactly Supported Orthogonal Wavelets Filters with Linear Phase

    Institute of Scientific and Technical Information of China (English)

    Si Long PENG

    2002-01-01

    In this paper, a large class of two-dimensional orthogonal wavelet filters, (lowpass andhighpass), are presented in explicit expression. We also characterize the filters with linear phase in thiscase. Some examples are also given, including non-separable filters with linear phase.

  15. Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering

    Science.gov (United States)

    Hoffman, D.; Münch, K.-U.; Leipertz, A.

    1996-04-01

    We present what to our knowledge are the first filtered Rayleigh scattering temperature measurements and use them in sooting flame. This new technique for two-dimensional thermography in gas combustion overcomes some of the major disadvantages of the standard Rayleigh technique. It suppresses scattered background light from walls or windows and permits detection of two-dimensional Rayleigh intensity distributions of the gas phase in the presence of small particles by spectral filtering of the scattered light.

  16. Challenge for spectroscopic tomography of biomembrane using imaging type two-dimensional Fourier spectroscopy

    Science.gov (United States)

    Qi, Wei; Ishimaru, Ichiro

    2010-02-01

    We propose an image-producing Fourier spectroscopic technology that enables two-dimensional spectroscopic images to be obtained within the focusing plane alone. This technology incorporates auto-correlational phase-shift interferometry that uses only object light generated by the bright points that optically make up the object. We are currently involved in studies of non-invasive technologies used to measure blood components such as glucose and lipids, which are measured for use in daily living. Previous studies have investigated non-invasive technologies that measure blood glucose levels by utilizing near-infrared light that permeates the skin well. It has been confirmed that subtle changes in the concentration of a glucose solution, a sample used to measure the glucose level, can be measured by analyzing the spectroscopic characteristics of near-infrared light; however, when applied to a biomembrane, technology such as this is incapable of precisely measuring the glucose level because light diffusion within the skin disturbs the measurement. Our proposed technology enables two-dimensional spectroscopy to a limited depth below the skin covered by the measurement. Specifically, our technology concentrates only on the vascular territory near the skin surface, which is only minimally affected by light diffusion, as discussed previously; the spectroscopic characteristics of this territory are obtained and the glucose level can be measured with good sensitivity. In this paper we propose an image-producing Fourier spectroscopy method that is used as the measuring technology in producing a three-dimensional spectroscopic image.

  17. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs

    Science.gov (United States)

    Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.

    1999-01-01

    We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.

  18. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    Science.gov (United States)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  19. A Comparative Study of Stability Testing Approaches of Two-Dimensional Recursive Digital Filters

    OpenAIRE

    K. R. Santhi; M.Ponnavaikko; N. Gangatharan

    2008-01-01

    There are many problems in science and engineering whose solution is applied in the design of Multi-Dimensional (MD) digital filters. Digital filtering finds an important position in the field of digital signal and image processing. Recently there had been a great deal of interest in the design and stability analysis of Two-Dimensional (2-D) recursive digital filters. The design techniques for stable One Dimensional (1-D) digital filters are relatively well developed; but their extension to 2...

  20. A true order recursive algorithm for two-dimensional mean squared error linear prediction and filtering

    NARCIS (Netherlands)

    Glentis, George-Othon; Slump, Cornelis H.; Hermann, Otto E.

    2000-01-01

    In this paper a novel algorithm is presented for the efficient two-dimensional (2-D), mean squared error (MSE), FIR filtering and system identification. Filter masks of general boundaries are allowed. Efficient order updating recursions are developed by exploiting the spatial shift invariance

  1. Error analysis for satellite gravity field determination based on two-dimensional Fourier methods

    CERN Document Server

    Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun

    2012-01-01

    The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...

  2. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  3. Fourier transform two-dimensional fluorescence excitation spectrometer by using tandem Fabry-Pérot interferometer.

    Science.gov (United States)

    Anzai, Hiroshi; Joshi, Neeraj Kumar; Fuyuki, Masanori; Wada, Akihide

    2015-01-01

    A Fourier transform two-dimensional fluorescence excitation spectrometer (FT-2DFES) was developed based on the multiplex technique using a tandem Fabry-Pérot interferometer (tandem FPI). In addition to the advantage of the multiplex technique, the main advantage of the tandem FPI is applicable to the modulation of transition with a large absorption bandwidth (larger than 100 nm) and is thus applicable to the modulation of the excitation of molecules in the condensed phase. As a demonstration of the effectiveness of FT-2DFES, we succeeded in separately observing the fluorescence excitation peaks from a mixed methanol solution of laser dyes (coumarin 480, rhodamine 6G, DCM (4-dicyanomethylene-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran), and LDS750). Furthermore, the energy transfer from rhodamine 6G to LDS750 was observed.

  4. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    CERN Document Server

    Davis, Benjamin L; Shields, Douglas W; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S; Lacy, Claud H S; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  5. Two-dimensional phase unwrapping in Doppler Fourier domain optical coherence tomography.

    Science.gov (United States)

    Wang, Yimin; Huang, David; Su, Ya; Yao, X Steve

    2016-11-14

    For phase-related imaging modalities using interferometric techniques, it is important to develop effective method to recover phase information that is mathematically wrapped. In this paper, we propose and demonstrate a two-dimensional (2D) method to achieve effective phase unwrapping in Doppler Fourier-domain (FD) optical coherence tomography (OCT), and recover the discontinuous phase distribution in retinal blood flow successfully for the first time in Doppler OCT studies. The proposed method is based on phase gradient approach in the axial dimension, with phase denoising performed through 2D window moving average in the sampled phase image using complex Doppler OCT data. The 2D unwrapping is carried out to correct phase discontinuities in the wrapped Doppler phase map, and the abrupt phase changes can be identified and corrected accurately. The proposed algorithm is computationally efficient and easy to be implemented.

  6. Design of Stable Circularly Symmetric Two-Dimensional GIC Digital Filters Using PLSI Polynomials

    Directory of Open Access Journals (Sweden)

    K. Ramar

    2007-01-01

    Full Text Available A method for designing stable circularly symmetric two-dimensional digital filters is presented. Two-dimensional discrete transfer functions of the rotated filters are obtained from stable one-dimensional analog-filter transfer functions by performing rotation and then applying the double bilinear transformation. The resulting filters which may be unstable due to the presence of nonessential singularities of the second kind are stabilized by using planar least-square inverse polynomials. The stabilized rotated filters are then realized by using the concept of generalized immittance converter. The proposed method is simple and straight forward and it yields stable digital filter structures possessing many salient features such as low noise, low sensitivity, regularity, and modularity which are attractive for VLSI implementation.

  7. Two dimensional tunable photonic crystal defect based drop filter at communication wavelength

    Science.gov (United States)

    D'souza, Nirmala Maria; Mathew, Vincent

    2017-07-01

    We propose a two dimensional photonic crystal (PhC) based drop filter, at communication wavelength with more than 90% transmission. The filtering is achieved by introducing two line defects and three point defects in a two dimensional triangular array of ferroelectric rods in air. Using the electro-optic property of the ferroelectric, about 32 nm tuning in the resonance wavelength is obtained. For the calculation of transmission, finite difference time domain (FDTD) simulations were performed. The operating frequency range is explored via the band structure which is obtained by the implementation of plane wave expansion (PWE) method. The influence of the radius of various rods on the filter wavelength as well as efficiency is also analyzed. The different possible configurations of this filter are also considered.

  8. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance

    Science.gov (United States)

    Liang, Zhichun; Crepeau, Richard H.; Freed, Jack H.

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.

  9. Two-Dimensional Fourier Transform Electronic Spectroscopy of Peridinin and Peridinin Analogs

    Science.gov (United States)

    Khosravi, Soroush; Bishop, Michael; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll- a protein (PCP) is a light harvesting complex in dinoflagellates that exhibits a carotenoid-to-chlorophyll (Chl) a excitation energy transfer (EET) efficiency of 85-95%. Unlike most light harvesting complexes, where the number of carotenoids is less than Chl, each subunit of PCP contains eight tightly-packed peridinins surrounding two Chl a molecules. The unusual solvent polarity dependence of the lowest excited S1 state of peridinin suggests the presence of an intramolecular charge-transfer (ICT) state. The nature of the ICT state, its coupling to the S1 of peridinin, and whether it enables the high EET efficiency is still unclear. Two-dimensional electronic Fourier transform spectroscopy (2DES) is a powerful method capable of examining these issues. The present work examines the ICT state of peridinin and peridinin analogs that have diminished ICT character. 2DES data adding new insight into the spectral signatures and nature of the ICT state in peridinin will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  10. Design of two-dimensional recursive filters by using neural networks.

    Science.gov (United States)

    Mladenov, V M; Mastorakis, N E

    2001-01-01

    A new design method for two-dimensional (2-D) recursive digital filters is investigated. The design of the 2-D filter is reduced to a constrained minimization problem the solution of which is achieved by the convergence of an appropriate neural network. The method is tested on a numerical example and compared with previously published methods when applied to the same example. Advantages of the proposed method over the existing ones are discussed as well.

  11. Two-Dimensional IIR Filter Design Using Simulated Annealing Based Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Supriya Dhabal

    2014-01-01

    Full Text Available We present a novel hybrid algorithm based on particle swarm optimization (PSO and simulated annealing (SA for the design of two-dimensional recursive digital filters. The proposed method, known as SA-PSO, integrates the global search ability of PSO with the local search ability of SA and offsets the weakness of each other. The acceptance criterion of Metropolis is included in the basic algorithm of PSO to increase the swarm’s diversity by accepting sometimes weaker solutions also. The experimental results reveal that the performance of the optimal filter designed by the proposed SA-PSO method is improved. Further, the convergence behavior as well as optimization accuracy of proposed method has been improved significantly and computational time is also reduced. In addition, the proposed SA-PSO method also produces the best optimal solution with lower mean and variance which indicates that the algorithm can be used more efficiently in realizing two-dimensional digital filters.

  12. Determination of grain-size distribution function using two-dimensional Fourier transforms of tone-pulse-encoded images

    Science.gov (United States)

    Generazio, E. R.

    1988-01-01

    Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain-size distribution function from which the mean grain shape, size, and orientation can be obtained.

  13. Determination of grain size distribution function using two-dimensional Fourier transforms of tone pulse encoded images

    Science.gov (United States)

    Generazio, E. R.

    1986-01-01

    Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.

  14. The PLSI Method of Stabilizing Two-Dimensional Nonsymmetric Half-Plane Recursive Digital Filters

    OpenAIRE

    Gangatharan N; Reddy PS

    2003-01-01

    Two-dimensional (2D) recursive digital filters find applications in image processing as in medical X-ray processing. Nonsymmetric half-plane (NSHP) filters have definitely positive magnitude characteristics as opposed to quarter-plane (QP) filters. In this paper, we provide methods for stabilizing the given 2D NSHP polynomial by the planar least squares inverse (PLSI) method. We have proved in this paper that if the given 2D unstable NSHP polynomial and its PLSI are of the same degree, the P...

  15. Multifrequency Two-Dimensional Fourier Transform ESR: An X/Ku Band Spectrometer

    Science.gov (United States)

    Borbat, Petr P.; Crepeau, Richard H.; Freed, Jack H.

    1997-08-01

    A two-dimensional Fourier Transform ESR (2D FT ESR) spectrometer operating at 9.25 and 17.35 GHz is described. The Ku-band bridge uses an efficient heterodyne technique wherein 9.25 GHz is the intermediate frequency. At Ku-band the sensitivity is increased by almost an order of magnitude. One may routinely collect a full 2D ELDOR spectrum in less than 20 min for a sample containing 0.5-5 nmol of nitroxide spin-probe in the slow-motional regime. Broad spectral coverage at Ku-band is obtained by use of a bridged loop-gap resonator (BLGR) and of a dielectric ring resonator (DR). It is shown that an even more uniform spectral excitation is obtained by using shorter microwave pulses of about 3 ns duration. The dead-time at Ku-band is just 30-40 ns, yielding an improved SNR in 2D ELDOR spectra of nitroxide spin-probes withT2as short as 20-30 ns. A comparison of 2D ELDOR spectra obtained at 9.25 and 17.35 GHz for spin-labeled phospholipid probes (16PC) in 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) membrane vesicles showed that both spectra could be satisfactorily simulated using the same set of model parameters even though they are markedly different in appearance. The improved sensitivity and shorter dead-time at Ku-band made it possible to obtain orientation-dependent 2D ELDOR spectra of the Cholestane (CSL) spin-probe in macroscopically aligned lipid bilayers of egg yolk PC using samples containing only 1 mg of lipid and just 5 nmol of spin-probe.

  16. Transmission Properties of W3 Y-Branch Filters in Two-Dimensional Photonic Crystal Slabs

    Institute of Scientific and Technical Information of China (English)

    REN Cheng; CHENG Bing-Ying; ZHANG Dao-Zhong; REN Kun; LIU Rong-Juan; TAO Hai-Hua; FENG Shuai; XIONG Zhi-Gang; LIU Ya-Zhao; TIAN Jie; LI Zhi-Yuan

    2007-01-01

    A highly efficient W3 Y-branch filter in a two-dimensional photonic crystal slab with triangular lattice of air holes is designed and fabricated, and its transmission properties are measured. By accurately adjusting the size of the resonant cavities, the minimum wavelength spacing of 7nm between two channels is realized. The corresponding resonant wavelengths of the two cavities agree well with the calculated ones. This implies that this kind of filter may be promising in integrated wavelength division multiplexing system.

  17. Light propagation properties of two-dimensional photonic crystal channel filters with elliptical micro-cavities

    Institute of Scientific and Technical Information of China (English)

    Feng Shuai; Wang Yi-Quan

    2011-01-01

    Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method.Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters.It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects.The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied.This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters.

  18. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    Science.gov (United States)

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  19. X-ray Phase Imaging Microscopy with Two-Dimensional Knife-Edge Filters

    Science.gov (United States)

    Choi, Jaeho; Park, Yong-Sung

    2012-04-01

    A novel scheme of X-ray differential phase imaging was implemented with an array source and a two-dimensional Foucault knife-edge (2DFK). A pinhole array lens was employed to manipulate the X-ray beam on the Fourier space. An emerging biaxial scanning procedure was also demonstrated with the periodic 2DFK. The differential phase images (DPIs) of the midrib in a leaf of a rose bush were visualized to verify the phase imaging of biological specimens by the proposed method. It also has features of depicting multiple-stack phase images, and rendering morphological DPIs, because it acquires pure phase information.

  20. Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR

    Science.gov (United States)

    Patyal, Baldev R.; Crepeau, Richard H.; Gamliel, Dan; Freed, Jack H.

    1990-12-01

    The two-dimensional Fourier transform ESP techniques of stimulated SECSY and 2D-ELDOR are shown to be powerful methods for the study of slow motions for nitroxides. Stimulated SECSY provides magnetization transfer rates, whereas 2D-ELDOR displays how the rotational motions spread the spins out from their initial spectral positions to new spectral positions, as a function of mixing time. The role of nuclear modulation in studies of structure and dynamics is also considered.

  1. Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids

    Science.gov (United States)

    Lee, Sanghyuk; Budil, David E.; Freed, Jack H.

    1994-10-01

    A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It encompasses the full range of motional rates from fast through very slow motions, and it also provides for microscopic as well as macroscopic molecular ordering. In these respects it is as sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction decay (FID) or echo decay is sampled. Important distinctions are made among the sources of inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied to simulate experiments of nitroxide spin labels in complex fluids such as membrane vesicles, where the MOMD model applies and these distinctions are particularly relevant, in order to extract dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY experiments on complex fluids with significant inhomogeneous broadening is also described. The theory is applied to the ultraslow motional regime, and a simple method is developed to determine rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a

  2. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    National Research Council Canada - National Science Library

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B

    2015-01-01

    ...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...

  3. The PLSI Method of Stabilizing Two-Dimensional Nonsymmetric Half-Plane Recursive Digital Filters

    Directory of Open Access Journals (Sweden)

    Gangatharan N

    2003-01-01

    Full Text Available Two-dimensional (2D recursive digital filters find applications in image processing as in medical X-ray processing. Nonsymmetric half-plane (NSHP filters have definitely positive magnitude characteristics as opposed to quarter-plane (QP filters. In this paper, we provide methods for stabilizing the given 2D NSHP polynomial by the planar least squares inverse (PLSI method. We have proved in this paper that if the given 2D unstable NSHP polynomial and its PLSI are of the same degree, the PLSI polynomial is always stable, irrespective of whether the coefficients of the given polynomial have relationship among its coefficients or not. Examples are given for 2D first-order and second-order cases to prove our results. The generalization is done for the th order polynomial.

  4. Two dimensional recursive digital filters for near real time image processing

    Science.gov (United States)

    Olson, D.; Sherrod, E.

    1980-01-01

    A program was designed toward the demonstration of the feasibility of using two dimensional recursive digital filters for subjective image processing applications that require rapid turn around. The concept of the use of a dedicated minicomputer for the processor for this application was demonstrated. The minicomputer used was the HP1000 series E with a RTE 2 disc operating system and 32K words of memory. A Grinnel 256 x 512 x 8 bit display system was used to display the images. Sample images were provided by NASA Goddard on a 800 BPI, 9 track tape. Four 512 x 512 images representing 4 spectral regions of the same scene were provided. These images were filtered with enhancement filters developed during this effort.

  5. Enhancement transmission filter using a two-dimensional subwavelength periodic membrane

    Science.gov (United States)

    Zhou, Jianyu; Sang, Tian; Li, Junlang; Wang, Rui; Wang, La; Gao, Jian

    2017-06-01

    Enhancement transmission filter using a two-dimensional (2-D) subwavelength periodic membrane is proposed. It can be found that strong refractive-index modulation of the silicon periodic membrane can support the excitation of multiple guided-mode resonances (GMRs) in a reflection band, and every GMR relates a transmission peak on its edge, therefore the overlapping of the edges of these resonances can be tailored to create enhancement transmission. Thelocation of the transmission peak is shifted linearly with a slop of 1.51 as the period is varied. Enhancement transmission with multiple channels near 1310 nm can also be achieved using the interaction of the nondegenerate GMRs at oblique incidence.

  6. Identification of the dynamics of a two-dimensional grid structure using least square lattice filters

    Science.gov (United States)

    Montgomery, R. C.; Sundararajan, N.

    1984-01-01

    The basic theory of least square lattice filters and their use in identification of structural dynamics systems is summarized. Thereafter, this theory is applied to a two-dimensional grid structure made of overlapping bars. Previously, this theory has been applied to an integral beam. System identification results are presented for both simulated and experimental tests and they are compared with those predicted using finite element modelling. The lattice filtering approach works well for simulated data based on finite element modelling. However, considerable discrepancy exists between estimates obtained from experimental data and the finite element analysis. It is believed that this discrepancy is the result of inadequacies in the finite element modelling to represent the damped motion of the laboratory apparatus.

  7. Two-Dimensional Hermite Filters Simplify the Description of High-Order Statistics of Natural Images.

    Science.gov (United States)

    Hu, Qin; Victor, Jonathan D

    2016-09-01

    Natural image statistics play a crucial role in shaping biological visual systems, understanding their function and design principles, and designing effective computer-vision algorithms. High-order statistics are critical for conveying local features, but they are challenging to study - largely because their number and variety is large. Here, via the use of two-dimensional Hermite (TDH) functions, we identify a covert symmetry in high-order statistics of natural images that simplifies this task. This emerges from the structure of TDH functions, which are an orthogonal set of functions that are organized into a hierarchy of ranks. Specifically, we find that the shape (skewness and kurtosis) of the distribution of filter coefficients depends only on the projection of the function onto a 1-dimensional subspace specific to each rank. The characterization of natural image statistics provided by TDH filter coefficients reflects both their phase and amplitude structure, and we suggest an intuitive interpretation for the special subspace within each rank.

  8. Photonic-Crystal Band-pass Resonant Filters Design Using the Two-dimensional FDTD Method

    Directory of Open Access Journals (Sweden)

    Hadjira Badaoui

    2011-05-01

    Full Text Available Recently, band-pass photonic crystal filters have attracted great attention due to their important applications in the fields of optical interconnection network and ultrahigh speed information processing. In this paper we propose the design of a new type of photonic crystal band-pass resonant filters realized in one-missing-row waveguide by decreasing proper defects along the waveguide with broadband acceptable bandwidth. Two types of photonic crystal band-pass filters are utilized and optimized using the Two-dimensional finite-difference time-domain (FDTD technique. The first one is based on the Fabry-Perot cavities and in the second one a cavity is introduced in the middle by omitting two neighboring air holes in waveguide. Numerical results show that a band [1.47 and#956;m-1.57 and#956;m] around 1.55um is transmitted with a maximum transmission of about 68% and as a result wide band-pass filters are designed.

  9. Two-dimensional shape classification using generalized Fourier representation and neural networks

    Science.gov (United States)

    Chodorowski, Artur; Gustavsson, Tomas; Mattsson, Ulf

    2000-04-01

    A shape-based classification method is developed based upon the Generalized Fourier Representation (GFR). GFR can be regarded as an extension of traditional polar Fourier descriptors, suitable for description of closed objects, both convex and concave, with or without holes. Explicit relations of GFR coefficients to regular moments, moment invariants and affine moment invariants are given in the paper. The dual linear relation between GFR coefficients and regular moments was used to compare shape features derive from GFR descriptors and Hu's moment invariants. the GFR was then applied to a clinical problem within oral medicine and used to represent the contours of the lesions in the oral cavity. The lesions studied were leukoplakia and different forms of lichenoid reactions. Shape features were extracted from GFR coefficients in order to classify potentially cancerous oral lesions. Alternative classifiers were investigated based on a multilayer perceptron with different architectures and extensions. The overall classification accuracy for recognition of potentially cancerous oral lesions when using neural network classifier was 85%, while the classification between leukoplakia and reticular lichenoid reactions gave 96% (5-fold cross-validated) recognition rate.

  10. A Study of Derivative Filters Using the Discrete Fourier Transform. Final Report M. S. Thesis

    Science.gov (United States)

    Ioup, G. E.

    1980-01-01

    Important properties of derivative (difference) filters using the discrete Fourier transform are investigated. The filters are designed using the derivative theorem of Fourier analysis. Because physical data are generally degraded by noise, the derivative filter is modified to diminish the effects of the noise, especially the noise amplification which normally occurs while differencing. The basis for these modifications is the reduction of those Fourier components for which the noise most dominates the data. The various filters are tested by applying them to find differences of two-dimensional data to which various amounts of signal dependent noise, as measured by a root mean square value, have been added. The modifications, circular and square ideal low-pass filters and a cut-off pyramid filter, are all found to reduce noise in the derivative without significantly degrading the result.

  11. Two-Dimensional Hermite Filters Simplify the Description of High-Order Statistics of Natural Images

    Science.gov (United States)

    Hu, Qin; Victor, Jonathan D.

    2016-01-01

    Natural image statistics play a crucial role in shaping biological visual systems, understanding their function and design principles, and designing effective computer-vision algorithms. High-order statistics are critical for conveying local features, but they are challenging to study – largely because their number and variety is large. Here, via the use of two-dimensional Hermite (TDH) functions, we identify a covert symmetry in high-order statistics of natural images that simplifies this task. This emerges from the structure of TDH functions, which are an orthogonal set of functions that are organized into a hierarchy of ranks. Specifically, we find that the shape (skewness and kurtosis) of the distribution of filter coefficients depends only on the projection of the function onto a 1-dimensional subspace specific to each rank. The characterization of natural image statistics provided by TDH filter coefficients reflects both their phase and amplitude structure, and we suggest an intuitive interpretation for the special subspace within each rank. PMID:27713838

  12. Two-Dimensional Hermite Filters Simplify the Description of High-Order Statistics of Natural Images

    Directory of Open Access Journals (Sweden)

    Qin Hu

    2016-09-01

    Full Text Available Natural image statistics play a crucial role in shaping biological visual systems, understanding their function and design principles, and designing effective computer-vision algorithms. High-order statistics are critical for conveying local features but they are challenging to study, largely because their number and variety is large. Here, via the use of two-dimensional Hermite (TDH functions, we identify a covert symmetry in high-order statistics of natural images that simplifies this task. This emerges from the structure of TDH functions, which are an orthogonal set of functions that are organized into a hierarchy of ranks. Specifically, we find that the shape (skewness and kurtosis of the distribution of filter coefficients depends only on the projection of the function onto a one-dimensional subspace specific to each rank. The characterization of natural image statistics provided by TDH filter coefficients reflects both their phase and amplitude structure, and we suggest an intuitive interpretation for the special subspace within each rank.

  13. Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    van Agthoven, Maria A; Delsuc, Marc-André; Bodenhausen, Geoffrey; Rolando, Christian

    2013-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.

  14. Two-dimensional nonlinear geophysical data filtering using the multidimensional EEMD method

    Science.gov (United States)

    Chen, Chih-Sung; Jeng, Yih

    2014-12-01

    A variety of two-dimensional (2D) empirical mode decomposition (EMD) methods have been proposed in the last decade. Furthermore, the multidimensional EMD algorithm and its parallel class, multivariate EMD (MEMD), are available in recent years. From those achievements, it is possible to design an efficient 2D nonlinear filter for geophysical data processing. We introduce a robust 2D nonlinear filter which can be applied to enhance the signal of 2D geophysical data or to highlight the feature component on an image. We did this by replacing the conventionally used smooth interpolation in the ensemble empirical mode decomposition (EEMD) algorithm with a piecewise interpolation method. The one-dimensional (1D) EEMD procedures were consecutively performed in all directions, and then the comparable minimal scale combination technique was applied to the decomposed components. The theoretical derivation, model simulation, and real data applications are demonstrated in this paper. The proposed filtering method is effective in improving the image resolution by suppressing the random noise added in the simulation example and strong low frequency track corrugation noise bands with background noise in the field example. Furthermore, the algorithm can be easily extended to higher dimensions by repeating the same procedure in the succeeding dimension. To evaluate the proposed method, one data set is processed separately by using the enhanced analytic signal method and the multivariate EMD (MEMD) algorithm, and the results from these two methods are compared with that of the proposed method. A general equation for generating three-dimensional (3D) EEMD components based on the comparable minimal scale combination principle is derived for further applications.

  15. Analyzing subcellular structure with optical Fourier filtering based on Gabor filters

    Science.gov (United States)

    Boustany, Nada N.; Sierra, Heidy

    2013-02-01

    Label-free measurement of subcellular morphology can be used to track dynamically cellular function under various conditions and has important applications in cellular monitoring and in vitro cell assays. We show that optical filtering of scattered light by two-dimensional Gabor filters allows for direct and highly sensitive measurement of sample structure. The Gabor filters, which are defined by their spatial frequency, orientation and Gaussian envelope, can be used to track locally and in situ the characteristic size and orientation of structures within the sample. Our method consists of sequentially implementing a set of Gabor filters via a spatial light modulator placed in a conjugate Fourier plane during optical imaging and identifying the filters that yield maximum signal. Using this setup, we show that Gabor filtering of light forward-scattered by spheres yields an optical response which varies linearly with diameter between 100nm and 2000nm. The optical filtering sensitivity to changes in diameter is on the order of 20nm and can be achieved at low image resolution. We use numerical simulations to demonstrate that this linear response can be predicted from scatter theory and does not vary significantly with changes in refractive index ratio. By applying this Fourier filtering method in samples consisting of diatoms and cells, we generate false-color images of the object that encode at each pixel the size of the local structures within the object. The resolution of these encoded size maps in on the order of 0.36μm. The pixel histograms of these encoded images directly provide 20nm resolved "size spectra", depicting the size distribution of structures within the analyzed object. We use these size spectra to differentiate the morphology of apoptosis-competent and bax/bak null apoptosis-resistant cells during cell death. We also utilize the sensitivity of the Gabor filters to object orientation to track changes in organelle morphology, and detect mitochondrial

  16. Three different criteria for the design of two-dimensional zero phase FIR digital filters

    DEFF Research Database (Denmark)

    Gislason, E.; Johansen, M.; Conradsen, Knut

    1993-01-01

    An error criterion for the design of FIR filters is proposed. Filters with relatively many free filter coefficients are designed using the Chebyshev, the weighted-least-squares (WLS), and a new partitioned minimax error criterion, and the performance of the filters is compared. A general and fast...

  17. The Martingale Hardy Type Inequality for Marcinkiewicz-Fejér Means of Two-dimensional Conjugate Walsh-Fourier Series

    Institute of Scientific and Technical Information of China (English)

    Ushangi GOGINAVA

    2011-01-01

    The main aim of this paper is to prove that for any 0 < p ≤ 2/3 there exists a martingale f ∈ Hp such that Marcinkiewicz-Fejér means of the two-dimensional conjugate Walsh-Fourier series of the martingale f is not uniformly bounded in the space Lp.

  18. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  19. Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs

    Institute of Scientific and Technical Information of China (English)

    Ren Cheng; Cheng Li-Feng; Kang Feng; Gan Lin; Zhang Dao-Zhong; Li Zhi-Yuan

    2012-01-01

    We have designed and fabricated two types of two-port resonant tunneling filters with a triangular air-hole lattice in two-dimensional photonic crystal slabs.In order to improve the filtering efficiency,a feedback method is introduced by closing the waveguide.It is found that the relative position between the closed waveguide boundary and the resonator has an important impact on the dropping efficiency.Based on our analyses,two different types of filters are designed.The transmission spectra and scattering-light far-field patterns are measured,which agree well with theoretical prediction.In addition,the resonant filters are highly sensitive to the size of the resonant cavities,which are useful for practical applications.

  20. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.

    Science.gov (United States)

    Daugman, J G

    1985-07-01

    Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor's famous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Design of a Photonic-Crystal Channel-Drop Filter Based on the Two-Dimensional Triangular-Lattice Hole Structure

    Institute of Scientific and Technical Information of China (English)

    Kyu; Hwan; Hwang; G.; Hugh; Song; Chanmook; Lim; Soan; Kim; Kyung-Won; Chun; Mahn; Yong; Park

    2003-01-01

    A channel-drop filter has been designed based on the two-dimensional triangular-lattice hole photonic-crystal structure, which consists of two line defects and two point defects, by a two-dimensional finite-difference time-domain simulation.

  2. Two-dimensional modelling of internal arc effects in an enclosed MV cell provided with a protection porous filter

    Energy Technology Data Exchange (ETDEWEB)

    Rochette, D [Laboratoire Arc Electrique et Plasmas Thermiques, CNRS UMR 6069, Universite Blaise Pascal, IUT de Montlucon, Avenue Aristide Briand, BP 2235, 03101 Montlucon Cedex (France); Clain, S [Laboratoire de Mathematiques pour l' Industrie et la Physique, CNRS UMR 5640, Universite Paul Sabatier Toulouse 3, 118 route de Narbonne, 31062 Toulouse Cedex 4 (France); Andre, P [Laboratoire Arc Electrique et Plasmas Thermiques, CNRS UMR 6069, Universite Blaise Pascal, IUT de Montlucon, Avenue Aristide Briand, BP 2235, 03101 Montlucon Cedex (France); Bussiere, W [Laboratoire Arc Electrique et Plasmas Thermiques, CNRS UMR 6069, Universite Blaise Pascal, IUT de Montlucon, Avenue Aristide Briand, BP 2235, 03101 Montlucon Cedex (France); Gentils, F [Schneider Electric-Science and Technology Division-Research Center A2, 38050 Grenoble Cedex 9 (France)

    2007-05-21

    Medium voltage (MV) cells have to respect standards (for example IEC ones (IEC TC 17C 2003 IEC 62271-200 High Voltage Switchgear and Controlgear-Part 200 1st edn)) that define security levels against internal arc faults such as an accidental electrical arc occurring in the apparatus. New protection filters based on porous materials are developed to provide better energy absorption properties and a higher protection level for people. To study the filter behaviour during a major electrical accident, a two-dimensional model is proposed. The main point is the use of a dedicated numerical scheme for a non-conservative hyperbolic problem. We present a numerical simulation of the process during the first 0.2 s when the safety valve bursts and we compare the numerical results with tests carried out in a high power test laboratory on real electrical apparatus.

  3. Extraction of orientation-and-scale-dependent information from GPR B-scans with tunable two-dimensional wavelet filters

    Science.gov (United States)

    Tzanis, A.

    2012-04-01

    GPR is an invaluable tool for civil and geotechnical engineering applications. One of the most significant objectives of such applications is the detection of fractures, inclined interfaces, empty or filled cavities frequently associated with jointing/faulting and a host of other oriented features. These types of target, especially fractures, are usually not good reflectors and are spatially localized. Their scale is therefore a factor significantly affecting their detectability. Quite frequently, systemic or extraneous noise, or other significant structural characteristics swamp the data with information which blurs, or even masks reflections from such targets, rendering their recognition difficult. This paper reports a method of extracting information (isolating) oriented and scale-dependent structural characteristics, based on oriented two-dimensional B-spline wavelet filters and Gabor wavelet filters. In addition to their advantageous properties (e.g. compact support, orthogonality etc), B-spline wavelets comprise a family with a broad spectrum of frequency localization properties and frequency responses that mimic, more or less, the shape of the radar source wavelet. For instance, the Ricker wavelet is also approximated by derivatives of Cardinal B-splines. An oriented two-dimensional B-spline filter is built by sidewise arranging a number of identical one-dimensional wavelets to create a matrix, tapering the edge-parallel direction with an orthogonal window function and rotating the resulting matrix to the desired orientation. The length of the one-dimensional wavelet (edge-normal direction) determines the width of the topographic features to be isolated. The number of parallel wavelets (edge-parallel direction) determines the feature length over which to smooth. The Gabor wavelets were produced by a Gabor kernel that is a product of an elliptical Gaussian and a complex plane wave: it is two-dimensional by definition. Their applications have hitherto focused

  4. Two-dimensional unwrapped phase inversion with damping and a Gaussian filter

    KAUST Repository

    Choi, Yun Seok

    2014-01-01

    Phase wrapping is one of main causes of the local minima problem in waveform inversion. However, the unwrapping process for 2D phase maps that includes singular points (residues) is complicated and does not guarantee unique solutions. We employ an exponential damping to eliminate the residues in the 2D phase maps, which makes the 2D phase unwrapping process easy and produce a unique solution. A recursive inversion process using the damped unwrapped phase provides an opportunity to invert for smooth background updates first, and higher resolution updates later as we reduce the damping. We also apply a Gaussian filter to the gradient to mitigate the edge artifacts resulting from the narrow shape of the sensitivity kernels at high damping. Numerical examples demonstrate that our unwrapped phase inversion with damping and a Gaussian filter produces good convergent results even for a 3Hz single frequency of Marmousi dataset and with a starting model far from the true model.

  5. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  6. Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application

    Science.gov (United States)

    Guo, Wen-Long; Wang, Guang-Ming; Li, Hai-Peng; Zhang, Kun; Cai, Tong

    2016-10-01

    We propose an anisotropic planar transmitting metasurface, which has the ability to manipulate orthogonally-polarized electromagnetic waves in the reflection and refraction modes respectively. The metasurface is composed of four layered rectangular patches spaced by three layered dielectric isolators each with a thickness of 0.15λ 0 at 15 GHz. By tailoring the sizes of the patches, the metasurface functions as a band-stop filter for the y-polarzied wave and a band-pass filter for the x-polarized wave operating from 14 GHz to 16 GHz. Moreover the phases of the transmitting x-polarized wave can be modulated at about 15 GHz, which contributes to beam steering according to the general refraction law. Experimental results are in good accordance with the simulated ones, in which the reflection efficiency is almost 100% while the transmission efficiency of the x-polarized wave reaches 80% at 15 GHz. Besides, the transmitted x-polarized wave is effectively manipulated from 14 GHz to 16 GHz. Project supported by the National Natural Science Foundation of China (Grant No. 61372034).

  7. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    Science.gov (United States)

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these

  8. Identification of the dynamics of a two-dimensional grid structure using least square lattice filters. [for large space structures

    Science.gov (United States)

    Montgomery, R. C.; Sundararajan, N.

    1984-01-01

    It is doubtful whether the dynamics of large space structures (LSS) can be predicted well enough for control system design applications. Hence, dynamic modeling from on-orbit measurements followed by a modification of the control system is of interest, taking into account the utilization of adaptive control concepts. The present paper is concerned with the model determination phase of the adaptive control problem. Using spectral decoupling to determine mode shapes, mode frequency and damping data can be obtained with the aid of an equation error parameter identification method. This method employs a second-order auto-regressive moving average (ARMA) model to represent the natural mode amplitudes. The discussed procedure involves an extension of the application of the least square lattice filter in system identification to a nonintegral, two-dimensional grid structure made of overlapping bars.

  9. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy

    Science.gov (United States)

    Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong

    2014-07-01

    Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.

  10. Depth profiling of SBS/PET layered materials using step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy and two-dimensional correlation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper demonstrates the application of step-scan phase modulation Fourier transform infrared photoacoustic spectroscopy(FTIR-PAS) in non-destructively depth profiling of styrene-butadiene-styrene block copolymer/polyethylene terephthalate(SBS/PET) layered materials.The surface thicknesses of three layered samples were determined to be 1.2,4.3 and 9.4μm by using phase difference analysis,overcoming the spatial detection limits of FTIR.Combined with generalized two-dimensional(G2D) FTIR correlation analysis,the spatial origins of peaks in the SBS/PET spectrum are identified with those having overlapping peaks between different layers are resolved.

  11. Single-lens Fourier-transform-based optical color image encryption using dual two-dimensional chaotic maps and the Fresnel transform.

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Chen, Xia; Xu, Wenjun; Cai, Yuanxue

    2017-01-20

    We propose an optical color image encryption system based on the single-lens Fourier transform, the Fresnel transform, and the chaotic random phase masks (CRPMs). The proposed encryption system contains only one optical lens, which makes it more efficient and concise to implement. The introduction of the Fresnel transform makes the first phase mask of the proposed system also act as the main secret key when the input image is a non-negative amplitude-only map. The two CRPMs generated by dual two-dimensional chaotic maps can provide more security to the proposed system. In the proposed system, the key management is more convenient and the transmission volume is reduced greatly. In addition, the secret keys can be updated conveniently in each encryption process to invalidate the chosen plaintext attack and the known plaintext attack. Numerical simulation results have demonstrated the feasibility and security of the proposed encryption system.

  12. Fourier-based layout for grating function structure in spatial filtering velocimetry

    Science.gov (United States)

    Schaeper, M.; Damaschke, N.

    2017-04-01

    Optical spatial filtering velocimetry (SFV) has been used for several decades for velocity measurements. Since the 1990s, charge-coupled device (CCD) line sensors have been used for the realization of spatial filtering systems by the inherent implementation of grating functions using a specialized clock regime. Another approach is the realization of optical SFV systems by utilizing array detectors (CCD or CMOS) with software-implemented grating functions, especially for two-dimensional velocity measurements. Choosing a suitable grating function for the observed scene can be an obstacle when using SFV, and relies on the experience of the user. With this in mind, this contribution presents an overview of how to assemble an optical spatial filtering system. After a general description of signal generation in spatial filtering systems, a straightforward approach to identifying matching harmonic grating functions by using Fourier analysis is presented. This approach has particular advantages for observed scenes with a periodically structured pattern, which were problematic when using SFV in connection with a fixed grating function. Matching periods of harmonic grating functions can be found as peaks in the spectral density distribution of the imaged scene. Once a matching grating function has been found, the signal processing can be made with SFV, which is simpler than calculating the cross-correlation of full frames and is suitable for real-time application. Criteria for the layout of an array-detector-based spatial filtering velocimeter are then discussed.

  13. New families of Fourier eigenfunctions for steerable filtering.

    Science.gov (United States)

    Papari, Giuseppe; Campisi, Patrizio; Petkov, Nicolai

    2012-06-01

    A new diadic family of eigenfunctions of the 2-D Fourier transform has been discovered. Specifically, new wavelets are derived by steering the elongated Hermite-Gauss filters with respect to rotations, thus obtaining a natural generalization of the Laguerre-Gauss harmonics. Interestingly, these functions are also proportional to their 2-D Fourier transform. Their analytical expression is provided in a compact and treatable form, by means of a new ad hoc matrix notation in which the cases of even and odd orders of the Hermite polynomials are unified. Moreover, these functions can be efficiently implemented by means of a recursive formula that is derived in this paper. The proposed filters are applied to the problem of gradient estimation to improve the theoretical Canny tradeoff of position accuracy versus noise rejection that occurs in edge detection. Experimental results show considerable improvements in using the new wavelets over both isotropic Gaussian derivatives and other elongated steerable filters more recently introduced. Finally, being the proposed wavelets a set of Fourier eigenfunctions, they can be of interest in other fields of science, such as optics and quantum mechanics.

  14. Microscope system with on axis programmable Fourier transform filtering

    Science.gov (United States)

    Martínez, José Luis; García-Martínez, Pascuala; Moreno, Ignacio

    2017-02-01

    We propose an on-axis microscope optical system to implement programmable optical Fourier transform image processing operations, taking advantage of phase and polarization modulation of a liquid crystal on silicon (LCOS) display. We use a Hamamatsu spatial light modulator (SLM), free of flickering, which therefore can be tuned to fully eliminate the zero order component of the encoded diffractive filter. This allows the realization of filtering operation on axis (as opposed to other systems in the literature that require operating off axis), therefore making use of the full space bandwidth provided by the SLM. The system is first demonstrated by implementing different optical processing operations based on phase-only blazed gratings such as phase contrast, band-pass filtering, or additive and substractive imaging. Then, a simple Differential interference contrast (DIC) imaging is obtained changing to a polarization modulation scheme, achieved simply by selecting a different incident state of polarization on the incident beam.

  15. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  16. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  17. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-01

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  18. Derivatization technique to increase the spectral selectivity of two-dimensional Fourier transform infrared focal plane array imaging: analysis of binder composition in aged oil and tempera paint.

    Science.gov (United States)

    Zumbühl, Stefan; Scherrer, Nadim C; Eggenberger, Urs

    2014-01-01

    The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF4), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF4 derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds.

  19. Discrimination of different genuine Danshen and their extracts by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui

    2012-11-01

    In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.

  20. Contribution to the design of two-dimensional non-recursive filters using the techniques of artificial intelligence: application to image processing

    OpenAIRE

    Boudjelaba, Kamal

    2012-01-01

    Journée des Jeunes Chercheurs du laboratoire Prisme, 2 Juillet 2012; -This paper presents an objective and comparative study of evolutionary algorithms applied to the design of two-dimensional (2-D) FIR filters. The design of 2-D FIR filters can be formulated as a non-linear optimization problem. We explore several stochastic methodologies capable of handling large spaces. We finally propose a new genetic algorithm in which some concepts are introduced to optimize the trade-off between divers...

  1. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen

    2016-11-01

    As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.

  2. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  3. Detection and extraction of orientation-and-scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters

    Science.gov (United States)

    Tzanis, Andreas

    2013-02-01

    The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional

  4. Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers

    NARCIS (Netherlands)

    Kok, S.J.; Hankemeier, T.; Schoenmakers, P.J.

    2005-01-01

    The on-line coupling of comprehensive two-dimensional liquid chromatography (liquid chromatography × size-exclusion chromatography, LC × SEC) and infrared (IR) spectroscopy has been realized by means of an IR flow cell. The system has been assessed by the functional-group analysis of a series of

  5. Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers

    NARCIS (Netherlands)

    Kok, S.J.; Hankemeier, T.; Schoenmakers, P.J.

    2005-01-01

    The on-line coupling of comprehensive two-dimensional liquid chromatography (liquid chromatography × size-exclusion chromatography, LC × SEC) and infrared (IR) spectroscopy has been realized by means of an IR flow cell. The system has been assessed by the functional-group analysis of a series of sty

  6. Electrical and physical topography in energy-filtered photoelectron emission microscopy of two-dimensional silicon pn junctions

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssière, Maylis [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Escher, Matthias [Focus GmbH, 65510 Hünstetten (Germany); Renault, Olivier; Mariolle, Denis [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Barrett, Nicholas, E-mail: nick.barrett@cea.fr [CEA, IRAMIS/SPCSI/LENSIS, F-91191 Gif-sur-Yvette (France)

    2013-02-15

    Photoelectron emission microscopy (PEEM) is a powerful non-destructive tool for spatially resolved, spectroscopic analysis of surfaces with sub-micron chemical heterogeneities. However, in the case of micron scale patterned semiconductors, band line-ups at pn junctions have a built-in lateral electric field which can significantly alter the PEEM image of the structure with respect to its physical dimensions. Furthermore, real surfaces may also have physical topography which can reinforce or counteract the electrically induced distortion at a pn junction. We have measured the experimental PEEM image distortion at such a junction and carried out numerical simulations of the PEEM images. The simulations include energy filtering and the use of a contrast aperture in the back focal plane in order to describe the changes in the PEEM image of the junction with respect to its real physical dimensions. Threshold imaging does not give a reliable measurement of micron sized p and n type patterns. At higher take-off energies, for example using Si 2p electrons, the pattern width is closer to the real physical size. Physical topography must also be quantitatively accounted for. The results can be generalized to PEEM imaging of any structure with a built-in lateral electric field.

  7. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  8. Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms

    Science.gov (United States)

    Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.

    1979-01-01

    Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.

  9. Analysis of crystallized lactose in milk powder by Fourier-transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Lei, Yu; Zhou, Qun; Zhang, Yan-ling; Chen, Jian-bo; Sun, Su-qin; Noda, Isao

    2010-06-01

    Infrared (IR) spectroscopy is used in combination with two-dimensional (2D) correlation IR spectroscopy to conduct rapid non-destructive quantitative research in milk powder without additional separation steps. The experiments conducted in both FT-IR and 2D FT-IR spectra suggest that characteristic spectroscopic features of milk powder containing different carbohydrate can be detected, and then determine the type of carbohydrate. To predict the approximate content of lactose while the carbohydrate is lactose, different amount of crystallized lactose has been added to the reference milk powder. The correlation coefficient could be used to determine the content of crystallized lactose in milk powder. The method provides a rapid and convenient means for assessing the quality of milk powder.

  10. [Study on the identification of radix scutellariae and extract using Fourier transform infrared spectroscopy and two-dimensional IR correlation spectroscopy].

    Science.gov (United States)

    Zhang, Chun-hui; Zhang, Gui-jun; Sun, Su-qin; Tu, Ya

    2010-07-01

    2D-IR correlation spectroscopy was used to do the research on crude and prepared drug of radix scutellariae and the extracts of them. The results show that the holistic shape of peaks among them are similar in the FTIR spectra. In second derivative spectra, the two absorption peaks: 1,745 and 1,411 cm(-1) of processed products move to the bigger wavenumber direction, while 1,357 cm(-1) of processed products moves to the smaller wavenumber direction; There are conspicuous differences in Two-dimensional infrared correlation spectroscopy among them: Four characteristic peaks are shown between 1,300 and 1,800 cm(-1). The intensity of peak at 1,575 cm(-1) is the strongest. There are three main districts about the autopeaks of sliced scutellariae. Wine-fried scutellariae has two auto-peak districts, in which all the auto-peaks are positively correlated. The FTIR spectra of total glycoside extract of different samples present characteristic peaks at 1,615, 1,585, 1,450 cm(-1) (vibration of phenyl framework) and 1,658 cm(-1) (=C-O ) respectively, therefore, the authors speculated that their mutual component is the compound of phenolic glycoside. The two-dimensional infrared correlation spectra present five automatic peaks (vibration of phenyl framework) in 800-1,800 cm(-1) (1,366, 1,420, 1,508, 1,585, 1,669 cm(-1)). So the authors can conclude that a lot of information can be provided by macro-fingerprint technology of infrared spectroscopy which can evaluate overall quality of radix scutellariae accurately and be used to study the characteristics of relevance of crude and prepared scutellariae.

  11. The methyl C-H blueshift in N,N-dimethylformamide-water mixtures probed by two-dimensional Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    Xu, Zheng; Li, Haoran; Wang, Congmin; Pan, Haihua; Han, Shijun

    2006-06-28

    Two-dimensional correlation spectroscopy was used to study the composition-dependent spectral variations of the CH-stretching bands of N,N-dimethylformamide (DMF)-water mixtures with X(DMF) ranging from 0.98 to 0.60. By a detailed correlation analysis of the spectral changes of the CH- and OH-stretching bands, it is found that the intensities of the CH and OH bands change in different ways when the water content is increased. It is also found that two different regions of the water content can be distinguished, in which the intensity changes have different signatures. A tentative explanation for how these phenomena might be related to structural changes in the mixture is proposed. The structural change of DMF induced by the water hydrogen bonded on the carbonyl group is supposed to be the possible origin of the methyl C-H blueshift instead of the direct C-H...O interactions before the hydrophobic hydration takes place.

  12. How to find a needle (or anything else) in a haystack: two-dimensional correlation spectroscopy-filtering with iterative random sampling applied to pharmaceutical heparin.

    Science.gov (United States)

    Rudd, Timothy R; Macchi, Eleonora; Gardini, Cristina; Muzi, Laura; Guerrini, Marco; Yates, Edwin A; Torri, Giangiacomo

    2012-08-07

    Risks of contamination of the major clinical anticoagulant heparin can arise from deliberate adulteration with unnatural or natural polysaccharides, including heparin from other animal sources, other natural products, or artifacts of manufacture, and these can escape detection by conventional means. Currently, there is no generally applicable, objective test recommended by regulators that can detect these in pharmaceutical heparin, and this continues to leave heparin exposed to contamination risks. Two-dimensional correlation spectroscopic-filtering with iterative random sampling (2D-COS-firs) is reported. It employs a difference covariance matrix with iterative random sampling, and is capable of revealing contamination in pharmaceutical heparin to a high level of sensitivity irrespective of the nature of those features. The technique is suitable to any situation in which a comparison of a single entity to a family of heterogeneous entities, particularly natural products and biosimilars, needs to be made, and will find application in pharmaceutical monitoring, manufacturing quality control, materials science, biotechnology, and metabolomic investigations.

  13. Tracking of Two Dimensional Based On Kalman Filtering%基于Kalman滤波的图像雅克比矩阵在线估计

    Institute of Scientific and Technical Information of China (English)

    刘广瑞; 黄真; 韩莉莉; 毕竞锴

    2013-01-01

    视觉伺服机器人主要是通过系统的图像雅克比矩阵表述机器人系统的特征空间进行反馈控制.首先建立了SCARA型机器人系统,针对系统图像雅克比矩阵的物理意义,利用雅克比矩阵增量AJ建立系统状态方程,以Kalman滤波的方法对系统雅克比矩阵进行在线估计.在Matlab仿真的基础上对此方法进行分析,并将其运用于二维目标的跟踪,实验表明此方法的有效性.%The control of the visual-servo robot is feedback controlled through presenting the feature space of robot system by the graphic Jacobimatrix of the systerm. A SCARA robot system is established firstly. In view of the physical meaning of the system Jacobianmatrix, the system state equation would be built according to the incremental of Jacobionmatrix, then the Jacabian matrix would be estimated on-line through the Kalman filtering. This method is analyzed based on the MATLAB simulation and applied to the tracking of the two dimensional target, and the validity of this method was tested finally.

  14. Feasibility study, software design, layout and simulation of a two-dimensional Fast Fourier Transform machine for use in optical array interferometry

    Science.gov (United States)

    Boriakoff, Valentin

    1994-01-01

    The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).

  15. Two dimensional vibrations of the guinea pig apex organ of Corti measured in vivo using phase sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.

    2015-02-01

    In this study, we measure the in vivo apical-turn vibrations of the guinea pig organ of Corti in both axial and radial directions using phase-sensitive Fourier domain optical coherence tomography. The apical turn in guinea pig cochlea has best frequencies around 100 - 500 Hz which are relevant for human speech. Prior measurements of vibrations in the guinea pig apex involved opening the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here this limitation is overcome by measuring the vibrations through bone without opening the otic capsule. Furthermore, we have significantly reduced the surgery needed to access the guinea pig apex in the axial direction by introducing a miniature mirror inside the bulla. The method and preliminary data are discussed in this article.

  16. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    Science.gov (United States)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  17. A data-dependent Fourier filter based on image segmentation for random seismic noise attenuation

    Science.gov (United States)

    Zhou, JiaXiong; Lu, Wenkai; He, Jianwei; Liu, Bing; Ren, Tin

    2015-03-01

    In this paper, we propose a data-dependent Fourier filter (DDFF) based on image segmentation for random seismic noise attenuation. In the proposed method, the original seismic data is divided into some overlapped small blocks. For each block, a local Fourier filter is designed automatically in two steps. At first, a binary mask is obtained by segmenting the Fourier amplitude spectra (FAS) of this block. The histogram of the FAS is used to get the threshold for the FAS segmentation. Secondly, an average filter is applied on the binary mask to get the tapered Fourier filter. In the proposed method, the DDFFs for all blocks are compact and time-space variant. After all blocks are processed, they are merged together to form the filtered result. We illustrate our method by a 2D synthetic seismic data, and give a comparison with the coherent event extraction method in Fourier domain. At last, a real 3D seismic data example demonstrates that the proposed method obtains some promising results.

  18. Coherence Enhancing Diffusion and Windowed Fourier Filtering for Fringe Patterns Denoising (II)

    Science.gov (United States)

    Wang, Haixia; Kemao, Qian

    2010-04-01

    Fringe patterns produced by various optical interferometric techniques encode the information of deformation, refractive index, vibration, etc. Noise as one of the key problems affects further processing of the fringe patterns and reduces the final measurement quality. Coherence enhancing diffusion (CED) is a partial differential equation based denoising model that suppresses the noise as well as preserves the flow-like structure. Windowed Fourier transform-based windowed Fourier filtering (WFF) is another useful fringe pattern denoising tool that removes noise by thresholding the windowed Fourier transform spectrum. An adaptive windowed Fourier filtering (AWFF) that denoises the fringe pattern based on pixels' local frequencies is proposed in this paper. The performance of AWFF is compared with WFF and CED by applying them to fringe patterns that contain speckle noise and different levels of frequencies. Quantitative results will be given on simulated fringe patterns. Experimental fringe pattern will also be tested to illustrate the performance of these methods.

  19. A clinical evaluation of the RNCA study using Fourier filtering as a preprocessing method

    Energy Technology Data Exchange (ETDEWEB)

    Robeson, W.; Alcan, K.E.; Graham, M.C.; Palestro, C.; Oliver, F.H.; Benua, R.S.

    1984-06-01

    Forty-one patients (25 male, 16 female) were studied by Radionuclide Cardangiography (RNCA) in our institution. There were 42 rest studies and 24 stress studies (66 studies total). Sixteen patients were normal, 15 had ASHD, seven had a cardiomyopathy, and three had left-sided valvular regurgitation. Each study was preprocessed using both the standard nine-point smoothing method and Fourier filtering. Amplitude and phase images were also generated. Both preprocessing methods were compared with respect to image quality, border definition, reliability and reproducibility of the LVEF, and cine wall motion interpretation. Image quality and border definition were judged superior by the consensus of two independent observers in 65 of 66 studies (98%) using Fourier filtered data. The LVEF differed between the two processes by greater than .05 in 17 of 66 studies (26%) including five studies in which the LVEF could not be determined using nine-point smoothed data. LV wall motion was normal by both techniques in all control patients by cine analysis. However, cine wall motion analysis using Fourier filtered data demonstrated additional abnormalities in 17 of 25 studies (68%) in the ASHD group, including three uninterpretable studies using nine-point smoothed data. In the cardiomyopathy/valvular heart disease group, ten of 18 studies (56%) had additional wall motion abnormalities using Fourier filtered data (including four uninterpretable studies using nine-point smoothed data). We conclude that Fourier filtering is superior to the nine-point smooth preprocessing method now in general use in terms of image quality, border definition, generation of an LVEF, and cine wall motion analysis. The advent of the array processor makes routine preprocessing by Fourier filtering a feasible technologic advance in the development of the RNCA study.

  20. Data-parallel tomographic reconstruction : A comparison of filtered backprojection and direct Fourier reconstruction

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Westenberg, Michel A.

    1998-01-01

    We consider the parallelization of two standard 2D reconstruction algorithms, filtered backprojection and direct Fourier reconstruction, using the data-parallel programming style. The algorithms are implemented on a Connection Machine CM-5 with 16 processors and a peak performance of 2 Gflop/s. (C)

  1. In situ orientation studies of a poly(3-hydroxybutyrate)/poly(epsilon-caprolactone) blend by rheo-optical fourier transform infrared spectroscopy and two-dimensional correlation spectroscopic analysis.

    Science.gov (United States)

    Unger, Miriam; Siesler, Heinz W

    2009-12-01

    In the present study, the orientation of a poly(3-hydroxybutyrate) (PHB)/poly(epsilon-caprolactone) (PCL) blend was monitored during uniaxial elongation by rheo-optical Fourier transform infrared (FT-IR) spectroscopy and analyzed by generalized two-dimensional correlation spectroscopy (2D-COS). The dichroism of the delta(CH(2)) absorption bands of PHB and PCL was employed to determine the polymer chain orientation in the PHB/PCL blend during the elongation up to 267% strain. From the PHB and PCL specific orientation functions it was derived that the PCL chains orient into the drawing direction while the PHB chains orient predominantly perpendicular to the applied strain. To extract more detailed information about the polymer orientation during uniaxial elongation, 2D-COS analysis was employed for the dichroic difference of the polarization spectra recorded during the drawing process. In the corresponding synchronous and asynchronous 2D correlation plots, absorption bands characteristic of the crystalline and amorphous regions of PHB and PCL were separated. Furthermore, the 2D-COS analysis revealed that during the mechanical treatment the PCL domains orient before the PHB domains.

  2. Sharpening the response of an FIR filter using Fractional Fourier Transform

    Directory of Open Access Journals (Sweden)

    Somesh Chaturvedi

    2012-03-01

    Full Text Available In this paper we have implemented FIR filter with the help of Kaiser Window and Fractional Fourier Transform (FRFT. The window shape parameter is tuned for the transition band by considering linear phase FRFT Finite Impulse Response (FIR filter. Here FRFT of Kaiser Window is taken and convolved with the response function for tuning purposes of the transition band which makes effective transition band. This proposed method includes the change of parameters of Kaiser window by which other windows like Rectangle, Bartlett, Hamming Blackman and Hanning windows are generated by using FRFT. The efficiencies of this method in terms of main lobe and side ripples are better than the above mentioned windows under Fourier transform.

  3. Studies of spin relaxation and molecular dynamics in liquid crystals by two-dimensional Fourier transform electron spin resonance. II. Perdeuterated-tempone in butoxy benzylidene octylaniline and dynamic cage effects

    Science.gov (United States)

    Sastry, V. S. S.; Polimeno, Antonino; Crepeau, Richard H.; Freed, Jack H.

    1996-10-01

    Two-dimensional Fourier transform (2D-FT)-electron spin resonance (ESR) studies on the small globular spin probe perdeuterated tempone (PDT) in the liquid crystal solvent 4O,8 (butoxy benzylidene octylaniline) are reported. These experiments, over the temperature range of 95 °C to 24 °C, cover the isotropic (I), nematic (N), smectic A (SA), smectic B (SB), and crystal (C) phases. The 2D-ELDOR (two-dimensional electron-electron double resonance) spectra confirm the anomalously rapid reorientation of PDT, especially in the lower temperature phases. The model of a slowly relaxing local structure (SRLS) leads to generally very good non-linear least squares (NLLS) global fits to the sets of 2D-ELDOR spectra obtained at each temperature. These fits are significantly better than those achieved by the standard model of Brownian reorientation in a macroscopic orienting potential. The SRLS model is able to account for anomalies first observed in an earlier 2D-ELDOR study on PDT in a different liquid crystal in its smectic phases. Although it is instructional to extract the various spectral densities from the COSY (correlation spectroscopy) and 2D-ELDOR spectra, the use of NLLS global fitting to a full set of 2D-ELDOR spectra is shown to be more reliable and convenient for obtaining optimum model parameters, especially in view of possible (incipient) slow motional effects from the SRLS or dynamic cage. The cage potential is found to remain fairly constant at about kBT over the various phases (with only a small drop in the SB phase), but its asymmetry increases with decreasing temperature T. This value is significantly larger than the weak macroscopic orienting potential which increases from 0.1 to 0.3kBT with decreasing T. The cage relaxation rate, given by Rc is about 3×107 s-1 in the I phase, but increases to about 108 s-1 in the SA, SB, and C phases. The rotational diffusion tensor for PDT shows only a small T-independent asymmetry, and its mean rotational diffusion

  4. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging.

    Science.gov (United States)

    Wujcicki, Artur; Corteville, Dominique; Materka, Andrzej; Schad, Lothar R

    2015-03-01

    MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach.

  5. Perfusion and ventilation filters for Fourier-decomposition MR lung imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wujcicki, Artur; Materka, Andrzej [Lodz University of Technology (Poland). Inst. of Electronics; Corteville, Dominique; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine

    2015-05-01

    MR imaging without the use of contrast agents has recently been used for creating perfusion and ventilation functional lung images. The technique incorporates frequency- or wavelet-domain filters to separate the MR signal components. This paper presents a new, subject-adaptive algorithm for perfusion and ventilation filters design. The proposed algorithm uses a lung signal model for separation of the signal components in the frequency domain. Non-stationary lung signals are handled by a short time Fourier transform. This method was applied to sets of 192 and 90 co-registered non-contrast MR lung images measured for five healthy subjects at the rate of 3,33 images per second, using different slice thicknesses. In each case, the resulted perfusion and ventilation images showed a smaller amount of mutual information, when compared to those obtained using the known lowpass/highpass filter approach.

  6. Instantaneous Power Theory with Fourier and Optimal Predictive Controller Design for Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Suksan Tiyarachakun

    2014-01-01

    Full Text Available This paper presents a novel harmonic identification algorithm of shunt active power filter for balanced and unbalanced three-phase systems based on the instantaneous power theory called instantaneous power theory with Fourier. Moreover, the optimal design of predictive current controller using an artificial intelligence technique called adaptive Tabu search is also proposed in the paper. These enhancements of the identification and current control parts are the aim of the good performance for shunt active power filter. The good results for harmonic mitigation using the proposed ideas in the paper are confirmed by the intensive simulation using SPS in SIMULINK. The simulation results show that the enhanced shunt active power filter can provide the minimum %THD (Total Harmonic Distortion of source currents and unity power factor after compensation. In addition, the %THD also follows the IEEE Std.519-1992.

  7. Stripe and ring artifact removal with combined wavelet--Fourier filtering.

    Science.gov (United States)

    Münch, Beat; Trtik, Pavel; Marone, Federica; Stampanoni, Marco

    2009-05-11

    A fast, powerful and stable filter based on combined wavelet and Fourier analysis for the elimination of horizontal or vertical stripes in images is presented and compared with other types of destriping filters. Strict separation between artifacts and original features allowing both, suppression of the unwanted structures and high degree of preservation of the original image information is endeavoured. The results are validated by visual assessments, as well as by quantitative estimation of the image energy loss. The capabilities and the performance of the filter are tested on a number of case studies related to applications in tomographic imaging. The case studies include (i) suppression of waterfall artifacts in electron microscopy images based on focussed ion beam nanotomography, (ii) removal of different types of ring artifacts in synchrotron based X-ray microtomography and (iii) suppression of horizontal stripe artifacts from phase projections in grating interferometry.

  8. Utilização de filtro de transformada de fourier para a minimização de ruídos em sinais analíticos Utilization of fourier transform filter for noise minimization in analytical signals

    Directory of Open Access Journals (Sweden)

    Eduardo O. Cerqueira

    2000-10-01

    Full Text Available Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices

  9. Multifractal imaging filtering and decomposition methods in space, Fourier frequency, and eigen domains

    Directory of Open Access Journals (Sweden)

    Qiuming Cheng

    2007-06-01

    Full Text Available The patterns shown on two-dimensional images (fields used in geosciences reflect the end products of geo-processes that occurred on the surface and in the subsurface of the Earth. Anisotropy of these types of patterns can provide information useful for interpretation of geo-processes and identification of features in the mapped area. Quantification of the anisotropy property is therefore essential for image processing and interpretation. This paper introduces several techniques newly developed on the basis of multifractal modeling in space, Fourier frequency, and eigen domains, respectively. A singularity analysis method implemented in the space domain can be used to quantify the intensity and anisotropy of local singularities. The second method, called S-A, characterizes the generalized scale invariance property of a field in the Fourier frequency domain. The third method characterizes the field using a power-law model on the basis of eigenvalues and eigenvectors of the field. The applications of these methods are demonstrated with a case study of Environment Scan Electric Microscope (ESEM microimages for identification of sphalerite (ZnS ore minerals from the Jinding Pb/Zn/Ag mineral deposit in Shangjiang District, Yunnan Province, China.

  10. Detection of mitochondrial fission with orientation-dependent optical Fourier filters.

    Science.gov (United States)

    Pasternack, Robert M; Zheng, Jing-Yi; Boustany, Nada N

    2011-02-01

    We utilize a recently developed optical imaging method based on Fourier processing with Gabor-like filters to detect changes in light scattering resulting from alterations in mitochondrial structure in endothelial cells undergoing apoptosis. Imaging based on Gabor filters shows a significant decrease in the orientation of subcellular organelles at 60 to 100 minutes following apoptosis induction and concomitant with mitochondrial fragmentation observed by fluorescence. The optical scatter changes can be detected at low resolution at the whole cell level. At high resolution, we combine fluorescence imaging of the mitochondria with optical Fourier-based imaging to demonstrate that the dynamic decrease in organelle orientation measured by optical Gabor filtering is spatially associated with fluorescent mitochondria and remains largely absent from nonfluorescent subcellular regions. These results provide strong evidence that the optical Gabor responses track mitochondrial fission during apoptosis and can be used to provide label-free, rapid monitoring of this morphological process within single cells. Copyright © 2011 International Society for Advancement of Cytometry.

  11. Studies of spin relaxation and molecular dynamics in liquid crystals by two-dimensional Fourier transform electron spin resonance. I. Cholestane in butoxy benzylidene-octylaniline and dynamic cage effects

    Science.gov (United States)

    Sastry, V. S. S.; Polimeno, Antonino; Crepeau, Richard H.; Freed, Jack H.

    1996-10-01

    Two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) studies on the rigid rodlike cholestane (CSL) spin-label in the liquid crystal solvent 4O,8 (butoxy benzylidene octylaniline) are reported. These experiments were performed over a wide temperature range: 96 °C to 25 °C covering the isotropic (I), nematic (N), smectic A (SA), smectic B (SB), and crystal (C) phases. It is shown that 2D-FT-ESR, especially in the form of 2D-ELDOR (two-dimensional electron-electron double resonance) provides greatly enhanced sensitivity to rotational dynamics than previous cw-ESR studies on this and related systems. This sensitivity is enhanced by obtaining a series of 2D-ELDOR spectra as a function of mixing time, Tm, yielding essentially a three-dimensional experiment. Advantage is taken of this sensitivity to study the applicability of the model of a slowly relaxing local structure (SRLS). In this model, a dynamic cage of solvent molecules, which relaxes on a slower time scale than the CSL solute, provides a local orienting potential in addition to that of the macroscopic aligning potential in the liquid crystalline phase. The theory of Polimeno and Freed for SRLS in the ESR slow motional regime is extended by utilizing the theory of Lee et al. to include 2D-FT-ESR experiments, and it serves as the basis for the analysis of the 2D-ELDOR experiments. It is shown that the SRLS model leads to significantly improved non-linear least squares fits to experiment over those obtained with the standard model of Brownian reorientation in a macroscopic aligning potential. This is most evident for the SA phase, and the use of the SRLS model also removes the necessity of fitting with the unreasonably large CSL rotational asymmetries in the smectic phases that are required in both the cw-ESR and 2D-ELDOR fits with the standard model. The cage potential is found to vary from about kBT in the isotropic phase to greater than 2kBT in the N and SA phases, with an abrupt drop to

  12. Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy

    CERN Document Server

    He, Xuefei; Pratap, Mrinalini; Zheng, Yujie; Wang, Yi; Nisbet, David R; Williams, Richard J; Rug, Melanie; Maier, Alexander G; Lee, Woei Ming

    2016-01-01

    Automated label-free quantitative imaging of biological samples can greatly benefit high throughput diseases diagnosis. Digital holographic microscopy (DHM) is a powerful quantitative label-free imaging tool that retrieves structural details of cellular samples non-invasively. In off-axis DHM, a proper spatial filtering window in Fourier space is crucial to the quality of reconstructed phase image. Here we describe a region-recognition approach that combines shape recognition with an iterative thresholding to extracts the optimal shape of frequency components. The region recognition technique offers fully automated adaptive filtering that can operate with a variety of samples and imaging conditions. When imaging through optically scattering biological hydrogel matrix, the technique surpasses previous histogram thresholding techniques without requiring any manual intervention. Finally, we automate the extraction of the statistical difference of optical height between malaria parasite infected and uninfected re...

  13. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  14. Two dimensional vernier

    Science.gov (United States)

    Juday, Richard D. (Inventor)

    1992-01-01

    A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.

  15. Rotor-System Log-Decrement Identification Using Short-Time Fourier-Transform Filter

    Directory of Open Access Journals (Sweden)

    Qihang Li

    2015-01-01

    Full Text Available With the increase of the centrifugal compressor capability, such as large scale LNG and CO2 reinjection, the stability margin evaluation is crucial to assure the compressor work in the designed operating conditions in field. Improving the precision of parameter identification of stability is essential and necessary as well. Based on the time-varying characteristics of response vibration during the sine-swept process, a short-time Fourier transform (STFT filter was introduced to increase the signal-noise ratio and improve the accuracy of the estimated stability parameters. A finite element model was established to simulate the sine-swept process, and the simulated vibration signals were used to study the filtering effect and demonstrate the feasibility to identify the stability parameters by using Multiple-Input and Multiple-Output system identification method that combines the prediction error method and instrumental variable method. Simulation results show that the identification method with STFT filter improves the estimated accuracy much well and makes the curves of frequency response function clearer. Experiment was carried out on a test rig as well, which indicates the identification method is feasible in stability identification, and the results of experiment indicate that STFT filter works very well.

  16. Two-dimensional optical spectroscopy

    CERN Document Server

    Cho, Minhaeng

    2009-01-01

    Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.

  17. Experimental demonstration of an OFDM receiver based on a silicon-nanophot onic discrete Fourier transform filter

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Nolle, Markus; Meuer, C.

    2014-01-01

    We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit.......We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit....

  18. 1-D Directional Filter Based Texture Descriptor in Fractional Fourier Domain

    Institute of Scientific and Technical Information of China (English)

    Kai Tian; Hongzhang Jin; Liying Zheng

    2015-01-01

    Texture analysis is a fundamental field in computer vision. However, it is also a particularly difficult problem for no universal mathematical model of real world textures. By extending a new application of the fractional Fourier transform ( FrFT) in the field of texture analysis, this paper proposes an FrFT⁃based method for describing textures. Firstly, based on the Radon⁃Wigner transform, 1⁃D directional FrFT filters are designed to two types of texture features, i.e., the coarseness and directionality. Then, the frequencies with maximum and median amplitudes of the FrFT of the input signal are regarded as the output of the 1⁃D directional FrFT filter. Finally, the mean and the standard deviation are used to compose of the feature vector. Compared to the WD⁃based method, three benefits can be achieved with the proposed FrFT⁃based method, i. e., less memory size, lower computational load, and less disturbed by the cross⁃terms. The proposed method has been tested on 16 standard texture images. The experimental results show that the proposed method is superior to the popular Gabor filtering⁃based method.

  19. High-resolution 640 Gbit/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Guan, P.; Kasai, K.

    2010-01-01

    We demonstrate pre-scaled 40 GHz clock recovery from 640 Gbit/s optical time-division-multiplexed data using LiNbO$_3$ modulators, based on time-domain optical Fourier transformation and optical filtering. The clock recovery is used in a 640 Gbit/s error-free transmission over 300 km....

  20. Iris Localization Algorithm Based on Two-dimensional Wavelet Transform and Neighborhood Average Filter%基于二维小波变换及邻域均值滤波的虹膜定位算法

    Institute of Scientific and Technical Information of China (English)

    赵静

    2013-01-01

    为了提高虹膜定位的准确率和速度,提出了一种基于二维小波变换及邻域均值滤波的虹膜定位算法.采用阈值法分割瞳孔,使用边缘检测算子检测瞳孔区域边缘,定位虹膜内边缘;然后对人眼图像进行二维小波处理降低虹膜图像的分辨率,以减少虹膜本身的纹理对判断外边缘点时所产生的影响;最后采用邻域均值滤波进行虹膜外边缘点提取,根据所得虹膜外边缘点确定虹膜外边界.仿真结果表明:该算法定位虹膜内外边界的平均时间为1.75s,准确卒为99.7%,其中虹膜外边缘定位误差小于4.2%,在虹膜识别系统中有较高的实际应用价值.%An iris localization algorithm based on two-dimensional wavelet transform and neighborhood average filter is proposed to improve the accuracy and the speed of the iris localization. Firstly, the algorithm segments the pupil area of the iris by the threshold. Secondly, it locates the iris inner edge by the edge detection operator in the pupil area. Thirdly, the human eye iris images is processed by the two-dimensional wavelet transform to reduce the image resolution, In order to reduce the impact of the iris texture on the judgment of the iris outer edge points. Fourthly, the algorithm extracts the iris outer edge points by the neighborhood average filter. Finally, it locates the iris outer edge by the outer edge points. The simulation results show that the algorithm locates the iris inner and outer edge with average time of 1. 75 s and accuracy of 99. 7%, the error of iris outer edge localization is less than 4. 2%, The algorithm has a higher practical value in the iris recognition system.

  1. Filtros digitais por transformadas de Fourier aplicados em eletroquímica Digital filters based on Fourier transforms for application in electrochemistry

    Directory of Open Access Journals (Sweden)

    Ricardo Nantes Liang

    2013-01-01

    Full Text Available The electrochemical properties of micro and nano-electrodes are widely investigated due to their low faradaic and capacitive currents, leading to a new generation of smart and implantable devices. However, the current signals obtained in low-dimensional devices are strongly influenced by noise sources. In this paper, we show the evaluation of filters based on Fast Fourier Transform (FFT and their implementation in a graphical user interface (GUI in MATLAB®. As a case study, we evaluated an electrochemical reaction process of charge transfer via outer-sphere. Results showed successful removal of most of the noise in signals, thus proving a promising tool for low-scale measurement.

  2. Study of the characteristics of forced homogeneous turbulence using band-pass Fourier filtering

    Energy Technology Data Exchange (ETDEWEB)

    Kareem, Waleed Abdel [Suez Canal University, Suez (Egypt)

    2012-03-15

    Simulations of forced homogeneous isotropic turbulence with resolutions of 128{sup 3} and 256{sup 3} using the Lattice Boltzmann method are carried out. The multi-scale vortical structures are identified using the band-pass Fourier cutoff filtering. Three fields at each simulation are extracted and their characteristics are studied. The vortical structures are visualized using the Q-identification method. A new lattice segmentation scheme to identify the central axes of the vortical structures is introduced. The central points of each vortex are identified and they are connected using the direction cosines technique. Results show that the Q-spectrum of the fine scale field survives at low and high wave-numbers. However, the large and intermediate Q-spectra survives till wave-numbers less than or equal to twice the used velocity cutoff wave-numbers. It is found that the extracted central axes clearly resemble the corresponding vortical structures at each scale. Using the central axes scheme, the radii and lengths of the vortical structures at each scale are determined and compared. It is also found that the radii of the identified vortical structures at each scale in both simulations are of the order of several times the Kolmogorov microscales.

  3. Reducing Simulation Performance Gap in Hemp-Lime Buildings Using Fourier Filtering

    Directory of Open Access Journals (Sweden)

    Ljubomir Jankovic

    2016-08-01

    Full Text Available Mainstream dynamic simulation tools used by designers do not have a built-in capability to accurately simulate the effect of hemp-lime on building temperature and relative humidity. Due to the specific structure of hemp-lime, heat travels via a maze of solid branches whilst the capillary tubes absorb and release moisture. The resultant heat and moisture transfer cannot be fully represented in mainstream simulation tools, causing a significant performance gap between the simulation and the actual performance. The author has developed an analysis method, based on a numerical procedure for digital signal filtering using Fourier series. The paper develops and experimentally validates transfer functions that enhance simulation results and enable accurate representation of behaviour of buildings built from hemp-lime material using the results of a post-occupancy research project. As a performance gap between design simulation and actual buildings occurs in relation to all buildings, this method has a wider scope of application in reducing the performance gap.

  4. Study onβ-carotene under Thermal Treatment by Two-Dimensional Correlation Fourier Transform Infrared Spectroscopy%温度对β-胡萝卜素二维相关红外光谱的影响

    Institute of Scientific and Technical Information of China (English)

    卢明倩; 黄桂媛; 王巧贞; 许超; 黄庶识

    2016-01-01

    Abtract:[Objective]The aim of this study is to analyze the interaction between the different groups ofβ-carotene in the heating process.[Methods]Two-dimensional correlation spectrosco-py was applied to study the dynamic spectral changes ofβ-carotene from 30℃ to 100℃.[Re-sults]The changes of absorption characteristic peaks ofβ-carotene were inconspicuous in the conventional FTIR spectra and second derivative FTIR spectra during 30℃ to 100℃,which in-dicated that they had no oxidation reation.Two-dimensional correlation analysis showed that the changes of absorption peaks at 968 cm-1 ,1 442 cm-1 ,2 9 6 6 cm-1 and 3 0 1 2 cm-1 were more sen-sitive to temperature.Meanwhile,the order of different groups changes induced by temperature were as follows:the spectral changes of methyl-ene were faster than methyl,the spectral changes of methyl C-H symmetric stretching vibration in low wavenumber were faster than methyl anti-symmetric stretching vibration in high wavenumber,and olefin hydrocarbon symmetric stretching vibration were prior to olefin hydrocarbon anti-symmetric stretching vibration.[Con-clusion]This provides experimental basis for the mechanism of the conformational change ofβ-carotene in heating process.%【目的】了解在升温过程中β-胡萝卜素分子内不同基团之间的相互影响。【方法】采用二维相关红外光谱分析技术,研究β-胡萝卜素在30~100℃变温微扰过程中的动态光谱变化。【结果】β-胡萝卜素分子的吸收特征峰在一维红外光谱和二阶导数谱上变化不明显,表明其没有发生氧化反应。二维相关分析表明,反式共轭烯烃C—H 面外弯曲振动的968 cm-1,烯烃C—H 基团反对称弯曲振动的1442cm-1,甲基C—H 反对称伸缩振动的2966 cm-1和烯烃C—H 的对称伸缩振动的3012 cm-1,这些吸收峰的光谱变化对温度比较敏感。同时在微扰过程中,不同基团变化的先后顺序:亚甲基热运动引起的光谱变化快于

  5. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...

  6. Two dimensional unstable scar statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)

    2006-12-01

    This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.

  7. Two-Dimensional Vernier Scale

    Science.gov (United States)

    Juday, Richard D.

    1992-01-01

    Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.

  8. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...

  9. On One-Sided Filters for Spectral Fourier Approximations of Discontinuous Functions

    Science.gov (United States)

    1991-03-01

    up to the discontinuity from one side. We also use a least square procedure to construct such a filter and test it on several discontinuous functions...thus use a least square procedure, described below, with the objective of obtaining more efficient one-sided filters for a practical range of N...between 8 and 32 (between 16 and 64 grid points for collocation): Least Square Procedure: We make an ansaze { TN ()QykŽ N7 = k (3.1)a k < 0 -k<O where the

  10. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  11. Three-dimensional reconstruction from cone-beam data using an efficient Fourier technique combined with a special interpolation filter.

    Science.gov (United States)

    Seger, M M

    1998-04-01

    We here present LINCON(FAST) which is an exact method for 3D reconstruction from cone-beam projection data. The new method is compared to the LINCON method which is known to be fast and to give good image quality. Both methods have O(N3 log N) complexity and are based on Grangeat's result which states that the derivative of the Radon transform of the object function can be obtained from cone-beam projections. One disadvantage with LINCON is that the rather computationally intensive chirp z-transform is frequently used. In LINCON(FAST), FFT and interpolation in the Fourier domain are used instead, which are less computationally demanding. The computation tools involved in LINCON(FAST) are solely FFT, 1D eight-point interpolation, multiplicative weighting and tri-linear interpolation. We estimate that LINCON(FAST) will be 2-2.5 times faster than LINCON. The interpolation filter belongs to a special class of filters developed by us. It turns out that the filter must be very carefully designed to keep a good image quality. Visual inspection of experimental results shows that the image quality is almost the same for LINCON and the new method LINCON(FAST). However, it should be remembered that LINCON(FAST) can never give better image quality than LINCON, since LINCON(FAST) is designed to approximate LINCON as well as possible.

  12. Three-dimensional reconstruction from cone-beam data using an efficient Fourier technique combined with a special interpolation filter

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson Seger, Maria [Image Processing Laboratory, Department of Electrical Engineering, Linkoeping University, S-581 83 Linkoeping (Sweden)

    1998-04-01

    We here present LINCON{sub FAST} which is an exact method for 3D reconstruction from cone-beam projection data. The new method is compared to the LINCON method which is known to be fast and to give good image quality. Both methods have O(N{sup 3} log N) complexity and are based on Grangeat's result which states that the derivative of the Radon transform of the object function can be obtained from cone-beam projections. One disadvantage with LINCON is that the rather computationally intensive chirp z-transform is frequently used. In LINCON{sub FAST}, FFT and interpolation in the Fourier domain are used instead, which are less computationally demanding. The computation tools involved in LINCON{sub FAST} are solely FFT, 1D eight-point interpolation, multiplicative weighting and tri-linear interpolation. We estimate that LINCON{sub FAST} will be 2-2.5 times faster than LINCON. The interpolation filter belongs to a special class of filters developed by us. It turns out that the filter must be very carefully designed to keep a good image quality. Visual inspection of experimental results shows that the image quality is almost the same for LINCON and the new method LINCON{sub FAST}. However, it should be remembered that LINCON{sub FAST} can never give better image quality than LINCON, since LINCON{sub FAST} is designed to approximate LINCON as well as possible. (author)

  13. Optical generation of a spatially variant two-dimensional lattice structure by using a phase only spatial light modulator

    CERN Document Server

    Kumar, Manish

    2016-01-01

    We propose a simple and straightforward method to generate a spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90{\\deg} bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable and could be extended to other kind of lattices as well.

  14. Optical generation of a spatially variant two-dimensional lattice structure by using a phase only spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manish, E-mail: manishk@physics.iitd.ac.in; Joseph, Joby, E-mail: joby@physics.iitd.ac.in [Photonics Research Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2014-08-04

    We propose a simple and straightforward method to generate spatially variant lattice structures by optical interference lithography method. Using this method, it is possible to independently vary the orientation and period of the two-dimensional lattice. The method consists of two steps which are: numerical synthesis of corresponding phase mask by employing a two-dimensional integrated gradient calculations and experimental implementation of synthesized phase mask by making use of a phase only spatial light modulator in an optical 4f Fourier filtering setup. As a working example, we provide the experimental fabrication of a spatially variant square lattice structure which has the possibility to guide a Gaussian beam through a 90° bend by photonic crystal self-collimation phenomena. The method is digitally reconfigurable, is completely scalable, and could be extended to other kind of lattices as well.

  15. Two-dimensional quantum repeaters

    Science.gov (United States)

    Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.

    2016-11-01

    The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.

  16. Two-dimensional capillary origami

    Science.gov (United States)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  17. Two-dimensional cubic convolution.

    Science.gov (United States)

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  18. Statistical study of approximations to two dimensional inviscid turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Glaz, H.M.

    1977-09-01

    A numerical technique is developed for studying the ergodic and mixing hypotheses for the dynamical systems arising from the truncated Fourier transformed two-dimensional inviscid Navier-Stokes equations. This method has the advantage of exactly conserving energy and entropy (i.e., total vorticity) in the inviscid case except for numerical error in solving the ordinary differential equations. The development of the mathematical model as an approximation to a real physical (turbulent) flow and the numerical results obtained are discussed.

  19. Classifying Two-dimensional Hyporeductive Triple Algebras

    CERN Document Server

    Issa, A Nourou

    2010-01-01

    Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.

  20. Two-dimensional assignment with merged measurements using Langrangrian relaxation

    Science.gov (United States)

    Briers, Mark; Maskell, Simon; Philpott, Mark

    2004-01-01

    Closely spaced targets can result in merged measurements, which complicate data association. Such merged measurements violate any assumption that each measurement relates to a single target. As a result, it is not possible to use the auction algorithm in its simplest form (or other two-dimensional assignment algorithms) to solve the two-dimensional target-to-measurement assignment problem. We propose an approach that uses the auction algorithm together with Lagrangian relaxation to incorporate the additional constraints resulting from the presence of merged measurements. We conclude with some simulated results displaying the concepts introduced, and discuss the application of this research within a particle filter context.

  1. Two-dimensional function photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu

    2016-01-01

    In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.

  2. Space-variant optical correlator based on the fractional Fourier transform: implementation by the use of a photorefractive Bi(12)GeO(2(a)) (BGO) holographic filter.

    Science.gov (United States)

    Granieri, S; Del Carmen Lasprilla, M; Bolognini, N; Sicre, E E

    1996-12-10

    A space-variant optical correlator is proposed on the basis of the fractional Fourier transform. The optical device uses as a recording medium for the holographic filter a photorefractive Bi(12)GeO(2) (BGO) crystal. The experimental results confirm the shift-variance properties. Some limitations that arise from the volume diffraction are also considered.

  3. High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Kasai, K.

    2010-01-01

    We present a novel scheme for subharmonic clock recovery from an optical time-division-multiplexing signal using time-domain optical Fourier transformation and a narrowband optical filter. High-resolution 640-Gb/s clock recovery is successfully demonstrated with no pattern dependence. The clock...

  4. Two dimensional convolute integers for machine vision and image recognition

    Science.gov (United States)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  5. Resonant scattering and mode coupling in two-dimensional textured planar waveguides.

    Science.gov (United States)

    Cowan, A R; Paddon, P; Pacradouni, V; Young, J F

    2001-05-01

    A heuristic formalism is developed for efficiently determining the specular reflectivity spectrum of two-dimensionally textured planar waveguides. The formalism is based on a Green's function approach wherein the electric fields are assumed to vary little over the thickness of the textured part of the waveguide. Its accuracy, when the thickness of the textured region is much smaller than the wavelength of relevant radiation, is verified by comparison with a much less efficient, exact finite difference solution of Maxwell's equations. In addition to its numerical efficiency, the formalism provides an intuitive explanation of Fano-like features evident in the specular reflectivity spectrum when the incident radiation is phase matched to excite leaky electromagnetic modes attached to the waveguide. By associating various Fourier components of the scattered field with bare slab modes, the dispersion, unique polarization properties, and lifetimes of these Fano-like features are explained in terms of photonic eigenmodes that reveal the renormalization of the slab modes due to interaction with the two-dimensional grating. An application of the formalism, in the analysis of polarization-insensitive notch filters, is also discussed.

  6. Hadamard States and Two-dimensional Gravity

    CERN Document Server

    Salehi, H

    2001-01-01

    We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.

  7. Topological defects in two-dimensional crystals

    OpenAIRE

    Chen, Yong; Qi, Wei-Kai

    2008-01-01

    By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.

  8. Application of Savitzky-Golay differentiation filters and Fourier functions to simultaneous determination of cefepime and the co-administered drug, levofloxacin, in spiked human plasma.

    Science.gov (United States)

    Abdel-Aziz, Omar; Abdel-Ghany, Maha F; Nagi, Reham; Abdel-Fattah, Laila

    2015-03-15

    The present work is concerned with simultaneous determination of cefepime (CEF) and the co-administered drug, levofloxacin (LEV), in spiked human plasma by applying a new approach, Savitzky-Golay differentiation filters, and combined trigonometric Fourier functions to their ratio spectra. The different parameters associated with the calculation of Savitzky-Golay and Fourier coefficients were optimized. The proposed methods were validated and applied for determination of the two drugs in laboratory prepared mixtures and spiked human plasma. The results were statistically compared with reported HPLC methods and were found accurate and precise.

  9. Strongly interacting two-dimensional Dirac fermions

    NARCIS (Netherlands)

    Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.

    2009-01-01

    We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature

  10. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  11. Post-processing of EPR spectrum from dosimetric substances through filtering of Discrete Fourier Transform; Pos-processamento de espectros de RPE de substancias dosimetricas por filtragem da transformada discreta de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Fabio P.B.; Bevilacqua, Joyce S., E-mail: fpbvieira@gmail.com, E-mail: joyce.bevilacqua@gmail.com [Universidade de Sao Paulo (IME/USP), Sao Paulo, SP (Brazil). Instituto de Matematica e Estatistica; Rodrigues Junior, Orlando, E-mail: rodrijr@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    The use of electron paramagnetic resonance spectrometers - EPR - in radiation dosimetry is known for more than four decades. It is an important tool in the retrospective determination of doses absorbed. To estimate the dose absorbed by the sample, it is necessary to know the amplitude of the peak to peak signature of the substance in its EPR spectrum. This information can be compromised by the presence of spurious information: noise - of random and low intensity nature; and the behavior of the baseline - coming from the coupling between the resonator tube and the sample analyzed. Due to the intrinsic characteristics of the three main components of the signal, i.e. signature, noise, and baseline - the analysis in the frequency domain allows, through post-processing techniques to filter spurious information. In this work, an algorithm that retrieves the signature of a substance has been implemented. The Discrete Fourier Transform is applied to the signal and without user intervention, the noise is filtered. From the filtered signal, recovers the signature by Inverse Discrete Fourier Transform. The peak to peak amplitude, and the absorbed dose is calculated with an error of less than 1% for signals wherein the base line is linearized. Some more general cases are under investigation and with little user intervention, you can get the same error.

  12. Optical reflector and high Q filter based on two-dimensional photonic-crystal waveguide1Sponsored by National Natural Science Foundation of China (No. 90206002) and Natural Science Key Project of Anhui Province (2004kj364zd).refid="fn1">1

    Science.gov (United States)

    Peijun, Yao; Xiyao, Chen; Bo, Chen; Yonghua, Lu; Pei, Wang; Xiaojin, Jiao; Hai, Ming; Jianping, Xie

    2004-06-01

    In this paper, we investigated the reflectivity of the reflector based on two-dimensional photonic crystal waveguide on defect's position, defect's radius and defect's index by finite difference time domain method. It is found that the reflectivity of the reflector strongly depends on the position of the defect, the reflectivity increases when the defect moves away from the grid point along the direction perpendicular to the waveguide, and we can obtain reflectivity of almost 100% in some suitable position. Meanwhile, we discuss that the reflectivity change with the defect's radius and its refractive index. Moreover, we have designed and simulated a high quality factor ( Q) filter constructed by one-defect reflectors in a simple structure. In our design, the Q will be increased by three times without any more constructional complexity.

  13. Ultrafast two dimensional infrared chemical exchange spectroscopy

    Science.gov (United States)

    Fayer, Michael

    2011-03-01

    The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific

  14. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  15. Two-dimensional function photonic crystals

    Science.gov (United States)

    Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng

    2017-01-01

    In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.

  16. Two-Dimensional Planetary Surface Lander

    Science.gov (United States)

    Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.

    2014-06-01

    A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.

  17. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. I. Experiments

    CERN Document Server

    Nemeth, Alexandra; Mancal, Tomas; Lukes, Vladimir; Hauer, Juergen; Kauffmann, Harald F; Sperling, Jaroslaw

    2010-01-01

    This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and line-shapes. For the two-dimensional electronic spectra we can attribute the observed modulations to periodic enhancement and decrement of the relative amplitudes of rephasing and non-rephasing contributions to the total response. Different metrics of the two-dimensional signals are shown to relate to the frequency-frequency correlation function which provides the connection between experimentally accessible observations and the underlying microscopic molecular dynamics. A detailed theory of the time-dependent two-dimensional spectral li...

  18. a First Cryptosystem for Security of Two-Dimensional Data

    Science.gov (United States)

    Mishra, D. C.; Sharma, Himani; Sharma, R. K.; Kumar, Naveen

    In this paper, we present a novel technique for security of two-dimensional data with the help of cryptography and steganography. The presented approach provides multilayered security of two-dimensional data. First layer security was developed by cryptography and second layer by steganography. The advantage of steganography is that the intended secret message does not attract attention to itself as an object of scrutiny. This paper proposes a novel approach for encryption and decryption of information in the form of Word Data (.doc file), PDF document (.pdf file), Text document, Gray-scale images, and RGB images, etc. by using Vigenere Cipher (VC) associated with Discrete Fourier Transform (DFT) and then hiding the data behind the RGB image (i.e. steganography). Earlier developed techniques provide security of either PDF data, doc data, text data or image data, but not for all types of two-dimensional data and existing techniques used either cryptography or steganography for security. But proposed approach is suitable for all types of data and designed for security of information by cryptography and steganography. The experimental results for Word Data, PDF document, Text document, Gray-scale images and RGB images support the robustness and appropriateness for secure transmission of these data. The security analysis shows that the presented technique is immune from cryptanalytic. This technique further provides security while decryption as a check on behind which RGB color the information is hidden.

  19. Push-Broom-Type Very High-Resolution Satellite Sensor Data Correction Using Combined Wavelet-Fourier and Multiscale Non-Local Means Filtering.

    Science.gov (United States)

    Kang, Wonseok; Yu, Soohwan; Seo, Doochun; Jeong, Jaeheon; Paik, Joonki

    2015-09-10

    In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve these problems, we present a novel method to correct VHR data acquired by a push-broom-type sensor by combining wavelet-Fourier and multiscale non-local means (NLM) filters. After the wavelet-Fourier filter separates the stripe noise from the mixed noise in the wavelet low- and selected high-frequency sub-bands, random noise is removed using the multiscale NLM filter in both low- and high-frequency sub-bands without loss of image detail. The performance of the proposed method is compared to various existing methods on a set of push-broom-type sensor data acquired by Korean Multi-Purpose Satellite 3 (KOMPSAT-3) with severe stripe and random noise, and the results of the proposed method show significantly improved enhancement results over existing state-of-the-art methods in terms of both qualitative and quantitative assessments.

  20. Interpolation by two-dimensional cubic convolution

    Science.gov (United States)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  1. TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)

    2015-11-20

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.

  2. Two dimensional topology of cosmological reionization

    CERN Document Server

    Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan

    2015-01-01

    We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.

  3. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  4. Matching Two-dimensional Gel Electrophoresis' Spots

    DEFF Research Database (Denmark)

    Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza

    2012-01-01

    This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...

  5. Mobility anisotropy of two-dimensional semiconductors

    Science.gov (United States)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  6. Towards two-dimensional search engines

    OpenAIRE

    Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...

  7. Image Display and Manipulation System (IDAMS) program documentation, Appendixes A-D. [including routines, convolution filtering, image expansion, and fast Fourier transformation

    Science.gov (United States)

    Cecil, R. W.; White, R. A.; Szczur, M. R.

    1972-01-01

    The IDAMS Processor is a package of task routines and support software that performs convolution filtering, image expansion, fast Fourier transformation, and other operations on a digital image tape. A unique task control card for that program, together with any necessary parameter cards, selects each processing technique to be applied to the input image. A variable number of tasks can be selected for execution by including the proper task and parameter cards in the input deck. An executive maintains control of the run; it initiates execution of each task in turn and handles any necessary error processing.

  8. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Kronecker Product of Two-dimensional Arrays

    Institute of Scientific and Technical Information of China (English)

    Lei Hu

    2006-01-01

    Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.

  10. Two-Dimensional Toda-Heisenberg Lattice

    Directory of Open Access Journals (Sweden)

    Vadim E. Vekslerchik

    2013-06-01

    Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.

  11. A novel two dimensional particle velocity sensor

    NARCIS (Netherlands)

    Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.

    2013-01-01

    In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica

  12. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  13. Two-dimensional magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, O.

    2001-01-01

    Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of

  14. Two-dimensional subwavelength plasmonic lattice solitons

    CERN Document Server

    Ye, F; Hu, B; Panoiu, N C

    2010-01-01

    We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai

  15. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...

  16. Design of SVD/SGK Convolution Filters for Image Processing

    Science.gov (United States)

    1980-01-01

    of filters by transforming one-dimensional linear phase filters * into two-dimensional linear phase filters . By assuming that the prototype filter is a...linear phase filter , his algorithm transforms a one-dimensional filter h(u) into a two-dimensional filter W (u,v) by means of transformation given by...significance of their implementation of the designed filter is that a large two-dimensional convolution *A linear phase filter implies symmetry of the filter. 13

  17. A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data.

    Science.gov (United States)

    Payne, Tristan G; Southam, Andrew D; Arvanitis, Theodoros N; Viant, Mark R

    2009-06-01

    Direct-infusion electrospray-ionization Fourier transform ion cyclotron resonance mass spectrometry (DI ESI FT-ICR MS) is increasingly being utilized in metabolomics, including the high sensitivity selected ion monitoring (SIM)-stitching approach. Accurate signal quantification and the discrimination of real signals from noise remain major challenges for this approach, with both adversely affected by factors including ion suppression during electrospray, ion-ion interactions in the detector cell, and thermally-induced white noise. This is particularly problematic for complex mixture analysis where hundreds of metabolites are present near the noise level. Here we address relative signal quantification and noise discrimination issues in SIM-stitched DI ESI FT-ICR MS-based metabolomics. Using liver tissue, we first optimized the number of scans (n) acquired per SIM window to address the balance between quantification accuracy versus acquisition time (and thus sample throughput); a minimum of n = 5 is recommended. Secondly, we characterized and computationally-corrected an effect whereby an ion's intensity is dependent upon its location within a SIM window, exhibiting a 3-fold higher intensity at the high m/z end. This resulted in significantly improved quantification accuracy. Finally, we thoroughly characterized a three-stage filter to discriminate noise from real signals, which comprised a signal-to-noise-ratio (SNR) hard threshold, then a "replicate" filter (retaining only peaks in r-out-of-3 replicate analyses), and then a "sample" filter (retaining only peaks in >s% of biological samples). We document the benefits of three-stage filtering versus one- and two-stage filters, and show the importance of selecting filter parameters that balance the confidence that a signal is real versus the total number of peaks detected.

  18. Fully phase encrypted memory using cascaded extended fractional Fourier transform

    Science.gov (United States)

    Nishchal, Naveen K.; Joseph, Joby; Singh, Kehar

    2003-11-01

    In this paper, we implement a fully phase encrypted memory system using cascaded extended fractional Fourier transform (FRT). We encrypt and decrypt a two-dimensional image obtained from an amplitude image. The fully phase image to be encrypted is fractional Fourier transformed three times and random phase masks are placed in the two intermediate planes. Performing the FRT three times increases the key size, at an added complexity of one more lens. The encrypted image is holographically recorded in a photorefractive crystal and is then decrypted by generating through phase conjugation, conjugate of encrypted image. The decrypted phase image is converted into an amplitude image by using phase contrast technique. A lithium niobate crystal has been used as a phase contrast filter to reconstruct the phase image, alleviating the need of alignment in the Fourier plane, thereby making the system rugged.

  19. SAR processing based on the exact two-dimensional transfer function

    Science.gov (United States)

    Chang, C. Y.; Jin, M. Y.; Curlander, J. C.

    1992-01-01

    The two-dimensional transfer functions of several synthetic aperture radar (SAR) focusing algorithms are derived considering the spaceborne SAR environments. The formulation includes the factors of the earth rotation and the antenna squint angles. The resultant transfer functions are explicitly expressed in terms of Doppler centroid frequency and Doppler frequency rate, which can be accurately estimated from the SAR data. Point target simulation results show that the algorithm based on the two-dimensional Fourier transformation outperforms the one-dimensional one for processing data acquired from high squint angles. The two-dimensional Fourier transformation approach appears to be a viable and simple solution for the processor design of future spaceborne SAR systems.

  20. Two-dimensional static deformation of an anisotropic medium

    Indian Academy of Sciences (India)

    Kuldip Singh; Dinesh Kumar Madan; Anita Goel; Nat Ram Garg

    2005-08-01

    The problem of two-dimensional static deformation of a monoclinic elastic medium has been studied using the eigenvalue method, following a Fourier transform. We have obtained expressions for displacements and stresses for the medium in the transformed domain. As an application of the above theory, the particular case of a normal line-load acting inside an orthotropic elastic half-space has been considered in detail and closed form expressions for the displacements and stresses are obtained. Further, the results for the displacements for a transversely isotropic as well as for an isotropic medium have also been derived in the closed form. The use of matrix notation is straightforward and avoids unwieldy mathematical expressions. To examine the effect of anisotropy, variations of dimensionless displacements for an orthotropic, transversely isotropic and isotropic elastic medium have been compared numerically and it is found that anisotropy affects the deformation significantly.

  1. Electronics based on two-dimensional materials.

    Science.gov (United States)

    Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi

    2014-10-01

    The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.

  2. Two-dimensional ranking of Wikipedia articles

    Science.gov (United States)

    Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.

    2010-10-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  3. Two-Dimensional NMR Lineshape Analysis

    Science.gov (United States)

    Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John

    2016-04-01

    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.

  4. Towards two-dimensional search engines

    CERN Document Server

    Ermann, Leonardo; Shepelyansky, Dima L

    2011-01-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.

  5. Toward two-dimensional search engines

    Science.gov (United States)

    Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.

    2012-07-01

    We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.

  6. A two-dimensional Dirac fermion microscope

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-01

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  7. A two-dimensional Dirac fermion microscope.

    Science.gov (United States)

    Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads

    2017-06-09

    The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.

  8. Two-Dimensional Scheduling: A Review

    Directory of Open Access Journals (Sweden)

    Zhuolei Xiao

    2013-07-01

    Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.

  9. Two dimensional fermions in four dimensional YM

    CERN Document Server

    Narayanan, R

    2009-01-01

    Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.

  10. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  11. String breaking in two-dimensional QCD

    CERN Document Server

    Hornbostel, K J

    1999-01-01

    I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.

  12. Two-dimensional supramolecular electron spin arrays.

    Science.gov (United States)

    Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya

    2013-05-07

    A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Two dimensional echocardiographic detection of intraatrial masses.

    Science.gov (United States)

    DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S

    1981-11-01

    With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.

  14. Weakly disordered two-dimensional Frenkel excitons

    Science.gov (United States)

    Boukahil, A.; Zettili, Nouredine

    2004-03-01

    We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.

  15. Two-dimensional photonic crystal surfactant detection.

    Science.gov (United States)

    Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A

    2012-08-07

    We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.

  16. Theory of two-dimensional transformations

    OpenAIRE

    Kanayama, Yutaka J.; Krahn, Gary W.

    1998-01-01

    The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...

  17. Two-dimensional ranking of Wikipedia articles

    CERN Document Server

    Zhirov, A O; Shepelyansky, D L

    2010-01-01

    The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.

  18. Mobility anisotropy of two-dimensional semiconductors

    CERN Document Server

    Lang, Haifeng; Liu, Zhirong

    2016-01-01

    The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.

  19. Sums of two-dimensional spectral triples

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina

    2007-01-01

    construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....

  20. Binding energy of two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;

    1996-01-01

    Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....

  1. Dynamics of film. [two dimensional continua theory

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  2. A Numerical Solution of the Two-Dimensional Fusion Problem with Convective Boundary Conditions

    Science.gov (United States)

    Gülkaç, Vildan

    2010-01-01

    In this paper, we present an LOD method for solving the two-dimensional fusion problem with convective boundary conditions. In this study, we extend our earlier work [1] on the solution of the two-dimensional fusion problem by considering a class of time-split finite-difference methods, namely locally one-dimensional (LOD) schemes. In addition, following the idea of Douglas [2, 3], a Douglas-like splitting scheme is presented. A stability analysis by Fourier series method (von Neumann stability) of the scheme is also investigated. Computational results obtained by the present method are in excellent agreement with the results reported previously by other research.

  3. Two-dimensional gauge theoretic supergravities

    Science.gov (United States)

    Cangemi, D.; Leblanc, M.

    1994-05-01

    We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.

  4. Two-Dimensional Theory of Scientific Representation

    Directory of Open Access Journals (Sweden)

    A Yaghmaie

    2013-03-01

    Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.

  5. Two-dimensional shape memory graphene oxide

    Science.gov (United States)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  6. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2007-01-01

    Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.

  7. Two-dimensional imaging of optical emission in a multicusp-ECR microwave resonant cavity

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, C.B.; Brake, M.L. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering

    1996-02-01

    Optical emission of the electron-cyclotron resonant (ECR) region of a multicusp microwave resonant cavity plasma source has been imaged onto a two-dimensional charge-coupled device (CCD) camera. The technique provides a real-time diagnostic of the plasma emission around the ECR region within a wavelength region defined by low-bandpass filters.

  8. Model for ballistic spin-transport in ferromagnet/two-dimensional electron gas/ferromagnet structures

    NARCIS (Netherlands)

    Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H

    2002-01-01

    The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet two

  9. Optimal excitation of two dimensional Holmboe instabilities

    CERN Document Server

    Constantinou, Navid C

    2010-01-01

    Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...

  10. Phonon hydrodynamics in two-dimensional materials.

    Science.gov (United States)

    Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola

    2015-03-06

    The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.

  11. Probabilistic Universality in two-dimensional Dynamics

    CERN Document Server

    Lyubich, Mikhail

    2011-01-01

    In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.

  12. Two-dimensional position sensitive neutron detector

    Indian Academy of Sciences (India)

    A M Shaikh; S S Desai; A K Patra

    2004-08-01

    A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.

  13. Two-dimensional heterostructures for energy storage

    Science.gov (United States)

    Pomerantseva, Ekaterina; Gogotsi, Yury

    2017-07-01

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  14. Rationally synthesized two-dimensional polymers.

    Science.gov (United States)

    Colson, John W; Dichtel, William R

    2013-06-01

    Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.

  15. Janus Spectra in Two-Dimensional Flows

    Science.gov (United States)

    Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki

    2016-09-01

    In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.

  16. Local doping of two-dimensional materials

    Science.gov (United States)

    Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.

  17. FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP

    Institute of Scientific and Technical Information of China (English)

    Chen Jiangfeng; Yuan Baozong; Pei Bingnan

    2008-01-01

    Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.

  18. Equivalency of two-dimensional algebras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica

    2011-07-01

    Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)

  19. System identification of two-dimensional continuous-time systems using wavelets as modulating functions.

    Science.gov (United States)

    Sadabadi, Mahdiye Sadat; Shafiee, Masoud; Karrari, Mehdi

    2008-07-01

    In this paper, parameter identification of two-dimensional continuous-time systems via two-dimensional modulating functions is proposed. In the proposed method, trigonometric functions and sine-cosine wavelets are used as modulating functions. By this, a partial differential equation on the finite-time intervals is converted into an algebraic equation linear in parameters. The parameters of the system can then be estimated using the least square algorithms. The underlying computations utilize a two-dimensional fast Fourier transform algorithm, without the need for estimating the unknown initial or boundary conditions, at the beginning of each finite-time interval. Numerical simulations are presented to show the effectiveness of the proposed algorithm.

  20. On numerical evaluation of two-dimensional phase integrals

    DEFF Research Database (Denmark)

    Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans

    1975-01-01

    The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....

  1. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  2. The investigation on two-dimensional pilot-symbol-aided channel estimation method for OFDM system

    Institute of Scientific and Technical Information of China (English)

    Sun Juying; Zhang Yanhua

    2008-01-01

    Channel estimation for orthogonal frequency division multiplexing (OFDM) system has attracted widespread attention. In this paper, a novel efficient two-dimensional (2-D) channel estimation algorithm based on fast Fourier transform (FFT) is proposed for a time-variant, frequency-selective wideband wireless channel. Both theoretical analysis and simulation results are addressed in the paper. The simulation results prove that the proposed algorithm has simpler implementation, better performance and wider application than other traditional decision-directed algorithms.

  3. Perspective: Two-dimensional resonance Raman spectroscopy

    Science.gov (United States)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  4. Janus spectra in two-dimensional flows

    CERN Document Server

    Liu, Chien-Chia; Chakraborty, Pinaki

    2016-01-01

    In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...

  5. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  6. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  7. Two-Dimensional Phononic Crystals: Disorder Matters.

    Science.gov (United States)

    Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M

    2016-09-14

    The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.

  8. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  9. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Photodetectors based on two dimensional materials

    Science.gov (United States)

    Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen

    2016-09-01

    Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.

  11. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  12. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  13. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    Science.gov (United States)

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  14. Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy

    Science.gov (United States)

    Harbison, Gerard S.; Slokenbergs, Andris

    1990-04-01

    We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.

  15. Fourier analysis and synthesis tomography.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Kelvin H. (University of Colorado at Boulder, Boulder, CO); Sinclair, Michael B.; Feldkuhn, Daniel (University of Colorado at Boulder, Boulder, CO)

    2010-05-01

    Most far-field optical imaging systems rely on a lens and spatially-resolved detection to probe distinct locations on the object. We describe and demonstrate a novel high-speed wide-field approach to imaging that instead measures the complex spatial Fourier transform of the object by detecting its spatially-integrated response to dynamic acousto-optically synthesized structured illumination. Tomographic filtered backprojection is applied to reconstruct the object in two or three dimensions. This technique decouples depth-of-field and working-distance from resolution, in contrast to conventional imaging, and can be used to image biological and synthetic structures in fluoresced or scattered light employing coherent or broadband illumination. We discuss the electronically programmable transfer function of the optical system and its implications for imaging dynamic processes. Finally, we present for the first time two-dimensional high-resolution image reconstructions demonstrating a three-orders-of-magnitude improvement in depth-of-field over conventional lens-based microscopy.

  16. Laboratory for Engineering Man/Machine Systems (LEMS): System identification, model reduction and deconvolution filtering using Fourier based modulating signals and high order statistics

    Science.gov (United States)

    Pan, Jianqiang

    1992-01-01

    Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.

  17. Interaction of two-dimensional magnetoexcitons

    Science.gov (United States)

    Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.

    2017-04-01

    We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .

  18. Two-dimensional materials and their prospects in transistor electronics.

    Science.gov (United States)

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.

  19. Direct-on-Filter α-Quartz Estimation in Respirable Coal Mine Dust Using Transmission Fourier Transform Infrared Spectrometry and Partial Least Squares Regression.

    Science.gov (United States)

    Miller, Arthur L; Weakley, Andrew Todd; Griffiths, Peter R; Cauda, Emanuele G; Bayman, Sean

    2016-09-19

    In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry. In this study, the FT-IR spectra of 66 coal dust samples from active mines were used, and the RCS was quantified by using: (1) an ordinary least squares (OLS) calibration approach that utilizes standard silica material as done in the Mine Safety and Health Administration's P7 method; and (2) a partial least squares (PLS) regression approach. Both were capable of accounting for kaolinite, which can confound the IR analysis of silica. The OLS method utilized analytical standards for silica calibration and kaolin correction, resulting in a good linear correlation with P7 results and minimal bias but with the accuracy limited by the presence of kaolinite. The PLS approach also produced predictions well-correlated to the P7 method, as well as better accuracy in RCS prediction, and no bias due to variable kaolinite mass. Besides decreased sensitivity to mineral or substrate confounders, PLS has the advantage that the analyst is not required to correct for the presence of kaolinite or background interferences related to the substrate, making the method potentially viable for automated RCS prediction in the field. This study demonstrated the efficacy of FT-IR transmission spectrometry for silica determination in

  20. Fourier transformation for pedestrians

    CERN Document Server

    Butz, Tilman

    2015-01-01

    This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.

  1. Efficient split field FDTD analysis of third-order nonlinear materials in two-dimensionally periodic media

    Science.gov (United States)

    Francés, Jorge; Bleda, Sergio; Bej, Subhajit; Tervo, Jani; Navarro-Fuster, Víctor; Fenoll, Sandra; Martínez-Gaurdiola, Francisco J.; Neipp, Cristian

    2016-04-01

    In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.

  2. Molecular assembly on two-dimensional materials

    Science.gov (United States)

    Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter

    2017-02-01

    Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging

  3. Two dimensional estimates from ocean SAR images

    Directory of Open Access Journals (Sweden)

    J. M. Le Caillec

    1996-01-01

    Full Text Available Synthetic Aperture Radar (SAR images of the ocean yield a lot of information on the sea-state surface providing that the mapping process between the surface and the image is clearly defined. However it is well known that SAR images exhibit non-gaussian statistics and that the motion of the scatterers on the surface, while the image is being formed, may yield to nonlinearities. The detection and quantification of these nonlinearities are made possible by using Higher Order Spectra (HOS methods and more specifically, bispectrum estimation. The development of the latter method allowed us to find phase relations between different parts of the image and to recognise their level of coupling, i.e. if and how waves of different wavelengths interacted nonlinearly. This information is quite important as the usual models assume strong nonlinearities when the waves are propagating in the azimuthal direction (i.e. along the satellite track and almost no nonlinearities when propagating in the range direction. In this paper, the mapping of the ocean surface to the SAR image is reinterpreted and a specific model (i.e. a Second Order Volterra Model is introduced. The nonlinearities are thus explained as either produced by a nonlinear system or due to waves propagating into selected directions (azimuth or range and interacting during image formation. It is shown that quadratic nonlinearities occur for waves propagating near the range direction while for those travelling in the azimuthal direction the nonlinearities, when present, are mostly due to wave interactions but are almost completely removed by the filtering effect coming from the surface motion itself (azimuth cut-off. An inherent quadratic interaction filtering (azimuth high pass filter is also present. But some other effects, apparently nonlinear, are not detected with the methods described here, meaning that either the usual relation developed for the Ocean-to-SAR transform is somewhat incomplete

  4. Fully phase-encrypted memory using cascaded extended fractional Fourier transform

    Science.gov (United States)

    Nishchal, Naveen Kumar; Joseph, Joby; Singh, Kehar

    2004-08-01

    In this paper, we implement a fully phase-encrypted memory system using cascaded extended fractional Fourier transform (FRT). We encrypt and decrypt a two-dimensional image obtained from an amplitude image. The full phase image to be encrypted is fractional Fourier transformed three times and random phase masks are placed in the two intermediate planes. Performing the FRT three times increases the key size, at an added complexity of one more lens. The encrypted image is holographically recorded in a photorefractive crystal and is then decrypted by generating through phase conjugation, the conjugate of the encrypted image. A lithium niobate crystal has been used as a phase contrast filter to reconstruct the decrypted phase image, alleviating the need of alignment in the Fourier plane making the system rugged.

  5. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  6. Sampling and quantitative analysis of clean B. subtilis spores at sub-monolayer coverage by reflectance fourier transform infrared microscopy using gold-coated filter substrates.

    Science.gov (United States)

    Brooke, Heather; Perkins, David L; Setlow, Barbara; Setlow, Peter; Bronk, Burt V; Myrick, Michael L

    2008-08-01

    A study was conducted to determine the concentration dependency of the mid-infrared (MIR) absorbance of bacterial spores. A range of concentrations of Bacillus subtilis endospores filtered across gold-coated filter membranes were analyzed by Fourier transform infrared (FT-IR) reflectance microscopy. Calibration curves were derived from the peak absorbances associated with Amide A, Amide I, and Amide II vibrational frequencies by automatic baseline fitting to remove most of the scattering contribution. Linear relationships (R2 >or= 0.99) were observed between the concentrations of spores and the baseline-corrected peak absorbance for each frequency studied. Detection limits for our sampled area of 100 x100 microm2 were determined to be 79, 39, and 184 spores (or 7.92 x 10(5), 3.92 x 10(5), and 1.84 x 10(6) spores/cm2) for the Amide A, Amide I, and Amide II peaks, respectively. Absorbance increased linearly above the scattering baseline with particle surface concentration up to 0.9 monolayer (ML) coverage, with the monolayer density calculated to be approximately 1.17 x 10(8) spores/cm2. Scattering as a function of surface concentration, as estimated from extinction values at wavelengths exhibiting low absorbance, becomes nonlinear at a much lower surface concentration. The apparent scattering cross-section per spore decreased monotonically as concentrations increased toward 1.2 ML, while the absolute scattering decreased between 0.9 ML and 1.2 ML coverage. Calculations suggest that transverse spatial coherence effects are the origin of this nonlinearity, while the onset of nonlinearity in the baseline-corrected absorption is probably due to multiple scattering effects, which appear at a high surface concentration. Absorption cross-sections at peaks of the three bands were measured to be (2.15 +/- 0.05) x 10(-9), (1.48 +/- 0.03) x 10(-9), and (0.805 +/- 0.023) x 10(-9) cm2, respectively. These values are smaller by a factor of 2-4 than expected from the literature

  7. The convolution theorem for two-dimensional continuous wavelet transform

    Institute of Scientific and Technical Information of China (English)

    ZHANG CHI

    2013-01-01

    In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.

  8. Digital Fourier analysis advanced techniques

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.

  9. Vibrational wave packet induced oscillations in two-dimensional electronic spectra. II. Theory

    CERN Document Server

    Mancal, Tomas; Milota, Franz; Lukes, Vladimir; Kauffmann, Harald F; Sperling, Jaroslaw

    2010-01-01

    We present a theory of vibrational modulation of two-dimensional coherent Fourier transformed electronic spectra. Based on an expansion of the system's energy gap correlation function in terms of Huang-Rhys factors, we explain the time-dependent oscillatory behavior of the absorptive and dispersive parts of two-dimensional spectra of a two-level electronic system, weakly coupled to intramolecular vibrational modes. The theory predicts oscillations in the relative amplitudes of the rephasing and non-rephasing parts of the two-dimensional spectra, and enables to analyze time dependent two-dimensional spectra in terms of simple elementary components whose line-shapes are dictated by the interaction of the system with the solvent only. The theory is applicable to both low and high energy (with respect to solvent induced line broadening) vibrations. The results of this paper enable to qualitatively explain experimental observations on low energy vibrations presented in the preceding paper [A. Nemeth et al, arXiv:1...

  10. The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs

    CERN Document Server

    De, Sanchari

    2014-01-01

    In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.

  11. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  12. Spatiotemporal surface solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2007-11-01

    We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.

  13. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...

  14. Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity

    CERN Document Server

    Cai, Rong-Gen

    2016-01-01

    In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.

  15. Topological aspect of disclinations in two-dimensional crystals

    Institute of Scientific and Technical Information of China (English)

    Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong

    2009-01-01

    By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.

  16. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  17. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  18. Two dimensional NMR of liquids and oriented molecules

    Energy Technology Data Exchange (ETDEWEB)

    Gochin, M.

    1987-02-01

    Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.

  19. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; QIANG Tian

    2009-01-01

    We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).

  20. Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms.

    Science.gov (United States)

    Gopinath, T; Kumar, Anil

    2006-12-01

    Hadamard spectroscopy has earlier been used to speed-up multi-dimensional NMR experiments. In this work, we speed-up the two-dimensional quantum computing scheme, by using Hadamard spectroscopy in the indirect dimension, resulting in a scheme which is faster and requires the Fourier transformation only in the direct dimension. Two and three qubit quantum gates are implemented with an extra observer qubit. We also use one-dimensional Hadamard spectroscopy for binary information storage by spatial encoding and implementation of a parallel search algorithm.

  1. The Analysis of the Two-dimensional Diffusion Equation With a Source

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This study presents a new variant analysis and simulations of the two-dimensional energized wave equation remarkably different from the diffusion equations studied earlier studied. The objective functional and the dynamical energized wave are penalized to form a function called the Hamiltonian function. From this function, we obtained the necessary conditions for the optimal solutions using the maximum principle. By applying the Fourier solution to the first order differential equation, the analytical solutions for the state and control are obtained. The solutions are simulated to give visual physical interpretation of the waves and the numerical values.

  2. Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway

    Science.gov (United States)

    2012-09-01

    ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located

  3. RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    Han Ke; Zhu Xiuchang

    2006-01-01

    The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.

  4. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  5. Error compensation of IQ modulator using two-dimensional DFT

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Takashi, E-mail: ohshima@spring8.or.jp [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Maesaka, Hirokazu [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsubara, Shinichi [Japan Synchrotron Radiation Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Otake, Yuji [RIKEN, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-06-01

    It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.

  6. Fourier analysis

    CERN Document Server

    Stade, Eric

    2005-01-01

    A reader-friendly, systematic introduction to Fourier analysis Rich in both theory and application, Fourier Analysis presents a unique and thorough approach to a key topic in advanced calculus. This pioneering resource tells the full story of Fourier analysis, including its history and its impact on the development of modern mathematical analysis, and also discusses essential concepts and today's applications. Written at a rigorous level, yet in an engaging style that does not dilute the material, Fourier Analysis brings two profound aspects of the discipline to the forefront: the wealth of ap

  7. A Physically-Intuitive Method for Calculation of the Local Lattice Constant from a High-Resolution Transmission Electron Microscopy Image by Fourier Analysis

    CERN Document Server

    Teherani, James T

    2013-01-01

    We have developed a physically-intuitive method to calculate the local lattice constant as a function of position in a high-resolution transmission electron microscopy image by performing a two-dimensional fast Fourier transform. We apply a Gaussian filter with appropriate spatial full-width-half-max (FWHM) bandwidth to the image centered at the desired location to calculate the local lattice constant (as opposed to the average lattice constant). Fourier analysis of the filtered image yields the vertical and horizontal lattice constants at this location. The process is repeated by stepping the Gaussian filter across the image to produce a set of local lattice constants in the vertical and horizontal direction as a function of position in the image. The method has been implemented in a freely available tool on nanoHUB.

  8. A study of two-dimensional magnetic polaron

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin

    2006-01-01

    By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

  9. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  10. Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Bak, P.

    1979-01-01

    The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....

  11. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  12. Decoherence in a Landau Quantized Two Dimensional Electron Gas

    Directory of Open Access Journals (Sweden)

    McGill Stephen A.

    2013-03-01

    Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.

  13. Quantization of Two-Dimensional Gravity with Dynamical Torsion

    CERN Document Server

    Lavrov, P M

    1999-01-01

    We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.

  14. Spatiotemporal dissipative solitons in two-dimensional photonic lattices.

    Science.gov (United States)

    Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S

    2008-11-01

    We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.

  15. Bound states of two-dimensional relativistic harmonic oscillators

    Institute of Scientific and Technical Information of China (English)

    Qiang Wen-Chao

    2004-01-01

    We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.

  16. A two-dimensional polymer prepared by organic synthesis.

    Science.gov (United States)

    Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji

    2012-02-05

    Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.

  17. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  18. Two-Dimensional Stochastic Projections for Tight Integration of Optical and Inertial Sensors for Navigation

    Science.gov (United States)

    2007-01-01

    first-order Gauss - Markov process [11], based on the specification for the in- ertial measurement unit (IMU). The landmarks are mod- eled as stationary...Kalman Filtering. John Wi- ley and Sons, Inc., New York, NY, 1992. [3] J. W. Goodman. Introduction to Fourier Optics. Mc- Graw Hill, Boston, Massachusetts

  19. One- and Two-Dimensional Nuclear Magnetic Resonance Spectroscopy with a Diamond Quantum Sensor

    Science.gov (United States)

    Boss, J. M.; Chang, K.; Armijo, J.; Cujia, K.; Rosskopf, T.; Maze, J. R.; Degen, C. L.

    2016-05-01

    We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that, by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with up to five digits of precision. The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. Presented techniques will be useful for mapping nuclear coordinates in molecules deposited on diamond sensor chips, en route to imaging their atomic structure.

  20. Extreme paths in oriented two-dimensional percolation

    OpenAIRE

    Andjel, E. D.; Gray, L. F.

    2016-01-01

    International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...

  1. Two Dimensional Nucleation Process by Monte Carlo Simulation

    OpenAIRE

    T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University

    1997-01-01

    Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...

  2. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    Science.gov (United States)

    2016-06-15

    polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4054 5c.  PROGRAM ELEMENT

  3. Two-Dimensional Weak Pseudomanifolds on Eight Vertices

    Indian Academy of Sciences (India)

    Basudeb Datta; Nandini Nilakantan

    2002-05-01

    We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.

  4. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  5. Some non-Fourier heat conduction characters under pulsed inlet conditions

    Institute of Scientific and Technical Information of China (English)

    FAN Qingmei; LU Wenqiang

    2004-01-01

    Through simulating one- and two-dimensional non-Fourier heat conduction problems under different pulsed inlet conditions, this paper numerically predicts some different non-Fourier heat conduction characters arose from different pulse types and different pulse frequencies. Meanwhile, the differences among thermal wave, non-Fourier and Fourier heat conduction are also showed.

  6. Digital filter method of oversampling Fourier transform infrared spectrometer%过采样型傅里叶红外光谱仪的数字滤波方法

    Institute of Scientific and Technical Information of China (English)

    任利兵; 尉昊赟; 李岩

    2012-01-01

    The frequency response range of infrared detector in Fourier transform infrared spectrometer extends from dozens of Hz to some MHz generally. Because of wide frequency response, the measured signal will be easily blurred by lower and higher frequency noise from ambient. Noise can deform the real infrared interference signal. Compared with traditional Fourier transform infrared spectrometer, the oversampling one seems like to put the equal-spacing sampling procedure into computer. Therefore, it will be possible to lay a digital filter after the oversampling infrared interference signal. Based on evaluation of effective frequency response range of infrared interference signal, the design method of a Buttworth bandpass digital filter was illustrated. With this designed filter, the noise of oversampling infrared interference signal could be filtered. The experimental results show that the designed filter can effectively filter higher and lower noise to keep real spectral signal. Additionally, the digital filter is easier and more flexible to design than analog one.%傅里叶红外光谱仪使用的红外探测器频率响应范围通常为几十Hz到数MHz,这使得探测器直接接收的干涉信号中很容易混入环境噪声,引起真实干涉信号的畸变.过采样型傅里叶红外光谱仪等同于将传统光谱仪的等光程间隔采样过程“搬移”到计算机内,因此,理论上允许使用数字滤波器代替模拟滤波器对红外干涉信号降噪.在分析过采样型傅里叶红外光谱仪红外干涉信号有效频率范围的基础上,详述了适用于过采样型傅里叶红外光谱仪的巴特沃斯数字带通滤波器的设计方法,并应用设计的滤波器对过采样的红外干涉信号进行了降噪研究.结果表明:数字滤波的方法能有效去除红外干涉信号中的高、低频噪声,保留真实的光谱信号,在使用上也比模拟滤波更加灵活、便捷.

  7. Tracking dynamics of two-dimensional continuous attractor neural networks

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2009-12-01

    We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.

  8. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    Science.gov (United States)

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  9. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  10. Control Operator for the Two-Dimensional Energized Wave Equation

    Directory of Open Access Journals (Sweden)

    Sunday Augustus REJU

    2006-07-01

    Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.

  11. Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis

    CERN Document Server

    Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J

    2012-01-01

    Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...

  12. A two-dimensional spin liquid in quantum kagome ice.

    Science.gov (United States)

    Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G

    2015-06-22

    Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.

  13. Spectral Radiative Properties of Two-Dimensional Rough Surfaces

    Science.gov (United States)

    Xuan, Yimin; Han, Yuge; Zhou, Yue

    2012-12-01

    Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.

  14. Optical modulators with two-dimensional layered materials

    CERN Document Server

    Sun, Zhipei; Wang, Feng

    2016-01-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.

  15. Two-dimensional superconductors with atomic-scale thickness

    Science.gov (United States)

    Uchihashi, Takashi

    2017-01-01

    Recent progress in two-dimensional superconductors with atomic-scale thickness is reviewed mainly from the experimental point of view. The superconducting systems treated here involve a variety of materials and forms: elemental metal ultrathin films and atomic layers on semiconductor surfaces; interfaces and superlattices of heterostructures made of cuprates, perovskite oxides, and rare-earth metal heavy-fermion compounds; interfaces of electric-double-layer transistors; graphene and atomic sheets of transition metal dichalcogenide; iron selenide and organic conductors on oxide and metal surfaces, respectively. Unique phenomena arising from the ultimate two dimensionality of the system and the physics behind them are discussed.

  16. TreePM Method for Two-Dimensional Cosmological Simulations

    Indian Academy of Sciences (India)

    Suryadeep Ray

    2004-09-01

    We describe the two-dimensional TreePM method in this paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle–Mesh method. We describe the splitting of force between the PM and the Tree parts. We also estimate error in force for a realistic configuration. Finally, we discuss some tests of the code.

  17. Singular analysis of two-dimensional bifurcation system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bifurcation properties of two-dimensional bifurcation system are studied in this paper.Universal unfolding and transition sets of the bifurcation equations are obtained.The whole parametric plane is divided into several different persistent regions according to the type of motion,and the different qualitative bifurcation diagrams in different persistent regions are given.The bifurcation properties of the two-dimensional bifurcation system are compared with its reduced one-dimensional system.It is found that the system which is reduced to one dimension has lost many bifurcation properties.

  18. Critical Behaviour of a Two-Dimensional Random Antiferromagnet

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.

    1976-01-01

    A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphou...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....

  19. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  20. Vortices in the Two-Dimensional Simple Exclusion Process

    Science.gov (United States)

    Bodineau, T.; Derrida, B.; Lebowitz, Joel L.

    2008-06-01

    We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.

  1. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used......We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... for analysis of economic implications arising from mortality changes....

  2. Field analysis of two-dimensional focusing grating couplers

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A different technique was developed by which several two-dimensional dielectric optical gratings, consisting 100 or more corrugations, were treated in a numerical reliable approach. The numerical examples that were presented were restricted to gratings made up of sequences of waveguide sections symmetric about the x = 0 plane. The newly developed method was effectively used to investigate the field produced by a two-dimensional focusing grating coupler. Focal-region fields were determined for three symmetrical gratings with 19, 50, and 124 corrugations. For focusing grating coupler with limited length, high-frequency intensity variations were noted in the focal region.

  3. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  4. Dynamics of vortex interactions in two-dimensional flows

    DEFF Research Database (Denmark)

    Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.

    2002-01-01

    a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 a(c) ...The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...

  5. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    Science.gov (United States)

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  6. Quasinormal frequencies of asymptotically flat two-dimensional black holes

    CERN Document Server

    Lopez-Ortega, A

    2011-01-01

    We discuss whether the minimally coupled massless Klein-Gordon and Dirac fields have well defined quasinormal modes in single horizon, asymptotically flat two-dimensional black holes. To get the result we solve the equations of motion in the massless limit and we also calculate the effective potentials of Schrodinger type equations. Furthermore we calculate exactly the quasinormal frequencies of the Dirac field propagating in the two-dimensional uncharged Witten black hole. We compare our results on its quasinormal frequencies with other already published.

  7. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  8. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    Institute of Scientific and Technical Information of China (English)

    Xu Quan; Tian Qiang

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi-Pasta-Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather.

  9. Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

    Science.gov (United States)

    Chen, Leiming; Lee, Chiu Fan; Toner, John

    2016-07-01

    Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimensional interfaces (that is, the 1+1-dimensional Kardar-Parisi-Zhang equation), in fact belong to the same universality class. This universality class also includes two equilibrium systems: two-dimensional smectic liquid crystals, and a peculiar kind of constrained two-dimensional ferromagnet. We use these connections to show that two-dimensional incompressible flocks are robust against fluctuations, and exhibit universal long-ranged, anisotropic spatio-temporal correlations of those fluctuations. We also thereby determine the exact values of the anisotropy exponent ζ and the roughness exponents χx,y that characterize these correlations.

  10. Waiting Time Dynamics in Two-Dimensional Infrared Spectroscopy

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Knoester, Jasper

    We review recent work on the waiting time dynamics of coherent two-dimensional infrared (2DIR) spectroscopy. This dynamics can reveal chemical and physical processes that take place on the femto- and picosecond time scale, which is faster than the time scale that may be probed by, for example,

  11. The partition function of two-dimensional string theory

    Science.gov (United States)

    Dijkgraaf, Robbert; Moore, Gregory; Plesser, Ronen

    1993-04-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c = 1 system to KP flow nd W 1 + ∞ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  12. The partition function of two-dimensional string theory

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, R. (School of Natural Sciences, Inst. for Advanced Study, Princeton, NJ (United States) Dept. of Mathematics, Univ. Amsterdam (Netherlands)); Moore, G.; Plesser, R. (Dept. of Physics, Yale Univ., New Haven, CT (United States))

    1993-04-12

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in two-dimensional string theory. This expression makes manifest relations of the c=1 system to KP flow and W[sub 1+[infinity

  13. Two-Dimensional Electronic Spectroscopy of a Model Dimer System

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.I.

    2013-03-01

    Full Text Available Two-dimensional spectra of a dimer were measured to determine the timescale for electronic decoherence at room temperature. Anti-correlated beats in the crosspeaks were observed only during the period corresponding to the measured homogeneous lifetime.

  14. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  15. Low-frequency scattering from two-dimensional perfect conductors

    DEFF Research Database (Denmark)

    Hansen, Thorkild; Yaghjian, A.D

    1991-01-01

    Exact expressions have been obtained for the leading terms in the low-frequency expansions of the far fields scattered from three different types of two-dimensional perfect conductors: a cylinder with finite cross section, a cylindrical bump on an infinite ground plane, and a cylindrical dent...

  16. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of assem

  17. Piezoelectricity and Piezomagnetism: Duality in two-dimensional checkerboards

    Science.gov (United States)

    Fel, Leonid G.

    2002-05-01

    The duality approach in two-dimensional two-component regular checkerboards is extended to piezoelectricity and piezomagnetism. The relation between the effective piezoelectric and piezomagnetic moduli is found for a checkerboard with the p6'mm'-plane symmetry group (dichromatic triangle).

  18. Specification of a Two-Dimensional Test Case

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    This paper describes the geometry and other boundary conditions for a test case which can be used to test different two-dimensional CFD codes in the lEA Annex 20 work. The given supply opening is large compared with practical openings. Therefore, this geometry will reduce the need for a high number...... of grid points in the wall jet region....

  19. Operator splitting for two-dimensional incompressible fluid equations

    CERN Document Server

    Holden, Helge; Karper, Trygve K

    2011-01-01

    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  20. Chaotic dynamics for two-dimensional tent maps

    Science.gov (United States)

    Pumariño, Antonio; Ángel Rodríguez, José; Carles Tatjer, Joan; Vigil, Enrique

    2015-02-01

    For a two-dimensional extension of the classical one-dimensional family of tent maps, we prove the existence of an open set of parameters for which the respective transformation presents a strange attractor with two positive Lyapounov exponents. Moreover, periodic orbits are dense on this attractor and the attractor supports a unique ergodic invariant probability measure.

  1. Divorticity and dihelicity in two-dimensional hydrodynamics

    DEFF Research Database (Denmark)

    Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens

    2010-01-01

    A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...

  2. Spin-orbit torques in two-dimensional Rashba ferromagnets

    NARCIS (Netherlands)

    Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.

    2015-01-01

    Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent

  3. Numerical blowup in two-dimensional Boussinesq equations

    CERN Document Server

    Yin, Zhaohua

    2009-01-01

    In this paper, we perform a three-stage numerical relay to investigate the finite time singularity in the two-dimensional Boussinesq approximation equations. The initial asymmetric condition is the middle-stage output of a $2048^2$ run, the highest resolution in our study is $40960^2$, and some signals of numerical blowup are observed.

  4. Exact two-dimensional superconformal R symmetry and c extremization.

    Science.gov (United States)

    Benini, Francesco; Bobev, Nikolay

    2013-02-08

    We uncover a general principle dubbed c extremization, which determines the exact R symmetry of a two-dimensional unitary superconformal field theory with N=(0,2) supersymmetry. To illustrate its utility, we study superconformal theories obtained by twisted compactifications of four-dimensional N=4 super-Yang-Mills theory on Riemann surfaces and construct their gravity duals.

  5. Zero sound in a two-dimensional dipolar Fermi gas

    NARCIS (Netherlands)

    Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.

    2013-01-01

    We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean-f

  6. Topology optimization of two-dimensional elastic wave barriers

    DEFF Research Database (Denmark)

    Van Hoorickx, C.; Sigmund, Ole; Schevenels, M.

    2016-01-01

    Topology optimization is a method that optimally distributes material in a given design domain. In this paper, topology optimization is used to design two-dimensional wave barriers embedded in an elastic halfspace. First, harmonic vibration sources are considered, and stiffened material is insert...

  7. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  8. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  9. Influence of index contrast in two dimensional photonic crystal lasers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Christiansen, Mads Brøkner;

    2010-01-01

    The influence of index contrast variations for obtaining single-mode operation and low threshold in dye doped polymer two dimensional photonic crystal (PhC) lasers is investigated. We consider lasers made from Pyrromethene 597 doped Ormocore imprinted with a rectangular lattice PhC having a cavit...

  10. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the

  11. Dynamical phase transitions in the two-dimensional ANNNI model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, M.N.; Derrida, B.

    1988-06-01

    We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.

  12. Two-dimensional static black holes with pointlike sources

    CERN Document Server

    Melis, M

    2004-01-01

    We study the static black hole solutions of generalized two-dimensional dilaton-gravity theories generated by pointlike mass sources, in the hypothesis that the matter is conformally coupled. We also discuss the motion of test particles. Due to conformal coupling, these follow the geodesics of a metric obtained by rescaling the canonical metric with the dilaton.

  13. Magnetic order in two-dimensional nanoparticle assemblies

    NARCIS (Netherlands)

    Georgescu, M

    2008-01-01

    This thesis involves a fundamental study of two-dimensional arrays of magnetic nanoparticles using non-contact Atomic Force Microscopy, Magnetic Force Microscopy, and Atomic Force Spectroscopy. The goal is to acquire a better understanding of the interactions between magnetic nanoparticles and the r

  14. Two-Dimensional Chirality in Three-Dimensional Chemistry.

    Science.gov (United States)

    Wintner, Claude E.

    1983-01-01

    The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)

  15. Field analysis of two-dimensional focusing grating

    NARCIS (Netherlands)

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal regi

  16. Torque magnetometry studies of two-dimensional electron systems

    NARCIS (Netherlands)

    Schaapman, Maaike Ruth

    2004-01-01

    This thesis describes a study of the magnetization two-dimensional electron gases (2DEGs). To detect the typically small magnetization, a sensitive magnetometer with optical angular detection was developed. The magnetometer uses a quadrant detector to measure the rotation of the sample. By mounting

  17. Two-Dimensional Mesoscale-Ordered Conducting Polymers

    NARCIS (Netherlands)

    Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang

    2016-01-01

    Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of

  18. Vibrations of Thin Piezoelectric Shallow Shells: Two-Dimensional Approximation

    Indian Academy of Sciences (India)

    N Sabu

    2003-08-01

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  19. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  20. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  1. Easy interpretation of optical two-dimensional correlation spectra

    NARCIS (Netherlands)

    Lazonder, K.; Pshenichnikov, M.S.; Wiersma, D.A.

    2006-01-01

    We demonstrate that the value of the underlying frequency-frequency correlation function can be retrieved from a two-dimensional optical correlation spectrum through a simple relationship. The proposed method yields both intuitive clues and a quantitative measure of the dynamics of the system. The t

  2. Two Dimensional F(R) Horava-Lifshitz Gravity

    CERN Document Server

    Kluson, J

    2016-01-01

    We study two-dimensional F(R) Horava-Lifshitz gravity from the Hamiltonian point of view. We determine constraints structure with emphasis on the careful separation of the second class constraints and global first class constraints. We determine number of physical degrees of freedom and also discuss gauge fixing of the global first class constraints.

  3. Localization of Tight Closure in Two-Dimensional Rings

    Indian Academy of Sciences (India)

    Kamran Divaani-Aazar; Massoud Tousi

    2005-02-01

    It is shown that tight closure commutes with localization in any two-dimensional ring of prime characteristic if either is a Nagata ring or possesses a weak test element. Moreover, it is proved that tight closure commutes with localization at height one prime ideals in any ring of prime characteristic.

  4. Cryptanalysis of the Two-Dimensional Circulation Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Bart Preneel

    2005-07-01

    Full Text Available We analyze the security of the two-dimensional circulation encryption algorithm (TDCEA, recently published by Chen et al. in this journal. We show that there are several flaws in the algorithm and describe some attacks. We also address performance issues in current cryptographic designs.

  5. New directions in science and technology: two-dimensional crystals

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A H Castro [Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Novoselov, K, E-mail: phycastr@nus.edu.sg, E-mail: konstantin.novoselov@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2011-08-15

    Graphene is possibly one of the largest and fastest growing fields in condensed matter research. However, graphene is only one example in a large class of two-dimensional crystals with unusual properties. In this paper we briefly review the properties of graphene and look at the exciting possibilities that lie ahead.

  6. Boundary-value problems for two-dimensional canonical systems

    NARCIS (Netherlands)

    Hassi, Seppo; De Snoo, H; Winkler, Henrik

    2000-01-01

    The two-dimensional canonical system Jy' = -lHy where the nonnegative Hamiltonian matrix function H(x) is trace-normed on (0,∞) has been studied in a function-theoretic way by L. de Branges. We show that the Hamiltonian system induces a closed symmetric relation which can be reduced to a, not necess

  7. On the continua in two-dimensional nonadiabatic magnetohydrodynamic spectra

    NARCIS (Netherlands)

    De Ploey, A.; Van der Linden, R. A. M.; Belien, A. J. C.

    2000-01-01

    The equations for the continuous subspectra of the linear magnetohydrodynamic (MHD) normal modes spectrum of two-dimensional (2D) plasmas are derived in general curvilinear coordinates, taking nonadiabatic effects in the energy equation into account. Previously published derivations of continuous sp

  8. Dislocation climb in two-dimensional discrete dislocation dynamics

    NARCIS (Netherlands)

    Davoudi, K.M.; Nicola, L.; Vlassak, J.J.

    2012-01-01

    In this paper, dislocation climb is incorporated in a two-dimensional discrete dislocation dynamics model. Calculations are carried out for polycrystalline thin films, passivated on one or both surfaces. Climb allows dislocations to escape from dislocation pile-ups and reduces the strain-hardening r

  9. SAR Processing Based On Two-Dimensional Transfer Function

    Science.gov (United States)

    Chang, Chi-Yung; Jin, Michael Y.; Curlander, John C.

    1994-01-01

    Exact transfer function, ETF, is two-dimensional transfer function that constitutes basis of improved frequency-domain-convolution algorithm for processing synthetic-aperture-radar, SAR data. ETF incorporates terms that account for Doppler effect of motion of radar relative to scanned ground area and for antenna squint angle. Algorithm based on ETF outperforms others.

  10. Sound waves in two-dimensional ducts with sinusoidal walls

    Science.gov (United States)

    Nayfeh, A. H.

    1974-01-01

    The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.

  11. Confined two-dimensional fermions at finite density

    CERN Document Server

    De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M

    1995-01-01

    We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.

  12. Imperfect two-dimensional topological insulator field-effect transistors

    Science.gov (United States)

    Vandenberghe, William G.; Fischetti, Massimo V.

    2017-01-01

    To overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections. In the off-state the Fermi level moves into the bandgap and electrons suffer from severe back-scattering. An off-current more than two-orders below the on-current is demonstrated and a high on-current is maintained even in the presence of imperfections. At low drain-source bias, the output characteristics are like those of conventional field-effect transistors, at large drain-source bias negative differential resistance is revealed. Complementary n- and p-type devices can be made enabling high-performance and low-power electronic circuits using imperfect two-dimensional topological insulators. PMID:28106059

  13. Bounds on the capacity of constrained two-dimensional codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Justesen, Jørn

    2000-01-01

    Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...

  14. Miniature sensor for two-dimensional magnetic field distributions

    NARCIS (Netherlands)

    Fluitman, J.H.J.; Krabbe, H.W.

    1972-01-01

    Describes a simple method of production of a sensor for two-dimensional magnetic field distributions. The sensor consists of a strip of Ni-Fe(81-19), of which the magnetoresistance is utilized. Typical dimensions of the strip, placed at the edge of a glass substrate, are: length 100 mu m, width 2 or

  15. Forensic potential of comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Sampat, A.; Lopatka, M.; Sjerps, M.; Vivo-Truyols, G.; Schoenmakers, P.; van Asten, A.

    2016-01-01

    In this study, the application of comprehensive two-dimensional (2D) gas chromatography (GC × GC) in forensic science is reviewed. The peer-reviewed publications on the forensic use of GC × GC and 2D gas chromatography with mass spectrometric detection (GC × GC-MS) have been studied in detail, not o

  16. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  17. Linkage analysis by two-dimensional DNA typing

    NARCIS (Netherlands)

    te Meerman, G J; Mullaart, E; van der Meulen, M A; den Daas, J H; Morolli, B; Uitterlinden, A G; Vijg, J

    1993-01-01

    In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core pro

  18. Phase conjugated Andreev backscattering in two-dimensional ballistic cavities

    NARCIS (Netherlands)

    Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.

    1997-01-01

    We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects

  19. Two-dimensional manifold with point-like defects

    CERN Document Server

    Gani, Vakhid A; Rubin, Sergei G

    2014-01-01

    We study a class of two-dimensional extra spaces isomorphic to the $S^2$ sphere in the framework of the multidimensional gravitation. We show that there exists a family of stationary metrics that depend on the initial (boundary) conditions. All these geometries have a singular point. We also discuss the possibility for these deformed extra spaces to be considered as dark matter candidates.

  20. Instability of two-dimensional heterotic stringy black holes

    CERN Document Server

    Azreg-Ainou, M

    1999-01-01

    We solve the eigenvalue problem of general relativity for the case of charged black holes in two-dimensional heterotic string theory, derived by McGuigan et al. For the case of $m^{2}>q^{2}$, we find a physically acceptable time-dependent growing mode; thus the black hole is unstable. The extremal case $m^{2}=q^{2}$ is stable.

  1. Two Dimensional Tensor Product B-Spline Wavelet Scaling Functions for the Solution of Two-Dimensional Unsteady Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    XIONG Lei; LI haijiao; ZHANG Lewen

    2008-01-01

    The fourth-order B spline wavelet scaling functions are used to solve the two-dimensional unsteady diffusion equation. The calculations from a case history indicate that the method provides high accuracy and the computational efficiency is enhanced due to the small matrix derived from this method.The respective features of 3-spline wavelet scaling functions, 4-spline wavelet scaling functions and quasi-wavelet used to solve the two-dimensional unsteady diffusion equation are compared. The proposed method has potential applications in many fields including marine science.

  2. Transport Properties of Two-Dimensional Electron Gases in Antiparallel Magnetic-Electric Barrier Structures

    Institute of Scientific and Technical Information of China (English)

    PING Yun-Xia; CHENG Ze

    2006-01-01

    We study theoretically transport properties of two-dimensional electron gases through antiparallel magnetic electric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the strength of the double δ-function in opposite directions is equal and the other is that the strength is unequal. Similarities and differences of electronic transports are presented. It is found that the transmission and the conductance depend strongly on the shape of the magnetic barrier and the height of the electric barrier. The results indicate that this system does not possess any spin filtering and spin polarization and electron gases can realize perfect resonant tunneling and wave-vector filtering properties. Moreover, the strength of the effect of the inhomogeneous magnetic field on the transport properties is discussed.

  3. PLANE ELASTICITY PROBLEM OF TWO-DIMENSIONAL OCTAGONAL QUASICRYSTALS AND CRACK PROBLEM

    Institute of Scientific and Technical Information of China (English)

    ZHOU WANG-MIN; FAN TIAN-YOU

    2001-01-01

    The plane elasticity theory of two-dimensional octagonal quasicrystals is developed in this paper. The plane elasticity problem of quasicrystals is reduced to a single higher-order partial differential equation by introducing a displacement function. As an example, the exact analytic solution of a Mode I Griffith crack in the material is obtained by using the Fourier transform and dual integral equations theory, then the displacement and stress fields, stress intensity factor and strain energy release rate can be calculated. The physical significance of the results relative to the phason and the difference between the mechanical behaviours of the crack problem in crystals and quasicrystals are figured out.These provide important information for studying the deformation and fracture of the new solid phase.

  4. Eigenvalue approach on a two-dimensional thermal shock problem with weak, normal and strong conductivity

    Science.gov (United States)

    Alzahrani, Faris S.; Abbas, Ibrahim A.

    2016-08-01

    The present paper is devoted to the study of a two-dimensional thermal shock problem with weak, normal and strong conductivity using the eigenvalue approach. The governing equations are taken in the context of the new consideration of heat conduction with fractional order generalized thermoelasticity with the Lord-Shulman model (LS model). The bounding surface of the half-space is taken to be traction free and subjected to a time-dependent thermal shock. The Laplace and the exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. Numerical computations have been done for copper-like material for weak, normal and strong conductivity and the results are presented graphically to estimate the effects of the fractional order parameter.

  5. Fiber-optic interferometric two-dimensional scattering-measurement system.

    Science.gov (United States)

    Zhu, Yizheng; Giacomelli, Michael G; Wax, Adam

    2010-05-15

    We present a fiber-optic interferometric system for measuring depth-resolved scattering in two angular dimensions using Fourier-domain low-coherence interferometry. The system is a unique hybrid of the Michelson and Sagnac interferometer topologies. The collection arm of the interferometer is scanned in two dimensions to detect angular scattering from the sample, which can then be analyzed to determine the structure of the scatterers. A key feature of the system is the full control of polarization of both the illumination and the collection fields, allowing for polarization-sensitive detection, which is essential for two-dimensional angular measurements. System performance is demonstrated using a double-layer microsphere phantom. Experimental data from samples with different sizes and acquired with different polarizations show excellent agreement with Mie theory, producing structural measurements with subwavelength accuracy.

  6. Two-dimensional graphene as a matrix for MALDI imaging mass spectrometry.

    Science.gov (United States)

    Friesen, William L; Schultz, Brian J; Destino, Joel F; Alivio, Theodore E G; Steet, Joseph R; Banerjee, Sarbajit; Wood, Troy D

    2015-11-01

    Here, a matrix using two-dimensional (2D) graphene is demonstrated for the first time in the context of MALDI IMS using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Although graphene flakes have been used previously in MALDI, it is described here how a single 2D layer of graphene is applied directly on top of rat brain sections and soybean leaves. Several classes of molecules are desorbed and ionized off of the surface of the tissues examined using 2D graphene, with minimal background interference from the matrix. Moreover, no solvents are employed in application of 2D graphene, eliminating the potential for analyte diffusion in liquid droplets during matrix application. Because 2D graphene is an elemental form of carbon, an additional advantage is its high compatibility with the long duration needed for many IMS experiments. Graphical Abstract ᅟ.

  7. Quantitative interferometric microscopy with two dimensional Hilbert transform based phase retrieval method

    Science.gov (United States)

    Wang, Shouyu; Yan, Keding; Xue, Liang

    2017-01-01

    In order to obtain high contrast images and detailed descriptions of label free samples, quantitative interferometric microscopy combining with phase retrieval is designed to obtain sample phase distributions from fringes. As accuracy and efficiency of recovered phases are affected by phase retrieval methods, thus approaches owning higher precision and faster processing speed are still in demand. Here, two dimensional Hilbert transform based phase retrieval method is adopted in cellular phase imaging, it not only reserves more sample specifics compared to classical fast Fourier transform based method, but also overcomes disadvantages of traditional algorithm according to Hilbert transform which is a one dimensional processing causing phase ambiguities. Both simulations and experiments are provided, proving the proposed phase retrieval approach can acquire quantitative sample phases with high accuracy and fast speed.

  8. Tunable room temperature terahertz sources based on two dimensional plasma instability in GaN HEMTs

    Science.gov (United States)

    El Fatimy, A.; Suemitsu, T.; Otsuji, T.; Dyakonova, N.; Knap, W.; Meziani, Y. M.; Vandenbrouk, S.; Madjour, K.; Théron, D.; Gaquiere, Ch; Prystawko, P.; Skierbiszewski, C.

    2009-11-01

    In this work, we report on room temperature terahertz radiation from sub-micron size GaN/AlGaN based high electron mobility transistors (HEMTs). They could successfully replace the standard Fourier Transform spectrometer source and were investigated with a standard Si-bolometer as a detector. The relatively broad (~1THz) emission line was observed. The maxima were found to be tunable by the gate voltage between 0.75 and 2.1 THz. The observed emission was interpreted as due to the current driven plasma waves instability in the two-dimensional electron gas. The emitted power from a single device reached 150 nW, showing possible application of these transistors as compact sources for terahertz spectroscopy and imaging.

  9. Tunable room temperature terahertz sources based on two dimensional plasma instability in GaN HEMTs

    Energy Technology Data Exchange (ETDEWEB)

    Fatimy, A El; Suemitsu, T; Otsuji, T; Knap, W [Research Institute of Electrical Communication (RIEC), Tohoku University, 2-1-1 Katahira, Aoba-Ku, 980-8577, Sendai (Japan); Dyakonova, N [Groupe d' Etude des Semiconducteurs, UMR CNRS 5650, Universite Montpellier 2, 34095 Montpellier (France); Meziani, Y M [Dpto. de Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Vandenbrouk, S; Madjour, K; Theron, D; Gaquiere, Ch [Institut d' Electronique et de Microelectronique du Nord, UMR CNRS 8520, 59655 Villeneuve d' Acsq (France); Prystawko, P; Skierbiszewski, C, E-mail: a.elfatimy@riec.tohoku.ac.j, E-mail: ElFatimyA@cardiff.ac.u [Institutes of High Pressure Physics, PAS, Unipress, Sokolowska 29/37, 01-142 Warsaw (Poland)

    2009-11-15

    In this work, we report on room temperature terahertz radiation from sub-micron size GaN/AlGaN based high electron mobility transistors (HEMTs). They could successfully replace the standard Fourier Transform spectrometer source and were investigated with a standard Si-bolometer as a detector. The relatively broad ({approx}1THz) emission line was observed. The maxima were found to be tunable by the gate voltage between 0.75 and 2.1 THz. The observed emission was interpreted as due to the current driven plasma waves instability in the two-dimensional electron gas. The emitted power from a single device reached 150 nW, showing possible application of these transistors as compact sources for terahertz spectroscopy and imaging.

  10. Solution of Two-Dimensional Viscous Flow Driven by Motion of Flexible Walls

    Directory of Open Access Journals (Sweden)

    Mohamed Gad-el-Hak

    2010-03-01

    Full Text Available An exact solution of the Navier–Stokes equations for a flow driven by motion of flexible wall is developed. A simple two-dimensional channel with deforming walls is considered as domain. The governing equations are linearized for low Reynolds number and large Womersley number Newtonian flows. Appropriate boundary conditions for general deformation are decomposed into harmonic excitations in space by Fourier series decomposition. A model of harmonic boundary deformation is considered and results are compared with computational fluid dynamics predictions. The results of velocity profiles across the channel and the centerline velocities of the channel are in good agreement with CFD solution. The analytical model developed provides quantitative descriptions of the flow field for a wide spectrum of actuating frequnecy and boundary conditions. The presented model can be used as an effective framework for preliminary design and optimization of displacement micropumps and other miniature applications.

  11. Two-Dimensional Graphene as a Matrix for MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Friesen, William L.; Schultz, Brian J.; Destino, Joel F.; Alivio, Theodore E. G.; Steet, Joseph R.; Banerjee, Sarbajit; Wood, Troy D.

    2015-11-01

    Here, a matrix using two-dimensional (2D) graphene is demonstrated for the first time in the context of MALDI IMS using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Although graphene flakes have been used previously in MALDI, it is described here how a single 2D layer of graphene is applied directly on top of rat brain sections and soybean leaves. Several classes of molecules are desorbed and ionized off of the surface of the tissues examined using 2D graphene, with minimal background interference from the matrix. Moreover, no solvents are employed in application of 2D graphene, eliminating the potential for analyte diffusion in liquid droplets during matrix application. Because 2D graphene is an elemental form of carbon, an additional advantage is its high compatibility with the long duration needed for many IMS experiments.

  12. Stress Wave Propagation in Two-dimensional Buckyball Lattice

    Science.gov (United States)

    Xu, Jun; Zheng, Bowen

    2016-11-01

    Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.

  13. The separation of whale myoglobins with two-dimensional electrophoresis.

    Science.gov (United States)

    Spicer, G S

    1988-10-01

    Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.

  14. Entanglement Entropy in Two-Dimensional String Theory.

    Science.gov (United States)

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  15. Topological defect motifs in two-dimensional Coulomb clusters

    CERN Document Server

    Radzvilavičius, A; 10.1088/0953-8984/23/38/385301

    2012-01-01

    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...

  16. The Persistence Problem in Two-Dimensional Fluid Turbulence

    CERN Document Server

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2010-01-01

    We present a natural framework for studying the persistence problem in two-dimensional fluid turbulence by using the Okubo-Weiss parameter {\\Lambda} to distinguish between vortical and extensional regions. We then use a direct numerical simulation (DNS) of the two-dimensional, incompressible Navier-Stokes equation with Ekman friction to study probability distribution functions (PDFs) of the persistence times of vortical and extensional regions by employing both Eulerian and Lagrangian measurements. We find that, in the Eulerian case, the persistence-time PDFs have exponential tails; by contrast, this PDF for Lagrangian particles, in vortical regions, has a power-law tail with a universal exponent {\\theta} = 3.1 \\pm 0.2.

  17. On Dirichlet eigenvectors for neutral two-dimensional Markov chains

    CERN Document Server

    Champagnat, Nicolas; Miclo, Laurent

    2012-01-01

    We consider a general class of discrete, two-dimensional Markov chains modeling the dynamics of a population with two types, without mutation or immigration, and neutral in the sense that type has no influence on each individual's birth or death parameters. We prove that all the eigenvectors of the corresponding transition matrix or infinitesimal generator \\Pi\\ can be expressed as the product of "universal" polynomials of two variables, depending on each type's size but not on the specific transitions of the dynamics, and functions depending only on the total population size. These eigenvectors appear to be Dirichlet eigenvectors for \\Pi\\ on the complement of triangular subdomains, and as a consequence the corresponding eigenvalues are ordered in a specific way. As an application, we study the quasistationary behavior of finite, nearly neutral, two-dimensional Markov chains, absorbed in the sense that 0 is an absorbing state for each component of the process.

  18. Statistical mechanics of two-dimensional and geophysical flows

    CERN Document Server

    Bouchet, Freddy

    2011-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter's troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. The equilibrium microcanonical measure is built from the Liouville theorem. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equi...

  19. Two-dimensional hazard estimation for longevity analysis

    DEFF Research Database (Denmark)

    Fledelius, Peter; Guillen, M.; Nielsen, J.P.

    2004-01-01

    We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface...... the two-dimensional mortality surface. Furthermore we look at aggregated synthetic population metrics as 'population life expectancy' and 'population survival probability'. For Danish women these metrics indicate decreasing mortality with respect to chronological time. The metrics can not directly be used...... for prediction purposes. However, we suggest that life insurance companies use the estimation technique and the cross-validation for bandwidth selection when analyzing their portfolio mortality. The non-parametric approach may give valuable information prior to developing more sophisticated prediction models...

  20. Analysis of one dimensional and two dimensional fuzzy controllers

    Institute of Scientific and Technical Information of China (English)

    Ban Xiaojun; Gao Xiaozhi; Huang Xianlin; Wu Tianbao

    2006-01-01

    The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail.The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.

  1. Extension of modified power method to two-dimensional problems

    Science.gov (United States)

    Zhang, Peng; Lee, Hyunsuk; Lee, Deokjung

    2016-09-01

    In this study, the generalized modified power method was extended to two-dimensional problems. A direct application of the method to two-dimensional problems was shown to be unstable when the number of requested eigenmodes is larger than a certain problem dependent number. The root cause of this instability has been identified as the degeneracy of the transfer matrix. In order to resolve this instability, the number of sub-regions for the transfer matrix was increased to be larger than the number of requested eigenmodes; and a new transfer matrix was introduced accordingly which can be calculated by the least square method. The stability of the new method has been successfully demonstrated with a neutron diffusion eigenvalue problem and the 2D C5G7 benchmark problem.

  2. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  3. Transport behavior of water molecules through two-dimensional nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chongqin; Li, Hui; Meng, Sheng, E-mail: smeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  4. Transport behavior of water molecules through two-dimensional nanopores

    Science.gov (United States)

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-01

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  5. Thermodynamics of two-dimensional Yukawa systems across coupling regimes

    Science.gov (United States)

    Kryuchkov, Nikita P.; Khrapak, Sergey A.; Yurchenko, Stanislav O.

    2017-04-01

    Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crystalline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained and accurate physically motivated fits are proposed. This allows us to put forward simple practical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation method is applied to describe pair correlations and hence thermodynamic properties. It is shown that the finite-temperature effects can be accounted for by using simple correction of peaks in the pair correlation function. The corresponding correction coefficients are evaluated using MD simulation. The relevance of the obtained results in the context of colloidal systems, complex (dusty) plasmas, and ions absorbed to interfaces in electrolytes is pointed out.

  6. Topological states in two-dimensional hexagon lattice bilayers

    Science.gov (United States)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun

    2016-10-01

    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  7. CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION

    Directory of Open Access Journals (Sweden)

    Toth Reka

    2010-12-01

    Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.

  8. Two-dimensional magnetostriction under vector magnetic characteristic

    Science.gov (United States)

    Wakabayashi, D.; Enokizono, M.

    2015-05-01

    This paper presents two-dimensional magnetostriction of electrical steel sheet under vector magnetic characteristic. In conventional measurement method using Single Sheet Tester, the magnetic flux density, the magnetic field strength, and the magnetostriction have been measured in one direction. However, an angle between the magnetic flux density vector and the magnetic field strength vector exists because the magnetic property is vector quantity. An angle between the magnetic flux density vector and the direction of maximum magnetostriction also exists. We developed a new measurement method, which enables measurement of these angles. The vector magnetic characteristic and the two-dimensional magnetostriction have been measured using the new measurement method. The BH and Bλ curves considering the angles are shown in this paper. The analyzed results considering the angles are also made clear.

  9. Phase separation under two-dimensional Poiseuille flow.

    Science.gov (United States)

    Kiwata, H

    2001-05-01

    The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel to the flow changes from the diffusive regime with the growth exponent alpha=1/3 to a new regime. The scaling invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by the renormalization group.

  10. Two-dimensional localized structures in harmonically forced oscillatory systems

    Science.gov (United States)

    Ma, Y.-P.; Knobloch, E.

    2016-12-01

    Two-dimensional spatially localized structures in the complex Ginzburg-Landau equation with 1:1 resonance are studied near the simultaneous presence of a steady front between two spatially homogeneous equilibria and a supercritical Turing bifurcation on one of them. The bifurcation structures of steady circular fronts and localized target patterns are computed in the Turing-stable and Turing-unstable regimes. In particular, localized target patterns grow along the solution branch via ring insertion at the core in a process reminiscent of defect-mediated snaking in one spatial dimension. Stability of axisymmetric solutions on these branches with respect to axisymmetric and nonaxisymmetric perturbations is determined, and parameter regimes with stable axisymmetric oscillons are identified. Direct numerical simulations reveal novel depinning dynamics of localized target patterns in the radial direction, and of circular and planar localized hexagonal patterns in the fully two-dimensional system.

  11. Enstrophy inertial range dynamics in generalized two-dimensional turbulence

    Science.gov (United States)

    Iwayama, Takahiro; Watanabe, Takeshi

    2016-07-01

    We show that the transition to a k-1 spectrum in the enstrophy inertial range of generalized two-dimensional turbulence can be derived analytically using the eddy damped quasinormal Markovianized (EDQNM) closure. The governing equation for the generalized two-dimensional fluid system includes a nonlinear term with a real parameter α . This parameter controls the relationship between the stream function and generalized vorticity and the nonlocality of the dynamics. An asymptotic analysis accounting for the overwhelming dominance of nonlocal triads allows the k-1 spectrum to be derived based upon a scaling analysis. We thereby provide a detailed analytical explanation for the scaling transition that occurs in the enstrophy inertial range at α =2 in terms of the spectral dynamics of the EDQNM closure, which extends and enhances the usual phenomenological explanations.

  12. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  13. Explorative data analysis of two-dimensional electrophoresis gels

    DEFF Research Database (Denmark)

    Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine

    2004-01-01

    Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...

  14. APPLICATION OF TWO-DIMENSIONAL WAVELET TRANSFORM IN NEAR-SHORE X-BAND RADAR IMAGES

    Institute of Scientific and Technical Information of China (English)

    FENG Xiang-bo; YAN Yi-xin; ZHANG Wei

    2011-01-01

    Among existing remote sensing applications, land-based X-band radar is an effective technique to monitor the wave fields,and spatial wave information could be obtained from the radar images.Two-dimensional Fourier Transform (2-D FT) is the common algorithm to derive the spectra of radar images.However, the wave field in the nearshore area is highly non-homogeneous due to wave refraction, shoaling, and other coastal mechanisms.When applied in nearshore radar images, 2-D FT would lead to ambiguity of wave characteristics in wave number domain.In this article, we introduce two-dimensional Wavelet Transform (2-D WT) to capture the non-homogeneity of wave fields from nearshore radar images.The results show that wave number spectra by 2-D WT at six parallel space locations in the given image clearly present the shoaling of nearshore waves.Wave number of the peak wave energy is increasing along the inshore direction, and dominant direction of the spectra changes from South South West (SSW) to West South West (WSW).To verify the results of2-D WT, wave shoaling in radar images is calculated based on dispersion relation.The theoretical calculation results agree with the results of 2-D WT on the whole.The encouraging performance of 2-D WT indicates its strong capability of revealing the non-homogeneity of wave fields in nearshore X-band radar images.

  15. Two-dimensional model of elastically coupled molecular motors

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong-Wei; Wen Shu-Tang; Chen Gai-Rong; Li Yu-Xiao; Cao Zhong-Xing; Li Wei

    2012-01-01

    A flashing ratchet model of a two-headed molecular motor in a two-dimensional potential is proposed to simulate the hand-over-hand motion of kinesins.Extensive Langevin simulations of the model are performed.We discuss the dependences of motion and efficiency on the model parameters,including the external force and the temperature.A good qualitative agreement with the expected behavior is observed.

  16. Conductivity of a two-dimensional guiding center plasma.

    Science.gov (United States)

    Montgomery, D.; Tappert, F.

    1972-01-01

    The Kubo method is used to calculate the electrical conductivity of a two-dimensional, strongly magnetized plasma. The particles interact through (logarithmic) electrostatic potentials and move with their guiding center drift velocities (Taylor-McNamara model). The thermal equilibrium dc conductivity can be evaluated analytically, but the ac conductivity involves numerical solution of a differential equation. Both conductivities fall off as the inverse first power of the magnetic field strength.

  17. Minor magnetization loops in two-dimensional dipolar Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Sarjala, M. [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland); Seppaelae, E.T., E-mail: eira.seppala@nokia.co [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland); Alava, M.J., E-mail: mikko.alava@tkk.f [Aalto University, Department of Applied Physics, P.O. Box 14100, FI-00076 Aalto (Finland)

    2011-05-15

    The two-dimensional dipolar Ising model is investigated for the relaxation and dynamics of minor magnetization loops. Monte Carlo simulations show that in a stripe phase an exponential decrease can be found for the magnetization maxima of the loops, M{approx}exp(-{alpha}N{sub l}) where N{sub l} is the number of loops. We discuss the limits of this behavior and its relation to the equilibrium phase diagram of the model.

  18. Cryptography Using Multiple Two-Dimensional Chaotic Maps

    Directory of Open Access Journals (Sweden)

    Ibrahim S. I. Abuhaiba

    2012-08-01

    Full Text Available In this paper, a symmetric key block cipher cryptosystem is proposed, involving multiple two-dimensional chaotic maps and using 128-bits external secret key. Computer simulations indicate that the cipher has good diffusion and confusion properties with respect to the plaintext and the key. Moreover, it produces ciphertext with random distribution. The computation time is much less than previous related works. Theoretic analysis verifies its superiority to previous cryptosystems against different types of attacks.

  19. A UNIVERSAL VARIATIONAL FORMULATION FOR TWO DIMENSIONAL FLUID MECHANICS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2001-01-01

    A universal variational formulation for two dimensional fluid mechanics is obtained, which is subject to the so-called parameter-constrained equations (the relationship between parameters in two governing equations). By eliminating the constraints, the generalized variational principle (GVPs) can be readily derived from the formulation. The formulation can be applied to any conditions in case the governing equations can be converted into conservative forms. Some illustrative examples are given to testify the effectiveness and simplicity of the method.

  20. Nonlocal bottleneck effect in two-dimensional turbulence

    CERN Document Server

    Biskamp, D; Schwarz, E

    1998-01-01

    The bottleneck pileup in the energy spectrum is investigated for several two-dimensional (2D) turbulence systems by numerical simulation using high-order diffusion terms to amplify the effect, which is weak for normal diffusion. For 2D magnetohydrodynamic (MHD) turbulence, 2D electron MHD (EMHD) turbulence and 2D thermal convection, which all exhibit direct energy cascades, a nonlocal behavior is found resulting in a logarithmic enhancement of the spectrum.

  1. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Qing-Hai Wang

    2009-08-01

    Two-dimensional $\\mathcal{PT}$-symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the $\\mathcal{PT}$ symmetry, the complex energy eigenvalues appear when level crossing happens between same parity eigenstates.

  2. Extraction of plant proteins for two-dimensional electrophoresis

    OpenAIRE

    Granier, Fabienne

    1988-01-01

    Three different extraction procedures for two-dimensional electrophoresis of plant proteins are compared: (i) extraction of soluble proteins with a nondenaturing Tris-buffer, (ii) denaturing extraction in presence of sodium dodecyl sulfate at elevated temperature allowing the solubilization of membrane proteins in addition to a recovery of soluble proteins, and (iii) a trichloroacetic acid-acetone procedure allowing the direct precipitation of total proteins.

  3. Lyapunov Computational Method for Two-Dimensional Boussinesq Equation

    CERN Document Server

    Mabrouk, Anouar Ben

    2010-01-01

    A numerical method is developed leading to Lyapunov operators to approximate the solution of two-dimensional Boussinesq equation. It consists of an order reduction method and a finite difference discretization. It is proved to be uniquely solvable and analyzed for local truncation error for consistency. The stability is checked by using Lyapunov criterion and the convergence is studied. Some numerical implementations are provided at the end of the paper to validate the theoretical results.

  4. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    J S Virdi; F Chand; C N Kumar; S C Mishra

    2012-08-01

    Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.

  5. Two-dimensional hydrogen negative ion in a magnetic field

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Fang

    2004-01-01

    Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of a two-dimensional hydrogen negative ion H- in a magnetic field. The results show that the ground and low-excited states of H- in low-dimensional space are more stable than those in three-dimensional space and there may exist more bound states.

  6. А heuristic algorithm for two-dimensional strip packing problem

    OpenAIRE

    Dayong, Cao; Kotov, V.M.

    2011-01-01

    In this paper, we construct an improved best-fit heuristic algorithm for two-dimensional rectangular strip packing problem (2D-RSPP), and compare it with some heuristic and metaheuristic algorithms from literatures. The experimental results show that BFBCC could produce satisfied packing layouts than these methods, especially for the large problem of 50 items or more, BFBCC could get better results in shorter time.

  7. Chronology Protection in Two-Dimensional Dilaton Gravity

    CERN Document Server

    Mishima, T; Mishima, Takashi; Nakamichi, Akika

    1994-01-01

    The global structure of 1 + 1 dimensional compact Universe is studied in two-dimensional model of dilaton gravity. First we give a classical solution corresponding to the spacetime in which a closed time-like curve appears, and show the instability of this spacetime due to the existence of matters. We also observe quantum version of such a spacetime having closed timelike curves never reappear unless the parameters are fine-tuned.

  8. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M

    1993-01-01

    Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  9. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175

    2009-01-01

    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  10. SU(1,2) invariance in two-dimensional oscillator

    CERN Document Server

    Krivonos, Sergey

    2016-01-01

    Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756[hep-th], with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written it terms of the oscillator variables.

  11. Multiple Potts Models Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F

    1992-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of {\\it multiple} $q=2,3,4$ state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the $c>1$ region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for $c>1$. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for $c>1$.

  12. Multiple Potts models coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  13. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    N M Silvestre; P Patrício; M M Telo Da Gama

    2005-06-01

    We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.

  14. Thermal diode from two-dimensional asymmetrical Ising lattices.

    Science.gov (United States)

    Wang, Lei; Li, Baowen

    2011-06-01

    Two-dimensional asymmetrical Ising models consisting of two weakly coupled dissimilar segments, coupled to heat baths with different temperatures at the two ends, are studied by Monte Carlo simulations. The heat rectifying effect, namely asymmetric heat conduction, is clearly observed. The underlying mechanisms are the different temperature dependencies of thermal conductivity κ at two dissimilar segments and the match (mismatch) of flipping frequencies of the interface spins.

  15. Numerical Study of Two-Dimensional Viscous Flow over Dams

    Institute of Scientific and Technical Information of China (English)

    王利兵; 刘宇陆; 涂敏杰

    2003-01-01

    In this paper, the characteristics of two-dimensional viscous flow over two dams were numerically investigated. The results show that the behavior of the vortices is closely related to the space between two dams, water depth, Fr number and Reynolds number. In addition, the flow properties behind each dam are different, and the changes over two dams are more complex than over one dam. Finally, the relevant turbulent characteristics were analyzed.

  16. Spirals and Skyrmions in two dimensional oxide heterostructures.

    Science.gov (United States)

    Li, Xiaopeng; Liu, W Vincent; Balents, Leon

    2014-02-14

    We construct the general free energy governing long-wavelength magnetism in two dimensional oxide heterostructures, which applies irrespective of the microscopic mechanism for magnetism. This leads, in the relevant regime of weak but non-negligible spin-orbit coupling, to a rich phase diagram containing in-plane ferromagnetic, spiral, cone, and Skyrmion lattice phases, as well as a nematic state stabilized by thermal fluctuations.

  17. Acoustic Bloch oscillations in a two-dimensional phononic crystal.

    Science.gov (United States)

    He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou

    2007-11-01

    We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.

  18. Exact analytic flux distributions for two-dimensional solar concentrators.

    Science.gov (United States)

    Fraidenraich, Naum; Henrique de Oliveira Pedrosa Filho, Manoel; Vilela, Olga C; Gordon, Jeffrey M

    2013-07-01

    A new approach for representing and evaluating the flux density distribution on the absorbers of two-dimensional imaging solar concentrators is presented. The formalism accommodates any realistic solar radiance and concentrator optical error distribution. The solutions obviate the need for raytracing, and are physically transparent. Examples illustrating the method's versatility are presented for parabolic trough mirrors with both planar and tubular absorbers, Fresnel reflectors with tubular absorbers, and V-trough mirrors with planar absorbers.

  19. Tricritical behavior in a two-dimensional field theory

    Science.gov (United States)

    Hamber, Herbert

    1980-05-01

    The critical behavior of a two-dimensional scalar Euclidean field theory with a potential term that allows for three minima is analyzed using an approximate position-space renormalization-group transformation on the equivalent quantum spin Hamiltonian. The global phase diagram shows a tricritical point separating a critical line from a line of first-order transitions. Other critical properties are examined, and good agreement is found with results on classical spin models belonging to the same universality class.

  20. Quantum entanglement in a two-dimensional ion trap

    Institute of Scientific and Technical Information of China (English)

    王成志; 方卯发

    2003-01-01

    In this paper, we investigate the quantum entanglement in a two-dimensional ion trap system. We discuss the quantum entanglement between the ion and phonons by using reduced entropy, and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy. We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.

  1. Coll Positioning systems: a two-dimensional approach

    CERN Document Server

    Ferrando, J J

    2006-01-01

    The basic elements of Coll positioning systems (n clocks broadcasting electromagnetic signals in a n-dimensional space-time) are presented in the two-dimensional case. This simplified approach allows us to explain and to analyze the properties and interest of these relativistic positioning systems. The positioning system defined in flat metric by two geodesic clocks is analyzed. The interest of the Coll systems in gravimetry is pointed out.

  2. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  3. Interior design of a two-dimensional semiclassic black hole

    CERN Document Server

    Levanony, Dana; 10.1103/PhysRevD.80.084008

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.

  4. Towards a two dimensional model of surface piezoelectricity

    OpenAIRE

    Monge Víllora, Oscar

    2016-01-01

    We want to understand the behaviour of flexoelectricity and surface piezoelectricity and distinguish them in order to go deep into the controversies of the filed. This motivate the construction of a model of continuum flexoelectric theory. The model proposed is a two-dimensional model that integrates the electromechanical equations that include the elastic, dielectric, piezoelectric and flexoelectric effect on a rectangular sample. As the flexoelectric and the surface piezoelectric effects ap...

  5. Velocity Statistics in the Two-Dimensional Granular Turbulence

    OpenAIRE

    Isobe, Masaharu

    2003-01-01

    We studied the macroscopic statistical properties on the freely evolving quasi-elastic hard disk (granular) system by performing a large-scale (up to a few million particles) event-driven molecular dynamics systematically and found that remarkably analogous to an enstrophy cascade process in the decaying two-dimensional fluid turbulence. There are four typical stages in the freely evolving inelastic hard disk system, which are homogeneous, shearing (vortex), clustering and final state. In the...

  6. Static Structure of Two-Dimensional Granular Chain

    Institute of Scientific and Technical Information of China (English)

    WEN Ping-Ping; LI Liang-Sheng; ZHENG Ning; SHI Qing-Fan

    2010-01-01

    @@ Static packing structures of two-dimensional granular chains are investigated experimentally.It is shown that the packing density approximates the saturation with the exponential law as the length of chain increases.The packing structures are globally disordered,while the local square crystallization is found by using the radial distribution function.This characteristic phase of chain packing is similar to a liquid crystal state,and has properties between a conventional liquid and solid crystal.

  7. THE DEGENERACY PROBLEM OF TWO-DIMENSIONAL LINEAR RECURRING ARRAYS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The degeneracy degree and degeneracy position sets of a wo-dimensional linear recurrence relation set are characterized. The fact that a linear recurring array is essentially a doubly periodic array is shown. By using the Grbner base theory, a calculation formula for degeneracy degree is given and the existence of a special degeneracy position set is proved. In the present paper, the degeneracy problem of the two-dimensional linear recurring arrays is completely solved.

  8. Two-Dimensional Identification of Fetal Tooth Germs.

    Science.gov (United States)

    Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António

    2017-03-01

      To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology.   Observational, descriptive, cross-sectional study.   Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal.   A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams.   Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations.   In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine.   We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.

  9. Electromagnetically induced two-dimensional grating assisted by incoherent pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn

    2017-04-25

    We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.

  10. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    Science.gov (United States)

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  11. A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids

    Science.gov (United States)

    Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.

    2007-05-01

    We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.

  12. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  13. A two-dimensional analytical model of petroleum vapor intrusion

    Science.gov (United States)

    Yao, Yijun; Verginelli, Iason; Suuberg, Eric M.

    2016-02-01

    In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.

  14. Strongly correlated two-dimensional plasma explored from entropy measurements.

    Science.gov (United States)

    Kuntsevich, A Y; Tupikov, Y V; Pudalov, V M; Burmistrov, I S

    2015-06-23

    Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.

  15. Augmented reality simulator for training in two-dimensional echocardiography.

    Science.gov (United States)

    Weidenbach, M; Wick, C; Pieper, S; Quast, K J; Fox, T; Grunst, G; Redel, D A

    2000-02-01

    In two-dimensional echocardiography the sonographer must synthesize multiple tomographic slices into a mental three-dimensional (3D) model of the heart. Computer graphics and virtual reality environments are ideal to visualize complex 3D spatial relationships. In augmented reality (AR) applications, real and virtual image data are linked, to increase the information content. In the presented AR simulator a 3D surface model of the human heart is linked with echocardiographic volume data sets. The 3D echocardiographic data sets are registered with the heart model to establish spatial and temporal congruence. The heart model, together with an animated ultrasound sector represents a reference scenario, which displays the currently selected two-dimensional echocardiographic cutting plane calculated from the volume data set. Modifications of the cutting plane within the echocardiographic data are transferred and visualized simultaneously and in real time within the reference scenario. The trainee can interactively explore the 3D heart model and the registered 3D echocardiographic data sets by an animated ultrasound probe, whose position is controlled by an electromagnetic tracking system. The tracking system is attached to a dummy transducer and placed on a plastic puppet to give a realistic impression of a two-dimensional echocardiographic examination.

  16. Experimental realization of two-dimensional boron sheets.

    Science.gov (United States)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp(2) hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  17. Two-dimensional oxides: multifunctional materials for advanced technologies.

    Science.gov (United States)

    Pacchioni, Gianfranco

    2012-08-13

    The last decade has seen spectacular progress in the design, preparation, and characterization down to the atomic scale of oxide ultrathin films of few nanometers thickness grown on a different material. This has paved the way towards several sophisticated applications in advanced technologies. By playing around with the low-dimensionality of the oxide layer, which sometimes leads to truly two-dimensional systems, one can exploit new properties and functionalities that are not present in the corresponding bulk materials or thick films. In this review we provide some clues about the most recent advances in the design of these systems based on modern electronic structure theory and on their preparation and characterization with specifically developed growth techniques and analytical methods. We show how two-dimensional oxides can be used in mature technologies by providing added value to existing materials, or in new technologies based on completely new paradigms. The fields in which two-dimensional oxides are used are classified based on the properties that are exploited, chemical or physical. With respect to chemical properties we discuss use of oxide ultrathin films in catalysis, solid oxide fuel cells, gas sensors, corrosion protection, and biocompatible materials; regarding the physical properties we discuss metal-oxide field effect transistors and memristors, spintronic devices, ferroelectrics and thermoelectrics, and solar energy materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  19. Two-Dimensional Breather Lattice Solutions and Compact-Like Discrete Breathers and Their Stability in Discrete Two-Dimensional Monatomic β-FPU Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2009-01-01

    We restrict our attention to the discrete two-dimensional monatomic β-FPU lattice. We look for twodimensional breather lattice solutions and two-dimensional compact-like discrete breathers by using trying method and analyze their stability by using Aubry's linearly stable theory. We obtain the conditions of existence and stability of two-dimensional breather lattice solutions and two-dimensional compact-like discrete breathers in the discrete twodimensional monatomic β-FPU lattice.

  20. Two-dimensional resonant magnetic soft X-ray scattering set-up for extreme sample environment.

    Science.gov (United States)

    Stanescu, Stefan; Mocuta, Cristian; Merlet, Frederic; Barbier, Antoine

    2013-01-01

    The newly built MagSAXS (magnetic small-angle X-ray scattering) set-up dedicated to the direct two-dimensional measurement of magnetic scattering using polarized synchrotron radiation in extreme sample environments is presented. Pure optical transport of the image is used to record the magnetic scattering with a two-dimensional CCD visible-light camera. The set-up is able to probe magnetic correlation lengths from the micrometer down to the nanometer scale. A detailed layout is presented along with preliminary results obtained at several beamlines at Synchrotron SOLEIL. The presented examples underline the wide range of possible applications spanning from correlation lengths determination to Fourier transform holography.

  1. Coexistence of chaotic and non-chaotic states in the two-dimensional Gauss-Navier-Stokes dynamics

    Science.gov (United States)

    Giberti, C.; Rondoni, L.; Vernia, C.

    2004-01-01

    Recently, Gallavotti proposed an Equivalence Conjecture in hydrodynamics, which states that forced-damped fluids can be equally well represented by means of the Navier-Stokes equations (NS) and by means of time reversible modifications of NS called Gauss-Navier-Stokes equations (GNS). This Equivalence Conjecture received numerical support in several recent papers concerning two-dimensional fluid mechanics. The corresponding results rely on the fact that the NS and GNS systems only have one attracting set. Performing similar two-dimensional simulations, we find that there are conditions to be met by the GNS system for this to be the case. In particular, increasing the Reynolds number, while keeping fixed the number of Fourier modes, leads to the coexistence of different attractors. This makes difficult a test of the Equivalence Conjecture, but constitutes a spurious effect due to the insufficient spectral resolution. With sufficiently fine spectral resolution, the steady states are unique and the Equivalence Conjecture can be conveniently established.

  2. Fourier Lucas-Kanade algorithm.

    Science.gov (United States)

    Lucey, Simon; Navarathna, Rajitha; Ashraf, Ahmed Bilal; Sridharan, Sridha

    2013-06-01

    In this paper, we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one preprocesses the source image and template/model with a bank of filters (e.g., oriented edges, Gabor, etc.) as 1) it can handle substantial illumination variations, 2) the inefficient preprocessing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, 3) unlike traditional LK, the computational cost is invariant to the number of filters and as a result is far more efficient, and 4) this approach can be extended to the Inverse Compositional (IC) form of the LK algorithm where nearly all steps (including Fourier transform and filter bank preprocessing) can be precomputed, leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to nonrigid object alignment tasks that are considered extensions of the LK algorithm, such as those found in Active Appearance Models (AAMs).

  3. Fourier processing of quantum light

    CERN Document Server

    Poem, Eilon; Lahini, Yoav; Silberberg, Yaron

    2012-01-01

    It is shown that a classical optical Fourier processor can be used for the shaping of quantum correlations between two or more photons, and the class of Fourier masks applicable in the multiphoton Fourier space is identified. This concept is experimentally demonstrated using two types of periodic phase masks illuminated with path-entangled photon pairs, a highly non-classical state of light. Applied first were sinusoidal phase masks, emulating two-particle quantum walk on a periodic lattice, yielding intricate correlation patterns with various spatial bunching and anti-bunching effects depending on the initial state. Then, a periodic Zernike-like filter was applied on top of the sinusoidal phase masks. Using this filter, phase information lost in the original correlation measurements was retrieved.

  4. The characters of nonlinear vibration in the two-dimensional discrete monoatomic lattice

    Institute of Scientific and Technical Information of China (English)

    XU Quan; TIAN Qiang

    2005-01-01

    The two-dimensional discrete monoatomic lattice is analyzed. Taking nearest-neighbor interaction into account, the characters of the nonlinear vibration in two-dimensional discrete monoatomic lattice are described by the two-dimensional cubic nonlinear Schrodinger equation. Considering the quartic nonlinear potential, the two-dimensional discrete-soliton trains and the solutions perturbed by the neck mode are presented.

  5. Two dimensional numerical prediction of deflagration-to-detonation transition in porous energetic materials.

    Science.gov (United States)

    Narin, B; Ozyörük, Y; Ulas, A

    2014-05-30

    This paper describes a two-dimensional code developed for analyzing two-phase deflagration-to-detonation transition (DDT) phenomenon in granular, energetic, solid, explosive ingredients. The two-dimensional model is constructed in full two-phase, and based on a highly coupled system of partial differential equations involving basic flow conservation equations and some constitutive relations borrowed from some one-dimensional studies that appeared in open literature. The whole system is solved using an optimized high-order accurate, explicit, central-difference scheme with selective-filtering/shock capturing (SF-SC) technique, to augment central-diffencing and prevent excessive dispersion. The sources of the equations describing particle-gas interactions in terms of momentum and energy transfers make the equation system quite stiff, and hence its explicit integration difficult. To ease the difficulties, a time-split approach is used allowing higher time steps. In the paper, the physical model for the sources of the equation system is given for a typical explosive, and several numerical calculations are carried out to assess the developed code. Microscale intergranular and/or intragranular effects including pore collapse, sublimation, pyrolysis, etc. are not taken into account for ignition and growth, and a basic temperature switch is applied in calculations to control ignition in the explosive domain. Results for one-dimensional DDT phenomenon are in good agreement with experimental and computational results available in literature. A typical shaped-charge wave-shaper case study is also performed to test the two-dimensional features of the code and it is observed that results are in good agreement with those of commercial software. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nonlinear acoustic propagation in two-dimensional ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  7. Two-dimensional dispersive shock waves in dissipative optical media

    CERN Document Server

    Kartashov, Yaroslav V

    2013-01-01

    We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.

  8. Three-dimensional versus two-dimensional vision in laparoscopy

    DEFF Research Database (Denmark)

    Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;

    2016-01-01

    BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...

  9. The Rare Two-Dimensional Materials with Dirac Cones

    OpenAIRE

    Wang, Jinying; Deng, Shibin; Liu, Zhongfan; Liu, Zhirong

    2014-01-01

    Inspired by the great development of graphene, more and more works have been conducted to seek new two-dimensional (2D) materials with Dirac cones. Although 2D Dirac materials possess many novel properties and physics, they are rare compared with the numerous 2D materials. To provide explanation for the rarity of 2D Dirac materials as well as clues in searching for new Dirac systems, here we review the recent theoretical aspects of various 2D Dirac materials, including graphene, silicene, ger...

  10. Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.

    Science.gov (United States)

    Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P

    2009-03-20

    Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.

  11. Logarithmic divergent thermal conductivity in two-dimensional nonlinear lattices.

    Science.gov (United States)

    Wang, Lei; Hu, Bambi; Li, Baowen

    2012-10-01

    Heat conduction in three two-dimensional (2D) momentum-conserving nonlinear lattices are numerically calculated via both nonequilibrium heat-bath and equilibrium Green-Kubo algorithms. It is expected by mainstream theories that heat conduction in such 2D lattices is divergent and the thermal conductivity κ increases with lattice length N logarithmically. Our simulations for the purely quartic lattice firmly confirm it. However, very robust finite-size effects are observed in the calculations for the other two lattices, which well explain some existing studies and imply the extreme difficulties in observing their true asymptotic behaviors with affordable computation resources.

  12. Two-dimensionally confined topological edge states in photonic crystals

    Science.gov (United States)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-11-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  13. Two-Dimensionally Confined Topological Edge States in Photonic Crystals

    CERN Document Server

    Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.

  14. Theories on Frustrated Electrons in Two-Dimensional Organic Solids

    Directory of Open Access Journals (Sweden)

    Chisa Hotta

    2012-08-01

    Full Text Available Two-dimensional quarter-filled organic solids are a promising class of materials to realize the strongly correlated insulating states called dimer Mott insulator and charge order. In their conducting layer, the molecules form anisotropic triangular lattices, harboring geometrical frustration effect, which could give rise to many interesting states of matter in the two insulators and in the metals adjacent to them. This review is concerned with the theoretical studies on such issue over the past ten years, and provides the systematic understanding on exotic metals, dielectrics, and spin liquids, which are the consequences of the competing correlation and fluctuation under frustration.

  15. Wake-induced bending of two-dimensional plasma crystals

    Energy Technology Data Exchange (ETDEWEB)

    Röcker, T. B., E-mail: tbr@mpe.mpg.de; Ivlev, A. V., E-mail: ivlev@mpe.mpg.de; Zhdanov, S. K.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Couëdel, L. [CNRS, Aix-Marseille-Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille Cedex 20 (France)

    2014-07-15

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  16. Wake-induced bending of two-dimensional plasma crystals

    CERN Document Server

    Röcker, T B; Zhdanov, S K; Couëdel, L; Morfill, G E

    2014-01-01

    It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.

  17. Corner wetting transition in the two-dimensional Ising model

    Science.gov (United States)

    Lipowski, Adam

    1998-07-01

    We study the interfacial behavior of the two-dimensional Ising model at the corner of weakened bonds. Monte Carlo simulations results show that the interface is pinned to the corner at a lower temperature than a certain temperature Tcw at which it undergoes a corner wetting transition. The temperature Tcw is substantially lower than the temperature of the ordinary wetting transition with a line of weakened bonds. A solid-on-solid-like model is proposed, which provides a supplementary description of the corner wetting transition.

  18. Dynamic Multiscaling in Two-dimensional Fluid Turbulence

    CERN Document Server

    Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul

    2011-01-01

    We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.

  19. Absolute band gaps in two-dimensional graphite photonic crystal

    Institute of Scientific and Technical Information of China (English)

    Gaoxin Qiu(仇高新); Fanglei Lin(林芳蕾); Hua Wang(王华); Yongping Li(李永平)

    2003-01-01

    The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photoniccrystal structure was studied using transfer matrix method. Transmission spectra calculations indicatethat such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizationsand for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2Dgraphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some propertiesof a three-dimensional (3D) photonic crystal.

  20. Kinetic analysis of two dimensional metallic grating Cerenkov maser

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Ding [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    The dispersion relation of two dimensional metallic grating Cerenkov maser has been given by using kinetic analysis, in which the influence of electron movement is directly considered without using an equivalent dielectric medium assumption. The effects of structural parameters and beam state on the interaction gain and synchronous frequency have also been investigated in detail by numerical calculations. To an illustrative case, the quantitative relations produced from varying the gap distance between electron beam and metallic grating, beam current, electron transverse to axial velocity ratio, and electron axial velocity spread have been obtained. The developed method can be used to predict the real interaction system performances.

  1. Mean flow generation in rotating anelastic two-dimensional convection

    CERN Document Server

    Currie, Laura K

    2016-01-01

    We investigate the processes that lead to the generation of mean flows in two-dimensional anelastic convection. The simple model consists of a plane layer that is rotating about an axis inclined to gravity. The results are two-fold: firstly we numerically investigate the onset of convection in three-dimensions, paying particular attention to the role of stratification and highlight a curious symmetry. Secondly, we investigate the mechanisms that drive both zonal and meridional flows in two dimensions. We find that, in general, non-trivial Reynolds stresses can lead to systematic flows and, using statistical measures, we quantify the role of stratification in modifying the coherence of these flows.

  2. Duality, Monodromy and Integrability of Two Dimensional String Effective Action

    CERN Document Server

    Das, A; Melikyan, A; Das, Ashok

    2002-01-01

    The monodromy matrix, ${\\hat{\\cal M}}$, is constructed for two dimensional tree level string effective action. The pole structure of ${\\hat{\\cal M}}$ is derived using its factorizability property. It is found that the monodromy matrix transforms non-trivially under the non-compact T-duality group, which leaves the effective action invariant and this can be used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We construct, explicitly, ${\\hat{\\cal M}}$ for the exactly solvable Nappi-Witten model, both when B=0 and $B\

  3. Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies

    Institute of Scientific and Technical Information of China (English)

    NI Qing; CHENG Jian-Chun

    2005-01-01

    @@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.

  4. Electronic Transmission Properties of Two-Dimensional Quasi-Lattice

    Institute of Scientific and Technical Information of China (English)

    侯志林; 傅秀军; 刘有延

    2002-01-01

    In the framework of the tight binding model, the electronic transmission properties of two-dimensional Penrose lattices with free boundary conditions are studied using the generalized eigenfunction method (Phys. Rev. B 60(1999)13444). The electronic transmission coefficients for Penrose lattices with different sizes and widths are calculated, and the result shows strong energy dependence because of the quasiperiodic structure and quantum coherent effect. Around the Fermi level E = 0, there is an energy region with zero transmission amplitudes,which suggests that the studied systems are insulating. The spatial distributions of several typical electronic states with different transmission coefficients are plotted to display the propagation process.

  5. Two-dimensional conformal field theory and the butterfly effect

    CERN Document Server

    Roberts, Daniel A

    2014-01-01

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time order thermal correlators of the form $\\langle W(t)VW(t)V\\rangle$. We reproduce bulk calculations similar to those of [1], by studying the large $c$ Virasoro identity block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of $\\sim t_* - \\frac{\\beta}{2\\pi}\\log \\beta^2E_w E_v$, where $t_*$ is the scrambling time $\\frac{\\beta}{2\\pi}\\log c$, and $E_w,E_v$ are the energy scales of the $W,V$ operators.

  6. Two-Dimensional Gel Electrophoresis: A Reference Protocol.

    Science.gov (United States)

    Saia-Cereda, Veronica M; Aquino, Adriano; Guest, Paul C; Martins-de-Souza, Daniel

    2017-01-01

    Two-dimensional gel electrophoresis (2DE) has been a mainstay of proteomic techniques for more than four decades. It was even in use for several years before the term proteomics was actually coined in the early 1990s. Over this time, it has been used in the study of many diseases including cancer, diabetes, heart disease, and psychiatric disorders through the proteomic analysis of body fluids and tissues. This chapter presents a general protocol which can be applied in the study of biological samples such as blood serum or plasma and multiple tissues including the brain.

  7. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis

    Science.gov (United States)

    2014-01-01

    Gel- based proteomics is one of the most versatile methods for fractionating protein complexes. Among these methods, two dimensional- polyacrylamide gel electrophoresis (2-DE) represents a mainstay orthogonal approach, which is popularly used to simultaneously fractionate, identify, and quantify proteins when coupled with mass spectrometric identification or other immunological tests. Although 2-DE was first introduced more than three decades ago, several challenges and limitations to its utility still exist. This review discusses the principles of 2-DE as well as both recent methodological advances and new applications. PMID:24735559

  8. Size-dispersity effects in two-dimensional melting.

    Science.gov (United States)

    Watanabe, Hiroshi; Yukawa, Satoshi; Ito, Nobuyasu

    2005-01-01

    In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium relaxation behaviors of bond-orientational order parameters, we find that (i) there is a critical dispersity at which the melting transition of the hexagonal solid vanishes and (ii) the quadratic structure is metastable in a certain region of the dispersity-density parameter space. These results suggest that the dispersity not only destroys order but produces new structures under certain specific conditions.

  9. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  10. The XY model coupled to two-dimensional quantum gravity

    Science.gov (United States)

    Baillie, C. F.; Johnston, D. A.

    1992-09-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.

  11. Two-dimensional chiral topological superconductivity in Shiba lattices

    Science.gov (United States)

    Li, Jian; Neupert, Titus; Wang, Zhijun; MacDonald, A. H.; Yazdani, A.; Bernevig, B. Andrei

    2016-07-01

    The chiral p-wave superconductor is the archetypal example of a state of matter that supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is foundational for the distant goal of building a topological quantum computer. While some candidate materials for bulk chiral superconductors exist, they are subject of an ongoing debate about their actual paring state. Here we propose an alternative route to chiral superconductivity, consisting of the surface of an ordinary superconductor decorated with a two-dimensional lattice of magnetic impurities. We furthermore identify a promising experimental platform to realize this proposal.

  12. Field analysis of two-dimensional focusing grating

    OpenAIRE

    Borsboom, P.P.; Frankena, H.J.

    1995-01-01

    The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...

  13. Field analysis of two-dimensional integrated optical gratings

    Science.gov (United States)

    Borsboom, P.-P.; Frankena, H. J.

    1995-05-01

    A rigorous technique to determine the field scattered by a two-dimensional rectangular grating made up of many corrugations was developed. In this method, the grating was deemed as a sequence of two types of waveguide sections, alternatingly connected by step discontinuities. A matrix was derived that described the entire rectangular grating by integrating the separate steps and waveguide sections. With the proposed technique, several configuration were analyzed. The obtained results showed good consistency with the consequences of previous studies. Furthermore, to examine the numerical stability of the proposed method, the length of the grating was increased and obtained results for a grating with 100 periods.

  14. Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.

  15. Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems

    Institute of Scientific and Technical Information of China (English)

    严承华; 王赤忠; 程尔升

    2001-01-01

    A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.

  16. Graphene and Two-Dimensional Materials for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Andreas Bablich

    2016-03-01

    Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.

  17. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  18. AN APPROACH IN MODELING TWO-DIMENSIONAL PARTIALLY CAVITATING FLOW

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An approach of modeling viscosity, unsteady partially cavitating flows around lifting bodies is presented. By employing an one-fluid Navier-Stokers solver, the algorithm is proved to be able to handle two-dimensional laminar cavitating flows at moderate Reynolds number. Based on the state equation of water-vapor mixture, the constructive relations of densities and pressures are established. To numerically simulate the cavity wall, different pseudo transition of density models are presumed. The finite-volume method is adopted and the algorithm can be extended to three-dimensional cavitating flows.

  19. The problem of friction in two-dimensional relative motion

    CERN Document Server

    Grech, D K; Grech, Dariusz; Mazur, Zygmunt

    2000-01-01

    We analyse a mechanical system in two-dimensional relative motion with friction. Although the system is simple, the peculiar interplay between two kinetic friction forces and gravity leads to the wide range of admissible solutions exceeding most intuitive expectations. In particular, the strong qualitative dependence between behaviour of the system, boundary conditions and parameters involved in its description is emphasised. The problem is intended to be discussed in theoretical framework and might be of interest for physics and mechanics students as well as for physics teachers.

  20. Optimum high temperature strength of two-dimensional nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  1. Quantum computation with two-dimensional graphene quantum dots

    Institute of Scientific and Technical Information of China (English)

    Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin

    2012-01-01

    We study an array of graphene nano sheets that form a two-dimensional S =1/2 Kagome spin lattice used for quantum computation.The edge states of the graphene nano sheets axe used to form quantum dots to confine electrons and perform the computation.We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots.It is shown that both schemes contain a great amount of information for quantum computation.The corresponding gate operations are also proposed.

  2. Complex Saddles in Two-dimensional Gauge Theory

    CERN Document Server

    Buividovich, P V; Valgushev, S N

    2015-01-01

    We study numerically the saddle point structure of two-dimensional (2D) lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are in general complex-valued, even though the original integration variables and action are real. We confirm the trans-series/instanton gas structure in the weak-coupling phase, and identify a new complex-saddle interpretation of non-perturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.

  3. Band alignment of two-dimensional lateral heterostructures

    CERN Document Server

    Zhang, Junfeng; Xie, Weiyu; Zhang, S B

    2016-01-01

    Band alignment in two-dimensional (2D) lateral heterostructures is fundamentally different from three-dimensional (3D), as Schottky barrier height is at the Schottky-Mott limit and band offset is at the Anderson limit, regardless interfacial conditions. This robustness arises because, in the asymptotic limit, effect of interfacial dipole vanishes. First-principles calculations of graphene/h-BN and MoS2/WS2 show that 2D junction width W is typically an order of magnitude longer than 3D. Therefore, heterostructures with dimension less than W can also be made, leading to tunable band alignment.

  4. Topological Quantum Optics in Two-Dimensional Atomic Arrays

    Science.gov (United States)

    Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.

    2017-07-01

    We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.

  5. Elastic models of defects in two-dimensional crystals

    Science.gov (United States)

    Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.

    2014-12-01

    Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.

  6. On two-dimensional magnetic reconnection with nonuniform resistivity

    Science.gov (United States)

    Malyshkin, Leonid M.; Kulsrud, Russell M.

    2010-12-01

    In this paper, two theoretical approaches for the calculation of the rate of quasi-stationary, two-dimensional magnetic reconnection with nonuniform anomalous resistivity are considered in the framework of incompressible magnetohydrodynamics (MHD). In the first, 'global' equations approach, the MHD equations are approximately solved for a whole reconnection layer, including the upstream and downstream regions and the layer center. In the second, 'local' equations approach, the equations are solved across the reconnection layer, including only the upstream region and the layer center. Both approaches give the same approximate answer for the reconnection rate. Our theoretical model is in agreement with the results of recent simulations of reconnection with spatially nonuniform resistivity.

  7. Optimum high temperature strength of two-dimensional nanocomposites

    Directory of Open Access Journals (Sweden)

    M. A. Monclús

    2013-11-01

    Full Text Available High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  8. Quantum skyrmions in two-dimensional chiral magnets

    Science.gov (United States)

    Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon

    2016-10-01

    We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.

  9. Local kinetic effects in two-dimensional plasma turbulence.

    Science.gov (United States)

    Servidio, S; Valentini, F; Califano, F; Veltri, P

    2012-01-27

    Using direct numerical simulations of a hybrid Vlasov-Maxwell model, kinetic processes are investigated in a two-dimensional turbulent plasma. In the turbulent regime, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity: the distribution function is modulated by the magnetic topology, and can elongate along or across the local magnetic field. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysical and laboratory plasmas.

  10. Drift modes of a quasi-two-dimensional current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2012-03-15

    Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.

  11. Synthesis of two-dimensional materials for beyond graphene devices

    Science.gov (United States)

    Zhang, Kehao; Eichfeld, Sarah; Leach, Jacob; Metzger, Bob; Lin, Yu-Chuan; Evans, Keith; Robinson, Joshua A.

    2015-05-01

    In this paper, we present an overview of the currently employed techniques to synthesize two-dimensional materials, focusing on MoS2 and WSe2, and summarize the progress reported to-date. Here we discuss the importance of controlling reactor geometries to improve film uniformity and quality for MoS2 through a combination of modeling and experimental design. In addition, development of processes scalable to provide wafer scale uniformity is explored using synthesis of WSe2 via metal-organic chemical vapor deposition. Finally, we discuss the impact of each of these processes for TMD synthesis on epitaxial graphene.

  12. Magnetic quantum dot in two-dimensional topological insulators

    Science.gov (United States)

    Li, Guo; Zhu, Jia-Lin; Yang, Ning

    2017-03-01

    Magnetic quantum dots in two-dimensional band and topological insulators are studied by solving the modified Dirac model under nonuniform magnetic fields. The Landau levels split into discrete states with certain angular momentum. The states splitting from the zero Landau levels lie in the energy gap for topological insulators but are out of the gap for band insulators. It is found that the ground states oscillate between the spin-up and spin-down states when the magnetic field or the dot size changes. The oscillation manifests itself as changes of sign and strength of charge currents near the dot's edge.

  13. Mass/Count Variation: A Mereological, Two-Dimensional Semantics

    Directory of Open Access Journals (Sweden)

    Peter R Sutton

    2016-12-01

    Full Text Available We argue that two types of context are central to grounding the semantics for the mass/count distinction. We combine and develop the accounts of Rothstein (2010 and Landman (2011, which emphasize (non-overlap at a context. We also adopt some parts of Chierchia’s (2010 account which uses precisifying contexts. We unite these strands in a two-dimensional semantics that covers a wide range of the puzzling variation data in mass/count lexicalization. Most importantly, it predicts where we should expect to find such variation for some classes of nouns but not for others, and also explains why.

  14. A two-dimensional approach to relativistic positioning systems

    CERN Document Server

    Coll, B; Morales, J A; Coll, Bartolom\\'{e}; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allow to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out.

  15. Dynamical matrix of two-dimensional electron crystals

    Science.gov (United States)

    Côté, R.; Lemonde, M.-A.; Doiron, C. B.; Ettouhami, A. M.

    2008-03-01

    In a quantizing magnetic field, the two-dimensional electron gas has a rich phase diagram with broken translational symmetry phases such as Wigner, bubble, and stripe crystals. In this paper, we derive a method to obtain the dynamical matrix of these crystals from a calculation of the density response function performed in the generalized random-phase approximation (GRPA). We discuss the validity of our method by comparing the dynamical matrix calculated from the GRPA with that obtained from standard elasticity theory with the elastic coefficients obtained from a calculation of the deformation energy of the crystal.

  16. Two-dimensional transport study of scrape off layer plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Nobuyuki [Interdisciplinary Graduate School of Advanced Energy Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1999-09-01

    Two-dimensional transport code is developed to analyzed the heat pulse propagation in the scrape-off layer plasma. The classical and anomalous transport models are considered as a thermal diffusivity perpendicular to the magnetic field. On the other hand, the classical transport model is chosen as a thermal diffusivity parallel to the magnetic field. The heat deposition profiles are evaluated for various kinds of transport models. It is found that the heat pulse which arrives at the divertor plate due to the classical transport is largest compared with other models. The steady state temperate profiles of the electron and ion are also discussed. (author)

  17. Consistent theory of turbulent transport in two-dimensional magnetohydrodynamics.

    Science.gov (United States)

    Kim, Eun-jin

    2006-03-03

    A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.

  18. Deformable two-dimensional photonic crystal slab for cavity optomechanics

    CERN Document Server

    Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I

    2011-01-01

    We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects

  19. Magnetization of two-dimensional superconductors with defects

    CERN Document Server

    Kashurnikov, V A; Zyubin, M V

    2002-01-01

    The new method for modeling the layered high-temperature superconductors magnetization with defects, based on the Monte-Carlo algorithm, is developed. Minimization of the free energy functional of the vortex two-dimensional system made it possible to obtain the equilibrium vortex density configurations and calculate the magnetization of the superconductor with the arbitrary defects distribution in the wide range of temperatures. The magnetic induction profiles and magnetic flux distribution inside the superconductor, proving the applicability of the Bean model, are calculated

  20. The XY Model Coupled to Two-Dimensional Quantum Gravity

    CERN Document Server

    Baillie, C F; 10.1016/0370-2693(92)91037-A

    2009-01-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.