WorldWideScience

Sample records for two-dimensional fast fourier

  1. Optimal Padding for the Two-Dimensional Fast Fourier Transform

    Science.gov (United States)

    Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.

    2011-01-01

    One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that

  2. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-Dimensional Fast Fourier Transform Decomposition

    OpenAIRE

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quanti...

  3. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    International Nuclear Information System (INIS)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-01-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  4. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  5. MEASUREMENT OF GALACTIC LOGARITHMIC SPIRAL ARM PITCH ANGLE USING TWO-DIMENSIONAL FAST FOURIER TRANSFORM DECOMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S. [Arkansas Center for Space and Planetary Sciences, 202 Field House, University of Arkansas, Fayetteville, AR 72701 (United States); Puerari, Ivanio [Instituto Nacional de Astrofisica, Optica y Electronica, Calle Luis Enrique Erro 1, 72840 Santa Maria Tonantzintla, Puebla (Mexico)

    2012-04-01

    A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.

  6. Application of fast Fourier transforms to the direct solution of a class of two-dimensional separable elliptic equations on the sphere

    Science.gov (United States)

    Moorthi, Shrinivas; Higgins, R. W.

    1993-01-01

    An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.

  7. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    Science.gov (United States)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  8. Two-dimensional fourier transform spectrometer

    Science.gov (United States)

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  9. Design and implementation in VHDL code of the two-dimensional fast Fourier transform for frequency filtering, convolution and correlation operations

    Science.gov (United States)

    Vilardy, Juan M.; Giacometto, F.; Torres, C. O.; Mattos, L.

    2011-01-01

    The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.

  10. Solution of the multigroup diffusion equation for two-dimensional triangular regions by finite Fourier transformation

    International Nuclear Information System (INIS)

    Takeshi, Y.; Keisuke, K.

    1983-01-01

    The multigroup neutron diffusion equation for two-dimensional triangular geometry is solved by the finite Fourier transformation method. Using the zero-th-order equation of the integral equation derived by this method, simple algebraic expressions for the flux are derived and solved by the alternating direction implicit method. In sample calculations for a benchmark problem of a fast breeder reactor, it is shown that the present method gives good results with fewer mesh points than the usual finite difference method

  11. Stress wave calculations in composite plates using the fast Fourier transform.

    Science.gov (United States)

    Moon, F. C.

    1973-01-01

    The protection of composite turbine fan blades against impact forces has prompted the study of dynamic stresses in composites due to transient loads. The mathematical model treats the laminated plate as an equivalent anisotropic material. The use of Mindlin's approximate theory of crystal plates results in five two-dimensional stress waves. Three of the waves are flexural and two involve in-plane extensional strains. The initial value problem due to a transient distributed transverse force on the plate is solved using Laplace and Fourier transforms. A fast computer program for inverting the two-dimensional Fourier transform is used. Stress contours for various stresses and times after application of load are obtained for a graphite fiber-epoxy matrix composite plate. Results indicate that the points of maximum stress travel along the fiber directions.

  12. Advantage of Fast Fourier Interpolation for laser modeling

    International Nuclear Information System (INIS)

    Epatko, I.V.; Serov, R.V.

    2006-01-01

    The abilities of a new algorithm: the 2-dimensional Fast Fourier Interpolation (FFI) with magnification factor (zoom) 2 n whose purpose is to improve the spatial resolution when necessary, are analyzed in details. FFI procedure is useful when diaphragm/aperture size is less than half of the current simulation scale. The computation noise due to FFI procedure is less than 10 -6 . The additional time for FFI is approximately equal to one Fast Fourier Transform execution time. For some applications using FFI procedure, the execution time decreases by a 10 4 factor compared with other laser simulation codes. (authors)

  13. The Convergence Acceleration of Two-Dimensional Fourier Interpolation

    Directory of Open Access Journals (Sweden)

    Anry Nersessian

    2008-07-01

    Full Text Available Hereby, the convergence acceleration of two-dimensional trigonometric interpolation for a smooth functions on a uniform mesh is considered. Together with theoretical estimates some numerical results are presented and discussed that reveal the potential of this method for application in image processing. Experiments show that suggested algorithm allows acceleration of conventional Fourier interpolation even for sparse meshes that can lead to an efficient image compression/decompression algorithms and also to applications in image zooming procedures.

  14. Fast Fourier single-pixel imaging via binary illumination.

    Science.gov (United States)

    Zhang, Zibang; Wang, Xueying; Zheng, Guoan; Zhong, Jingang

    2017-09-20

    Fourier single-pixel imaging (FSI) employs Fourier basis patterns for encoding spatial information and is capable of reconstructing high-quality two-dimensional and three-dimensional images. Fourier-domain sparsity in natural scenes allows FSI to recover sharp images from undersampled data. The original FSI demonstration, however, requires grayscale Fourier basis patterns for illumination. This requirement imposes a limitation on the imaging speed as digital micro-mirror devices (DMDs) generate grayscale patterns at a low refreshing rate. In this paper, we report a new strategy to increase the speed of FSI by two orders of magnitude. In this strategy, we binarize the Fourier basis patterns based on upsampling and error diffusion dithering. We demonstrate a 20,000 Hz projection rate using a DMD and capture 256-by-256-pixel dynamic scenes at a speed of 10 frames per second. The reported technique substantially accelerates image acquisition speed of FSI. It may find broad imaging applications at wavebands that are not accessible using conventional two-dimensional image sensors.

  15. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  16. TMS320C25 Digital Signal Processor For 2-Dimensional Fast Fourier Transform Computation

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    1996-01-01

    The Fourier transform is one of the most important mathematical tool in signal processing and analysis, which converts information from the time/spatial domain into the frequency domain. Even with implementation of the Fast Fourier Transform algorithms in imaging data, the discrete Fourier transform execution consume a lot of time. Digital signal processors are designed specifically to perform computation intensive digital signal processing algorithms. By taking advantage of the advanced architecture. parallel processing, and dedicated digital signal processing (DSP) instruction sets. This device can execute million of DSP operations per second. The device architecture, characteristics and feature suitable for fast Fourier transform application and speed-up are discussed

  17. Exploring two-dimensional electron gases with two-dimensional Fourier transform spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.; Dey, P.; Karaiskaj, D., E-mail: karaiskaj@usf.edu [Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620 (United States); Tokumoto, T.; Hilton, D. J. [Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294 (United States); Reno, J. L. [CINT, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-10-07

    The dephasing of the Fermi edge singularity excitations in two modulation doped single quantum wells of 12 nm and 18 nm thickness and in-well carrier concentration of ∼4 × 10{sup 11} cm{sup −2} was carefully measured using spectrally resolved four-wave mixing (FWM) and two-dimensional Fourier transform (2DFT) spectroscopy. Although the absorption at the Fermi edge is broad at this doping level, the spectrally resolved FWM shows narrow resonances. Two peaks are observed separated by the heavy hole/light hole energy splitting. Temperature dependent “rephasing” (S{sub 1}) 2DFT spectra show a rapid linear increase of the homogeneous linewidth with temperature. The dephasing rate increases faster with temperature in the narrower 12 nm quantum well, likely due to an increased carrier-phonon scattering rate. The S{sub 1} 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations. Distinct 2DFT lineshapes were observed for co-linear and cross-linear polarizations, suggesting the existence of polarization dependent contributions. The “two-quantum coherence” (S{sub 3}) 2DFT spectra for the 12 nm quantum well show a single peak for both co-linear and co-circular polarizations.

  18. Solution of two-dimensional neutron diffusion equation for triangular region by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke; Ishibashi, Hideo

    1978-01-01

    A two-dimensional neutron diffusion equation for a triangular region is shown to be solved by the finite Fourier transformation. An application of the Fourier transformation to the diffusion equation for triangular region yields equations whose unknowns are the expansion coefficients of the neutron flux and current in Fourier series or Legendre polynomials expansions only at the region boundary. Some numerical calculations have revealed that the present technique gives accurate results. It is shown also that the solution using the expansion in Legendre polynomials converges with relatively few terms even if the solution in Fourier series exhibits the Gibbs' phenomenon. (auth.)

  19. Solution of two-dimensional diffusion equation for hexagonal cells by the finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1975-01-01

    A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de

  20. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  1. Two Dimensional Symmetric Correlation Functions of the S Operator and Two Dimensional Fourier Transforms: Considering the Line Coupling for P and R Lines of Linear Molecules

    Science.gov (United States)

    Ma, Q.; Boulet, C.; Tipping, R. H.

    2014-01-01

    The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.

  2. Three dimensional image reconstruction in the Fourier domain

    International Nuclear Information System (INIS)

    Stearns, C.W.; Chesler, D.A.; Brownell, G.L.

    1987-01-01

    Filtered backprojection reconstruction algorithms are based upon the relationship between the Fourier transform of the imaged object and the Fourier transforms of its projections. A new reconstruction algorithm has been developed which performs the image assembly operation in Fourier space, rather than in image space by backprojection. This represents a significant decrease in the number of operations required to assemble the image. The new Fourier domain algorithm has resolution comparable to the filtered backprojection algorithm, and, after correction by a pointwise multiplication, demonstrates proper recovery throughout image space. Although originally intended for three-dimensional imaging applications, the Fourier domain algorithm can also be developed for two-dimensional imaging applications such as planar positron imaging systems

  3. Fourier analysis of cell-wise Block-Jacobi splitting in two-dimensional geometry

    International Nuclear Information System (INIS)

    Rosa, M.; Warsa, J. S.; Kelley, T. M.

    2009-01-01

    A Fourier analysis is conducted in two-dimensional (2D) geometry for the discrete ordinates (S N ) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) using the cell-wise Block-Jacobi (BJ) algorithm. The results of the Fourier analysis show that convergence of cell-wise BJ can degrade, leading to a spectral radius equal to 1, in problems containing optically thin cells. For problems containing cells that are optically thick, instead, the spectral radius tends to 0. Hence, in the optically thick-cell regime, cell-wise BJ is rapidly convergent even for problems that are scattering dominated, with a scattering ratio c close to 1. (authors)

  4. Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method

    Science.gov (United States)

    Kodera, Masako; Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Yoshioka, Akira; Sugiyama, Toru; Hamamoto, Takeshi; Miyashita, Naoto

    2018-04-01

    Recently, we have developed a two-dimensional (2D) fast-Fourier-transform (FFT) sampling Moiré technique to visually and quantitatively determine the locations of minute defects in a transmission electron microscopy (TEM) image. We applied this technique for defect detection with GaN high electron mobility transistor (HEMT) devices, and successfully and clearly visualized atom-size defects in AlGaN/GaN crystalline structures. The defect density obtained in the AlGaN/GaN structures is ∼1013 counts/cm2. In addition, we have successfully confirmed that the distribution and number of defects closely depend on the process conditions. Thus, this technique is quite useful for a device development. Moreover, the strain fields in an AlGaN/GaN crystal were effectively calculated with nm-scale resolution using this method. We also demonstrated that this sampling Moiré technique is applicable to silicon devices, which have principal directions different from those of AlGaN/GaN crystals. As a result, we believe that the 2D FFT sampling Moiré method has great potential applications to the discovery of new as yet unknown phenomena occurring between the characteristics of a crystalline material and device performance.

  5. Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides

    Science.gov (United States)

    Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration

    2015-03-01

    Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.

  6. Simple spectral method for solving propagation problems in cylindrical geometry with fast Fourier transforms

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1989-01-01

    We describe a spectral method for solving the paraxial wave equation in cylindrical geometry that is based on expansion of the exponential evolution operator in a Taylor series and use of fast Fourier transforms to evaluate derivatives. A fourth-order expansion gives excellent agreement with a two-transverse-dimensional split-operator calculation at a fraction of the cost in computation time per z step and at a considerable savings in storage

  7. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  8. Fast fourier algorithms in spectral computation and analysis of vibrating machines

    International Nuclear Information System (INIS)

    Farooq, U.; Hafeez, T.; Khan, M.Z.; Amir, M.

    2001-01-01

    In this work we have discussed Fourier and its history series, relationships among various Fourier mappings, Fourier coefficients, transforms, inverse transforms, integrals, analyses, discrete and fast algorithms for data processing and analysis of vibrating systems. The evaluation of magnitude of the source signal at transmission time, related coefficient matrix, intensity, and magnitude at the receiving end (stations). Matrix computation of Fourier transform has been explained, and applications are presented. The fast Fourier transforms, new computational scheme. have been tested with an example. The work also includes digital programs for obtaining the frequency contents of time function. It has been explained that how the fast Fourier algorithms (FFT) has decreased computational work by several order of magnitudes and split the spectrum of a signal into two (even and odd modes) at every successive step. That fast quantitative processing for discrete Fourier transforms' computations as well as signal splitting and combination provides an efficient. and reliable tool for spectral analyses. Fourier series decompose the given variable into a sum of oscillatory functions each having a specific frequency. These frequencies, with their corresponding amplitude and phase angles, constitute the frequency contents of the original time functions. These fast processing achievements, signals decomposition and combination may be carried out by the principle of superposition and convolution for, even, signals of different frequencies. Considerable information about a machine or a structure can be derived from variable speed and frequency tests. (author)

  9. Geometrical bucklings for two-dimensional regular polygonal regions using the finite Fourier transformation

    International Nuclear Information System (INIS)

    Mori, N.; Kobayashi, K.

    1996-01-01

    A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)

  10. A quantum search algorithm of two entangled registers to realize quantum discrete Fourier transform of signal processing

    International Nuclear Information System (INIS)

    Pang Chaoyang; Hu Benqiong

    2008-01-01

    The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (ID FFT) and 2D FFT have time complexity O (N log N) and O (N 2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (ID QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, ID and 2D QDFT have time complexity O(√N) and O (N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible. (general)

  11. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform

    International Nuclear Information System (INIS)

    Bueno, Josiane M.; Traina, Agma Juci M.; Cruvinel, Paulo E.

    1995-01-01

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author)

  12. A high-speed computerized tomography image reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1983-01-01

    The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)

  13. Three dimensional implementation of anisotropy corrected fast fourier transform dose calculation around brachytherapy seeds

    International Nuclear Information System (INIS)

    Kyeremeh, P.O.

    2011-01-01

    Current-available brachytherapy dose computation algorithms ignore heterogeneities such as tissue-air interfaces, shielded gynaecological colpostats, and tissue-composition variations in source implants despite dose computation errors as large as 40%. A convolution kernel, which takes into consideration anisotropy of the dose distribution around a brachytherapy source, and to compute dose in the presence of tissue and applicator heterogeneities, has been established. Resulting from the convolution kernel are functions with polynomial and exponential terms. the solution to the convolution integral was represented by the Fast Fourier transform. The Fast Fourier transform has shown enough potency in accounting for errors due to these heterogeneities and the versatility of this Fast Fourier transform is evident from its capability of switching in between fields. Thus successful procedures in external beam could be adopted in brachytherapy to a yield similar effect. A dose deposition kernel was developed for a 64x64x64 matrix size with wrap around ordering and convoluted with the distribution of the sources in 3D. With MatLab's inverse Fast Fourier transform, dose rate distribution for a given array of interstitial sources, typical of brachytherapy was calculated. The shape of the dose rate distribution peaks appeared comparable with the output expected from computerized treatment planning systems for brachytherapy. Subsequently, the study confirmed the speed and accuracy of dose computation using the FFT convolution as well juxtaposed. Although, dose rate peaks from both the FFT convolution and the TPS(TG43) did not compare quantitatively, which was mainly due to the TPS(TG43) initiation computations from the origin (0,0,0) unlike the FFT convolution which uses sampling points; N=1,2,3..., there is a strong basis for establishing parity since the dose rate peaks compared qualitatively. With both modes compared, the discrepancies in the dose rates ranged between 3.6% to

  14. Solution of 3-dimensional diffusion equation by finite Fourier transformation

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    1978-01-01

    Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)

  15. High-speed fan-beam reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1984-01-01

    Since the first development of X-ray computer tomography (CT), various efforts have been made to obtain high quality of high-speed image. However, the development of high resolution CT and the ultra-high speed CT to be applied to hearts is still desired. The X-ray beam scanning method was already changed from the parallel beam system to the fan-beam system in order to greatly shorten the scanning time. Also, the filtered back projection (DFBP) method has been employed to directly processing fan-beam projection data as reconstruction method. Although the two-dimensional Fourier transform (TFT) method significantly faster than FBP method was proposed, it has not been sufficiently examined for fan-beam projection data. Thus, the ITFT method was investigated, which first executes rebinning algorithm to convert the fan-beam projection data to the parallel beam projection data, thereafter, uses two-dimensional Fourier transform. By this method, although high speed is expected, the reconstructed images might be degraded due to the adoption of rebinning algorithm. Therefore, the effect of the interpolation error of rebinning algorithm on the reconstructed images has been analyzed theoretically, and finally, the result of the employment of spline interpolation which allows the acquisition of high quality images with less errors has been shown by the numerical and visual evaluation based on simulation and actual data. Computation time was reduced to 1/15 for the image matrix of 512 and to 1/30 for doubled matrix. (Wakatsuki, Y.)

  16. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  17. On the Application of the Fourier Series Solution to the Hydromagnetic Buoyant Two-Dimensional Laminar Vertical Jet

    Directory of Open Access Journals (Sweden)

    Marco Rosales-Vera

    2012-01-01

    Full Text Available The problem of a hydromagnetic hot two-dimensional laminar jet issuing vertically into an otherwise quiescent fluid of a lower temperature is studied. We propose solutions to the boundary layer equations using the classical Fourier series. The method is essentiall to transform the boundary layer equations to a coupled set of nonlinear first-order ordinary differential equations through the Fourier series. The accuracy of the results has been tested by the comparison of the velocity distributions obtained by the Fourier series with those calculated by finite difference method. The results show that the present method, based on the Fourier series, is an efficient method, suitable to solve boundary layer equations applied to plane jet flows with high accuracy.

  18. Direct fourier method reconstruction based on unequally spaced fast fourier transform

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Zhao Ming; Liu Li

    2003-01-01

    First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)

  19. On the Cooley-Turkey Fast Fourier algorithm for arbitrary factors ...

    African Journals Online (AJOL)

    Atonuje and Okonta in [1] developed the Cooley-Turkey Fast Fourier transform algorithm and its application to the Fourier transform of discretely sampled data points N, expressed in terms of a power y of 2. In this paper, we extend the formalism of [1] Cookey-Turkey Fast Fourier transform algorithm. The method is developed ...

  20. Computing exact Fourier series coefficients of IC rectilinear polygons from low-resolution fast Fourier coefficients

    Science.gov (United States)

    Scheibler, Robin; Hurley, Paul

    2012-03-01

    We present a novel, accurate and fast algorithm to obtain Fourier series coefficients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using off-the-shelf hardware components. Based on properties of Fourier calculus, we derive a relationship between the Discrete Fourier Transforms of the sampled mask transmission function and its continuous Fourier series coefficients. The relationship leads to a straightforward algorithm for computing the continuous Fourier series coefficients where one samples the mask transmission function, compute its discrete Fourier transform and applies a frequency-dependent multiplicative factor. The algorithm is guaranteed to yield the exact continuous Fourier series coefficients for any sampling representing the mask function exactly. Computationally, this leads to significant saving by allowing to choose the maximal such pixel size and reducing the fast Fourier transform size by as much, without compromising accuracy. In addition, the continuous Fourier series is free from aliasing and follows closely the physical model of Fourier optics. We show that in some cases this can make a significant difference, especially in modern very low pitch technology nodes.

  1. Two and three dimensional imaging of compact toroid plasmas using fast photography

    International Nuclear Information System (INIS)

    Englert, S.E.; Bell, D.E.; Coffey, S.K.

    1992-01-01

    As is discussed in a companion paper, Degnan el al, fast photography is used as a visual diagnostic tool for high energy plasma research at the Phillips Laboratory. Both, two dimensional and three dimensional images, are gathered by using nanosecond and microsecond range fast photography techniques. A set of microchannel plate cameras and a fast framing camera are used to record images of a compact toroid plasma during formation and acceleration stages. These images are subsequently digitized and enhanced to bring out detailed information of interest. This spatial information is combined with other diagnostic results as well as theoretical models in order to build a more complete picture of the fundamental physics associated with high-energy plasmas

  2. Cryo-EM image alignment based on nonuniform fast Fourier transform

    International Nuclear Information System (INIS)

    Yang Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis

  3. Cryo-EM image alignment based on nonuniform fast Fourier transform.

    Science.gov (United States)

    Yang, Zhengfan; Penczek, Pawel A

    2008-08-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.

  4. Fast Fourier transform telescope

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2009-01-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog 2 N rather than N 2 ) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  5. Vector Radix 2 × 2 Sliding Fast Fourier Transform

    Directory of Open Access Journals (Sweden)

    Keun-Yung Byun

    2016-01-01

    Full Text Available The two-dimensional (2D discrete Fourier transform (DFT in the sliding window scenario has been successfully used for numerous applications requiring consecutive spectrum analysis of input signals. However, the results of conventional sliding DFT algorithms are potentially unstable because of the accumulated numerical errors caused by recursive strategy. In this letter, a stable 2D sliding fast Fourier transform (FFT algorithm based on the vector radix (VR 2 × 2 FFT is presented. In the VR-2 × 2 FFT algorithm, each 2D DFT bin is hierarchically decomposed into four sub-DFT bins until the size of the sub-DFT bins is reduced to 2 × 2; the output DFT bins are calculated using the linear combination of the sub-DFT bins. Because the sub-DFT bins for the overlapped input signals between the previous and current window are the same, the proposed algorithm reduces the computational complexity of the VR-2 × 2 FFT algorithm by reusing previously calculated sub-DFT bins in the sliding window scenario. Moreover, because the resultant DFT bins are identical to those of the VR-2 × 2 FFT algorithm, numerical errors do not arise; therefore, unconditional stability is guaranteed. Theoretical analysis shows that the proposed algorithm has the lowest computational requirements among the existing stable sliding DFT algorithms.

  6. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs

    Science.gov (United States)

    Prum, R. O.; Torres, R.; Williamson, S.; Dyck, J.

    1999-01-01

    We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.

  7. Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications

    International Nuclear Information System (INIS)

    Du, Qiang; Yang, Jiang

    2017-01-01

    This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.

  8. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    Science.gov (United States)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  9. A fast non-Fourier method for Landau-fluid operators

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A. M., E-mail: dimits1@llnl.gov; Joseph, I.; Umansky, M. V. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, California 94511-0808 (United States)

    2014-05-15

    An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of “delocalization kernels” [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.

  10. Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms

    International Nuclear Information System (INIS)

    Prakash, A; Lebensohn, R A

    2009-01-01

    In this work, we compare finite element and fast Fourier transform approaches for the prediction of the micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases—rolling of aluminum and wire drawing of tungsten—are used to evaluate the predictions of the two models. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison with the fast Fourier transform simulations. Figure 9 was corrected in this article on the 25 August 2009. The corrected electronic version is identical to the print version

  11. Accelerating the Non-equispaced Fast Fourier Transform on Commodity Graphics Hardware

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Schaeffter, Tobias; Noe, Karsten Østergaard

    2008-01-01

    We present a fast parallel algorithm to compute the Non-equispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform, which was previously its most time consuming part. We describe the performa......We present a fast parallel algorithm to compute the Non-equispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform, which was previously its most time consuming part. We describe...

  12. Semiclassical quantization of vibrational systems using fast-Fourier transform methods: Application to HDO stretches

    International Nuclear Information System (INIS)

    Pickett, T.J.; Shirts, R.B.

    1991-01-01

    Based on work by Martens and Ezra and partially developed independently by Eaker, we apply an improved method of approximating the quantum energy levels of a system of coupled oscillators using the fast-Fourier transform of classical coordinates and momenta to find quantizing trajectories. Application is made to a two-dimensional system modeling the stretching motions of the HDO molecule. The results are in excellent agreement with quantum calculations. This method is useful because: (1) it gives results which are independent of any separability of the Hamiltonian, (2) it is not limited in the number of degrees of freedom that can be handled, and (3) no zero-order approximation to the system is necessary. Results are equally valid inside and outside of resonance zones

  13. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform; Algoritmo para reconstrucao tridimensional de imagens de tomografos de ressonancia magnetica e de raio-X baseado no uso de Transformada Rapida de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Josiane M.; Traina, Agma Juci M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Ciencias Matematicas; Cruvinel, Paulo E. [EMBRAPA, Sao Carlos, SP (Brazil). CNPDIA

    1995-12-31

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author) 10 refs., 5 figs.

  14. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    KAUST Repository

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  15. Application of synthesis methods to two-dimensional fast reactor transient study

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Hirakawa, Naohiro

    1978-01-01

    Space time synthesis and time synthesis codes were developed and applied to the space-dependent kinetics benchmark problem of a two-dimensional fast reactor model, and it was found both methods are accurate and economical for the fast reactor kinetics study. Comparison between the space time synthesis and the time synthesis was made. Also, in space time synthesis, the influence of the number of trial functions on the error and on the computing time and the effect of degeneration of expansion coefficients are investigated. The matrix factorization method is applied to the inversion of the matrix equation derived from the synthesis equation, and it is indicated that by the use of this scheme space-dependent kinetics problem of a fast reactor can be solved efficiently by space time synthesis. (auth.)

  16. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    Science.gov (United States)

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these

  17. Fast Fourier transformation results from gamma-ray burst profiles

    Science.gov (United States)

    Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.

    1992-01-01

    Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.

  18. [Continuum based fast Fourier transform processing of infrared spectrum].

    Science.gov (United States)

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  19. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Norio [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-05-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  20. Value of MR cisternography using three-dimensional half-fourier single-shot fast spin-echo sequences in the diagnosis of diseases related to cranial nerves VII and VIII

    International Nuclear Information System (INIS)

    Yamakami, Norio

    1999-01-01

    The purpose of this study was to evaluate the value of MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences in the diagnosis of diseasea related to cranial nerves VII and VIII. With a 0.5-T imager, the most appropriate setting of echo time and section thickness was first assessed in five volunteers. This resulted in echo time of 250 msec and section thickness of 2 mm as the most effective parameters. Second, using echo time of 120 msec and section thickness of 1.5 mm that were available from the beginning of this study, the demonstration of four nerves within the audistory canal was assessed in seven volunteers. In all of the volunteers, the facial, cochlear, and vestibular nerves were determined with demonstration of each of superior and inferior vestibular nerves in four of them. Next, MR cisternography using the same echo time and section thickness was applied in 368 patients with suspicion of acoustic neurinoma and 14 with hemifacial spasm. In 28 of the 368 patients, MR cisternograms depicted an acoustic neurinoma that was confirmed on postcontrast T1-weighted images. Meanwhile, in five of the 14 patients with hemifacial spasm, MR cisternograms revealed a vessel compressing the root exit zone of the affected facial nerve. It is concluded that MR cisternography using three-dimensional half-Fourier single-shot fast spin-echo sequences can be a useful means for demonstrating nerves within the auditory nerve as well as for the screening of acoustic neurionoma. (author)

  1. Application of fast Fourier transform in thermo-magnetic convection analysis

    International Nuclear Information System (INIS)

    Pyrda, L

    2014-01-01

    Application of Fast Fourier Transform in thermo-magnetic convection is reported. Cubical enclosure filled with paramagnetic fluid heated from below and placed in the strong magnetic field gradients was investigated. The main aim of study was connected with identification of flow types, especially transition to turbulence. For this purpose the Fast Fourier Transform (FFT) analysis was applied. It was followed by the heat transfer characteristic for various values of magnetic induction gradient. The analysis was done at two Rayleigh numbers 7.89·10 5 and 1.86·10 6 with thermo-magnetic Rayleigh numbers up to 1.8·10 8 and 4.5·10 8 respectively. The presented results clearly indicate flow types and also demonstrate augmented heat transfer in dependence on magnetic induction gradient. Detailed analysis of flow transition to turbulent state was compared with transition line for natural convection reported in literature. The transition to turbulence in the case of thermo-magnetic convection of paramagnetic fluid was in very good agreement with transition in the case of natural convection.

  2. Magnetohydrodynamic study of three-dimensional instability of the spontaneous fast magnetic reconnection

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondoh, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamic (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimension. Generally, in two-dimensional magnetic reconnection models, every plasma condition is assumed to be uniform in the sheet current direction. In such two-dimensional MHD simulations, the current sheet destabilized by the initial resistive disturbance can be developed to fast magnetic reconnection by a current driven anomalous resistivity. In this paper, the initial resistive disturbance includes a small amount of fluctuations in the sheet current direction, i.e., along the magnetic neutral line. The other conditions are the same as that of previous two-dimensional MHD studies for fast magnetic reconnection. Accordingly, we may expect that approximately two-dimensional fast magnetic reconnection occurs in the MHD simulation. In fact, the fast magnetic reconnection activated on the first stage of the simulation is two dimensional. However, on the subsequent stages, it spontaneously becomes three dimensional and is strongly localized in the sheet current direction. The resulting three-dimensional fast magnetic reconnection intermittently ejects three-dimensional magnetic loops. Such intermittent ejections of the three-dimensional loops are similar to the intermittent downflows observed in the solar flares. The ejection of the three-dimensional loops seems to be random but, numerically and theoretically, it is shown that the aspect ratio of the ejected loops is limited under a criterion.

  3. Fast Implicit Methods For Elliptic Moving Interface Problems

    Science.gov (United States)

    2015-12-11

    surfaces [30], and has recently been employed in the geometric nonuniform fast Fourier transform [12] and in the finite element method [31]. We employ...analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms ...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform . Second, bilinear quadratures ---which

  4. On the accurate fast evaluation of finite Fourier integrals using cubic splines

    International Nuclear Information System (INIS)

    Morishima, N.

    1993-01-01

    Finite Fourier integrals based on a cubic-splines fit to equidistant data are shown to be evaluated fast and accurately. Good performance, especially on computational speed, is achieved by the optimization of the spline fit and the internal use of the fast Fourier transform (FFT) algorithm for complex data. The present procedure provides high accuracy with much shorter CPU time than a trapezoidal FFT. (author)

  5. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  6. A proposal of Fourier-Bessel expansion with optimized ensembles of bases to analyse two dimensional image

    Science.gov (United States)

    Yamasaki, K.; Fujisawa, A.; Nagashima, Y.

    2017-09-01

    It is a critical issue to find the best set of fitting function bases in mode structural analysis of two dimensional images like plasma emission profiles. The paper proposes a method to optimize a set of the bases in the case of Fourier-Bessel function series, using their orthonormal property, for more efficient and precise analysis. The method is applied on a tomography image of plasma emission obtained with the Maximum-likelihood expectation maximization method in a linear cylindrical device. The result demonstrates the excellency of the method that realizes the smaller residual error and minimum Akaike information criterion using smaller number of fitting function bases.

  7. Fourier analysis of parallel block-Jacobi splitting with transport synthetic acceleration in two-dimensional geometry

    International Nuclear Information System (INIS)

    Rosa, M.; Warsa, J. S.; Chang, J. H.

    2007-01-01

    A Fourier analysis is conducted in two-dimensional (2D) Cartesian geometry for the discrete-ordinates (SN) approximation of the neutron transport problem solved with Richardson iteration (Source Iteration) and Richardson iteration preconditioned with Transport Synthetic Acceleration (TSA), using the Parallel Block-Jacobi (PBJ) algorithm. The results for the un-accelerated algorithm show that convergence of PBJ can degrade, leading in particular to stagnation of GMRES(m) in problems containing optically thin sub-domains. The results for the accelerated algorithm indicate that TSA can be used to efficiently precondition an iterative method in the optically thin case when implemented in the 'modified' version MTSA, in which only the scattering in the low order equations is reduced by some non-negative factor β<1. (authors)

  8. Application and sensitivity investigation of Fourier transforms for microwave radiometric inversions

    Science.gov (United States)

    Holmes, J. J.; Balanis, C. A.

    1974-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature equation, an unstable Fredholm integral equation of the first kind was solved. Fast Fourier Transform techniques were used to invert the integral after it is placed into a cross-correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system were included. The instability of the Fredholm equation was then demonstrated and a restoration procedure was included which smooths the resulting oscillations. With the recent availability and advances of Fast Fourier Transform techniques, the method presented becomes very attractive in the evaluation of large quantities of data. Actual radiometric measurements of sea water are inverted using the restoration method, incorporating the advantages of the Fast Fourier Transform algorithm for computations.

  9. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  10. Use of fast Fourier transforms for solving partial differential equations in physics

    CERN Document Server

    Le Bail, R C

    1972-01-01

    The use of fast Fourier techniques for the direct solution of an important class of elliptic, parabolic, and hyperbolic partial differential equations in two dimensions is described. Extensions to higher-order and higher-dimension equations as well as to integrodifferential equations are presented, and several numerical examples with their resulting precision and timing are reported. (12 refs).

  11. The relationship between shock response spectrum and fast Fourier transform

    International Nuclear Information System (INIS)

    Zola, Maurizio

    2001-01-01

    In this paper the basic relationship between response spectrum and fast Fourier transform is laid down. Since a long time the response spectrum has been used by structural engineers in the seismic domain and nowadays it is going to be used to define transient motions. This way to define the excitation is more general and more real than the use of classical shape pulses for the reproduction of real environment. Nevertheless the response spectrum of a real excitation represents a loss of some information with respect to the Fourier transform. A useful discussion could arise from these observations. Appendix A gives the relationship between the mathematic Fourier transform and the digital Fourier transform given by computers, while Appendix B gives some examples of response spectra and Fourier transforms of simple functions. (author)

  12. Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle

    CERN Document Server

    Takenaka, N; Fujii, T; Mizubata, M; Yoshii, K

    1999-01-01

    Three-dimensional void fraction distribution of air-water two-phase flow in a 4x4 rod-bundle near a spacer was visualized by fast neutron radiography using a CT method. One-dimensional cross sectional averaged void fraction distribution was also calculated. The behaviors of low void fraction (thick water) two-phase flow in the rod bundle around the spacer were clearly visualized. It was shown that the void fraction distributions were visualized with a quality similar to those by thermal neutron radiography for low void fraction two-phase flow which is difficult to visualize by thermal neutron radiography. It is concluded that the fast neutron radiography is efficiently applicable to two-phase flow studies.

  13. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  14. A combined finite element-boundary integral formulation for solution of two-dimensional scattering problems via CGFFT. [Conjugate Gradient Fast Fourier Transformation

    Science.gov (United States)

    Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming

    1990-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  15. Suppression law of quantum states in a 3D photonic fast Fourier transform chip

    Science.gov (United States)

    Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio

    2016-01-01

    The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong–Ou–Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135

  16. Fourier rebinning and consistency equations for time-of-flight PET planograms.

    Science.gov (United States)

    Li, Yusheng; Defrise, Michel; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John's equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations and the Fourier-John equation, which are the duals of the consistency equations and John's equation, respectively. We then solve the Fourier consistency equations and Fourier-John equation using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms

  17. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  18. Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Science.gov (United States)

    Logan, T. L.; Huning, J. R.; Glackin, D. L.

    1983-01-01

    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs.

  19. FFT-BM, Code Accuracy Evaluations with the 1D Fast Fourier Transform (FFT) Methodology

    International Nuclear Information System (INIS)

    D'Auria, F.

    2004-01-01

    1 - Description of program or function: FFT-BM is an integrated version of the programs package performing code accuracy evaluations with the 1D Fast Fourier Transform (FFT) methodology. It contains two programs: - CASEM: Takes care of the complete manipulation of data in order to evaluate the quantities through which the FFT method quantifies the code accuracy. - AAWFTO completes the evaluation of the average accuracy (AA) and related weighted frequency (WF) values in order to obtain the AAtot and WFtot values characterising the global calculation performance. 2 - Methods: The Fast Fourier Transform, or FFT, which is based on the Fourier analysis method is an optimised method for calculating the amplitude Vs frequency, of functions or experimental or computed data. In order to apply this methodology, after selecting the parameters to be analyzed, it is necessary to choose the following parameters: - number of curves (exp + calc) to be analyzed; - number of time windows to be analyzed; - sampling frequency; - cut frequency; - time begin and time end of each time window. 3 - Restrictions on the complexity of the problem: Up to 30 curves (exp + calc) and 5 time windows may be analyzed

  20. A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation

    Science.gov (United States)

    Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon

    2017-09-01

    Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.

  1. A Novel Medical Image Watermarking in Three-dimensional Fourier Compressed Domain

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2015-09-01

    Full Text Available Digital watermarking is a research hotspot in the field of image security, which is protected digital image copyright. In order to ensure medical image information security, a novel medical image digital watermarking algorithm in three-dimensional Fourier compressed domain is proposed. The novel medical image digital watermarking algorithm takes advantage of three-dimensional Fourier compressed domain characteristics, Legendre chaotic neural network encryption features and robust characteristics of differences hashing, which is a robust zero-watermarking algorithm. On one hand, the original watermarking image is encrypted in order to enhance security. It makes use of Legendre chaotic neural network implementation. On the other hand, the construction of zero-watermarking adopts differences hashing in three-dimensional Fourier compressed domain. The novel watermarking algorithm does not need to select a region of interest, can solve the problem of medical image content affected. The specific implementation of the algorithm and the experimental results are given in the paper. The simulation results testify that the novel algorithm possesses a desirable robustness to common attack and geometric attack.

  2. Fourier transform and its application to 1D and 2D NMR

    International Nuclear Information System (INIS)

    Canet, D.

    1988-01-01

    In this review article, the following points are developed: Pulsed NMR and Fourier transform; Fourier transform and two-dimensional spectroscopy; Mathematical properties of Fourier transform; Fourier transform of a sine function- one dimensional NMR; Fourier transform of a product of sine functions - two-dimensional NMR; Data manipulations in the time domain; Numerical Fourier transform [fr

  3. Analysis of gamma-ray spectra by using fast Fourier transform

    International Nuclear Information System (INIS)

    Tominaga, Shoji; Nagata, Shojiro; Nayatani, Yoshinobu; Ueda, Isamu; Sasaki, Satoshi.

    1977-01-01

    In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform devised. The validity of the method was confirmed by a computer simulation for spectra of a NaI detector. The method uses the fact that spectral data can be represented by Fourier series with reduced number of terms. The estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features in the method and a general problem to be solved in a response matrix method are described. (auth.)

  4. Use of fast Fourier transform in gamma-ray spectral analysis

    International Nuclear Information System (INIS)

    Tominaga, Shoji; Nayatani, Yoshinobu; Nagata, Shojiro; Sasaki, Takashi; Ueda, Isamu.

    1978-01-01

    In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform has been devised. The validity of the method has been confirmed by computer simulation for spectra of a NaI detector. First, it is shown that spectral data can be represented by Fourier series with a reduced number of terms. Then the estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features of the method and a general problem to be solved in relation to a response matrix method are described. (author)

  5. Two-dimensional fast marching for geometrical optics.

    Science.gov (United States)

    Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo; Savarese, Salvatore

    2014-11-03

    We develop an approach for the fast and accurate determination of geometrical optics solutions to Maxwell's equations in inhomogeneous 2D media and for TM polarized electric fields. The eikonal equation is solved by the fast marching method. Particular attention is paid to consistently discretizing the scatterers' boundaries and matching the discretization to that of the computational domain. The ray tracing is performed, in a direct and inverse way, by using a technique introduced in computer graphics for the fast and accurate generation of textured images from vector fields. The transport equation is solved by resorting only to its integral form, the transport of polarization being trivial for the considered geometry and polarization. Numerical results for the plane wave scattering of two perfectly conducting circular cylinders and for a Luneburg lens prove the accuracy of the algorithm. In particular, it is shown how the approach is capable of properly accounting for the multiple scattering occurring between the two metallic cylinders and how inverse ray tracing should be preferred to direct ray tracing in the case of the Luneburg lens.

  6. Development and validation of a two-dimensional fast-response flood estimation model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV OF UTAK

    2009-01-01

    A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.

  7. Efficient implementation of multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2012-01-10

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  8. MAGNETOHYDRODYNAMICS STUDY OF THREE-DIMENSIONAL FAST MAGNETIC RECONNECTION FOR INTERMITTENT SNAKE-LIKE DOWNFLOWS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Shimizu, T.; Kondo, K.; Ugai, M.; Shibata, K.

    2009-01-01

    Three-dimensional instability of the spontaneous fast magnetic reconnection is studied with magnetohydrodynamics (MHD) simulation, where the two-dimensional model of the spontaneous fast magnetic reconnection is destabilized in three dimensions. In two-dimensional models, every plasma condition is assumed to be uniform in the sheet current direction. In that case, it is well known that the two-dimensional fast magnetic reconnection can be caused by current-driven anomalous resistivity, when an initial resistive disturbance is locally put in a one-dimensional current sheet. In this paper, it is studied whether the two-dimensional fast magnetic reconnection can be destabilized or not when the initial resistive disturbance is three dimensional, i.e., that which has weak fluctuations in the sheet current direction. According to our study, the two-dimensional fast magnetic reconnection is developed to the three-dimensional intermittent fast magnetic reconnection which is strongly localized in the sheet current direction. The resulting fast magnetic reconnection repeats to randomly eject three-dimensional magnetic loops which are very similar to the intermittent downflows observed in solar flares. In fact, in some observations of solar flares, the current sheet seems to be approximately one dimensional, but the fast magnetic reconnection is strongly localized in the sheet current direction, i.e., fully three dimensional. In addition, the observed plasma downflows as snake-like curves. It is shown that those observed features are consistent with our numerical MHD study.

  9. Sparse-matrix factorizations for fast symmetric Fourier transforms

    International Nuclear Information System (INIS)

    Sequel, J.

    1987-01-01

    This work proposes new fast algorithms computing the discrete Fourier transform of certain families of symmetric sequences. Sequences commonly found in problems of structure determination by x-ray crystallography and in numerical solutions of boundary-value problems in partial differential equations are dealt with. In the algorithms presented, the redundancies in the input and output data, due to the presence of symmetries in the input data sequence, were eliminated. Using ring-theoretical methods a matrix representation is obtained for the remaining calculations; which factors as the product of a complex block-diagonal matrix times as integral matrix. A basic two-step algorithm scheme arises from this factorization with a first step consisting of pre-additions and a second step containing the calculations involved in computing with the blocks in the block-diagonal factor. These blocks are structured as block-Hankel matrices, and two sparse-matrix factoring formulas are developed in order to diminish their arithmetic complexity

  10. Nonuniform fast Fourier transform method for numerical diffraction simulation on tilted planes.

    Science.gov (United States)

    Xiao, Yu; Tang, Xiahui; Qin, Yingxiong; Peng, Hao; Wang, Wei; Zhong, Lijing

    2016-10-01

    The method, based on the rotation of the angular spectrum in the frequency domain, is generally used for the diffraction simulation between the tilted planes. Due to the rotation of the angular spectrum, the interval between the sampling points in the Fourier domain is not even. For the conventional fast Fourier transform (FFT)-based methods, a spectrum interpolation is needed to get the approximate sampling value on the equidistant sampling points. However, due to the numerical error caused by the spectrum interpolation, the calculation accuracy degrades very quickly as the rotation angle increases. Here, the diffraction propagation between the tilted planes is transformed into a problem about the discrete Fourier transform on the uneven sampling points, which can be evaluated effectively and precisely through the nonuniform fast Fourier transform method (NUFFT). The most important advantage of this method is that the conventional spectrum interpolation is avoided and the high calculation accuracy can be guaranteed for different rotation angles, even when the rotation angle is close to π/2. Also, its calculation efficiency is comparable with that of the conventional FFT-based methods. Numerical examples as well as a discussion about the calculation accuracy and the sampling method are presented.

  11. Fourier rebinning and consistency equations for time-of-flight PET planograms

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D; Defrise, Michel

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John’s equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations (FCEs) and the Fourier–John equation (FJE), which are the duals of the consistency equations and John’s equation, respectively. We then solve the FCEs and FJE using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms. Finally, we give

  12. How to use the Fast Fourier Transform in Large Finite Fields

    OpenAIRE

    Petersen, Petur Birgir

    2011-01-01

    The article contents suggestions on how to perform the Fast Fourier Transform over Large Finite Fields. The technique is to use the fact that the multiplicative groups of specific prime fields are surprisingly composite.

  13. Evaluation of the chondromalacia patella using a microscopy coil: comparison of the two-dimensional fast spin echo techniques and the three-dimensional fast field echo techniques.

    Science.gov (United States)

    Kim, Hyun-joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung-Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast field echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FS-PD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p chondromalacia patella.

  14. Evaluation of chondromalacia in the knee joint using three dimensional Fourier transformation constructive interference in steady state (CISS)

    International Nuclear Information System (INIS)

    Yoon, Sam Hyun; Ha, Doo Hoe; Kwak, Jin Young; Lee, Young Soo

    2000-01-01

    To assess the usefulness of three-dimensional Fourier transformation constructive interference in steady state (CISS) for the evaluation of chondromalacia. In 110 knee joints which underwent both MR imaging and arthroscopy, the findings were retrospectively reviewed. MR imaging sequences included two-dimensional dual-echo turbo spin-echo imaging along the sagittal and coronal planes, two-dimensional fast low-angle shot (FLASH) with magnetization transfer along the axial plane, and three-dimensional CISS along the sagittal plane. After the cartilage surfaces of each joint were divided into eight areas (each medial and lateral area of patellar facets, trochlear surfaces, femoral condyles, and tibial plateaux), a total of 880 areas were assessed. Using both combined two-dimensional (2-D turbo spin-echo and FLASH) and CISS imaging during different sessions, each chondromalacia case was assigned one of five grades. Arthroscopy revealed the presence of chondromalacia in 162 areas. This was first grade in 77 areas, second grade in 38, third grade in 21, and fourth grade in 26. The sensitivity, specificity, and accuracy of 2-D and CISS imaging were 48.1%, 93.7% and 85.3%, and 45.7%, 95.3% and 86.1%, respectively. Agreement between MR and arthroscopic staging occurred in 81.48% of 2-D imaging procedures and 82.16% of CISS procedures. If a difference of one grade was accepted, these proportions rose to 84.32% and 85.22%, respectively, though this increase was statistically insignificant. Though CISS imaging was less sensitive than 2-D imaging in the grading of chondromalacia, additional CISS imaging can help improve the accuracy of this grading

  15. Evaluation of chondromalacia in the knee joint using three dimensional Fourier transformation constructive interference in steady state (CISS)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sam Hyun; Ha, Doo Hoe; Kwak, Jin Young [College of Medicine, Pochon CHA University, Sungnam (Korea, Republic of); Lee, Young Soo [Pundang CHA General Hospital, College of Medicine, Pochon CHA University, Seoul (Korea, Republic of)

    2000-10-01

    To assess the usefulness of three-dimensional Fourier transformation constructive interference in steady state (CISS) for the evaluation of chondromalacia. In 110 knee joints which underwent both MR imaging and arthroscopy, the findings were retrospectively reviewed. MR imaging sequences included two-dimensional dual-echo turbo spin-echo imaging along the sagittal and coronal planes, two-dimensional fast low-angle shot (FLASH) with magnetization transfer along the axial plane, and three-dimensional CISS along the sagittal plane. After the cartilage surfaces of each joint were divided into eight areas (each medial and lateral area of patellar facets, trochlear surfaces, femoral condyles, and tibial plateaux), a total of 880 areas were assessed. Using both combined two-dimensional (2-D turbo spin-echo and FLASH) and CISS imaging during different sessions, each chondromalacia case was assigned one of five grades. Arthroscopy revealed the presence of chondromalacia in 162 areas. This was first grade in 77 areas, second grade in 38, third grade in 21, and fourth grade in 26. The sensitivity, specificity, and accuracy of 2-D and CISS imaging were 48.1%, 93.7% and 85.3%, and 45.7%, 95.3% and 86.1%, respectively. Agreement between MR and arthroscopic staging occurred in 81.48% of 2-D imaging procedures and 82.16% of CISS procedures. If a difference of one grade was accepted, these proportions rose to 84.32% and 85.22%, respectively, though this increase was statistically insignificant. Though CISS imaging was less sensitive than 2-D imaging in the grading of chondromalacia, additional CISS imaging can help improve the accuracy of this grading.

  16. Efficient implementation of a multidimensional fast fourier transform on a distributed-memory parallel multi-node computer

    Science.gov (United States)

    Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2008-01-01

    The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.

  17. Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes

    KAUST Repository

    Lin, Sian-Jheng; Al-Naffouri, Tareq Y.; Han, Yunghsiang S.; Chung, Wei-Ho

    2016-01-01

    In this paper, we present a fast Fourier transform (FFT) algorithm over extension binary fields, where the polynomial is represented in a non-standard basis. The proposed Fourier-like transform requires O(h lg(h)) field operations, where h

  18. Application of Fourier transforms for microwave radiometric inversions

    Science.gov (United States)

    Holmes, J. J.; Balanis, C. A.; Truman, W. M.

    1975-01-01

    Existing microwave radiometer technology now provides a suitable method for remote determination of the ocean surface's absolute brightness temperature. To extract the brightness temperature of the water from the antenna temperature, an unstable Fredholm integral equation of the first kind is solved. Fourier transform techniques are used to invert the integral after it is placed into a cross correlation form. Application and verification of the methods to a two-dimensional modeling of a laboratory wave tank system are included. The instability of the ill-posed Fredholm equation is examined and a restoration procedure is included which smooths the resulting oscillations. With the recent availability and advances of fast Fourier transform (FFT) techniques, the method presented becomes very attractive in the evaluation of large quantities of data.

  19. Precise and fast spatial-frequency analysis using the iterative local Fourier transform.

    Science.gov (United States)

    Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook

    2016-09-19

    The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.

  20. Spherical harmonics solutions of multi-dimensional neutron transport equation by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1977-01-01

    A method of solution of a monoenergetic neutron transport equation in P sub(L) approximation is presented for x-y and x-y-z geometries using the finite Fourier transformation. A reactor system is assumed to consist of multiregions in each of which the nuclear cross sections are spatially constant. Since the unknown functions of this method are the spherical harmonics components of the neutron angular flux at the material boundaries alone, the three- and two-dimensional equations are reduced to two- and one-dimensional equations, respectively. The present approach therefore gives fewer unknowns than in the usual series expansion method or in the finite difference method. Some numerical examples are shown for the criticality problem. (auth.)

  1. Fast algorithm for two-dimensional data table use in hydrodynamic and radiative-transfer codes

    International Nuclear Information System (INIS)

    Slattery, W.L.; Spangenberg, W.H.

    1982-01-01

    A fast algorithm for finding interpolated atomic data in irregular two-dimensional tables with differing materials is described. The algorithm is tested in a hydrodynamic/radiative transfer code and shown to be of comparable speed to interpolation in regularly spaced tables, which require no table search. The concepts presented are expected to have application in any situation with irregular vector lengths. Also, the procedures that were rejected either because they were too slow or because they involved too much assembly coding are described

  2. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  3. Solving singular convolution equations using the inverse fast Fourier transform

    Czech Academy of Sciences Publication Activity Database

    Krajník, E.; Montesinos, V.; Zizler, P.; Zizler, Václav

    2012-01-01

    Roč. 57, č. 5 (2012), s. 543-550 ISSN 0862-7940 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : singular convolution equations * fast Fourier transform * tempered distribution Subject RIV: BA - General Mathematics Impact factor: 0.222, year: 2012 http://www.springerlink.com/content/m8437t3563214048/

  4. Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.

    Science.gov (United States)

    Liang, Zhichun; Crepeau, Richard H; Freed, Jack H

    2005-12-01

    Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.

  5. Optimal and fast rotational alignment of volumes with missing data in Fourier space.

    Science.gov (United States)

    Shatsky, Maxim; Arbelaez, Pablo; Glaeser, Robert M; Brenner, Steven E

    2013-11-01

    Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  7. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin

    2011-01-01

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  8. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  9. App. 1. Fourier series and Fourier transform

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Definitions, formulas and practical properties in quantum mechanics are presented: Fourier series (development of periodic function, Bessel-Parseval equality); Fourier transform (Parseval-Plancherel formula, Fourier transform in three-dimensional space) [fr

  10. Deconvolution of Doppler-broadened positron annihilation lineshapes by fast Fourier transformation using a simple automatic filtering technique

    International Nuclear Information System (INIS)

    Britton, D.T.; Bentvelsen, P.; Vries, J. de; Veen, A. van

    1988-01-01

    A deconvolution scheme for digital lineshapes using fast Fourier transforms and a filter based on background subtraction in Fourier space has been developed. In tests on synthetic data this has been shown to give optimum deconvolution without prior inspection of the Fourier spectrum. Although offering significant improvements on the raw data, deconvolution is shown to be limited. The contribution of the resolution function is substantially reduced but not eliminated completely and unphysical oscillations are introduced into the lineshape. The method is further tested on measurements of the lineshape for positron annihilation in single crystal copper at the relatively poor resolution of 1.7 keV at 512 keV. A two-component fit is possible yielding component widths in agreement with previous measurements. (orig.)

  11. Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation

    NARCIS (Netherlands)

    P.W. Hemker (Piet); M.H. van Raalte (Marc)

    2002-01-01

    textabstractIn this paper we study the convergence of a multigrid method for the solution of a two-dimensional linear second order elliptic equation, discretized by discontinuous Galerkin (DG) methods. For the Baumann-Oden and for the symmetric DG method, we give a detailed analysis of the

  12. Hybrid fast Hankel transform implementation for optics simulation

    Science.gov (United States)

    Davis, Paul K.

    2013-09-01

    The most compute intensive part of a full optics simulation, especially including diffraction effects, is the Fourier transform between pupil and image spaces. This is typically performed as a two dimensional fast discrete transform. For a nearly radially symmetric system there are advantages to using polar coordinates, in which case the radial transform becomes a Hankel transform, using Bessel functions instead of circular functions. However, there are special difficulties in calculating and handling Bessel functions. Several solutions have been proposed. We present a hybrid Hankel transform which divides the domain, calculating a portion using Bessel function approximations but converting most of the domain into a one dimensional Fourier transform which can be handled by standard methods.

  13. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps.

    Directory of Open Access Journals (Sweden)

    Radhakrishna Bettadapura

    2015-10-01

    Full Text Available There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data, and 3D reconstructed cryo-electron microscopy (3D EM maps (albeit at coarser resolution of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2 fit (Polar Fast Fourier Fitting for the best possible structural alignment of atomistic structures with 3D EM. While PF(2 fit enables only a rigid, six dimensional (6D alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.

  14. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    Science.gov (United States)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  15. The fast multipole method and Fourier convolution for the solution of acoustic scattering on regular volumetric grids

    Science.gov (United States)

    Hesford, Andrew J.; Waag, Robert C.

    2010-10-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  16. A fast Fourier transform program for the deconvolution of IN10 data

    International Nuclear Information System (INIS)

    Howells, W.S.

    1981-04-01

    A deconvolution program based on the Fast Fourier Transform technique is described and some examples are presented to help users run the programs and interpret the results. Instructions are given for running the program on the RAL IBM 360/195 computer. (author)

  17. Response of multiferroic composites inferred from a fast-Fourier-transform-based numerical scheme

    International Nuclear Information System (INIS)

    Brenner, Renald; Bravo-Castillero, Julián

    2010-01-01

    The effective response and the local fields within periodic magneto-electric multiferroic composites are investigated by means of a numerical scheme based on fast Fourier transforms. This computational framework relies on the iterative resolution of coupled series expansions for the magnetic, electric and strain fields. By using an augmented Lagrangian formulation, a simple and robust procedure which makes use of the uncoupled Green operators for the elastic, electrostatics and magnetostatics problems is proposed. Its accuracy is assessed in the cases of laminated and fibrous two-phase composites for which analytical solutions exist

  18. Robust alignment of chromatograms by statistically analyzing the shifts matrix generated by moving window fast Fourier transform cross-correlation.

    Science.gov (United States)

    Zhang, Mingjing; Wen, Ming; Zhang, Zhi-Min; Lu, Hongmei; Liang, Yizeng; Zhan, Dejian

    2015-03-01

    Retention time shift is one of the most challenging problems during the preprocessing of massive chromatographic datasets. Here, an improved version of the moving window fast Fourier transform cross-correlation algorithm is presented to perform nonlinear and robust alignment of chromatograms by analyzing the shifts matrix generated by moving window procedure. The shifts matrix in retention time can be estimated by fast Fourier transform cross-correlation with a moving window procedure. The refined shift of each scan point can be obtained by calculating the mode of corresponding column of the shifts matrix. This version is simple, but more effective and robust than the previously published moving window fast Fourier transform cross-correlation method. It can handle nonlinear retention time shift robustly if proper window size has been selected. The window size is the only one parameter needed to adjust and optimize. The properties of the proposed method are investigated by comparison with the previous moving window fast Fourier transform cross-correlation and recursive alignment by fast Fourier transform using chromatographic datasets. The pattern recognition results of a gas chromatography mass spectrometry dataset of metabolic syndrome can be improved significantly after preprocessing by this method. Furthermore, the proposed method is available as an open source package at https://github.com/zmzhang/MWFFT2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

    Science.gov (United States)

    Chan, Kenny K. H.; Tang, Shuo

    2010-01-01

    The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551

  20. Fast chemical reaction in two-dimensional Navier-Stokes flow: initial regime.

    Science.gov (United States)

    Ait-Chaalal, Farid; Bourqui, Michel S; Bartello, Peter

    2012-04-01

    This paper studies an infinitely fast bimolecular chemical reaction in a two-dimensional biperiodic Navier-Stokes flow. The reactants in stoichiometric quantities are initially segregated by infinite gradients. The focus is placed on the initial stage of the reaction characterized by a well-defined one-dimensional material contact line between the reactants. Particular attention is given to the effect of the diffusion κ of the reactants. This study is an idealized framework for isentropic mixing in the lower stratosphere and is motivated by the need to better understand the effect of resolution on stratospheric chemistry in climate-chemistry models. Adopting a Lagrangian straining theory approach, we relate theoretically the ensemble mean of the length of the contact line, of the gradients along it, and of the modulus of the time derivative of the space-average reactant concentrations (here called the chemical speed) to the joint probability density function of the finite-time Lyapunov exponent λ with two times τ and τ[over ̃]. The time 1/λ measures the stretching time scale of a Lagrangian parcel on a chaotic orbit up to a finite time t, while τ measures it in the recent past before t, and τ[over ̃] in the early part of the trajectory. We show that the chemical speed scales like κ(1/2) and that its time evolution is determined by rare large events in the finite-time Lyapunov exponent distribution. The case of smooth initial gradients is also discussed. The theoretical results are tested with an ensemble of direct numerical simulations (DNSs) using a pseudospectral model.

  1. Isotropic three-dimensional fast spin-echo Cube magnetic resonance dacryocystography: comparison with the three-dimensional fast-recovery fast spin-echo technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Wuhan (China); Liu, Rong [Huazhong University of Science and Technology, Department of Ophthalmology, Tongji Hospital, Wuhan (China); Xiong, Wei [GE Healthcare China Wuhan Office, Wuhan (China)

    2015-04-01

    Three-dimensional fast spin-echo Cube (3D-FSE-Cube) uses modulated refocusing flip angles and autocalibrates two dimensional (2D)-accelerated parallel and nonlinear view ordering to produce high-quality volumetric image sets with high-spatial resolution. Furthermore, 3D-FSE-Cube with topical instillation of fluid can also be used for magnetic resonance dacryocystography (MRD) with good soft tissue contrast. The purpose of this study was to evaluate the technical quality and visualization of the lacrimal drainage system (LDS) when using the 3D-FSE-Cube sequence and the 3D fast-recovery fast spin-echo (FRFSE) sequence. In total, 75 patients with primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FSE-Cube MRD and 3D-FRFSE MRD at 3.0 T after topical administration of compound sodium chloride eye drops. Two radiologists graded the images from either of the two sequences in a blinded fashion, and appropriate statistical tests were used to assess differences in technical quality, visibility of ductal segments, and number of segments visualized per LDS. Obstructions were confirmed in 90 of the 150 LDSs assessed. The technical quality of 3D-FSE-Cube MRD and 3D-FRFSE MRD was statistically equivalent (P = 0.871). However, compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD improved the overall visibility and the visibility of the upper drainage segments in normal and obstructed LDSs (P < 0.001). There was a corresponding increase in the number of segments visualized per LDS in both groups (P < 0.001). Compared with 3D-FRFSE MRD, 3D-FSE-Cube MRD potentially improves the visibility of the LDS. (orig.)

  2. Specification of the Fast Fourier Transform algorithm as a term rewriting system

    NARCIS (Netherlands)

    Rodenburg, P.H.; Hoekzema, D.J.

    1987-01-01

    We specify an algorithm for multiplying polynomials with complex coefficients incorporating, the Fast Fourier Transform algorithm of Cooley and Tukey [CT]. The specification formalism we use is a variant of the formalism ASF described in. [BHK]. The difference with ASF is essentially a matter of

  3. The smoothing and fast Fourier transformation of experimental X-ray and neutron data from amorphous materials

    International Nuclear Information System (INIS)

    Dixon, M.; Wright, A.C.; Hutchinson, P.

    1977-01-01

    The application of fast Fourier transformation techniques to the analysis of experimental X-ray and neutron diffraction patterns from amorphous materials is discussed and compared with conventional techniques using Filon's quadrature. The fast Fourier transform package described also includes cubic spline smoothing and has been extensively tested, using model data to which statistical errors have been added by means of a pseudo-random number generator with Gaussian shaper. Neither cubic spline nor hand smoothing has much effect on the resulting transform since the noise removed is of too high a frequency. (Auth.)

  4. Orthonormal mode sets for the two-dimensional fractional Fourier transformation

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2007-01-01

    A family of orthonormal mode sets arises when Hermite–Gauss modes propagate through lossless first-order optical systems. It is shown that the modes at the output of the system are eigenfunctions for the symmetric fractional Fourier transformation if and only if the system is described by an

  5. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    International Nuclear Information System (INIS)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide

    2008-01-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  6. Three-dimensional imaging using computer-generated holograms synthesized from 3-D Fourier spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yatagai, Toyohiko; Miura, Ken-ichi; Sando, Yusuke; Itoh, Masahide [University of Tsukba, Institute of Applied Physics, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan)], E-mail: yatagai@cc.utsunomiya-u.ac.jp

    2008-11-01

    Computer-generated holograms(CGHs) synthesized from projection images of real existing objects are considered. A series of projection images are recorded both vertically and horizontally with an incoherent light source and a color CCD. According to the principles of computer tomography(CT), the 3-D Fourier spectrum is calculated from several projection images of objects and the Fresnel CGH is synthesized using a part of the 3-D Fourier spectrum. This method has following advantages. At first, no-blur reconstructed images in any direction are obtained owing to two-dimensionally scanning in recording. Secondarily, since not interference fringes but simple projection images of objects are recorded, a coherent light source is not necessary. Moreover, when a color CCD is used in recording, it is easily possible to record and reconstruct colorful objects. Finally, we demonstrate reconstruction of biological objects.

  7. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  8. Tunable fractional-order Fourier transformer

    International Nuclear Information System (INIS)

    Malyutin, A A

    2006-01-01

    A fractional two-dimensional Fourier transformer whose orders are tuned by means of optical quadrupoles is described. It is shown that in the optical scheme considered, the Fourier-transform order a element of [0,1] in one of the mutually orthogonal planes corresponds to the transform order (2-a) in another plane, i.e., to inversion and inverse Fourier transform of the order a. (laser modes and beams)

  9. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy

    Science.gov (United States)

    Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong

    2014-07-01

    Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.

  10. Two-dimensional analysis of trapped-ion eigenmodes

    International Nuclear Information System (INIS)

    Marchand, R.; Tang, W.M.; Rewoldt, G.

    1979-11-01

    A fully two-dimensional eigenmode analysis of the trapped-ion instability in axisymmetric toroidal geometry is presented. The calculations also takes into account the basic dynamics associated with other low frequency modes such as the trapped-electron instability and the ion-temperature-gradient instability. The poloidal structure of the mode is taken into account by Fourier expanding the perturbed electrostatic potential, PHI, in theta

  11. Fast multi-dimensional NMR by minimal sampling

    Science.gov (United States)

    Kupče, Ēriks; Freeman, Ray

    2008-03-01

    A new scheme is proposed for very fast acquisition of three-dimensional NMR spectra based on minimal sampling, instead of the customary step-wise exploration of all of evolution space. The method relies on prior experiments to determine accurate values for the evolving frequencies and intensities from the two-dimensional 'first planes' recorded by setting t1 = 0 or t2 = 0. With this prior knowledge, the entire three-dimensional spectrum can be reconstructed by an additional measurement of the response at a single location (t1∗,t2∗) where t1∗ and t2∗ are fixed values of the evolution times. A key feature is the ability to resolve problems of overlap in the acquisition dimension. Applied to a small protein, agitoxin, the three-dimensional HNCO spectrum is obtained 35 times faster than systematic Cartesian sampling of the evolution domain. The extension to multi-dimensional spectroscopy is outlined.

  12. Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-01-01

    We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)

  13. Direct application of the fast Fourier transform to open resonator calculations

    International Nuclear Information System (INIS)

    Johnson, M.M.

    1974-01-01

    It is shown that the integral equations for resonators can be written in the form of convolution integrals. A graph is given of the ratio of the time required to compute resonator eigenmodes using the fast Fourier transform (FFT) to the time required to evaluate the resonator convolution equation directly as a function of the number of mirror grid points. Computational savings made by using the FFT are discussed

  14. Application of the one-dimensional Fourier transform for tracking moving objects in noisy environments

    Science.gov (United States)

    Rajala, S. A.; Riddle, A. N.; Snyder, W. E.

    1983-01-01

    In Riddle and Rajala (1981), an algorithm was presented which operates on an image sequence to identify all sets of pixels having the same velocity. The algorithm operates by performing a transformation in which all pixels with the same two-dimensional velocity map to a peak in a transform space. The transform can be decomposed into applications of the one-dimensional Fourier transform and therefore can gain from the computational advantages of the FFT. The aim of this paper is the concern with the fundamental limitations of that algorithm, particularly as relates to its sensitivity to image-disturbing parameters as noise, jitter, and clutter. A modification to the algorithm is then proposed which increases its robustness in the presence of these disturbances.

  15. Analysis of tokamak plasma confinement modes using the fast Fourier transformation

    International Nuclear Information System (INIS)

    Mirmoeini, S.R.; Salar Elahi, A.; Ghoranneviss, M.

    2016-01-01

    The Fourier analysis is a satisfactory technique for detecting plasma confinement modes in tokamaks. The confinement mode of tokamak plasma was analysed using the fast Fourier transformation (FFT). For this purpose, we used the data of Mirnov coils that is one of the identifying tools in the IR-T1 tokamak, with and without external field (electric biasing), and then compared it with each other. After the Fourier analysis of Mirnov coil data, the diagram of power spectrum density was depicted in different angles of Mirnov coils in the 'presence of external field' as well as in the 'absence of external field'. The power spectrum density (PSD) interprets the manner of power distribution of a signal with frequency. In this article, the number of plasma modes and the safety factor q were obtained by using the mode number of q = m/n (m is the mode number). The maximum MHD activity was obtained in 30-35 kHz frequency, using the density of the energy spectrum. In addition, the number of different modes across 0-35 ms time was compared with each other in the presence and absence of the external field. (author)

  16. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  17. Novel Polynomial Basis with Fast Fourier Transform and Its Application to Reed-Solomon Erasure Codes

    KAUST Repository

    Lin, Sian-Jheng

    2016-09-13

    In this paper, we present a fast Fourier transform (FFT) algorithm over extension binary fields, where the polynomial is represented in a non-standard basis. The proposed Fourier-like transform requires O(h lg(h)) field operations, where h is the number of evaluation points. Based on the proposed Fourier-like algorithm, we then develop the encoding/ decoding algorithms for (n = 2m; k) Reed-Solomon erasure codes. The proposed encoding/erasure decoding algorithm requires O(n lg(n)), in both additive and multiplicative complexities. As the complexity leading factor is small, the proposed algorithms are advantageous in practical applications. Finally, the approaches to convert the basis between the monomial basis and the new basis are proposed.

  18. Three-dimensional weight-accumulation algorithm for generating multiple excitation spots in fast optical stimulation

    Science.gov (United States)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2017-11-01

    We report here an algorithm for calculating a hologram to be employed in a high-access speed microscope for observing sensory-driven synaptic activity across all inputs to single living neurons in an intact cerebral cortex. The system is based on holographic multi-beam generation using a two-dimensional phase-only spatial light modulator to excite multiple locations in three dimensions with a single hologram. The hologram was calculated with a three-dimensional weighted iterative Fourier transform method using the Ewald sphere restriction to increase the calculation speed. Our algorithm achieved good uniformity of three dimensionally generated excitation spots; the standard deviation of the spot intensities was reduced by a factor of two compared with a conventional algorithm.

  19. Approximating the Analytic Fourier Transform with the Discrete Fourier Transform

    OpenAIRE

    Axelrod, Jeremy

    2015-01-01

    The Fourier transform is approximated over a finite domain using a Riemann sum. This Riemann sum is then expressed in terms of the discrete Fourier transform, which allows the sum to be computed with a fast Fourier transform algorithm more rapidly than via a direct matrix multiplication. Advantages and limitations of using this method to approximate the Fourier transform are discussed, and prototypical MATLAB codes implementing the method are presented.

  20. 26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing

    Science.gov (United States)

    Hillerkuss, D.; Schmogrow, R.; Schellinger, T.; Jordan, M.; Winter, M.; Huber, G.; Vallaitis, T.; Bonk, R.; Kleinow, P.; Frey, F.; Roeger, M.; Koenig, S.; Ludwig, A.; Marculescu, A.; Li, J.; Hoh, M.; Dreschmann, M.; Meyer, J.; Ben Ezra, S.; Narkiss, N.; Nebendahl, B.; Parmigiani, F.; Petropoulos, P.; Resan, B.; Oehler, A.; Weingarten, K.; Ellermeyer, T.; Lutz, J.; Moeller, M.; Huebner, M.; Becker, J.; Koos, C.; Freude, W.; Leuthold, J.

    2011-06-01

    Optical transmission systems with terabit per second (Tbit s-1) single-channel line rates no longer seem to be too far-fetched. New services such as cloud computing, three-dimensional high-definition television and virtual-reality applications require unprecedented optical channel bandwidths. These high-capacity optical channels, however, are fed from lower-bitrate signals. The question then is whether the lower-bitrate tributary information can viably, energy-efficiently and effortlessly be encoded to and extracted from terabit per second data streams. We demonstrate an optical fast Fourier transform scheme that provides the necessary computing power to encode lower-bitrate tributaries into 10.8 and 26.0 Tbit s-1 line-rate orthogonal frequency-division multiplexing (OFDM) data streams and to decode them from fibre-transmitted OFDM data streams. Experiments show the feasibility and ease of handling terabit per second data with low energy consumption. To the best of our knowledge, this is the largest line rate ever encoded onto a single light source.

  1. Fast algorithm of adaptive Fourier series

    Science.gov (United States)

    Gao, You; Ku, Min; Qian, Tao

    2018-05-01

    Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was originated for the goal of positive frequency representations of signals. It achieved the goal and at the same time offered fast decompositions of signals. There then arose several types of AFDs. AFD merged with the greedy algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy algorithm (Pre-OGA) that was proven to be the most efficient greedy algorithm. The cost of the advantages of the AFD type decompositions is, however, the high computational complexity due to the involvement of maximal selections of the dictionary parameters. The present paper offers one formulation of the 1-D AFD algorithm by building the FFT algorithm into it. Accordingly, the algorithm complexity is reduced, from the original $\\mathcal{O}(M N^2)$ to $\\mathcal{O}(M N\\log_2 N)$, where $N$ denotes the number of the discretization points on the unit circle and $M$ denotes the number of points in $[0,1)$. This greatly enhances the applicability of AFD. Experiments are carried out to show the high efficiency of the proposed algorithm.

  2. The deconvolution of Doppler-broadened positron annihilation measurements using fast Fourier transforms and power spectral analysis

    International Nuclear Information System (INIS)

    Schaffer, J.P.; Shaughnessy, E.J.; Jones, P.L.

    1984-01-01

    A deconvolution procedure which corrects Doppler-broadened positron annihilation spectra for instrument resolution is described. The method employs fast Fourier transforms, is model independent, and does not require iteration. The mathematical difficulties associated with the incorrectly posed first order Fredholm integral equation are overcome by using power spectral analysis to select a limited number of low frequency Fourier coefficients. The FFT/power spectrum method is then demonstrated for an irradiated high purity single crystal sapphire sample. (orig.)

  3. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging

    Directory of Open Access Journals (Sweden)

    Zhao Yi-chao

    2015-10-01

    Full Text Available The linear array Synthetic Aperture Radar (SAR system is a popular research tool, because it can realize three-dimensional imaging. However, owning to limitations of the aircraft platform and actual conditions, resolution improvement is difficult in cross-track and along-track directions. In this study, a twodimensional fast Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT algorithm for linear array SAR imaging is proposed to overcome these limitations. This approach combines the Gerschgorin disks method and the ESPRIT algorithm to estimate the positions of scatterers in cross and along-rack directions. Moreover, the reflectivity of scatterers is obtained by a modified pairing method based on “region growing”, replacing the least-squares method. The simulation results demonstrate the applicability of the algorithm with high resolution, quick calculation, and good real-time response.

  4. One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach

    KAUST Repository

    Nurbekyan, Levon

    2017-01-01

    Here, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.

  5. One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach

    KAUST Repository

    Nurbekyan, Levon

    2017-03-11

    Here, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.

  6. Using FDFD Technique in Two-Dimensional TE Analysis for Modeling Clutter in Wall Penetrating Radar

    Directory of Open Access Journals (Sweden)

    David Insana

    2014-01-01

    Full Text Available Finite difference frequency domain (FDFD computational electromagnetic modeling is implemented to perform a two-dimensional TEz analysis for the application of wall penetrating radar (WPR. Resolving small targets of interest, embedded in a strong clutter environment of unknown configuration, is difficult. Field interaction between clutter elements will dominate the received fields back-scattered from the scene. Removing the effects of clutter ultimately relies on the accuracy of the model. Analysis starts with a simple model that continues to build based on the dominant scattering features of the scene. FDFD provides a steady state frequency response to a discrete excitation. Taking the fast Fourier transform of the wideband response of the scene, at several external transmit/receive locations, produces 2D images of the clutter, which are used to mature the model.

  7. Analysis of effects of laser profiles on fast electron generation by two-dimensional Particle-In-Cell simulations

    International Nuclear Information System (INIS)

    Hata, M.

    2010-01-01

    Complete text of publication follows. A cone-guided target is used in the Fast Ignition Realization Experiment project phase-I (FIREX-I) and optimization of its design is performed. However a laser profile is not optimized much, because the laser profile that is the best for core heating is not known well. To find that, it is useful to investigate characteristics of generated fast electrons in each condition of different laser profiles. In this research, effects of laser profiles on fast electron generation are investigated on somewhat simple conditions by two-dimensional Particle-In-Cell simulations. In these simulations, a target is made up of Au pre-plasma and Au plasma. The Au pre-plasma has the exponential profile in the x direction with the scale length L = 4.0 μm and the density from 0.10 n cr to 20 n cr . The Au plasma has the flat profile in the x direction with 10 μm width and 20 n cr . Plasma profiles are uniform in the y direction. The ionization degree and the mass number of plasmas are 40 and 197, where the ionization degree is determined by PINOCO simulations. PINOCO is a two-dimensional radiation hydrodynamics simulation code, which simulates formation of the high-density plasma during the compression phase in the fast ignition. A laser is assumed to propagate as plane wave from the negative x direction to the positive x direction. Laser profiles are supposed to be uniform in the y direction. Three different laser profiles, namely flat one with t flat = 100 fs, Gaussian one with t rise/fall = 47.0 fs and flat + Gaussian one with t rise/fall = 23.5 fs and t flat = 50 fs are used. The energy and the peak intensity are constant with E = 10 7 J/cm 2 and I L = 10 20 W/cm 2 in all cases of different laser profiles. We compare results in each condition of three different laser profiles and investigate effects of laser profiles on fast electron generation. Time-integrated energy spectra are similar in all cases of three different laser profiles. In the

  8. A unified Fourier theory for time-of-flight PET data.

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-21

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are

  9. Fast Transient And Spatially Non-Homogenous Accident Analysis Of Two-Dimensional Cylindrical Nuclear Reactor

    International Nuclear Information System (INIS)

    Yulianti, Yanti; Su'ud, Zaki; Waris, Abdul; Khotimah, S. N.; Shafii, M. Ali

    2010-01-01

    The research about fast transient and spatially non-homogenous nuclear reactor accident analysis of two-dimensional nuclear reactor has been done. This research is about prediction of reactor behavior is during accident. In the present study, space-time diffusion equation is solved by using direct methods which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference discretization method is solved by using iterative methods ADI (Alternating Direct Implicit). The indication of accident is decreasing macroscopic absorption cross-section that results large external reactivity. The power reactor has a peak value before reactor has new balance condition. Changing of temperature reactor produce a negative Doppler feedback reactivity. The reactivity will reduce excess positive reactivity. Temperature reactor during accident is still in below fuel melting point which is in secure condition.

  10. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    Science.gov (United States)

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  11. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    International Nuclear Information System (INIS)

    Patino, A; Durand, P-E; Fogret, E; Pellat-Finet, P

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  12. A unified Fourier theory for time-of-flight PET data

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier–John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John’s equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations

  13. The gridding method for image reconstruction by Fourier transformation

    International Nuclear Information System (INIS)

    Schomberg, H.; Timmer, J.

    1995-01-01

    This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform f. The method involves a window function w and proceeds in three steps. First, the convolution g = w * f is computed numerically on a Cartesian grid, using the available samples of f. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating w * f is much less error prone than merely interpolating f. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform

  14. Local structure information by EXAFS analysis using two algorithms for Fourier transform calculation

    International Nuclear Information System (INIS)

    Aldea, N; Pintea, S; Rednic, V; Matei, F; Hu Tiandou; Xie Yaning

    2009-01-01

    The present work is a comparison study between different algorithms of Fourier transform for obtaining very accurate local structure results using Extended X-ray Absorption Fine Structure technique. In this paper we focus on the local structural characteristics of supported nickel catalysts and Fe 3 O 4 core-shell nanocomposites. The radial distribution function could be efficiently calculated by the fast Fourier transform when the coordination shells are well separated while the Filon quadrature gave remarkable results for close-shell coordination.

  15. Two dimensional code for modeling of high ione cyclotron harmonic fast wave heating and current drive

    International Nuclear Information System (INIS)

    Grekov, D.; Kasilov, S.; Kernbichler, W.

    2016-01-01

    A two dimensional numerical code for computation of the electromagnetic field of a fast magnetosonic wave in a tokamak at high harmonics of the ion cyclotron frequency has been developed. The code computes the finite difference solution of Maxwell equations for separate toroidal harmonics making use of the toroidal symmetry of tokamak plasmas. The proper boundary conditions are prescribed at the realistic tokamak vessel. The currents in the RF antenna are specified externally and then used in Ampere law. The main poloidal tokamak magnetic field and the ''kinetic'' part of the dielectric permeability tensor are treated iteratively. The code has been verified against known analytical solutions and first calculations of current drive in the spherical torus are presented.

  16. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  17. Discrete Fourier transform in nanostructures using scattering

    International Nuclear Information System (INIS)

    Leuenberger, Michael N.; Flatte, Michael E.; Loss, Daniel; Awschalom, D.D.

    2004-01-01

    In this article, we show that the discrete Fourier transform (DFT) can be performed by scattering a coherent particle or laser beam off an electrically controllable two-dimensional (2D) potential that has the shape of rings or peaks. After encoding the initial vector into the two-dimensional potential by means of electric gates, the Fourier-transformed vector can be read out by detectors surrounding the potential. The wavelength of the laser beam determines the necessary accuracy of the 2D potential, which makes our method very fault-tolerant. Since the time to perform the DFT is much smaller than the clock cycle of today's computers, our proposed device performs DFTs at the frequency of the computer clock speed

  18. Fourier method for three-dimensional partial differential equations in periodic geometry. Application: HELIAC

    International Nuclear Information System (INIS)

    Shestakov, A.I.; Mirin, A.A.

    1984-01-01

    A numerical method based on Fourier expansions and finite differences is presented. The method is demonstrated by solving a scalar, three-dimensional elliptic equation arising in MFE research, but has applicability to a wider class of problems. The scheme solves equations whose solutions are expected to be periodic in one or more of the independent variables

  19. Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)

    2016-05-03

    This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.

  20. Fourier spectral simulations for wake fields in conducting cavities

    International Nuclear Information System (INIS)

    Min, M.; Chin, Y.-H.; Fischer, P.F.; Chae, Y.-Chul; Kim, K.-J.

    2007-01-01

    We investigate Fourier spectral time-domain simulations applied to wake field calculations in two-dimensional cylindrical structures. The scheme involves second-order explicit leap-frogging in time and Fourier spectral approximation in space, which is obtained from simply replacing the spatial differentiation operator of the YEE scheme by the Fourier differentiation operator on nonstaggered grids. This is a first step toward investigating high-order computational techniques with the Fourier spectral method, which is relatively simple to implement.

  1. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  2. Fast Computation Methods Research for Two Dimensional MUSIC Spectrum Based on Circular Array%圆阵二维 MUSIC 谱快速计算方法研究

    Institute of Scientific and Technical Information of China (English)

    杜政东; 魏平; 赵菲; 尹文禄

    2015-01-01

    针对二维波达方向估计时 MUSIC 谱的快速计算问题,研究了均匀圆阵变换到虚拟线阵的 MUSIC 算法(UCA-ULA-MUSIC)、流形分离 MUSIC 算法(MS-MUSIC)、傅立叶域线性求根 MUSIC 算法(FD-Line-Search-MU-SIC)、基于 FFT 的2n 元均匀圆阵 MUSIC 算法(2n-UCA-FFT-MUSIC)与基于 FFT 的任意圆阵 MUSIC 算法(ACA-FFT-MUSIC)。对各种算法快速计算二维 MUSIC 谱的实现步骤进行了总结。在此基础上,给出了各算法计算二维MUSIC 谱的计算复杂度表达式,并以传统方法为参考,对比了各种快速算法相对于传统方法的计算复杂度比值;同时,针对不同的阵列形式,对适用的快速算法的测向性能进行了仿真对比。根据分析和对比的结果,指出 MS-MUSIC 算法与 ACA-FFT-MUSIC 算法具有更高的工程应用价值,由具体的情况单独或分频段联合使用 MS-MUSIC算法与 ACA-FFT-MUSIC 算法,可以使测向系统较好的兼顾测向性能与时效性。%According to the fast computation problem of MUSIC spectrum in two dimensional direction of arrival estimation, the fast algorithms by manifold transformation or spectrum function transformation are studied.The implementation steps of computation method for two dimensional MUSIC spectrum by these algorithms are summarized.Furthermore,expressions for computational complexity of discussed algorithms in computing two dimensional MUSIC spectrum are presented.With refer-ence to the conventional method,the ratio of computational complexity of discussed algorithms is compared.Meanwhile,for different circular arrays,the direction finding performance of applicable algorithms is compared by simulation.It is proved that the MUSIC algorithm based on Manifold Separation (MS-MUSIC)and Fast Fourier Transformation (FFT)which suits to arbitrary circular array (ACA-FFT-MUSIC)have higher engineering value according to the results of analysis and com-parison.The performance and

  3. Iterative Two- and One-Dimensional Methods for Three-Dimensional Neutron Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Deokjung; Downar, Thomas J.

    2005-01-01

    Two methods are proposed for solving the three-dimensional neutron diffusion equation by iterating between solutions of the two-dimensional (2-D) radial and one-dimensional (1-D) axial solutions. In the first method, the 2-D/1-D equations are coupled using a current correction factor (CCF) with the average fluxes of the lower and upper planes and the axial net currents at the plane interfaces. In the second method, an analytic expression for the axial net currents at the interface of the planes is used for planar coupling. A comparison of the new methods is made with two previously proposed methods, which use interface net currents and partial currents for planar coupling. A Fourier convergence analysis of the four methods was performed, and results indicate that the two new methods have at least three advantages over the previous methods. First, the new methods are unconditionally stable, whereas the net current method diverges for small axial mesh size. Second, the new methods provide better convergence performance than the other methods in the range of practical mesh sizes. Third, the spectral radii of the new methods asymptotically approach zero as the mesh size increases, while the spectral radius of the partial current method approaches a nonzero value as the mesh size increases. Of the two new methods proposed here, the analytic method provides a smaller spectral radius than the CCF method, but the CCF method has several advantages over the analytic method in practical applications

  4. A symplectic Poisson solver based on Fast Fourier Transformation. The first trial

    International Nuclear Information System (INIS)

    Vorobiev, L.G.; Hirata, Kohji.

    1995-11-01

    A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)

  5. Normal-Gamma-Bernoulli Peak Detection for Analysis of Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry Data.

    Science.gov (United States)

    Kim, Seongho; Jang, Hyejeong; Koo, Imhoi; Lee, Joohyoung; Zhang, Xiang

    2017-01-01

    Compared to other analytical platforms, comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) has much increased separation power for analysis of complex samples and thus is increasingly used in metabolomics for biomarker discovery. However, accurate peak detection remains a bottleneck for wide applications of GC×GC-MS. Therefore, the normal-exponential-Bernoulli (NEB) model is generalized by gamma distribution and a new peak detection algorithm using the normal-gamma-Bernoulli (NGB) model is developed. Unlike the NEB model, the NGB model has no closed-form analytical solution, hampering its practical use in peak detection. To circumvent this difficulty, three numerical approaches, which are fast Fourier transform (FFT), the first-order and the second-order delta methods (D1 and D2), are introduced. The applications to simulated data and two real GC×GC-MS data sets show that the NGB-D1 method performs the best in terms of both computational expense and peak detection performance.

  6. Design of a rotational three-dimensional nonimaging device by a compensated two-dimensional design process.

    Science.gov (United States)

    Yang, Yi; Qian, Ke-Yuan; Luo, Yi

    2006-07-20

    A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.

  7. Fourier-based approach to interpolation in single-slice helical computed tomography

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2001-01-01

    It has recently been shown that longitudinal aliasing can be a significant and detrimental presence in reconstructed single-slice helical computed tomography (CT) volumes. This aliasing arises because the directly measured data in helical CT are generally undersampled by a factor of at least 2 in the longitudinal direction and because the exploitation of the redundancy of fanbeam data acquired over 360 degree sign to generate additional longitudinal samples does not automatically eliminate the aliasing. In this paper we demonstrate that for pitches near 1 or lower, the redundant fanbeam data, when used properly, can provide sufficient information to satisfy a generalized sampling theorem and thus to eliminate aliasing. We develop and evaluate a Fourier-based algorithm, called 180FT, that accomplishes this. As background we present a second Fourier-based approach, called 360FT, that makes use only of the directly measured data. Both Fourier-based approaches exploit the fast Fourier transform and the Fourier shift theorem to generate from the helical projection data a set of fanbeam sinograms corresponding to equispaced transverse slices. Slice-by-slice reconstruction is then performed by use of two-dimensional fanbeam algorithms. The proposed approaches are compared to their counterparts based on the use of linear interpolation - the 360LI and 180LI approaches. The aliasing suppression property of the 180FT approach is a clear advantage of the approach and represents a step toward the desirable goal of achieving uniform longitudinal resolution properties in reconstructed helical CT volumes

  8. The fractional Fourier transform and applications

    Science.gov (United States)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  9. Anomalous phase behavior and apparent anharmonicity of the pump-probe signal in a two-dimensional harmonic potential system

    International Nuclear Information System (INIS)

    Taneichi, T.; Kobayashi, T.

    2007-01-01

    Discussion on wavelength dependent 'anharmonic' effects in a pump-probe signal for a system of wavepacket on one- and two-dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wavepacket motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spectrum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior in phase of a pump-probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump-probe signal

  10. Accelerating two-dimensional nuclear magnetic resonance correlation spectroscopy via selective coherence transfer

    Science.gov (United States)

    Ye, Qimiao; Chen, Lin; Qiu, Wenqi; Lin, Liangjie; Sun, Huijun; Cai, Shuhui; Wei, Zhiliang; Chen, Zhong

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool for both qualitative and quantitative analyses of various systems in chemistry, biology, and medicine. However, applications of one-dimensional 1H NMR are often restrained by the presence of severe overlap among different resonances. The advent of two-dimensional (2D) 1H NMR constitutes a promising alternative by extending the crowded resonances into a plane and thereby alleviating the spectral congestions. However, the enhanced ability in discriminating resonances is achieved at the cost of extended experimental duration due to necessity of various scans with progressive delays to construct the indirect dimension. Therefore, in this study, we propose a selective coherence transfer (SECOT) method to accelerate acquisitions of 2D correlation spectroscopy by converting chemical shifts into spatial positions within the effective sample length and then performing an echo planar spectroscopic imaging module to record the spatial and spectral information, which generates 2D correlation spectrum after 2D Fourier transformation. The feasibility and effectiveness of SECOT have been verified by a set of experiments under both homogeneous and inhomogeneous magnetic fields. Moreover, evaluations of SECOT for quantitative analyses are carried out on samples with a series of different concentrations. Based on these experimental results, the SECOT may open important perspectives for fast, accurate, and stable investigations of various chemical systems both qualitatively and quantitatively.

  11. Application of Fourier analysis to multispectral/spatial recognition

    Science.gov (United States)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  12. Scattering from a Buried Circular Cylinder Illuminated by a Three-Dimensional Source

    DEFF Research Database (Denmark)

    Hansen, T.B.; Meincke, Peter

    2002-01-01

    We employ plane and cylindrical wave expansions with the fast Fourier transform to solve scattering problems involving a circular cylinder buried in soil. The illumination is provided by a three-dimensional source located in air above ground. Plane wave expansions describe transmitted and reflect...... commonly used transmitter-receiver configuration for ground-penetrating radar (GPR). Numerical simulations involving time domain fields and fixed-offset configurations determine the radar responses of various types of pipes and conductive soils encountered in GPR.......We employ plane and cylindrical wave expansions with the fast Fourier transform to solve scattering problems involving a circular cylinder buried in soil. The illumination is provided by a three-dimensional source located in air above ground. Plane wave expansions describe transmitted and reflected...

  13. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    Science.gov (United States)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A time-dependent semiclassical wavepacket method using a fast Fourier transform (FFT) algorithm

    International Nuclear Information System (INIS)

    Gauss, J.; Heller, E.J.

    1991-01-01

    A new semiclassical propagator based on a local expansion of the potential up to second order around the moving center of the wavepackt is proposed. Formulas for the propagator are derived and the implementation using grid and fast Fourier transform (FFT) methods is discussed. The semiclassical propagator can be improved up to the exact quantum mechanical limit by including anharmonic corrections using a split operator approach. Preliminary applications to the CH 3 I photodissociation problem show the applicability and accuracy of the proposed method. (orig.)D

  15. Analysis of Maneuvering Targets with Complex Motions by Two-Dimensional Product Modified Lv's Distribution for Quadratic Frequency Modulation Signals.

    Science.gov (United States)

    Jing, Fulong; Jiao, Shuhong; Hou, Changbo; Si, Weijian; Wang, Yu

    2017-06-21

    For targets with complex motion, such as ships fluctuating with oceanic waves and high maneuvering airplanes, azimuth echo signals can be modeled as multicomponent quadratic frequency modulation (QFM) signals after migration compensation and phase adjustment. For the QFM signal model, the chirp rate (CR) and the quadratic chirp rate (QCR) are two important physical quantities, which need to be estimated. For multicomponent QFM signals, the cross terms create a challenge for detection, which needs to be addressed. In this paper, by employing a novel multi-scale parametric symmetric self-correlation function (PSSF) and modified scaled Fourier transform (mSFT), an effective parameter estimation algorithm is proposed-referred to as the Two-Dimensional product modified Lv's distribution (2D-PMLVD)-for QFM signals. The 2D-PMLVD is simple and can be easily implemented by using fast Fourier transform (FFT) and complex multiplication. These measures are analyzed in the paper, including the principle, the cross term, anti-noise performance, and computational complexity. Compared to the other three representative methods, the 2D-PMLVD can achieve better anti-noise performance. The 2D-PMLVD, which is free of searching and has no identifiability problems, is more suitable for multicomponent situations. Through several simulations and analyses, the effectiveness of the proposed estimation algorithm is verified.

  16. Geometric Representations for Discrete Fourier Transforms

    Science.gov (United States)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  17. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop

    Science.gov (United States)

    Wildeman, Sander

    2018-06-01

    A quantitative synthetic Schlieren imaging (SSI) method based on fast Fourier demodulation is presented. Instead of a random dot pattern (as usually employed in SSI), a 2D periodic pattern (such as a checkerboard) is used as a backdrop to the refractive object of interest. The range of validity and accuracy of this "Fast Checkerboard Demodulation" (FCD) method are assessed using both synthetic data and experimental recordings of patterns optically distorted by small waves on a water surface. It is found that the FCD method is at least as accurate as sophisticated, multi-stage, digital image correlation (DIC) or optical flow (OF) techniques used with random dot patterns, and it is significantly faster. Efficient, fully vectorized, implementations of both the FCD and DIC/OF schemes developed for this study are made available as open source Matlab scripts.

  18. A Fourier-series-based kernel-independent fast multipole method

    International Nuclear Information System (INIS)

    Zhang Bo; Huang Jingfang; Pitsianis, Nikos P.; Sun Xiaobai

    2011-01-01

    We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency.

  19. A discrete Fourier transform for virtual memory machines

    Science.gov (United States)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  20. The application of Fast Fourier transforms to the primitive equations of Boussinesq convection

    International Nuclear Information System (INIS)

    Parrott, A.K.

    1976-01-01

    We have described a numerical scheme which is second-order in both space and time. The use of Fast Fourier Transform techniques for the solution of pressure equation guarantees accurate incompressibility at all time and enabled us to consider using iteration for part of this scheme. The iterations converge satisfactorily for values of the timestep of the order of one-half to one-quarter of the space step. Numerical calculations are being undertaken to clarify the range of Reynolds numbers and timestep over which the iteration converges. (orig.) [de

  1. Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K., E-mail: rvv@ornl.gov; Belianinov, Alex; Baddorf, Arthur P.; Tselev, Alexander; Jesse, S. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gianfrancesco, Anthony G. [UT/ORNL Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States); Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); UT/ORNL Bredesen Center, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-02

    Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La{sub 5/8}Ca{sub 3/8}MnO{sub 3} (LCMO) films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis and Independent Component Analysis of the Sliding FFT dataset reveal the distinct changes in crystallography, step edges, and boundaries between the multiple sub-lattices. The implications for the LCMO system are discussed. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.

  2. A fast method for linear waves based on geometrical optics

    NARCIS (Netherlands)

    Stolk, C.C.

    2009-01-01

    We develop a fast method for solving the one-dimensional wave equation based on geometrical optics. From geometrical optics (e.g., Fourier integral operator theory or WKB approximation) it is known that high-frequency waves split into forward and backward propagating parts, each propagating with the

  3. At-wavelength metrology using the moiré fringe analysis method based on a two dimensional grating interferometer

    International Nuclear Information System (INIS)

    Wang, Hongchang; Berujon, Sebastien; Pape, Ian; Rutishauser, Simon; David, Christian; Sawhney, Kawal

    2013-01-01

    A two-dimensional (2D) grating interferometer was used to perform at-wavelength metrology. A Fast Fourier Transform (FFT) of the interferograms recovers the differential X-ray beam phase in two orthogonal directions simultaneously. As an example, the X-ray wavefronts downstream from a Fresnel Zone plate were measured using the moiré fringe analysis method, which requires only a single image. The rotating shearing interferometer technique for moiré fringe analysis was extended from one dimension to two dimensions to carry out absolute wavefront metrology. In addition, the 2D moiré fringes were extrapolated using Gerchberg's method to reduce the boundary artifacts. The advantages and limitations of the phase-stepping method and the moiré fringe analysis method are also discussed. -- Highlights: ► A rapid and sensitive strip test for CPPU (forchlorfenuron) detection is reported. ► Carbon nanoparticles were used for antibody labelling. ► A common flatbed scanner was employed to the quantitate strip spots. ► The new method was successfully applied to the analysis of the field samples

  4. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  5. DART: a robust algorithm for fast reconstruction of three-dimensional grain maps

    DEFF Research Database (Denmark)

    Batenburg, K.J.; Sijbers, J.; Poulsen, Henning Friis

    2010-01-01

    and moderate noise levels, DART is shown to generate essentially perfect two-dimensional grain maps for as few as three projections per grain with running times on a PC in the range of less than a second. This is seen as opening up the possibility for fast reconstructions in connection with in situ studies....

  6. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  7. Comparison of finite element and fast Fourier transform crystal plasticity solvers for texture prediction

    International Nuclear Information System (INIS)

    Liu, B; Raabe, D; Roters, F; Eisenlohr, P; Lebensohn, R A

    2010-01-01

    We compare two full-field formulations, i.e. a crystal plasticity fast Fourier transform-based (CPFFT) model and the crystal plasticity finite element model (CPFEM) in terms of the deformation textures predicted by both approaches. Plane-strain compression of a 1024-grain ensemble is simulated with CPFFT and CPFEM to assess the models in terms of their predictions of texture evolution for engineering applications. Different combinations of final textures and strain distributions are obtained with the CPFFT and CPFEM models for this 1024-grain polycrystal. To further understand these different predictions, the correlation between grain rotations and strain gradients is investigated through the simulation of plane-strain compression of bicrystals. Finally, a study of the influence of the initial crystal orientation and the crystallographic neighborhood on grain rotations and grain subdivisions is carried out by means of plane-strain compression simulations of a 64-grain cluster

  8. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    Science.gov (United States)

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  9. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    International Nuclear Information System (INIS)

    Su Xiaoxing; Wang Yuesheng

    2010-01-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  10. A postprocessing method based on chirp Z transform for FDTD calculation of point defect states in two-dimensional phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Su Xiaoxing, E-mail: xxsu@bjtu.edu.c [School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Yuesheng [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China)

    2010-09-01

    In this paper, a new postprocessing method for the finite difference time domain (FDTD) calculation of the point defect states in two-dimensional (2D) phononic crystals (PNCs) is developed based on the chirp Z transform (CZT), one of the frequency zooming techniques. The numerical results for the defect states in 2D solid/liquid PNCs with single or double point defects show that compared with the fast Fourier transform (FFT)-based postprocessing method, the method can improve the estimation accuracy of the eigenfrequencies of the point defect states significantly when the FDTD calculation is run with relatively few iterations; and furthermore it can yield the point defect bands without calculating all eigenfrequencies outside the band gaps. The efficiency and accuracy of the FDTD method can be improved significantly with this new postprocessing method.

  11. Two-dimensional CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible photodetectors boosted by charge transfer

    Science.gov (United States)

    Shen, Yalong; Yu, Dejian; Wang, Xiong; Huo, Chengxue; Wu, Ye; Zhu, Zhengfeng; Zeng, Haibo

    2018-02-01

    Inorganic halide perovskites exhibited promising potentials for high-performance wide-band photodetectors (PDs) due to their high light absorption coefficients, long carrier diffusion length and wide light absorption ranges. Here, we report two-dimensional (2D) CsPbBr3/PCBM heterojunctions for sensitive, fast and flexible PDs, whose performances can be greatly boosted by the charge transfer through the energy-aligned interface. The 2D CsPbBr3 nanosheets with high crystallinity were fabricated via a simple solution-process at room temperature, and then assembled into flexible heterojunctions films with polymerphenyl-C61-butyric acid methyl ester (PCBM). Significantly, the efficient and fast charge transfer at the heterojunctions interface was evidenced by the obvious photoluminescence quenching and variation of recombination dynamics. Subsequently, such heterojunctions PD exhibited an enhanced responsivity of 10.85 A W-1 and an ultrahigh detectivity of 3.06 × 1013 Jones. In addition, the PD shows a broad linear dynamic range of 73 dB, a fast response speed with rise time of 44 μs and decay time of 390 μs, respectively. Moreover, the PD lying on polyethylene terephthalate substrates exhibited an outstanding mechanical flexibility and a robust electrical stability. These results could provide a new avenue for integration of 2D perovskites and organic functional materials and for high-performance flexible PDs.

  12. Optimized two-dimensional Sn transport (BISTRO)

    International Nuclear Information System (INIS)

    Palmiotti, G.; Salvatores, M.; Gho, C.

    1990-01-01

    This paper reports on an S n two-dimensional transport module developed for the French fast reactor code system CCRR to optimize algorithms in order to obtain the best performance in terms of computational time. A form of diffusion synthetic acceleration was adopted, and a special effort was made to solve the associated diffusion equation efficiently. The improvements in the algorithms, along with the use of an efficient programming language, led to a significant gain in computational time with respect to the DOT code

  13. Data characteristic analysis of air conditioning load based on fast Fourier transform

    Science.gov (United States)

    Li, Min; Zhang, Yanchi; Xie, Da

    2018-04-01

    With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.

  14. Measurement of the presampled two-dimensional modulation transfer function of digital imaging systems

    International Nuclear Information System (INIS)

    Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Schueler, Beth A.; Ritenour, E. Russell

    2002-01-01

    The purpose of this work was to develop methods to measure the presampled two-dimensional modulation transfer function (2D MTF) of digital imaging systems. A custom x-ray 'point source' phantom was created by machining 256 holes with diameter 0.107 mm through a 0.5-mm-thick copper plate. The phantom was imaged several times, resulting in many images of individual x-ray 'spots'. The center of each spot (with respect to the pixel matrix) was determined to subpixel accuracy by fitting each spot to a 2D Gaussian function. The subpixel spot center locations were used to create a 5x oversampled system point spread function (PSF), which characterizes the optical and electrical properties of the system and is independent of the pixel sampling of the original image. The modulus of the Fourier transform of the PSF was calculated. Next, the Fourier function was normalized to the zero frequency value. Finally, the Fourier transform function was divided by the first-order Bessel function that defined the frequency content of the holes, resulting in the presampled 2D MTF. The presampled 2D MTF of a 0.1 mm pixel pitch computed radiography system and 0.2 mm pixel pitch flat panel digital imaging system that utilized a cesium iodide scintillator was measured. Comparison of the axial components of the 2D MTF to one-dimensional MTF measurements acquired using an edge device method demonstrated that the two methods produced consistent results

  15. Simulation of Logging-while-drilling Tool Response Using Integral Equation Fast Fourier Transform

    Directory of Open Access Journals (Sweden)

    Sun Xiang-Yang

    2017-01-01

    Full Text Available We rely on the volume integral equation (VIE method for the simulation of loggingwhile- drilling (LWG tool response using the integral equation fast Fourier transform (IE-FFT algorithm to accelerate the computation of the matrix-vector product in the iterative solver. Depending on the virtue of the Toeplitz structure of the interpolation of the Green’s function on the uniform Cartesian grids, this method uses FFT to calculate the matrix-vector multiplication. At the same time, this method reduce the memory requirement and CPU time. In this paper, IEFFT method is first used in the simulation of LWG. Numerical results are presented to demonstrate the accuracy and efficiency of this method. Compared with the Moment of Method (MOM and other fast algorithms, IE-FFT have distinct advantages in the fact of memory requirement and CPU time. In addition, this paper study the truncation, mesh elements, the size of the interpolation grids of IE-FFT and dip formation, and give some conclusion with wide applicability.

  16. Noise-induced drift in two-dimensional anisotropic systems

    Science.gov (United States)

    Farago, Oded

    2017-10-01

    We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.

  17. Double Fourier analysis for Emotion Identification in Voiced Speech

    International Nuclear Information System (INIS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P, D.; Quintero, O.L.

    2016-01-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented. (paper)

  18. Solution of the two dimensional diffusion and transport equations in a rectangular lattice with an elliptical fuel element using Fourier transform methods: One and two group cases

    International Nuclear Information System (INIS)

    Williams, M.M.R.; Hall, S.K.; Eaton, M.D.

    2014-01-01

    Highlights: • A rectangular reactor cell with an elliptical fuel element. • Solution of transport and diffusion equations by Fourier expansion. • Numerical examples showing convergence. • Two group cell problems. - Abstract: A method for solving the diffusion and transport equations in a rectangular lattice cell with an elliptical fuel element has been developed using a Fourier expansion of the neutron flux. The method is applied to a one group model with a source in the moderator. The cell flux is obtained and also the associated disadvantage factor. In addition to the one speed case, we also consider the two group equations in the cell which now become an eigenvalue problem for the lattice multiplication factor. The method of solution relies upon an efficient procedure to solve a large set of simultaneous linear equations and for this we use the IMSL library routines. Our method is compared with the results from a finite element code. The main drawback of the problem arises from the very large number of terms required in the Fourier series which taxes the storage and speed of the computer. Nevertheless, useful solutions are obtained in geometries that would normally require the use of finite element or analogous methods, for this reason the Fourier method is useful for comparison with that type of numerical approach. Extension of the method to more intricate fuel shapes, such as stars and cruciforms as well as superpositions of these, is possible

  19. A Fast Algorithm of Generalized Radon-Fourier Transform for Weak Maneuvering Target Detection

    Directory of Open Access Journals (Sweden)

    Weijie Xia

    2016-01-01

    Full Text Available The generalized Radon-Fourier transform (GRFT has been proposed to detect radar weak maneuvering targets by realizing coherent integration via jointly searching in motion parameter space. Two main drawbacks of GRFT are the heavy computational burden and the blind speed side lobes (BSSL which will cause serious false alarms. The BSSL learning-based particle swarm optimization (BPSO has been proposed before to reduce the computational burden of GRFT and solve the BSSL problem simultaneously. However, the BPSO suffers from an apparent loss in detection performance compared with GRFT. In this paper, a fast implementation algorithm of GRFT using the BSSL learning-based modified wind-driven optimization (BMWDO is proposed. In the BMWDO, the BSSL learning procedure is also used to deal with the BSSL phenomenon. Besides, the MWDO adjusts the coefficients in WDO with Levy distribution and uniform distribution, and it outperforms PSO in a noisy environment. Compared with BPSO, the proposed method can achieve better detection performance with a similar computational cost. Several numerical experiments are also provided to demonstrate the effectiveness of the proposed method.

  20. Fast Poisson Solvers for Self-Consistent Beam-Beam and Space-Charge Field Computation in Multiparticle Tracking Simulations

    CERN Document Server

    Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department

    2015-01-01

    We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.

  1. Using the fast fourier transform in binding free energy calculations.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation

    Science.gov (United States)

    Pagán Muñoz, Raúl; Hornikx, Maarten

    2017-11-01

    The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.

  3. Fourier rebinning algorithm for inverse geometry CT.

    Science.gov (United States)

    Mazin, Samuel R; Pele, Norbert J

    2008-11-01

    Inverse geometry computed tomography (IGCT) is a new type of volumetric CT geometry that employs a large array of x-ray sources opposite a smaller detector array. Volumetric coverage and high isotropic resolution produce very large data sets and therefore require a computationally efficient three-dimensional reconstruction algorithm. The purpose of this work was to adapt and evaluate a fast algorithm based on Defrise's Fourier rebinning (FORE), originally developed for positron emission tomography. The results were compared with the average of FDK reconstructions from each source row. The FORE algorithm is an order of magnitude faster than the FDK-type method for the case of 11 source rows. In the center of the field-of-view both algorithms exhibited the same resolution and noise performance. FORE exhibited some resolution loss (and less noise) in the periphery of the field-of-view. FORE appears to be a fast and reasonably accurate reconstruction method for IGCT.

  4. Filtros digitais por transformadas de Fourier aplicados em eletroquímica Digital filters based on Fourier transforms for application in electrochemistry

    Directory of Open Access Journals (Sweden)

    Ricardo Nantes Liang

    2013-01-01

    Full Text Available The electrochemical properties of micro and nano-electrodes are widely investigated due to their low faradaic and capacitive currents, leading to a new generation of smart and implantable devices. However, the current signals obtained in low-dimensional devices are strongly influenced by noise sources. In this paper, we show the evaluation of filters based on Fast Fourier Transform (FFT and their implementation in a graphical user interface (GUI in MATLAB®. As a case study, we evaluated an electrochemical reaction process of charge transfer via outer-sphere. Results showed successful removal of most of the noise in signals, thus proving a promising tool for low-scale measurement.

  5. Efficient processing of two-dimensional arrays with C or C++

    Science.gov (United States)

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  6. Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra

    Science.gov (United States)

    Mcleod, M. G.

    1983-01-01

    Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.

  7. Chimera patterns in two-dimensional networks of coupled neurons

    Science.gov (United States)

    Schmidt, Alexander; Kasimatis, Theodoros; Hizanidis, Johanne; Provata, Astero; Hövel, Philipp

    2017-03-01

    We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes, including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different initial conditions give rise to different dynamical states. Transitions occur between various patterns when the parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the coupling radius.

  8. Analysis of Maneuvering Targets with Complex Motions by Two-Dimensional Product Modified Lv’s Distribution for Quadratic Frequency Modulation Signals

    Directory of Open Access Journals (Sweden)

    Fulong Jing

    2017-06-01

    Full Text Available For targets with complex motion, such as ships fluctuating with oceanic waves and high maneuvering airplanes, azimuth echo signals can be modeled as multicomponent quadratic frequency modulation (QFM signals after migration compensation and phase adjustment. For the QFM signal model, the chirp rate (CR and the quadratic chirp rate (QCR are two important physical quantities, which need to be estimated. For multicomponent QFM signals, the cross terms create a challenge for detection, which needs to be addressed. In this paper, by employing a novel multi-scale parametric symmetric self-correlation function (PSSF and modified scaled Fourier transform (mSFT, an effective parameter estimation algorithm is proposed—referred to as the Two-Dimensional product modified Lv’s distribution (2D-PMLVD—for QFM signals. The 2D-PMLVD is simple and can be easily implemented by using fast Fourier transform (FFT and complex multiplication. These measures are analyzed in the paper, including the principle, the cross term, anti-noise performance, and computational complexity. Compared to the other three representative methods, the 2D-PMLVD can achieve better anti-noise performance. The 2D-PMLVD, which is free of searching and has no identifiability problems, is more suitable for multicomponent situations. Through several simulations and analyses, the effectiveness of the proposed estimation algorithm is verified.

  9. Application of finite Fourier transformation for the solution of the diffusion equation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1991-01-01

    The application of the finite Fourier transformation to the solution of the neutron diffusion equation in one dimension, two dimensional x-y and triangular geometries is discussed. It can be shown that the equation obtained by the Nodal Green's function method in Cartesian coordinates can be derived as a special case of the finite Fourier transformation method. (author)

  10. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    Science.gov (United States)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  11. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betin, A Yu; Bobrinev, V I; Verenikina, N M; Donchenko, S S; Odinokov, S B [Research Institute ' Radiotronics and Laser Engineering' , Bauman Moscow State Technical University, Moscow (Russian Federation); Evtikhiev, N N; Zlokazov, E Yu; Starikov, S N; Starikov, R S [National Reseach Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-31

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  12. NMR pulse experiments data aquisition and Fast Fourier Transform assembler program for Mera-400 minicomputer

    International Nuclear Information System (INIS)

    Stachurowa, M.; Jasinski, A.

    1981-01-01

    An assembler program of NMR pulse experiments data acquisition digital signal filtering and Fast Fourier Transform (FFT) for the Mera-400 minicomputer interfaced to the pulsed NMR spectrometer is described. A phase correction subroutine of the program allows the phase correction to be made after the experiment. The program is run under the SOM-3 operating system. The program occupies 2.25 k 16 bit words of the computer memory, 3 k words are reserved for data. FFT computation time is 2.5 sec. for 1 k data points. (Author)

  13. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  14. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  15. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  16. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  17. Quasi-static analysis of flexible pavements based on predicted frequencies using Fast Fourier Transform and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ali Reza Ghanizadeh

    2018-01-01

    Full Text Available New trend in design of flexible pavements is mechanistic-empirical approach. The first step for applying this method is analyzing the pavement structure for several times and computation of critical stresses and strains, which needs a fast analysis method with good accuracy. This paper aims to introduce a new rapid pavement analysis approach, which can consider the history of loading and rate effect. To this end, 1200 flexible pavement sections were analyzed, and equivalent frequencies (EF were calculated using Fast Fourier Transform (FFT method at various depths of asphalt layer. A nonlinear regression equation has been presented for determining EF at different depths of asphalt layer. For more accurate predicting of EF at low frequencies, a feed-forward Artificial Neural Network (ANN was employed, which allows accurate prediction of EF. The frequencies obtained by the proposed regression equation and ANN were compared with frequencies observed in Virginia Smart Road project, and it was found that there is a good agreement between observed and predicted frequencies. Comparison of quasi-static analysis of flexible pavements by frequencies obtained using FFT method and full dynamic analysis by 3D-Move program approves that the critical responses of pavement computed by proposed quasi-static analysis approach are comparable to critical responses computed using full dynamic analysis. Keywords: Equivalent frequency, Fast Fourier Transform (FFT, Pavement quasi-static analysis, Dynamic modulus, Artificial Neural Network (ANN

  18. ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES

    Directory of Open Access Journals (Sweden)

    Nikola Stefanović

    2007-06-01

    Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.

  19. Fourier series, Fourier transform and their applications to mathematical physics

    CERN Document Server

    Serov, Valery

    2017-01-01

    This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences.  Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing.  The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations.  The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory o...

  20. Non-dimensional scaling of impact fast ignition experiments

    International Nuclear Information System (INIS)

    Farley, D R; Shigemori, K; Murakami, M; Azechi, H

    2008-01-01

    Recent experiments at the Osaka University Institute for Laser Engineering (ILE) showed that 'Impact Fast Ignition' (IFI) could increase the neutron yield of inertial fusion targets by two orders of magnitude [1]. IFI utilizes the thermal and kinetic energy of a laser-accelerated disk to impact an imploded fusion target. ILE researchers estimate a disk velocity of 10 8 cm/sec is needed to ignite the fusion target [2]. To be able to study the IFI concept using lasers different from that at ILE, appropriate non-dimensionalization of the flow should be done. Analysis of the rocket equation gives parameters needed for producing similar IFI results with different lasers. This analysis shows that a variety of laboratory-scale commercial lasers could produce results useful to full-scale ILE experiments

  1. New Substrate-Guided Method of Predicting Slow Conducting Isthmuses of Ventricular Tachycardia: Preliminary Analysis to the Combined Use of Voltage Limit Adjustment and Fast-Fourier Transform Analysis.

    Science.gov (United States)

    Kuroki, Kenji; Nogami, Akihiko; Igarashi, Miyako; Masuda, Keita; Kowase, Shinya; Kurosaki, Kenji; Komatsu, Yuki; Naruse, Yoshihisa; Machino, Takeshi; Yamasaki, Hiro; Xu, Dongzhu; Murakoshi, Nobuyuki; Sekiguchi, Yukio; Aonuma, Kazutaka

    2018-04-01

    Several conducting channels of ventricular tachycardia (VT) can be identified using voltage limit adjustment (VLA) of substrate mapping. However, the sensitivity or specificity to predict a VT isthmus is not high by using VLA alone. This study aimed to evaluate the efficacy of the combined use of VLA and fast-Fourier transform analysis to predict VT isthmuses. VLA and fast-Fourier transform analyses of local ventricular bipolar electrograms during sinus rhythm were performed in 9 postinfarction patients who underwent catheter ablation for a total of 13 monomorphic VTs. Relatively higher voltage areas on an electroanatomical map were defined as high voltage channels (HVCs), and relatively higher fast-Fourier transform areas were defined as high-frequency channels (HFCs). HVCs were classified into full or partial HVCs (the entire or >30% of HVC can be detectable, respectively). Twelve full HVCs were identified in 7 of 9 patients. HFCs were located on 7 of 12 full HVCs. Five VT isthmuses (71%) were included in the 7 full HVC+/HFC+ sites, whereas no VT isthmus was found in the 5 full HVC+/HFC- sites. HFCs were identical to 9 of 16 partial HVCs. Eight VT isthmuses (89%) were included in the 9 partial HVC+/HFC+ sites, whereas no VT isthmus was found in the 7 partial HVC+/HFC- sites. All HVC+/HFC+ sites predicted VT isthmus with a sensitivity of 100% and a specificity of 80%. Combined use of VLA and fast-Fourier transform analysis may be a useful method to detect VT isthmuses. © 2018 American Heart Association, Inc.

  2. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    Science.gov (United States)

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  3. Two-dimensional NMR spectrometry

    International Nuclear Information System (INIS)

    Farrar, T.C.

    1987-01-01

    This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t 0 ; an evolution period, t 1 ; and a detection period, t 2

  4. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    International Nuclear Information System (INIS)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.

    2009-01-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  5. Fourier coefficientes computation in two variables, a distributional version

    OpenAIRE

    Carlos Manuel Ulate R.

    2015-01-01

    The present article, by considering the distributional summations of Euler-Maclaurin and a suitable choice of the distribution, results in repre- sentations for the Fourier coefficients in two variables are obtained. These representations may be used for the numerical evaluation of coefficients.

  6. Fourier descriptor classification of differential eddy current probe impedance plane trajectories

    International Nuclear Information System (INIS)

    Lord, W.; Satish, S.R.

    1984-01-01

    This chapter describes the use of a parametric model for representing the two-dimensional eddy current impedance plane trajectory. The main advantage of this approach is the ability to reconstruct the trajectory from the model coefficients. Fourier descriptors are used to facilitate defect classification. The Fourier descriptors are obtained by expanding the complex contour function in a Fourier series. Functions of Fourier coefficients which are invariant under transformation of the trajectory are derived and incorporated into a feature vector. Defect classification is obtained by using the K-Means algorithm to cluster the feature vectors. It is demonstrated that the Fourier descriptor approach represents a powerful tool which have several advantages over nonparametric approaches including its insensitivity to drift in the eddy current instrument as well as variations in the probe speed

  7. The use of Fourier eigen transform to the boundary element method for transient elastodynamic problems

    International Nuclear Information System (INIS)

    Ji, X.; Chen, Y.M.

    1989-01-01

    The boundary element method (BEM) is developed from the boundary integral equation method and the discretization techniques. Compared with other numerical method, BEM has been shown to be a versatile and efficient method for a wide variety of engineering problems, including the wave propagation in elastic media. The first formulation and solution of the transient elastodynamic problem by combining BEM and Laplace transform is due to Cruse. Further improvement was achieved by introducing Durbin's method instead of Papoulis method of numerical Laplace inverse transform. However, a great deal of computer time is still needed for the inverse transformation. The alternative integral transform approach is BEM combining with Fourier transform. The numerical Fourier inverse transformation is also computer time consuming, even if the fast Fourier transform is used. In the present paper, the authors use BEM combining with Fourier transform and Fourier eigen transform (FET). The new approach is very attractive in saving on computer time. This paper illustrates the application of FET to BEM of 2-dimensional transient elastodynamic problem. The example of a half plane subjected to a discontinuous boundary load is solved on ELXSI 6400 computer. The CPU time is less than one minute. If Laplace or Fourier transform is adopted, the CPU time will be more than 10 minutes

  8. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  9. A general purpose subroutine for fast fourier transform on a distributed memory parallel machine

    Science.gov (United States)

    Dubey, A.; Zubair, M.; Grosch, C. E.

    1992-01-01

    One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.

  10. Separation of complex fringe patterns using two-dimensional continuous wavelet transform.

    Science.gov (United States)

    Pokorski, Krzysztof; Patorski, Krzysztof

    2012-12-10

    A method for processing fringe patterns containing additively superimposed multiple fringe sets is presented. It enables to analyze different fringe families present in a single image separately. The proposed method is based on a two-dimensional continuous wavelet transform. A robust ridge extraction algorithm for a single fringe set extraction is presented. The method is fully automatic and requires no user interference. Spectral separation of fringe families is not required. Simulations are presented to verify performance and advantage of the proposed method over the Fourier transform based technique. Method validity has been confirmed using experimental images.

  11. Fourier coefficientes computation in two variables, a distributional version

    Directory of Open Access Journals (Sweden)

    Carlos Manuel Ulate R.

    2015-01-01

    Full Text Available The present article, by considering the distributional summations of Euler-Maclaurin and a suitable choice of the distribution, results in repre- sentations for the Fourier coefficients in two variables are obtained. These representations may be used for the numerical evaluation of coefficients.

  12. Image registration under translation and rotation in two-dimensional planes using Fourier slice theorem.

    Science.gov (United States)

    Pohit, M; Sharma, J

    2015-05-10

    Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.

  13. Comprehensive two-dimensional gas chromatography for fast characterization of oil contamination

    International Nuclear Information System (INIS)

    Van De Weghe, H.; Vanermen, G.; Gemoets, J.; Lookman, R.; Bertels, D.

    2005-01-01

    Most analytical methods for the characterization of oil contamination rely on gas chromatography. Capillary GC offers a high separation power (peak capacity typically 100 - 500), and by using a boiling point column a volatility based distribution is obtained. However, petrochemical mixtures like mineral oil easily contain more then 5000 compounds, and capillary GC does not succeed in separating such mixtures up to the level of individual components. Analytical results are therefore limited to a classification into boiling point (or equivalent-carbon) fractions. Recent methods refined the classification by fractionation in aromatic and aliphatic hydrocarbons prior to GC-analysis (TPH method, Weisman 1998), and by incorporating water solubility (TTE and OK method, for a detailed description we refer to the Consoil 2005 lecture by R. Lookman 'Oil characterization: assessment of composition, degradation and remediation potential of total petroleum hydrocarbons in soil'). However, besides analytical difficulties and time consuming protocols related with these methods, the resulting classification still remains coarse and the various groups are not univocally chemically identified. Recently, comprehensive two-dimensional GC (GCXGC) was introduced. This technique combines two GC-columns with different separation mechanisms. The two columns are connected by a modulator, a device that traps, focuses and re-injects the peaks that elute from the first column into the second column. Each peak from the first column (representing a number of overlapping peaks) is further separated on the second column. The very high separation power of GCXGC (peak capacity 2000 - 10000) is ideal for the analysis of complex mixtures like mineral oil. Another important feature is the generation of structured chromatograms. Isomers appear as distinct groups in the chromatogram as a result of their similar interaction with the 2D-column phase. For chemical identification comprehensive GC can be

  14. Comprehensive two-dimensional gas chromatography for fast characterization of oil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Van De Weghe, H.; Vanermen, G.; Gemoets, J.; Lookman, R.; Bertels, D. [VITO, Mol (Belgium)

    2005-07-01

    Most analytical methods for the characterization of oil contamination rely on gas chromatography. Capillary GC offers a high separation power (peak capacity typically 100 - 500), and by using a boiling point column a volatility based distribution is obtained. However, petrochemical mixtures like mineral oil easily contain more then 5000 compounds, and capillary GC does not succeed in separating such mixtures up to the level of individual components. Analytical results are therefore limited to a classification into boiling point (or equivalent-carbon) fractions. Recent methods refined the classification by fractionation in aromatic and aliphatic hydrocarbons prior to GC-analysis (TPH method, Weisman 1998), and by incorporating water solubility (TTE and OK method, for a detailed description we refer to the Consoil 2005 lecture by R. Lookman 'Oil characterization: assessment of composition, degradation and remediation potential of total petroleum hydrocarbons in soil'). However, besides analytical difficulties and time consuming protocols related with these methods, the resulting classification still remains coarse and the various groups are not univocally chemically identified. Recently, comprehensive two-dimensional GC (GCXGC) was introduced. This technique combines two GC-columns with different separation mechanisms. The two columns are connected by a modulator, a device that traps, focuses and re-injects the peaks that elute from the first column into the second column. Each peak from the first column (representing a number of overlapping peaks) is further separated on the second column. The very high separation power of GCXGC (peak capacity 2000 - 10000) is ideal for the analysis of complex mixtures like mineral oil. Another important feature is the generation of structured chromatograms. Isomers appear as distinct groups in the chromatogram as a result of their similar interaction with the 2D-column phase. For chemical identification comprehensive GC

  15. Solution of multi-group diffusion equation in x-y-z geometry by finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1975-01-01

    The multi-group diffusion equation in three-dimensional x-y-z geometry is solved by finite Fourier transformation. Applying the Fourier transformation to a finite region with constant nuclear cross sections, the fluxes and currents at the material boundaries are obtained in terms of the Fourier series. Truncating the series after the first term, and assuming that the source term is piecewise linear within each mesh box, a set of coupled equations is obtained in the form of three-point equations for each coordinate. These equations can be easily solved by the alternative direction implicit method. Thus a practical procedure is established that could be applied to replace the currently used difference equation. This equation is used to solve the multi-group diffusion equation by means of the source iteration method; and sample calculations for thermal and fast reactors show that the present method yields accurate results with a smaller number of mesh points than the usual finite difference equations. (auth.)

  16. Magnetohydrodynamic waves in two-dimensional prominences embedded in coronal arcades

    International Nuclear Information System (INIS)

    Terradas, J.; Soler, R.; Díaz, A. J.; Oliver, R.; Ballester, J. L.

    2013-01-01

    Solar prominence models used so far in the analysis of MHD waves in two-dimensional structures are quite elementary. In this work, we calculate numerically magnetohydrostatic models in two-dimensional configurations under the presence of gravity. Our interest is in models that connect the magnetic field to the photosphere and include an overlying arcade. The method used here is based on a relaxation process and requires solving the time-dependent nonlinear ideal MHD equations. Once a prominence model is obtained, we investigate the properties of MHD waves superimposed on the structure. We concentrate on motions purely two-dimensional, neglecting propagation in the ignorable direction. We demonstrate how, by using different numerical tools, we can determine the period of oscillation of stable waves. We find that vertical oscillations, linked to fast MHD waves, are always stable and have periods in the 4-10 minute range. Longitudinal oscillations, related to slow magnetoacoustic-gravity waves, have longer periods in the range of 28-40 minutes. These longitudinal oscillations are strongly influenced by the gravity force and become unstable for short magnetic arcades.

  17. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  18. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  19. The Fourier U(2 Group and Separation of Discrete Variables

    Directory of Open Access Journals (Sweden)

    Kurt Bernardo Wolf

    2011-06-01

    Full Text Available The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R, whose maximal compact subgroup is the Fourier group U(2_F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra so(4. Two distinct subalgebra chains are used to model arrays of N^2 points placed along Cartesian or polar (radius and angle coordinates, thus realizing one case of separation in two discrete coordinates. The N^2-vectors in this space are digital (pixellated images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible.

  20. Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.

    Science.gov (United States)

    Liu, Derek; Sloboda, Ron S

    2014-05-01

    Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.

  1. An improved acoustic Fourier boundary element method formulation using fast Fourier transform integration

    NARCIS (Netherlands)

    Kuijpers, A.H.W.M.; Verbeek, G.; Verheij, J.W.

    1997-01-01

    Effective use of the Fourier series boundary element method (FBEM) for everyday applications is hindered by the significant numerical problems that have to be overcome for its implementation. In the FBEM formulation for acoustics, some integrals over the angle of revolution arise, which need to be

  2. Timing comparison of two-dimensional discrete-ordinates codes for criticality calculations

    International Nuclear Information System (INIS)

    Miller, W.F. Jr.; Alcouffe, R.E.; Bosler, G.E.; Brinkley, F.W. Jr.; O'dell, R.D.

    1979-01-01

    The authors compare two-dimensional discrete-ordinates neutron transport computer codes to solve reactor criticality problems. The fundamental interest is in determining which code requires the minimum Central Processing Unit (CPU) time for a given numerical model of a reasonably realistic fast reactor core and peripherals. The computer codes considered are the most advanced available and, in three cases, are not officially released. The conclusion, based on the study of four fast reactor core models, is that for this class of problems the diffusion synthetic accelerated version of TWOTRAN, labeled TWOTRAN-DA, is superior to the other codes in terms of CPU requirements

  3. Fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles

    International Nuclear Information System (INIS)

    Fogelson, A.L.; Peskin, C.S.

    1988-01-01

    A new fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles is presented. The fluid dynamics equations are solved on a lattice. A particle is represented by a set of points each of which moves at the local fluid velocity and is not constrained to lie on the lattice. These points are coupled by forces which resist deformation of the particle. These forces contribute to the force density in the Stokes' equations. As a result, a single set of fluid dynamics equations holds at all points of the domain and there are no internal boundaries. Particles size, shape, and deformability may be prescribed. Computational work increases only linearly with the number of particles, so large numbers (500--1000) of particles may be studied efficiently. The numerical method involves implicit calculation of the particle forces by minimizing an energy function and solution of a finite-difference approximation to the Stokes' equations using the Fourier--Toeplitz method. The numerical method has been implemented to run on all CRAY computers: the implementation exploits the CRAY's vectorized arithmetic, and on machines with insufficient central memory, it performs efficient disk I/O while storing most of the data on disk. Applications of the method to sedimentation of one-, two-, and many-particle systems are described. Trajectories and settling speeds for two-particle sedimentation, and settling speed for multiparticle sedimentation from initial distributions on a cubic lattice or at random give good quantitative agreement with existing theories. copyright 1988 Academic Press, Inc

  4. Research of three-dimensional transient reactivity feedback in fast reactor

    International Nuclear Information System (INIS)

    Xu Li; Shi Gong; Ma Dayuan; Yu Hong

    2013-01-01

    To solve the three-dimensional time-spatial kinetics feedback problems in fast reactor, a mathematical model of the direct reactivity feedback was proposed. Based on the NAS code for fast reactor and the reactivity feedback mechanism, a feedback model which combined the direct reactivity feedback and feedback reflected by the cross section variation was provided for the transient calculation. Furthermore, the fast reactor group collapsing system was added to the code, thus the real time group collapsing calculation could be realized. The isothermal elevated temperature test of CEFR was simulated by using the code. By comparing the calculation result with the test result of the temperature reactivity coefficient, the validity of the model and the code is verified. (authors)

  5. Oblique propagation of nonlinear hydromagnetic waves: One- and two-dimensional behavior

    International Nuclear Information System (INIS)

    Malara, F.; Elaoufir, J.

    1991-01-01

    The one- and two-dimensional behavior of obliquely propagating hydromagnetic waves is analyzed by means of analytical theory and numerical simulations. It is shown that the nonlinear evolution of a one-dimensional MHD wave leads to the formation of a rotational discontinuity and a compressive steepened quasi-linearly polarized pulse whose structure is similar to that of a finite amplitude magnetosonic simple wave. For small propagation angles, the pulse mode (fast or slow) depends on the value of β with respect to unity while for large propagation angles the wave mode is fixed by the sign of the initial density-field correlation. The two-dimensional evolution shows that an MHD wave is unstable against a small-amplitude long-wavelength modulation in the direction transverse to the wave propagation direction. A two-dimensional magnetosonic wave solution is found, in which the density fluctuation is driven by the corresponding total pressure fluctuation, exactly as in the one-dimensional simple wave. Along with the steepening effect, the wave experiences both wave front deformation and a self-focusing effect which may eventually lead to the collapse of the wave. The results compare well with observations of MHD waves in the Earth's foreshock and at comets

  6. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jin; Kim, Dong Il [Korea Maritime University, Busan (Korea, Republic of)

    2004-10-15

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  7. Two-dimensional simulation of broad-band ferrite electromagnetic wave absorbers by using the FDTD method

    International Nuclear Information System (INIS)

    Yoon, Hyun Jin; Kim, Dong Il

    2004-01-01

    The purpose of this simulation study is to design and fabricate an electromagnetic (EM) wave absorber in order to develop a wide-band absorber. We have proposed and modeled a bird-eye-type and cutting-cone-type EM wave absorber by using the equivalent material constants method (EMCM), and we simulated them by using a finite-difference time-domain (FDTD) method. A two or a three-dimensional simulation would be desirable to analyze the EM wave absorber characteristics and to develop new structures. The two-dimensional FDTD simulation requires less computer resources than a three-dimensional simulation to consider the structural effects of the EM wave absorbers. The numerical simulation by using the FDTD method shows propagating EM waves in various types of periodic structure EM wave absorbers. Simultaneously, a Fourier analysis is used to characterize the input pulse and the reflected EM waves for ferrite absorbers with various structures. The results have a wide-band reflection-reducing characteristic. The validity of the proposed model was confirmed by comparing the two-dimensional simulation with the experimental results. The simulations were carried out in the frequency band from 30 MHz to 10 GHz.

  8. Two-dimensional linear and nonlinear Talbot effect from rogue waves.

    Science.gov (United States)

    Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng

    2015-03-01

    We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.

  9. Three-dimensional reconstruction from cone-beam data using an efficient Fourier technique combined with a special interpolation filter

    International Nuclear Information System (INIS)

    Magnusson Seger, Maria

    1998-01-01

    We here present LINCON FAST which is an exact method for 3D reconstruction from cone-beam projection data. The new method is compared to the LINCON method which is known to be fast and to give good image quality. Both methods have O(N 3 log N) complexity and are based on Grangeat's result which states that the derivative of the Radon transform of the object function can be obtained from cone-beam projections. One disadvantage with LINCON is that the rather computationally intensive chirp z-transform is frequently used. In LINCON FAST , FFT and interpolation in the Fourier domain are used instead, which are less computationally demanding. The computation tools involved in LINCON FAST are solely FFT, 1D eight-point interpolation, multiplicative weighting and tri-linear interpolation. We estimate that LINCON FAST will be 2-2.5 times faster than LINCON. The interpolation filter belongs to a special class of filters developed by us. It turns out that the filter must be very carefully designed to keep a good image quality. Visual inspection of experimental results shows that the image quality is almost the same for LINCON and the new method LINCON FAST . However, it should be remembered that LINCON FAST can never give better image quality than LINCON, since LINCON FAST is designed to approximate LINCON as well as possible. (author)

  10. Integrable systems with quadratic nonlinearity in Fourier space

    International Nuclear Information System (INIS)

    Marikhin, V.G.

    2003-01-01

    The Lax pair representation in Fourier space is used to obtain a list of integrable scalar evolutionary equations with quadratic nonlinearity. The known systems of this type such as KdV, intermediate long-wave equation (ILW), Camassa-Holm and Degasperis-Procesi systems are represented in this list. Some new systems are obtained as well. Two-dimensional and discrete generalizations are discussed

  11. Extremely compact formulas for the Fourier transform of a product of two-centre Slater-type orbitals

    International Nuclear Information System (INIS)

    Vukovic, T; Dmitrovic, S

    2010-01-01

    A compact formula for the Fourier transform of a product of Slater-type orbitals on different centres is derived. The integral is reduced to a finite one-dimensional integration over non-oscillatory hypergeometric functions of type 1 F 2 (x;y;z). The formula is valid for all quantum numbers and does not involve the reduced Bessel functions that are usually used to evaluate these integrals. Reduced formulas are calculated for some special directions in the reciprocal space. Also, some useful identities for the Fourier transforms of a product of Slater-type orbitals with correlated sets of parameters are obtained. In order to illustrate simple and efficient use of the presented results, we have applied them to graphene.

  12. Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform

    Science.gov (United States)

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…

  13. Modified Splitting FDTD Methods for Two-Dimensional Maxwell’s Equations

    Directory of Open Access Journals (Sweden)

    Liping Gao

    2017-01-01

    Full Text Available In this paper, we develop a new method to reduce the error in the splitting finite-difference method of Maxwell’s equations. By this method two modified splitting FDTD methods (MS-FDTDI, MS-FDTDII for the two-dimensional Maxwell equations are proposed. It is shown that the two methods are second-order accurate in time and space and unconditionally stable by Fourier methods. By energy method, it is proved that MS-FDTDI is second-order convergent. By deriving the numerical dispersion (ND relations, we prove rigorously that MS-FDTDI has less ND errors than the ADI-FDTD method and the ND errors of ADI-FDTD are less than those of MS-FDTDII. Numerical experiments for computing ND errors and simulating a wave guide problem and a scattering problem are carried out and the efficiency of the MS-FDTDI and MS-FDTDII methods is confirmed.

  14. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Wook; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2017-08-15

    A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.

  15. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Ha, Tae Wook; Jeong, Jae Jun; Choi, Ki Yong

    2017-01-01

    A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification

  16. Teaching stable two-mirror resonators through the fractional Fourier transform

    International Nuclear Information System (INIS)

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g parameters) and those of the equivalent FRFT systems (the FRFT order and scaling parameters). Expressions connecting Gaussian beam q-transformation with FRFT parameters are derived. In particular, we show that the beam waist of the resonator's mode is located at the plane leading to two FRFT subsystems with equal scaling parameter which, moreover, coincides with the mode Rayleigh range. Finally we analyse the resonator's stability diagram in terms of the fractional orders of each FRFT subsystem, and the round trip propagation. The presented analysis represents an interesting link between two topics (optical resonators and Fourier optics) usually covered in optics and photonics courses at university level, which can be useful to teach and connect the principles of these subjects.

  17. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    Science.gov (United States)

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  18. One and two dimensional simulations on beat wave acceleration

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.

    1984-01-01

    Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept

  19. Teaching Fourier optics through ray matrices

    International Nuclear Information System (INIS)

    Moreno, I; Sanchez-Lopez, M M; Ferreira, C; Davis, J A; Mateos, F

    2005-01-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics

  20. Three Dimensional Fast Exact Euclidean Distance (3D-FEED) Maps

    NARCIS (Netherlands)

    Latecki, L.J.; Schouten, Theo E.; Mount, D.M.; Kuppens, Harco C.; Wu, A.Y.; van den Broek, Egon

    2006-01-01

    In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. Recently, the Fast Exact Euclidean Distance (FEED) transformation was launched. In this paper, we present the three dimensional (3D) version of

  1. Novel properties of the Fourier decomposition of the sinogram

    International Nuclear Information System (INIS)

    Edholm, P.R.; Lewitt, R.M.; Lindholm, B.

    1986-01-01

    The double Fourier decomposition of the sinogram is obtained by first taking the Fourier transform of each parallel-ray projection and then calculating the coefficients of a Fourier series with respect to angle for each frequency component of the transformed projections. The values of these coefficients may be plotted on a two-dimensional map whose coordinates are spatial frequency ω (continuous) and angular harmonic number n (discrete). For absolute value of ω large, the Fourier coefficients on the line n=kω of slope k through the origin of the coefficient space are found to depend strongly on the contributions to the projection data that, for each view, come from a certain distance to the detector plane, where the distance is a linear function of k. The values of these coefficients depend only weakly on contributions from other distances from the detector. The theoretical basis of this property is presented in this paper and a potential application to emission computerized tomography is discussed

  2. On the moments of the Wigner distribution and the fractional Fourier transform

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.; Veen, J.P.

    2000-01-01

    A Fourier transformation maps a one-dimensional time signal into a one-dimensional frequency function, the signal spectrum. Although the Fourier transform provides the signal's spectral content, it fails to indicate the time location of the spectral components, which is important, for example, when

  3. Fully three-dimensional reconstruction from data collected on concentric cubes in Fourier space: implementation and a sample application to MRI [magnetic resonance imaging

    International Nuclear Information System (INIS)

    Herman, G.T.; Roberts, D.; Axel, L.

    1992-01-01

    An algorithm is proposed for rapid and accurate reconstruction from data collected in Fourier space at points arranged on a grid of concentric cubes. The whole process has computational complexity of the same order as required for the 3D fast Fourier transform and so (for medically relevant sizes of the data set) it is faster than backprojection into the same size rectangular grid. The design of the algorithm ensures that no interpolations are needed, in contrast to methods involving backprojection with their unavoidable interpolations. As an application, a 3D data collection method for MRI has been designed which directly samples the Fourier transform of the object to be reconstructed on concentric cubes as needed for the algorithm. (author)

  4. Application of Tandem Two-Dimensional Mass Spectrometry for Top-Down Deep Sequencing of Calmodulin.

    Science.gov (United States)

    Floris, Federico; Chiron, Lionel; Lynch, Alice M; Barrow, Mark P; Delsuc, Marc-André; O'Connor, Peter B

    2018-06-04

    Two-dimensional mass spectrometry (2DMS) involves simultaneous acquisition of the fragmentation patterns of all the analytes in a mixture by correlating their precursor and fragment ions by modulating precursor ions systematically through a fragmentation zone. Tandem two-dimensional mass spectrometry (MS/2DMS) unites the ultra-high accuracy of Fourier transform ion cyclotron resonance (FT-ICR) MS/MS and the simultaneous data-independent fragmentation of 2DMS to achieve extensive inter-residue fragmentation of entire proteins. 2DMS was recently developed for top-down proteomics (TDP), and applied to the analysis of calmodulin (CaM), reporting a cleavage coverage of about ~23% using infrared multiphoton dissociation (IRMPD) as fragmentation technique. The goal of this work is to expand the utility of top-down protein analysis using MS/2DMS in order to extend the cleavage coverage in top-down proteomics further into the interior regions of the protein. In this case, using MS/2DMS, the cleavage coverage of CaM increased from ~23% to ~42%. Graphical Abstract Two-dimensional mass spectrometry, when applied to primary fragment ions from the source, allows deep-sequencing of the protein calmodulin.

  5. Is Fourier analysis performed by the visual system or by the visual investigator.

    Science.gov (United States)

    Ochs, A L

    1979-01-01

    A numerical Fourier transform was made of the pincushion grid illusion and the spectral components orthogonal to the illusory lines were isolated. Their inverse transform creates a picture of the illusion. The spatial-frequency response of cortical, simple receptive field neurons similarly filters the grid. A complete set of these neurons thus approximates a two-dimensional Fourier analyzer. One cannot conclude, however, that the brain actually uses frequency-domain information to interpret visual images.

  6. Four-dimensional imaging of the initial stage of fast evolving plasmas

    International Nuclear Information System (INIS)

    Zhu Pengfei; Wang Weimin; Zhang Zhongchao; Chen Long; Zheng Jun; Li Runze; Qian Dong; Li Junjie; Wang Xuan; Cao Jianming; Sheng Zhengming; Zhang Jie

    2010-01-01

    Using an ultrafast electron probe capable of four-dimensional diagnosis, the initial stage of fast evolving plasmas produced by a 10 14 W/cm 2 laser irradiation of a metal target was investigated in real time with picosecond time resolution. The associated strong transient electric field was identified to have two components, which either focus or defocus the probe electron beam. The effects of this field on the probe electron beam can be reproduced by a self-expanding charge cloud containing about 5x10 7 suprathermal electrons with the outermost layer expanding at an average speed of 1.2x10 7 m/s.

  7. Image Encryption Scheme Based on Balanced Two-Dimensional Cellular Automata

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-01-01

    Full Text Available Cellular automata (CA are simple models of computation which exhibit fascinatingly complex behavior. Due to the universality of CA model, it has been widely applied in traditional cryptography and image processing. The aim of this paper is to present a new image encryption scheme based on balanced two-dimensional cellular automata. In this scheme, a random image with the same size of the plain image to be encrypted is first generated by a pseudo-random number generator with a seed. Then, the random image is evoluted alternately with two balanced two-dimensional CA rules. At last, the cipher image is obtained by operating bitwise XOR on the final evolution image and the plain image. This proposed scheme possesses some advantages such as very large key space, high randomness, complex cryptographic structure, and pretty fast encryption/decryption speed. Simulation results obtained from some classical images at the USC-SIPI database demonstrate the strong performance of the proposed image encryption scheme.

  8. Experimental investigation of two-dimensional critical surface structure, stimulated Raman scattering, and two-plasmon decay instability. Annual report, January 1, 1981-April 30, 1982

    International Nuclear Information System (INIS)

    Wong, A.Y.; Eggleston, D.L.; Tanikawa, T.; Qian, S.J.

    1982-11-01

    Experimental observations of the space and time evolution of resonantly enhanced electrostatic electric fields and plasma density in cylindrical geometry demonstrate the development of two-dimensional caviton structure when an initial density perturbation is imposed on the plasma in the direction perpendicular to the driver field. This two-dimensional structure is observed after the development of profile modification and grows on the ion time scale. The existence of a large azimuthal electric field component is an observational signature of two-dimensional structure. Enhanced electric field maxima are found to be azimuthally correlated with the density minima. Both the density cavities and electric field peaks exhibit increased azimuthal location with the growth of two-dimensional structure. The two-dimensional development exhibits a strong dependence on both perturbation wavenumber and driver power. The related theoretical literature is reviewed and numerical, analytical, and qualitative hybrid models for a driven, two-dimensional, inhomogeneous plasma are presented. Preliminary work is presented in the following additional areas: weak magnetic field effects on critical surface physics, optical measurements of fast electron production, two-dimensional effects in microwave-plasma interactions, Langmuir wave trapping, stimulated Raman scattering and two-plasmon decay instability

  9. The quantum spectral analysis of the two-dimensional annular billiard system

    International Nuclear Information System (INIS)

    Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)

  10. Two-dimensional wavelet transform feature extraction for porous silicon chemical sensors.

    Science.gov (United States)

    Murguía, José S; Vergara, Alexander; Vargas-Olmos, Cecilia; Wong, Travis J; Fonollosa, Jordi; Huerta, Ramón

    2013-06-27

    Designing reliable, fast responding, highly sensitive, and low-power consuming chemo-sensory systems has long been a major goal in chemo-sensing. This goal, however, presents a difficult challenge because having a set of chemo-sensory detectors exhibiting all these aforementioned ideal conditions are still largely un-realizable to-date. This paper presents a unique perspective on capturing more in-depth insights into the physicochemical interactions of two distinct, selectively chemically modified porous silicon (pSi) film-based optical gas sensors by implementing an innovative, based on signal processing methodology, namely the two-dimensional discrete wavelet transform. Specifically, the method consists of using the two-dimensional discrete wavelet transform as a feature extraction method to capture the non-stationary behavior from the bi-dimensional pSi rugate sensor response. Utilizing a comprehensive set of measurements collected from each of the aforementioned optically based chemical sensors, we evaluate the significance of our approach on a complex, six-dimensional chemical analyte discrimination/quantification task problem. Due to the bi-dimensional aspects naturally governing the optical sensor response to chemical analytes, our findings provide evidence that the proposed feature extractor strategy may be a valuable tool to deepen our understanding of the performance of optically based chemical sensors as well as an important step toward attaining their implementation in more realistic chemo-sensing applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Fourier acceleration of iterative processes in disordered systems

    International Nuclear Information System (INIS)

    Batrouni, G.G.; Hansen, A.

    1988-01-01

    Technical details are given on how to use Fourier acceleration with iterative processes such as relaxation and conjugate gradient methods. These methods are often used to solve large linear systems of equations, but become hopelessly slow very rapidly as the size of the set of equations to be solved increases. Fourier acceleration is a method designed to alleviate these problems and result in a very fast algorithm. The method is explained for the Jacobi relaxation and conjugate gradient methods and is applied to two models: the random resistor network and the random central-force network. In the first model, acceleration works very well; in the second, little is gained. We discuss reasons for this. We also include a discussion of stopping criteria

  12. Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.

    Science.gov (United States)

    Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan

    2014-09-22

    A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.

  13. Fourier analysis of finite element preconditioned collocation schemes

    Science.gov (United States)

    Deville, Michel O.; Mund, Ernest H.

    1990-01-01

    The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.

  14. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    Science.gov (United States)

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  15. An optical Fourier transform coprocessor with direct phase determination.

    Science.gov (United States)

    Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D

    2017-10-20

    The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.

  16. Infrared Fourier spectres of pectin obtained from pumpkin

    International Nuclear Information System (INIS)

    Usmanova, S.R.; Dzhonmurodov, A.S.; Nazirova, Kh.I.; Mukhidinov, Z.K.

    2015-01-01

    Present article is devoted to infrared Fourier spectres of pectin obtained from pumpkin. The analysis of pectin obtained from pumpkin was conducted by means of infrared spectrophotometer with Fourier transformation. The infrared spectroscopic study of pectin polysaccharide fraction of pectin matter, as well as pectin helium and micro helium obtained by means of fast extraction was conducted.

  17. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    International Nuclear Information System (INIS)

    Costa, M C Ferraz da; Ribeiro, H B; Kessler, F; Souza, E A T de; Fechine, G J M

    2016-01-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS 2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way. (paper)

  18. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    Science.gov (United States)

    Ferraz da Costa, M. C.; Ribeiro, H. B.; Kessler, F.; de Souza, E. A. T.; Fechine, G. J. M.

    2016-02-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way.

  19. Two-dimensional shielding benchmarks for iron at YAYOI, (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; An, Shigehiro; Kasai, Shigeru; Miyasaka, Shun-ichi; Koyama, Kinji.

    The aim of this work is to assess the collapsed neutron and gamma multigroup cross sections for two dimensional discrete ordinate transport code. Two dimensional distributions of neutron flux and gamma ray dose through a 70cm thick and 94cm square iron shield were measured at the fast neutron source reactor ''YAYOI''. The iron shield was placed over the lead reflector in the vertical experimental column surrounded by heavy concrete wall. The detectors used in this experiment were threshold detectors In, Ni, Al, Mg, Fe and Zn, sandwitch resonance detectors Au, W and Co, activation foils Au for neutrons and thermoluminescence detectors for gamma ray dose. The experimental results were compared with the calculated ones by the discrete ordinate transport code ANISN and TWOTRAN. The region-wise, coupled neutron-gamma multigroup cross-sections (100n+20gamma, EURLIB structure) were generated from ENDF/B-IV library for neutrons and POPOP4 library for gamma-ray production cross-sections by using the code system RADHEAT. The effective microscopic neutron cross sections were obtained from the infinite dilution values applying ABBN type self-shielding factors. The gamma ray production multigroup cross-sections were calculated from these effective microscopic neutron cross-sections. For two-dimensional calculations the group constants were collapsed into 10 neutron groups and 3 gamma groups by using ANISN. (auth.)

  20. Comprehensive two-dimensional liquid chromatography with on-line Fourier-transform-infrared-spectroscopy detection for the characterization of copolymers

    NARCIS (Netherlands)

    Kok, S.J.; Hankemeier, T.; Schoenmakers, P.J.

    2005-01-01

    The on-line coupling of comprehensive two-dimensional liquid chromatography (liquid chromatography × size-exclusion chromatography, LC × SEC) and infrared (IR) spectroscopy has been realized by means of an IR flow cell. The system has been assessed by the functional-group analysis of a series of

  1. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  2. ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces.

    Science.gov (United States)

    Sadygov, Rovshan G; Maroto, Fernando Martin; Hühmer, Andreas F R

    2006-12-15

    We present an algorithmic approach to align three-dimensional chromatographic surfaces of LC-MS data of complex mixture samples. The approach consists of two steps. In the first step, we prealign chromatographic profiles: two-dimensional projections of chromatographic surfaces. This is accomplished by correlation analysis using fast Fourier transforms. In this step, a temporal offset that maximizes the overlap and dot product between two chromatographic profiles is determined. In the second step, the algorithm generates correlation matrix elements between full mass scans of the reference and sample chromatographic surfaces. The temporal offset from the first step indicates a range of the mass scans that are possibly correlated, then the correlation matrix is calculated only for these mass scans. The correlation matrix carries information on highly correlated scans, but it does not itself determine the scan or time alignment. Alignment is determined as a path in the correlation matrix that maximizes the sum of the correlation matrix elements. The computational complexity of the optimal path generation problem is reduced by the use of dynamic programming. The program produces time-aligned surfaces. The use of the temporal offset from the first step in the second step reduces the computation time for generating the correlation matrix and speeds up the process. The algorithm has been implemented in a program, ChromAlign, developed in C++ language for the .NET2 environment in WINDOWS XP. In this work, we demonstrate the applications of ChromAlign to alignment of LC-MS surfaces of several datasets: a mixture of known proteins, samples from digests of surface proteins of T-cells, and samples prepared from digests of cerebrospinal fluid. ChromAlign accurately aligns the LC-MS surfaces we studied. In these examples, we discuss various aspects of the alignment by ChromAlign, such as constant time axis shifts and warping of chromatographic surfaces.

  3. The calculation of site-dependent earthquake motions -3. The method of fast fourier transform

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-10-01

    The method of Fast Fourier transform (FFT) is applied to the problem of the determination of site-dependent earthquake motions, which takes account of local geological effects. A program, VELAY 1, which uses the FFT method has been written and is described in this report. The assumptions of horizontally stratified, homogeneous, isotropic, linearly viscoelastic layers and a normally incident plane seismic wave are made. Several examples are given, using VELAY 1, of modified surface acceleration-time histories obtained using a selected input acceleration-time history and a representative system of soil layers. There is a discussion concerning the soil properties that need to be measured in order to use VELAY 1 (and similar programs described in previous reports) and hence generate site-dependent ground motions suitable for aseismic design of a nuclear power plant at a given site. (author)

  4. Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas.

    Science.gov (United States)

    Yan, Xin-Zhong

    2011-07-01

    The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.

  5. Preoperative assessment of trigeminal neuralgia and hemifacial spasm using constructive interference in steady state-three-dimensional fourier transformation magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Iwao; Kobayashi, Eiichi; Hirai, Shinji; Yamaura, Akira [Chiba Univ. (Japan). School of Medicine

    2000-11-01

    Results of microvascular decompression (MVD) for trigeminal neuralgia (TN) and hemifacial spasm (HFS) may be improved by accurate preoperative assessment of neurovascular relationships at the root entry/exit zone (REZ). Constructive interference in steady state (CISS)-three-dimensional Fourier transformation (3DFT) magnetic resonance (MR) imaging was evaluated for visualizing the neurovascular relationships at the REZ. Fourteen patients with TN and eight patients with HFS underwent MR imaging using CISS-3DFT and 3D fast inflow with steady-state precession (FISP) sequences. Axial images of the cerebellopontine angle (CPA) obtained by the two sequences were reviewed to assess the neurovascular relationships at the REZ of the trigeminal and facial nerves. Eleven patients subsequently underwent MVD. Preoperative MR imaging findings were related to surgical observations and results. CISS MR imaging provided excellent contrast between the cranial nerves, small vessels, and cerebrospinal fluid (CSF) in the CPA. CISS was significantly better than FISP for delineating anatomic detail in the CPA (trigeminal and facial nerves, petrosal vein) and abnormal neurovascular relationships responsible for TN and HFS (vascular contact and deformity at the REZ). Preoperative CISS MR imaging demonstrated precisely the neurovascular relationships at the REZ and identified the offending artery in all seven patients with TN undergoing MVD. CISS MR imaging has high resolution and excellent contrast between cranial nerves, small vessels, and CSF, so can precisely and accurately delineate normal and abnormal neurovascular relationships at the REZ in the CPA, and is a valuable preoperative examination for MVD. (author)

  6. Preoperative assessment of trigeminal neuralgia and hemifacial spasm using constructive interference in steady state-three-dimensional fourier transformation magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yamakami, Iwao; Kobayashi, Eiichi; Hirai, Shinji; Yamaura, Akira

    2000-01-01

    Results of microvascular decompression (MVD) for trigeminal neuralgia (TN) and hemifacial spasm (HFS) may be improved by accurate preoperative assessment of neurovascular relationships at the root entry/exit zone (REZ). Constructive interference in steady state (CISS)-three-dimensional Fourier transformation (3DFT) magnetic resonance (MR) imaging was evaluated for visualizing the neurovascular relationships at the REZ. Fourteen patients with TN and eight patients with HFS underwent MR imaging using CISS-3DFT and 3D fast inflow with steady-state precession (FISP) sequences. Axial images of the cerebellopontine angle (CPA) obtained by the two sequences were reviewed to assess the neurovascular relationships at the REZ of the trigeminal and facial nerves. Eleven patients subsequently underwent MVD. Preoperative MR imaging findings were related to surgical observations and results. CISS MR imaging provided excellent contrast between the cranial nerves, small vessels, and cerebrospinal fluid (CSF) in the CPA. CISS was significantly better than FISP for delineating anatomic detail in the CPA (trigeminal and facial nerves, petrosal vein) and abnormal neurovascular relationships responsible for TN and HFS (vascular contact and deformity at the REZ). Preoperative CISS MR imaging demonstrated precisely the neurovascular relationships at the REZ and identified the offending artery in all seven patients with TN undergoing MVD. CISS MR imaging has high resolution and excellent contrast between cranial nerves, small vessels, and CSF, so can precisely and accurately delineate normal and abnormal neurovascular relationships at the REZ in the CPA, and is a valuable preoperative examination for MVD. (author)

  7. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  8. Study of lattice strain evolution during biaxial deformation of stainless steel using a finite element and fast Fourier transform based multi-scale approach

    International Nuclear Information System (INIS)

    Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.

    2016-01-01

    A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.

  9. Computational simulation of two-dimensional transient natural convection in volumetrically heated square enclosure

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Jian Su

    2010-01-01

    Natural convection is a physical phenomenon that has been investigated in nuclear engineering so as to provide information about heat transfer in severe accident conditions involving nuclear reactors. This research reported transient natural convection of fluids with uniformly distributed volumetrically heat generation in square cavity with isothermal side walls and adiabatic top/bottom walls. Two Prandtl numbers were considered, 0:0321 and 0:71. Direct numerical simulations were applied in order to obtain results about the velocities of the fluid in directions x and y. These results were used in Fast Fourier Transform, which showed the periodic, quasi-chaotic and chaotic behavior of transient laminar flow. (author)

  10. Group-invariant finite Fourier transforms

    International Nuclear Information System (INIS)

    Shenefelt, M.H.

    1988-01-01

    The computation of the finite Fourier transform of functions is one of the most used computations in crystallography. Since the Fourier transform involved in 3-dimensional, the size of the computation becomes very large even for relatively few sample points along each edge. In this thesis, there is a family of algorithms that reduce the computation of Fourier transform of functions respecting the symmetries. Some properties of these algorithms are: (1) The algorithms make full use of the group of symmetries of a crystal. (2) The algorithms can be factored and combined according to the prime factorization of the number of points in the sample space. (3) The algorithms are organized into a family using the group structure of the crystallographic groups to make iterative procedures possible

  11. Topics in quantum chromodynamics: two loop Feynman gauge calculation of the meson nonsinglet evolution potential and fourier acceleration of the calculation of the fermion propagator in lattice QCD

    International Nuclear Information System (INIS)

    Katz, G.R.

    1986-01-01

    Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration

  12. A Fourier analysis for a fast simulation algorithm. [for switching converters

    Science.gov (United States)

    King, Roger J.

    1988-01-01

    This paper presents a derivation of compact expressions for the Fourier series analysis of the steady-state solution of a typical switching converter. The modeling procedure for the simulation and the steady-state solution is described, and some desirable traits for its matrix exponential subroutine are discussed. The Fourier analysis algorithm was tested on a phase-controlled parallel-loaded resonant converter, providing an experimental confirmation.

  13. Optical design and analysis of carbon dioxide laser fusion systems using interferometry and fast Fourier transform techniques

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1979-01-01

    The optical design and analysis of the LASL carbon dioxide laser fusion systems required the use of techniques that are quite different from the currently used method in conventional optical design problems. The necessity for this is explored and the method that has been successfully used at Los Alamos to understand these systems is discussed with examples. This method involves characterization of the various optical components in their mounts by a Zernike polynomial set and using fast Fourier transform techniques to propagate the beam, taking diffraction and other nonlinear effects that occur in these types of systems into account. The various programs used for analysis are briefly discussed

  14. MR imaging of the gastrointestinal tract with half-fourier single-shot fast spin echo (SSFSE)

    International Nuclear Information System (INIS)

    Boku, Houjun; Takehara, Yasuo; Isoda, Haruo; Isogai, Satoshi; Kaneko, Masao

    1999-01-01

    Our objective was to implement a non-invasive magnetic resonance imaging (MRI) technique combined with concentrated milk ingestion for depicting the gastrointestinal (GI) tract and detecting gastrointestinal motility and transit. The half-Fourier SSFSE (single-shot fast spin echo) sequence was optimized on the basis of a phantom study. In order to determine the feasibility of milk ingestion as a substitute for contrast medium, ten human volunteers were examined with SSFSE after two types of liquid ingestion (i.e., milk and water). The snapshot images provided subsecond data acquisition for each coronal plane, allowing visualization of peristalsis in the gastrointestinal tract in an almost real-time fashion, without motion-related image degradation, as would normally be seen using conventional MRI. There was no significant difference between concentrated milk and water in terms of depiction of the upper gastrointestinal tract; however, 10 min and 30 min after ingestion, concentrated milk showed better delineation of the intestine than that observed after water ingestion (p<0.01). MR gastrointestinal imaging is a non-invasive method that allows gastrointestinal depiction as well as analysis of motility and passage. Especially with concentrated milk ingestion, the distal intestines were well depicted with adequate contrast filling and distention. (author)

  15. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  16. The derivative-free Fourier shell identity for photoacoustics.

    Science.gov (United States)

    Baddour, Natalie

    2016-01-01

    In X-ray tomography, the Fourier slice theorem provides a relationship between the Fourier components of the object being imaged and the measured projection data. The Fourier slice theorem is the basis for X-ray Fourier-based tomographic inversion techniques. A similar relationship, referred to as the 'Fourier shell identity' has been previously derived for photoacoustic applications. However, this identity relates the pressure wavefield data function and its normal derivative measured on an arbitrary enclosing aperture to the three-dimensional Fourier transform of the enclosed object evaluated on a sphere. Since the normal derivative of pressure is not normally measured, the applicability of the formulation is limited in this form. In this paper, alternative derivations of the Fourier shell identity in 1D, 2D polar and 3D spherical polar coordinates are presented. The presented formulations do not require the normal derivative of pressure, thereby lending the formulas directly adaptable for Fourier based absorber reconstructions.

  17. Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform.

    Science.gov (United States)

    Ding, Jian-Jiun; Pei, Soo-Chang; Liu, Chun-Lin

    2012-08-01

    The two-dimensional nonseparable linear canonical transform (2D NSLCT), which is a generalization of the fractional Fourier transform and the linear canonical transform, is useful for analyzing optical systems. However, since the 2D NSLCT has 16 parameters and is very complicated, it is a great challenge to implement it in an efficient way. In this paper, we improved the previous work and propose an efficient way to implement the 2D NSLCT. The proposed algorithm can minimize the numerical error arising from interpolation operations and requires fewer chirp multiplications. The simulation results show that, compared with the existing algorithm, the proposed algorithms can implement the 2D NSLCT more accurately and the required computation time is also less.

  18. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  19. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  20. Fast inverse nonlinear Fourier transformation using exponential one-step methods : Darboux transformation

    NARCIS (Netherlands)

    Vaibhav, V.K.

    2017-01-01

    This paper considers the non-Hermitian Zakharov-Shabat (ZS) scattering problem which forms the basis for defining the SU(2) nonlinear Fourier transformation (NFT). The theoretical underpinnings of this generalization of the conventional Fourier transformation are quite well established in the

  1. Error estimates for the Fourier-finite-element approximation of the Lame system in nonsmooth axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    This paper is concerned with the effective implementation of the Fourier-finite-element method, which combines the approximating Fourier and the finite-element methods, for treating the Derichlet problem for the Lam.6 equations in axisymmetric domains Ω-circumflex is contained in R 3 with conical vertices and reentrant edges. The partial Fourier decomposition reduces the three-dimensional boundary value problem to an infinite sequence of decoupled two-dimensional boundary value problems on the plane meridian domain Ω α is contained in R + 2 of Ω-circumflex with solutions u, n (n = 0,1,2,...) being the Fourier coefficients of the solution u of the 3D problem. The asymptotic behavior of the Fourier coefficients near the angular points of Ω α , is described by appropriate singular vector-functions and treated numerically by linear finite elements on locally graded meshes. For the right-hand side function f-circumflex is an element of (L 2 (Ω-circumflex)) 3 it is proved that with appropriate mesh grading the rate of convergence of the combined approximations in (W 2 1 (Ω-circumflex)) 3 is of the order O(h + N -1 ), where h and N are the parameters of the finite-element and Fourier approximations, respectively, with h → 0 and N → ∞. (author)

  2. Hamiltonian field description of two-dimensional vortex fluids and guiding center plasmas

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1981-03-01

    The equations that describe the motion of two-dimensional vortex fluids and guiding center plasmas are shown to possess underlying field Hamiltonian structure. A Poisson bracket which is given in terms of the vorticity, the physical although noncanonical dynamical variable, casts these equations into Heisenberg form. The Hamiltonian density is the kinetic energy density of the fluid. The well-known conserved quantities are seen to be in involution with respect to this Poisson bracket. Expanding the vorticity in terms of a Fourier-Dirac series transforms the field description given here into the usual canonical equations for discrete vortex motion. A Clebsch potential representation of the vorticity transforms the noncanonical field description into a canonical description

  3. Image matrix processor for fast multi-dimensional computations

    Science.gov (United States)

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  4. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  5. Three-dimensional Fourier transformation constructive interference in steady state magnetic resonance imaging of the inner ear in patients with unilateral and bilateral Meniere's disease

    NARCIS (Netherlands)

    Mateijsen, DJM; Van Hengel, PWJ; Krikke, AP; Van Huffelen, WM; Wit, HP; Albers, FWJ

    Objective: In this study, three-dimensional Fourier transformation constructive interference in steady state (3DFT-CISS) magnetic resonance imaging was used to quantify the distance between the vertical part of the posterior semicircular canal and the posterior fossa as a measure of the

  6. Unsteady three-dimensional behavior of natural convection in horizontal annulus

    International Nuclear Information System (INIS)

    Ohya, Toshizo; Miki, Yasutomi; Morita, Kouji; Fukuda, Kenji; Hasegawa, Shu

    1988-01-01

    An numerical analysis has been performed on unsteady three-dimensional natural convection in a concentric horizontal annulus filled with air. The explicit leap-frog scheme is used for integrating three-dimensional time-dependent equations and the fast Fourier transform (FFT) for solving the Poisson equations for pressure. An oscillatory flow is found to occur at high Rayleigh numbers, which agree qualitatively with the experimental observation made by Bishop et al. An experiment is also conducted to measure temperature fluctuations; a comparison between periods of fluctuations obtained numerically and experimentally shows a good agreement. Numerical calculations yield various statistical parameters of turbulence at higher Rayleigh numbers, which wait experimental verificaions, however. (author)

  7. Improved detection of chronic myocardial infarction with Fourier amplitude and phase imaging in two projections

    International Nuclear Information System (INIS)

    Akins, E.W.; Scott, E.A.; Williams, C.M.

    1987-01-01

    Twenty-seven patients with 33 chronic myocaridal infarctions underwent MR imaging and radionuclide ventriculography at rest. The radionuclide ventriculographs, in left anterior oblique (LAO) and left posterior oblique (LPO) projections, were analyzed by two independent observers by visual inspection and combined Fourier-transformed amplitude and phase imaging. Only 15 (45%) of the 33 infarctions were detected by visual inspection, but 21 (64%) were detected on the LAO Fourier-transformed images along. Thirty (91%) were detected by using both LAO and LPO Fourier-transformed images. On MR imaging, 28 (85%) of the myocardial infarctions appeared as areas of focal wall thinning. Combined Fourier-transformed amplitude and phase imaging in both LAO and LPO views discloses more myocardial infarctions than visual inspection or LAO Fourier-transformed images alone because inferior infarctions, which are frequently missed in the LAO view, are easily seen in the LPO view

  8. A new twist to fourier transforms

    CERN Document Server

    Meikle, Hamish D

    2004-01-01

    Making use of the inherent helix in the Fourier transform expression, this book illustrates both Fourier transforms and their properties in the round. The author draws on elementary complex algebra to manipulate the transforms, presenting the ideas in such a way as to avoid pages of complicated mathematics. Similarly, abbreviations are not used throughout and the language is kept deliberately clear so that the result is a text that is accessible to a much wider readership.The treatment is extended with the use of sampled data to finite and discrete transforms, the fast Fourier transform, or FFT, being a special case of a discrete transform. The application of Fourier transforms in statistics is illustrated for the first time using the examples operational research and later radar detection. In addition, a whole chapter on tapering or weighting functions is added for reference. The whole is rounded off by a glossary and examples of diagrams in three dimensions made possible by today's mathematics programs

  9. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  10. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    2016-09-01

    Full Text Available In the field of fast Fourier transform (FFT-based frequency invariant beamforming (FIB, there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL. The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  11. Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity

    Science.gov (United States)

    Prigozhin, Leonid; Sokolovsky, Vladimir

    2018-05-01

    We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.

  12. Application of fast fourier transform method to evaluate the accuracy of sbloca data base

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.; Leonardi, M.; Galetti, M.R.

    1997-01-01

    The purpose of this paper is to perform the quantitative accuracy evaluation of a small break LOCA data base and then evaluate the accuracy of RELAP5/MOD2 code i.e. of the ensemble constituted by the code itself, the user, the nodalization and the selected code options, in predicting this kind of transient. In order to achieve this objective, qualitative accuracy evaluation results from several tests performed in 4 facilities (LOBI, SPES, BETHSY and LSTF) are used. The quantitative evaluation is achieved adopting a method developed at University of Pisa, which has capabilities in quantifying the errors in code predictions with respect to the measured experimental signal, using the Fast Fourier Transform; this allows an integral representation of code discrepancies in the frequency domain. The RELAP5/MOD2 code has been extensively used at the University of Pisa and the nodalizations of the 4 facilities have been qualified through the application to several experiments performed in the same facilities. (author)

  13. The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method

    International Nuclear Information System (INIS)

    Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang

    2011-01-01

    Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)

  14. Description of the electron-hydrogen collision by the Coulomb Fourier transform method

    International Nuclear Information System (INIS)

    Levin, S.B.

    2005-01-01

    A recently developed Coulomb Fourier Transform method is applied to the system containing one heavy ion and two electrons. The transformed Hamiltonian is described with a controlled accuracy in an effective finite basis set as a finite dimensional operator matrix. The kernels of interaction are formulated in terms of the so called Nordsieck integrals

  15. Electronic Transport in Two-Dimensional Materials

    Science.gov (United States)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  16. Two-dimensional heterostructures for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)

    2017-06-12

    Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.

  17. A two-dimensional time domain near zone to far zone transformation

    Science.gov (United States)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.

  18. Reduction and coding of synthetic aperture radar data with Fourier transforms

    Science.gov (United States)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  19. X-ray stress measurement of ferritic steel using fourier analysis of Debye-Scherrer ring

    International Nuclear Information System (INIS)

    Fujimoto, Yohei; Sasaki, Toshihiko; Miyazaki, Toshiyuki

    2015-01-01

    In this study, X-ray stress measurements of ferritic steel based on Fourier analysis are conducted. Taira et al. developed the cosα method for X-ray stress measurements using a two-dimensional X-ray detector. Miyazaki et al. reported that the cosα method can be described more concisely by developing the Fourier series (the Fourier analysis method). The Fourier analysis method is expected to yield the stress measurement with an imperfect Debye-Scherrer ring and there is a possibility that the materials evaluation is different compared with the conventional method, that is, the sin 2 ψ method. In the Fourier analysis method, the strain measured by X-rays is developed as a Fourier series, and all the plane-stress components can be calculated from the Fourier series. In this study, the normal stress calculation was confirmed. In addition, the Fourier-analysis and cosα methods were used for X-ray stress measurements during a four-point bending test on a S45C test piece, and the effectiveness of the Fourier analysis method was confirmed. It was found that the experimental results from the Fourier analysis and cosα methods were nearly identical. In addition, the measurement accuracies of both the methods were equivalent. (author)

  20. Fast multiview three-dimensional reconstruction method using cost volume filtering

    Science.gov (United States)

    Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

    2014-03-01

    As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

  1. About peculiarities of application of the method of fast expansions in the solution of the Navier-Stokes equations

    Directory of Open Access Journals (Sweden)

    A. D. Chernyshov

    2017-01-01

    Full Text Available The brief presentation of the method of fast expansions is given to solve nonlinear differential equations. Application  rules of the operator of fast expansions are specified for solving differential equations. According to the method of fast expansions, an unknown function can be represented as the sum of the boundary function and Fourier series sines and cosines for one variable. The special construction of the boundary functions leads to reasonably fast convergence of the Fourier series, so that for engineering calculations, it is sufficient to consider only the first three members. The method is applicable both to linear and nonlinear integro-differential systems. By means of applying the method of fast expansions to nonlinear Navier-Stokes equations the problem is reduced to a closed system of ordinary differential equations, which solution doesn't represent special difficulties. We can reapply the method of fast expansions to the resulting system of differential equations and reduce the original problem to a system of algebraic equations. If the problem is n-dimensional, then after n-fold application of the method of fast expansions the problem will be reduced to a closed algebraic system. Finally, we obtain an analytic-form solution of complicated boundary value problem in partial derivatives. The flow of an incompressible viscous fluid of Navier–Stokes is considered in a curvilinear pipe. The problem is reduced to solving a closed system of ordinary differential equations with boundary conditions by the method of fast expansions. The article considers peculiarities of finding the coefficients of boundary functions and Fourier coefficients for the zero-order and first-order operators of fast expansions. Obtaining the analytic-form solution is of great interest, because it allows to analyze and to investigate the influence of various factors on the properties of the viscous fluid in specific cases.

  2. Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.

    Science.gov (United States)

    Dovlo, Edem; Baddour, Natalie

    2015-01-01

    The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.

  3. On the two-dimensional Saigo-Maeda fractional calculus asociated with two-dimensional Aleph TRANSFORM

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2013-11-01

    Full Text Available This paper deals with the study of two-dimensional Saigo-Maeda operators of Weyl type associated with Aleph function defined in this paper. Two theorems on these defined operators are established. Some interesting results associated with the H-functions and generalized Mittag-Leffler functions are deduced from the derived results. One dimensional analog of the derived results is also obtained.

  4. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  5. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  6. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  7. Fourier-based magnetic induction tomography for mapping resistivity

    International Nuclear Information System (INIS)

    Puwal, Steffan; Roth, Bradley J.

    2011-01-01

    Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dimensional conducting plane. When we add noise to the measured magnetic field, we find the fidelity of the measured to the true resistivity is quite robust for increasing levels of noise and increasing distances of the applied and measured field coils from the conducting plane, when properly filtered. We conclude that Fourier methods provide a reliable alternative for solving the inverse problem.

  8. Thermal conductivity in one-dimensional nonlinear systems

    Science.gov (United States)

    Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo

    2000-03-01

    Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.

  9. Parallel processing of two-dimensional Sn transport calculations

    International Nuclear Information System (INIS)

    Uematsu, M.

    1997-01-01

    A parallel processing method for the two-dimensional S n transport code DOT3.5 has been developed to achieve a drastic reduction in computation time. In the proposed method, parallelization is achieved with angular domain decomposition and/or space domain decomposition. The calculational speed of parallel processing by angular domain decomposition is largely influenced by frequent communications between processing elements. To assess parallelization efficiency, sample problems with up to 32 x 32 spatial meshes were solved with a Sun workstation using the PVM message-passing library. As a result, parallel calculation using 16 processing elements, for example, was found to be nine times as fast as that with one processing element. As for parallel processing by geometry segmentation, the influence of processing element communications on computation time is small; however, discontinuity at the segment boundary degrades convergence speed. To accelerate the convergence, an alternate sweep of angular flux in conjunction with space domain decomposition and a two-step rescaling method consisting of segmentwise rescaling and ordinary pointwise rescaling have been developed. By applying the developed method, the number of iterations needed to obtain a converged flux solution was reduced by a factor of 2. As a result, parallel calculation using 16 processing elements was found to be 5.98 times as fast as the original DOT3.5 calculation

  10. Rotation-type input-output relationships for Wigner distribution moments in fractional Fourier transform systems

    NARCIS (Netherlands)

    Bastiaans, M.J.; Alieva, T.

    2002-01-01

    It is shown how all global Wigner distribution moments of arbitrary order in the output plane of a (generally anamorphic) two-dimensional fractional Fourier transform system can be expressed in terms of the moments in the input plane. This general input-output relationship is then broken down into a

  11. Image quality assessment using two-dimensional complex mel-cepstrum

    Science.gov (United States)

    Cakir, Serdar; Cetin, A. Enis

    2016-11-01

    Assessment of visual quality plays a crucial role in modeling, implementation, and optimization of image- and video-processing applications. The image quality assessment (IQA) techniques basically extract features from the images to generate objective scores. Feature-based IQA methods generally consist of two complementary phases: (1) feature extraction and (2) feature pooling. For feature extraction in the IQA framework, various algorithms have been used and recently, the two-dimensional (2-D) mel-cepstrum (2-DMC) feature extraction scheme has provided promising results in a feature-based IQA framework. However, the 2-DMC feature extraction scheme completely loses image-phase information that may contain high-frequency characteristics and important structural components of the image. In this work, "2-D complex mel-cepstrum" is proposed for feature extraction in an IQA framework. The method tries to integrate Fourier transform phase information into the 2-DMC, which was shown to be an efficient feature extraction scheme for assessment of image quality. Support vector regression is used for feature pooling that provides mapping between the proposed features and the subjective scores. Experimental results show that the proposed technique obtains promising results for the IQA problem by making use of the image-phase information.

  12. Revisiting the quantum harmonic oscillator via unilateral Fourier transforms

    International Nuclear Information System (INIS)

    Nogueira, Pedro H F; Castro, Antonio S de

    2016-01-01

    The literature on the exponential Fourier approach to the one-dimensional quantum harmonic oscillator problem is revised and criticized. It is shown that the solution of this problem has been built on faulty premises. The problem is revisited via the Fourier sine and cosine transform method and the stationary states are properly determined by requiring definite parity and square-integrable eigenfunctions. (paper)

  13. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  14. Three-dimensional earthward fast flow in the near-Earth plasma sheet in a sheared field: comparisons between simulations and observations

    Directory of Open Access Journals (Sweden)

    K. Kondoh

    2009-06-01

    Full Text Available Three-dimensional configuration of earthward fast flow in the near-Earth plasma sheet is studied using three-dimensional magnetohydrodynamics (MHD simulations on the basis of the spontaneous fast reconnection model. In this study, the sheared magnetic field in the plasma sheet is newly considered in order to investigate the effects of it to the earthward fast flow, and the results are discussed in comparison with no-shear simulations. The virtual probes located at different positions in our simulation domain in shear/no-shear cases could explain different behavior of fast flows in the real observations.

  15. A low threshold nanocavity in a two-dimensional 12-fold photonic quasicrystal

    Science.gov (United States)

    Ren, Jie; Sun, XiaoHong; Wang, Shuai

    2018-05-01

    In this article, a low threshold nanocavity is built and investigated in a two-dimensional 12-fold holographic photonic quasicrystal (PQC). The cavity is formed by using the method of multi-beam common-path interference. By finely adjusting the structure parameters of the cavity, the Q factor and the mode volume are optimized, which are two keys to low-threshold on the basis of Purcell effect. Finally, an optimal cavity is obtained with Q value of 6023 and mode volume of 1.24 ×10-12cm3 . On the other hand, by Fourier Transformation of the electric field components in the cavity, the in-plane wave vectors are calculated and fitted to evaluate the cavity performance. The performance analysis of the cavity further proves the effectiveness of the optimization process. This has a guiding significance for the research of low threshold nano-laser.

  16. On some classes of two-dimensional local models in discrete two-dimensional monatomic FPU lattice with cubic and quartic potential

    International Nuclear Information System (INIS)

    Quan, Xu; Qiang, Tian

    2009-01-01

    This paper discusses the two-dimensional discrete monatomic Fermi–Pasta–Ulam lattice, by using the method of multiple-scale and the quasi-discreteness approach. By taking into account the interaction between the atoms in the lattice and their nearest neighbours, it obtains some classes of two-dimensional local models as follows: two-dimensional bright and dark discrete soliton trains, two-dimensional bright and dark line discrete breathers, and two-dimensional bright and dark discrete breather. (condensed matter: structure, thermal and mechanical properties)

  17. Two-dimensional models

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2005-02-01

    It is not possible to compactly review the overwhelming literature on two-dimensional models in a meaningful way without a specific viewpoint; I have therefore tacitly added to the above title the words 'as theoretical laboratories for general quantum field theory'. I dedicate this contribution to the memory of J. A. Swieca with whom I have shared the passion of exploring 2-dimensional models for almost one decade. A shortened version of this article is intended as a contribution to the project 'Encyclopedia of mathematical physics' and comments, suggestions and critical remarks are welcome. (author)

  18. Mean-field description of ultracold bosons on disordered two-dimensional optical lattices

    International Nuclear Information System (INIS)

    Buonsante, Pierfrancesco; Massel, Francesco; Penna, Vittorio; Vezzani, Alessandro

    2007-01-01

    In the present communication, we describe the properties induced by disorder on an ultracold gas of bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centred on the spatial distribution of the various phases, focusing particularly on the superfluid properties of the system as a function of external parameters and disorder amplitude. In particular, it is shown how disorder can suppress superfluidity, while partially preserving the system coherence. (fast track communication)

  19. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  20. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  1. Two-dimensional multifractal cross-correlation analysis

    International Nuclear Information System (INIS)

    Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong

    2017-01-01

    Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.

  2. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...

  3. Two-dimensional beam profiles and one-dimensional projections

    Science.gov (United States)

    Findlay, D. J. S.; Jones, B.; Adams, D. J.

    2018-05-01

    One-dimensional projections of improved two-dimensional representations of transverse profiles of particle beams are proposed for fitting to data from harp-type monitors measuring beam profiles on particle accelerators. Composite distributions, with tails smoothly matched on to a central (inverted) parabola, are shown to give noticeably better fits than single gaussian and single parabolic distributions to data from harp-type beam profile monitors all along the proton beam transport lines to the two target stations on the ISIS Spallation Neutron Source. Some implications for inferring beam current densities on the beam axis are noted.

  4. 10th International Conference on Progress in Fourier Transform Spectroscopy

    CERN Document Server

    Keresztury, Gábor; Kellner, Robert

    1997-01-01

    19 plenary lectures and 203 poster papers presented at the 10th International Conference of Fourier Transform Spectroscopy in Budapest 1995 give an overview on the state-of-the art of this technology and its wide range of applications. The reader will get information on any aspects of FTS including the latest instrumental developments, e.g. in diode array detection, time resolution FTS, microscopy and spectral mapping, double modulation and two-dimensional FTS.

  5. A sparse-mode spectral method for the simulation of turbulent flows

    International Nuclear Information System (INIS)

    Meneguzzi, M.; Politano, H.; Pouquet, A.; Zolver, M.

    1996-01-01

    We propose a new algorithm belonging to the family of the sparsemode spectral method to simulate turbulent flows. In this method the number of Fourier modes k increases with k more slowly than k D-1 in dimension D, while retaining the advantage of the fast Fourier transform. Examples of applications of the algorithm are given for the one-dimensional Burger's equation and two-dimensional incompressible MHD flows

  6. Estimation of pathological tremor from recorded signals based on adaptive sliding fast Fourier transform

    Directory of Open Access Journals (Sweden)

    Shengxin Wang

    2016-06-01

    Full Text Available Pathological tremor is an approximately rhythmic movement and considerably affects patients’ daily living activities. Biomechanical loading and functional electrical stimulation are proposed as potential alternatives for canceling the pathological tremor. However, the performance of suppression methods is associated with the separation of tremor from the recorded signals. In this literature, an algorithm incorporating a fast Fourier transform augmented with a sliding convolution window, an interpolation procedure, and a damping module of the frequency is presented to isolate tremulous components from the measured signals and estimate the instantaneous tremor frequency. Meanwhile, a mechanism platform is designed to provide the simulation tremor signals with different degrees of voluntary movements. The performance of the proposed algorithm and existing procedures is compared with simulated signals and experimental signals collected from patients. The results demonstrate that the proposed solution could detect the unknown dominant frequency and distinguish the tremor components with higher accuracy. Therefore, this algorithm is useful for actively compensating tremor by functional electrical stimulation without affecting the voluntary movement.

  7. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  8. High-spatial-resolution isotropic three-dimensional fast-recovery fast spin-echo magnetic resonance dacryocystography combined with topical administration of sterile saline solution

    International Nuclear Information System (INIS)

    Jing, Zhang; Lang, Chen; Qiu-Xia, Wang; Rong, Liu; Xin, Luo; Wen-Zhen, Zhu; Li-Ming, Xia; Jian-Pin, Qi; He, Wang

    2013-01-01

    Objective: This study aims to investigate the clinical performance of three-dimensional (3D) fast-recovery fast spin-echo (FRFSE) magnetic resonance dacryocystography (MRD) with topical administration of sterile saline solution for the assessment of the lacrimal drainage system (LDS). Methods: A total of 13 healthy volunteers underwent both 3D-FRFSE MRD and two-dimensional (2D)-impulse recovery (IR)-single-shot fast spin-echo (SSFSE) MRD after topical administration of sterile saline solution, and 31 patients affected by primary LDS outflow impairment or postsurgical recurrent epiphora underwent 3D-FRFSE MRD and conventional T1- and T2-weighted sequences. All patients underwent lacrimal endoscopy or surgery, which served as a standard of reference for confirming the MRD findings. Results: 3D-FRFSE MRD detected more visualized superior and inferior canaliculi and nasolacrimal duct than 2D-IR-SSFSE MRD. Compared with 2D-IR-SSFSE MRD, 3D-FRFSE MRD showed more visualized segments per LDS, although the difference was not statistically significant. Significant improvements in the inferior canaliculus and nasolacrimal duct visibility grades were achieved using 3D-FRFSE MRD. 3D-FRFSE MRD had 100% sensitivity and 63.6% specificity for detecting LDS obstruction. In 51 out of the 62 LDSs that were assessed, a 90% agreement was noted between the findings of 3D-FRFSE MRD and lacrimal endoscopy in detecting the obstruction level. Conclusion: 3D-FRFSE MRD combined with topical administration of sterile saline solution is a simple and noninvasive method of obtaining detailed morphological and functional information on the LDS. Overall, 3D-FRFSE MRD could be used as a reliable diagnostic method in many patients with epiphora prior to surgery

  9. NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding

    International Nuclear Information System (INIS)

    Guenther, Ulrich L.; Schaffhausen, Brian

    2002-01-01

    The analysis of the shape of signals in NMR spectra is a powerful tool to study exchange and reaction kinetics. Line shapes in two-dimensional spectra of proteins recorded for titrations with ligands provide information about binding rates observed at individual residues. Here we describe a fast method to simulate a series of line shapes derived from two-dimensional spectra of a protein during a ligand titration. This procedure, which takes the mutual effects of two dimensions into account, has been implemented in MATLAB as an add-on to NMRLab (Guenther et al., 2000). In addition, more complex kinetic models, including sequential and parallel reactions, were simulated to demonstrate common features of more complex line shapes which could be encountered in protein-ligand interactions. As an example of this method, we describe its application to line shapes obtained for a titration of the p85 N-SH2 domain of PI3-kinase with a peptide derived from polyomavirus middle T antigen (MT)

  10. Lie algebra contractions on two-dimensional hyperboloid

    International Nuclear Information System (INIS)

    Pogosyan, G. S.; Yakhno, A.

    2010-01-01

    The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.

  11. Classification of fault diagnosis in a gear wheel by used probabilistic neural network, fast Fourier transform and principal component analysis

    Directory of Open Access Journals (Sweden)

    Piotr CZECH

    2007-01-01

    Full Text Available This paper presents the results of an experimental application of artificial neural network as a classifier of the degree of cracking of a tooth root in a gear wheel. The neural classifier was based on the artificial neural network of Probabilistic Neural Network type (PNN. The input data for the classifier was in a form of matrix composedof statistical measures, obtained from fast Fourier transform (FFT and principal component analysis (PCA. The identified model of toothed gear transmission, operating in a circulating power system, served for generation of the teaching and testing set applied for the experiment.

  12. Quasi-two-dimensional holography

    International Nuclear Information System (INIS)

    Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.

    1980-01-01

    The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de

  13. Boundary effects in a quasi-two-dimensional driven granular fluid.

    Science.gov (United States)

    Smith, N D; Smith, M I

    2017-12-01

    The effect of a confining boundary on the spatial variations in granular temperature of a driven quasi-two-dimensional layer of particles is investigated experimentally. The radial drop in the relative granular temperature ΔT/T exhibits a maximum at intermediate particle numbers which coincides with a crossover from kinetic to collisional transport of energy. It is also found that at low particle numbers, the distributions of radial velocities are increasingly asymmetric as one approaches the boundary. The radial and tangential granular temperatures split, and in the tails of the radial velocity distribution there is a higher population of fast moving particles traveling away rather than towards the boundary.

  14. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  15. Traditional Semiconductors in the Two-Dimensional Limit.

    Science.gov (United States)

    Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B

    2018-02-23

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  16. Sufficient Controllability Condition for Affine Systems with Two-Dimensional Control and Two-Dimensional Zero Dynamics

    Directory of Open Access Journals (Sweden)

    D. A. Fetisov

    2015-01-01

    Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved

  17. Simulation of the Mitra 15 micro-machine on IBM 360/91. Microprogramming of the fast Fourier transform

    International Nuclear Information System (INIS)

    Augustides, Jean

    1973-01-01

    As computing time did not allow working in real time, and as different methods had been proposed to reduce the computing time (the Cooley-Tuckey method, the use of specific FFT processors), this thesis proposes an intermediate solution, between the entirely programmed solution and the entirely cabled solution. After some generalities on micro-programming (definition, history, benefits and drawbacks, perspectives), the author reports the micro-programming of the Mitra 15 micro-machine: description of the machine, memory, command memory and associated circuits, interruptions and suspensions, descriptions of micro-statements, execution of a micro-statement. Programs and subroutines developed for the modelling of Mitra 15 micro-machine on IBM 360/91 are presented. Then, the author reports the micro-programming of the fast Fourier transform: theory, program description, and test

  18. An asymptotic analytical solution to the problem of two moving boundaries with fractional diffusion in one-dimensional drug release devices

    International Nuclear Information System (INIS)

    Yin Chen; Xu Mingyu

    2009-01-01

    We set up a one-dimensional mathematical model with a Caputo fractional operator of a drug released from a polymeric matrix that can be dissolved into a solvent. A two moving boundaries problem in fractional anomalous diffusion (in time) with order α element of (0, 1] under the assumption that the dissolving boundary can be dissolved slowly is presented in this paper. The two-parameter regular perturbation technique and Fourier and Laplace transform methods are used. A dimensionless asymptotic analytical solution is given in terms of the Wright function

  19. Complex of two-dimensional multigroup programs for neutron-physical computations of nuclear reactor

    International Nuclear Information System (INIS)

    Karpov, V.A.; Protsenko, A.N.

    1975-01-01

    Briefly stated mathematical aspects of the two-dimensional multigroup method of neutron-physical computation of nuclear reactor. Problems of algorithmization and BESM-6 computer realisation of multigroup diffuse approximations in hexagonal and rectangular calculated lattices are analysed. The results of computation of fast critical assembly having complicated composition of the core are given. The estimation of computation accuracy of criticality, neutron fields distribution and efficiency of absorbing rods by means of computer programs developed is done. (author)

  20. A Note On Signs Of Fourier Coefficients Of Two Cusp Forms

    Indian Academy of Sciences (India)

    10

    Abstract. Kohnen and Sengupta showed that if two Hecke eigen cusp forms of weight k1 and k2 respectively with 1 < k1 < k2 over. Γ0(N ), have totally real algebraic Fourier coefficients {a(n)} and. {b(n)} respectively for n ≥ 1 with a(1) = 1 = b(1), then there exists an element σ of the absolute Galois group Gal(Q/Q) such.

  1. Pi, Fourier Transform and Ludolph van Ceulen

    NARCIS (Netherlands)

    Vajta, Miklos

    2000-01-01

    The paper describes an interesting (and unexpected) application of the Fast Fourier transform in number theory. Calculating more and more decimals of p (first by hand and then from the mid-20th century, by digital computers) not only fascinated mathematicians from ancient times but kept them busy as

  2. Limited-angle three-dimensional reconstructions using Fourier transform iterations and Radon transform iterations

    International Nuclear Information System (INIS)

    Tam, K.C.; Perez-Mendez, V.

    1981-01-01

    The principles of limited-angle reconstruction of space-limited objects using the concepts of allowed cone and missing cone in Fourier space are discussed. The distortion of a point source resulting from setting the Fourier components in the missing cone to zero has been calculated mathematically, and its bearing on the convergence of an iteration scheme involving Fourier transforms has been analyzed in detail. it was found that the convergence rate is fairly insensitive to the position of the point source within the boundary of the object, apart from an edge effect which tends to enhance some parts of the boundary in reconstructing the object. Another iteration scheme involving Radon transforms was introduced and compared to the Fourier transform method in such areas as root mean square error, stability with respect to noise, and computer reconstruction time

  3. Diagnostic performance of the three-dimensional fast spin echo-Cube sequence in comparison with a conventional imaging protocol in evaluation of the lachrymal drainage system

    International Nuclear Information System (INIS)

    Zhang, Jing; Chen, Lang; Wang, Qiu-Xia; Zhu, Wen-Zhen; Luo, Xin; Peng, Li; Liu, Rong; Xiong, Wei

    2015-01-01

    To compare the three-dimensional (3D)-fast spin-echo (FSE)-Cube with a conventional imaging protocol in evaluation of dacryostenosis. Thirty-three patients with epiphora underwent examinations using Cube magnetic resonance dacryocystography (MRD) and a conventional protocol, which included 3D fast-recovery fast spin-echo (FRFSE) MRD and two-dimensional (2D)-FSE sequences at 3.0 T. Using lachrymal endoscopic findings as the reference standard, we calculated the sensitivity and specificity of both protocols for detecting lachrymal drainage system (LDS) obstruction and their accuracies in depicting the level of obstruction. Comparable coronal and axial images were selected for bot sequences. Two neuroradiologists graded paired images for blurring, artefacts, anatomic details, and overall image quality. The two methods showed no significant difference in sensitivity (89.5 % vs. 94.7 %; p =0.674), specificity (64.3 %; p =1) or accuracy (86.8 %; p =1) in detecting or depicting LDS obstruction. Blurring and artefacts were significantly better on 2D-FSE images (p 0.05). In comparison with the conventional protocol, Cube MRD demonstrates satisfactory image quality and similar diagnostic capability for cases of possible LDS disease. (orig.)

  4. The Pegg–Barnett phase operator and the discrete Fourier transform

    International Nuclear Information System (INIS)

    Perez-Leija, Armando; Szameit, Alexander; Andrade-Morales, Luis A; Soto-Eguibar, Francisco; Moya-Cessa, Héctor M

    2016-01-01

    In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg–Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London–Susskind–Glogower phase operator, whose natural logarithm gives rise to the Pegg–Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties. (invited comment)

  5. Holographic and time-resolving ability of pulse-pair two-dimensional velocity interferometry

    International Nuclear Information System (INIS)

    Erskine, David J.; Smith, R. F.; Celliers, P. M.; Collins, G. W.; Bolme, C. A.; Ali, S. J.

    2014-01-01

    Previous velocity interferometers used at research laboratories for shock physics experiments measured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d) version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for this instrument, by treating the complex output image as a hologram. For data taken in an out of focus configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which are otherwise completely blurred. This solves a practical problem when using high numerical aperture optics having narrow depth of field to observe moving surface features such as cracks. Furthermore, theory predicts that the target appearance (position and reflectivity) at two separate moments in time are recorded by the main and conjugate images of the same hologram, and are partially separable during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible with different interferometer delays. Since the megapixel optical detectors we use have superior spatial resolution over electronic beam based framing cameras, this technology could be of great use in studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations on shocked silicon are shown

  6. Holographic and time-resolving ability of pulse-pair two-dimensional velocity interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, David J., E-mail: erskine1@llnl.gov; Smith, R. F.; Celliers, P. M.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bolme, C. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Ali, S. J. [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2014-06-15

    Previous velocity interferometers used at research laboratories for shock physics experiments measured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d) version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for this instrument, by treating the complex output image as a hologram. For data taken in an out of focus configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which are otherwise completely blurred. This solves a practical problem when using high numerical aperture optics having narrow depth of field to observe moving surface features such as cracks. Furthermore, theory predicts that the target appearance (position and reflectivity) at two separate moments in time are recorded by the main and conjugate images of the same hologram, and are partially separable during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible with different interferometer delays. Since the megapixel optical detectors we use have superior spatial resolution over electronic beam based framing cameras, this technology could be of great use in studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations on shocked silicon are shown.

  7. Two-dimensional flexible nanoelectronics

    Science.gov (United States)

    Akinwande, Deji; Petrone, Nicholas; Hone, James

    2014-12-01

    2014/2015 represents the tenth anniversary of modern graphene research. Over this decade, graphene has proven to be attractive for thin-film transistors owing to its remarkable electronic, optical, mechanical and thermal properties. Even its major drawback--zero bandgap--has resulted in something positive: a resurgence of interest in two-dimensional semiconductors, such as dichalcogenides and buckled nanomaterials with sizeable bandgaps. With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.

  8. FAST: a three-dimensional time-dependent FEL simulation code

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    1999-01-01

    In this report we briefly describe the three-dimensional, time-dependent FEL simulation code FAST. The equations of motion of the particles and Maxwell's equations are solved simultaneously taking into account the slippage effect. Radiation fields are calculated using an integral solution of Maxwell's equations. A special technique has been developed for fast calculations of the radiation field, drastically reducing the required CPU time. As a result, the developed code allows one to use a personal computer for time-dependent simulations. The code allows one to simulate the radiation from the electron bunch of any transverse and longitudinal bunch shape; to simulate simultaneously an external seed with superimposed noise in the electron beam; to take into account energy spread in the electron beam and the space charge fields; and to simulate a high-gain, high-efficiency FEL amplifier with a tapered undulator. It is important to note that there are no significant memory limitations in the developed code and an electron bunch of any length can be simulated

  9. Restoration of three-dimensional MR images degraded by rotational movements

    International Nuclear Information System (INIS)

    Wood, M.L.

    1990-01-01

    This paper describes a method to restore three-dimensional (3D) magnetic resonance (MR) images that have been degraded by rotational movements, such as head nodding by a restless patient. The technique for acquiring the 3D MR images includes additional MR signals, which provide one-dimensional (1D) and two-dimensional (2D) projections of anatomy. The 1D projections detect gross movements, and the 2D projections resolve displacements in one plane. The 2D projections are transformed from Cartesian coordinates to polar coordinates to identify rotation. A spatial transformation to reverse the rotation is applied to the imaging data after they have been Fourier transformed to resolve structures in the plane of rotation, but before the Fourier transform for the third direction

  10. High-dimensional free-space optical communications based on orbital angular momentum coding

    Science.gov (United States)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  11. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mathematical principles of signal processing Fourier and wavelet analysis

    CERN Document Server

    Brémaud, Pierre

    2002-01-01

    Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...

  13. FURNACE-J, 2-D Diffusion Burnup for Fast Reactors from JAERI Fast-Set

    International Nuclear Information System (INIS)

    Ikawa, Koji

    1984-01-01

    1 - Nature of physical problem solved: FURNACEJ is a two-dimensional diffusion-burnup code for use in the detailed burnup analysis of fast reactors. The code is an extension code of the FURNACE. There exists no essential difference between FURNACE and FURNACEJ. However, the latter can deal with JAERI-Fast-Set as its cross section library, while the former is designed to use ABBN set. Additionally, in FURNACEJ, group-dependent and -independent transverse buckling of each region can be computed and punched on cards, if desired. This is prepared for users so as to use them as input data for detailed two-dimensional x-y calculations. 2 - Restrictions on the complexity of the problem: Only r-z geometry is available

  14. Approximate solutions for the two-dimensional integral transport equation. Solution of complex two-dimensional transport problems

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two parts: the first part deals with the solution of complex two-dimensional transport problems, the second one (note CEA-N-2166) treats the critically mixed methods of resolution. A set of approximate solutions for the isotropic two-dimensional neutron transport problem has been developed using the interface current formalism. The method has been applied to regular lattices of rectangular cells containing a fuel pin, cladding, and water, or homogenized structural material. The cells are divided into zones that are homogeneous. A zone-wise flux expansion is used to formulate a direct collision probability problem within a cell. The coupling of the cells is effected by making extra assumptions on the currents entering and leaving the interfaces. Two codes have been written: CALLIOPE uses a cylindrical cell model and one or three terms for the flux expansion, and NAUSICAA uses a two-dimensional flux representation and does a truly two-dimensional calculation inside each cell. In both codes, one or three terms can be used to make a space-independent expansion of the angular fluxes entering and leaving each side of the cell. The accuracies and computing times achieved with the different approximations are illustrated by numerical studies on two benchmark problems and by calculations performed in the APOLLO multigroup code [fr

  15. Fast harmonic field mapper

    International Nuclear Information System (INIS)

    Au, R.; Fowler, M.; Hanawa, H.; Riedel, J.; Qua, Z.G.

    1984-01-01

    In early 1983 it was decided to mount coils on arms separated by 120 degrees and buck them out so that the third harmonic dphi/dt component would be cancelled and thus the first and second field harmonics could be very accurately measured. The original intention was to do as others had done, namely, use fast ADC's to read the voltages, and computer process the result to get the Fourier components. However, because of the 100 to 1 dynamic range of the fast ADC's and the likelihood that noise would be a problem, the authors decided to do things differently. Using a fast Fourier transform analyzer was considered, but this instrument is very expensive, so they decided to use a completely electronic analog approach: The authors decided to use active bandpass filters to render the harmonic components

  16. Two-dimensional topological field theories coupled to four-dimensional BF theory

    International Nuclear Information System (INIS)

    Montesinos, Merced; Perez, Alejandro

    2008-01-01

    Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level

  17. Three-dimensional fast recovery fast spin-echo imaging of the inner ear and the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, K.; Morikawa, M.; Ishimaru, H.; Ochi, M.; Hayashi, K. [Department of Radiology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Kabasawa, H. [GE Yokogawa Medical Systems, Tokyo (Japan)

    2002-11-01

    The aim of this study was to assess the performance of three-dimensional fast recovery fast spin-echo (3DFRFSE) for imaging of the inner ear as well as the facial and vestibulocochlear nerves. We evaluated 3DFRFSE sequences, comparing it with 3D fast spin-echo (3DFSE) in a water phantom and in 12 normal volunteers. We also examined 66 patients using 3DFRFSE sequence and assessed the visualization of their pathologies. In a water phantom study, signal intensity (SI) on 3DFRFSE was higher than that on 3DFSE at the same TR ranging from 1500 to 6000 ms. In normal volunteers, 3DFRFSE with TR of 2800 ms showed comparable SI, and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) superior to those on 3DFSE with TR of 5000 ms. In clinical setting, 3DFRFSE was useful in demonstrating anatomic details in the labyrinth and pathologic findings of inner ear. The 3DFRFSE can provide high-resolution heavily T2-weighted images (T2WI) with shorter scan time than 3DFSE without significant disadvantage. The 3DFRFSE is a beneficial technique for evaluation of lesions in the inner ear as well as the facial and vestibulocochlear nerves. (orig.)

  18. Fast electrostatic force calculation on parallel computer clusters

    International Nuclear Information System (INIS)

    Kia, Amirali; Kim, Daejoong; Darve, Eric

    2008-01-01

    The fast multipole method (FMM) and smooth particle mesh Ewald (SPME) are well known fast algorithms to evaluate long range electrostatic interactions in molecular dynamics and other fields. FMM is a multi-scale method which reduces the computation cost by approximating the potential due to a group of particles at a large distance using few multipole functions. This algorithm scales like O(N) for N particles. SPME algorithm is an O(NlnN) method which is based on an interpolation of the Fourier space part of the Ewald sum and evaluating the resulting convolutions using fast Fourier transform (FFT). Those algorithms suffer from relatively poor efficiency on large parallel machines especially for mid-size problems around hundreds of thousands of atoms. A variation of the FMM, called PWA, based on plane wave expansions is presented in this paper. A new parallelization strategy for PWA, which takes advantage of the specific form of this expansion, is described. Its parallel efficiency is compared with SPME through detail time measurements on two different computer clusters

  19. Three-dimensional Core Design of a Super Fast Reactor with a High Power Density

    International Nuclear Information System (INIS)

    Cao, Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi; Ju, Haitao

    2010-01-01

    The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/cm 3 . The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied

  20. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  1. Two-dimensional thermofield bosonization

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2005-01-01

    The main objective of this paper was to obtain an operator realization for the bosonization of fermions in 1 + 1 dimensions, at finite, non-zero temperature T. This is achieved in the framework of the real-time formalism of Thermofield Dynamics. Formally, the results parallel those of the T = 0 case. The well-known two-dimensional Fermion-Boson correspondences at zero temperature are shown to hold also at finite temperature. To emphasize the usefulness of the operator realization for handling a large class of two-dimensional quantum field-theoretic problems, we contrast this global approach with the cumbersome calculation of the fermion-current two-point function in the imaginary-time formalism and real-time formalisms. The calculations also illustrate the very different ways in which the transmutation from Fermi-Dirac to Bose-Einstein statistics is realized

  2. On the computation of molecular surface correlations for protein docking using fourier techniques.

    Science.gov (United States)

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  3. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  4. Fourier transform methods for calculating action variables and semiclassical eigenvalues for coupled oscillator systems

    International Nuclear Information System (INIS)

    Eaker, C.W.; Schatz, G.C.; De Leon, N.; Heller, E.J.

    1984-01-01

    Two methods for calculating the good action variables and semiclassical eigenvalues for coupled oscillator systems are presented, both of which relate the actions to the coefficients appearing in the Fourier representation of the normal coordinates and momenta. The two methods differ in that one is based on the exact expression for the actions together with the EBK semiclassical quantization condition while the other is derived from the Sorbie--Handy (SH) approximation to the actions. However, they are also very similar in that the actions in both methods are related to the same set of Fourier coefficients and both require determining the perturbed frequencies in calculating actions. These frequencies are also determined from the Fourier representations, which means that the actions in both methods are determined from information entirely contained in the Fourier expansion of the coordinates and momenta. We show how these expansions can very conveniently be obtained from fast Fourier transform (FFT) methods and that numerical filtering methods can be used to remove spurious Fourier components associated with the finite trajectory integration duration. In the case of the SH based method, we find that the use of filtering enables us to relax the usual periodicity requirement on the calculated trajectory. Application to two standard Henon--Heiles models is considered and both are shown to give semiclassical eigenvalues in good agreement with previous calculations for nondegenerate and 1:1 resonant systems. In comparing the two methods, we find that although the exact method is quite general in its ability to be used for systems exhibiting complex resonant behavior, it converges more slowly with increasing trajectory integration duration and is more sensitive to the algorithm for choosing perturbed frequencies than the SH based method

  5. Exact rebinning methods for three-dimensional PET.

    Science.gov (United States)

    Liu, X; Defrise, M; Michel, C; Sibomana, M; Comtat, C; Kinahan, P; Townsend, D

    1999-08-01

    The high computational cost of data processing in volume PET imaging is still hindering the routine application of this successful technique, especially in the case of dynamic studies. This paper describes two new algorithms based on an exact rebinning equation, which can be applied to accelerate the processing of three-dimensional (3-D) PET data. The first algorithm, FOREPROJ, is a fast-forward projection algorithm that allows calculation of the 3-D attenuation correction factors (ACF's) directly from a two-dimensional (2-D) transmission scan, without first reconstructing the attenuation map and then performing a 3-D forward projection. The use of FOREPROJ speeds up the estimation of the 3-D ACF's by more than a factor five. The second algorithm, FOREX, is a rebinning algorithm that is also more than five times faster, compared to the standard reprojection algorithm (3DRP) and does not suffer from the image distortions generated by the even faster approximate Fourier rebinning (FORE) method at large axial apertures. However, FOREX is probably not required by most existing scanners, as the axial apertures are not large enough to show improvements over FORE with clinical data. Both algorithms have been implemented and applied to data simulated for a scanner with a large axial aperture (30 degrees), and also to data acquired with the ECAT HR and the ECAT HR+ scanners. Results demonstrate the excellent accuracy achieved by these algorithms and the important speedup when the sinogram sizes are powers of two.

  6. Fast simulation of non-steady state emission problems in energy conversion

    NARCIS (Netherlands)

    Mees, P.A.J.; Wolff, E.H.P.; Verheijen, P.J.T.; Van den Bleek, C.M.

    1990-01-01

    Application of the Fast Fourier Transform (FFT) to the inversion of Laplace transforms is a recent development in the solution of the equations describing the behavior of chemical reactors. Chen and Hsu (1987) used the Fast Fourier Transform for the prediction of breakthrough curves of an isothermal

  7. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging

    International Nuclear Information System (INIS)

    Soloviev, Vadim Y.

    2006-01-01

    A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom

  8. Maximum-entropy data restoration using both real- and Fourier-space analysis

    International Nuclear Information System (INIS)

    Anderson, D.M.; Martin, D.C.; Thomas, E.L.

    1989-01-01

    An extension of the maximum-entropy (ME) data-restoration method is presented that is sensitive to periodic correlations in data. The method takes advantage of the higher signal-to-noise ratio for periodic information in Fourier space, thus enhancing statistically significant frequencies in a manner which avoids the user bias inherent in conventional Fourier filtering. This procedure incorporates concepts underlying new approaches in quantum mechanics that consider entropies in both position and momentum spaces, although the emphasis here is on data restoration rather than quantum physics. After a fast Fourier transform of the image, the phases are saved and the array of Fourier moduli are restored using the maximum-entropy criterion. A first-order continuation method is introduced that speeds convergence of the ME computation. The restored moduli together with the original phases are then Fourier inverted to yield a new image; traditional real-space ME restoration is applied to this new image completing one stage in the restoration process. In test cases improvement can be obtained from two to four stages of iteration. It is shown that in traditional Fourier filtering spurious features can be induced by selection or elimination of Fourier components without regard to their statistical significance. With the present approach there is no such freedom for the user to exert personal bias, so that features present in the final image and power spectrum are those which have survived the tests of statistical significance in both real and Fourier space. However, it is still possible for periodicities to 'bleed' across sharp boundaries. An 'uncertainty' relation is derived describing the inverse relationship between the resolution of these boundaries and the level of noise that can be eliminated. (orig./BHO)

  9. Multi-Beam Radio Frequency (RF) Aperture Arrays Using Multiplierless Approximate Fast Fourier Transform (FFT)

    Science.gov (United States)

    2017-08-01

    Fourier transform, discrete Fourier transform, digital array processing , antenna beamformers 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...125 3.7 Simulation of 2-D Beams Cross Sections .................................................................... 125 3.7.1 8...unlimited. List of Figures Figure Page Figure 1: N-beam Array Processing System using a Linear Array

  10. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao

    2015-02-25

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Application of the Fast Fourier Transform Based Method to assist in the qualification process for the PSB-VVER1000 RELAP5 nodalisation

    International Nuclear Information System (INIS)

    Muellner, N.; Seidelberger, E.; Del Nevo, A.; D'Auria, F.

    2005-01-01

    One dimensional Thermal-Hydraulic-System (TH-SYS) codes like RELAP5 provide a degree of freedom that is significantly greater than desired. An undisciplined code user with some experience usually can achieve any pre-set results by tuning the nodalization. To take some freedom away from the user and achieve code user independent results several strategies were adopted. The approach of the UNIPI is to develop a multi purpose nodalization which must pass a rigorous nodalization qualification process. A qualified nodalization is also the basis to apply the Uncertainty Methodology based on Accuracy Extrapolation (UMAE) or to develop the accuracy database and to apply the Code with capability of Internal Assessment of Uncertainty (CIAU). An important part of the nodalization qualification is to verify the results of the nodalization approach against experimental data. In this context the Fast Fourier Transform Based Method (FFTBM) provides an independent tool to assess the quantitative accuracy of the analysis. This paper will present a series of RELAP5 calculations, each assessed by the FFTBM, which analyze an experiment at the PSB-VVER1000 facility This experiment is a 0.7% Small Break (SB) Loss Of Coolant Accident (LOCA) in the Cold Leg (CL) near the Reactor Pressure Vessel (RPV). The FFTBM was used to establish a range in which parameters like power, break area or total heat losses can vary, while the nodalization is still qualified from a quantitative point of view. (author)

  12. Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2004-01-01

    Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented

  13. Proposed University of California Berkeley fast pulsar search machine

    International Nuclear Information System (INIS)

    Kulkarni, S.R.; Backer, D.C.; Werthimer, D.; Heiles, C.

    1984-01-01

    With the discovery of 1937+21 by Backer et al. (1982) there is much renewed interest in an all sky survey for fast pulsars. University of California Berkeley has designed and is in the process of building an innovative and powerful, stand-alone, real-time, digital signal-processor to conduct an all sky survey for pulsars with rotation rates as high as 2000 Hz and dispersion measures less than 120 cm -3 pc at 800 MHz. The machine is anticipated to be completed in the Fall of 1985. The search technique consists of obtaining a 2-dimensional Fourier transform of the microwave signal. The transform is effected in two stages: a 64-channel, 3-level digital autocorrelator provides the radio frequency to delay transform and a fast 128K-point array processor effects the time to intensity fluctuation frequency transform. The use of a digital correlator allows flexibility in the choice of the observing radio frequency. Besides, the bandwidth is not fixed as in a multi-channel filter bank. In the machine, bandwidths can range from less than a MHz to 40 MHz. In the transform plane, the signature of a pulsar consists of harmonically related peaks which lie on a straight line which passes through the origin. The increased computational demand of a fast pulsar survey will be met by a combination of multi-CPU processing and pipeline design which involves a fast array processor and five commercial 68,000-based micro-processors. 6 references, 3 figures

  14. A three-dimensional neutron transport benchmark solution

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    1993-01-01

    For one-group neutron transport theory in one dimension, several powerful analytical techniques have been developed to solve the neutron transport equation, including Caseology, Wiener-Hopf factorization, and Fourier and Laplace transform methods. In addition, after a Fourier transform in the transverse plane and formulation of a pseudo problem, two-dimensional (2-D) and three-dimensional (3-D) problems can be solved using the techniques specifically developed for the one-dimensional (1-D) case. Numerical evaluation of the resulting expressions requiring an inversion in the transverse plane have been successful for 2-D problems but becomes exceedingly difficult in the 3-D case. In this paper, we show that by using the symmetry along the beam direction, a 2-D problem can be transformed into a 3-D problem in an infinite medium. The numerical solution to the 3-D problem is then demonstrated. Thus, a true 3-D transport benchmark solution can be obtained from a well-established numerical solution to a 2-D problem

  15. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  16. Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis.

    Science.gov (United States)

    Talhaoui, Hicham; Menacer, Arezki; Kessal, Abdelhalim; Kechida, Ridha

    2014-09-01

    This paper presents new techniques to evaluate faults in case of broken rotor bars of induction motors. Procedures are applied with closed-loop control. Electrical and mechanical variables are treated using fast Fourier transform (FFT), and discrete wavelet transform (DWT) at start-up and steady state. The wavelet transform has proven to be an excellent mathematical tool for the detection of the faults particularly broken rotor bars type. As a performance, DWT can provide a local representation of the non-stationary current signals for the healthy machine and with fault. For sensorless control, a Luenberger observer is applied; the estimation rotor speed is analyzed; the effect of the faults in the speed pulsation is compensated; a quadratic current appears and used for fault detection. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2.

    Science.gov (United States)

    Backes, Claudia; Berner, Nina C; Chen, Xin; Lafargue, Paul; LaPlace, Pierre; Freeley, Mark; Duesberg, Georg S; Coleman, Jonathan N; McDonald, Aidan R

    2015-02-23

    Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two-dimensional topological photonics

    Science.gov (United States)

    Khanikaev, Alexander B.; Shvets, Gennady

    2017-12-01

    Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

  19. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  20. Single-shot parallel full range complex Fourier-domain optical coherence tomography

    International Nuclear Information System (INIS)

    Huang Bingjie; Bu Peng; Nan Nan; Wang Xiangzhao

    2011-01-01

    We present a method of parallel full range complex Fourier-domain optical coherence tomography (FDOCT) that is capable of acquiring an artifacts-free two-dimensional (2-D) cross-sectional image, i.e. a full range B-scan tomogram, by a single shot of 2-D CCD camera. This method is based on a spatial carrier technique, in which the spatial carrier-frequency is instantaneously introduced into the 2-D spectral interferogram registered in parallel FDOCT by using a grating-generated reference beam. The spatial-carrier-contained 2-D spectral interferogram is processed through Fourier transformation to obtain a complex 2-D spectral interferogram. From the 2-D complex spectral interferomgram, a full range B-scan tomogram is reconstructed. The principle of our method is confirmed by imaging an onion sample.

  1. Innovative design method of automobile profile based on Fourier descriptor

    Science.gov (United States)

    Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei

    2017-10-01

    Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.

  2. Fourier-based reconstruction via alternating direction total variation minimization in linear scan CT

    International Nuclear Information System (INIS)

    Cai, Ailong; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2015-01-01

    In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption

  3. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  4. Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.

    1993-10-01

    We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.

  5. X-ray imaging device for one-dimensional and two-dimensional radioscopy

    International Nuclear Information System (INIS)

    1978-01-01

    The X-ray imaging device for the selectable one-dimensional or two-dimensional pictures of objects illuminated by X-rays, comprising an X-ray source, an X-ray screen, and an opto-electrical picture development device placed behind the screen, is characterized by an anamorphotic optical system, which is positioned with a one-dimensional illumination between the X-ray screen and the opto-electrical device and that a two-dimensional illumination will be developed, and that in view of the lens system which forms part of the opto-electrical device, there is placed an X-ray screen in a specified beam direction so that a magnified image may be formed by equalisation of the distance between the X-ray screen and the lens system. (G.C.)

  6. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  7. Novel target design algorithm for two-dimensional optical storage (TwoDOS)

    NARCIS (Netherlands)

    Huang, Li; Chong, T.C.; Vijaya Kumar, B.V.K.; Kobori, H.

    2004-01-01

    In this paper we introduce the Hankel transform based channel model of Two-Dimensional Optical Storage (TwoDOS) system. Based on this model, the two-dimensional (2D) minimum mean-square error (MMSE) equalizer has been derived and applied to some simple but common cases. The performance of the 2D

  8. The su(2)α Hahn oscillator and a discrete Fourier-Hahn transform

    International Nuclear Information System (INIS)

    Jafarov, E I; Stoilova, N I; Van der Jeugt, J

    2011-01-01

    We define the quadratic algebra su(2) α which is a one-parameter deformation of the Lie algebra su(2) extended by a parity operator. The odd-dimensional representations of su(2) (with representation label j, a positive integer) can be extended to representations of su(2) α . We investigate a model of the finite one-dimensional harmonic oscillator based upon this algebra su(2) α . It turns out that in this model the spectrum of the position and momentum operator can be computed explicitly, and that the corresponding (discrete) wavefunctions can be determined in terms of Hahn polynomials. The operation mapping position wavefunctions into momentum wavefunctions is studied, and this so-called discrete Fourier-Hahn transform is computed explicitly. The matrix of this discrete Fourier-Hahn transform has many interesting properties, similar to those of the traditional discrete Fourier transform. (paper)

  9. Microbunching instability in a chicane: Two-dimensional mean field treatment

    Directory of Open Access Journals (Sweden)

    Gabriele Bassi

    2009-08-01

    Full Text Available We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI@Elettra, with emphasis on the amplification of a perturbation at a particular wavelength and the associated longitudinal bunch spectrum. Gain curves are in rough agreement with those of the linearized Vlasov system at intermediate wavelengths, but show some deviation at the smallest wavelengths treated and show the breakdown of a coasting beam assumption at long wavelengths. The linearized Vlasov system is discussed in some detail. A new 2D integral equation is derived which reduces to a well-known 1D integral equation in the coasting beam case.

  10. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.

    Science.gov (United States)

    Roberts, Daniel A; Stanford, Douglas

    2015-09-25

    We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators.

  11. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  12. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System

    Science.gov (United States)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.

    2017-03-01

    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  13. Fourier transforms principles and applications

    CERN Document Server

    Hansen, Eric W

    2014-01-01

    Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods.  Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.

  14. Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Omais, Badaoui; Crepier, Julien; Charon, Nadège; Courtiade, Marion; Quignard, Alain; Thiébaut, Didier

    2013-04-21

    Biomass fast pyrolysis is considered as a promising route to produce liquid for the transportation field from a renewable resource. However, the derived bio-oils are mainly oxygenated (45-50%w/w O on a wet basis) and contain almost no hydrocarbons. Therefore, upgrading is necessary to obtain a liquid with lower oxygen content and characterization of oxygenated compounds in these products is essential to assist conversion reactions. For this purpose, comprehensive two-dimensional gas chromatography (GC × GC) can be investigated. Oxygen speciation in such matrices is hampered by the large diversity of oxygenated families and the complexity of the hydrocarbon matrix. Moreover, response factors must be taken into account for oxygenate quantification as the Flame Ionisation Detector (FID) response varies when a molecule contains heteroatoms. To conclude, no distillation cuts were accessible and the analysis had to cover a large range of boiling points (30-630 °C). To take up this analytical challenge, a thorough optimization approach was developed. In fact, four GC × GC column sets were investigated to separate oxygenated compounds from the hydrocarbon matrix. Both model mixtures and the upgraded biomass flash pyrolysis oil were injected using GC × GC-FID to reach a suitable chromatographic separation. The advantages and drawbacks of each column combination for oxygen speciation in upgraded bio-oils are highlighted in this study. Among the four sets, an original polar × semi-polar column combination was selected and enabled the identification by GC × GC-ToF/MS of more than 40 compounds belonging to eight chemical families: ketones, furans, alcohols, phenols, carboxylic acids, guaiacols, anisols, and esters. For quantification purpose, the GC × GC-FID chromatogram was divided into more than 60 blobs corresponding to the previously identified analyte and hydrocarbon zones. A database associating each blob to a molecule and its specific response factor (determined

  15. Two-Dimensional Materials for Sensing: Graphene and Beyond

    Directory of Open Access Journals (Sweden)

    Seba Sara Varghese

    2015-09-01

    Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.

  16. Two-dimensional calculus

    CERN Document Server

    Osserman, Robert

    2011-01-01

    The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o

  17. Fast and accurate computation of projected two-point functions

    Science.gov (United States)

    Grasshorn Gebhardt, Henry S.; Jeong, Donghui

    2018-01-01

    We present the two-point function from the fast and accurate spherical Bessel transformation (2-FAST) algorithm1Our code is available at https://github.com/hsgg/twoFAST. for a fast and accurate computation of integrals involving one or two spherical Bessel functions. These types of integrals occur when projecting the galaxy power spectrum P (k ) onto the configuration space, ξℓν(r ), or spherical harmonic space, Cℓ(χ ,χ'). First, we employ the FFTLog transformation of the power spectrum to divide the calculation into P (k )-dependent coefficients and P (k )-independent integrations of basis functions multiplied by spherical Bessel functions. We find analytical expressions for the latter integrals in terms of special functions, for which recursion provides a fast and accurate evaluation. The algorithm, therefore, circumvents direct integration of highly oscillating spherical Bessel functions.

  18. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  19. Extending the XFEM approach for fast transient three-dimensional crack propagation in ductile materials

    International Nuclear Information System (INIS)

    Pelee-De-Saint-Maurice, Romains

    2014-01-01

    This PhD thesis presents numerical methods is dedicated to three-dimensional crack propagation in the framework of fast explicit structural dynamics using EUROPLEXUS software (currently abbreviated EPX, co-owned by CEA and EC/JRC). An approach based on the well-known XFEM method is proposed, representing the crack through level set functions. Special care is given to the update of the level set functions from the propagation velocity expressed on the crack edge, since the most widely used method based on the solution of Hamilton-Jacobi equations lacks robustness for fast transient crack propagations, even when level-sets are computed on an auxiliary regular finite difference grid. It is therefore chosen instead to implement a 3D approximated geometric method to update both level-sets. As far as failure mechanics is concerned, a local stress criterion on the edge of the crack, first developed by Haboussa et al., gives characteristic parameters of the material fracture. Mechanical equivalent quantities (strain, deformation) around the crack front are weighted by a Gaussian function, which gives more importance to Gauss integration points located near the crack tip. The maximum of the equivalent stress tensor near the crack tip gives the direction of the crack, and the Kanninen equation gives the crack velocity. Besides, because of the discontinuous displacement field, the numerical integration for elements cut by the crack yields performance issues. Increasing the number of quadrature points is CPU time consuming and quite hard to handle if it is chosen to change the number of points only for elements in the vicinity of the crack. Another approach tested here consists in keeping constant the number and position of quadrature points and modifying their weights in cut elements to obtain an accurate integration of several reference discontinuous fields. The proposed methods are tested and validated on significant examples, both two-dimensional, to ensure the backward

  20. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-11

    360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.

  1. Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing

    Science.gov (United States)

    Park, J. H.

    1984-01-01

    An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.

  2. Study of two-dimensional Debye clusters using Brownian motion

    International Nuclear Information System (INIS)

    Sheridan, T.E.; Theisen, W.L.

    2006-01-01

    A two-dimensional Debye cluster is a system of n identical particles confined in a parabolic well and interacting through a screened Coulomb (i.e., a Debye-Hueckel or Yukawa) potential with a Debye length λ. Experiments were performed for 27 clusters with n=3-63 particles (9 μm diam) in a capacitively coupled 9 W rf discharge at a neutral argon pressure of 13.6 mTorr. In the strong-coupling regime each particle exhibits small amplitude Brownian motion about its equilibrium position. These motions were projected onto the center-of-mass and breathing modes and Fourier analyzed to give resonance curves from which the mode frequencies, amplitudes, and damping rates were determined. The ratio of the breathing frequency to the center-of-mass frequency was compared with theory to self-consistently determine the Debye shielding parameter κ, Debye length λ, particle charge q, and mode temperatures. It is found that 1 < or approx. κ < or approx. 2, and κ decreases weakly with n. The particle charge averaged over all measurements is -14 200±200 e, and q decreases slightly with n. The two center-of-mass modes and the breathing mode are found to have the same temperature, indicating that the clusters are in thermal equilibrium with the neutral gas. The average cluster temperature is 399±5 K

  3. Quantum copying and simplification of the quantum Fourier transform

    Science.gov (United States)

    Niu, Chi-Sheng

    Theoretical studies of quantum computation and quantum information theory are presented in this thesis. Three topics are considered: simplification of the quantum Fourier transform in Shor's algorithm, optimal eavesdropping in the BB84 quantum cryptographic protocol, and quantum copying of one qubit. The quantum Fourier transform preceding the final measurement in Shor's algorithm is simplified by replacing a network of quantum gates with one that has fewer and simpler gates controlled by classical signals. This simplification results from an analysis of the network using the consistent history approach to quantum mechanics. The optimal amount of information which an eavesdropper can gain, for a given level of noise in the communication channel, is worked out for the BB84 quantum cryptographic protocol. The optimal eavesdropping strategy is expressed in terms of various quantum networks. A consistent history analysis of these networks using two conjugate quantum bases shows how the information gain in one basis influences the noise level in the conjugate basis. The no-cloning property of quantum systems, which is the physics behind quantum cryptography, is studied by considering copying machines that generate two imperfect copies of one qubit. The best qualities these copies can have are worked out with the help of the Bloch sphere representation for one qubit, and a quantum network is worked out for an optimal copying machine. If the copying machine does not have additional ancillary qubits, the copying process can be viewed using a 2-dimensional subspace in a product space of two qubits. A special representation of such a two-dimensional subspace makes possible a complete characterization of this type of copying. This characterization in turn leads to simplified eavesdropping strategies in the BB84 and the B92 quantum cryptographic protocols.

  4. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  5. Evaluation of shoulder pathology: three-dimensional enhanced T1 high-resolution isotropic volume excitation MR vs two-dimensional fast spin echo T2 fat saturation MR.

    Science.gov (United States)

    Park, H J; Lee, S Y; Kim, M S; Choi, S H; Chung, E C; Kook, S H; Kim, E

    2015-03-01

    To evaluate the diagnostic accuracy of three-dimensional (3D) enhanced T1 high-resolution isotropic volume excitation (eTHRIVE) shoulder MR for the detection of rotator cuff tears, labral lesions and calcific tendonitis of the rotator cuff in comparison with two-dimensional (2D) fast spin echo T2 fat saturation (FS) MR. This retrospective study included 73 patients who underwent shoulder MRI using the eTHRIVE technique. Shoulder MR images were interpreted separately by two radiologists. They evaluated anatomic identification and image quality of the shoulder joint on routine MRI sequences (axial and oblique coronal T2 FS images) and compared them with the reformatted eTHRIVE images. The images were scored on a four-point scale (0, poor; 1, questionable; 2, adequate; 3, excellent) according to the degree of homogeneous and sufficient fat saturation to penetrate bone and soft tissue, visualization of the glenoid labrum and distinction of the supraspinatus tendon (SST). The diagnostic accuracy of eTHRIVE images compared with routine MRI sequences was evaluated in the setting of rotator cuff tears, glenoid labral injuries and calcific tendonitis of the SST. Fat saturation scores for eTHRIVE were significantly higher than those of the T2 FS for both radiologists. The sensitivity and accuracy of the T2 FS in diagnosing rotor cuff tears were >90%, whereas sensitivity and accuracy of the eTHRIVE method were significantly lower. The sensitivity, specificity and accuracy of both images in diagnosing labral injuries and calcific tendonitis were similar and showed no significant differences. The specificity of both images for the diagnosis of labral injuries and calcific tendonitis was higher than the sensitivities. The accuracy of 3D eTHRIVE imaging was comparable to that of 2D FSE T2 FS for the diagnosis of glenoid labral injury and calcific tendonitis of SST. The 3D eTHRIVE technique was superior to 2D FSE T2 FS in terms of fat saturation. Overall, 3D eTHRIVE was inferior

  6. Three-dimensional core analysis on a super fast reactor with negative local void reactivity

    International Nuclear Information System (INIS)

    Cao Liangzhi; Oka, Yoshiaki; Ishiwatari, Yuki; Ikejiri, Satoshi

    2009-01-01

    Keeping negative void reactivity throughout the cycle life is one of the most important requirements for the design of a supercritical water-cooled fast reactor (super fast reactor). Previous conceptual design has negative overall void reactivity. But the local void reactivity, which is defined as the reactivity change when the coolant of one fuel assembly disappears, also needs to be kept negative throughout the cycle life because the super fast reactor is designed with closed fuel assemblies. The mechanism of the local void reactivity is theoretically analyzed from the neutrons balance point of view. Three-dimensional neutronics/thermal-hydraulic coupling calculation is employed to analyze the characteristics of the super fast reactor including the local void reactivity. Some configurations of the core are optimized to decrease the local void reactivity. A reference core is successfully designed with keeping both overall and local void reactivity negative. The maximum local void reactivity is less than -30 pcm

  7. Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions

    Directory of Open Access Journals (Sweden)

    Ketata H.

    2012-06-01

    Full Text Available An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW. The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.

  8. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    Science.gov (United States)

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2017-06-01

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  9. Finite element Fourier and Abbe transform methods for generalization of aperture function and geometry in Fraunhofer diffraction theory

    International Nuclear Information System (INIS)

    Kraus, H.G.

    1991-01-01

    This paper discusses methods for calculating Fraunhofer intensity fields resulting from diffraction through one- and two-dimensional apertures are presented. These methods are based on the geometric concept of finite elements and on Fourier and Abbe transforms. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define aperture(s) of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s) which may be of continuous or discontinuous form. The transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is most evident in two dimensions, where several examples are presented which include secondary obstructions, straight and curved secondary spider supports, multiple-mirror arrays, synthetic aperture arrays, segmented mirrors, apertures covered by screens, apodization, and phase plates. Typically, the finite element Abbe transform method results in significant gains in computational efficiency over the finite element Fourier transform method, but is also subject to some loss in generality

  10. An alternative path to the boundary: The CFT as the Fourier space of AdS

    Science.gov (United States)

    Tolfree, Ian M.

    2009-12-01

    In this thesis we shed new light on the conjectured duality between an n + 1 dimensional theory of gravity in anti de Sitter space (AdS) and an n dimensional conformal field theory (CFT) by showing that the CFT can be interpreted as the Fourier space of AdS. We then make use of this to gain insight into the nature of black hole entropy. In the first part of this thesis, we give an introduction to the ideas of and review the basics of the AdS/CFT. In the next section we make use of well known integral geometry techniques to derive the Fourier transformation of a function on AdS and see it is a function with compact support on the boundary. Comparing this to the literature, we find that the Green's functions from the literature are actually the Fourier weights of the transformation and that the boundary values of fields appearing in the correspondence are the Fourier coefficients of the transformation. One is thus left to interpret the CFT as the quantized version of a classical theory in AdS and the dual operator as the Fourier coefficients. Group theoretic considerations are discussed in relation to the transformation and its potential use in constructing QCD like theories. In the last section, we then build upon this to study the BTZ black hole. Named after its authors, Banados, Teitelboim and Zanelli, the BTZ black hole is a three dimensional (two space plus one time dimension) black hole in anti de Sitter space. Following standard procedures for modifying Fourier Transformations to accommodate quotient spaces we arrive at a mapping in a black hole background consistent with known results that yields the exact micro-states of a scalar field in a black hole background. We find that the micro-states are the Fourier coefficients on the boundary, which transform under the principal series representation of SL(2, R). Using the knowledge of how to represent a bulk scalar field in the CFT, and knowing how a black hole interacts with a scalar field, we deduce the

  11. Developments of optical fast-gated imaging systems

    International Nuclear Information System (INIS)

    Koehler, H.A.; Kotecki, D.

    1984-08-01

    Several fast-gated imaging systems to measure ultra-fast single-transient data have been developed for time-resolved imaging of pulsed radiation sources. These systems were designed to achieve image recording times of 1 to 3 ms and dynamic ranges of >200:1 to produce large two-dimensional images (greater than or equal to 10 4 spatial points) of 1 to 2 ns exposure and small two-dimensional images (less than or equal to 200 spatial points) of less than or equal to 0.5 ns exposure. Both MCP intensified solid-state two-dimensional framing cameras and streak camera/solid-state camera systems were used; the framing camera system provides snap shots with high spatial resolution whereas the streak camera system provides for limited spatial points each with high temporal resolution. Applications of these systems include electron-beam, x-ray, gamma-ray, and neutron diagnostics. This report reviews the characteristics of the major components of fast-gated imaging systems developed at Lawrence Livermore National Laboratory. System performances are described in view of major experiments, and the diagnostic requirements of new experiments in atomic physics (x-ray lasers) and nuclear physics (fusion) are indicated

  12. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Laundy, David; Sawhney, Kawal [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-06

    The two-dimensional slope error of an X-ray mirror has been retrieved by employing the speckle scanning technique, which will be valuable at synchrotron radiation facilities and in astronomical telescopes. In situ metrology overcomes many of the limitations of existing metrology techniques and is capable of exceeding the performance of present-day optics. A novel technique for precisely characterizing an X-ray bimorph mirror and deducing its two-dimensional (2D) slope error map is presented. This technique has also been used to perform fast optimization of a bimorph mirror using the derived 2D piezo response functions. The measured focused beam size was significantly reduced after the optimization, and the slope error map was then verified by using geometrical optics to simulate the focused beam profile. This proposed technique is expected to be valuable for in situ metrology of X-ray mirrors at synchrotron radiation facilities and in astronomical telescopes.

  13. Soft x-ray microscope using Fourier transform holography

    International Nuclear Information System (INIS)

    McNulty, I.; Kirz, J.; Jacobsen, C.; Anderson, E.; Howells, M.R.; Rarback, H.

    1989-01-01

    A Fourier transform holographic microscope with an anticipated resolution of better than 100 nm has been built. Extensive testing of the apparatus has begun. Preliminary results include the recording of interference fringes using 3.6 nm x-rays. The microscope employs a charge-coupled device (CCD) detector array of 576 x 384 elements. The system is illuminated by soft x-rays from a high brightness undulator. The reference point source is formed by a Fresnel zone plate with a finest outer zone width of 50 nm. Sufficient temporal coherence for hologram formation is obtained by a spherical grating monochromator. The x-ray hologram intensities at the recording plane are to be collected, digitized and reconstructed by computer. Data acquisition is under CAMAC control, while image display and off-line processing takes place on a VAX graphics workstation. Computational models of Fourier transform hologram synthesis, and reconstruction in the presence of noise, have demonstrated the feasibility of numerical methods in two dimensions, and that three-dimensional information is potentially recoverable. 13 refs., 3 figs

  14. Fourier-muunnoksesta

    OpenAIRE

    NIEMELÄ, EERO

    2008-01-01

    Tutkielman aiheena on Fourier-muunnoksen esittely. Tarkoituksena on erityisesti johdatella lukija Fourier-sarjan ja -muunnoksen käsitteisiin. Fourier-muunnosten teoria kuuluu yleisempään Fourier-analyysin aihepiiriin. Fourier-analyysin keskiössä on tulos, jonka mukaan tietyt ehdot täyttävää funktiota voidaan approksimoida mielivaltaisen tarkasti niin sanotun Fourier-sarjan avulla. Osoitamme, että 2\\pi-jaksollisen funktion Lebesgue-neliöintegroituvuus takaa suppenevan Fourier-sarjakehitelm...

  15. Blind detection of isolated astrophysical pulses in the spatial Fourier transform domain

    Science.gov (United States)

    Schmid, Natalia A.; Prestage, Richard M.

    2018-04-01

    We present a novel approach for the detection of isolated transients in pulsar surveys and fast radio transient observations. Rather than the conventional approach of performing a computationally expensive blind DM search, we take the spatial Fourier transform (SFT) of short (˜ few seconds) sections of data. A transient will have a characteristic signature in the SFT domain, and we present a blind statistic which may be used to detect this signature at an empirical zero False Alarm Rate (FAR). The method has been evaluated using simulations, and also applied to two fast radio burst observations. In addition to its use for current observations, we expect this method will be extremely beneficial for future multi-beam observations made by telescopes equipped with phased array feeds.

  16. The fit of an X-ray diffraction profile by Fourier analysis

    International Nuclear Information System (INIS)

    Bourniquel, B.; Feron, J.

    1985-01-01

    The fast Fourier transform algorithm commonly used for line profile analysis requires a list of values of the diffracted intensity with constant sintheta step; raw data are usually obtained at constant 2theta step; to interpolate between the measured values an analytic expression of the profile function is very useful. Statistical estimation is used to fit an analytic function to data; the only assumption made is the continuity of this function and no critical initialization is needed. Three different expressions are used: a Fourier sum for the peak and two polynomials of a suitable variable for the tails; the algorithm provides continuity for the function and its first derivative. Simulated examples using a Lorentzian and a Gaussian function are given and several criteria of goodness of fit are examined. The program runs on a PDP 11/03 digital computer with only 45 kbytes available memory. (orig.)

  17. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-05-18

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach's performance with Multisim simulations and actual experiments.

  18. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jianfeng Wu

    2016-05-01

    Full Text Available For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments.

  19. Two-dimensional phononic crystals with time-varying properties: a multiple scattering analysis

    International Nuclear Information System (INIS)

    Wright, D W; Cobbold, R S C

    2010-01-01

    Multiple scattering theory is a versatile two- and three-dimensional method for characterizing the acoustic wave transmission through many scatterers. It provides analytical solutions to wave propagation in scattering structures, and its computational complexity grows logarithmically with the number of scatterers. In this paper we show how the 2D method can be adapted to include the effects of time-varying material parameters. Specifically, a new T-matrix is defined to include the effects of frequency modulation that occurs in time-varying phononic crystals. Solutions were verified against finite difference time domain (FDTD) simulations and showed excellent agreement. This new method enables fast characterization of time-varying phononic crystals without the need to resort to lengthy FDTD simulations. Also, the method of combining T-matrices to form the T-supermatrix remains unchanged provided that the new matrix definitions are used. The method is quite compatible with existing implementations of multiple scattering theory and could be readily extended to three-dimensional multiple scattering theory

  20. Two- and three-dimensional CT analysis of ankle fractures

    International Nuclear Information System (INIS)

    Magid, D.; Fishman, E.K.; Ney, D.R.; Kuhlman, J.E.

    1988-01-01

    CT with coronal and sagittal reformatting (two-dimensional CT) and animated volumetric image rendering (three-dimensional CT) was used to assess ankle fractures. Partial volume limits transaxial CT in assessments of horizontally oriented structures. Two-dimensional CT, being orthogonal to the plafond, superior mortise, talar dome, and tibial epiphysis, often provides the most clinically useful images. Two-dimensional CT is most useful in characterizing potentially confusing fractures, such as Tillaux (anterior tubercle), triplane, osteochondral talar dome, or nondisplaced talar neck fractures, and it is the best study to confirm intraarticular fragments. Two-and three-dimensional CT best indicate the percentage of articular surface involvement and best demonstrate postoperative results or complications (hardware migration, residual step-off, delayed union, DJD, AVN, etc). Animated three-dimensional images are the preferred means of integrating the two-dimensional findings for surgical planning, as these images more closely simulate the clinical problem

  1. On two-dimensionalization of three-dimensional turbulence in shell models

    DEFF Research Database (Denmark)

    Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.

    2010-01-01

    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell m......-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case....

  2. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  3. Iterative wave-front reconstruction in the Fourier domain.

    Science.gov (United States)

    Bond, Charlotte Z; Correia, Carlos M; Sauvage, Jean-François; Neichel, Benoit; Fusco, Thierry

    2017-05-15

    The use of Fourier methods in wave-front reconstruction can significantly reduce the computation time for large telescopes with a high number of degrees of freedom. However, Fourier algorithms for discrete data require a rectangular data set which conform to specific boundary requirements, whereas wave-front sensor data is typically defined over a circular domain (the telescope pupil). Here we present an iterative Gerchberg routine modified for the purposes of discrete wave-front reconstruction which adapts the measurement data (wave-front sensor slopes) for Fourier analysis, fulfilling the requirements of the fast Fourier transform (FFT) and providing accurate reconstruction. The routine is used in the adaptation step only and can be coupled to any other Wiener-like or least-squares method. We compare simulations using this method with previous Fourier methods and show an increase in performance in terms of Strehl ratio and a reduction in noise propagation for a 40×40 SPHERE-like adaptive optics system. For closed loop operation with minimal iterations the Gerchberg method provides an improvement in Strehl, from 95.4% to 96.9% in K-band. This corresponds to ~ 40 nm improvement in rms, and avoids the high spatial frequency errors present in other methods, providing an increase in contrast towards the edge of the correctable band.

  4. Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  5. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    International Nuclear Information System (INIS)

    Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius; Fuller, Franklin D; Ogilvie, Jennifer P; Mukamel, Shaul

    2013-01-01

    We propose an optimized tight-binding electron–hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments. (paper)

  6. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    Science.gov (United States)

    Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius

    2013-07-01

    We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.

  7. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    Science.gov (United States)

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  8. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    Science.gov (United States)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  9. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  10. Optimizing separations in online comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J

    2018-01-01

    Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.

  11. Continuous fast Fourier transforms cyclic voltammetry as a new approach for investigation of skim milk k-casein proteolysis, a comparative study.

    Science.gov (United States)

    Shayeh, Javad Shabani; Sefidbakht, Yahya; Siadat, Seyed Omid Ranaei; Niknam, Kaveh

    2017-10-01

    Cheese production is relied upon the action of Rennet on the casein micelles of milk. Chymosin assay methods are usually time consuming and offline. Herein, we report a new electrochemical technique for studying the proteolysis of K-casein. The interaction of rennet and its substrate was studied by fast Fourier transform continuous cyclic voltammetry (FFTCCV) based on a determination of k-casein in aqueous solution. FFTCCV technique is a very useful method for studying the enzymatic procedures. Fast response, no need of modified electrodes or complex equipment is some of FFTCCV advantages. Various concentrations of enzyme and substrate were selected and the increase in the appearance of charged species in solution as a result of the addition of rennet was studied. Data obtained using FFTCCV technique were also confirmed by turbidity analysis. The results show that rennet proteolysis activity occurs in much shorter time scales compare with its aggregation. Hence, following the appearance of charged segments as a result of proteolysis could be under consideration as a rapid and online method. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls

    OpenAIRE

    Choi, Tae-Hoon; Oh, Seung-Won; Park, Young-Jin; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-01-01

    We report a simple method for reducing the response time of a fringe-field switching liquid crystal cell by using two-dimensional confinement of the liquid crystals. Through both numerical calculations and experiments, we show that the switching speed can be increased by several fold in a fringe-field switching cell by simply using a rubbing angle of zero, which causes virtual walls to be built when an electric field is applied between the interdigitated electrodes and the common electrode, w...

  13. Fast Fourier Transform Pricing Method for Exponential Lévy Processes

    KAUST Repository

    Crocce, Fabian; Happola, Juho; Kiessling, Jonas; Tempone, Raul

    2014-01-01

    We describe a set of partial-integro-differential equations (PIDE) whose solutions represent the prices of european options when the underlying asset is driven by an exponential L´evy process. Exploiting the L´evy -Khintchine formula, we give a Fourier based method for solving this class of PIDEs. We present a novel L1 error bound for solving a range of PIDEs in asset pricing and use this bound to set parameters for numerical methods.

  14. Fast Fourier Transform Pricing Method for Exponential Lévy Processes

    KAUST Repository

    Crocce, Fabian

    2014-05-04

    We describe a set of partial-integro-differential equations (PIDE) whose solutions represent the prices of european options when the underlying asset is driven by an exponential L´evy process. Exploiting the L´evy -Khintchine formula, we give a Fourier based method for solving this class of PIDEs. We present a novel L1 error bound for solving a range of PIDEs in asset pricing and use this bound to set parameters for numerical methods.

  15. Two-dimensional liquid chromatography

    DEFF Research Database (Denmark)

    Græsbøll, Rune

    -dimensional separation space. Optimization of gradients in online RP×RP is more difficult than in normal HPLC as a result of the increased number of parameters and their influence on each other. Modeling the coverage of the compounds across the two-dimensional chromatogram as a result of a change in gradients could...... be used for optimization purposes, and reduce the time spend on optimization. In this thesis (chapter 6), and manuscript B, a measure of the coverage of the compounds in the twodimensional separation space is defined. It is then shown that this measure can be modeled for changes in the gradient in both...

  16. Method of local pointed function reduction of original shape in Fourier transformation

    International Nuclear Information System (INIS)

    Dosch, H.; Slavyanov, S.Yu.

    2002-01-01

    The method for analytical reduction of the original shape in the one-dimensional Fourier transformation by the fourier image modulus is proposed. The basic concept of the method consists in the presentation of the model shape in the form of the local peak functions sum. The eigenfunctions, generated by the linear differential equations with the polynomial coefficients, are selected as the latter ones. This provides for the possibility of managing the Fourier transformation without numerical integration. This reduces the reverse task to the nonlinear regression with a small number of the evaluated parameters and to the numerical or asymptotic study on the model peak functions - the eigenfunctions of the differential tasks and their fourier images [ru

  17. Supramolecular nano-architectures and two-dimensional/three-dimensional aggregation of a bolaamphiphilic diacid at the air/water interface

    International Nuclear Information System (INIS)

    Jiao Tifeng; Liu Minghua

    2005-01-01

    The spreading behavior and nano-architectures of a bolaamphiphilic diacid, 1, 13-tridecandicarboxylic acid (TDA) on water surface and the subphase containing Eu(III) ion were investigated. It was found that although TDA itself could not spread on water surface, it could form an ultrathin film on the aqueous subphase containing Eu(III) ion. In addition, interesting nano-architectures were observed for the transferred film on mica surface. It was found that the formation and change of the nano-architectures were depended on the surface pressure and concentration of Eu(III) ion in the subphase. A rectangular slide morphology was observed for the film spread on an aqueous subphase containing lower concentration of Eu(III), while a walnut-like nano-architectures were observed for the film spread on a higher concentration of Eu(III) ion. Flower structure was observed at a higher surface pressure. The nano-architecture can be further regulated through mixing TDA with octadecylamine (OA) in which linear fiber nanostructure was obtained. It was revealed that while the nano-architectures were formed mainly through a three dimensional aggregation in the case of TDA/Eu(III) films, a two-dimensional aggregation occurred when TDA was mixed with OA. A series of methods such as atomic force microscope, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction were used to characterize the supramolecular structures. A possible mechanism for the formation of these nano-architectures was discussed

  18. Two-dimensional simulation of sintering process

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Pinto, Lucio Carlos Martins; Vasconcelos, Wander L.

    1996-01-01

    The results of two-dimensional simulations are directly applied to systems in which one of the dimensions is much smaller than the others, and to sections of three dimensional models. Moreover, these simulations are the first step of the analysis of more complex three-dimensional systems. In this work, two basic features of the sintering process are studied: the types of particle size distributions related to the powder production processes and the evolution of geometric parameters of the resultant microstructures during the solid-state sintering. Random packing of equal spheres is considered in the sintering simulation. The packing algorithm does not take into account the interactive forces between the particles. The used sintering algorithm causes the densification of the particle set. (author)

  19. Transport methods: general. 7. Formulation of a Fourier-Boltzmann Transformation to Solve the Three-Dimensional Transport Equation

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    This paper presents some elements of a new approach to solve analytically the linearized three-dimensional (3-D) transport equation of neutral particles. Since this task is of such special importance, we present some results of a paper that is still in progress. The most important is that using this transformation, an integro-differential equation with an analytical solution is obtained. For this purpose, a simplest 3-D equation is being considered which describes the transport process in an infinite medium. Until now, this equation has been analytically considered either using the Laplace transform with respect to time parameter t or applying the Fourier transform over the space coordinate. Both of them reduce the number of differential terms in the equation; however, evaluation of the inverse transformation is complicated. In this paper, we introduce for the first time a Fourier transform induced by the Boltzmann operator. For this, we use a complete set of 3-D eigenfunctions of the Boltzmann transport operator defined in a similar way as those that have been already used in 3-D transport theory as a basic set to transform the transport equation. This set consists of a continuous part and a discrete one with spectral measure. The density distribution equation shows the known form asymptotic behavior. Several applications are to be performed using this equation and compared to the benchmark one. Such an analysis certainly would be out of the available space

  20. Multistatic Array Sampling Scheme for Fast Near-Field Image Reconstruction

    Science.gov (United States)

    2016-01-01

    human-sized scene in 0.048sec− 0.101sec. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field...configuration, but its computational demands are extreme. Fast Fourier Transform (FFT) imaging has long been used to efficiently construct images sampled...with the block diagram depicted in Fig. 4. It is noted that the multistatic to monostatic correction is valid over a finite imaging domain. However, as

  1. Chaotic dynamics in two-dimensional noninvertible maps

    CERN Document Server

    Mira, Christian; Cathala, Jean-Claude; Gardini, Laura

    1996-01-01

    This book is essentially devoted to complex properties (Phase plane structure and bifurcations) of two-dimensional noninvertible maps, i.e. maps having either a non-unique inverse, or no real inverse, according to the plane point. They constitute models of sets of discrete dynamical systems encountered in Engineering (Control, Signal Processing, Electronics), Physics, Economics, Life Sciences. Compared to the studies made in the one-dimensional case, the two-dimensional situation remained a long time in an underdeveloped state. It is only since these last years that the interest for this resea

  2. Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm

    OpenAIRE

    Catterall, S.; Karamov, S.

    2001-01-01

    We describe a Fourier Accelerated Hybrid Monte Carlo algorithm suitable for dynamical fermion simulations of non-gauge models. We test the algorithm in supersymmetric quantum mechanics viewed as a one-dimensional Euclidean lattice field theory. We find dramatic reductions in the autocorrelation time of the algorithm in comparison to standard HMC.

  3. Application of a method for comparing one-dimensional and two-dimensional models of a ground-water flow system

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1978-01-01

    To evaluate the inability of a one-dimensional ground-water model to interact continuously with surrounding hydraulic head gradients, simulations using one-dimensional and two-dimensional ground-water flow models were compared. This approach used two types of models: flow-conserving one-and-two dimensional models, and one-dimensional and two-dimensional models designed to yield two-dimensional solutions. The hydraulic conductivities of controlling features were varied and model comparison was based on the travel times of marker particles. The solutions within each of the two model types compare reasonably well, but a three-dimensional solution is required to quantify the comparison

  4. A two-step method for fast and reliable EUV mask metrology

    Science.gov (United States)

    Helfenstein, Patrick; Mochi, Iacopo; Rajendran, Rajeev; Yoshitake, Shusuke; Ekinci, Yasin

    2017-03-01

    One of the major obstacles towards the implementation of extreme ultraviolet lithography for upcoming technology nodes in semiconductor industry remains the realization of a fast and reliable detection methods patterned mask defects. We are developing a reflective EUV mask-scanning lensless imaging tool (RESCAN), installed at the Swiss Light Source synchrotron at the Paul Scherrer Institut. Our system is based on a two-step defect inspection method. In the first step, a low-resolution defect map is generated by die to die comparison of the diffraction patterns from areas with programmed defects, to those from areas that are known to be defect-free on our test sample. In a later stage, a die to database comparison will be implemented in which the measured diffraction patterns will be compared to those calculated directly from the mask layout. This Scattering Scanning Contrast Microscopy technique operates purely in the Fourier domain without the need to obtain the aerial image and, given a sufficient signal to noise ratio, defects are found in a fast and reliable way, albeit with a location accuracy limited by the spot size of the incident illumination. Having thus identified rough locations for the defects, a fine scan is carried out in the vicinity of these locations. Since our source delivers coherent illumination, we can use an iterative phase-retrieval method to reconstruct the aerial image of the scanned area with - in principle - diffraction-limited resolution without the need of an objective lens. Here, we will focus on the aerial image reconstruction technique and give a few examples to illustrate the capability of the method.

  5. Introduction to the discrete Fourier series considering both mathematical and engineering aspects - A linear-algebra approach

    Directory of Open Access Journals (Sweden)

    Ludwig Kohaupt

    2015-12-01

    Full Text Available The discrete Fourier series is a valuable tool developed and used by mathematicians and engineers alike. One of the most prominent applications is signal processing. Usually, it is important that the signals be transmitted fast, for example, when transmitting images over large distances such as between the moon and the earth or when generating images in computer tomography. In order to achieve this, appropriate algorithms are necessary. In this context, the fast Fourier transform (FFT plays a key role which is an algorithm for calculating the discrete Fourier transform (DFT; this, in turn, is tightly connected with the discrete Fourier series. The last one itself is the discrete analog of the common (continuous-time Fourier series and is usually learned by mathematics students from a theoretical point of view. The aim of this expository/pedagogical paper is to give an introduction to the discrete Fourier series for both mathematics and engineering students. It is intended to expand the purely mathematical view; the engineering aspect is taken into account by applying the FFT to an example from signal processing that is small enough to be used in class-room teaching and elementary enough to be understood also by mathematics students. The MATLAB program is employed to do the computations.

  6. Two-dimensional analytic weighting functions for limb scattering

    Science.gov (United States)

    Zawada, D. J.; Bourassa, A. E.; Degenstein, D. A.

    2017-10-01

    Through the inversion of limb scatter measurements it is possible to obtain vertical profiles of trace species in the atmosphere. Many of these inversion methods require what is often referred to as weighting functions, or derivatives of the radiance with respect to concentrations of trace species in the atmosphere. Several radiative transfer models have implemented analytic methods to calculate weighting functions, alleviating the computational burden of traditional numerical perturbation methods. Here we describe the implementation of analytic two-dimensional weighting functions, where derivatives are calculated relative to atmospheric constituents in a two-dimensional grid of altitude and angle along the line of sight direction, in the SASKTRAN-HR radiative transfer model. Two-dimensional weighting functions are required for two-dimensional inversions of limb scatter measurements. Examples are presented where the analytic two-dimensional weighting functions are calculated with an underlying one-dimensional atmosphere. It is shown that the analytic weighting functions are more accurate than ones calculated with a single scatter approximation, and are orders of magnitude faster than a typical perturbation method. Evidence is presented that weighting functions for stratospheric aerosols calculated under a single scatter approximation may not be suitable for use in retrieval algorithms under solar backscatter conditions.

  7. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    Science.gov (United States)

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  8. Dimensional oscillation. A fast variation of energy embedding gives good results with the AMBER potential energy function.

    Science.gov (United States)

    Snow, M E; Crippen, G M

    1991-08-01

    The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.

  9. A three-dimensional correlation method for registration of medical images in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Michalakis; Sfakianakis, George N [Department of Radiology, University of Miami, Jackson Memorial Hospital, Miami, FL 33136 (United States); Nagel, Joachim H [Institute of Biomedical Engineering, University of Stuttgart, Stuttgart 70174 (Germany)

    1999-12-31

    The availability of methods to register multi-modality images in order to `fuse` them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as {sup p}olar Shells{sup .} The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors) 6 refs., 3 figs.

  10. A three-dimensional correlation method for registration of medical images in radiology

    International Nuclear Information System (INIS)

    Georgiou, Michalakis; Sfakianakis, George N.; Nagel, Joachim H.

    1998-01-01

    The availability of methods to register multi-modality images in order to 'fuse' them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as p olar Shells . The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors)

  11. Functional inks and printing of two-dimensional materials.

    Science.gov (United States)

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  12. Fast-wave heating of a two-component plasma

    International Nuclear Information System (INIS)

    Stix, T.H.

    1975-02-01

    The use of the compressional hydromagnetic mode (also called the magnetosonic or, simply, the fast wave) is examined in some detail with respect to the heating of a tritium plasma containing a few percent deuterium. Efficient absorption of wave energy by the deuteron component is found when ω = ω/sub c/ (deuterons), with Q/sub wave/ greater than or equal to 100. The dominant behavior of the high-energy deuteron distribution function is found to be f(v) approximately exp[3/2) ∫/sup v/ dv less than Δv greater than/less than(Δv/sub perpendicular to/) 2 greater than], where [Δv] is the Chandrasekhar-Spitzer drag coefficient, and [(Δv/sub perpendicular to/) 2 sigma] is the Kennel-Englemann quasilinear diffusion coefficient for wave--particle interaction at the deuteron cyclotron frequency. An analytic solution to the one-dimensional Fokker--Planck equation, with rf-induced diffusion, is developed, and using this solution together with Duane's fit to the D-T fusion cross-section, it is found that the nuclear fusion power output from an rf-produced two-component plasma can significantly exceed the incremental (radiofrequency) power input. (auth)

  13. K-FIX: a computer program for transient, two-dimensional, two-fluid flow. THREED: an extension of the K-FIX code for three-dimensional calculations

    International Nuclear Information System (INIS)

    Rivard, W.C.; Torrey, M.D.

    1978-10-01

    The transient, two-dimensional, two-fluid code K-FIX has been extended to perform three-dimensional calculations. This capability is achieved by adding five modification sets of FORTRAN statements to the basic two-dimensional code. The modifications are listed and described, and a complete listing of the three-dimensional code is provided. Results of an example problem are provided for verification

  14. RAMSIM: A fast computer model for mean wind flow over hills

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J-F.

    2007-06-15

    The Riso Atmospheric Mixed Spectral-Integration Model (RAMSIM) is a micro-scale, linear flow model developed to quickly calculate the mean wind flow field over orography. It was designed to bridge the gap between WAsP and similar models that are fast but insufficiently accurate over steep slopes, and non-linear CFD models that are accurate but too computationally expensive for routine use on a PC. RAMSIM is governed by the RANS and E-{epsilon} turbulence closure equations, expressed in non-Cartesian coordinates. A terrain-following coordinate system is created from a simple analytical expression. The equations are linearized by a perturbation expansion about the flat-terrain case. The first-order equations, representing the spatial correction due to the presence of orography, are Fourier-transformed analytically in the two horizontal dimensions. The pressure and horizontal velocity components are eliminated, resulting in a set of four ordinary differential equations (ODEs). RAMSIM is currently implemented and tested in two-dimensional space; a 3D version has been formulated but not yet implemented. In the 2D case, there are only three ODEs, depending on only two non-dimensional parameters. This is exploited by solving the ODEs by Runge-Kutta integration for all useful combinations of these parameters, and storing the results in look-up tables (LUT). The flow field over any given orography is then quickly obtained by interpolating from the LUTs and scaling the value of the flow variables for each wavenumber component of the orography, and returning to real space by inverse Fourier transform. RAMSIM was tested against measurements, as well as other authors' flow models, in four test cases: two laboratory flows over idealized terrain, and two field experiments. RAMSIM calculations generally agree with measurements over upward slopes and hilltops, but overestimate the speed very near the ground at hilltops. RAMSIM appears to have an edge over other linear models

  15. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI.

    Science.gov (United States)

    Bauman, Grzegorz; Puderbach, Michael; Deimling, Michael; Jellus, Vladimir; Chefd'hotel, Christophe; Dinkel, Julien; Hintze, Christian; Kauczor, Hans-Ulrich; Schad, Lothar R

    2009-09-01

    Assessment of regional lung perfusion and ventilation has significant clinical value for the diagnosis and follow-up of pulmonary diseases. In this work a new method of non-contrast-enhanced functional lung MRI (not dependent on intravenous or inhalative contrast agents) is proposed. A two-dimensional (2D) true fast imaging with steady precession (TrueFISP) pulse sequence (TR/TE = 1.9 ms/0.8 ms, acquisition time [TA] = 112 ms/image) was implemented on a 1.5T whole-body MR scanner. The imaging protocol comprised sets of 198 lung images acquired with an imaging rate of 3.33 images/s in coronal and sagittal view. No electrocardiogram (ECG) or respiratory triggering was used. A nonrigid image registration algorithm was applied to compensate for respiratory motion. Rapid data acquisition allowed observing intensity changes in corresponding lung areas with respect to the cardiac and respiratory frequencies. After a Fourier analysis along the time domain, two spectral lines corresponding to both frequencies were used to calculate the perfusion- and ventilation-weighted images. The described method was applied in preliminary studies on volunteers and patients showing clinical relevance to obtain non-contrast-enhanced perfusion and ventilation data.

  16. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    International Nuclear Information System (INIS)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki

    2000-01-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  17. MR cisternography with three-dimensional fast advanced spin-echo (FASE)

    Energy Technology Data Exchange (ETDEWEB)

    Ohgi, Kazuyuki; Yamamoto, Hidefumi; Yokote, Hiroyuki [Japanese Red-Cross Medical Center, Tokyo (Japan)] [and others

    2000-06-01

    To evaluate the usefulness of MR cisternography (MRC) combined with various postprocessing techniques and three-dimensional (3D) time-of-flight (TOF) MR angiography, MR cisternograms in 212 patients with various cranial nerve symptoms were retrospectively evaluated. MR examinations were performed with a 1.5 T MR imager using a 3D fast advanced spin-echo (FASE) sequence. Maximum intensity projection (MIP) had the advantage of demonstrating fluid-filled structures such as cerebrospinal fluid (CSF)-internal auditory canal (IAC) and Meckel's cave. Minimum intensity projection (Min IP) was especially useful in delineating neurovascular structures (NVS) in wide CSF space. Addition provided the most well-balanced images of NVS, and was superior to Min IP in the depiction of NVS in narrow CSF space. Virtual endoscopy and volume rendering had the potential to provide additional information in the evaluation of the three-dimensional relationships of NVS. Combination of 3D TOF MRA with MRC was helpful in differentiating arteries, veins, and nerves. With the judicious use of various postprocessing techniques and combined MRA, the value of MRC in the evaluation of patients with various cranial nerve symptoms can be further strengthened. (author)

  18. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  19. Two-dimensional critical phenomena

    International Nuclear Information System (INIS)

    Saleur, H.

    1987-09-01

    Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr

  20. Efficient Fourier-based algorithms for time-periodic unsteady problems

    Science.gov (United States)

    Gopinath, Arathi Kamath

    2007-12-01

    This dissertation work proposes two algorithms for the simulation of time-periodic unsteady problems via the solution of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. These algorithms use a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). In contrast to conventional Fourier-based techniques which solve the governing equations in frequency space, the new algorithms perform all the calculations in the time domain, and hence require minimal modifications to an existing solver. The complete space-time solution is obtained by iterating in a fifth pseudo-time dimension. Various time-periodic problems such as helicopter rotors, wind turbines, turbomachinery and flapping-wings can be simulated using the Time Spectral method. The algorithm is first validated using pitching airfoil/wing test cases. The method is further extended to turbomachinery problems, and computational results verified by comparison with a time-accurate calculation. The technique can be very memory intensive for large problems, since the solution is computed (and hence stored) simultaneously at all time levels. Often, the blade counts of a turbomachine are rescaled such that a periodic fraction of the annulus can be solved. This approximation enables the solution to be obtained at a fraction of the cost of a full-scale time-accurate solution. For a viscous computation over a three-dimensional single-stage rescaled compressor, an order of magnitude savings is achieved. The second algorithm, the reduced-order Harmonic Balance method is applicable only to turbomachinery flows, and offers even larger computational savings than the Time Spectral method. It simulates the true geometry of the turbomachine using only one blade passage per blade row as the computational domain. In each blade row of the turbomachine, only the dominant frequencies are resolved, namely

  1. Emerging terahertz photodetectors based on two-dimensional materials

    Science.gov (United States)

    Yang, Jie; Qin, Hua; Zhang, Kai

    2018-01-01

    Inspired by the innovations in photonics and nanotechnology, the remarkable properties of two-dimensional (2D) materials have renewed interest for the development of terahertz (THz) photodetectors. The versatility of these materials enables ultrafast and ultrasensitive photodetection of THz radiation at room temperature. The atomically thin characteristic together with van der Waals interactions among the layers make it easy to scaling down and integrate with other 2D materials based devices, as well as silicon chips. Efforts have increased fast in the past decade in developing proof-of-concept and the further prospective THz photodetectors based on 2D materials. Here, the recent progress on the exploring of THz photodetectors based on 2D materials is reviewed. We summarized the THz photodetectors under different physical mechanism and introduced the state-of-the-art THz photodetectors based on various promising 2D materials, such as graphene, transition metal dichalcogenides (TMDCs), black phosphorus (BP) and topological insulators (TIs). A brief discussion on the remaining challenges and a perspective of the 2D materials based THz photodetectors are also given.

  2. Effect of window function for measurement of ultrasonic nonlinear parameter using fast fourier transform of tone-burst signal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Jun; Kim, Jong Beom; Song, Dong Gil; Jhang, Kyung Young [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-08-15

    In ultrasonic nonlinear parameter measurement using the fast Fourier transform(FFT) of tone-burst signals, the side lobe and leakage on spectrum because of finite time and non-periodicity of signals makes it difficult to measure the harmonic magnitudes accurately. The window function made it possible to resolve this problem. In this study, the effect of the Hanning and Turkey window functions on the experimental measurement of nonlinear parameters was analyzed. In addition, the effect of changes in tone burst signal number with changes in the window function on the experimental measurement was analyzed. The result for both window functions were similar and showed that they enabled reliable nonlinear parameter measurement. However, in order to restore original signal amplitude, the amplitude compensation coefficient should be considered for each window function. On a separate note, the larger number of tone bursts was advantageous for stable nonlinear parameter measurement, but this effect was more advantageous in the case of the Hanning window than the Tukey window.

  3. Fan beam image reconstruction with generalized Fourier slice theorem.

    Science.gov (United States)

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  4. Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT).

    Science.gov (United States)

    Radotić, Viktorija; Braeken, Dries; Kovačić, Damir

    2017-12-01

    Many studies have shown that the topography of the substrate on which neurons are cultured can promote neuronal adhesion and guide neurite outgrowth in the same direction as the underlying topography. To investigate this effect, isotropic substrate-complementary metal-oxide-semiconductor (CMOS) chips were used as one example of microelectrode arrays (MEAs) for directing neurite growth of spiral ganglion neurons. Neurons were isolated from 5 to 7-day-old rat pups, cultured 1 day in vitro (DIV) and 4 DIV, and then fixed with 4% paraformaldehyde. For analysis of neurite alignment and orientation, fast Fourier transformation (FFT) was used. Results revealed that on the micro-patterned surface of a CMOS chip, neurons orient their neurites along three directional axes at 30, 90, and 150° and that neurites aligned in straight lines between adjacent pillars and mostly followed a single direction while occasionally branching perpendicularly. We conclude that the CMOS substrate guides neurites towards electrodes by means of their structured pillar organization and can produce electrical stimulation of aligned neurons as well as monitoring their neural activities once neurites are in the vicinity of electrodes. These findings are of particular interest for neural tissue engineering with the ultimate goal of developing a new generation of MEA essential for improved electrical stimulation of auditory neurons.

  5. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  6. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  7. Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform

    Science.gov (United States)

    Ayres, Chantal; Bowlin, Gary L.; Henderson, Scott C.; Taylor, Leander; Shultz, Jackie; Alexander, John; Telemeco, Todd A.; Simpson, David G.

    2010-01-01

    We describe the use of the fast Fourier transform (FFT) in the measurement of anisotropy in electrospun scaffolds of gelatin as a function of the starting conditions. In electrospinning, fiber alignment and overall scaffold anisotropy can be manipulated by controlling the motion of the collecting mandrel with respect to the source electrospinning solution. By using FFT to assign relative alignment values to an electrospun matrix it is possible to systematically evaluate how different processing variables impact the structure and material properties of a scaffold. Gelatin was suspended at varying concentrations (80, 100, 130, 150 mg/ml) and electrospun from 2,2,2 trifluoroethanol onto rotating mandrels (200–7000 RPM). At each starting concentration, fiber diameter remained constant over a wide range of mandrel RPM. Scaffold anisotropy developed as a function of fiber diameter and mandrel RPM. The induction of varying degrees of anisotropy imparted distinctive material properties to the electrospun scaffolds. The FFT is a rapid method for evaluating fiber alignment in tissue-engineering materials. PMID:16859744

  8. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  9. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  10. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  11. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; van Heijst, G.J.F.

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  12. Two-dimensional Navier-Stokes turbulence in bounded domains

    NARCIS (Netherlands)

    Clercx, H.J.H.; Heijst, van G.J.F.

    2009-01-01

    In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the

  13. Piezoelectricity in Two-Dimensional Materials

    KAUST Repository

    Wu, Tao; Zhang, Hua

    2015-01-01

    Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards

  14. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  15. Two-dimensional Haar wavelet Collocation Method for the solution of Stationary Neutron Transport Equation in a homogeneous isotropic medium

    International Nuclear Information System (INIS)

    Patra, A.; Saha Ray, S.

    2014-01-01

    Highlights: • A stationary transport equation has been solved using the technique of Haar wavelet Collocation Method. • This paper intends to provide the great utility of Haar wavelets to nuclear science problem. • In the present paper, two-dimensional Haar wavelets are applied. • The proposed method is mathematically very simple, easy and fast. - Abstract: This paper emphasizes on finding the solution for a stationary transport equation using the technique of Haar wavelet Collocation Method (HWCM). Haar wavelet Collocation Method is efficient and powerful in solving wide class of linear and nonlinear differential equations. Recently Haar wavelet transform has gained the reputation of being a very effective tool for many practical applications. This paper intends to provide the great utility of Haar wavelets to nuclear science problem. In the present paper, two-dimensional Haar wavelets are applied for solution of the stationary Neutron Transport Equation in homogeneous isotropic medium. The proposed method is mathematically very simple, easy and fast. To demonstrate about the efficiency of the method, one test problem is discussed. It can be observed from the computational simulation that the numerical approximate solution is much closer to the exact solution

  16. Solution of the two-dimensional spectral factorization problem

    Science.gov (United States)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  17. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  18. Fast three-dimensional core optimization based on modified one-group model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Fernando S. [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Dept. GCN-T], e-mail: freire@eletronuclear.gov.br; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: aquilino@con.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  19. Fast three-dimensional core optimization based on modified one-group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  20. Pipeline Analyzer using the Fractional Fourier Transform for Engine Control and Satellites Data

    Directory of Open Access Journals (Sweden)

    Darian M. Onchiș

    2011-09-01

    Full Text Available The aim of this paper is to present an algorithm for computing the fractional Fourier transform integrated into the pipeline of processing multi-variate and distributed data recorded by the engine control unit (ECU of a car and its satellites. The role of this transform is vital in establishing a time-variant filter and therefore it must be computed in a fast way. But for large scale time series, the application of the discrete fractional Fourier transform involves the computations of a large number of Hermite polynomials of increasingly order. The parallel algorithm presented will optimally compute the discrete Fourier-type transform for any given angle.