Seismic isolation of two dimensional periodic foundations
Energy Technology Data Exchange (ETDEWEB)
Yan, Y.; Mo, Y. L., E-mail: yilungmo@central.uh.edu [University of Houston, Houston, Texas 77004 (United States); Laskar, A. [Indian Institute of Technology Bombay, Powai, Mumbai (India); Cheng, Z.; Shi, Z. [Beijing Jiaotong University, Beijing (China); Menq, F. [University of Texas, Austin, Texas 78712 (United States); Tang, Y. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2014-07-28
Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.
Two-dimensional wave propagation in layered periodic media
Quezada de Luna, Manuel
2014-09-16
We study two-dimensional wave propagation in materials whose properties vary periodically in one direction only. High order homogenization is carried out to derive a dispersive effective medium approximation. One-dimensional materials with constant impedance exhibit no effective dispersion. We show that a new kind of effective dispersion may arise in two dimensions, even in materials with constant impedance. This dispersion is a macroscopic effect of microscopic diffraction caused by spatial variation in the sound speed. We analyze this dispersive effect by using highorder homogenization to derive an anisotropic, dispersive effective medium. We generalize to two dimensions a homogenization approach that has been used previously for one-dimensional problems. Pseudospectral solutions of the effective medium equations agree to high accuracy with finite volume direct numerical simulations of the variable-coeffi cient equations.
International Nuclear Information System (INIS)
Su, Chun; Wang, Xiaolin
2016-01-01
In practice, customers can decide whether to buy an extended warranty or not, at the time of item sale or at the end of the basic warranty. In this paper, by taking into account the moments of customers purchasing two-dimensional extended warranty, the optimization of imperfect preventive maintenance for repairable items is investigated from the manufacturer's perspective. A two-dimensional preventive maintenance strategy is proposed, under which the item is preventively maintained according to a specified age interval or usage interval, whichever occurs first. It is highlighted that when the extended warranty is purchased upon the expiration of the basic warranty, the manufacturer faces a two-stage preventive maintenance optimization problem. Moreover, in the second stage, the possibility of reducing the servicing cost over the extended warranty period is explored by classifying customers on the basis of their usage rates and then providing them with customized preventive maintenance programs. Numerical examples show that offering customized preventive maintenance programs can reduce the manufacturer's warranty cost, while a larger saving in warranty cost comes from encouraging customers to buy the extended warranty at the time of item sale. - Highlights: • A two-dimensional PM strategy is investigated. • Imperfect PM strategy is optimized by considering both two-dimensional BW and EW. • Customers are categorized based on their usage rates throughout the BW period. • Servicing cost of the EW is reduced by offering customized PM programs. • Customers buying the EW at the time of sale is preferred for the manufacturer.
Periodic trajectories for a two-dimensional nonintegrable Hamiltonian
International Nuclear Information System (INIS)
Baranger, M.; Davies, K.T.R.
1987-01-01
A numerical study is made of the classical periodic trajectories for the two-dimensional nonintegrable Hamiltonian H = 1/2(p 2 /sub x/+p 2 /sub y/)+(y-1/2x 2 ) 2 +0.05 x 2 . In addition to x--y pictures of the trajectories, E--tau (energy--period) plots of the periodic families are presented. Efforts have been ade to include all trajectories with short periods and all simple branchings of these trajectories. The monodromy matrix has been calculated in all cases, and from it the stability properties are derived. The topology of the E--tau plot has been explored, with the following results. One family may have several stable regions. The plot is not completely connected; there are islands. The plot is not a tree; there are cycles. There are isochronous branchings, period-doublings, and period-multiplyings of higher orders, and examples of each of these are presented. There is often more than one branch issuing from a branch point. Some general empirical rules are inferred. In particular, the existence of isochronous branching is seen to be a consequence of the symmetry of the Hamiltonian. All these results agree with the general classification of possible branchings derived in Ref. [10]. (M. A. M. de Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davies, in preparation). Finally, some nonperiodic trajectories are calculated to illustrate the fact that stable periodic trajectories lie in ''regular'' regions of phase space, while unstable ones lie in ''chaotic'' regions
Stochastic and collisional diffusion in two-dimensional periodic flows
International Nuclear Information System (INIS)
Doxas, I.; Horton, W.; Berk, H.L.
1990-05-01
The global effective diffusion coefficient D* for a two-dimensional system of convective rolls with a time dependent perturbation added, is calculated. The perturbation produces a background diffusion coefficient D, which is calculated analytically using the Menlikov-Arnold integral. This intrinsic diffusion coefficient is then enhanced by the unperturbed flow, to produce the global effective diffusion coefficient D*, which we can calculate theoretically for a certain range of parameters. The theoretical value agrees well with numerical simulations. 23 refs., 4 figs
Rigorous results in space-periodic two-dimensional turbulence
Kuksin, Sergei; Shirikyan, Armen
2017-12-01
We survey the recent advance in the rigorous qualitative theory of the 2d stochastic Navier-Stokes system that is relevant to the description of turbulence in two-dimensional fluids. After discussing briefly the initial-boundary value problem and the associated Markov process, we formulate results on the existence, uniqueness, and mixing of a stationary measure. We next turn to various consequences of these properties: strong law of large numbers, central limit theorem, and random attractors related to a unique stationary measure. We also discuss the Donsker-Varadhan and Freidlin-Wentzell type large deviations, the inviscid limit, and asymptotic results in 3d thin domains. We conclude with some open problems.
Two-dimensional, time dependent simulation of the planetary boundary layer over a 48-hour period
International Nuclear Information System (INIS)
Haschke, D.; Gassmann, F.; Rudin, F.
1978-06-01
This report presents results of a two-dimensional time-dependent simulation of the planetary boundary layer for a 48-hour period. These calculations are a continuation and expansion of one-dimensional simulations of the planetary boundary layer as described previously. The time-dependent evolution of a weather situation was simulated. It could be demonstrated that the main features of local ventilation systems can be simulated correctly. Two case studies are presented to show qualitatively, how local circulation systems can be influenced. One case assumes introduction of a hypothetical city, the other case uses arbitrarily introduced coverage of the sky as a pertubrbation. The problems connected with the verification of two-dimensional simulations using experimental data are discussed. Furthermore, proposals for a methodology to solve problems of model verification are discussed. (Auth.)
Tongues of periodicity in a family of two-dimensional discontinuous maps of real Moebius type
Energy Technology Data Exchange (ETDEWEB)
Sushko, Iryna E-mail: sushko@imath.kiev.ua; Gardini, Laura E-mail: gardini@uniurb.it; Puu, Toenu E-mail: tonu.puu@econ.umu.se
2004-07-01
In this paper we consider a two-dimensional piecewise-smooth discontinuous map representing the so-called 'relative dynamics' of an Hicksian business cycle model. The main features of the dynamics occur in the parameter region in which no fixed points at finite distance exist, but we may have attracting cycles of any periods. The bifurcations associated with the periodicity tongues of the map are studied making use of the first-return map on a suitable segment of the phase plane. The bifurcation curves bounding the periodicity tongues in the parameter plane are related with saddle-node and border-collision bifurcations of the first-return map. Moreover, the particular 'sausages structure' of the bifurcation tongues is also explained.
Energy Technology Data Exchange (ETDEWEB)
Zhdanov, E. Yu., E-mail: zhdanov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Pokhabov, D. A.; Bakarov, A. K. [Siberian Branch of the Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics (Russian Federation)
2017-01-15
The magnetoresistance of suspended semiconductor nanostructures with a two-dimensional electron gas structured by periodic square antidot lattices is studied. It is shown that the ballistic regime of electron transport is retained after detaching the sample from the substrate. Direct comparative analysis of commensurability oscillations of magnetoresistance and their temperature dependences in samples before and after suspension is performed. It is found that the temperature dependences are almost identical for non-suspended and suspended samples, whereas significant differences are observed in the nonlinear regime, caused by direct current passage. Commensurability oscillations in the suspended samples are more stable with respect to exposure to direct current, which can be presumably explained by electron–electron interaction enhancement after detaching nanostructures from the high-permittivity substrate.
Akaishi, A; Shudo, A
2009-12-01
We investigate the stickiness of the two-dimensional piecewise linear map with a family of marginal unstable periodic orbits (FMUPOs), and show that a series of unstable periodic orbits accumulating to FMUPOs plays a significant role to give rise to the power law correlation of trajectories. We can explicitly specify the sticky zone in which unstable periodic orbits whose stability increases algebraically exist, and find that there exists a hierarchy in accumulating periodic orbits. In particular, the periodic orbits with linearly increasing stability play the role of fundamental cycles as in the hyperbolic systems, which allows us to apply the method of cycle expansion. We also study the recurrence time distribution, especially discussing the position and size of the recurrence region. Following the definition adopted in one-dimensional maps, we show that the recurrence time distribution has an exponential part in the short time regime and an asymptotic power law part. The analysis on the crossover time T(c)(*) between these two regimes implies T(c)(*) approximately -log[micro(R)] where micro(R) denotes the area of the recurrence region.
Directory of Open Access Journals (Sweden)
A. Gribovsky
2012-06-01
Full Text Available The diffraction problem of a three-dimensional elliptic p- polarized Gaussian beam on an aperture array of rectangular holes is solved. The new algorithm for the solution of three-dimensional scattering problems of linearly polarized wave beams on two-dimensional periodic structures is offered. The given algorithm allows exploring of wave beams with any allocation of a field on cross section. The case of oblique incidence of linearly polarized elliptic Gaussian wave beam on two-dimensional periodic structure is viewed. As structure the rectangular waveguides phased antenna array is chosen. The elliptic shape of a beam cross section gives the chance to proportion energy of an incident field in a plane of an antenna array in the chosen direction. The frequency dependence of the reflection coefficient intensity for the Gaussian beam is calculated. For the analysis of patterns of the reflected and transmitted beams in a far zone the frequencies on which the strongest interaction between next waveguides channels is observed have been chosen. Dynamics of patterns transformation of the reflected and transmitted beams depending on the form of cross-section and a polarization direction of an incident beam on different frequencies is investigated. It is determined that shape of the pattern of reflected and transmitted beams (symmetry, asymmetry, bifurcation, amplitude, width depends on chosen spatial orientation of the ellipse axes of the cross section in the incident beam. Frequency ranges, in which the form of the reflected and transmitted beams is not Gaussian, are defined. The nature of transformation of the patterns of scattered beams was examined. Narrowing effect of the pattern of transmitted beam and deformation of the pattern of reflected beam is detected. A physical explanation of these effects is given. The results are presented in the form of two- and three-dimensional patterns of the scattered field of beams in the far field.
Quantized transport for a skyrmion moving on a two-dimensional periodic substrate
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-03-01
We examine the dynamics of a skyrmion moving over a two-dimensional periodic substrate utilizing simulations of a particle-based skyrmion model. We specifically examine the role of the nondissipative Magnus term on the driven motion and the resulting skyrmion velocity-force curves. In the overdamped limit, there is a depinning transition into a sliding state in which the skyrmion moves in the same direction as the external drive. When there is a finite Magnus component in the equation of motion, a skyrmion in the absence of a substrate moves at an angle with respect to the direction of the external driving force. When a periodic substrate is added, the direction of motion or Hall angle of the skyrmion is dependent on the amplitude of the external drive, only approaching the substrate-free limit for higher drives. Due to the underlying symmetry of the substrate the direction of skyrmion motion does not change continuously as a function of drive, but rather forms a series of discrete steps corresponding to integer or rational ratios of the velocity components perpendicular ( ) and parallel ( ) to the external drive direction: / =n /m , where n and m are integers. The skyrmion passes through a series of directional locking phases in which the motion is locked to certain symmetry directions of the substrate for fixed intervals of the drive amplitude. Within a given directionally locked phase, the Hall angle remains constant and the skyrmion moves in an orderly fashion through the sample. Signatures of the transitions into and out of these locked phases take the form of pronounced cusps in the skyrmion velocity versus force curves, as well as regions of negative differential mobility in which the net skyrmion velocity decreases with increasing external driving force. The number of steps in the transport curve increases when the relative strength of the Magnus term is increased. We also observe an overshoot phenomena in the directional locking, where the skyrmion motion
Ludwig, Alon; Leviatan, Yehuda
2003-08-01
We introduce a solution based on the source-model technique for periodic structures for the problem of electromagnetic scattering by a two-dimensional photonic bandgap crystal slab illuminated by a transverse-magnetic plane wave. The proposed technique takes advantage of the periodicity of the slab by solving the problem within the unit cell of the periodic structure. The results imply the existence of a frequency bandgap and provide a valuable insight into the relationship between the dimensions of a finite periodic structure and its frequency bandgap characteristics. A comparison shows a discrepancy between the frequency bandgap obtained for a very thick slab and the bandgap obtained by solving the corresponding two-dimensionally infinite periodic structure. The final part of the paper is devoted to explaining in detail this apparent discrepancy.
Tsang, L.; Lou, S. H.; Chan, C. H.
1991-01-01
The extended boundary condition method is applied to Monte Carlo simulations of two-dimensional random rough surface scattering. The numerical results are compared with one-dimensional random rough surfaces obtained from the finite-element method. It is found that the mean scattered intensity from two-dimensional rough surfaces differs from that of one dimension for rough surfaces with large slopes.
Chuang, Mo-Hsiung; Hung, Chi-Tung; -Yen Lin, Wen; Ma, Kuo-chen
2017-04-01
In recent years, cities and industries in the vicinity of the estuarine region have developed rapidly, resulting in a sharp increase in the population concerned. The increasing demand for human activities, agriculture irrigation, and aquaculture relies on massive pumping of water in estuarine area. Since the 1950s, numerous studies have focused on the effects of tidal fluctuations on groundwater flow in the estuarine area. Tide-induced head fluctuation in a two-dimensional estuarine aquifer system is complicated and rather important in dealing with many groundwater management or remediation problems. The conceptual model of the aquifer system considered is multi-layered with estuarine bank and the leaky aquifer extend finite distance under the estuary. The solution of the model describing the groundwater head distribution in such an estuarine aquifer system and subject to the tidal fluctuation effects from estuarine river is developed based on the method of separation of variables along with river boundary. The solutions by Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour. Res. 1997; 33:1429-35) as well as Tang and Jiao (Tang Z. and J. J. Jiao, A two-dimensional analytical solution for groundwater flow in a leaky confined aquifer system near open tidal water, Hydrological Processes, 2001; 15: 573-585) can be shown to be special cases of the present solution. On the basis of the analytical solution, the groundwater head distribution in response to estuarine boundary is examined and the influences of leakage, hydraulic parameters, and loading effect on the groundwater head fluctuation due to tide are investigated and discussed. KEYWORDS: analytical model, estuarine river, groundwater fluctuation, leaky aquifer.
Simón-Carballido, Luis; Bao, Junwei Lucas; Alves, Tiago Vinicius; Meana-Pañeda, Rubén; Truhlar, Donald G; Fernández-Ramos, Antonio
2017-08-08
In this work we present the extended two-dimensional torsion (E2DT) method and use it to analyze the performance of several methods that incorporate torsional anharmonicity more approximately for calculating rotational-vibrational partition functions. Twenty molecules having two hindered rotors were studied for temperatures between 100 and 2500 K. These molecules present several kinds of situations; they include molecules with nearly separable rotors, molecules in which the reduced moments of inertia change substantially with the internal rotation, and molecules presenting compound rotation. Partition functions obtained by the rigid-rotor harmonic oscillator approximation, a method involving global separability of torsions and the multistructural methods without explicit potential coupling [MS-T(U)] and with explicit potential coupling [MS-T(C)] of torsions, are compared to those obtained with a quantized version - called the extended two-dimensional torsion (E2DT) method - of the extended hindered rotor approximation of Vansteenkiste et al. ( Vansteenkiste et al. J. Chem. Phys. 2006 , 124 , 044314 ). In the E2DT method, quantum effects due to the torsional modes were incorporated by the two-dimensional nonseparable method, which is a method that is based on the solution of the torsional Schrödinger equation and that includes full coupling in both the kinetic and potential energy. By comparing other methods to the E2DT method and to experimental thermochemical data, this study concludes that the harmonic approximation yields very poor results at high temperatures; the global separation of torsions from the rest of the degrees of freedom is not justified even when an accurate method to treat the torsions is employed; it is confirmed that methods based on less complete potential energy coupling of torsions, such as MS-T(U), are not accurate when dealing with rotors with different barrier heights, and more complete inclusion of torsional coupling to the method in MS
Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Kaplan, Peter D; Libardoni, Mark; Mundada, Mayur; Patel, Urvish; Zhang, Xiang
2013-01-01
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOF MS) has been proposed as a powerful new tool for multidimensional analysis of complex chemical mixtures. We investigated GCxGC-TOF MS as a new method for identifying volatile organic compounds (VOCs) in normal human breath. Samples of alveolar breath VOCs and ambient room air VOC were collected with a breath collection apparatus (BCA) onto separate sorbent traps from 34 normal healthy volunteers (mean age = 40 yr, SD = 17 yr, male/female = 19/15). VOCs were separated on two serial capillary columns separated by a cryogenic modulator, and detected with TOF MS. The first and second dimension columns were non-polar and polar respectively. BCA collection combined with GC×GC-TOF MS analysis identified approximately 2000 different VOCs in samples of human breath, many of which have not been previously reported. The 50 VOCs with the highest alveolar gradients (abundance in breath minus abundance in ambient room air) mostly comprised benzene derivatives, acetone, methylated derivatives of alkanes, and isoprene. Collection and analysis of breath VOCs with the BCA-GC×GC-TOF MS system extended the size of the detectable human volatile metabolome, the volatome, by an order of magnitude compared to previous reports employing one-dimensional GC-MS. The size of the human volatome has been under-estimated in the past due to coelution of VOCs in one-dimensional GC analytical systems.
Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array.
Zakharov, S D; Lindeberg, M; Griko, Y; Salamon, Z; Tollin, G; Prendergast, F G; Cramer, W A
1998-04-14
Atomic level structures have been determined for the soluble forms of several colicins and toxins, but the structural changes that occur after membrane binding have not been well characterized. Changes occurring in the transition from the soluble to membrane-bound state of the C-terminal 190-residue channel polypeptide of colicin E1 (P190) bound to anionic membranes are described. In the membrane-bound state, the alpha-helical content increases from 60-64% to 80-90%, with a concomitant increase in the average length of the helical segments from 12 to 16 or 17 residues, close to the length required to span the membrane bilayer in the open channel state. The average distance between helical segments is increased and interhelix interactions are weakened, as shown by a major loss of tertiary structure interactions, decreased efficiency of fluorescence resonance energy transfer from an energy donor on helix V of P190 to an acceptor on helix IX, and decreased resonance energy transfer at higher temperatures, not observed in soluble P190, implying freedom of motion of helical segments. Weaker interactions are also shown by a calorimetric thermal transition of low cooperativity, and the extended nature of the helical array is shown by a 3- to 4-fold increase in the average area subtended per molecule to 4,200 A2 on the membrane surface. The latter, with analysis of the heat capacity changes, implies the absence of a developed hydrophobic core in the membrane-bound P190. The membrane interfacial layer thus serves to promote formation of a highly helical extended two-dimensional flexible net. The properties of the membrane-bound state of the colicin channel domain (i.e., hydrophobic anchor, lengthened and loosely coupled alpha-helices, and close association with the membrane interfacial layer) are plausible structural features for the state that is a prerequisite for voltage gating, formation of transmembrane helices, and channel opening.
d-wave superconductivity in the frustrated two-dimensional periodic Anderson model
Directory of Open Access Journals (Sweden)
Wei Wu
2015-02-01
Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.
Directory of Open Access Journals (Sweden)
M. G. Kiselev
2013-01-01
Full Text Available The paper presents a theoretical investigation on nature of two-dimensional periodic circular movement of a work-piece attached to the end of a modernized sawing unit boom. The boom oscillation axis is established on an elastic suspension that makes forced oscillations along a horizontal axis. The paper provides a calculation model of an oscillatory system of a boom swing block for mathematical description of the point movement trajectory that belongs to the work-piece. The model permits to obtain a system of two connected equations describing this movement. Numerical solution of these equations permits to establish that the work-piece makes a two-dimensional periodic circular movement and it has an elliptical trajectory. The paper gives data that reveal influence of elastic and inertial and dissipative characteristics of the oscillatory system on the elliptical trajectory parameters of the work-piece movement. The paper demonstrates that the regulation of the forced oscillation frequency transferred to the boom swing block of the sawing unit is considered as. the simplest in realization and the most efficient method that makes it possible to control the required parameters.
Directory of Open Access Journals (Sweden)
Michael Phillips
Full Text Available BACKGROUND: Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-TOF MS has been proposed as a powerful new tool for multidimensional analysis of complex chemical mixtures. We investigated GCxGC-TOF MS as a new method for identifying volatile organic compounds (VOCs in normal human breath. METHODS: Samples of alveolar breath VOCs and ambient room air VOC were collected with a breath collection apparatus (BCA onto separate sorbent traps from 34 normal healthy volunteers (mean age = 40 yr, SD = 17 yr, male/female = 19/15. VOCs were separated on two serial capillary columns separated by a cryogenic modulator, and detected with TOF MS. The first and second dimension columns were non-polar and polar respectively. RESULTS: BCA collection combined with GC×GC-TOF MS analysis identified approximately 2000 different VOCs in samples of human breath, many of which have not been previously reported. The 50 VOCs with the highest alveolar gradients (abundance in breath minus abundance in ambient room air mostly comprised benzene derivatives, acetone, methylated derivatives of alkanes, and isoprene. CONCLUSIONS: Collection and analysis of breath VOCs with the BCA-GC×GC-TOF MS system extended the size of the detectable human volatile metabolome, the volatome, by an order of magnitude compared to previous reports employing one-dimensional GC-MS. The size of the human volatome has been under-estimated in the past due to coelution of VOCs in one-dimensional GC analytical systems.
Xun, Xiaodong; Erwin, James K.; Bletscher, Warren; Choi, Jinhan; Kallenbach, Senta; Mansuripur, Masud
2001-12-01
We present the results of crystallization studies in thin-film samples of amorphous and crystalline GexSbyTez. The experiments, conducted at moderately elevated temperatures, are based on measurements of the first-order diffraction efficiency from a two-dimensional periodic array of recorded marks. When the samples are slowly heated above room temperature, changes in the efficiencies of various diffracted orders give information about the on-going crystallization process within the sample. Two different compositions of the GeSbTe alloy are used in these experiments. Measurements on Ge2Sb2,3Te5 films show crystallization dominated by nucleation. For the Sb-rich eutectic composition Ge-(SbTe), crystallization is found to be dominated by growth from crystalline boundaries. We also show that crystalline marks written by relatively high-power laser pulses are different in their optical properties from the regions crystallized by slow heating of the sample to moderate temperatures.
Energy Technology Data Exchange (ETDEWEB)
Bykov, A. A.; Rodyakina, E. E.; Latyshev, A. V. [Rzhanov Institute of Semiconductor Physics, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Strygin, I. S.; Goran, A. V.; Kalagin, A. K. [Rzhanov Institute of Semiconductor Physics, Novosibirsk 630090 (Russian Federation)
2016-01-04
In this study we fabricated lateral superlattices (LSLs) based on the selectively doped GaAs/AlAs heterostructures with a high-mobility two-dimensional (2D) electron gas. The LSLs were formed using the electron-beam lithography and lift-off techniques, which produced a set of metallic strips on top of a heterojunction. The amplitude of the 2D electron gas modulation in the LSL was controlled by the gate voltage applied to the metallic strips. The LSLs with two different periods (a = 200 nm and 500 nm) were used to investigate the influence of microwave radiation with the frequency of 110–150 GHz on the 2D electron transport at the temperature T = 1.6 K in the magnetic field B < 1 T. We have found that zero-resistance states (ZRSs) appear under the microwave radiation in the 2D systems with a unidirectional periodic modulation. These ZRSs are located at the minima of commensurability oscillations.
Directory of Open Access Journals (Sweden)
Qingyang Yue
2012-01-01
Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.
International Nuclear Information System (INIS)
Friedan, D.H.; Martinec, E.J.; Shenker, S.H.
1988-12-01
The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics
Directory of Open Access Journals (Sweden)
Daigo Ohki
2018-03-01
Full Text Available The optical conductivity in the charge order phase is calculated in the two-dimensional extended Hubbard model describing an organic Dirac electron system α -(BEDT-TTF 2 I 3 using the mean field theory and the Nakano-Kubo formula. Because the interband excitation is characteristic in a two-dimensional Dirac electron system, a peak structure is found above the charge order gap. It is shown that the peak structure originates from the Van Hove singularities of the conduction and valence bands, where those singularities are located at a saddle point between two Dirac cones in momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the charge order transition.
Freye, Chris E; Bahaghighat, H Daniel; Synovec, Robert E
2018-01-15
Partial modulation via a pulsed flow valve for comprehensive two-dimensional (2D) gas chromatography (GC × GC) is demonstrated, producing narrow peak widths, 2 W b , on the secondary separation dimension, 2 D, coupled with short modulation periods, P M , thus producing a high peak capacity on the 2 D dimension, 2 n c . The GC × GC modulator is a pulse flow valve that injects a pulse of carrier gas at the specified P M , at the connection between the primary, 1 D, column and the 2 D column. Using a commercially available pulse flow valve, this injection technique performs a combination of vacancy chromatography and frontal analysis, whereby each pulse disturbance in the analyte concentration profile as it exits the 1 D column results in data that is readily converted into a 2 D separation. A three-step process converts the raw data into a format analogous to a GC × GC separation, incorporating signal differentiation, baseline correction and conversion to a GC × GC chromatogram representation. A 115-component test mixture with a wide range of boiling points (36-372°C) of nine compound classes is demonstrated using modulation periods of P M = 50, 100, 250, and 500ms, respectively. For the test mixture with a P M of 250ms, peak shapes on 2 D are symmetric with apparent 2 W b ranging from 12 to 45ms producing a 2 n c of ~ 10. Based on the average peak width of 0.93s on the 1 D separation for a time window of 400s, the 1 D peak capacity is 1 n c ∼ 430. Thus, the ideal 2D peak capacity n c,2D is 4300 or a peak capacity production of 650 peaks/min using the P M of 250ms. Additionally, for a P M of 50, 100 and 500ms, the 2 n c are 4, 7, and 12, respectively. Retention times on 2 D, 2 t R , are reproducible having standard deviations less than 1ms. Finally, the processed data is shown to be quantitative, with an average RSD of 4.7% for test analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Ludwig, Alon; Leviatan, Yehuda
2008-02-01
We introduce a time-domain source-model technique for analysis of two-dimensional, transverse-magnetic, plane-wave scattering by a photonic crystal slab composed of a finite number of identical layers, each comprising a linear periodic array of dielectric cylinders. The proposed technique takes advantage of the periodicity of the slab by solving the problem within a unit cell of the periodic structure. A spectral analysis of the temporal behavior of the fields scattered by the slab shows a clear agreement between frequency bands where the spectral density of the transmitted energy is low and the bandgaps of the corresponding two-dimensionally infinite periodic structure. The effect of the bandwidth of the incident pulse and its center frequency on the manner it is transmitted through and reflected by the slab is studied via numerical examples.
Lindner, Michael; Donner, Reik V
2017-03-01
We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.
Seetharam, H. C.; Wentz, W. H., Jr.
1975-01-01
Results were given on experimental studies of flow separation and stalling on a two-dimensional GA(W)-1 17 percent thick airfoil with an extended Fowler flap. Experimental velocity profiles obtained from a five tube probe survey with optimum flap gap and overlap setting (flap at 40 deg) are shown at various stations above, below, and behind the airfoil/flap combination for various angles of attack. The typical zones of steady flow, intermittent turbulence, and large scale turbulence were obtained from a hot wire anemometer survey and are depicted graphically for an angle of attack of 12.5 deg. Local skin friction distributions were obtained and are given for various angles of attack. Computer plots of the boundary layer profiles are shown for the case of the flap at 40 deg. Static pressure contours are also given. A GA(W)-2 section model was fabricated with 30 percent Fowler flaps and with pressure tabs.
Directory of Open Access Journals (Sweden)
Brajesh Kumar Singh
2018-03-01
Full Text Available In this paper, a new approach “modified extended cubic B-Spline differential quadrature (mECDQ method” has been developed for the numerical computation of two dimensional hyperbolic telegraph equation. The mECDQ method is a DQM based on modified extended cubic B-spline functions as new base functions. The mECDQ method reduces the hyperbolic telegraph equation into an amenable system of ordinary differential equations (ODEs, in time. The resulting system of ODEs has been solved by adopting an optimal five stage fourth-order strong stability preserving Runge - Kutta (SSP-RK54 scheme. The stability of the method is also studied by computing the eigenvalues of the coefficient matrices. It is shown that the mECDQ method produces stable solution for the telegraph equation. The accuracy of the method is illustrated by computing the errors between analytical solutions and numerical solutions are measured in terms of L2 and L∞ and average error norms for each problem. A comparison of mECDQ solutions with the results of the other numerical methods has been carried out for various space sizes and time step sizes, which shows that the mECDQ solutions are converging very fast in comparison with the various existing schemes. Keywords: Differential quadrature method, Hyperbolic telegraph equation, Modified extended cubic B-splines, mECDQ method, Thomas algorithm
Nasrum, A.; Pasaribu, U. S.; Husniah, H.
2016-02-01
This paper deals with maintenance service contract for a dump truck sold with a two-dimensional warranties. We consider a situation where an agent offers two maintenance contract options and the owner of the equipment has to select the optimal option either the OEM carried out all repairs and preventive maintenance activities (option one) or the OEM only carries out failure while the costumer undertakes preventive maintenance action in-house (option two). As the number of preventive maintenance and corrective maintenance that occurs in the area of servicing contracts is very influential in determining the value of the contract, we have to determine the optimal time between preventive maintenance that can minimize the cost of repair in the contract area. Moreover, we also study the maintenance service contract considering reduction of the intensity function after preventive maintenance from both the owner and OEM point of views. In this paper, we use a Weibull intensity function to consider a product with increasing failure intensity. We use a non-cooperative game formulation to determine the optimal price structure (i.e., the contract price and repair cost) for the OEM and the owner. A numerical example derived from the model has shown that if the owner choose option one then the owner obtain a higher profit compared with the profit resulted from option two. The result agree with earlier work which uses the accelerated failure time (AFT) for the failure modeling, while here we model the failure of the dump truck without the use of the AFT.
Tietz, D
1991-01-01
This report presents the stand-alone computer application ELPHOFIT, a software package for the analysis of gel electrophoretic data based on Ferguson plots. Either conventional one-dimensional gels or two-dimensional agarose gels (Serwer-type) can be evaluated. Special emphasis is on the latter gel type, which has been applied previously for the separation of DNA, intact viruses and polydisperse meningitis vaccines. ELPHOFIT is designed for Macintosh PCs and for the IBM XT, AT, PS/2 and compatibles. The program operates interactively with the user, who determines the course of evaluation. Data input is in the format of files providing values of gel electrophoretic migration distances or particle mobility (absolute or relative). Data processing involves a simultaneous least-square curve fitting algorithm (Newton-Gauss, Marquardt-Levenberg) which uses equations derived from the extended Ogston model. Functions are fit to the database by adjusting their variables, representing physical parameters of the gel and the electrophoresed particle. The program output consists of tables and graphics accompanied by an explanatory text providing the following information: (i) radius and free mobility of the electrophoresed particle, (ii) fiber radius, length and volume, mean or median pore radius of the gel, (iii) linear Ferguson plots, (iv) iso-free-mobility/iso-size nomogram for two-dimensional gels, (v) confidence ellipses, (vi) required parameters for image processing program GELFIT and (vii) goodness-of-fit and other statistical parameters, such as standard errors, dependency values, root-mean-square (RMS) error and determination coefficient. Other features of the program are (i) simulation of Serwer-type two-dimensional electrophoresis, (ii) standardization according to size, or size and free mobility, (iii) the conversion of particle radii to molecular (or particle) weight and vice versa, (iv) interconversion of DNA size specifications, i.e. the number of base pairs and
Directory of Open Access Journals (Sweden)
Turgut Oğuz
2017-01-01
Full Text Available The 2-D periodically fully developed laminar forced convection fluid flow and heat transfer characteristics in a horizontal channel with staggered fins are investigated numerically under constant wall heat flux boundary condition. Study is performed using ANSYS Fluent 6.3.26 which uses finite volume method. Air (Pr @ 0.7 and Freon-12 (Pr @ 3.5 are used as working fluids. Effects of Reynolds number, Prandtl number, fin height, and distances between two fins on heat transfer and friction factor are examined. Results are given in the form of non-dimensional average Nusselt number and average Darcy friction factor as a function of Reynolds number for different fin distances and Prandtl numbers. The velocity and temperature profiles are also obtained. It is seen that as the fin distance increases, behavior approaches the finless channel, as expected. Also, thermal enhancement factors are given graphically for working fluids. It is seen that heat transfer dominates the friction as both the distance between two fins and Prandtl number increase. It is also seen that fins having blockage ratio of 0.10 in 2-D periodically fully developed laminar flow is not advantageous in comparison to smooth channel without fins.
International Nuclear Information System (INIS)
Anon.
1991-01-01
This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements
Chen, Yong; Yan, Zhenya; Li, Xin
2018-02-01
The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.
Integrable two dimensional supersystems
International Nuclear Information System (INIS)
Tripathy, K.C.; Tripathy, L.K.
1988-08-01
The integrability of two dimensional time-dependent classical systems is examined in N=2 superspace using Dirac's second class constraints. The invariants involving quadratic powers in velocities for super harmonic oscillator and super Kepler potentials have been derived. (author). 5 refs
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Two-dimensional ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)
2000-03-31
The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)
Li, Peng; Wang, Guan; Luo, Dong; Cao, Xiaoshan
2018-02-01
The band structure of a two-dimensional phononic crystal, which is composed of four homogenous steel quarter-cylinders immersed in rubber matrix, is investigated and compared with the traditional steel/rubber crystal by the finite element method (FEM). It is revealed that the frequency can then be tuned by changing the distance between adjacent quarter-cylinders. When the distance is relatively small, the integrality of scatterers makes the inner region inside them almost motionless, so that they can be viewed as a whole at high-frequencies. In the case of relatively larger distance, the interaction between each quarter-cylinder and rubber will introduce some new bandgaps at relatively low-frequencies. Lastly, the point defect states induced by the four quarter-cylinders are revealed. These results will be helpful in fabricating devices, such as vibration insulators and acoustic/elastic filters, whose band frequencies can be manipulated artificially.
Extended period simulation (EPS) modelling of urban water ...
African Journals Online (AJOL)
Water distribution network was constructed, calibrated and validated for extended period simulation studies using the network's physical, operational, calibration and validation data. The model was then applied to evaluate: (i) effects of fluctuating water demand on system storage over 24 hour period and (ii) level of service ...
Sukharev, Maxim; Pachter, Ruth
2018-03-01
We study theoretically the optical response of a WS2 monolayer located near periodic metal nanostructured arrays in two and three dimensions. The emphasis of the simulations is on the strong coupling between excitons supported by WS2 and surface plasmon-polaritons supported by various periodic plasmonic interfaces. It is demonstrated that a monolayer of WS2 placed in close proximity of periodic arrays of either slits or holes results in a Rabi splitting of the corresponding surface plasmon-polariton resonance as revealed in calculated transmission and reflection spectra. The nonlinear regime, at which the few-layer WS2 exhibits experimentally third harmonic generation (THG), is studied in detail. Monolayer transition metal dichalcogenides (TMDs) do not exhibit THG because they are non-centrosymmetric, but here we use the monolayer as an approximation to a thin TMD nanostructure. We show that in the strong coupling regime the third harmonic signal is significantly affected by plasmon-polaritons and the symmetry of hybrid exciton-plasmon modes. It is also shown that the local electromagnetic field induced by plasmons is the major contributor to the enhancement of the third harmonic signal in three dimensions. The local electromagnetic fields resulting from the third harmonic generation are greatly localized and highly sensitive to the environment, thus making it a great tool for nano-probes.
Hettiarachchi, Gayan Prasad; Moriasa, Fumiya; Nishida, Yoshihumi; Nakano, Takehito; Muhid, Mohd Nazlan Mohd; Hamdan, Halimaton
2017-10-01
The evolution of the electronic properties of guest Na and Rb atoms in a disordered deformable lattice is investigated for a series of guest-atom densities n . The quasi-two-dimensional host M7.8 -δAl7.8Si8.2O32.0 (M =Na, Rb), known as zeolite P, is used. The Na system is a stubborn bipolaronic insulator to the maximum n of 1.03. In contrast, the Rb system exhibits a crossover from a bipolaronic insulator to a conducting phase analogous to a disordered metal at n = 0.89. A critical region undergoing polaronic melting appears in the vicinity of the crossover on the insulating side, evidenced by a reduction in the small bipolaron absorption band and a drop in the activation energy. Transition to the conducting phase coincides with the appearance of a midinfrared band and an increase in the charge-carrier decay length, suggesting the polaronic and extended nature of the carriers. These findings constitute rare examples of electron-lattice coupling opening (or closing) a mobility gap and scaling the continuity (or discontinuity) of a conducting transition in the face of disorder.
Patched Green's function techniques for two-dimensional systems
DEFF Research Database (Denmark)
Settnes, Mikkel; Power, Stephen; Lin, Jun
2015-01-01
We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts...... of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well...... as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations...
Quasi-two-dimensional holography
International Nuclear Information System (INIS)
Kutzner, J.; Erhard, A.; Wuestenberg, H.; Zimpfer, J.
1980-01-01
The acoustical holography with numerical reconstruction by area scanning is memory- and time-intensive. With the experiences by the linear holography we tried to derive a scanning for the evaluating of the two-dimensional flaw-sizes. In most practical cases it is sufficient to determine the exact depth extension of a flaw, whereas the accuracy of the length extension is less critical. For this reason the applicability of the so-called quasi-two-dimensional holography is appropriate. The used sound field given by special probes is divergent in the inclined plane and light focussed in the perpendicular plane using cylindrical lenses. (orig.) [de
Two dimensional plasma simulation code
International Nuclear Information System (INIS)
Hazak, G.; Boneh, Y.; Goshen, Sh.; Oreg, J.
1977-03-01
An electrostatic two-dimensional particle code for plasma simulation is described. Boundary conditions which take into account the finiteness of the system are presented. An analytic solution for the case of crossed fields plasma acceleration is derived. This solution serves as a check on a computer test run
Two dimensional image correlation processor
Yao, Shi-Kai
1992-06-01
Two dimensional images are converted into a very long 1-dimensional data stream by means of raster scan. It is shown that the 1-dimensional correlation function of such long data streams is equivalent to the raster scan converted data of 2-dimensional correlation function of images. Real time correlation of high resolution two-dimensional images has been demonstrated using commercially available components. The advantages of this approach includes programmable electronics reference images, easy interface to objects of interest using conventional image collection optics, real time operation with high resolution images using off-the shelf components, and usefulness in the form of either black and white or full colored images. Such system would be versatile enough for robotics vision, optical inspection, and other pattern recognition and identification applications.
Two-dimensional topological photonics
Khanikaev, Alexander B.; Shvets, Gennady
2017-12-01
Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have already overturned some of the traditional views on wave propagation and manipulation. The application of topological concepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.
Two-dimensional critical phenomena
International Nuclear Information System (INIS)
Saleur, H.
1987-09-01
Two dimensional critical systems are studied using transformation to free fields and conformal invariance methods. The relations between the two approaches are also studied. The analytical results obtained generally depend on universality hypotheses or on renormalization group trajectories which are not established rigorously, so numerical verifications, mainly using the transfer matrix approach, are presented. The exact determination of critical exponents; the partition functions of critical models on toruses; and results as the critical point is approached are discussed [fr
Two-dimensional capillary origami
International Nuclear Information System (INIS)
Brubaker, N.D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Acoustic resonances in two-dimensional radial sonic crystal shells
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)
2010-07-15
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.
Acoustic resonances in two-dimensional radial sonic crystal shells
Torrent, Daniel; Sánchez-Dehesa, José
2010-07-01
Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sánchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.
Two-dimensional Quantum Gravity
Rolf, Juri
1998-10-01
This Ph.D. thesis pursues two goals: The study of the geometrical structure of two-dimensional quantum gravity and in particular its fractal nature. To address these questions we review the continuum formalism of quantum gravity with special focus on the scaling properties of the theory. We discuss several concepts of fractal dimensions which characterize the extrinsic and intrinsic geometry of quantum gravity. This work is partly based on work done in collaboration with Jan Ambjørn, Dimitrij Boulatov, Jakob L. Nielsen and Yoshiyuki Watabiki (1997). The other goal is the discussion of the discretization of quantum gravity and to address the so called quantum failure of Regge calculus. We review dynamical triangulations and show that it agrees with the continuum theory in two dimensions. Then we discuss Regge calculus and prove that a continuum limit cannot be taken in a sensible way and that it does not reproduce continuum results. This work is partly based on work done in collaboration with Jan Ambjørn, Jakob L. Nielsen and George Savvidy (1997).
Two-dimensional heterostructures for energy storage
Energy Technology Data Exchange (ETDEWEB)
Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States); Pomerantseva, Ekaterina [Drexel Univ., Philadelphia, PA (United States)
2017-06-12
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Superheavy Elements and possibilities for extending the Periodic Table
International Nuclear Information System (INIS)
McHarris, W.C.
1990-01-01
The Periodic Table of Nuclei, based on the nuclear shell model, has some similarities with the chemical Periodic Table of the Elements, including the presence of closed shells. Nuclei are exceptionally stable whenever the number of protons or neutrons fills shells at 2, 8, 20, 28, 50, 82, and (neutrons only) 126. Recent calculations indicate the possibility of a new proton closed shell at 114, which would (partially) stabilize elements in this region - the Superheavy Elements. The author examines criteria for nuclear stability, primarily β, α, and spontaneous-fission decays, then surveys possible methods for preparing these very exotic nuclei, including (unsuccessful) searches for them in nature. Finally, he extrapolates the Periodic Table and speculates on possible weird chemical properties of these elements
A very useful experiment of two dimensional po- tential mapping ...
Indian Academy of Sciences (India)
A very useful experiment of two dimensional po- tential mapping, namely electrolytic tank model, for graduate and post graduate level physics stu- dents is given here. Laplace's equation is solved for the above and the results are compared with the experiment. The agreement· is so good that this is extended to complex ...
Complex dynamical invariants for two-dimensional complex potentials
Indian Academy of Sciences (India)
Abstract. Complex dynamical invariants are searched out for two-dimensional complex poten- tials using rationalization method within the framework of an extended complex phase space characterized by x = x1 + ip3, y = x2 + ip4, px = p1 + ix3, py = p2 + ix4. It is found that the cubic oscillator and shifted harmonic oscillator ...
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Extended Aharonov-Bohm period analysis of strongly correlated electron systems
Arita, Ryotaro; Kusakabe, Koichi; Kuroki, Kazuhiko; Aoki, Hideo
1996-01-01
The `extended Aharonov-Bohm (AB) period' recently proposed by Kusakabe and Aoki [J. Phys. Soc. Jpn (65), 2772 (1996)] is extensively studied numerically for finite size systems of strongly correlated electrons. While the extended AB period is the system length times the flux quantum for noninteracting systems, we have found the existence of the boundary across which the period is halved or another boundary into an even shorter period on the phase diagram for these models. If we compare this r...
Optical properties of two-dimensional magnetoelectric point scattering lattices
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Sersic, Ivana; Koenderink, A. Femius
2013-01-01
We explore the electrodynamic coupling between a plane wave and an infinite two-dimensional periodic lattice of magnetoelectric point scatterers, deriving a semianalytical theory with consistent treatment of radiation damping, retardation, and energy conservation. We apply the theory to arrays...
Colloidal interactions in two-dimensional nematic emulsions
Indian Academy of Sciences (India)
These were reported to lead to a variety of novel self-organized colloidal structures, such as linear chains [5,6], periodic lattices [7], anisotropic clusters [3], and cellular structures [8] that are stabilized, in general, by topological defects. More recently, two-dimensional (2D) inverted nematic emulsions were also stud- ied and ...
Development of Two-Dimensional NMR
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Development of Two-Dimensional NMR: Strucure Determination of Biomolecules in Solution. Anil Kumar. General Article Volume 20 Issue 11 November 2015 pp 995-1002 ...
Conoscopic holography: two-dimensional numerical reconstructions.
Mugnier, L M; Sirat, G Y; Charlot, D
1993-01-01
Conoscopic holography is an incoherent light holographic technique based on the properties of crystal optics. We present experimental results of the numerical reconstruction of a two-dimensional object from its conoscopic hologram.
Results from laboratory tests of the two-dimensional Time-Encoded Imaging System.
Energy Technology Data Exchange (ETDEWEB)
Marleau, Peter; Brennan, James S.; Brubaker, Erik; Gerling, Mark D; Le Galloudec, Nathalie Joelle
2014-09-01
A series of laboratory experiments were undertaken to demonstrate the feasibility of two dimensional time-encoded imaging. A prototype two-dimensional time encoded imaging system was designed and constructed. Results from imaging measurements of single and multiple point sources as well as extended source distributions are presented. Time encoded imaging has proven to be a simple method for achieving high resolution two-dimensional imaging with potential to be used in future arms control and treaty verification applications.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Two-Dimensional Fourier Transform Analysis of Helicopter Flyover Noise
SantaMaria, Odilyn L.; Farassat, F.; Morris, Philip J.
1999-01-01
A method to separate main rotor and tail rotor noise from a helicopter in flight is explored. Being the sum of two periodic signals of disproportionate, or incommensurate frequencies, helicopter noise is neither periodic nor stationary. The single Fourier transform divides signal energy into frequency bins of equal size. Incommensurate frequencies are therefore not adequately represented by any one chosen data block size. A two-dimensional Fourier analysis method is used to separate main rotor and tail rotor noise. The two-dimensional spectral analysis method is first applied to simulated signals. This initial analysis gives an idea of the characteristics of the two-dimensional autocorrelations and spectra. Data from a helicopter flight test is analyzed in two dimensions. The test aircraft are a Boeing MD902 Explorer (no tail rotor) and a Sikorsky S-76 (4-bladed tail rotor). The results show that the main rotor and tail rotor signals can indeed be separated in the two-dimensional Fourier transform spectrum. The separation occurs along the diagonals associated with the frequencies of interest. These diagonals are individual spectra containing only information related to one particular frequency.
Dynamics of two-dimensional bubbles
Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón
2015-06-01
The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
International Nuclear Information System (INIS)
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Park, Changbom; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array
Dirac cones in two-dimensional borane
Martinez-Canales, Miguel; Galeev, Timur R.; Boldyrev, Alexander I.; Pickard, Chris J.
2017-11-01
We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to density functional theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy Ef. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene [Mannix et al., Science 350, 1513 (2015), 10.1126/science.aad1080]. Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ bonds. Finally, we suggest high pressure could be a feasible route to synthesize two-dimensional borane.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Dipolar vortices in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Hesthaven, J.S.; Lynov, Jens-Peter
1996-01-01
The dynamics of dipolar vortex solutions to the two-dimensional Euler equations is studied. A new type of nonlinear dipole is found and its dynamics in a slightly viscous system is compared with the dynamics of the Lamb dipole. The evolution of dipolar structures from an initial turbulent patch...
Analytical simulation of two dimensional advection dispersion ...
African Journals Online (AJOL)
The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...
Analytical Simulation of Two Dimensional Advection Dispersion ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons.
Stability of two-dimensional vorticity filaments
International Nuclear Information System (INIS)
Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.
2004-01-01
We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability
Two-dimensional membranes in motion
Davidovikj, D.
2018-01-01
This thesis revolves around nanomechanical membranes made of suspended two - dimensional materials. Chapters 1-3 give an introduction to the field of 2D-based nanomechanical devices together with an overview of the underlying physics and the measurementtools used in subsequent chapters. The research
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
We study countable sums of two dimensional modules for the continuous complex functions on a compact metric space and show that it is possible to construct a spectral triple which gives the original metric back. This spectral triple will be finitely summable for any positive parameter. We also co...
A novel two dimensional particle velocity sensor
Pjetri, O.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
The effect of extended periodic inspection of passenger cars and vans
DEFF Research Database (Denmark)
Pilegaard, Ninette; Bernhoft, Inger Marie
The purpose of this note is to perform a calculation of the costs and benefits of extended period-ic inspection of passenger cars and vans in Denmark, provided that the first inspection of pas-senger cars and vans is performed after four years, then one inspection after two years and thereafter...
Period-doubling cascades of canards from the extended Bonhoeffer-van der Pol oscillator
Energy Technology Data Exchange (ETDEWEB)
Sekikawa, Munehisa, E-mail: sekikawa@dove.kuee.kyoto-u.ac.j [Department of Electrical Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, 615-8510 (Japan); Inaba, Naohiko [Department of Electronics and Bioinformatics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, 214-8571 (Japan); Yoshinaga, Tetsuya [Institute of Health Biosciences, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8509 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, 615-8510 (Japan)
2010-08-09
This Letter investigates the period-doubling cascades of canards, generated in the extended Bonhoeffer-van der Pol oscillator. Canards appear by Andronov-Hopf bifurcations (AHBs) and it is confirmed that these AHBs are always supercritical in our system. The cascades of period-doubling bifurcation are followed by mixed-mode oscillations. The detailed two-parameter bifurcation diagrams are derived, and it is clarified that the period-doubling bifurcations arise from a narrow parameter value range at which the original canard in the non-extended equation is observed.
Stability theory for a two-dimensional channel
Troshkin, O. V.
2017-08-01
A scheme for deriving conditions for the nonlinear stability of an ideal or viscous incompressible steady flow in a two-dimensional channel that is periodic in one direction is described. A lower bound for the main factor ensuring the stability of the Reynolds-Kolmogorov sinusoidal flow with no-slip conditions (short wavelength stability) is improved. A condition for the stability of a vortex strip modeling Richtmyer-Meshkov fluid vortices (long wavelength stability) is presented.
Two-dimensional sensitivity calculation code: SENSETWO
International Nuclear Information System (INIS)
Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.
1979-05-01
A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Toward two-dimensional search engines
International Nuclear Information System (INIS)
Ermann, L; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank–CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed. (paper)
Plasmonics with two-dimensional conductors
Yoon, Hosang; Yeung, Kitty Y. M.; Kim, Philip; Ham, Donhee
2014-01-01
A wealth of effort in photonics has been dedicated to the study and engineering of surface plasmonic waves in the skin of three-dimensional bulk metals, owing largely to their trait of subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as semiconductor heterojunction and graphene, contrast the surface plasmonic waves on bulk metals, as the former emerge at gigahertz to terahertz and infrared frequencies well below the photonics regime and can exhibit far stronger subwavelength confinement. This review elucidates the machinery behind the unique behaviours of the two-dimensional plasmonic waves and discusses how they can be engineered to create ultra-subwavelength plasmonic circuits and metamaterials for infrared and gigahertz to terahertz integrated electronics. PMID:24567472
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Superintegrability on the two dimensional hyperboloid
International Nuclear Information System (INIS)
Akopyan, E.; Pogosyan, G.S.; Kalnins, E.G.; Miller, W. Jr
1998-01-01
This work is devoted to the investigation of the quantum mechanical systems on the two dimensional hyperboloid which admit separation of variables in at least two coordinate systems. Here we consider two potentials introduced in a paper of C.P.Boyer, E.G.Kalnins and P.Winternitz, which haven't been studied yet. An example of an interbasis expansion is given and the structure of the quadratic algebra generated by the integrals of motion is carried out
Cohen, Ami; Soleiman, Matthew T; Talia, Reneta; Koob, George F; George, Olivier; Mandyam, Chitra D
2015-01-01
Limited access nicotine self-administration decreases hippocampal neurogenesis, providing a mechanism for the deleterious effects of nicotine on hippocampal neuronal plasticity. However, recent studies have shown that limited access nicotine self-administration does not exhibit key features of nicotine dependence such as motivational withdrawal and increased motivation for nicotine after deprivation. The present study used extended access nicotine self-administration (0.03 mg/kg/infusion, 21 h/day, 4 days) with intermittent periods of deprivation (3 days) for 14 weeks, to test the hypothesis that this model enhances nicotine seeking and produces distinct responses in hippocampal neurogenesis when compared with limited access (1 h/day, 4 days) intake. Animals in the extended access group were either perfused prior to or following their final deprivation period, whereas animals in the limited access group were perfused after their last session. Limited- and extended access nicotine self-administration with periodic deprivation did not affect proliferation and differentiation of oligodendrocyte progenitors in the medial prefrontal cortex (mPFC). Conversely, extended access nicotine self-administration with periodic deprivation enhanced proliferation and differentiation of hippocampal neural progenitors. Furthermore, in the hippocampus, the number of differentiating NeuroD-labeled cells strongly and positively correlated with enhanced nicotine seeking in rats that experienced extended access nicotine self-administration. These findings demonstrate that extended versus limited access to nicotine self-administration differentially affects the generation of new oligodendroglia and new neurons during adulthood. The increases in the number of differentiating cells in extended access nicotine self-administering rats may consequently contribute to aberrant hippocampal neurogenesis and may contribute to maladaptive addiction-like behaviors dependent on the hippocampus.
Recombination in one- and two-dimensional fitness landscapes.
Avetisyan, Zh; Saakian, David B
2010-05-01
We consider many-site mutation-recombination models of molecular evolution, where fitness is a function of a Hamming distance from one (one-dimensional case) or two (two-dimensional case) sequences. For the one-dimensional case, we calculate the population distribution dynamics for a model with zero fitness and an arbitrary symmetric initial distribution and find an error threshold transition point in the single-peak fitness model for a given initial symmetric distribution. We calculate the recombination period in the case of a single-peak fitness function, when the original population is located at one sequence, at some Hamming distance from the peak configuration. Steady-state fitness is calculated with finite genome length corrections. We derive analytical equations for the two-dimensional mutation-recombination model.
Two-dimensional turbulence in three-dimensional flows
Xia, H.; Francois, N.
2017-11-01
This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.
The Penalty Cost Functional for the Two-Dimensional
Directory of Open Access Journals (Sweden)
Victor Onomza WAZIRI
2006-07-01
Full Text Available This paper constructs the penalty cost functional for optimizing the two-dimensional control operator of the energized wave equation. In some multiplier methods such as the Lagrange multipliers and Pontrygean maximum principle, the cost of merging the constraint equation to the integral quadratic objective functional to obtain an unconstraint equation is normally guessed or obtained from the first partial derivatives of the unconstrained equation. The Extended Conjugate Gradient Method (ECGM necessitates that the penalty cost be sequentially obtained algebraically. The ECGM problem contains a functional which is completely given in terms of state and time spatial dependent variables.
Directory of Open Access Journals (Sweden)
D. A. Fetisov
2015-01-01
Full Text Available The controllability conditions are well known if we speak about linear stationary systems: a linear stationary system is controllable if and only if the dimension of the state vector is equal to the rank of the controllability matrix. The concept of the controllability matrix is extended to affine systems, but relations between affine systems controllability and properties of this matrix are more complicated. Various controllability conditions are set for affine systems, but they deal as usual either with systems of some special form or with controllability in some small neighborhood of the concerned point. An affine system is known to be controllable if the system is equivalent to a system of a canonical form, which is defined and regular in the whole space of states. In this case, the system is said to be feedback linearizable in the space of states. However there are examples, which illustrate that a system can be controllable even if it is not feedback linearizable in any open subset in the space of states. In this article we deal with such systems.Affine systems with two-dimensional control are considered. The system in question is assumed to be equivalent to a system of a quasicanonical form with two-dimensional zero dynamics which is defined and regular in the whole space of states. Therefore the controllability of the original system is equivalent to the controllability of the received system of a quasicanonical form. In this article the sufficient condition for an available solution of the terminal problem is proven for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. The condition is valid in the case of an arbitrary time interval and arbitrary initial and finite states of the system. Therefore the controllability condition is set for systems of a quasicanonical form with two-dimensional control and two-dimensional zero dynamics. An example is given which illustrates how the proved
Contraceptive adoption in the extended postpartum period is low in Northwest Ethiopia.
Mengesha, Zelalem Birhanu; Worku, Abebaw Gebeyehu; Feleke, Senafikish Amsalu
2015-08-01
The extended postpartum period is a one year period after delivery which is critical for women to prevent unintended pregnancy and to reduce the risk of maternal and child mortality by ensuring safe birth intervals. Studies indicate that birth intervals of three to five years reduce maternal mortality and provide health benefits to newborn babies, infants, and children. As a result, assessing postpartum contraceptive use and its determinants are an increasingly important component of global health. The objectives of the study were to determine postpartum contraceptive use and identify the variables which affect postpartum contraceptive use among women of Dabat district. All women aged 15 to 49 years who delivered a child between January 1, 2012 and December 31, 2012 in the Debat district were interviewed by house-to- house survey. A total of 10.3 % of the mothers reported adopting contraception in the extended postpartum period. Women who delivered with the assistance of a skilled attendant [AOR = 1.88, 95 % CI (1.01-3.51)] and attended postnatal care services [AOR = 2.19, 95 % CI (1.06-4.52)] were more likely to use contraceptives. Secondary and above level of the husband's education was also a variable that significantly affected postpartum contraceptive use [AOR = 2.98, 95 % CI (1.49-5.97)]. Contraceptive use in the extended postpartum period was found to be low placing women at risk for a pregnancy in the extended postpartum period. Advice about contraceptives during postnatal clinic visits was limited. Improving utilization of institutional delivery by a skilled attendant and enhancing postnatal care services are important to increase contraceptive use in the extended postpartum period.
The Nature and Nurture of High IQ: An Extended Sensitive Period for Intellectual Development
Brant, A.M.; Munakata, Y.; Boomsma, D.I.; DeFries, J.C.; Haworth, C.M.A.; Keller, M.C.; Martin, N.G.; McGue, M.; Petrill, S.A.; Plomin, R.; Wadsworth, S.J.; Wright, M.J.; Hewitt, J.K.
2013-01-01
IQ predicts many measures of life success, as well as trajectories of brain development. Prolonged cortical thickening observed in individuals with high IQ might reflect an extended period of synaptogenesis and high environmental sensitivity or plasticity. We tested this hypothesis by examining the
Study on The Extended Range Weather Forecast of Low Frequency Signal Based on Period Analysis Method
Li, X.
2016-12-01
Although many studies have explored the MJO and its application for weather forecasting, low-frequency oscillation has been insufficiently studied for the extend range weather forecasting over middle and high latitudes. In China, low-frequency synoptic map is a useful tool for meteorological operation department to forecast extend range weather. It is therefore necessary to develop objective methods to serve the need for finding low-frequency signal, interpretation and application of this signal in the extend range weather forecasting. In this paper, method of Butterworth band pass filter was applied to get low-frequency height field at 500hPa from 1980 to 2014 by using NCEP/NCAR daily grid data. Then period analysis and optimal subset regression methods were used to process the low frequency data of 150 days before the first forecast day and extend the low frequency signal of 500hPa low-frequency high field to future 30 days in the global from June to August during 2011-2014. Finally, the results were test. The main results are as follows: (1) In general, the fitting effect of low frequency signals of 500hPa low-frequency height field by period analysis in the northern hemisphere was better than that in the southern hemisphere, and was better in the low latitudes than that in the high latitudes. The fitting accuracy gradually reduced with the increase of forecast time length, which tended to be stable during the late forecasting period. (2) The fitting effects over the 6 key regions in China showed that except filtering result over Xinjiang area in the first 10 days and 30 days, filtering results over the other 5 key regions throughout the whole period have passed reliability test with level more than 95%. (3) The center and scope of low and high low frequency systems can be fitted well by using the methods mentioned above, which is consist with the corresponding use of the low-frequency synoptic map for the prediction of the extended period. Application of the
Gyroscope with two-dimensional optomechanical mirror
Davuluri, Sankar; Li, Kai; Li, Yong
2017-11-01
We propose an application of two-dimensional optomechanical oscillator as a gyroscope by detecting the Coriolis force which is modulated at the natural frequency of the optomechanical oscillator. Dependence of gyroscope's sensitivity on shot noise, back-action noise, thermal noise, and input laser power is studied. At optimal input laser power, the gyroscope's sensitivity can be improved by increasing the mass or by decreasing the temperature and decay rate of the mechanical oscillator. When the mechanical oscillator's thermal occupation number, n th, is zero, sensitivity improves with decrease in frequency of the mechanical oscillator. For {n}{{th}}\\gg 1, the sensitivity is independent of the mechanical oscillator's frequency.
Versatile two-dimensional transition metal dichalcogenides
DEFF Research Database (Denmark)
Canulescu, Stela; Affannoukoué, Kévin; Döbeli, Max
Two-dimensional transition metal dichalcogenides (2D-TMDCs), such as MoS2, have emerged as a new class of semiconducting materials with distinct optical and electrical properties. The availability of 2D-TMDCs with distinct band gaps allows for unlimited combinations of TMDC monolayers (MLs...... vacancies. We have found that the absorption spectra of the MoS2 films exhibit distinct excitonic peaks at ~1.8 and ~2 eV when grown in the presence of a sulfur evaporation beam as compared to those deposited in vacuum. The structure of the PLD-grown MoS2 films will be further discussed based Raman...
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Electromagnetically induced two-dimensional grating assisted by incoherent pump
Energy Technology Data Exchange (ETDEWEB)
Chen, Yu-Yuan; Liu, Zhuan-Zhuan; Wan, Ren-Gang, E-mail: wrg@snnu.edu.cn
2017-04-25
We propose a scheme for realizing electromagnetically induced two-dimensional grating in a double-Λ system driven simultaneously by a coherent field and an incoherent pump field. In such an atomic configuration, the absorption is suppressed owing to the incoherent pumping process and the probe can be even amplified, while the refractivity is mainly attributed to the dynamically induced coherence. With the help of a standing-wave pattern coherent field, we obtain periodically modulated refractive index without or with gain, and therefore phase grating or gain-phase grating which diffracts a probe light into high-order direction efficiently can be formed in the medium via appropriate manipulation of the system parameters. The diffraction efficiency attainable by the present gratings can be controlled by tuning the coherent field intensity or the interaction length. Hence, the two-dimensional grating can be utilized as all-optical splitter or router in optical networking and communication. - Highlights: • Two-dimensional grating is coherently induced in four-level atoms. • Phase and gain-phase gratings are obtained assisted by incoherent pump. • The diffraction power is improved due to the enhanced refraction modulation. • The gratings can be utilized as multi-channel all-optical splitter and router.
Parallel comprehensive two-dimensional gas chromatography.
Yan, DanDan; Tedone, Laura; Koutoulis, Anthony; Whittock, Simon P; Shellie, Robert A
2017-11-17
We introduce an information rich analytical approach called parallel comprehensive two-dimensional gas chromatography (2GC×2GC). This parallel chromatography approach splits injected samples into two independent two-dimensional column ensembles and provides two GC×GC separations by using contra-directional thermal modulation. The first-dimension ( 1 D) and second-dimension ( 2 D) columns are connected using planar three-port microchannel devices, which are supplied with supplementary flow via two pressure controller modules. Precise carrier gas flow control at the junction of the 1 D and 2 D columns permits independent control of flow conditions in each separation column. The 2GC×2GC approach provides two entirely independent GC×GC separations for each injection. Analysis of hop (Humulus lupulus L.) essential oils is used to demonstrate the capability of the approach. The analytical performance of each GC×GC separation in the 2GC×2GC experiment is comparable to individual GC×GC separation with matching column configurations. The peak capacity of 2GC×2GC is about 2 times than that of single GC×GC system. The dual 2D chromatograms produced by this single detector system provide complementary separations and additional identification information by harnessing different selectivity provided by the four separation columns. Copyright © 2017 Elsevier B.V. All rights reserved.
Flow transitions in two-dimensional foams.
Gilbreth, Christopher; Sullivan, Scott; Dennin, Michael
2006-11-01
For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. 69, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two-dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid-body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately ten bubbles. This occurs at an applied rotation rate of approximately 0.07 s-1.
High-resolution record of Northern Hemisphere climate extending into the last interglacial period
DEFF Research Database (Denmark)
North Greenland Ice Core Project members; Andersen, Katrine K.; Azuma, N.
2004-01-01
the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see...... a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5-8°C warmer than today. We find unexpectedly large temperature......-saw between the hemispheres (which dominated the last glacial period) was not operating at this time....
Two-dimensional analysis of motion artifacts, including flow effects
International Nuclear Information System (INIS)
Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.
1990-01-01
The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously
Focused two-dimensional antiscatter grid for mammography
International Nuclear Information System (INIS)
Makarova, O.V.; Moldovan, N.; Tang, C.-M.; Mancini, D.C.; Divan, R.; Zyryanov, V.N.; Ryding, D.C.; Yaeger, J.; Liu, C.
2002-01-01
We are developing freestanding high-aspect-ratio, focused, two-dimensional antiscatter grids for mammography using deep x-ray lithography and copper electroforming. The exposure is performed using x-rays from bending magnet beamline 2-BM at the Advanced Photon Source (APS) of Argonne National Laboratory. A 2.8-mm-thick prototype freestanding copper antiscatter grid with 25 (micro)m-wide parallel cell walls and 550 (micro)m periodicity has been fabricated. The progress in developing a dynamic double-exposure technique to create the grid with the cell walls aligned to a point x-ray source of the mammography system is discussed
Graphene surface plasmon bandgap based on two dimensional Si gratings
Directory of Open Access Journals (Sweden)
Yueke Wang
2017-11-01
Full Text Available A graphene/Si system, which is composed of a two-dimensional subwavelength silicon gratings and a graphene sheet, is designed to realize the complete band gap in infrared region for graphene surface plasmons (GSPs theoretically. The complete band gap originates from the strong scatterings, which is caused by the periodical distribution of effective refractive index. The band structure has been calculated using the plane wave expansion method, and full wave numerical simulations are conducted by finite element method. Thanks to the tunable permittivity of graphene, the band structure can be easily tuned, which provides a way to manipulate in-plane GSPs’ propagation.
Stable two-dimensional dispersion-managed soliton
International Nuclear Information System (INIS)
Abdullaev, Fatkhulla Kh.; Baizakov, Bakhtiyor B.; Salerno, Mario
2003-01-01
The existence of a dispersion-managed soliton in two-dimensional nonlinear Schroedinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown
Two dimensional NMR studies of polysaccharides
International Nuclear Information System (INIS)
Byrd, R.A.; Egan, W.; Summers, M.F.
1987-01-01
Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional materials for ultrafast lasers
International Nuclear Information System (INIS)
Wang Fengqiu
2017-01-01
As the fundamental optical properties and novel photophysics of graphene and related two-dimensional (2D) crystals are being extensively investigated and revealed, a range of potential applications in optical and optoelectronic devices have been proposed and demonstrated. Of the many possibilities, the use of 2D materials as broadband, cost-effective and versatile ultrafast optical switches (or saturable absorbers) for short-pulsed lasers constitutes a rapidly developing field with not only a good number of publications, but also a promising prospect for commercial exploitation. This review primarily focuses on the recent development of pulsed lasers based on several representative 2D materials. The comparative advantages of these materials are discussed, and challenges to practical exploitation, which represent good future directions of research, are laid out. (paper)
Two dimensional generalizations of the Newcomb equation
International Nuclear Information System (INIS)
Dewar, R.L.; Pletzer, A.
1989-11-01
The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs
Ward identities in two-dimensional gravity
International Nuclear Information System (INIS)
Polchinski, J.
1991-01-01
We study the decoupling of null states in two-dimensional gravity, using methods of critical string theory. We identify a family of null states which fail to decouple due to curvature and boundary terms. This gives relations involving amplitudes at different genus. At genus zero, these determine certain operator product coefficients. At genus one, they determine the partition function. At higher genus, we obtain a relation similar in form to the Painleve equation, but due to an incomplete understanding of a certain ghost/curvature term we do not have a closed relation for the partition function. Our results appear to correspond to the L 0 and L 1 equations in the topological and matrix model approaches. (orig.)
Two dimensional compass model with Heisenberg interactions
Pires, A. S. T.
2018-04-01
We consider a two dimensional compass model with a next and a next near Heisenberg term. The interactions are of two types: frustrated near neighbor compass interactions of amplitudes Jx and Jy, and next and next near neighbor Heisenberg interactions with exchanges J1 and J2 respectively. The Heisenberg interactions are isotropic in spin space, but the compass interactions depend on the bond direction. The ground state of the pure compass model is degenerated with a complex phase diagram. This degeneracy is removed by the Heisenberg terms leading to the arising of a magnetically ordered phase with a preferred direction. We calculate the phase diagrams at zero temperature for the case where, for J2 = 0, we have an antiferromagnetic ground state. We show that varying the value of J2, a magnetically disordered phase can be reached for small values of the compass interactions. We also calculate the critical temperature for a specified value of parameters.
Strategies for Interpreting Two Dimensional Microwave Spectra
Martin-Drumel, Marie-Aline; Crabtree, Kyle N.; Buchanan, Zachary
2017-06-01
Microwave spectroscopy can uniquely identify molecules because their rotational energy levels are sensitive to the three principal moments of inertia. However, a priori predictions of a molecule's structure have traditionally been required to enable efficient assignment of the rotational spectrum. Recently, automated microwave double resonance spectroscopy (AMDOR) has been employed to rapidly generate two dimensional spectra based on transitions that share a common rotational level, which may enable automated extraction of rotational constants without any prior estimates of molecular structure. Algorithms used to date for AMDOR have relied on making several initial assumptions about the nature of a subset of the linked transitions, followed by testing possible assignments by "brute force." In this talk, we will discuss new strategies for interpreting AMDOR spectra, using eugenol as a test case, as well as prospects for library-free, automated identification of the molecules in a volatile mixture.
Modified black holes in two dimensional gravity
International Nuclear Information System (INIS)
Mohammedi, N.
1991-11-01
The SL(2,R)/U(1) gauged WZWN model is modified by a topological term and the accompanying change in the geometry of the two dimensional target space is determined. The possibility of this additional term arises from a symmetry in the general formalism of gauging an isometry subgroup of a non-linear sigma model with an antisymmetric tensor. It is shown, in particular, that the space-time exhibits some general singularities for which the recently found black hole is just a special case. From a conformal field theory point of view and for special values of the unitary representation of SL(2,R), this topological term can be interpreted as a small perturbation by a (1,1) conformal operator of the gauged WZWN action. (author). 26 refs
Thermal properties of two-dimensional materials
International Nuclear Information System (INIS)
Zhang Gang; Zhang Yong-Wei
2017-01-01
Two-dimensional (2D) materials, such as graphene, phosphorene, and transition metal dichalcogenides (e.g., MoS 2 and WS 2 ), have attracted a great deal of attention recently due to their extraordinary structural, mechanical, and physical properties. In particular, 2D materials have shown great potential for thermal management and thermoelectric energy generation. In this article, we review the recent advances in the study of thermal properties of 2D materials. We first review some important aspects in thermal conductivity of graphene and discuss the possibility to enhance the ultra-high thermal conductivity of graphene. Next, we discuss thermal conductivity of MoS 2 and the new strategy for thermal management of MoS 2 device. Subsequently, we discuss the anisotropic thermal properties of phosphorene. Finally, we review the application of 2D materials in thermal devices, including thermal rectifier and thermal modulator. (topical reviews)
Two-dimensional electroacoustic waves in silicene
Zhukov, Alexander V.; Bouffanais, Roland; Konobeeva, Natalia N.; Belonenko, Mikhail B.
2018-01-01
In this letter, we investigate the propagation of two-dimensional electromagnetic waves in a piezoelectric medium built upon silicene. Ultrashort optical pulses of Gaussian form are considered to probe this medium. On the basis of Maxwell's equations supplemented with the wave equation for the medium's displacement vector, we obtain the effective governing equation for the vector potential associated with the electromagnetic field, as well as the component of the displacement vector. The dependence of the pulse shape on the bandgap in silicene and the piezoelectric coefficient of the medium was analyzed, thereby revealing a nontrivial triadic interplay between the characteristics of the pulse dynamics, the electronic properties of silicene, and the electrically induced mechanical vibrations of the medium. In particular, we uncovered the possibility for an amplification of the pulse amplitude through the tuning of the piezoelectric coefficient. This property could potentially offer promising prospects for the development of amplification devices for the optoelectronics industry.
Equivalency of two-dimensional algebras
International Nuclear Information System (INIS)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S.
2011-01-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
Two-dimensional nuclear magnetic resonance of quadrupolar systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)
1997-09-01
This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting
2015-08-01
This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Two-dimensional atomic crystals beyond graphene
Kaul, Anupama B.
2014-06-01
Carbon-based nanostructures have been the center of intense research and development for more than two decades now. Of these materials, graphene, a two-dimensional (2D) layered material system, has had a significant impact on science and technology over the past decade after monolayers of this material were experimentally isolated in 2004. The recent emergence of other classes of 2D graphene-like layered materials has added yet more exciting dimensions for research in exploring the diverse properties and applications arising from these 2D material systems. For example, hexagonal-BN, a layered material closest in structure to graphene, is an insulator, while NbSe2, a transition metal di-chalcogenide, is metallic and monolayers of other transition metal di-chalcogenides such as MoS2 are direct band-gap semiconductors. The rich spectrum of properties that 2D layered material systems offer can potentially be engineered ondemand, and creates exciting prospects for using such materials in applications ranging from electronics, sensing, photonics, energy harvesting and flexible electronics over the coming years.
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Stress distribution in two-dimensional silos
Blanco-Rodríguez, Rodolfo; Pérez-Ángel, Gabriel
2018-01-01
Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main assumption that the walls carry part of the weight due to the static friction between grains with themselves and those with the silo's walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of grains. We find that the Janssen's model becomes less relevant as the the silo width increases since the behavior of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we observe zones of concentration of load, located always at a height around two thirds of the granular columns. Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the column.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Two-dimensional bipolar junction transistors
Gharekhanlou, Behnaz; Khorasani, Sina; Sarvari, Reza
2014-03-01
Recent development in fabrication technology of planar two-dimensional (2D) materials has introduced the possibility of numerous novel applications. Our recent analysis has revealed that by definition of p-n junctions through appropriate patterned doping of 2D semiconductors, ideal exponential I-V characteristics may be expected. However, the theory of 2D junctions turns out to be very different to that of standard bulk junctions. Based on this theory of 2D diodes, we construct for the first time a model to describe 2D bipolar junction transistors (2D-BJTs). We derive the small-signal equivalent model, and estimate the performance of a 2D-BJT device based on graphone as the example material. A current gain of about 138 and maximum threshold frequency of 77 GHz, together with a power-delay product of only 4 fJ per 1 μm lateral width is expected at an operating voltage of 5 V. In addition, we derive the necessary formulae and a new approximate solution for the continuity equation in the 2D configuration, which have been verified against numerical solutions.
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Unruly topologies in two-dimensional quantum gravity
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
A sum over histories formulation of quantum geometry could involve sums over different topologies as well as sums over different metrics. In classical gravity a geometry is a manifold with a metric, but it is difficult to implement a sum over manifolds in quantum gravity. In this difficulty, motivation is found for including in the sum over histories, geometries defined on more general objects than manifolds-unruly topologies. In simplicial two-dimensional quantum gravity a class of simplicial complexes is found to which the gravitational action can be extended, for which sums over the class are straightforwardly defined, and for which a manifold dominates the sum in the classical limit. The situation in higher dimensions is discussed. (author)
Replantation of an avulsed tooth with an extended extra oral period
Directory of Open Access Journals (Sweden)
Girish Kubasad
2012-01-01
Full Text Available In this study, we have reported a case of the replantation of a maxillary incisor with an extended extraoral period following a traumatic avulsion. After storage in normal saline, the root surface of the avulsed tooth was conditioned with citric acid and treated with a triple antibiotic solution. The tooth socket was filled with Emdogain before replantation. A 12 month, 18 month and a 5 year follow-up clinical examination revealed the patient to be asymptomatic, and the tooth was functional. The recall radiograph showed no evidence of renewed periradicular breakdown and apical root resorption.
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Two-dimensional silica opens new perspectives
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science
Two-dimensional vibrational-electronic spectroscopy
Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira
2015-10-01
Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.
Berezinskii–Kosterlitz–Thouless transition and two-dimensional melting
Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.
2017-12-01
The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii–Kosterlitz–Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid–hexatic transition and then a first-order hexatic-phase–isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region–potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of
Effects of extended lay-off periods on performance and operator trust under adaptable automation.
Chavaillaz, Alain; Wastell, David; Sauer, Jürgen
2016-03-01
Little is known about the long-term effects of system reliability when operators do not use a system during an extended lay-off period. To examine threats to skill maintenance, 28 participants operated twice a simulation of a complex process control system for 2.5 h, with an 8-month retention interval between sessions. Operators were provided with an adaptable support system, which operated at one of the following reliability levels: 60%, 80% or 100%. Results showed that performance, workload, and trust remained stable at the second testing session, but operators lost self-confidence in their system management abilities. Finally, the effects of system reliability observed at the first testing session were largely found again at the second session. The findings overall suggest that adaptable automation may be a promising means to support operators in maintaining their performance at the second testing session. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
A Model for the Two-dimensional no Isolated Bits Constraint
DEFF Research Database (Denmark)
Forchhammer, Søren; Laursen, Torben Vaarby
2006-01-01
A stationary model is presented for the two-dimensional (2-D) no isolated bits (n.i.b.) constraint over an extended alphabet defined by the elements within 1 by 2 blocks. This block-wise model is based on a set of sufficient conditions for a Pickard random field (PRF) over an m-ary alphabet...
Screening in two-dimensional gauge theories
International Nuclear Information System (INIS)
Korcyl, Piotr; Deutsches Elektronen-Synchrotron; Koren, Mateusz
2012-12-01
We analyze the problem of screening in 1+1 dimensional gauge theories. Using QED 2 as a warmup for the non-abelian models we show the mechanism of the string breaking, in particular the vanishing overlap of the Wilson loops to the broken-string ground state that has been conjectured in higher-dimensional analyses. We attempt to extend our analysis to non-integer charges in the quenched and unquenched cases, in pursuit of the numerical check of a renowned result for the string tension between arbitrarily-charged fermions in the massive Schwinger model.
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Development of Extended Period Pressure-Dependent Demand Water Distribution Models
Energy Technology Data Exchange (ETDEWEB)
Judi, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcpherson, Timothy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-20
Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.
Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices
Gao, Xuzhen; Zeng, Jianhua
2018-02-01
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully "nonlinear quasi-crystal". A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov-Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross-Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose-Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.
Two-dimensional effects in the problem of tearing modes control by electron cyclotron current drive
International Nuclear Information System (INIS)
Comisso, L.; Lazzaro, E.
2010-01-01
The design of means to counteract robustly the classical and neoclassical tearing modes in a tokamak by localized injection of an external control current requires an ever growing understanding of the physical process, beyond the Rutherford-type zero-dimensional models. Here a set of extended magnetohydrodynamic nonlinear equations for four continuum fields is used to investigate the two-dimensional effects in the response of the reconnecting modes to specific inputs of the localized external current. New information is gained on the space- and time-dependent effects of the external action on the two-dimensional structure of magnetic islands, which is very important to formulate applicable control strategies.
Directory of Open Access Journals (Sweden)
MOHAMMAD REZA FAZELI
2004-09-01
Full Text Available Ocular infections may arise from topical ophthalmic medications. A standard imposed by the British Pharmaceutical Codex implies that eye drops should be discarded after 1-day use when these remedies are used in outpatient departments. In this study the bioburden rates arising from 2, 4 and 7 days’ use were evaluated and compared with those of 1 day’s use to determine whether it is possible to extend the period of use of preserved eye drops in outpatient departments. A total of 200 eye drops were taken from outpatient departments of Farabi Eye Hospital after 1, 2, 4 and 7 days’ use and the contamination rates of the residual contents, caps and droppers were determined using conventional techniques. High biobudren rates were obtained in all the samples tested. Although the overall recorded incidences of microbial contamination in the 2 and 4-day drops were not considerably different from those of first day (P>0.01 but those of 7 days’ use were significant (P<0.01. However, when contamination rate of drop contents was taken into account there was a significant difference between 4 and 7 days’ use compared to 1-day drops. Most of the isolated organisms were either of human flora types of Gram-positive bacteria or air-borne fungi. It is concluded that the use of eye drops for outpatient practice may be extended up to 2 days; yet, care should be taken to reduce the overall contamination rates of these preparations for prevention of ocular nosocomial infections.
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy.
Sahoo, Prasana K; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R
2018-01-03
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.
2018-01-01
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Optimizing separations in online comprehensive two-dimensional liquid chromatography
Pirok, Bob W.J.; Gargano, Andrea F.G.; Schoenmakers, Peter J.
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Two-dimensional black holes and non-commutative spaces
International Nuclear Information System (INIS)
Sadeghi, J.
2008-01-01
We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm
2010-01-01
We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e......We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show...
Two-dimensional networks of lanthanide cubane-shaped dumbbells.
Savard, Didier; Lin, Po-Heng; Burchell, Tara J; Korobkov, Ilia; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee
2009-12-21
The syntheses, structures, and magnetic properties are reported for three new lanthanide complexes, [Ln(III)(4)(mu(3)-OH)(2)(mu(3)-O)(2)(cpt)(6)(MeOH)(6)(H(2)O)](2) (Ln = Dy (1.15MeOH), Ho (2.14MeOH), and Tb (3.18MeOH)), based on 4-(4-carboxyphenyl)-1,2,4-triazole ligand (Hcpt). The three complexes were confirmed to be isomorphous by infrared spectroscopy and single-crystal X-ray diffraction. The crystal structure of 1 reveals that the eight-coordinate metal centers are organized in two cubane-shaped moieties composed of four Dy(III) ions each. All metal centers in the cubane core are bridged by two mu(3)-oxide and two mu(3)-hydroxide asymmetrical units. Moreover, each cubane is linked to its neighbor by two externally coordinating ligands, forming the dumbbell {Dy(III)(4)}(2) moiety. Electrostatic interactions between the ligands of the triazole-bridged dimers form an extended supramolecular two-dimensional arrangement analogous to a metal-organic framework with quadrilateral spaces occupied by ligands from axial sheets and by four solvent molecules. The magnetic properties of the three compounds have been investigated using dc and ac susceptibility measurements. For 1, the static and dynamic data corroborate the fact that the {Dy(III)(4)} cubane-shaped core exhibits slow relaxation of its magnetization below 5 K associated with a single-molecule magnet behavior.
Acoustic dispersion in a two-dimensional dipole system
International Nuclear Information System (INIS)
Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter
2008-01-01
We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r 3 potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains
Almost two-dimensional treatment of drift wave turbulence
International Nuclear Information System (INIS)
Albert, J.M.; Similon, P.L.; Sudan, R.N.
1990-01-01
The approximation of two-dimensionality is studied and extended for electrostatic drift wave turbulence in a three-dimensional, magnetized plasma. It is argued on the basis of the direct interaction approximation that in the absence of parallel viscosity, purely 2-D solutions exist for which only modes with k parallel =0 are excited, but that the 2-D spectrum is unstable to perturbations at nonzero k parallel . A 1-D equation for the parallel profile g k perpendicular (k parallel ) of the saturated spectrum at steady state is derived and solved, allowing for parallel viscosity; the spectrum has finite width in k parallel , and hence finite parallel correlation length, as a result of nonlinear coupling. The enhanced energy dissipation rate, a 3-D effect, may be incorporated in the 2-D approximation by a suitable renormalization of the linear dissipation term. An algorithm is presented that reduces the 3-D problem to coupled 1- and 2-D problems. Numerical results from a 2-D spectral direct simulation, thus modified, are compared with the results from the corresponding 3-D (unmodified) simulation for a specific model of drift wave excitation. Damping at high k parallel is included. It is verified that the 1-D solution for g k perpendicular (k parallel ) accurately describes the shape and width of the 3-D spectrum, and that the modified 2-D simulation gives a good estimate of the 3-D energy saturation level and distribution E(k perpendicular )
Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)
2003-01-01
In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Extended suicides in families in Eastern Denmark in the period 1993-2012
DEFF Research Database (Denmark)
Slot, Liselott; Thomsen, Asser Hedegaard; Leth, Peter Mygind
2014-01-01
. In an earlier investigation (Homicide in Denmark 1946-70, doctoral thesis by Hart-Hansen JP) the predominant type of extended suicide was committed with carbon monoxide from household gas, but today the preferred homicide methods are much more violent. The reason for the dramatic fall in the number of extended...
effects of extended period of storage and strain of layer on quality of ...
African Journals Online (AJOL)
User
strain of layers and extended storage length on internal and external qualities of chicken eggs. A total of three-hundred (300) eggs from 46-week old layer strains were ... of the albumen of the egg due to loss of carbon dioxide which is an important determinant of egg quality. Again, the authors observed that extended peri-.
Third sound in one and two dimensional modulated structures
International Nuclear Information System (INIS)
Komuro, T.; Kawashima, H., Shirahama, K.; Kono, K.
1996-01-01
An experimental technique is developed to study acoustic transmission in one and two dimensional modulated structures by employing third sound of a superfluid helium film. In particular, the Penrose lattice, which is a two dimensional quasiperiodic structure, is studied. In two dimensions, the scattering of third sound is weaker than in one dimension. Nevertheless, the authors find that the transmission spectrum in the Penrose lattice, which is a two dimensional prototype of the quasicrystal, is observable if the helium film thickness is chosen around 5 atomic layers. The transmission spectra in the Penrose lattice are explained in terms of dynamical theory of diffraction
Stability analysis of two-dimensional digital recursive filters
Alexander, W. E.; Pruess, S. A.
1980-01-01
A new approach to the stability problem for the two-dimensional digital recursive filter is presented. The bivariate difference equation representation of the two-dimensional recursive digital filter is converted to a multiinput-multioutput (MIMO) system similar to the state-space representation of the one-dimensional digital recursive filter. In this paper, a pseudo-state representation is used and three coefficient matrices are obtained. A general theorem for stability of two-dimensional digital recursive filters is derived and a very useful theorem is presented which expresses sufficient requirements for instability in terms of the spectral radii of these matrices.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Numerical evaluation of two-dimensional harmonic polylogarithms
Gehrmann, T
2002-01-01
The two-dimensional harmonic polylogarithms $\\G(\\vec{a}(z);y)$, a generalization of the harmonic polylogarithms, themselves a generalization of Nielsen's polylogarithms, appear in analytic calculations of multi-loop radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of two-dimensional harmonic polylogarithms, with the two arguments $y,z$ varying in the triangle $0\\le y \\le 1$, $ 0\\le z \\le 1$, $\\ 0\\le (y+z) \\le 1$. This algorithm is implemented into a {\\tt FORTRAN} subroutine {\\tt tdhpl} to compute two-dimensional harmonic polylogarithms up to weight 4.
DEFF Research Database (Denmark)
David, Christin; Christensen, Johan; Mortensen, N. Asger
2016-01-01
We develop a methodology to incorporate nonlocal optical response of the free electron gas due to quantum-interaction effects in metal components of periodic two-dimensional plasmonic crystals and study the impact of spatial dispersion on promising building blocks for photonic circuits. Within th...
Tuset-Sanchis, Luis; Castro-Palacio, Juan C.; Gómez-Tejedor, José A.; Manjón, Francisco J.; Monsoriu, Juan A.
2015-01-01
A smartphone acceleration sensor is used to study two-dimensional harmonic oscillations. The data recorded by the free android application, Accelerometer Toy, is used to determine the periods of oscillation by graphical analysis. Different patterns of the Lissajous curves resulting from the superposition of harmonic motions are illustrated for…
On orbital topological equivalence of cubic ODEs in two-dimensional algebras
Balanov, Zolman; Krawcewicz, Wiesław; Zur, Shira
2005-01-01
Cubic differential systems in real commutative two-dimensional algebras are classified up to orbital topological equivalence via the solubility of polynomial equations in algebras. As a by-product, existence of bounded solutions in such systems is studied via complex structures in the algebras. Application to the existence of periodic solutions to $n$-dimensional differential systems "cubic at infinity" is given.
Dispersion of guided modes in two-dimensional split ring lattices
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Koenderink, A. Femius
2014-01-01
We present a semianalytical point-dipole method that uses Ewald lattice summation to find the dispersion relation of guided plasmonic and bianisotropic modes in metasurfaces composed of two-dimensional (2D) periodic lattices of arbitrarily strongly scattering magnetoelectric dipole scatterers...
Micromachined two dimensional resistor arrays for determination of gas parameters
van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt
A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of
Proteome research : two-dimensional gel electrophoresis and identification methods
National Research Council Canada - National Science Library
Rabilloud, Thierry, 1961
2000-01-01
"Two-dimensional electrophoresis is the central methodology in proteome research, and the state of the art is described in detail in this text, together with extensive coverage of the detection methods available...
1/f noise in two-dimensional fluids
International Nuclear Information System (INIS)
Cable, S.B.; Tajima, T.
1994-10-01
We derive an exact result on the velocity fluctuation power spectrum of an incompressible two-dimensional fluid. Employing the fluctuation-dissipation relationship and the enstrophy conversation, we obtain the frequency spectrum of a 1/f form
Partition function of the two-dimensional nearest neighbour Ising ...
Indian Academy of Sciences (India)
Abstract. The partition function for two-dimensional nearest neighbour Ising model in a non-zero magnetic field have been derived for a finite square lattice of 16, 25, 36 and 64 sites with the help of ...
Multisoliton formula for completely integrable two-dimensional systems
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
For general two-dimensional completely integrable systems, the exact formulae for multisoliton type solutions are given. The formulae are obtained algebrically from solutions of two linear partial differential equations
Driving performance after an extended period of travel in an automated highway system
1998-04-01
The objective of this experiment -- part of a series exploring human factors issues related to the Automated Highway System (AHS)-was to determine whether driving performance would be affected by extended travel under automated control at a velocity ...
Paul, Jagannath
Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly
Assessing the potential impact of extending antenatal steroids to the late preterm period.
Souter, Vivienne; Kauffman, Ellen; Marshall, Alice J; Katon, Jodie G
2017-10-01
In 2016, guidance statements were issued by the Society for Maternal-Fetal Medicine and the American Congress of Obstetricians and Gynecologists about extending antenatal steroid use to selected late preterm singleton pregnancies. We sought to review antenatal steroid use prior to the 2016 guidance statements and assess the potential impact of these. This cohort study used chart-abstracted data from singleton deliveries from Jan. 1, 2012, through March 31, 2016, at 12 centers participating in the Obstetrics Clinical Outcomes Assessment Program, a quality initiative in Washington State. Pregnancies with missing gestation at delivery, fetal anomalies, or antepartum demise were excluded. Antenatal steroid use prior to the 2016 guidance was evaluated based on the percentage of early preterm deliveries (23 +0 -33 +6 weeks) and the percentage of all pregnancies that received antenatal steroids. Newborn complication rates were calculated for late preterm deliveries (34+0 +0 -36 +6 weeks), grouped by whether they would be potentially eligible or ineligible for antenatal steroids based on the 2016 guidance statements. The opportunity for antenatal steroids was missed in 21.8% (226/1034) of early preterm deliveries and of all those who received antenatal steroids, 32.2% (614/1908) delivered at term. Of preterm deliveries, 74% (n = 2942) were in the late preterm period. In all, 80% (n = 2363) of late preterm deliveries were potentially eligible for antenatal steroids and 60% of these (n = 1411) delivered at 36 weeks. The rate of respiratory complications in newborns delivering at 34 and 35 weeks was higher in the group potentially eligible for late preterm antenatal steroids compared to those in the ineligible group. Of those delivering at 36 weeks, no differences were detected in prevalence of respiratory complications by potential eligibility for antenatal steroids; however, compared with the ineligible group, those potentially eligible had a lower risk of neonatal
Sub-nanometre channels embedded in two-dimensional materials
Han, Yimo; Li, Ming-Yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.
2018-02-01
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling. Thus far, atomically thin p-n junctions, metal-semiconductor contacts, and metal-insulator barriers have been demonstrated. Although 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions is also necessary. Here, we report the direct synthesis of sub-nanometre-wide one-dimensional (1D) MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalysed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic band structure of these 1D channels offers the promise of carrier confinement in a direct-gap material and the charge separation needed to access the ultimate length scales necessary for future electronic applications.
Sub-Nanometer Channels Embedded in Two-Dimensional Materials
Han, Yimo
2017-07-31
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.
Sub-nanometre channels embedded in two-dimensional materials
Han, Yimo
2017-12-04
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically thin p–n junctions2,3,4,5,6,7,8, metal–semiconductor contacts9,10,11, and metal–insulator barriers12,13,14 have been demonstrated. Although 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions is also necessary. Here, we report the direct synthesis of sub-nanometre-wide one-dimensional (1D) MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalysed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic band structure of these 1D channels offers the promise of carrier confinement in a direct-gap material and the charge separation needed to access the ultimate length scales necessary for future electronic applications.
Dragging two-dimensional discrete solitons by moving linear defects.
Brazhnyi, Valeriy A; Malomed, Boris A
2011-07-01
We study the mobility of small-amplitude solitons attached to moving defects which drag the solitons across a two-dimensional (2D) discrete nonlinear Schrödinger lattice. Findings are compared to the situation when a free small-amplitude 2D discrete soliton is kicked in a uniform lattice. In agreement with previously known results, after a period of transient motion the free soliton transforms into a localized mode pinned by the Peierls-Nabarro potential, irrespective of the initial velocity. However, the soliton attached to the moving defect can be dragged over an indefinitely long distance (including routes with abrupt turns and circular trajectories) virtually without losses, provided that the dragging velocity is smaller than a certain critical value. Collisions between solitons dragged by two defects in opposite directions are studied too. If the velocity is small enough, the collision leads to a spontaneous symmetry breaking, featuring fusion of two solitons into a single one, which remains attached to either of the two defects.
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
The Two-Dimensional Analogue of General Relativity
Lemos, José P. S.; Sá, Paulo M.
1993-01-01
General Relativity in three or more dimensions can be obtained by taking the limit $\\omega\\rightarrow\\infty$ in the Brans-Dicke theory. In two dimensions General Relativity is an unacceptable theory. We show that the two-dimensional closest analogue of General Relativity is a theory that also arises in the limit $\\omega\\rightarrow\\infty$ of the two-dimensional Brans-Dicke theory.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern.......The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Two-dimensional multifractal cross-correlation analysis
International Nuclear Information System (INIS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-01-01
Highlights: • We study the mathematical models of 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Present the definition of the two-dimensional N 2 -partitioned multiplicative cascading process. • Do the comparative analysis of 2D-MC by 2D-MFXPF, 2D-MFXDFA and 2D-MFXDMA. • Provide a reference on the choice and parameter settings of these methods in practice. - Abstract: There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross-correlations. This paper presents two-dimensional multifractal cross-correlation analysis based on the partition function (2D-MFXPF), two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) and two-dimensional multifractal cross-correlation analysis based on the detrended moving average analysis (2D-MFXDMA). We apply these methods to pairs of two-dimensional multiplicative cascades (2D-MC) to do a comparative study. Then, we apply the two-dimensional multifractal cross-correlation analysis based on the detrended fluctuation analysis (2D-MFXDFA) to real images and unveil intriguing multifractality in the cross correlations of the material structures. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms in the potential applications in the field of SAR image classification and detection.
The theory of critical phenomena in two-dimensional systems
International Nuclear Information System (INIS)
Olvera de la C, M.
1981-01-01
An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Parrondo Games with Two-Dimensional Spatial Dependence
Ethier, S. N.; Lee, Jiyeon
Parrondo games with one-dimensional (1D) spatial dependence were introduced by Toral and extended to the two-dimensional (2D) setting by Mihailović and Rajković. MN players are arranged in an M × N array. There are three games, the fair, spatially independent game A, the spatially dependent game B, and game C, which is a random mixture or non-random pattern of games A and B. Of interest is μB (or μC), the mean profit per turn at equilibrium to the set of MN players playing game B (or game C). Game A is fair, so if μB ≤ 0 and μC > 0, then we say the Parrondo effect is present. We obtain a strong law of large numbers (SLLN) and a central limit theorem (CLT) for the sequence of profits of the set of MN players playing game B (or game C). The mean and variance parameters are computable for small arrays and can be simulated otherwise. The SLLN justifies the use of simulation to estimate the mean. The CLT permits evaluation of the standard error of a simulated estimate. We investigate the presence of the Parrondo effect for both small arrays and large ones. One of the findings of Mihailović and Rajković was that “capital evolution depends to a large degree on the lattice size.” We provide evidence that this conclusion is partly incorrect. A paradoxical feature of the 2D game B that does not appear in the 1D setting is that, for fixed M and N, the mean function μB is not necessarily a monotone function of its parameters.
Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha
2017-06-01
Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
From Flatland to Spaceland: Higher Dimensional Patterning with Two-Dimensional Materials.
Chen, Po-Yen; Liu, Muchun; Wang, Zhongying; Hurt, Robert H; Wong, Ian Y
2017-06-01
The creation of three-dimensional (3D) structures from two-dimensional (2D) nanomaterial building blocks enables novel chemical, mechanical or physical functionalities that cannot be realized with planar thin films or in bulk materials. Here, we review the use of emerging 2D materials to create complex out-of-plane surface topographies and 3D material architectures. We focus on recent approaches that yield periodic textures or patterns, and present four techniques as case studies: (i) wrinkling and crumpling of planar sheets, (ii) encapsulation by crumpled nanosheet shells, (iii) origami folding and kirigami cutting to create programmed curvature, and (iv) 3D printing of 2D material suspensions. Work to date in this field has primarily used graphene and graphene oxide as the 2D building blocks, and we consider how these unconventional approaches may be extended to alternative 2D materials and their heterostructures. Taken together, these emerging patterning and texturing techniques represent an intriguing alternative to conventional materials synthesis and processing methods, and are expected to contribute to the development of new composites, stretchable electronics, energy storage devices, chemical barriers, and biomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GPU-accelerated two dimensional synthetic aperture focusing for photoacoustic microscopy
Liu, Siyu; Feng, Xiaohua; Gao, Fei; Jin, Haoran; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin
2018-02-01
Acoustic resolution photoacoustic microscopy (AR-PAM) generally suffers from limited depth of focus, which had been extended by synthetic aperture focusing techniques (SAFTs). However, for three dimensional AR-PAM, current one dimensional (1D) SAFT and its improved version like cross-shaped SAFT do not provide isotropic resolution in the lateral direction. The full potential of the SAFT remains to be tapped. To this end, two dimensional (2D) SAFT with fast computing architecture is proposed in this work. Explained by geometric modeling and Fourier acoustics theories, 2D-SAFT provide the narrowest post-focusing capability, thus to achieve best lateral resolution. Compared with previous 1D-SAFT techniques, the proposed 2D-SAFT improved the lateral resolution by at least 1.7 times and the signal-to-noise ratio (SNR) by about 10 dB in both simulation and experiments. Moreover, the improved 2D-SAFT algorithm is accelerated by a graphical processing unit that reduces the long period of reconstruction to only a few seconds. The proposed 2D-SAFT is demonstrated to outperform previous reported 1D SAFT in the aspects of improving the depth of focus, imaging resolution, and SNR with fast computational efficiency. This work facilitates future studies on in vivo deeper and high-resolution photoacoustic microscopy beyond several centimeters.
Ray aberrations of two-dimensional oblique lattices on the self-image plane
Chang, Soo
2006-12-01
We extend the geometrical theory of aberration for a self-imaging system to the case of two-dimensional oblique lattices. In our approach, the fundamental translation vectors of the lattice are not restricted in both length and orientation. Evaluating the disturbance of light through the oblique lattice under coherent illumination, we find the conditions of constraint which limit the self-imaging of the oblique lattice. Various types of oblique lattices are shown to obey the self-imaging conditions. We derive the equations to trace the optical paths of self-imaging rays and then analyze the ray aberrations which arise from the difference between the optical paths of a self-imaging ray and of the corresponding actual ray. The ray aberrations are shown to disappear when the periods of the lattice are large compared with the wavelength of light. We find that the ray aberrations carried by self-imaged oblique lattices are totally undercorrected and the aberrated image patches are displaced along the direction tangent vector of a chief ray.
GPU-accelerated two dimensional synthetic aperture focusing for photoacoustic microscopy
Directory of Open Access Journals (Sweden)
Siyu Liu
2018-02-01
Full Text Available Acoustic resolution photoacoustic microscopy (AR-PAM generally suffers from limited depth of focus, which had been extended by synthetic aperture focusing techniques (SAFTs. However, for three dimensional AR-PAM, current one dimensional (1D SAFT and its improved version like cross-shaped SAFT do not provide isotropic resolution in the lateral direction. The full potential of the SAFT remains to be tapped. To this end, two dimensional (2D SAFT with fast computing architecture is proposed in this work. Explained by geometric modeling and Fourier acoustics theories, 2D-SAFT provide the narrowest post-focusing capability, thus to achieve best lateral resolution. Compared with previous 1D-SAFT techniques, the proposed 2D-SAFT improved the lateral resolution by at least 1.7 times and the signal-to-noise ratio (SNR by about 10 dB in both simulation and experiments. Moreover, the improved 2D-SAFT algorithm is accelerated by a graphical processing unit that reduces the long period of reconstruction to only a few seconds. The proposed 2D-SAFT is demonstrated to outperform previous reported 1D SAFT in the aspects of improving the depth of focus, imaging resolution, and SNR with fast computational efficiency. This work facilitates future studies on in vivo deeper and high-resolution photoacoustic microscopy beyond several centimeters.
Vazquez, Monica Hebe
2015-01-01
Two-dimensional (2D) gel electrophoresis coupled with protein identification using mass spectrometry (MS) is a procedure extensively used to obtain a catalog of several thousand proteins in a single gel. These evaluations provide information that complements and extends the results retrieved from messenger RNA (mRNA) profiling using microarray technologies (1). Basically, the first step on the 2D gel electrophoresis analysis is based on protein separation according to [...]. Fil: Vazquez, ...
Trushin, Maxim
2017-01-01
We find that intrinsic graphene provides efficient photocarrier transport across a two-dimensional graphene-semiconductor Schottky junction as a linear response to monochromatic light with excitation energy well below the semiconductor bandgap. The operation mechanism relies both on zero-bias photoexcited and thermionic emission contributing to photoresponsivity, enabled by the extended photocarrier thermalization time in intrinsic graphene. The photoresponsivity rapidly increases with excita...
Two-dimensional topological field theories coupled to four-dimensional BF theory
International Nuclear Information System (INIS)
Montesinos, Merced; Perez, Alejandro
2008-01-01
Four-dimensional BF theory admits a natural coupling to extended sources supported on two-dimensional surfaces or string world sheets. Solutions of the theory are in one to one correspondence with solutions of Einstein equations with distributional matter (cosmic strings). We study new (topological field) theories that can be constructed by adding extra degrees of freedom to the two-dimensional world sheet. We show how two-dimensional Yang-Mills degrees of freedom can be added on the world sheet, producing in this way, an interactive (topological) theory of Yang-Mills fields with BF fields in four dimensions. We also show how a world sheet tetrad can be naturally added. As in the previous case the set of solutions of these theories are contained in the set of solutions of Einstein's equations if one allows distributional matter supported on two-dimensional surfaces. These theories are argued to be exactly quantizable. In the context of quantum gravity, one important motivation to study these models is to explore the possibility of constructing a background-independent quantum field theory where local degrees of freedom at low energies arise from global topological (world sheet) degrees of freedom at the fundamental level
Ma, Q.; Boulet, C.; Tipping, R. H.
2014-01-01
The refinement of the Robert-Bonamy (RB) formalism by considering the line coupling for isotropic Raman Q lines of linear molecules developed in our previous study [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] has been extended to infrared P and R lines. In these calculations, the main task is to derive diagonal and off-diagonal matrix elements of the Liouville operator iS1 - S2 introduced in the formalism. When one considers the line coupling for isotropic Raman Q lines where their initial and final rotational quantum numbers are identical, the derivations of off-diagonal elements do not require extra correlation functions of the ^S operator and their Fourier transforms except for those used in deriving diagonal elements. In contrast, the derivations for infrared P and R lines become more difficult because they require a lot of new correlation functions and their Fourier transforms. By introducing two dimensional correlation functions labeled by two tensor ranks and making variable changes to become even functions, the derivations only require the latters' two dimensional Fourier transforms evaluated at two modulation frequencies characterizing the averaged energy gap and the frequency detuning between the two coupled transitions. With the coordinate representation, it is easy to accurately derive these two dimensional correlation functions. Meanwhile, by using the sampling theory one is able to effectively evaluate their two dimensional Fourier transforms. Thus, the obstacles in considering the line coupling for P and R lines have been overcome. Numerical calculations have been carried out for the half-widths of both the isotropic Raman Q lines and the infrared P and R lines of C2H2 broadened by N2. In comparison with values derived from the RB formalism, new calculated values are significantly reduced and become closer to measurements.
2012-10-12
... Enforcement Notice To Reopen and Extend the Scoping Comment Period for the Environmental Impact Statement for the Four Corners Power Plant and Navajo Mine Energy Project AGENCY: Office of Surface Mining... alternatives that we should consider in the planning and preparation of an environmental impact statement (EIS...
A geometrical approach to two-dimensional Conformal Field Theory
Dijkgraaf, Robertus Henricus
1989-09-01
manifold obtained as the quotient of a smooth manifold by a discrete group. In Chapter 6 our considerations will be of a somewhat complementary nature. We will investigate models with central charge c = 1 by deformation techniques. The central charge is a fundamental parameter in any conformal invariant model, and the value c = 1 is of considerable interest, since it forms in many ways a threshold value. For c 1 is still very much terra incognita. Our results give a partial classification for the intermediate case of c = 1 models. The formulation of these c = 1 CFT's on surfaces of arbitrary topology is central in Chapter 7. Here we will provide many explicit results that provide illustrations for our more abstract discussions of higher genus quantities in Chapters 3 and 1. Unfortunately, our calculations will become at this point rather technical, since we have to make extensive use of the mathematics of Riemann surfaces and their coverings. Finally, in Chapter 8 we leave the two-dimensional point of view that we have been so loyal to up to then , and ascend to threedimensions where we meet topological gauge theories. These so-called Chern-Simons theories encode in a very economic way much of the structure of two-dimensional (rational) conformal field theories, and this direction is generally seen to be very promising. We will show in particular how many of our results of Chapter 5 have a natural interpretation in three dimensions.
Traditional Semiconductors in the Two-Dimensional Limit
Lucking, Michael C.; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S. B.
2018-02-01
Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.
38 CFR 21.3047 - Extended period of eligibility due to physical or mental disability.
2010-07-01
... eligibility due to physical or mental disability. 21.3047 Section 21.3047 Pensions, Bonuses, and Veterans... period of eligibility due to physical or mental disability. (a) General. (1) An eligible spouse or... education within the otherwise applicable period of eligibility because of a physical or mental disability...
2011-04-18
...In this document, the Wireless Telecommunications Bureau extends the deadline for filing comments and reply comments in response to the Public Notice seeking comment on the December 3, 2010 petition for declaratory ruling (Petition) filed by CTIA--The Wireless Association (Petitioners). The Petitioners asked the Federal Communications Commission (Commission) to clarify ``the scope of Section 332(c)(3)(A)'s ban on state and local entry regulation.''
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Two-Dimensional Superfluidity of Exciton Polaritons Requires Strong Anisotropy
Directory of Open Access Journals (Sweden)
Ehud Altman
2015-02-01
Full Text Available Fluids of exciton polaritons, excitations of two-dimensional quantum wells in optical cavities, show collective phenomena akin to Bose condensation. However, a fundamental difference from standard condensates stems from the finite lifetime of these excitations, which necessitates continuous driving to maintain a steady state. A basic question is whether a two-dimensional condensate with long-range algebraic correlations can exist under these nonequilibrium conditions. Here, we show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that recent apparent evidence for Bose condensation of exciton polaritons must be an intermediate-scale crossover phenomenon, while the true long-distance correlations fall off exponentially. We obtain these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic Kardar-Parisi-Zhang equation.
A nonperturbative treatment of two-dimensional quantum gravity
International Nuclear Information System (INIS)
Gross, D.J.; Migdal, A.A.
1990-01-01
We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double scaling limit of the random matrix model. We develop an operator formalism for utilizing the method of orthogonal polynomials that allows us to solve the matrix models to all orders in the genus expansion. Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We construct and discuss the correlation functions of an infinite set of pointlike and loop operators to all orders in the genus expansion. (orig.)
Critical Behaviour of a Two-Dimensional Random Antiferromagnet
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Birgeneau, R. J.; Guggenheim, H. J.
1976-01-01
A neutron scattering study of the order parameter, correlation length and staggered susceptibility of the two-dimensional random antiferromagnet Rb2Mn0.5Ni0.5F4 is reported. The system is found to exhibit a well-defined phase transition with critical exponents identical to those of the isomorphous...... pure materials K2NiF4 and K2MnF4. Thus, in these systems, which have the asymptotic critical behaviour of the two-dimensional Ising model, randomness has no measurable effect on the phase-transition behaviour....
Nonlinear excitations in two-dimensional molecular structures with impurities
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth
1995-01-01
We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Two-dimensional SCFTs from D3-branes
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco [Blackett Laboratory, Imperial College London,South Kensington Campus, London SW7 2AZ (United Kingdom); International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste (Italy); Bobev, Nikolay [Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Crichigno, P. Marcos [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,Leuvenlaan 4, 3854 CE Utrecht (Netherlands)
2016-07-05
We find a large class of two-dimensional N=(0,2) SCFTs obtained by compactifying four-dimensional N=1 quiver gauge theories on a Riemann surface. We study these theories using anomalies and c-extremization. The gravitational duals to these fixed points are new AdS{sub 3} solutions of IIB supergravity which we exhibit explicitly. Along the way we uncover a universal relation between the conformal anomaly coefficients of four-dimensional and two-dimensional SCFTs connected by an RG flow across dimensions. We also observe an interesting novel phenomenon in which the superconformal R-symmetry mixes with baryonic symmetries along the RG flow.
Densis. Densimetric representation of two-dimensional matrices
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
Densis is a Fortran V program which allows off-line control of a Calcomp digital plotter, to represent a two-dimensional matrix of numerical elements in the form of a variable shading intensity map in two colours. Each matrix element is associated to a square of a grid which is traced over by lines whose number is a function of the element value according to a selected scale. Program features, subroutine structure and running instructions, are described. Some typical results, for gamma-gamma coincidence experimental data and a sampled two-dimensional function, are indicated. (author)
Quantum melting of a two-dimensional Wigner crystal
Dolgopolov, V. T.
2017-10-01
The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid–solid phase interface are discussed.
Two dimensional nonlinear spectral estimation techniques for breast cancer localization
International Nuclear Information System (INIS)
Stathaki, P.T.; Constantinides, A.G.
1994-01-01
In this paper the problem of image texture analysis in the presence of noise is examined from a higher-order statistical perspective. The approach taken involves the use of two dimensional second order Volterra filters where the filter weights are derived from third order cumulants of the two dimensional signal. The specific application contained in this contribution is in mammography, an area in which it is difficult to discern the appropriate features. The paper describes the fundamental issues of the various components of the approach. The results of the entire texture modelling, classification and segmentation scheme contained in this paper are very encouraging
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...... with nonlocal Einstein-Podolsky-Rosen entanglement....
Chiral anomaly, fermionic determinant and two dimensional models
International Nuclear Information System (INIS)
Rego Monteiro, M.A. do.
1985-01-01
The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.) [pt
Two-dimensional spin diffusion in multiterminal lateral spin valves
Saha, D.; Basu, D.; Holub, M.; Bhattacharya, P.
2008-01-01
The effects of two-dimensional spin diffusion on spin extraction in lateral semiconductor spin valves have been investigated experimentally and theoretically. A ferromagnetic collector terminal of variable size is placed between the ferromagnetic electron spin injector and detector of a conventional lateral spin valve for spin extraction. It is observed that transverse spin diffusion beneath the collector terminal plays an important role along with the conventional longitudinal spin diffusion in describing the overall transport of spin carriers. Two-dimensional spin diffusion reduces the perturbation of the channel electrochemical potentials and improves spin extraction.
Extended safe preservation period of foods of plant origin through combined technological methods
International Nuclear Information System (INIS)
Miteva, D.; Nacheva, I.; Dzhakova, A.; Tsvetkov, Tsv.
2008-01-01
The sublimation drying of fruits as an innovative technology for preservation their composition and enzyme activity is applied to various fruits: apricots, strawberries, plumbs, peaches and apples. The authors present the main methods of lyophilization as an original biotechnology for cryopreservation of fruits and afterwards are subjected to cold sterilization with 1.5 and 3 kGy doses of gamma irradiation. The combined application of both technologies provides safe and extended preservation of fresh fruits with high content of vitamins, mineral salts, maximum preserved enzyme system, aroma-tasty complex and microbiological purity
Kamimori, Gary H; McLellan, Tom M; Tate, Charmaine M; Voss, David M; Niro, Phil; Lieberman, Harris R
2015-06-01
Various occupational groups are required to maintain optimal physical and cognitive function during overnight periods of wakefulness, often with less than optimal sleep. Strategies are required to help mitigate the impairments in cognitive function to help sustain workplace safety and productivity. To test the effectiveness of repeated 200 mg doses of caffeine on cognitive function and live-fire marksmanship with soldiers during three successive nights of sustained wakefulness followed by 4-h afternoon sleep periods. Twenty Special Forces personnel (28.6 ± 4.7 years, 177.6 ± 7.5 cm and 81.2 ± 8.0 kg) were randomly assigned to receive four 200-mg doses of caffeine (n = 10) or placebo (n = 10) during the late evening and early morning hours during three successive days. An afternoon 4-h sleep period followed. The psychomotor (PVT) and field (FVT) vigilance, logical reasoning (LRT) tests and a vigilance monitor assessed cognitive function throughout the study. Live-fire marksmanship requiring friend-foe discrimination was assessed. Caffeine maintained speed on the PVT (p caffeine. A total daily dose of 800 mg caffeine during successive overnight periods of wakefulness is an effective strategy to maintain cognitive function when optimal sleep periods during the day are not available.
Longitudinal and transverse modes dispersion in two-dimensional ...
African Journals Online (AJOL)
The dynamical properties of two-dimensional Yukawa fluids in the domain of weak and intermediate coupling parameters were analyzed through molecular dynamics (MD) simulation. The dispersion relation for both the longitudinal and transverse modes were obtained and compared with random phase approximation ...
Two-dimensional static deformation of an anisotropic medium
Indian Academy of Sciences (India)
The problem of two-dimensional static deformation of a monoclinic elastic medium has been studied using the eigenvalue method, following a Fourier transform. We have obtained expressions for displacements and stresses for the medium in the transformed domain. As an application of the above theory, the particular ...
Types of two-dimensional N = 4 superconformal field theories
Indian Academy of Sciences (India)
Superconformal field theory; free field realization; string theory; AdS-CFT correspon- dence. PACS Nos 11.25.Hf; 11.25.-w; 11.30.Ly; 11.30.Pb. Conformal symmetries in two space-time dimensions have been very extensively studied owing to their applications both in string theory and two-dimensional statistical systems.
Conformal QED in two-dimensional topological insulators
Menezes Silva Da Costa, Natália; Palumbo, Giandomenico; de Morais Smith, Cristiane
2017-01-01
It has been shown recently that local four-fermion interactions on the edges of two-dimensional time-reversal-invariant topological insulators give rise to a new non-Fermi-liquid phase, called helical Luttinger liquid (HLL). In this work, we provide a first-principle derivation of this
Stress and mixed boundary conditions for two-dimensional ...
Indian Academy of Sciences (India)
For plate bending and stretching problems in two-dimensional (2D) dodecagonal quasi-crystal (QC) media, the reciprocal theorem and the general solution for QCs are applied in a novel way to obtain the appropriate stress and mixed boundary conditions accurate to all order. The method developed by Gregory and Wan is ...
Two-dimensional profiling of Xanthomonas campestris pv. viticola ...
African Journals Online (AJOL)
However, the analysis of the 2D-PAGE gel images revealed a larger number of spots in the lysis method when compared to the others. Taking ... Keywords: Bacterial canker, Vitis vinifera, proteomics, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2D-PAGE).
Vortex scaling ranges in two-dimensional turbulence
Burgess, B. H.; Dritschel, D. G.; Scott, R. K.
2017-11-01
We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.
Two-dimensional effects in nonlinear Kronig-Penney models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim
1997-01-01
An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...
Two-dimensional hazard estimation for longevity analysis
DEFF Research Database (Denmark)
Fledelius, Peter; Guillen, M.; Nielsen, J.P.
2004-01-01
We investigate developments in Danish mortality based on data from 1974-1998 working in a two-dimensional model with chronological time and age as the two dimensions. The analyses are done with non-parametric kernel hazard estimation techniques. The only assumption is that the mortality surface i...... for analysis of economic implications arising from mortality changes....
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
2017-09-13
Sep 13, 2017 ... Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 3. Solitary wave solutions of ... Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive ...
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. ... havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre glass in the three dimensional form; We also have Pencil, Charcoal Pastel and, Acrylic oil-paint in two dimensional form.
Seismically constrained two-dimensional crustal thermal structure of ...
Indian Academy of Sciences (India)
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to ...
(Bombyx mori L.) using two-dimensional polyacrylami
Indian Academy of Sciences (India)
Unknown
Fountoulakis M, Schuller E, Hardmeier R, Berndt P and Lubec. G 1999 Rat brain proteins: Two-dimensional protein data- base and variation in the expression level; Electrophoresis 20. 3527–3579. Hiroshi Fujii, Junji Tochinara, Yutaka Kawaguchi and Sakagu- chi B 1988 Existence of carotenoids binding protein in larval.
Solitary wave solutions of two-dimensional nonlinear Kadomtsev ...
Indian Academy of Sciences (India)
Aly R Seadawy
2017-09-13
Sep 13, 2017 ... We considered the two-dimensional DASWs in colli- sionless, unmagnetized cold plasma consisting of dust fluid, ions and electrons. The dynamics of DASWs is governed by the normalized fluid equations of nonlin- ear continuity (1), nonlinear motion of system (2) and. (3) and linear Poisson equation (4) as.
Polaron dynamics in a two-dimensional anharmonic Holstein model
DEFF Research Database (Denmark)
Zolotaryuk, Yaroslav; Christiansen, Peter Leth; Juul Rasmussen, Jens
1998-01-01
A generalized two-dimensional semiclassical :Holstein model with a realistic on-site potential that contains anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to have a restricting core. The core plays the role of an effective saturation...
Sound waves in two-dimensional ducts with sinusoidal walls
Nayfeh, A. H.
1974-01-01
The method of multiple scales is used to analyze the wave propagation in two-dimensional hard-walled ducts with sinusoidal walls. For traveling waves, resonance occurs whenever the wall wavenumber is equal to the difference of the wavenumbers of any two duct acoustic modes. The results show that neither of these resonating modes could occur without strongly generating the other.
Two-dimensional NMR studies of allyl palladium complexes of ...
Indian Academy of Sciences (India)
Administrator
h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.
Magnetoelectronic transport of the two-dimensional electron gas in ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 72; Issue 2 ... CdSe quantum wells; 2D electron gas; magneto-electronic transport. Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of CdSe are ...
g Algebra and two-dimensional quasiexactly solvable Hamiltonian ...
Indian Academy of Sciences (India)
g2 algebra via one special representation in the x–y two-dimensional space. Then, by choosing an appropriate set of ..... Gen. 40, 212 (2005). [3] S Grigorian and S T Yau, Commun. Math. Phys. 287, 459 (2009). [4] L Fernandez-Jambrina and L M Gonzalez-Romero, Class. Quant. Grav. 16, 953 (1999). [5] A Belhaj, J. Phys.
Two-Dimensional Light Diffraction from an EPROM Chip
Ekkens, Tom
2018-01-01
In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…
Avoiding acidic region streaking in two-dimensional gel ...
Indian Academy of Sciences (India)
2014-07-21
Jul 21, 2014 ... used, as an alternative for costly 2DE-quantification kits. Our designed protocols are ..... 7 IPG 17 cm strips: (i) made by OP then DNase/RNase treated and (ii) made by OP with optimized IEF. (D) 2DE image of (i) E. coli ..... Proteomic analysis of human saliva from lung cancer patients using two-dimensional ...
Solar Internal Rotation and Dynamo Waves: A Two Dimensional ...
Indian Academy of Sciences (India)
tribpo
Solar Internal Rotation and Dynamo Waves: A Two Dimensional. Asymptotic Solution in the Convection Zone ... We calculate here a spatial 2 D structure of the mean magnetic field, adopting real profiles of the solar internal ... of the asymptotic solution in low (middle) and high (right panel) latitudes. field is shifted towards the ...
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
Two-Dimensional Mesoscale-Ordered Conducting Polymers
Liu, Shaohua; Zhang, Jian; Dong, Renhao; Gordiichuk, Pavlo; Zhang, Tao; Zhuang, Xiaodong; Mai, Yiyong; Liu, Feng; Herrmann, Andreas; Feng, Xinliang
2016-01-01
Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, we report the synergic manipulation of two types of
Two-dimensional generalized harmonic oscillators and their Darboux partners
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2011-01-01
We construct two-dimensional Darboux partners of the shifted harmonic oscillator potential and of an isotonic oscillator potential belonging to the Smorodinsky–Winternitz class of superintegrable systems. The transformed solutions, their potentials and the corresponding discrete energy spectra are computed in explicit form. (paper)
Two-dimensional weak pseudomanifolds on eight vertices
Indian Academy of Sciences (India)
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there ...
Inter-layer Cooper pairing of two-dimensional electrons
International Nuclear Information System (INIS)
Inoue, Masahiro; Takemori, Tadashi; Yoshizaki, Ryozo; Sakudo, Tunetaro; Ohtaka, Kazuo
1987-01-01
The authors point out the possibility that the high transition temperatures of the recently discovered oxide superconductors are dominantly caused by the inter-layer Cooper pairing of two-dimensional electrons that are coupled through the exchange of three-dimensional phonons. (author)
Symmetry Reductions of Two-Dimensional Variable Coefficient Burgers Equation
Zhang, Xiao-Ling; Li, Biao
2005-05-01
By use of a direct method, we discuss symmetries and reductions of the two-dimensional Burgers equation with variable coefficient (VCBurgers). Five types of symmetry-reducing VCBurgers to (1+1)-dimensional partial differential equation and three types of symmetry reducing VCBurgers to ordinary differential equation are obtained.
Interior design of a two-dimensional semiclassical black hole
International Nuclear Information System (INIS)
Levanony, Dana; Ori, Amos
2009-01-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
Interior design of a two-dimensional semiclassical black hole
Levanony, Dana; Ori, Amos
2009-10-01
We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.
Vibrations of thin piezoelectric shallow shells: Two-dimensional ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity ...
Two-dimensional microwave band-gap structures of different ...
Indian Academy of Sciences (India)
Abstract. We report the use of low dielectric constant materials to form two- dimensional microwave band-gap structures for achieving high gap-to-midgap ratio. The variable parameters chosen are the lattice spacing and the geometric structure. The se- lected geometries are square and triangular and the materials chosen ...
Nonlinear dynamic characterization of two-dimensional materials
Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.
2017-01-01
Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...
Image Making in Two Dimensional Art; Experiences with Straw and ...
African Journals Online (AJOL)
Image making in art is professionally referred to as bust in Sculpture andPortraiture in Painting. It is an art form executed in three dimensional (3D)and two dimensional (2D) formats respectively. Uncountable materials havebeen used to achieve these forms of art; like clay cement, marble, stone,different metals and, fibre ...
Magnetoelectronic transport of the two-dimensional electron gas in ...
Indian Academy of Sciences (India)
Abstract. Hall mobility and magnetoresistance coefficient for the two-dimensional (2D) electron transport parallel to the heterojunction interfaces in a single quantum well of. CdSe are calculated with a numerical iterative technique in the framework of Fermi–Dirac statistics. Lattice scatterings due to polar-mode longitudinal ...
Divorticity and dihelicity in two-dimensional hydrodynamics
DEFF Research Database (Denmark)
Shivamoggi, B.K.; van Heijst, G.J.F.; Juul Rasmussen, Jens
2010-01-01
A framework is developed based on the concepts of divorticity B (≡×ω, ω being the vorticity) and dihelicity g (≡vB) for discussing the theoretical structure underlying two-dimensional (2D) hydrodynamics. This formulation leads to the global and Lagrange invariants that could impose significant...... constraints on the evolution of divorticity lines in 2D hydrodynamics....
Supersymmetric quantum mechanics for two-dimensional disk
Indian Academy of Sciences (India)
Supersymmetric quantum mechanics for two-dimensional disk. AKIRA SUZUKI1, RANABIR DUTT2 and RAJAT K BHADURI1,3. 1Department of Physics, Tokyo University of Science, Tokyo 162-8601, Japan. 2Department of Physics, Visva Bharati University, Santiniketan 731 235, India. 3Department of Physics and ...
Phase conjugated Andreev backscattering in two-dimensional ballistic cavities
Morpurgo, A.F.; Holl, S.; Wees, B.J.van; Klapwijk, T.M; Borghs, G.
1997-01-01
We have experimentally investigated transport in two-dimensional ballistic cavities connected to a point contact and to two superconducting electrodes with a tunable macroscopic phase difference. The point contact resistance oscillates as a function of the phase difference in a way which reflects
Noninteracting beams of ballistic two-dimensional electrons
International Nuclear Information System (INIS)
Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.
1991-01-01
We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels
Two-dimensional optimization of free-electron-laser designs
Prosnitz, D.; Haas, R.A.
1982-05-04
Off-axis, two-dimensional designs for free electron lasers are described that maintain correspondence of a light beam with a synchronous electron at an optimal transverse radius r > 0 to achieve increased beam trapping efficiency and enhanced laser beam wavefront control so as to decrease optical beam diffraction and other deleterious effects.
Protein mapping by two-dimensional high performance liquid chromatography
Wagner, K.; Racaityte, K.; Unger, K.K.; Miliotis, T.; Edholm, L.E.; Bischoff, Rainer; Marko-Varga, G
2000-01-01
Current developments in drug discovery in the pharmaceutical industry require highly efficient analytical systems for protein mapping providing high resolution, robustness, sensitivity, reproducibility and a high throughput of samples. The potential of two-dimensional (2D) HPLC as a complementary
Tagging multiphoton ionization events by two-dimensional photoelectron spectroscopy
de Groot, Mattijs; Broos, Jaap; Buma, Wybren Jan
2007-01-01
Two-dimensional photoelectron spectroscopy has been used to supply process-specific labels to multiphoton ionization events. Employing these tags, the authors can construct excitation and photoelectron spectra along predefined excitation routes in the neutral manifold and ionization routes to the
Bounds on the capacity of constrained two-dimensional codes
DEFF Research Database (Denmark)
Forchhammer, Søren; Justesen, Jørn
2000-01-01
Bounds on the capacity of constrained two-dimensional (2-D) codes are presented. The bounds of Calkin and Wilf apply to first-order symmetric constraints. The bounds are generalized in a weaker form to higher order and nonsymmetric constraints. Results are given for constraints specified by run...
Level crossings in complex two-dimensional potentials
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 2. Level crossings in complex two-dimensional potentials. Qing-Hai Wang. Volume 73 Issue 2 August 2009 pp ... Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both potentials respect the P T symmetry, the ...
Weakly nonlinear analysis of two dimensional sheared granular flow
Saitoh, K.; Hayakawa, Hisao
2011-01-01
Weakly nonlinear analysis of a two dimensional sheared granular flow is carried out under the Lees-Edwards boundary condition. We derive the time dependent Ginzburg–Landau equation of a disturbance amplitude starting from a set of granular hydrodynamic equations and discuss the bifurcation of the
Fermi liquid of two-dimensional polar molecules
Lu, Z.K; Shlyapnikov, G.V.
2012-01-01
We study Fermi-liquid properties of a weakly interacting two-dimensional gas of single-component fermionic polar molecules with dipole moments d oriented perpendicularly to the plane of their translational motion. This geometry allows the minimization of inelastic losses due to chemical reactions
Zero sound in a two-dimensional dipolar Fermi gas
Lu, Z.K.; Matveenko, S.I.; Shlyapnikov, G.V.
2013-01-01
We study zero sound in a weakly interacting two-dimensional (2D) gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both
Two-dimensional gel electrophoresis analysis of different parts of ...
African Journals Online (AJOL)
Two-dimensional gel electrophoresis analysis of different parts of Panax quinquefolius L. root. ... From these results it was concluded that proteomic analysis method was an effective way to identify the different parts of quinquefolius L. root. These findings may contribute to further understanding of the physiological ...
TreePM Method for Two-Dimensional Cosmological Simulations ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
paper. The 2d TreePM code is an accurate and efficient technique to carry out large two-dimensional N-body simulations in cosmology. This hybrid code combines the 2d Barnes and Hut Tree method and the 2d Particle– ..... ment, we need less than 75 MB of RAM for a simulation with 10242 particles on a. 10242 grid.
Ivošević, T.; Orlić, I.; Bogdanović Radović, I.; Čargonja, M.; Stelcer, E.
2017-09-01
In the city of Rijeka, Croatia, an extended, two-year aerosol pollution monitoring campaign was recently completed. During that period, 345 samples of fine fraction of aerosols were collected on stretched Teflon filters. All samples were analyzed by Ion Beam Analysis techniques Proton Induced X-ray Emission and Proton Induced γ-Ray Emission and concentrations of 22 elements were determined. Concentrations of black carbon were determined by Laser Integrated Plate Method. For the Bay of Kvarner, where the city of Rijeka is located, long periods of calm weather are common. As a consequence, during these periods, air pollution is steadily increasing. To pin-point and characterize local, mostly anthropogenic, air pollution sources, only samples collected during the extended calm periods were used in this work. As a cut-off wind speed, speed of 1.5 m/s was used. In that way, out of all 345 samples, only 188 were selected. Those samples were statistically evaluated by means of positive matrix factorization. Results show that from all anthropogenic sources (vehicles, secondary sulphates, smoke, heavy oil combustion, road dust, industry Fe and port activities) only secondary sulphates and heavy oil combustion were significantly higher (40% and 50%, respectively) during calm periods. On the other hand, natural components of aerosol pollution such as soil and sea salts, (typically present in concentrations of 1.4% and 9%, respectively) are practically non-existent for calm weather conditions.
Directory of Open Access Journals (Sweden)
M.A.R. Feliciano
2007-10-01
Full Text Available Gestational period in a bitch, after natural mating with a normal dog, was evaluated by two-dimensional conventional, high-resolution two-dimensional and three-dimensional ultrasonography. High-resolution two-dimensional ultrasonography show better image and provides early diagnosis of pregnancy (15 days in comparison to conventional one (20 days. Three-dimensional ultrasonography was use to evaluate fetal morphology during late gestation period, however its application is still limited.
Do extended transport times and rest periods impact on eating quality of beef carcasses?
Polkinghorne, Rod; Philpott, Judy; Thompson, J M
2018-02-24
The experiment tested the effect of four extended transport treatments on sensory and objective meat quality in beef. A total of 343 steers (88 steers from each of three properties and 79 from a fourth property) were allocated to four treatments including a 12 hour transport time (T12), 24 hour transport time (T24), 24 h as 12 hour transport time, a 12 hour rest, with a further 12 hour transport (T12 ~ T12), 36 hour transport treatment (T36). Within property departure times of treatments were staggered to arrive at the abattoir together. There were no significant transport effects (P > .05) on live animal, carcass traits, consumer sensory scores, and objective meat quality of the longissimus lumborum. There was large between property variation in the proportions of carcasses excluded from grading on the basis of low ribfat, high ultimate pH and dark meat color scores. Variation in these traits was not associated with transport treatments and was likely related to variation in on-farm factors. Copyright © 2018. Published by Elsevier Ltd.
Quantitative Analysis of Left Ventricular Function by Two-Dimensional Echocardiography
Assmann, Patricia
1994-01-01
textabstractWith the introduction of thrombolytic therapy in patients with acute myocardial infarction in the early eighties, both the outcome and prognosis of acute myocardial infarction improved considerably.I.II At the same time, the need for an accurate and noninvasive method to assess left ventricular function was increasing. In that period, technological and computer developments resulted in improved two-dimensional echocardiographic image quality and analytic methods. However, two-dime...
Light Delivery Over Extended Time Periods Enhances the Effectiveness of Photodynamic Therapy
Seshadri, Mukund; Bellnier, David A.; Vaughan, Lurine A.; Spernyak, Joseph A.; Mazurchuk, Richard; Foster, Thomas H.; Henderson, Barbara W.
2009-01-01
Purpose The rate of energy delivery is a principal factor determining the biological consequences of photodynamic therapy (PDT). In contrast to conventional high irradiance treatments, recent preclinical and clinical studies have focused on low irradiance schemes. The objective of this study was to investigate the relationship between irradiance, photosensitizer dose and PDT dose with regard to treatment outcome and tumor oxygenation in a rat tumor model. Experimental Design Using the photosensitizer HPPH (2-[1-hexyloxyethyl]-2 devinyl pyropheophorbide), a wide range of PDT doses that included clinically relevant photosensitizer concentrations were evaluated. Magnetic resonance imaging (MRI) and oxygen tension measurements were performed along with the Evans blue exclusion assay to assess vascular response, oxygenation status and tumor necrosis. Results In contrast to high incident laser power (150 mW), low power regimens (7 mW) yielded effective tumor destruction. This was largely independent of PDT dose (drug-light product), with up to 30-fold differences in photosensitizer dose and 15-fold differences in drug-light product. For all drug-light products, the duration of light treatment positively influenced tumor response. Regimens utilizing treatment times of 120–240 mins showed marked reduction in signal intensity in T2-weighted MR images at both low (0.1 mg/kg) and high (3 mg/kg) drug doses compared to short duration (6–11 mins) regimens. Significantly greater reductions in pO2 were observed with extended exposures, which persisted after completion of treatment. Conclusions These results confirm the benefit of prolonged light exposure, identify vascular response as a major contributor and suggest that duration of light treatment (time) may be an important new treatment parameter. PMID:18451247
Nonequilibrium topological phase transitions in two-dimensional optical lattices
Nakagawa, Masaya; Kawakami, Norio
2014-01-01
Recently, concepts of topological phases of matter are extended to nonequilibrium systems, especially periodically driven systems. In this paper, we construct an example which shows nonequilibrium topological phase transitions using ultracold fermions in optical lattices. We show that the Rabi oscillation has the possibility to induce nonequilibrium topological phases which are classified into time-reversal-invariant topological insulators for a two-orbital model of alkaline-earth-metal atoms. Furthermore, we study the nonequilibrium topological phases using time-dependent Schrieffer-Wolff-type perturbation theory, and we obtain an analytical expression to describe the topological phase transitions from a high-frequency limit of external driving fields.
Directory of Open Access Journals (Sweden)
Cláudio Henrique de Almeida Oliveira
2013-12-01
Full Text Available Twenty-five adult crossbred goats, divided in two groups, were fed over a period of 16 months with diets based on Tifton hay and concentrate feed with (DCO or without (WDCO detoxified castor bean meal as a substitute for soybean meal. Throughout 480 days, blood samples were taken to measure lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, urea, albumin and creatinine. The animals were euthanized, and the anatomical components (lungs, heart, spleen, liver, kidneys, tongue, empty stomach, empty intestines, omentum, cardiac and renal adipose tissue, carcass and commercial cuts (shoulder, ham, loin, ribs and neck were weighed. Thereafter, an anatomic dissection of the loin was performed, separating the muscle, adipose and bone tissues. On the muscular part of the loin, longissimus dorsi, the proximate composition, fatty acid profile and the expression of SEW-1, IGF-I and IGF-II were analyzed. A higher incidence of bone tissue was observed in the anatomical dissections of the loin and a lower incidence of fat in the proximate composition of the longissimus dorsi of the DCO group compared to the WDCO group (p<0.05. The expression of the IGF-II and SEW-1 genes was higher (p<0.001 for each in the muscle tissue of the DCO animals. Thus, using detoxified castor bean meal for long periods does not produce significant changes in the anatomical composition of the loin or the proximate composition of the longissimus dorsi. However, the differences in gene expression suggest the need for new investigations and care when using this product for animal feeding.
Magnetohydrodynamic waves in two-dimensional prominences embedded in coronal arcades
Energy Technology Data Exchange (ETDEWEB)
Terradas, J.; Soler, R.; Díaz, A. J.; Oliver, R.; Ballester, J. L., E-mail: jaume.terradas@uib.es [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)
2013-11-20
Solar prominence models used so far in the analysis of MHD waves in two-dimensional structures are quite elementary. In this work, we calculate numerically magnetohydrostatic models in two-dimensional configurations under the presence of gravity. Our interest is in models that connect the magnetic field to the photosphere and include an overlying arcade. The method used here is based on a relaxation process and requires solving the time-dependent nonlinear ideal MHD equations. Once a prominence model is obtained, we investigate the properties of MHD waves superimposed on the structure. We concentrate on motions purely two-dimensional, neglecting propagation in the ignorable direction. We demonstrate how, by using different numerical tools, we can determine the period of oscillation of stable waves. We find that vertical oscillations, linked to fast MHD waves, are always stable and have periods in the 4-10 minute range. Longitudinal oscillations, related to slow magnetoacoustic-gravity waves, have longer periods in the range of 28-40 minutes. These longitudinal oscillations are strongly influenced by the gravity force and become unstable for short magnetic arcades.
International Nuclear Information System (INIS)
Holden, Zachary C.; Richard, Ryan M.; Herbert, John M.
2013-01-01
An implementation of Ewald summation for use in mixed quantum mechanics/molecular mechanics (QM/MM) calculations is presented, which builds upon previous work by others that was limited to semi-empirical electronic structure for the QM region. Unlike previous work, our implementation describes the wave function's periodic images using “ChElPG” atomic charges, which are determined by fitting to the QM electrostatic potential evaluated on a real-space grid. This implementation is stable even for large Gaussian basis sets with diffuse exponents, and is thus appropriate when the QM region is described by a correlated wave function. Derivatives of the ChElPG charges with respect to the QM density matrix are a potentially serious bottleneck in this approach, so we introduce a ChElPG algorithm based on atom-centered Lebedev grids. The ChElPG charges thus obtained exhibit good rotational invariance even for sparse grids, enabling significant cost savings. Detailed analysis of the optimal choice of user-selected Ewald parameters, as well as timing breakdowns, is presented
Tuning spin transport across two-dimensional organometallic junctions
Liu, Shuanglong; Wang, Yun-Peng; Li, Xiangguo; Fry, James N.; Cheng, Hai-Ping
2018-01-01
We study via first-principles modeling and simulation two-dimensional spintronic junctions made of metal-organic frameworks consisting of two Mn-phthalocyanine ferromagnetic metal leads and semiconducting Ni-phthalocyanine channels of various lengths. These systems exhibit a large tunneling magnetoresistance ratio; the transmission functions of such junctions can be tuned using gate voltage by three orders of magnitude. We find that the origin of this drastic change lies in the orbital alignment and hybridization between the leads and the center electronic states. With physical insight into the observed on-off phenomenon, we predict a gate-controlled spin current switch based on two-dimensional crystallines and offer general guidelines for designing spin junctions using 2D materials.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.
Duality-invariant class of two-dimensional field theories
Sfetsos, K
1999-01-01
We construct a new class of two-dimensional field theories with target spaces that are finite multiparameter deformations of the usual coset G/H-spaces. They arise naturally, when certain models, related by Poisson-Lie T-duality, develop a local gauge invariance at specific points of their classical moduli space. We show that canonical equivalences in this context can be formulated in loop space in terms of parafermionic-type algebras with a central extension. We find that the corresponding generating functionals are non-polynomial in the derivatives of the fields with respect to the space-like variable. After constructing models with three- and two-dimensional targets, we study renormalization group flows in this context. In the ultraviolet, in some cases, the target space of the theory reduces to a coset space or there is a fixed point where the theory becomes free.
Transient two-dimensional fuel-concentration measurement technique
Konishi, Tadashi; Naka, Syuji; Ito, Akihiko; Saito, Kozo
1997-11-01
We propose a nonintrusive experimental technique, the transient fuel-concentration measurement technique (TFMT), that is capable of being used to measure two-dimensional profiles of transient fuel concentrations over an open liquid fuel surface. The TFMT is based on single-wavelength holographic interferometry; its response time is less than 1 s and spatial resolution is 0.1 mol. % /0.1 mm. It was applied to measure both methanol vapor and n-propanol vapor concentrations. To assess the accuracy of the technique, our results were compared with steady-state methanol and n-propanol fuel-vapor concentrations measured by other researchers with a microsampling technique combined with gas chromatography. We found the TFMT to be accurate for on-line monitoring of two-dimensional profiles of fuel-vapor concentrations.
Quasi-two-dimensional thermoelectricity in SnSe
Tayari, V.; Senkovskiy, B. V.; Rybkovskiy, D.; Ehlen, N.; Fedorov, A.; Chen, C.-Y.; Avila, J.; Asensio, M.; Perucchi, A.; di Pietro, P.; Yashina, L.; Fakih, I.; Hemsworth, N.; Petrescu, M.; Gervais, G.; Grüneis, A.; Szkopek, T.
2018-01-01
Stannous selenide is a layered semiconductor that is a polar analog of black phosphorus and of great interest as a thermoelectric material. Unusually, hole doped SnSe supports a large Seebeck coefficient at high conductivity, which has not been explained to date. Angle-resolved photoemission spectroscopy, optical reflection spectroscopy, and magnetotransport measurements reveal a multiple-valley valence-band structure and a quasi-two-dimensional dispersion, realizing a Hicks-Dresselhaus thermoelectric contributing to the high Seebeck coefficient at high carrier density. We further demonstrate that the hole accumulation layer in exfoliated SnSe transistors exhibits a field effect mobility of up to 250 cm2/V s at T =1.3 K . SnSe is thus found to be a high-quality quasi-two-dimensional semiconductor ideal for thermoelectric applications.
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Two-dimensional time dependent Riemann solvers for neutron transport
International Nuclear Information System (INIS)
Brunner, Thomas A.; Holloway, James Paul
2005-01-01
A two-dimensional Riemann solver is developed for the spherical harmonics approximation to the time dependent neutron transport equation. The eigenstructure of the resulting equations is explored, giving insight into both the spherical harmonics approximation and the Riemann solver. The classic Roe-type Riemann solver used here was developed for one-dimensional problems, but can be used in multidimensional problems by treating each face of a two-dimensional computation cell in a locally one-dimensional way. Several test problems are used to explore the capabilities of both the Riemann solver and the spherical harmonics approximation. The numerical solution for a simple line source problem is compared to the analytic solution to both the P 1 equation and the full transport solution. A lattice problem is used to test the method on a more challenging problem
Dynamics of vortex interactions in two-dimensional flows
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Nielsen, A.H.; Naulin, V.
2002-01-01
The dynamics and interaction of like-signed vortex structures in two dimensional flows are investigated by means of direct numerical solutions of the two-dimensional Navier-Stokes equations. Two vortices with distributed vorticity merge when their distance relative to their radius, d/R-0l. is below...... a critical value, a(c). Using the Weiss-field, a(c) is estimated for vortex patches. Introducing an effective radius for vortices with distributed vorticity, we find that 3.3 ... is effectively producing small scale structures and the relation to the enstrophy "cascade" in developed 2D turbulence is discussed. The influence of finite viscosity on the merging is also investigated. Additionally, we examine vortex interactions on a finite domain, and discuss the results in connection...
Two-dimensional Simulations of Correlation Reflectometry in Fusion Plasmas
International Nuclear Information System (INIS)
Valeo, E.J.; Kramer, G.J.; Nazikian, R.
2001-01-01
A two-dimensional wave propagation code, developed specifically to simulate correlation reflectometry in large-scale fusion plasmas is described. The code makes use of separate computational methods in the vacuum, underdense and reflection regions of the plasma in order to obtain the high computational efficiency necessary for correlation analysis. Simulations of Tokamak Fusion Test Reactor (TFTR) plasma with internal transport barriers are presented and compared with one-dimensional full-wave simulations. It is shown that the two-dimensional simulations are remarkably similar to the results of the one-dimensional full-wave analysis for a wide range of turbulent correlation lengths. Implications for the interpretation of correlation reflectometer measurements in fusion plasma are discussed
Vortex annihilation and inverse cascades in two dimensional superfluid turbulence
Lucas, Andrew; Chesler, Paul M.
2015-03-01
The dynamics of a dilute mixture of vortices and antivortices in a turbulent two-dimensional superfluid at finite temperature is well described by first order Hall-Vinen-Iordanskii equations, or dissipative point vortex dynamics. These equations are governed by a single dimensionless parameter: the ratio of the strength of drag forces to Magnus forces on vortices. When this parameter is small, we demonstrate using numerical simulations that the resulting superfluid enjoys an inverse energy cascade where small scale stirring leads to large scale vortex clustering. We argue analytically and numerically that the vortex annihilation rate in a laminar flow may be parametrically smaller than the rate in a turbulent flow with an inverse cascade. This suggests a new way to detect inverse cascades in experiments on two-dimensional superfluid turbulence using cold atomic gases, where traditional probes of turbulence such as the energy spectrum are not currently accessible.
CORPORATE VALUATION USING TWO-DIMENSIONAL MONTE CARLO SIMULATION
Directory of Open Access Journals (Sweden)
Toth Reka
2010-12-01
Full Text Available In this paper, we have presented a corporate valuation model. The model combine several valuation methods in order to get more accurate results. To determine the corporate asset value we have used the Gordon-like two-stage asset valuation model based on the calculation of the free cash flow to the firm. We have used the free cash flow to the firm to determine the corporate market value, which was calculated with use of the Black-Scholes option pricing model in frame of the two-dimensional Monte Carlo simulation method. The combined model and the use of the two-dimensional simulation model provides a better opportunity for the corporate value estimation.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...... of gels is presented. First, an approach is demonstrated in which no prior knowledge of the separated proteins is used. Alignment of the gels followed by a simple transformation of data makes it possible to analyze the gels in an automated explorative manner by principal component analysis, to determine...... if the gels should be further analyzed. A more detailed approach is done by analyzing spot volume lists by principal components analysis and partial least square regression. The use of spot volume data offers a mean to investigate the spot pattern and link the classified protein patterns to distinct spots...
Two-dimensional cephalometry and computerized orthognathic surgical treatment planning.
Kusnoto, Budi
2007-07-01
Cephalometric radiographs provide for standardized skull/facial views that allow for comparison over time to assess growth in an individual, and to compare that individual against standardized population norms. Cephalometric analysis and surgical prediction are done by robust cephalometric imaging software that can rapidly analyze the radiograph, and retrace and recalculate the analysis for a variety of possible surgical outcomes; however, the validity of the prediction depends on the accuracy of the records, the algorithm specific to the software, and the specifics of the patient population. Three-dimensional digital imaging to replace conventional two-dimensional photographic images and CT scans, with corresponding cephalometric analysis to replace two-dimensional cephalometric films, is already on the horizon.
Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown
Energy Technology Data Exchange (ETDEWEB)
Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou 215123 (China); Zhang, Meiyun; Long, Shibing [Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Lian, Xiaojuan; Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Larcher, Luca [DISMI, Università di Modena e Reggio Emilia, 42122 Reggio Emilia (Italy); Wu, Ernest [IBM Research Division, Essex Junction, Vermont 05452 (United States)
2016-01-04
Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.
The stability of a two-dimensional rising bubble
International Nuclear Information System (INIS)
Nie, Q.; Tanveer, S.
1995-01-01
The stability of an inviscid two-dimensional bubble subject to two-dimensional disturbances is considered and the bubbles are found to be linearly stable for all Weber numbers, for which a steady solution is known. Certain aspects of the nonlinear initial value problem are also studied. An initial condition that consists of a superposition of a suitable symmetric eigenmode (of the linear stability operator) on a steady state is found to result in pinching of the bubble neck as it tends to oscillate about the steady state. An estimate of the threshold amplitude of such a disturbance needed to cause breakup of a large aspect ratio bubble is obtained. The presence of gravity appears to inhibit this pinching process
Linear negative magnetoresistance in two-dimensional Lorentz gases
Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.
2018-03-01
Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.
Directional detection of dark matter with two-dimensional targets
Directory of Open Access Journals (Sweden)
Yonit Hochberg
2017-09-01
Full Text Available We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Directional detection of dark matter with two-dimensional targets
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Robust L1-norm two-dimensional linear discriminant analysis.
Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang
2015-05-01
In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Folding two dimensional crystals by swift heavy ion irradiation
International Nuclear Information System (INIS)
Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika
2014-01-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS 2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS 2 does not
Folding two dimensional crystals by swift heavy ion irradiation
Energy Technology Data Exchange (ETDEWEB)
Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)
2014-12-01
Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.
Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases
Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.
2018-03-01
The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.
Constraints and hidden symmetry in two-dimensional gravity
Energy Technology Data Exchange (ETDEWEB)
Barcelos-Neto, J. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21945-970 (Brazil))
1994-01-15
We study the hidden symmetry of Polyakov two-dimensional gravity by means of first-class constraints. These are obtained from the combination of Fourier mode expansions of the usual (second-class) constraints of the theory. We show that, more than the usual SL(2,[ital R]), there is a hidden Virasoro symmetry in the theory. The results of the above analysis are also confirmed from the point of view of a geometrical symplectic treatment.
Two-dimensional simulation of the MHD stability, (1)
International Nuclear Information System (INIS)
Kurita, Gen-ichi; Amano, Tsuneo.
1976-03-01
The two-dimensional computer code has been prepared to study MHD stability of an axisymmetric toroidal plasma with and without the surrounding vacuum region. It also includes the effect of magnetic surfaces with non-circular cross sections. The linearized equations of motion are solved as an initial value problem. The results by computer simulation are compared with those by the theory for the cylindrical plasma; they are in good agreement. (auth.)
Decaying Two-Dimensional Turbulence in a Circular Container
Schneider, Kai; Farge, Marie
2005-01-01
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5×104 in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the...
An energy principle for two-dimensional collisionless relativistic plasmas
International Nuclear Information System (INIS)
Otto, A.; Schindler, K.
1984-01-01
Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)
New Two-Dimensional Polynomial Failure Criteria for Composite Materials
Zhao, Shi Yang; Xue, Pu
2014-01-01
The in-plane damage behavior and material properties of the composite material are very complex. At present, a large number of two-dimensional failure criteria, such as Chang-Chang criteria, have been proposed to predict the damage process of composite structures under loading. However, there is still no good criterion to realize it with both enough accuracy and computational performance. All these criteria cannot be adjusted by experimental data. Therefore, any special properties of composit...
Two-dimensional heat conducting simulation of plasma armatures
International Nuclear Information System (INIS)
Huerta, M.A.; Boynton, G.
1991-01-01
This paper reports on our development of a two-dimensional MHD code to simulate internal motions in a railgun plasma armature. The authors use the equations of resistive MHD, with Ohmic heating, and radiation heat transport. The authors use a Flux Corrected Transport code to advance all quantities in time. Our runs show the development of complex flows, subsequent shedding of secondary arcs, and a drop in the acceleration of the armature
Topological field theories and two-dimensional instantons
International Nuclear Information System (INIS)
Schaposnik, F.A.
1990-01-01
In this paper, the author discusses some topics related to the recently developed Topological Field Theories (TFTs). The first part is devoted to a discussion on how a TFT can be quantized using techniques which are well-known from the study of gauge theories. Then the author describes the results that we have obtained in collaboration with George Thompson in the study of a two-dimensional TFT related to the Abelian Higgs model
Pseudospectral reduction of incompressible two-dimensional turbulence
Bowman, John C.; Roberts, Malcolm
2012-05-01
Spectral reduction was originally formulated entirely in the wavenumber domain as a coarse-grained wavenumber convolution in which bins of modes interact with enhanced coupling coefficients. A Liouville theorem leads to inviscid equipartition solutions when each bin contains the same number of modes. A pseudospectral implementation of spectral reduction which enjoys the efficiency of the fast Fourier transform is described. The model compares well with full pseudospectral simulations of the two-dimensional forced-dissipative energy and enstrophy cascades.
Warranty menu design for a two-dimensional warranty
International Nuclear Information System (INIS)
Ye, Zhi-Sheng; Murthy, D.N. Pra
2016-01-01
Fierce competitions in the commercial product market have forced manufacturers to provide customer-friendly warranties with a view to achieving higher customer satisfaction and increasing the market share. This study proposes a strategy that offers customers a two-dimensional warranty menu with a number of warranty choices, called a flexible warranty policy. We investigate the design of a flexible two-dimensional warranty policy that contains a number of rectangular regions. This warranty policy is obtained by dividing customers into several groups according to their use rates and providing each group a germane warranty region. Consumers choose a favorable one from the menu according to their usage behaviors. Evidently, this flexible warranty policy is attractive to users of different usage behaviors, and thus, it gives the manufacturer a good position in advertising the product. When consumers are unaware about their use rates upon purchase, we consider a fixed two-dimensional warranty policy with a stair-case warranty region and show that it is equivalent to the flexible policy. Such an equivalence reveals the inherent relationship between the rectangular warranty policy, the L-shape warranty policy, the step-stair warranty policy and the iso-probability of failure warranty policy that were extensively discussed in the literature. - Highlights: • We design a two-dimensional warranty menu with a number of warranty choices. • Consumers can choose a favorable one from the menu as per their usage behavior. • We further consider a fixed 2D warranty policy with a stair-case warranty region. • We show the equivalence of the two warranty policies.
Effective mass of two-dimensional He3
International Nuclear Information System (INIS)
Boronat, J.; Casulleras, J.; Grau, V.; Krotscheck, E.; Springer, J.
2003-01-01
We use structural information from diffusion Monte Carlo calculations for two-dimensional He 3 to calculate the effective mass. Static effective interactions are constructed from the density and spin-structure functions using sum rules. We find that both spin and density fluctuations contribute about equally to the effective mass. Our results show, in agreement with recent experiments, a flattening of the single-particle self-energy with increasing density, which eventually leads to a divergent effective mass
SU(1,2) invariance in two-dimensional oscillator
Energy Technology Data Exchange (ETDEWEB)
Krivonos, Sergey [Bogoliubov Laboratory of Theoretical Physics,Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nersessian, Armen [Yerevan State University,1 Alex Manoogian St., Yerevan, 0025 (Armenia); Tomsk Polytechnic University,Lenin Ave. 30, 634050 Tomsk (Russian Federation)
2017-02-01
Performing the Hamiltonian analysis we explicitly established the canonical equivalence of the deformed oscillator, constructed in arXiv:1607.03756, with the ordinary one. As an immediate consequence, we proved that the SU(1,2) symmetry is the dynamical symmetry of the ordinary two-dimensional oscillator. The characteristic feature of this SU(1,2) symmetry is a non-polynomial structure of its generators written in terms of the oscillator variables.
Two-dimensional gel electrophoretic method for mapping DNA replicons.
Nawotka, K A; Huberman, J A
1988-01-01
We describe in detail a method which allows determination of the directions of replication fork movement through segments of DNA for which cloned probes are available. The method uses two-dimensional neutral-alkaline agarose gel electrophoresis followed by hybridization with short probe sequences. The nascent strands of replicating molecules form an arc separated from parental and nonreplicating strands. The closer a probe is to its replication origin or to the origin-proximal end of its rest...
On Two-Dimensional Quaternion Wigner-Ville Distribution
Directory of Open Access Journals (Sweden)
Mawardi Bahri
2014-01-01
Full Text Available We present the two-dimensional quaternion Wigner-Ville distribution (QWVD. The transform is constructed by substituting the Fourier transform kernel with the quaternion Fourier transform (QFT kernel in the classical Wigner-Ville distribution definition. Based on the properties of quaternions and the QFT kernel we obtain three types of the QWVD. We discuss some useful properties of various definitions for the QWVD, which are extensions of the classical Wigner-Ville distribution properties.
Acoustic transparency in two-dimensional sonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Dehesa, Jose; Torrent, Daniel [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/ Camino de Vera s/n, E-46022 Valencia (Spain); Cai Liangwu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)], E-mail: jsdehesa@upvnet.upv.es
2009-01-15
Acoustic transparency is studied in two-dimensional sonic crystals consisting of hexagonal distributions of cylinders with continuously varying properties. The transparency condition is achieved by selectively closing the acoustic bandgaps, which are governed by the structure factor of the cylindrical scatterers. It is shown here that cylindrical scatterers with the proposed continuously varying properties are physically realizable by using metafluids based on sonic crystals. The feasibility of this proposal is analyzed by a numerical experiment based on multiple scattering theory.
Analysis of two dimensional signals via curvelet transform
Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.
2007-04-01
This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.
On the Initial Singularity Problem in Two Dimensional Quantum Cosmology
Gamboa, J.
1995-01-01
The problem of how to put interactions in two-dimensional quantum gravity in the strong coupling regime is studied. It shows that the most general interaction consistent with this symmetry is a Liouville term that contain two parameters $(\\alpha, \\beta)$ satisfying the algebraic relation $2\\beta - \\alpha =2$ in order to assure the closure of the diffeomorphism algebra. The model is classically soluble and it contains as general solution the temporal singularity. The theory is quantized and we...
Negative differential Rashba effect in two-dimensional hole systems
Habib, B.; Tutuc, E.; Melinte, S.; Shayegan, M.; Wasserman, D.; Lyon, S. A.; Winkler, R.
2004-01-01
We demonstrate experimentally and theoretically that two-dimensional (2D) heavy hole systems in single heterostructures exhibit a \\emph{decrease} in spin-orbit interaction-induced spin splitting with an increase in perpendicular electric field. Using front and back gates, we measure the spin splitting as a function of applied electric field while keeping the density constant. Our results are in contrast to the more familiar case of 2D electrons where spin splitting increases with electric field.
Spontaneous spiral formation in two-dimensional oscillatory media
Kettunen, Petteri; Amemiya, Takashi; Ohmori, Takao; Yamaguchi, Tomohiko
1999-08-01
Computational studies of pattern formation in a modified Oregonator model of the Belousov-Zhabotinsky reaction is described. Initially inactive two-dimensional reaction media with an immobilized catalyst is connected to a reservoir of fresh reactants through a set of discrete points distributed randomly over the interphase surface. It is shown that the diffusion of reactants combined with oscillatory reaction kinetics can give rise to spontaneous spiral formation and phase waves.
Canard solutions of two-dimensional singularly perturbed systems
Energy Technology Data Exchange (ETDEWEB)
Chen Xianfeng [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: chenxf@sjtu.edu.cn; Yu Pei [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Applied Mathematics, University of Western Ontario London, Ont., N6A 5B7 (Canada); Han Maoan [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Weijiang [Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240 (China)
2005-02-01
In this paper, some new lemmas on asymptotic analysis are established. We apply an asymptotic method to study generalized two-dimensional singularly perturbed systems with one parameter, whose critical manifold has an m-22 th-order degenerate extreme point. Certain sufficient conditions are obtained for the existence of canard solutions, which are the extension and correction of some existing results. Finally, one numerical example is given.
Cohen, Ami; Koob, George F; George, Olivier
2012-01-01
Although established smokers have a very regular pattern of smoking behavior, converging lines of evidence suggest that the escalation of smoking behavior is a critical factor in the development of dependence. However, the neurobiological mechanisms that underlie the escalation of smoking are unknown, because there is no animal model of the escalation of nicotine intake. On the basis of the pattern of smoking behavior in humans and presence of monoamine oxidase inhibitors in tobacco smoke, we hypothesized that the escalation of nicotine intake may only occur when animals are given extended-access (21 h per day) self-administration sessions after repeated periods of abstinence (24–48 h), and after chronic inhibition of monoamine oxidase using phenelzine sulfate. Intermittent access (every 24–48 h) to extended nicotine self-administration produced a robust escalation of nicotine intake, associated with increased responding under fixed- and progressive-ratio schedules of reinforcement, and increased somatic signs of withdrawal. The escalation of nicotine intake was not observed in rats with intermittent access to limited (1 h per day) nicotine self-administration or daily access to extended (21 h per day) nicotine self-administration. Moreover, inhibition of monoamine oxidase with daily administration of phenelzine increased nicotine intake by ∼50%. These results demonstrate that the escalation of nicotine intake only occurs in animals given intermittent periods of abstinence with extended access to nicotine, and that inhibition of monoamine oxidase may contribute to the escalation of smoking, thus validating both an animal model of the escalation of smoking behavior and the contribution of monoamine oxidase inhibition to compulsive nicotine-seeking. PMID:22549121
Optimization of the process of egg omelet production with fillings with extended storage period
Directory of Open Access Journals (Sweden)
V. Sukmanov
2015-05-01
Full Text Available Introduction. Optimization of the egg omelets (EO production using high pressure (HP will allow to produce a minimum cost product during manufacturing and also to obtain a product with high consumer properties. Materialsand methods. The concerned product is -EO -a mixture of liquid egg with grated or chopped cheese, xanthan gum, water or milk and spices. The EO manufacturing process consisted of packing the mixture in an airtight container with heating and processing in the high pressure installation. The EO suitability for long-term storage was evaluated by the "water activity" term. The EO quality was evaluated by an expert. There was used the undetermined Lagrange multipliers method to obtain the optimal process parameters. Results. As a result of the central composite rotatabel plan there was developed optimization model allowed to obtain the optimal EO HP processing parameters: pressure – 690 МPа, temperature –1220С, treatment duration –7×60s, 14g of water on 100 g of melange, 13 g of dry milk on 100 g of melange, xanthan gum content -0,75% of the total mixture mass, 25 g of cheese on 100 g of melange. These indicators allow to obtain the EO process parameters with the next indicators: water activity -0.704 and comprehensive quality Score - 0.98 that characterize the product as a product with high quality indicators stable over a long period of storage. The developed model analysis with using of Student's t test, Fisher dyspepsia and predicted optimization values calculation errors confirmed the reliability of the optimization parameters obtained values and the optimization model reliability. The calculations results for the given optimization parameters are presented as confidence intervals, confirming that their experimental values do not exceed the respective intervals and thus confirm the results authenticity . Conclusions. These results have practical significance and were adopted as the basis for the technical documentation
Quantum oscillations in quasi-two-dimensional conductors
Galbova, O
2002-01-01
The electronic absorption of sound waves in quasi-two-dimensional conductors in strong magnetic fields, is investigated theoretically. A longitudinal acoustic wave, propagating along the normal n-> to the layer of quasi-two-dimensional conductor (k-> = left brace 0,0,k right brace; u-> = left brace 0,0,u right brace) in magnetic field (B-> = left brace 0, 0, B right brace), is considered. The quasiclassical approach for this geometry is of no interest, due to the absence of interaction between electromagnetic and acoustic waves. The problem is of interest in strong magnetic field when quantization of the charge carriers energy levels takes place. The quantum oscillations in the sound absorption coefficient, as a function of the magnetic field, are theoretically observed. The experimental study of the quantum oscillations in quasi-two-dimensional conductors makes it possible to solve the inverse problem of determining from experimental data the extrema closed sections of the Fermi surface by a plane p sub z = ...
Observations of two-dimensional monolayer zinc oxide
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Trilochan, E-mail: trilochansahoo@gmail.com [Department of Physics and Nanotechnology, SRM University, Kattankulathur, 603203 Tamilnadu (India); Nayak, Sanjeev K. [Institute of Physics, Martin Luther University Halle-Wittenberg, Von Seckendorff Platz 1, 06120 Halle (Germany); Chelliah, Pandian [Department of Physics and Nanotechnology, SRM University, Kattankulathur, 603203 Tamilnadu (India); Rath, Manasa K.; Parida, Bhaskar [Division of Advanced Materials Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of)
2016-03-15
Highlights: • Synthesis of planer ZnO nanostructure. • Observation of multilayered and monolayer ZnO. • DFT calculation of (10-10), (11-20) and (0 0 0 1) planes of ZnO. • Stability of non-polar (10-10) and (11-20) planes of ZnO. - Abstract: This letter reports the observations of planar two-dimensional ZnO synthesized using the hydrothermal growth technique. High-resolution transmission electron microscopy revealed the formation of a two-dimensional honeycomb lattice and aggregated structures of layered ZnO. The nonpolar (10-10) and (11-20) planes were present in the X-ray diffraction patterns, but the characteristic (0 0 0 1) peak of bulk ZnO was absent. The study found that nonpolar freestanding ZnO structures composed of a single or few layers may be more stable and may have a higher probability of formation than their polar counterparts. The stability of the nonpolar two-dimensional hexagonal ZnO slabs is supported by density functional theory studies.
Two-Dimensional Identification of Fetal Tooth Germs.
Seabra, Mariana; Vaz, Paula; Valente, Francisco; Braga, Ana; Felino, António
2017-03-01
To demonstrate the efficiency and applicability of two-dimensional ultrasonography in the identification of tooth germs and in the assessment of potential pathology. Observational, descriptive, cross-sectional study. Prenatal Diagnosis Unit of Centro Hospitalar de Vila Nova de Gaia / Espinho-Empresa Pública in Portugal. A total of 157 white pregnant women (median age, 32 years; range, 14 to 47 years) undergoing routine ultrasound exams. Description of the fetal tooth germs, as visualized by two-dimensional ultrasonography, including results from prior fetal biometry and detailed screening for malformations. In the first trimester group, ultrasonography identified 10 tooth germs in the maxilla and 10 tooth germs in the mandible in all fetuses except for one who presented eight maxillary tooth germs. This case was associated with a chromosomal abnormality (trisomy 13) with a bilateral cleft palate. In the second and third trimesters group, ultrasonography identified a larger range of tooth germs: 81.2% of fetuses showed 10 tooth germs in the maxilla and 85.0% of fetuses had 10 tooth germs in the mandible. Hypodontia was more prevalent in the maxilla than in the mandible, which led us to use qualitative two-dimensional ultrasonography to analyze the possible association between hypodontia and other variables such as fetal pathology, markers, head, nuchal, face, and spine. We recommend using this method as the first exam to evaluate fetal morphology and also to help establish accurate diagnosis of abnormalities in pregnancy.
H₂ sensing properties of two-dimensional zinc oxide nanostructures.
Tonezzer, Matteo; Iannotta, Salvatore
2014-05-01
In this work we have grown particular zinc oxide two-dimensional nanostructures which are essentially a series of hexagonal very thin sheets. The hexagonal wurtzite crystal structure gives them their peculiar shape, whose dimensions are few microns wide, with a thickness in the order of 25 nm. Such kind of nanostructure, grown by thermal oxidation of evaporated metallic zinc on a silica substrate, has been used to fabricate conductometric gas sensors, investigated then for hydrogen gas detection. The "depletion layer sensing mechanism" is clarified, explaining how the geometrical factors of one- and two-dimensional nanostructures affect their sensing parameters. The comparison with one-dimensional ZnO nanowires based structures shows that two-dimensional nanostructures are ideal for gas sensing, due to their tiny thickness, which is comparable to the depletion-layer thickness, and their large cross-section, which increases the base current, thus lowering the limit of detection. The response to H₂ has been found good even to sub-ppm concentrations, with response and recovery times shorter than 18s in the whole range of H₂ concentrations investigated (500 ppb-10 ppm). The limit of detection has been found around 200 ppb for H₂ gas even at relatively low working temperature (175 °C). Copyright © 2014 Elsevier B.V. All rights reserved.
Procedures for two-dimensional electrophoresis of proteins
Energy Technology Data Exchange (ETDEWEB)
Tollaksen, S.L.; Giometti, C.S.
1996-10-01
High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.
Analysis techniques for two-dimensional infrared data
Winter, E. M.; Smith, M. C.
1978-01-01
In order to evaluate infrared detection and remote sensing systems, it is necessary to know the characteristics of the observational environment. For both scanning and staring sensors, the spatial characteristics of the background may be more of a limitation to the performance of a remote sensor than system noise. This limitation is the so-called spatial clutter limit and may be important for systems design of many earth application and surveillance sensors. The data used in this study is two dimensional radiometric data obtained as part of the continuing NASA remote sensing programs. Typical data sources are the Landsat multi-spectral scanner (1.1 micrometers), the airborne heat capacity mapping radiometer (10.5 - 12.5 micrometers) and various infrared data sets acquired by low altitude aircraft. Techniques used for the statistical analysis of one dimensional infrared data, such as power spectral density (PSD), exceedance statistics, etc. are investigated for two dimensional applicability. Also treated are two dimensional extensions of these techniques (2D PSD, etc.), and special techniques developed for the analysis of 2D data.
Chen, Po-Yu
2014-01-01
The validness of the expiration dates (validity period) that manufacturers provide on food product labels is a crucial food safety problem. Governments must study how to use their authority by implementing fair awards and punishments to prompt manufacturers into adopting rigorous considerations, such as the effect of adopting new storage methods for extending product validity periods on expected costs. Assuming that a manufacturer sells fresh food or drugs, this manufacturer must respond to current stochastic demands at each unit of time to determine the purchase amount of products for sale. If this decision maker is capable and an opportunity arises, new packaging methods (e.g., aluminum foil packaging, vacuum packaging, high-temperature sterilization after glass packaging, or packaging with various degrees of dryness) or storage methods (i.e., adding desiccants or various antioxidants) can be chosen to extend the validity periods of products. To minimize expected costs, this decision maker must be aware of the processing costs of new storage methods, inventory standards, inventory cycle lengths, and changes in relationships between factors such as stochastic demand functions in a cycle. Based on these changes in relationships, this study established a mathematical model as a basis for discussing the aforementioned topics.
Analysis of the OPERA-15 two-dimensional voiding experiment using the SAS4A code
International Nuclear Information System (INIS)
Briggs, L.L.
1984-01-01
Overall, SAS4A appears to do a good job for simulating the OPERA-15 experiment. For most of the experiment parameters, the code calculations compare quite well with the experimental data. The lack of a multi-dimensional voiding model has the effect of extending the flow coastdown time until voiding starts; otherwise, the code simulates the accident progression satisfactorily. These results indicate a need for further work in this area in the form of a tandem analysis by a two-dimensional flow code and a one-dimensional version of that code to confirm the observations derived from the SAS4A analysis
A discontinuous Galerkin method for two-dimensional PDE models of Asian options
Hozman, J.; Tichý, T.; Cvejnová, D.
2016-06-01
In our previous research we have focused on the problem of plain vanilla option valuation using discontinuous Galerkin method for numerical PDE solution. Here we extend a simple one-dimensional problem into two-dimensional one and design a scheme for valuation of Asian options, i.e. options with payoff depending on the average of prices collected over prespecified horizon. The algorithm is based on the approach combining the advantages of the finite element methods together with the piecewise polynomial generally discontinuous approximations. Finally, an illustrative example using DAX option market data is provided.
Micro-phase separation in two dimensional suspensions of self-propelled spheres and dumbbells.
Tung, Clarion; Harder, Joseph; Valeriani, C; Cacciuto, A
2016-01-14
We use numerical simulations to study the phase behavior of self-propelled spherical and dumbbellar particles interacting via micro-phase separation inducing potentials. Our results indicate that under the appropriate conditions, it is possible to drive the formation of two new active states; a spinning cluster crystal, i.e. an ordered mesoscopic phase having finite size spinning crystallites as lattice sites, and a fluid of living clusters, i.e. a two dimensional fluid where each "particle" is a finite size living cluster. We discuss the dynamics of these phases and suggest ways of extending their stability under a wide range of active forces.
Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials
DEFF Research Database (Denmark)
Olsen, Thomas; Latini, Simone; Rasmussen, Filip Anselm
2016-01-01
We present a generalized hydrogen model for the binding energies (EB) and radii of excitons in two-dimensional (2D) materials that sheds light on the fundamental differences between excitons in two and three dimensions. In contrast to the well-known hydrogen model of three-dimensional (3D) excitons......, the description of 2D excitons is complicated by the fact that the screening cannot be assumed to be local. We show that one can consistently define an effective 2D dielectric constant by averaging the screening over the extend of the exciton. For an ideal 2D semiconductor this leads to a simple expression for EB...
Dispersion and damping of two-dimensional dust acoustic waves: theory and simulation
International Nuclear Information System (INIS)
Upadhyaya, Nitin; Miskovic, Z L; Hou, L-J
2010-01-01
A two-dimensional generalized hydrodynamics (GH) model is developed to study the full spectrum of both longitudinal and transverse dust acoustic waves (DAW) in strongly coupled complex (dusty) plasmas, with memory-function-formalism being implemented to enforce high-frequency sum rules. Results are compared with earlier theories (such as quasi-localized charge approximation and its extended version) and with a self-consistent Brownian dynamics simulation. It is found that the GH approach provides a good account, not only of dispersion relations, but also of damping rates of the DAW modes in a wide range of coupling strengths, an issue hitherto not fully addressed for dusty plasmas.
Ishiwata, Ryosuke; Sugiyama, Yuki
2015-12-01
The two-dimensional optimal velocity model has potential applications to pedestrian dynamics and the collective motion of animals. In this paper, we extend the linear stability analysis presented in a previous paper [A Nakayama et al., Phys. Rev. E. 77, 016105 (2008), 10.1103/PhysRevE.77.016105] and investigate the effects of particle configuration on the stability of several wave modes of collective oscillations of moving particles. We find that, when a particle moves without interacting with particles that are positioned in a diagonally forward or backward direction, the stable region of the particle flow is completely removed by the elliptically polarized mode.
Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow
Berti, S.; Boffetta, G.
2010-09-01
We investigate the dynamics of the two-dimensional periodic Kolmogorov flow of a viscoelastic fluid, described by the Oldroyd-B model, by means of direct numerical simulations. Above a critical Weissenberg number the flow displays a transition from stationary to randomly fluctuating states, via periodic ones. The increasing complexity of the flow in both time and space at progressively higher values of elasticity accompanies the establishment of mixing features. The peculiar dynamical behavior observed in the simulations is found to be related to the appearance of filamental propagating patterns, which develop even in the limit of very small inertial nonlinearities, thanks to the feedback of elastic forces on the flow.
Tailoring Terahertz Near-Field Enhancement via Two-Dimensional Plasmons
Davoyan, Arthur R.; Popov, Vyacheslav V.; Nikitov, Sergei A.
2012-03-01
We suggest a novel possibility for electrically tunable terahertz near-field enhancement in flatland electronic materials supporting two-dimensional plasmons, including recently discovered graphene. We employ electric-field effect modulation of electron density in such materials and induce a periodic plasmonic lattice with a defect cavity. We demonstrate that the plasmons resonantly excited in such a periodic plasmonic lattice by an incident terahertz radiation can strongly pump the cavity plasmon modes leading to a deep subwavelength concentration of terahertz energy, beyond λ/1000, with giant electric-field enhancement factors up to 104, which is 2 orders of magnitude higher than achieved previously in metal-based terahertz field concentrators.
International Nuclear Information System (INIS)
Wang, C M; Lei, X L
2014-01-01
We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)
Commensurability oscillations by snake-orbit magnetotransport in two-dimensional electron gases
Leuschner, A.; Schluck, J.; Cerchez, M.; Heinzel, T.; Pierz, K.; Schumacher, H. W.
2017-04-01
Commensurate magnetoresistance periodic oscillations generated by transversal electron snake orbits are found experimentally. A two-dimensional electron gas is exposed to a magnetic field that changes sign along the current longitudinal direction and is homogeneous in the transverse direction. The change in sign of the magnetic field directs the electron flow along the transversal direction, in snake orbits. This generates resistance oscillations with a predictable periodicity that is commensurate with the width of the electron gas. Numerical simulations are used to reveal the character of the oscillations.
Statistical mechanics of two-dimensional and geophysical flows
International Nuclear Information System (INIS)
Bouchet, Freddy; Venaille, Antoine
2012-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.
Two-dimensional polyacrylamide gel electrophoresis of intracellular proteins
International Nuclear Information System (INIS)
Ojima, N.; Sakamoto, T.; Yamashita, M.
1996-01-01
Since two-dimensional electrophoresis was established by O'Farrell for analysis of intracellular proteins of Escherichia coli, it has been applied to separation of proteins of animal cells and tissues, and especially to identification of stress proteins. Using this technique, proteins are separated by isoelectric focusing containing 8 m urea in the first dimension and by SDS-PAGE in the second dimension. The gels are stained with Coomassie Blue R-250 dye, followed by silver staining. In the case of radio-labeled proteins, the gels are dried and then autoradiographed. In order to identify a specific protein separated by two-dimensional electrophoresis, a technique determining the N-terminal amino acid sequence of the protein has been developed recently. After the proteins in the gel were electrotransferred to a polyvinylidene difluoride membrane, the membrane was stained for protein with Commassie Blue and a stained membrane fragment was applied to a protein sequencer. Our recent studies demonstrated that fish cells newly synthesized various proteins in response to heat shock, cold nd osmotic stresses. For example, when cellular proteins extracted from cold-treated rainbow trout cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold-treatment. N-Terminal sequence analysis showed that the cold-inducible protein was a homolog of mammalian valosin-containing protein and yeast cell division cycle gene product CDC48p. Furthermore, the sequence data were useful for preparing PCR primers and a rabbit antibody against a synthetic peptide to analyze a role for the protein in the function of trout cells and mechanisms for regulation
Volpp, Kevin G.; Shea, Judy A.; Small, Dylan S.; Basner, Mathias; Zhu, Jingsan; Norton, Laurie; Ecker, Adrian; Novak, Cristina; Bellini, Lisa M.; Dine, C. Jessica; Mollicone, Daniel J.; Dinges, David F.
2013-01-01
Context A 2009 Institute of Medicine report recommended protected sleep periods for medicine trainees on extended overnight shifts, a position reinforced by new Accreditation Council for Graduate Medical Education requirements. Objective To evaluate the feasibility and consequences of protected sleep periods during extended duty. Design, Setting, and Participants Randomized controlled trial conducted at the Philadelphia VA Medical Center medical service and Oncology Unit of the Hospital of the University of Pennsylvania (2009–2010). Of the 106 interns and senior medical students who consented, 3 were not scheduled on any study rotations. Among the others, 44 worked at the VA center, 16 at the university hospital, and 43 at both. Intervention Twelve 4-week blocks were randomly assigned to either a standard intern schedule (extended duty overnight shifts of up to 30 hours; equivalent to 1200 overnight intern shifts at each site), or a protected sleep period (protected time from 12:30 AM to 5:30 AM with handover of work cell phone; equivalent to 1200 overnight intern shifts at each site). Participants were asked to wear wrist actigraphs and complete sleep diaries. Main Outcome Measures Primary outcome was hours slept during the protected period on extended duty overnight shifts. Secondary outcome measures included hours slept during a 24-hour period (noon to noon) by day of call cycle and Karolinska sleepiness scale. Results For 98.3% of on-call nights, cell phones were signed out as designed. At the VA center, participants with protected sleep had a mean 2.86 hours (95% CI, 2.57–3.10 hours) of sleep vs 1.98 hours (95% CI, 1.68–2.28 hours) among those who did not have protected hours of sleep (P < .001). At the university hospital, participants with protected sleep had a mean 3.04 hours (95% CI, 2.77–3.45 hours) of sleep vs 2.04 hours (95% CI, 1.79–2.24) among those who did not have protected sleep (P <.001). Participants with protected sleep were
Graphene and Two-Dimensional Materials for Optoelectronic Applications
Directory of Open Access Journals (Sweden)
Andreas Bablich
2016-03-01
Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.
Network patterns in exponentially growing two-dimensional biofilms
Zachreson, Cameron; Yap, Xinhui; Gloag, Erin S.; Shimoni, Raz; Whitchurch, Cynthia B.; Toth, Milos
2017-10-01
Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments. The underlying mechanism relies on path formation through physical deformation of the enclosing environment.
Two-dimensional carbon fundamental properties, synthesis, characterization, and applications
Yihong, Wu; Ting, Yu
2013-01-01
After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a
Two-dimensional Lagrangian simulation of suspended sediment
Schoellhamer, David H.
1988-01-01
A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.
Blind deconvolution of two-dimensional complex data
Energy Technology Data Exchange (ETDEWEB)
Ghiglia, D.C.; Romero, L.A.
1994-01-01
Inspired by the work of Lane and Bates on automatic multidimensional deconvolution, the authors have developed a systematic approach and an operational code for performing the deconvolution of multiply-convolved two-dimensional complex data sets in the absence of noise. They explain, in some detail, the major algorithmic steps, where noise or numerical errors can cause problems, their approach in dealing with numerical rounding errors, and where special noise-mitigating techniques can be used toward making blind deconvolution practical. Several examples of deconvolved imagery are presented, and future research directions are noted.
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Optical Two Dimensional Fourier Transform Spectroscopy of Layered Metal Dichalcogenides
Dey, P.; Paul, J.; Stevens, C. E.; Kovalyuk, Z. D.; Kudrynskyi, Z. R.; Romero, A. H.; Cantarero, A.; Hilton, D. J.; Shan, J.; Karaiskaj, D.; Z. D. Kovalyuk; Z. R. Kudrynskyi Collaboration; A. H. Romero Collaboration; A. Cantarero Collaboration; D. J. Hilton Collaboration; J. Shan Collaboration
2015-03-01
Nonlinear two-dimensional Fourier transform (2DFT) measurements were used to study the mechanism of excitonic dephasing and probe the electronic structure of the excitonic ground state in layered metal dichalcogenides. Temperature-dependent 2DFT measurements were performed to probe exciton-phonon interactions. Excitation density dependent 2DFT measurements reveal exciton-exciton and exciton-carrier scattering, and the lower limit for the homogeneous linewidth of excitons on positively and negatively doped samples. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0012635.
Quantum computation with two-dimensional graphene quantum dots
International Nuclear Information System (INIS)
Li Jie-Sen; Li Zhi-Bing; Yao Dao-Xin
2012-01-01
We study an array of graphene nano sheets that form a two-dimensional S = 1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Quantum algebras for two-dimensional Cayley-Klein Geometries
International Nuclear Information System (INIS)
Herranz, F.J.; Ballesteros, A.; Olmo, M.A. del; Santander, M.
1993-01-01
Simultaneous quantization of the quasi-simple groups of motions of the nine two-dimensional Cayley-Klein geometries is obtained by defining a deformed Hopf structure on their enveloping algebras. The spaces of points and lines of the classical CK geometries are homogeneous spaces of their motion groups. Both the well known classical non-euclidean geometries and the (1+1) kinematical geometries are included within this scheme. Their corresponding quantum algebras preserve a scheme of contractions, symmetries and dualities based on the classical one. (Author)
Two-Dimensional Electron System in Electromagnetic Radiation Field
Lungu, Radu Paul; Manolescu, Andrei
We consider a two-dimensional electron gas in the presence of a monochromatic linear polarized electromagnetic field, within the Floquet formalism. The Floquet states have a simple relation with the energy eigenstates in the absence of the field. Therefore the single-particle and the two-particle Green functions of the many-body system with Coulomb interactions, in the radiation field, can be formally calculated by the standard diagrammatic techniques, as for the conservative system. We derive the elementary excitations of quasi-particle type, the plasma dispersion relation, and the ground state quasi-energy, and we relate them to the corresponding results for the conservative system.
Saddle-points of a two dimensional random lattice theory
International Nuclear Information System (INIS)
Pertermann, D.
1985-07-01
A two dimensional random lattice theory with a free massless scalar field is considered. We analyse the field theoretic generating functional for any given choice of positions of the lattice sites. Asking for saddle-points of this generating functional with respect to the positions we find the hexagonal lattice and a triangulated version of the hypercubic lattice as candidates. The investigation of the neighbourhood of a single lattice site yields triangulated rectangles and regular polygons extremizing the above generating functional on the local level. (author)
Two-dimensional N = 2 Super-Yang-Mills Theory
Directory of Open Access Journals (Sweden)
August Daniel
2018-01-01
Full Text Available Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM theory with gauge group SU(2 dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.
Two-dimensional Kaehler Einstein spaces and gravitational instantons
International Nuclear Information System (INIS)
Tseytlin, A.A.
1980-01-01
A new class of solutions of the euclidean Einstein equations with Λ-term ( A-class ) is found by solving the complex two-dimensional Kaehler Einstein equations with the following realization of complex metrics. The A-Class includes two gravitational instantons already known: the CP 2 and the Eguchi-Hanson metric, and allows a U(1)-generalized spin structure. It is shown that all Einstein euclidean two-axial Bianchi type IX metrics are exhausted by the Taub-NUT-de Sitter family and the A-class. (orig.)
Quantum skyrmions in two-dimensional chiral magnets
Takashima, Rina; Ishizuka, Hiroaki; Balents, Leon
2016-10-01
We study the quantum mechanics of magnetic skyrmions in the vicinity of the skyrmion-crystal to ferromagnet phase boundary in two-dimensional magnets. We show that the skyrmion excitation has an energy dispersion that splits into multiple bands due to the combination of magnus force and the underlying lattice. Condensation of the skyrmions can give rise to an intermediate phase between the skyrmion crystal and ferromagnet: a quantum liquid, in which skyrmions are not spatially localized. We show that the critical behavior depends on the spin size S and the topological number of the skyrmion. Experimental signatures of quantum skyrmions in inelastic neutron-scattering measurements are also discussed.
Thermal neutron diffraction on two-dimensional lattices
International Nuclear Information System (INIS)
Stern, T.
1974-06-01
This thesis deals with the problem of neutron diffraction from a two-dimensional lattice. The neutron spin is not taken into account. Firstly the scalar wave field is treated by means of differential equations (Helmholtz) and secondly by the equivalent integral equation formulation (Kirchoff-Weber). Finally, using the methods of the Green function, the reflected and transmitted wave fields are represented as integral transformations of a certain source function. In respect to the calculation of the amplitudes of the diffraction waves the third method seems to be the best one for the purpose of the physical interpretation and the applicability of numerical methods. (C.R.)
Stable corrugated state of the two-dimensional electron gas
International Nuclear Information System (INIS)
Mendez-Moreno, R.M.; Moreno, M.; Ortiz, M.A.
1991-01-01
A corrugated and stable ground state is found for the two-dimensional electron gas in both the normal paramagnetic and the fully polarized phases. The self-consistent Hartree-Fock method is used with a modulated set of trial wave functions within the deformable jellium model. The results for high metallic densities reproduce the usual noncorrugated ferromagnetic electron-gas behavior. A transition to a paramagnetic corrugated state for values of r s ∼6.5 is predicted. At lower densities r s ∼30, a second transition to a corrugated ferromagnetic phase is suggested
Quantum wells physics and electronics of two-dimensional systems
Shik, A
1998-01-01
This invaluable book is devoted to the physics, technology and device applications of semiconductor structures with ultrathin layers where the electronic properties are governed by the quantum-mechanical laws. Such structures called quantum wells or structures with the two-dimensional electron gas, have become one of the most actively investigated objects in modern solid state physics. Electronic properties of quantum wells differ dramatically from those of bulk semiconductors, which allows one to observe new types of physical phenomena, such as the quantum Hall effect and many other so-far-un
Pattern formation in two-dimensional square-shoulder systems
International Nuclear Information System (INIS)
Fornleitner, Julia; Kahl, Gerhard
2010-01-01
Using a highly efficient and reliable optimization tool that is based on ideas of genetic algorithms, we have systematically studied the pattern formation of the two-dimensional square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures emerge from this investigation as we vary the shoulder width. With increasing pressure three structural archetypes could be identified: cluster lattices, where clusters of particles occupy the sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with high coordination numbers. The internal complexity of these structures increases with increasing shoulder width.
Field analysis of two-dimensional focusing grating
Borsboom, P.P.; Frankena, H.J.
1995-01-01
The method that we have developed [P-P. Borsboom, Ph.D. dissertation (Delft University of Technology, Delft, The Netherlands); P-P. Borsboom and H. J. Frankena, J. Opt. Soc. Am. A 12, 1134–1141 (1995)] is successfully applied to a two-dimensional focusing grating coupler. The field in the focal region has been determined for symmetrical chirped gratings consisting of as many as 124 corrugations. The intensity distribution in the focal region agrees well with the approximate predictions of geo...
Quasi-integrability and two-dimensional QCD
International Nuclear Information System (INIS)
Abdalla, E.; Mohayaee, R.
1996-10-01
The notion of integrability in two-dimensional QCD is discussed. We show that in spite of an infinite number of conserved charges, particle production is not entirely suppressed. This phenomenon, which we call quasi-integrability, is explained in terms of quantum corrections to the combined algebra of higher-conserved and spectrum-generating currents. We predict the qualitative form of particle production probabilities and verify that they are in agreement with numerical data. We also discuss four-dimensional self-dual Yang-Mills theory in the light of our results. (author). 25 refs, 4 figs, 1 tab
Two-dimensional fermionic correlations in topologically nontrivial backgrounds
Energy Technology Data Exchange (ETDEWEB)
Manias, M.V.; Naon, C.M.; Trobo, M.L. (Departamento de Fisica, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Buenos Aires (Argentina))
1993-04-15
By using a path-integral approach to the study of two-dimensional massless fermionic models in nontrivial sectors, we compute certain special correlation functions which are nonvanishing only when nontrivial topology is taken into account. In particular, we derive the first explicit expression for the so-called nonminimal Green's function. We introduce one specific topological charge distribution for which this correlation function takes a simple form. We also comment on the application of our results to the analysis of massive fermions in topological backgrounds.
On bosonization ambiguities of two dimensional quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Dias, S.A.; Silva Neto, M.B.
1996-02-01
We study bosonization ambiguities in two dimensional quantum electrodynamics in the presence and in the absence of topologically charged gauge fields. The computation of fermionic correlation functions gives us a mechanism to fix the ambiguities in nontrivial topologies, provided that we do not allow changes of sector as we evaluate functional integrals. This removes an infinite arbitrariness from the theory. In the case of trivial topologies, we find upper and lower bounds for the Jackiw-Rajaraman parameter, corresponding to the limiting cases of regularizations which preserve gauge or chiral symmetry. (author). 19 refs.
Ultrafast Charge Transfer Visualized by Two-Dimensional Electronic Spectroscopy
Directory of Open Access Journals (Sweden)
Mančal T.
2013-03-01
Full Text Available Two-dimensional electronic spectroscopy (2D-ES is used to investigate ultrafast excited-state dynamics in a lutetium bisphthalocyanine dimer. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra. The combination of density matrix propagation and quantum chemical calculations results in a molecular view of the charge transfer dynamics and highlights the role of the counter-ion in providing an energetic perturbation which promotes charge transfer across the complex.
Two-dimensional Bose and Fermi gases beyond weak coupling
França, Guilherme; LeClair, André; Squires, Joshua
2017-07-01
Using a formalism based on the two-body S-matrix we study two-dimensional Bose and Fermi gases with both attractive and repulsive interactions. Approximate analytic expressions, valid at weak coupling and beyond, are developed and applied to the Berezinskii-Kosterlitz-Thouless (BKT) transition. We successfully recover the correct logarithmic functional form of the critical chemical potential and density for the Bose gas. For fermions, the BKT critical temperature is calculated in BCS and BEC regimes through consideration of Tan’s contact.
Mass/Count Variation: A Mereological, Two-Dimensional Semantics
Directory of Open Access Journals (Sweden)
Peter R Sutton
2016-12-01
Full Text Available We argue that two types of context are central to grounding the semantics for the mass/count distinction. We combine and develop the accounts of Rothstein (2010 and Landman (2011, which emphasize (non-overlap at a context. We also adopt some parts of Chierchia’s (2010 account which uses precisifying contexts. We unite these strands in a two-dimensional semantics that covers a wide range of the puzzling variation data in mass/count lexicalization. Most importantly, it predicts where we should expect to find such variation for some classes of nouns but not for others, and also explains why.
Anisotropic mass density by two-dimensional acoustic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es
2008-02-15
We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.
Minimal quantization of two-dimensional models with chiral anomalies
International Nuclear Information System (INIS)
Ilieva, N.
1987-01-01
Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis
Magnetism and pairing of two-dimensional trapped fermions.
Chiesa, Simone; Varney, Christopher N; Rigol, Marcos; Scalettar, Richard T
2011-01-21
The emergence of local phases in a trapped two-component Fermi gas in an optical lattice is studied using quantum Monte Carlo simulations. We treat temperatures that are comparable to or lower than those presently achievable in experiments and large enough systems that both magnetic and paired phases can be detected by inspection of the behavior of suitable short-range correlations. We use the latter to suggest the interaction strength and temperature range at which experimental observation of incipient magnetism and d-wave pairing are more likely and evaluate the relation between entropy and temperature in two-dimensional confined fermionic systems.
Confinement and dynamical regulation in two-dimensional convective turbulence
DEFF Research Database (Denmark)
Bian, N.H.; Garcia, O.E.
2003-01-01
In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...
Cavalier perspective plots of two-dimensional matrices. Program Stereo
International Nuclear Information System (INIS)
Los Arcos Merino, J.M.
1978-01-01
The program Stereo allows representation of a two-dimensional matrix containing numerical data, in the form of a cavalier perspective, isometric or not, with an angle variable between 0 deg and 180 deg. The representation is in histogram form for each matrix row and those curves which fall behind higher curves and therefore would not be seen are suppressed. It has been written in Fortran V for a Calcomp-936 digital plotter operating off-line with a Univac 1106 computer. Drawing method, subroutine structure and running instructions are described in this paper. (author)
A Chain-Detection Algorithm for Two-Dimensional Grids
Bonham, Paul; Iqbal, Azlan
2016-01-01
We describe a general method of detecting valid chains or links of pieces on a two-dimensional grid. Specifically, using the example of the chess variant known as Switch-Side Chain-Chess (SSCC). Presently, no foolproof method of detecting such chains in any given chess position is known and existing graph theory, to our knowledge, is unable to fully address this problem either. We therefore propose a solution implemented and tested using the C++ programming language. We have been unable to fi...
Inverse radiative transfer problems in two-dimensional heterogeneous media
International Nuclear Information System (INIS)
Tito, Mariella Janette Berrocal
2001-01-01
The analysis of inverse problems in participating media where emission, absorption and scattering take place has several relevant applications in engineering and medicine. Some of the techniques developed for the solution of inverse problems have as a first step the solution of the direct problem. In this work the discrete ordinates method has been used for the solution of the linearized Boltzmann equation in two dimensional cartesian geometry. The Levenberg - Marquardt method has been used for the solution of the inverse problem of internal source and absorption and scattering coefficient estimation. (author)
International Nuclear Information System (INIS)
Lembege, B.; Savoini, P.
1992-01-01
Two-dimensional electromagnetic particle simulations evidence a self-reformation of the shock front for a collisionless supercritical magnetosonic shock propagating at angle θ 0 around 90 degree, where θ 0 is the angle between the normal to the shock front and the upstream magnetostatic field. This self-reformation is due to reflected ions which accumulate in front of the shock and is observed (i) in both electric and magnetic components, (ii) for both resistive and nonresistive two-dimensional shocks, and (iii) over a cyclic time period equal to the mean ion gyroperiod measured downstream in the overshoot; resistive effects may be self-consistently included or excluded for θ 0 congruent 90 degree according to a judicious choice of the upstream magnetostatic field orientation. The self-reformation leads to a nonstationary behavior of the shock; however, present results show evidence that the shock becomes stationary for θ less than a critical value θ r , below which the self-reformation disappears. Present results are compared to previous works where one/two-dimensional hybrid and particle codes have been used, and to experimental measurements
Shchesnovich, Valery S; Desyatnikov, Anton S; Kivshar, Yuri S
2008-09-01
We study, analytically and numerically, the dynamics of interband transitions in two-dimensional hexagonal periodic photonic lattices. We develop an analytical approach employing the Bragg resonances of different types and derive the effective multi-level models of the Landau-Zener-Majorana type. For two-dimensional periodic potentials without a tilt, we demonstrate the possibility of the Rabi oscillations between the resonant Fourier amplitudes. In a biased lattice, i.e., for a two-dimensional periodic potential with an additional linear tilt, we identify three basic types of the interband transitions or Zener tunnelling. First, this is a quasi-one-dimensional tunnelling that involves only two Bloch bands and occurs when the Bloch index crosses the Bragg planes away from one of the high-symmetry points. In contrast, at the high-symmetry points (i.e., at the M and Gamma points), the Zener tunnelling is essentially two-dimensional, and it involves either three or six Bloch bands being described by the corresponding multi-level Landau-Zener-Majorana systems. We verify our analytical results by numerical simulations and observe an excellent agreement. Finally, we show that phase dislocations, or optical vortices, can tunnel between the spectral bands preserving their topological charge. Our theory describes the propagation of light beams in fabricated or optically-induced two-dimensional photonic lattices, but it can also be applied to the physics of cold atoms and Bose-Einstein condensates tunnelling in tilted two-dimensional optical potentials and other types of resonant wave propagation in periodic media.
The emergence of geometry: a two-dimensional toy model
Alfaro, Jorge; Puigdomenech, Daniel
2010-01-01
We review the similarities between the effective chiral lagrangrian, relevant for low-energy strong interactions, and the Einstein-Hilbert action. We use these analogies to suggest a specific mechanism whereby gravitons would emerge as Goldstone bosons of a global SO(D) X GL(D) symmetry broken down to SO(D) by fermion condensation. We propose a two-dimensional toy model where a dynamical zwei-bein is generated from a topological theory without any pre-existing metric structure, the space being endowed only with an affine connection. A metric appears only after the symmetry breaking; thus the notion of distance is an induced effective one. In spite of several non-standard features this simple toy model appears to be renormalizable and at long distances is described by an effective lagrangian that corresponds to that of two-dimensional gravity (Liouville theory). The induced cosmological constant is related to the dynamical mass M acquired by the fermion fields in the breaking, which also acts as an infrared re...
A microprocessor based on a two-dimensional semiconductor
Wachter, Stefan; Polyushkin, Dmitry K.; Bethge, Ole; Mueller, Thomas
2017-04-01
The advent of microcomputers in the 1970s has dramatically changed our society. Since then, microprocessors have been made almost exclusively from silicon, but the ever-increasing demand for higher integration density and speed, lower power consumption and better integrability with everyday goods has prompted the search for alternatives. Germanium and III-V compound semiconductors are being considered promising candidates for future high-performance processor generations and chips based on thin-film plastic technology or carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor using a two-dimensional semiconductor--molybdenum disulfide. The device can execute user-defined programs stored in an external memory, perform logical operations and communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The device consists of 115 transistors and constitutes the most complex circuitry so far made from a two-dimensional material.
Two-dimensional theory and simulation of free electron lasers
International Nuclear Information System (INIS)
Kwan, T.J.T.; Cary, J.R.
1981-01-01
Two-dimensional homogeneous theory of free-electron lasers with a wiggler magnetic field of constant wavelength is formulated. It has been found from the theory that waves propagating obliquely with respect to the electron beam are always unstable with appreciable growth rates; therefore, mode competition among the on-axis and off-axis modes is an important consideration in the design of the free-electron laser. Furthermore, electromagnetic waves with group velocities opposite to the direction of electron beam propagation are absolutely unstable if k/sub o/v/sub o/ > ω/sub pe/(1/γ/sup 3/2/ + 1/γ/sup 1/2/). Due to strong nonlinear saturation levels of the low-frequency absolute instability, the dynamics of the electron beam and the generation of the high-frequency electromagnetic radiation can be severely affected. Two-dimensional particle simulations show that the efficiency of generation of the on-axis high-frequency electromagnetic wave decreases significantly due to instability of the off-axis modes. In addition, complete disruption of the electron beam and laser oscillation due to the onset of the absolute instability have been observed in simulations
Growth and characterization of two-dimensional nanostructures
International Nuclear Information System (INIS)
Herrera Sancho, Oscar Andrey
2008-01-01
Two dimensional nanostructures of palladium, nickel, silver and gadolinium were grown by means of physical evaporation in atmospheres of high vacuum and ultra high vacuum. The qualitative characterization, in situ, of the nanostructures was carried out with techniques of surface analysis: Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS). The model for the quantification of contaminants in the nanostructures, was proposed by Seah and Shirley, and was made using the spectra XPS measured in situ in the atmospheres of vacuum. For the two-dimensional nanostructures of gadolinium of thicknesses 8 Å, 16 Å, 24 Å, 32 Å, 36 Å, 44 Å, 50 Å, 61 Å, 77 Å, 81 Å, 92 Å and 101 Å, were obtained optical spectra of transmission measured in situ. An band of absorption centered at approximately 2,40 eV is obtained by an increase in the dynamic conductivity from the optical constants, i.e. refractive index and extinction coefficient, of the nanostructure of gadolinium. In addition, the optical constants for the gadolinium nanostructures have presented a maximum of 80 Å of thickness and then it was continued a decreasing tendency toward the values that were reported in the literature for bulk of gadolinium. (author) [es
Two-dimensional photonic crystal polarizer modulated by silicon resin
Tan, Chunhua; Huang, Xuguang
2007-11-01
Photonic crystals(PCs)have many potential applications because of their ability to control light-wave propagation. In this paper, we theoretically investigate the tunability of light propagation in photonic crystal waveguides in two-dimensional photonic crystals with square lattices composed of heat-resistant silicon resin. Waveguides can be obtained by the infiltration of silicon resin into air regions in two-dimensional photonic crystals composed of air holes with square lattices of dielectric cylinders. The refractive index of silicon resin can be changed by manipulating the temperature of the sample. Numerical simulation by solving Maxwell's equations using the plane wave expansion(PWE) method shows that the band gaps can be continuously tuned by silicon resin, accordingly the light propagation in photonic crystal waveguides can be controlled. The band gap is analyzed in the temperature range of 20°C-120°C. In our work, the gap map for a square lattice of dielectric cylinders is also simulated. The method can separate TM- and TE-polarized modes in the waveguide. Such a mechanism of band gap adjustment should open up a new application for designing field-sensitive polarizer in photonic integrated circuits.
Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis
Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay
2016-01-01
The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins. PMID:28248237
Human lymphocyte polymorphisms detected by quantitative two-dimensional electrophoresis
International Nuclear Information System (INIS)
Goldman, D.; Merril, C.R.
1983-01-01
A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14 C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P . 19/186 . .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses
Numerical method for two-dimensional unsteady reacting flows
International Nuclear Information System (INIS)
Butler, T.D.; O'Rourke, P.J.
1976-01-01
A method that numerically solves the full two-dimensional, time-dependent Navier-Stokes equations with species transport, mixing, and chemical reaction between species is presented. The generality of the formulation permits the solution of flows in which deflagrations, detonations, or transitions from deflagration to detonation are found. The solution procedure is embodied in the RICE computer program. RICE is an Eulerian finite difference computer code that uses the Implicit Continuous-fluid Eulerian (ICE) technique to solve the governing equations. One first presents the differential equations of motion and the solution procedure of the Rice program. Next, a method is described for artificially thickening the combustion zone to dimensions resolvable by the computational mesh. This is done in such a way that the physical flame speed and jump conditions across the flame front are preserved. Finally, the results of two example calculations are presented. In the first, the artificial thickening technique is used to solve a one-dimensional laminar flame problem. In the second, the results of a full two-dimensional calculation of unsteady combustion in two connected chambers are detailed
Strain-engineered growth of two-dimensional materials.
Ahn, Geun Ho; Amani, Matin; Rasool, Haider; Lien, Der-Hsien; Mastandrea, James P; Ager Iii, Joel W; Dubey, Madan; Chrzan, Daryl C; Minor, Andrew M; Javey, Ali
2017-09-20
The application of strain to semiconductors allows for controlled modification of their band structure. This principle is employed for the manufacturing of devices ranging from high-performance transistors to solid-state lasers. Traditionally, strain is typically achieved via growth on lattice-mismatched substrates. For two-dimensional (2D) semiconductors, this is not feasible as they typically do not interact epitaxially with the substrate. Here, we demonstrate controlled strain engineering of 2D semiconductors during synthesis by utilizing the thermal coefficient of expansion mismatch between the substrate and semiconductor. Using WSe 2 as a model system, we demonstrate stable built-in strains ranging from 1% tensile to 0.2% compressive on substrates with different thermal coefficient of expansion. Consequently, we observe a dramatic modulation of the band structure, manifested by a strain-driven indirect-to-direct bandgap transition and brightening of the dark exciton in bilayer and monolayer WSe 2 , respectively. The growth method developed here should enable flexibility in design of more sophisticated devices based on 2D materials.Strain engineering is an essential tool for modifying local electronic properties in silicon-based electronics. Here, Ahn et al. demonstrate control of biaxial strain in two-dimensional materials based on the growth substrate, enabling more complex low-dimensional electronics.
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal
International Nuclear Information System (INIS)
Konno, R; Hatayama, N; Takahashi, Y; Nakano, H
2009-01-01
Thermal expansion of two-dimensional itinerant nearly ferromagnetic metal is investigated according to the recent theoretical development of magneto-volume effect for the three-dimensional weak ferromagnets. We particularly focus on the T 2 -linear thermal expansion of magnetic origin at low temperatures, so far disregarded by conventional theories. As the effect of thermal spin fluctuations we have found that the T-linear thermal expansion coefficient shows strong enhancement by assuming the double Lorentzian form of the non-interacting dynamical susceptibility justified in the small wave-number and low frequency region. It grows faster in proportional to y -1/2 as we approach the magnetic instability point than two-dimensional nearly antiferromagnetic metals with ln(1/y s ) dependence, where y and y s are the inverses of the reduced uniform and staggered magnetic susceptibilities, respectively. Our result is consistent with the Grueneisen's relation between the thermal expansion coefficient and the specific heat at low temperatures. In 2-dimensional electron gas we find that the thermal expansion coefficient is divergent with a finite y when the higher order term of non-interacting dynamical susceptibility is taken into account.
Flexoelectricity in two-dimensional crystalline and biological membranes
Ahmadpoor, Fatemeh; Sharma, Pradeep
2015-10-01
The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes--whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.
Two-Dimensional Gel Electrophoresis and 2D-DIGE.
Meleady, Paula
2018-01-01
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.
On Space Efficient Two Dimensional Range Minimum Data Structures
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Davoodi, Pooya; Rao, S. Srinivasa
2012-01-01
of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data......The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=m⋅n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤c≤N. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version...
On Space Efficient Two Dimensional Range Minimum Data Structures
DEFF Research Database (Denmark)
Davoodi, Pooya; Brodal, Gerth Stølting; Rao, S. Srinivasa
2010-01-01
, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits additional space which can be preprocessed in O(N) time and achieves O(clog2 c) query time. For c = O(1), this is the first O(1) query time algorithm using......The two dimensional range minimum query problem is to preprocess a static two dimensional m by n array A of size N = m · n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... optimal O(N) bits additional space. For the case where queries can not probe A, we give a data structure of size O(N· min {m,logn}) bits with O(1) query time, assuming m ≤ n. This leaves a gap to the lower bound of Ω(Nlogm) bits for this version of the problem....
Development of two dimensional electrophoresis method using single chain DNA
International Nuclear Information System (INIS)
Ikeda, Junichi; Hidaka, So
1998-01-01
By combining a separation method due to molecular weight and a method to distinguish difference of mono-bases, it was aimed to develop a two dimensional single chain DNA labeled with Radioisotope (RI). From electrophoretic pattern difference of parent and variant strands, it was investigated to isolate the root module implantation control gene. At first, a Single Strand Conformation Polymorphism (SSCP) method using concentration gradient gel was investigated. As a result, it was formed that intervals between double chain and single chain DNAs expanded, but intervals of both single chain DNAs did not expand. On next, combination of non-modified acrylic amide electrophoresis method and Denaturing Gradient-Gel Electrophoresis (DGGE) method was examined. As a result, hybrid DNA developed by two dimensional electrophoresis arranged on two lines. But, among them a band of DNA modified by high concentration of urea could not be found. Therefore, in this fiscal year's experiments, no preferable result could be obtained. By the used method, it was thought to be impossible to detect the differences. (G.K.)
Calder, Grant; Hindle, Chris; Chan, Jordi; Shaw, Peter
2015-01-01
Recent developments in both microscopy and fluorescent protein technologies have made live imaging a powerful tool for the study of plant cells. However, the complications of keeping plant material alive during a long duration experiment while maintaining maximum resolution has limited the use of these methods. Here, we describe an imaging chamber designed to overcome these limitations, which is flexible enough to support a range of sizes of plant materials. We were able use confocal microscopy to follow growth and development of plant cells and tissues over several days. The chamber design is based on a perfusion system, so that the addition of drugs and other experimental treatments are also possible. In this article we present a design of imaging chamber that makes it possible to image plant material with high resolution for extended periods of time.
Long, Zi-Xuan; Zhang, Yi
2014-11-01
This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by El-Nabulsi. First, the El-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and El-Nabulsi—Hamilton's canonical equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of El-Nabulsi—Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of El-Nabulsi—Hamilton action under the infinitesimal transformations of the group. Finally, Noether's theorems for the non-conservative Hamilton system under the El-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.
Optimal Padding for the Two-Dimensional Fast Fourier Transform
Dean, Bruce H.; Aronstein, David L.; Smith, Jeffrey S.
2011-01-01
One-dimensional Fast Fourier Transform (FFT) operations work fastest on grids whose size is divisible by a power of two. Because of this, padding grids (that are not already sized to a power of two) so that their size is the next highest power of two can speed up operations. While this works well for one-dimensional grids, it does not work well for two-dimensional grids. For a two-dimensional grid, there are certain pad sizes that work better than others. Therefore, the need exists to generalize a strategy for determining optimal pad sizes. There are three steps in the FFT algorithm. The first is to perform a one-dimensional transform on each row in the grid. The second step is to transpose the resulting matrix. The third step is to perform a one-dimensional transform on each row in the resulting grid. Steps one and three both benefit from padding the row to the next highest power of two, but the second step needs a novel approach. An algorithm was developed that struck a balance between optimizing the grid pad size with prime factors that are small (which are optimal for one-dimensional operations), and with prime factors that are large (which are optimal for two-dimensional operations). This algorithm optimizes based on average run times, and is not fine-tuned for any specific application. It increases the amount of times that processor-requested data is found in the set-associative processor cache. Cache retrievals are 4-10 times faster than conventional memory retrievals. The tested implementation of the algorithm resulted in faster execution times on all platforms tested, but with varying sized grids. This is because various computer architectures process commands differently. The test grid was 512 512. Using a 540 540 grid on a Pentium V processor, the code ran 30 percent faster. On a PowerPC, a 256x256 grid worked best. A Core2Duo computer preferred either a 1040x1040 (15 percent faster) or a 1008x1008 (30 percent faster) grid. There are many industries that
Electrical and optoelectronic properties of two-dimensional materials
Wang, Qiaoming
Electrical and optoelectronic properties of bulk semiconductor materials have been extensively explored in last century. However, when reduced to one-dimensional and two-dimensional, many semiconductors start to show unique electrical and optoelectronic behaviors. In this dissertation, electrical and optoelectronic properties of one-dimensional (nanowires) and two-dimensional semiconductor materials are investigated by various techniques, including scanning photocurrent microscopy, scanning Kelvin probe microscopy, Raman spectroscopy, photoluminescence, and finite-element simulations. In our work, gate-tunable photocurrent in ZnO nanowires has been observed under optical excitation in the visible regime, which originates from the nanowire/substrate interface states. This gate tunability in the visible regime can be used to enhance the photon absorption efficiency, and suppress the undesirable visible-light photodetection in ZnO-based solar cells. The power conversion efficiency of CuInSe2/CdS core-shell nanowire solar cells has been investigated. The highest power conversion efficiency per unit area/volume is achieved with core diameter of 50 nm and the thinnest shell thickness. The existence of the optimal geometrical parameters is due to a combined effect of optical resonances and carrier transport/dynamics. Significant current crowding in two-dimensional black phosphorus field-effect transistors has been found, which has been significantly underestimated by the commonly used transmission-line model. This current crowding can lead to Joule heating close to the contacts. New van der Waals metal-semiconductor junctions have been mechanically constructed and systematically studied. The photocurrent on junction area has been demonstrated to originate from the photothermal effect rather than the photovoltaic effect. Our findings suggest that a reasonable control of interface/surface state properties can enable new and beneficial functionalities in nanostructures. We
DEFF Research Database (Denmark)
Tamulevičius, S.; Jurkevičiute, A.; Armakavičius, N.
2017-01-01
In this paper we describe fabrication and characterization methods of two-dimensional periodic microstructures in photoresist with pitch of 1.2 urn and lattice constant 1.2-4.8 μm, formed using two-beam multiple exposure holographic lithography technique. The regular structures were recorded empl...
Two-dimensional designed fabrication of subwavelength grating HCG mirror on silicon-on-insulator
Huang, Shen-Che; Hong, Kuo-Bin; Lu, Tien-Chang; He, Sailing
2016-03-01
We designed and fabricated a two dimensional high contrast subwavelength grating (HCG) mirrors. The computer-aided software was employed to verify the structural parameters including grating periods and filling factors. From the optimized simulation results, the designed HCG structure has a wide reflection stopband (reflectivity (R) >90%) of over 200 nm, which centered at telecommunication wavelength. The optimized HCG mirrors were fabricated by electron beam lithography and inductively coupled plasma process technique. The experimental result was almost consistent with calculated data. This achievement should have an impact on numerous photonic devices helpful attribution to the integrated HCG VCSELs in the future.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Entropy of Bit-Stuffing-Induced Measures for Two-Dimensional Checkerboard Constraints
DEFF Research Database (Denmark)
Forchhammer, Søren; Vaarby, Torben Strange
2007-01-01
A modified bit-stuffing scheme for two-dimensional (2-D) checkerboard constraints is introduced. The entropy of the scheme is determined based on a probability measure defined by the modified bit-stuffing. Entropy results of the scheme are given for 2-D constraints on a binary alphabet....... The constraints considered are 2-D RLL (d, infinity) for d = 2, 3 and 4 as well as for the constraint with a minimum 1-norm distance of 3 between Is. For these results the entropy is within 1-2% of an upper bound on the capacity for the constraint. As a variation of the scheme, periodic merging arrays are also...
Algorithmic analysis of the maximum level length in general-block two-dimensional Markov processes
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available Two-dimensional continuous-time Markov chains (CTMCs are useful tools for studying stochastic models such as queueing, inventory, and production systems. Of particular interest in this paper is the distribution of the maximal level visited in a busy period because this descriptor provides an excellent measure of the system congestion. We present an algorithmic analysis for the computation of its distribution which is valid for Markov chains with general-block structure. For a multiserver batch arrival queue with retrials and negative arrivals, we exploit the underlying internal block structure and present numerical examples that reveal some interesting facts of the system.
Intruder Motion in Two-Dimensional Shaken Granular Beds
International Nuclear Information System (INIS)
Ma Huan-Ping; Lv Yong-Jun; Zheng Ning; Shi Qing-Fan; Li Liang-Sheng
2014-01-01
The dynamical behavior of an intruder immersed in a two-dimensional shaken granular bed is experimentally investigated. With two types of background particles, f−Γ phase diagrams depicting the intruder's motion are measured and compared. It is found that even with the same size and density ratio of the intruder to the background particles, the intruder exhibits a distinct behavior at given vibrational conditions: rising behavior in one granular bed; sinking behavior in another granular bed. We slightly tune the size and density ratio to confirm the reliability of the experimental results. In addition, we examine the influences of interstitial air, convection and the initial position on the intruder's motion, speculating that the opposite motion could be traced to the material properties of the background particles
Two-dimensional neutron scintillation detector with optimal gamma discrimination
International Nuclear Information System (INIS)
Kanyo, M.; Reinartz, R.; Schelten, J.; Mueller, K.D.
1993-01-01
The gamma sensitivity of a two-dimensional scintillation neutron detector based on position sensitive photomultipliers (Hamamatsu R2387 PM) has been minimized by a digital differential discrimination unit. Since the photomultiplier gain is position-dependent by ±25% a discrimination unit was developed where digital upper and lower discrimination levels are set due to the position-dependent photomultiplier gain obtained from calibration measurements. By this method narrow discriminator windows can be used to reduce the gamma background drastically without effecting the neutron sensitivity of the detector. The new discrimination method and its performance tested by neutron measurements will be described. Experimental results concerning spatial resolution and γ-sensitivity are presented
Analysis of Two-Dimensional Electrophoresis Gel Images
DEFF Research Database (Denmark)
Pedersen, Lars
2002-01-01
This thesis describes and proposes solutions to some of the currently most important problems in pattern recognition and image analysis of two-dimensional gel electrophoresis (2DGE) images. 2DGE is the leading technique to separate individual proteins in biological samples with many biological...... and pharmaceutical applications, e.g., drug development. The technique results in an image, where the proteins appear as dark spots on a bright background. However, the analysis of these images is very time consuming and requires a large amount of manual work so there is a great need for fast, objective, and robust...... methods based on image analysis techniques in order to significantly accelerate this key technology. The methods described and developed fall into three categories: image segmentation, point pattern matching, and a unified approach simultaneously segmentation the image and matching the spots. The main...
On wakefields with two-dimensional planar geometry
International Nuclear Information System (INIS)
Chao, A.W.; Bane, K.L.F.
1996-10-01
In order to reach higher acceleration gradients in linear accelerators, it is advantageous to use a higher accelerating RF frequency, which in turn requires smaller accelerating structures. As the structure size becomes smaller, rectangular structures become increasingly interesting because they are easier to construct than cylindrically symmetric ones. One drawback of small structures, however, is that the wakefields generated by the beam in such structures tend to be strong. Recently, it has been suggested that one way of ameliorating this problem is to use rectangular structures that are very flat and to use flat beams. In the limiting case of a very flat planar geometry, the problem resembles a purely two-dimensional (2-D) problem, the wakefields of which have been studied
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine D; Savran, Mona Meral; Konge, Lars
2016-01-01
were cohort size and characteristics, skill trained or operation performed, instrument used, outcome measures, and conclusions. Two independent authors performed the search and data extraction. RESULTS: Three hundred and forty articles were screened for eligibility, and 31 RCTs were included...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...... in the review. Three trials were carried out in a clinical setting, and 28 trials used a simulated setting. Time was used as an outcome measure in all of the trials, and number of errors was used in 19 out of 31 trials. Twenty-two out of 31 trials (71 %) showed a reduction in performance time, and 12 out of 19...
Two-dimensional echocardiographic features of right ventricular infarction
International Nuclear Information System (INIS)
D'Arcy, B.; Nanda, N.C.
1982-01-01
Real-time, two-dimensional echocardiographic studies were performed in 10 patients with acute myocardial infarction who had clinical features suggestive of right ventricular involvement. All patients showed right ventricular wall motion abnormalities. In the four-chamber view, seven patients showed akinesis of the entire right ventricular diaphragmatic wall and three showed akinesis of segments of the diaphragmatic wall. Segmental dyskinetic areas involving the right ventricular free wall were identified in four patients. One patient showed a large right ventricular apical aneurysm. Other echocardiographic features included enlargement of the right ventricle in eight cases, paradoxical ventricular septal motion in seven cases, tricuspid incompetence in eight cases, dilation of the stomach in four cases and localized pericardial effusion in two cases. Right ventricular infarction was confirmed by radionuclide methods in seven patients, at surgery in one patient and at autopsy in two patients
Drifting plasmons in open two-dimensional channels: modal analysis
International Nuclear Information System (INIS)
Sydoruk, O
2013-01-01
Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)
Discrete formulation for two-dimensional multigroup neutron diffusion equations
International Nuclear Information System (INIS)
Vosoughi, Naser; Salehi, Ali A.; Shahriari, Majid
2003-01-01
The objective of this paper is to introduce a new numerical method for neutronic calculation in a reactor core. This method can produce the final finite form of the neutron diffusion equation by classifying the neutronic variables and using two kinds of cell complexes without starting from the conventional differential form of the neutron diffusion equation. The method with linear interpolation produces the same convergence as the linear continuous finite element method. The quadratic interpolation is proven; the convergence order depends on the shape of the dual cell. The maximum convergence order is achieved by choosing the dual cell based on two Gauss' points. The accuracy of the method was examined with a well-known IAEA two-dimensional benchmark problem. The numerical results demonstrate the effectiveness of the new method
Suspension and simple optical characterization of two-dimensional membranes
Northeast, David B.; Knobel, Robert G.
2018-03-01
We report on a method for suspending two-dimensional crystal materials in an electronic circuit using an only photoresists and solvents. Graphene and NbSe2 are suspended tens of nanometers above metal electrodes with clamping diameters of several microns. The optical cavity formed from the membrane/air/metal structures enables a quick method to measure the number of layers and the gap separation using comparisons between the expected colour and optical microscope images. This characterization technique can be used with just an illuminated microscope with a digital camera which makes it adaptable to environments where other means of characterization are not possible, such as inside nitrogen glove boxes used in handling oxygen-sensitive materials.
Two-dimensional void reconstruction by neutron transmission
International Nuclear Information System (INIS)
Zakaib, G.D.; Harms, A.A.; Vlachopoulos, J.
1978-01-01
Contemporary algebraic reconstruction methods are utilized in investigating the two-dimensional void distribution in a water analog from neutron transmission measurements. It is sought to ultimately apply these techniques to the determination of time-averaged void distribution in two-phase flow systems as well as for potential usage in neutron radiography. Initially, projection data were obtained from a digitized model of a hypothetical two-phase representation and later from neutron beam traverses across a voided methacrylate plastic model. From 10 to 15 views were incorporated, and decoupling of overlapped measurements was utilized to afford greater resolution. In general, the additive Algebraic Reconstruction Technique yielded the best reconstructions, with others showing promise for noisy data. Results indicate the need for some further development of the method in interpreting real data
Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.
Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P
2015-12-18
At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.
Selective growth of two-dimensional phosphorene on catalyst surface.
Qiu, L; Dong, J C; Ding, F
2018-02-01
Although the study of black phosphorene (BP) and its isomers has attracted enormous attention, the method of synthesizing high-quality samples in a large area is still pending. Here we explore the potential of using the chemical vapor deposition method to synthesize large-area two-dimensional (2D) phosphorene films on metal surfaces. Our ab initio calculations show that BP can be synthesized by using tin (Sn) as a catalyst, while one of its isomers, blue phosphorene (BLP), is very possible to be synthesized by using most other metals, such as Ag and Au. Besides, our study also suggests that the large binding energy between the 2D phosphorene and the active metal substrate may prohibit the exfoliation of the 2D phosphorene for real applications and, therefore, tin, silver and gold are predicted to be the most suitable catalysts for the synthesis of BP and BLP.
Two-dimensional electronic spectroscopy with birefringent wedges
Energy Technology Data Exchange (ETDEWEB)
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-12-15
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Cooperation in two-dimensional mixed-games
International Nuclear Information System (INIS)
Amaral, Marco A; Silva, Jafferson K L da; Wardil, Lucas
2015-01-01
Evolutionary game theory is a common framework to study the evolution of cooperation, where it is usually assumed that the same game is played in all interactions. Here, we investigate a model where the game that is played by two individuals is uniformly drawn from a sample of two different games. Using the master equation approach we show that the random mixture of two games is equivalent to play the average game when (i) the strategies are statistically independent of the game distribution and (ii) the transition rates are linear functions of the payoffs. We also use Monte-Carlo simulations in a two-dimensional lattice and mean-field techniques to investigate the scenario when the two above conditions do not hold. We find that even outside of such conditions, several quantities characterizing the mixed-games are still the same as the ones obtained in the average game when the two games are not very different. (paper)
Charge ordering in two-dimensional ionic liquids
Perera, Aurélien; Urbic, Tomaz
2018-04-01
The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.
Spin precession in inversion-asymmetric two-dimensional systems
International Nuclear Information System (INIS)
Liu, M.-H.; Chang, C.-R.
2006-01-01
We present a theoretical method to calculate the expectation value of spin in an inversion-asymmetric two-dimensional (2D) system with respect to an arbitrarily spin-polarized electron state, injected via an ideal point contact. The 2D system is confined in a [0 0 1]-grown quantum well, where both the Rashba and the Dresselhaus spin-orbit couplings are taken into account. The obtained analytical results allow more concrete description of the spatial behaviors of the spin precession caused individually by the Rashba and the Dresselhaus terms. Applying the calculation on the Datta-Das spin-FET, whose original design considers only the Rashba effect inside the channel, we investigate the possible influence due to the Dresselhaus spin-orbit coupling. Concluded solution is the choice of ±[1±10], in particular [1 1 0], as the channel direction
Thermoelectric transport in two-dimensional giant Rashba systems
Xiao, Cong; Li, Dingping; Ma, Zhongshui; Niu, Qian
Thermoelectric transport in strongly spin-orbit coupled two-dimensional Rashba systems is studied using the analytical solution of the linearized Boltzmann equation. To highlight the effects of inter-band scattering, we assume point-like potential impurities, and obtain the band-and energy-dependent transport relaxation times. Unconventional transport behaviors arise when the Fermi level lies near or below the band crossing point (BCP), such as the non-Drude electrical conducivity below the BCP, the failure of the standard Mott relation linking the Peltier coefficient to the electrical conductivity near the BCP, the enhancement of diffusion thermopower and figure of merit below the BCP, the zero-field Hall coefficient which is not inversely proportional to and not a monotonic function of the carrier density, the enhanced Nernst coefficient below the BCP, and the enhanced current-induced spin-polarization efficiency.
Advancements of two dimensional correlation spectroscopy in protein researches.
Tao, Yanchun; Wu, Yuqing; Zhang, Liping
2018-05-15
The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well. Copyright © 2018 Elsevier B.V. All rights reserved.
Sample preparation guidelines for two-dimensional electrophoresis.
Posch, Anton
2014-12-01
Sample preparation is one of the key technologies for successful two-dimensional electrophoresis (2DE). Due to the great diversity of protein sample types and sources, no single sample preparation method works with all proteins; for any sample the optimum procedure must be determined empirically. This review is meant to provide a broad overview of the most important principles in sample preparation in order to avoid a multitude of possible pitfalls. Sample preparation protocols from the expert in the field were screened and evaluated. On the basis of these protocols and my own comprehensive practical experience important guidelines are given in this review. The presented guidelines will facilitate straightforward protocol development for researchers new to gel-based proteomics. In addition the available choices are rationalized in order to successfully prepare a protein sample for 2DE separations. The strategies described here are not limited to 2DE and can also be applied to other protein separation techniques.
Thermal conductivity of disordered two-dimensional binary alloys.
Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2016-10-20
Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.
Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.
Yang, Yuting; Jiang, Hua; Hang, Zhi Hong
2018-01-25
Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.
Two-dimensional plasma photonic crystals in dielectric barrier discharge
International Nuclear Information System (INIS)
Fan Weili; Dong Lifang; Zhang Xinchun
2010-01-01
A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.
Electromagnetic two-dimensional analysis of trapped-ion eigenmodes
Energy Technology Data Exchange (ETDEWEB)
Kim, D.; Rewoldt, G.
1984-11-01
A two-dimensional electromagnetic analysis of the trapped-ion instability for the tokamak case with ..beta.. not equal to 0 has been made, based on previous work in the electrostatic limit. The quasineutrality condition and the component of Ampere's law along the equilibrium magnetic field are solved for the perturbed electrostatic potential and the component of the perturbed vector potential along the equilibrium magnetic field. The general integro-differential equations are converted into a matrix eigenvalue-eigenfunction problem by expanding in cubic B-spline finite elements in the minor radius and in Fourier harmonics in the poloidal angle. A model MHD equilibrium with circular, concentric magnetic surfaces and large aspect ratio is used which is consistent with our assemption that B << 1. The effect on the trapped-ion mode of including these electromagnetic extensions to the calculation is considered, and the temperature (and ..beta..) scaling of the mode frequency is shown and discussed.
Nematic Equilibria on a Two-Dimensional Annulus
Lewis, A. H.
2017-01-16
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, in the Oseen–Frank theoretical framework. We analyze a radially invariant defect-free state and compute analytic stability criteria for this state in terms of the elastic anisotropy, annular aspect ratio, and anchoring strength. In the strong anchoring case, we define and characterize a new spiral-like equilibrium which emerges as the defect-free state loses stability. In the weak anchoring case, we compute stability diagrams that quantify the response of the defect-free state to radial and azimuthal perturbations. We study sector equilibria on sectors of an annulus, including the effects of weak anchoring and elastic anisotropy, giving novel insights into the correlation between preferred numbers of boundary defects and the geometry. We numerically demonstrate that these sector configurations can approximate experimentally observed equilibria with boundary defects.
Self-organized defect strings in two-dimensional crystals.
Lechner, Wolfgang; Polster, David; Maret, Georg; Keim, Peter; Dellago, Christoph
2013-12-01
Using experiments with single-particle resolution and computer simulations we study the collective behavior of multiple vacancies injected into two-dimensional crystals. We find that the defects assemble into linear strings, terminated by dislocations with antiparallel Burgers vectors. We show that these defect strings propagate through the crystal in a succession of rapid one-dimensional gliding and rare rotations. While the rotation rate decreases exponentially with the number of defects in the string, the diffusion constant is constant for large strings. By monitoring the separation of the dislocations at the end points, we measure their effective interactions with high precision beyond their spontaneous formation and annihilation, and we explain the double-well form of the dislocation interaction in terms of continuum elasticity theory.
Stopping power of two-dimensional spin quantum electron gases
Zhang, Ya; Jiang, Wei; Yi, Lin
2015-04-01
Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.
Photostrictive Two-Dimensional Materials in the Monochalcogenide Family
Haleoot, Raad; Paillard, Charles; Kaloni, Thaneshwor P.; Mehboudi, Mehrshad; Xu, Bin; Bellaiche, L.; Barraza-Lopez, Salvador
2017-06-01
Photostriction is predicted for group-IV monochalcogenide monolayers, two-dimensional ferroelectrics with rectangular unit cells (the lattice vector a1 is larger than a2) and an intrinsic dipole moment parallel to a1. Photostriction is found to be related to the structural change induced by a screened electric polarization (i.e., a converse piezoelectric effect) in photoexcited electronic states with either px or py (in-plane) orbital symmetry that leads to a compression of a1 and a comparatively smaller increase of a2 for a reduced unit cell area. The structural change documented here is 10 times larger than that observed in BiFeO3 , making monochalcogenide monolayers an ultimate platform for this effect. This structural modification should be observable under experimentally feasible densities of photexcited carriers on samples that have been grown already, having a potential usefulness for light-induced, remote mechano-optoelectronic applications.
Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis
Directory of Open Access Journals (Sweden)
Young S. Shin
1998-01-01
Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.
Superconductivity in engineered two-dimensional electron gases
Chubukov, Andrey V.; Kivelson, Steven A.
2017-11-01
We consider Kohn-Luttinger mechanism for superconductivity in a two-dimensional electron gas confined to a narrow well between two grounded metallic planes with two occupied subbands with Fermi momenta kF L>kF S . On the basis of a perturbative analysis, we conclude that non-s -wave superconductivity emerges even when the bands are parabolic. We analyze the conditions that maximize Tc as a function of the distance to the metallic planes, the ratio kF L/kF S , and rs, which measures the strength of Coulomb correlations. The largest attraction is in p -wave and d -wave channels, of which p wave is typically the strongest. For rs=O (1 ) we estimate that the dimensionless coupling λ ≈10-1 , but it likely continues increasing for larger rs (where we lose theoretical control).
Effective-range dependence of two-dimensional Fermi gases
Schonenberg, L. M.; Verpoort, P. C.; Conduit, G. J.
2017-08-01
The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges -1.5 ≤kF2Reff2≤0 , where Reff is the effective range and kF is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit kF2Reff2→-∞ is a gas of bosons with zero binding energy, whereas ln(kFa )→-∞ corresponds to noninteracting bosons with infinite binding energy.
Fluid dynamics of two-dimensional pollination in Ruppia maritima
Musunuri, Naga; Bunker, Daniel; Pell, Susan; Pell, Fischer; Singh, Pushpendra
2016-11-01
The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a water surface: (i) inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; (ii) inflorescences remain below the surface and produce air bubbles which carry their pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can disrupt the pollination process so that the pollen is not transported or captured on the water surface. National Science Foundation.
Two-dimensional assemblies from crystallizable homopolymers with charged termini
He, Xiaoming; Hsiao, Ming-Siao; Boott, Charlotte E.; Harniman, Robert L.; Nazemi, Ali; Li, Xiaoyu; Winnik, Mitchell A.; Manners, Ian
2017-04-01
The creation of shaped, uniform and colloidally stable two-dimensional (2D) assemblies by bottom-up methods represents a challenge of widespread current interest for a variety of applications. Herein, we describe the utilization of surface charge to stabilize self-assembled planar structures that are formed from crystallizable polymer precursors by a seeded growth approach. Addition of crystallizable homopolymers with charged end-groups to seeds generated by the sonication of block copolymer micelles with crystalline cores yields uniform platelet micelles with controlled dimensions. Significantly, the seeded growth approach is characterized by a morphological memory effect whereby the origin of the seed, which can involve a quasi-hexagonal or rectangular 2D platelet precursor, dictates the observed 2D platelet shape. This new strategy is illustrated using two different polymer systems, and opens the door to the construction of 2D hierarchical structures with broad utility.
Splitting rules for spectra of two-dimensional Fibonacci quasilattices
Yang, Xiangbo; Liu, Youyan
1997-10-01
In the framework of the single-electron tight-binding on-site model, after establishing the method of constructing a class of two-dimensional Fibonacci quasilattices, we have studied the rules of energy spectra splitting for these quasilattices by means of a decomposition-decimation method based on the renormalization-group technique. Under the first approximation, the analytic results show that there exist only six kinds of clusters and the electronic energy bands split as type Y and consist of nine subbands. Instead of the on-site model, the transfer model should be used for the higher hierarchy of the spectra, the electronic energy spectra split as type F. The analytic results are confirmed by numerical simulations.
Soliton nanoantennas in two-dimensional arrays of quantum dots
Gligorić, G.; Maluckov, A.; Hadžievski, Lj; Slepyan, G. Ya; Malomed, B. A.
2015-06-01
We consider two-dimensional (2D) arrays of self-organized semiconductor quantum dots (QDs) strongly interacting with electromagnetic field in the regime of Rabi oscillations. The QD array built of two-level states is modelled by two coupled systems of discrete nonlinear Schrödinger equations. Localized modes in the form of single-peaked fundamental and vortical stationary Rabi solitons and self-trapped breathers have been found. The results for the stability, mobility and radiative properties of the Rabi modes suggest a concept of a self-assembled 2D soliton-based nano-antenna, which is stable against imperfections In particular, we discuss the implementation of such a nano-antenna in the form of surface plasmon solitons in graphene, and illustrate possibilities to control their operation by means of optical tools.
Oscillation of Two-Dimensional Neutral Delay Dynamic Systems
Directory of Open Access Journals (Sweden)
Xinli Zhang
2013-01-01
Full Text Available We consider a class of nonlinear two-dimensional dynamic systems of the neutral type (x(t-a(tx(τ1(tΔ=p(tf1(y(t, yΔ(t=-q(tf2(x(τ2(t. We obtain sufficient conditions for all solutions of the system to be oscillatory. Our oscillation results when a(t=0 improve the oscillation results for dynamic systems on time scales that have been established by Fu and Lin (2010, since our results do not restrict to the case where f(u=u. Also, as a special case when =ℝ, our results do not require an to be a positive real sequence. Some examples are given to illustrate the main results.
The first principle calculation of two-dimensional Dirac materials
Lu, Jin
2017-12-01
As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.
Persistence of Precursor Waves in Two-dimensional Relativistic Shocks
Energy Technology Data Exchange (ETDEWEB)
Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Matsumoto, Yosuke, E-mail: iwamoto@eps.s.u-tokyo.ac.jp [Department of Physics, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan)
2017-05-01
We investigated the efficiency of coherent upstream large-amplitude electromagnetic wave emission via synchrotron maser instability in relativistic magnetized shocks using two-dimensional particle-in-cell simulations. We considered a purely perpendicular shock in an electron–positron plasma. The coherent wave emission efficiency was measured as a function of the magnetization parameter σ , which is defined as the ratio of the Poynting flux to the kinetic energy flux. The wave amplitude was systematically smaller than that observed in one-dimensional simulations. However, it continued to persist, even at a considerably low magnetization rate, where the Weibel instability dominated the shock transition. The emitted electromagnetic waves were sufficiently strong to disturb the upstream medium, and transverse filamentary density structures of substantial amplitude were produced. Based on this result, we discuss the possibility of the wakefield acceleration model to produce nonthermal electrons in a relativistic magnetized ion–electron shock.
Two-dimensional spectrophotometry of planetary nebulae by CCD imaging
International Nuclear Information System (INIS)
Jacoby, G.H.; Africano, J.L.; Quigley, R.J.; Western Washington Univ., Bellingham, WA)
1987-01-01
The spatial distribution of the electron temperature and density and the ionic abundances of O(+), O(2+), N(+), and S(+) have been derived from CCD images of the planetary nebulae NGC 40 and NGC 6826 taken in the important emission lines of forbidden O II, forbidden O III, H-beta, forbidden N II, and forbidden S II. The steps required in the derivation of the absolute fluxes, line, ratios, and ionic abundances are outlined and then discussed in greater detail. The results show that the CCD imaging technique for two-dimensional spectrophotometry can effectively compete with classical spectrophotometry, providing the added benefits of complete spatial coverage at seeing-disk spatial resolution. The multiplexing in the spatial dimension, however, results in a loss of spectral information, since only one emission line is observed at any one time. 37 references
Flat Chern Band in a Two-Dimensional Organometallic Framework
Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng
2013-03-01
By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a “romance of flatland” could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.
Custom acetabular component design with interactive two-dimensional CT
International Nuclear Information System (INIS)
Magid, D.; Millet, C.; Brooker, A.F. Jr.; Fishman, E.K.
1990-01-01
This paper reports on a revision of failed acetabular components that must accommodate existing segmental and cavitary bone defects and global loss of bone stock. Two-dimensional CT can be used to determine which patients may benefit from a custom acetabulum and to design such a prosthesis. Ninety-one sequential failed hip arthroplasties were reviewed to find 12 potential custom cup candidates, of whom seven underwent CT assessment and subsequent cup design and placement. Coronal and sagittal CT was used to review existing bone stock and bone defects, to measure and map the contour of the defect into which the new cup must fit and to determine the precise placement, angulation, and depth of screw holes to provide purchase for the new cup. A template was produced for approval, followed by cup manufacture and placement
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
Two-dimensional atom localization induced by a squeezed vacuum
Wang, Fei; Xu, Jun
2016-10-01
A scheme of two-dimensional (2D) atom localization induced by a squeezed vacuum is proposed, in which the three-level V-type atoms interact with two classical standing-wave fields. It is found that when the environment is changed from an ordinary vacuum to a squeezed vacuum, the 2D atom localization is realized by detecting the position-dependent resonance fluorescence spectrum. For comparison, we demonstrate that the atom localization originating from the quantum interference effect is distinct from that induced by a squeezed vacuum. Furthermore, the combined effects of the squeezed vacuum and quantum interference are also discussed under appropriate conditions. The internal physical mechanism is analyzed in terms of dressed-state representation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574179 and 11204099) and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFC1148).
Efficient two-dimensional compressive sensing in MIMO radar
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Two-dimensional fruit ripeness estimation using thermal imaging
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2013-06-01
Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.
Sieving hydrogen isotopes through two-dimensional crystals.
Lozada-Hidalgo, M; Hu, S; Marshall, O; Mishchenko, A; Grigorenko, A N; Dryfe, R A W; Radha, B; Grigorieva, I V; Geim, A K
2016-01-01
One-atom-thick crystals are impermeable to atoms and molecules, but hydrogen ions (thermal protons) penetrate through them. We show that monolayers of graphene and boron nitride can be used to separate hydrogen ion isotopes. Using electrical measurements and mass spectrometry, we found that deuterons permeate through these crystals much slower than protons, resulting in a separation factor of ≈10 at room temperature. The isotope effect is attributed to a difference of ≈60 milli-electron volts between zero-point energies of incident protons and deuterons, which translates into the equivalent difference in the activation barriers posed by two-dimensional crystals. In addition to providing insight into the proton transport mechanism, the demonstrated approach offers a competitive and scalable way for hydrogen isotope enrichment. Copyright © 2016, American Association for the Advancement of Science.
Seismic isolation of buildings on two dimensional phononic crystal foundation
Han, Lin; Li, Xiao-mei; Zhang, Yan
2017-11-01
In order to realize the seismic isolation of buildings, we establish the two dimensional phononic crystal (PC) foundation which has the cell with the size close to the regular concrete test specimens, and is composed of the concrete base, rubber coating and lead cylindrical core. We study the in-plane band gap (BG) characteristics in it, through the analysis of the frequency dispersion relation and frequency response result. To lower the start BG frequency to the seismic frequency range, we also study the influences of material parameters (the elastic modulus of coating and density of cylindrical core) and geometry parameters (the thickness of coating, radius of cylindrical core and lattice constant) on BG ranges. The study could help to design the PC foundation for seismic isolation of building.
Two-Dimensional Organic-Inorganic Hybrid Perovskite Photonic Films.
Meng, Ke; Gao, Shanshan; Wu, Longlong; Wang, Geng; Liu, Xin; Chen, Gang; Liu, Zhou; Chen, Gang
2016-07-13
Organic-inorganic hybrid perovskites have created enormous expectations for low-cost and high-performance optoelectronic devices. In prospect, future advancements may derive from reaping novel electrical and optical properties beyond pristine perovskites through microscopic structure design and engineering. Herein, we report the successful preparation of two-dimensional inverse-opal perovskite (IOP) photonic films, featuring unique nanostructures and vivid colors. Further compositional and structural managements promise optical property and energy level tunability of the IOP films. They are further functionalized in solar cells, resulting in colorful devices with respectable power conversion efficiency. Such concept has not been previously applied for perovskite-based solar cells, which could open a route for more versatile optoelectronic devices.
Two dimensional tunable photonic crystals and n doped semiconductor materials
Energy Technology Data Exchange (ETDEWEB)
Elsayed, Hussein A. [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt); El-Naggar, Sahar A. [Dept. of Engineering Math. and Physics, Faculty of Engineering, Cairo University, Giza (Egypt); Aly, Arafa H., E-mail: arafa16@yahoo.com [Dept. of Physics, Faculty of Sciences, Beni-Suef University (Egypt)
2015-06-15
In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications.
Internal optical bistability of quasi-two-dimensional semiconductor nanoheterostructures
Derevyanchuk, Oleksandr V.; Kramar, Natalia K.; Kramar, Valeriy M.
2018-01-01
We represent the results of numerical computations of the frequency and temperature domains of possible realization of internal optical bistability in flat quasi-two-dimensional semiconductor nanoheterostructures with a single quantum well (i.e., nanofilms). Particular computations have been made for a nanofilm of layered semiconductor PbI2 embedded in dielectric medium, i.e. ethylene-methacrylic acid (E-MAA) copolymer. It is shown that an increase in the nanofilm's thickness leads to a long-wave shift of the frequency range of the manifestation the phenomenon of bistability, to increase the size of the hysteresis loop, as well as to the expansion of the temperature interval at which the realization of this phenomenon is possible.
Two-dimensional random arrays for real time volumetric imaging
DEFF Research Database (Denmark)
Davidsen, Richard E.; Jensen, Jørgen Arendt; Smith, Stephen W.
1994-01-01
real time volumetric imaging system, which employs a wide transmit beam and receive mode parallel processing to increase image frame rate. Depth-of-field comparisons were made from simulated on-axis and off-axis beamplots at ranges from 30 to 160 mm for both coaxial and offset transmit and receive......Two-dimensional arrays are necessary for a variety of ultrasonic imaging techniques, including elevation focusing, 2-D phase aberration correction, and real time volumetric imaging. In order to reduce system cost and complexity, sparse 2-D arrays have been considered with element geometries...... selected ad hoc, by algorithm, or by random process. Two random sparse array geometries and a sparse array with a Mills cross receive pattern were simulated and compared to a fully sampled aperture with the same overall dimensions. The sparse arrays were designed to the constraints of the Duke University...
Two-dimensional electronic spectroscopy with birefringent wedges
Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio
2014-12-01
We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.
Acoustic metamaterials for new two-dimensional sonic devices
Energy Technology Data Exchange (ETDEWEB)
Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera sn, E-46022 Valencia (Spain)
2007-09-15
It has been shown that two-dimensional arrays of rigid or fluidlike cylinders in a fluid or a gas define, in the limit of large wavelengths, a class of acoustic metamaterials whose effective parameters (sound velocity and density) can be tailored up to a certain limit. This work goes a step further by considering arrays of solid cylinders in which the elastic properties of cylinders are taken into account. We have also treated mixtures of two different elastic cylinders. It is shown that both effects broaden the range of acoustic parameters available for designing metamaterials. For example, it is predicted that metamaterials with perfect matching of impedance with air are now possible by using aerogel and rigid cylinders equally distributed in a square lattice. As a potential application of the proposed metamaterial, we present a gradient index lens for airborne sound (i.e. a sonic Wood lens) whose functionality is demonstrated by multiple scattering simulations.
The encoding complexity of two dimensional range minimum data structures
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Brodnik, Andrej; Davoodi, Pooya
2013-01-01
In the two-dimensional range minimum query problem an input matrix A of dimension m ×n, m ≤ n, has to be preprocessed into a data structure such that given a query rectangle within the matrix, the position of a minimum element within the query range can be reported. We consider the space complexity...... of the encoding variant of the problem where queries have access to the constructed data structure but can not access the input matrix A, i.e. all information must be encoded in the data structure. Previously it was known how to solve the problem with space O(mn min {m,logn}) bits (and with constant query time...
Two-dimensional echocardiographic features of right ventricular infarction
Energy Technology Data Exchange (ETDEWEB)
D' Arcy, B. (University of Rochester School of Medicine, NY); Nanda, N.C.
1982-01-01
Real-time, two-dimensional echocardiographic studies were performed in 10 patients with acute myocardial infarction who had clinical features suggestive of right ventricular involvement. All patients showed right ventricular wall motion abnormalities. In the four-chamber view, seven patients showed akinesis of the entire right ventricular diaphragmatic wall and three showed akinesis of segments of the diaphragmatic wall. Segmental dyskinetic areas involving the right ventricular free wall were identified in four patients. One patient showed a large right ventricular apical aneurysm. Other echocardiographic features included enlargement of the right ventricle in eight cases, paradoxical ventricular septal motion in seven cases, tricuspid incompetence in eight cases, dilation of the stomach in four cases and localized pericardial effusion in two cases. Right ventricular infarction was confirmed by radionuclide methods in seven patients, at surgery in one patient and at autopsy in two patients.
Global geometry of two-dimensional charged black holes
International Nuclear Information System (INIS)
Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus
2006-01-01
The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation
The two-dimensional reactor dynamic program TINTE. Pt. 1
International Nuclear Information System (INIS)
Gerwin, H.
1987-11-01
The TINTE code deals with the nuclear and the thermal transient behaviour of an HTR taking into consideration the mutual feedback effects in two-dimensional r-z-geometry. Initial equations, approximations and solution procedures are compiled in this first part of the description. This involves the following subproblems: Time-dependent neutron flux calculation. Time-dependent heat source distribution (local and non-local fractions). Time-dependent heat transport from the fuel to the fuel element surface. Time-dependent global temperature distribution. Glas-flow even under natural circulation conditions for both a given total mass flow and a given pressure difference. Convection and its feedback to the circulation. The iterations of subproblem solutions, necessary because of the separate treatment, are discussed for both the transient case and of the determination of the steady initial state. (orig.) [de
Evaporation effect on two-dimensional wicking in porous media.
Benner, Eric M; Petsev, Dimiter N
2018-03-15
We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.
Two dimensional analysis of a high temperature gaseous radiation receiver
Mcfall, K. A.; Mattick, A. T.
1992-01-01
The characteristics of the Flowing Gas Radiation Receiver (FGRR), a device that absorbs solar radiation volumetrically in a gas to produce high temperatures for space propulsion and power applications, are analyzed using a two-dimensional axisymmetric numerical model of the flow and radiation fields within a diffusely reflecting channel. The results show that an FGRR system is capable of generating temperatures in excess of 3000 K with collection efficiencies of approximately 75 percent for a channel with a reflectivity of 0.9. For a collinear radiation source, outflow temperatures of 3193 and 3092 K were achieved for axial and radial flow inputs, respectively, with receiver efficiencies of 0.82 and 0.76.
Two dimensional radiated power diagnostics on Alcator C-Moda)
Reinke, M. L.; Hutchinson, I. H.
2008-10-01
The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.
Incoherent control and entanglement for two-dimensional coupled systems
International Nuclear Information System (INIS)
Romano, Raffaele; D'Alessandro, Domenico
2006-01-01
We investigate accessibility and controllability of a quantum system S coupled to a quantum probe P, both described by two-dimensional Hilbert spaces, under the hypothesis that the external control affects only P. In this context accessibility and controllability properties describe to what extent it is possible to drive the state of the system S by acting on P and using the interaction between the two systems. We give necessary and sufficient conditions for these properties and we discuss the relation with the entangling capability of the interaction between S and P. In particular, we show that controllability can be expressed in terms of the SWAP and √(SWAP) operators acting on the composite system
Review—Two-Dimensional Layered Materials for Energy Storage Applications
Kumar, Pushpendra
2016-07-02
Rechargeable batteries are most important energy storage devices in modern society with the rapid development and increasing demand for handy electronic devices and electric vehicles. The higher surface-to-volume ratio two-dimensional (2D) materials, especially transition metal dichalcogenides (TMDCs) and transition metal carbide/nitrite generally referred as MXene, have attracted intensive research activities due to their fascinating physical/chemical properties with extensive applications. One of the growing applications is to use these 2D materials as potential electrodes for rechargeable batteries and electrochemical capacitors. This review is an attempt to summarize the research and development of TMDCs, MXenes and their hybrid structures in energy storage systems. (C) The Author(s) 2016. Published by ECS. All rights reserved.
Directory of Open Access Journals (Sweden)
Haiwen Li
2018-01-01
Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.
Atomic-like high-harmonic generation from two-dimensional materials.
Tancogne-Dejean, Nicolas; Rubio, Angel
2018-02-01
The generation of high-order harmonics from atomic and molecular gases enables the production of high-energy photons and ultrashort isolated pulses. Obtaining efficiently similar photon energy from solid-state systems could lead, for instance, to more compact extreme ultraviolet and soft x-ray sources. We demonstrate from ab initio simulations that it is possible to generate high-order harmonics from free-standing monolayer materials, with an energy cutoff similar to that of atomic and molecular gases. In the limit in which electrons are driven by the pump laser perpendicularly to the monolayer, they behave qualitatively the same as the electrons responsible for high-harmonic generation (HHG) in atoms, where their trajectories are described by the widely used semiclassical model, and exhibit real-space trajectories similar to those of the atomic case. Despite the similarities, the first and last steps of the well-established three-step model for atomic HHG are remarkably different in the two-dimensional materials from gases. Moreover, we show that the electron-electron interaction plays an important role in harmonic generation from monolayer materials because of strong local-field effects, which modify how the material is ionized. The recombination of the accelerated electron wave packet is also found to be modified because of the infinite extension of the material in the monolayer plane, thus leading to a more favorable wavelength scaling of the harmonic yield than in atomic HHG. Our results establish a novel and efficient way of generating high-order harmonics based on a solid-state device, with an energy cutoff and a more favorable wavelength scaling of the harmonic yield similar to those of atomic and molecular gases. Two-dimensional materials offer a unique platform where both bulk and atomic HHG can be investigated, depending on the angle of incidence. Devices based on two-dimensional materials can extend the limit of existing sources.
Consistent two-dimensional visualization of protein-ligand complex series
Directory of Open Access Journals (Sweden)
Stierand Katrin
2011-06-01
Full Text Available Abstract Background The comparative two-dimensional graphical representation of protein-ligand complex series featuring different ligands bound to the same active site offers a quick insight in their binding mode differences. In comparison to arbitrary orientations of the residue molecules in the individual complex depictions a consistent placement improves the legibility and comparability within the series. The automatic generation of such consistent layouts offers the possibility to apply it to large data sets originating from computer-aided drug design methods. Results We developed a new approach, which automatically generates a consistent layout of interacting residues for a given series of complexes. Based on the structural three-dimensional input information, a global two-dimensional layout for all residues of the complex ensemble is computed. The algorithm incorporates the three-dimensional adjacencies of the active site residues in order to find an universally valid circular arrangement of the residues around the ligand. Subsequent to a two-dimensional ligand superimposition step, a global placement for each residue is derived from the set of already placed ligands. The method generates high-quality layouts, showing mostly overlap-free solutions with molecules which are displayed as structure diagrams providing interaction information in atomic detail. Application examples document an improved legibility compared to series of diagrams whose layouts are calculated independently from each other. Conclusions The presented method extends the field of complex series visualizations. A series of molecules binding to the same protein active site is drawn in a graphically consistent way. Compared to existing approaches these drawings substantially simplify the visual analysis of large compound series.
Two dimensional hydrodynamic modeling of a high latitude braided river
Humphries, E.; Pavelsky, T.; Bates, P. D.
2014-12-01
Rivers are a fundamental resource to physical, ecologic and human systems, yet quantification of river flow in high-latitude environments remains limited due to the prevalence of complex morphologies, remote locations and sparse in situ monitoring equipment. Advances in hydrodynamic modeling and remote sensing technology allow us to address questions such as: How well can two-dimensional models simulate a flood wave in a highly 3-dimensional braided river environment, and how does the structure of such a flood wave differ from flow down a similar-sized single-channel river? Here, we use the raster-based hydrodynamic model LISFLOOD-FP to simulate flood waves, discharge, water surface height, and velocity measurements over a ~70 km reach of the Tanana River in Alaska. In order to use LISFLOOD-FP a digital elevation model (DEM) fused with detailed bathymetric data is required. During summer 2013, we surveyed 220,000 bathymetric points along the study reach using an echo sounder system connected to a high-precision GPS unit. The measurements are interpolated to a smooth bathymetric surface, using Topo to Raster interpolation, and combined with an existing five meter DEM (Alaska IfSAR) to create a seamless river terrain model. Flood waves are simulated using varying complexities in model solvers, then compared to gauge records and water logger data to assess major sources of model uncertainty. Velocity and flow direction maps are also assessed and quantified for detailed analysis of braided channel flow. The most accurate model output occurs with using the full two-dimensional model structure, and major inaccuracies appear to be related to DEM quality and roughness values. Future work will intercompare model outputs with extensive ground measurements and new data from AirSWOT, an airborne analog for the Surface Water and Ocean Topography (SWOT) mission, which aims to provide high-resolution measurements of terrestrial and ocean water surface elevations globally.
Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis
Energy Technology Data Exchange (ETDEWEB)
Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G
2011-03-23
We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.
The role of sleep in forming a memory representation of a two-dimensional space.
Coutanche, Marc N; Gianessi, Carol A; Chanales, Avi J H; Willison, Kate W; Thompson-Schill, Sharon L
2013-12-01
There is ample evidence from human and animal models that sleep contributes to the consolidation of newly learned information. The precise role of sleep for integrating information into interconnected memory representations is less well understood. Building on prior findings that following sleep (as compared to wakefulness) people are better able to draw inferences across learned associations in a simple hierarchy, we ask how sleep helps consolidate relationships in a more complex representational space. We taught 60 subjects spatial relationships between pairs of buildings, which (unknown to participants) formed a two-dimensional grid. Critically, participants were only taught a subset of the many possible spatial relations, which allowed them to potentially infer the remainder. After a 12 h period that either did or did not include a normal period of sleep, participants returned to the lab. We examined the quality of each participant's map of the two-dimensional space, and their knowledge of relative distances between buildings. After 12 h with sleep, subjects could more accurately map the full space than subjects who experienced only wakefulness. The incorporation of untaught, but inferable, associations was particularly improved. We further found that participants' distance judgment performance related to self-reported navigational style, but only after sleep. These findings demonstrate that consolidation over a night of sleep begins to integrate relations into an interconnected complex representation, in a way that supports spatial relational inference. Copyright © 2013 Wiley Periodicals, Inc.
Duddu, Ravindra
2009-05-01
We present a two-dimensional biofilm growth model in a continuum framework using an Eulerian description. A computational technique based on the eXtended Finite Element Method (XFEM) and the level set method is used to simulate the growth of the biofilm. The model considers fluid flow around the biofilm surface, the advection-diffusion and reaction of substrate, variable biomass volume fraction and erosion due to the interfacial shear stress at the biofilm-fluid interface. The key assumptions of the model and the governing equations of transport, biofilm kinetics and biofilm mechanics are presented. Our 2D biofilm growth results are in good agreement with those obtained by Picioreanu et al. (Biotechnol Bioeng 69(5):504-515, 2000). Detachment due to erosion is modeled using two continuous speed functions based on: (a) interfacial shear stress and (b) biofilm height. A relation between the two detachment models in the case of a 1D biofilm is established and simulated biofilm results with detachment in 2D are presented. The stress in the biofilm due to fluid flow is evaluated and higher stresses are observed close to the substratum where the biofilm is attached. © 2008 Wiley Periodicals, Inc.
The ADO-nodal method for solving two-dimensional discrete ordinates transport problems
International Nuclear Information System (INIS)
Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da
2017-01-01
Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.
Guo, Chuan Fei; Cao, Sihai; Zhang, Jianming; Tang, Haoying; Guo, Shengming; Tian, Ye; Liu, Qian
2011-06-01
Design and synthesis of super-nanostructures is one of the key and prominent topics in nanotechnology. Here we propose a novel methodology for synthesizing complex hierarchical superstructures using sacrificial templates composed of ordered two-dimensional (2D) nanostructures through lattice-directed topotactic transformations. The fabricated superstructures are nested 2D orthogonal Bi(2)S(3) networks composed of nanorods. Further investigation indicates that the lattice matching between the product and sacrificial template is the dominant mechanism for the formation of the superstructures, which agrees well with the simulation results based on an anisotropic nucleation and growth analysis. Our approach may provide a promising way toward a lattice-directed nonlithographic nanofabrication technique for making functional porous nanoarchitectures and electronic devices. © 2011 American Chemical Society
Doubly twisted Neimark–Sacker bifurcation and two coexisting two-dimensional tori
Energy Technology Data Exchange (ETDEWEB)
Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571 (Japan)
2016-01-08
We discuss a complicated bifurcation structure involving several quasiperiodic bifurcations generated in a three-coupled delayed logistic map where a doubly twisted Neimark–Sacker bifurcation causes a transition from two coexisting periodic attractors to two coexisting invariant closed circles (ICCs) corresponding to two two-dimensional tori in a vector field. Such bifurcation structures are observed in Arnol'd tongues. Lyapunov and bifurcation analyses suggest that the two coexisting ICCs and the two coexisting periodic solutions almost overlap in the two-parameter bifurcation diagram. - Highlights: • This study investigates a three-coupled delayed logistic map. • It generates complex quasiperiodic bifurcations. • Two periodic solution coexist in a conventional Arnol'd tongue. • Two two-tori coexist in a high-dimensional Arnol'd tongue.
Turing instability for a two-dimensional Logistic coupled map lattice
International Nuclear Information System (INIS)
Xu, L.; Zhang, G.; Han, B.; Zhang, L.; Li, M.F.; Han, Y.T.
2010-01-01
In this Letter, stability analysis is applied to a two-dimensional Logistic coupled map lattice with the periodic boundary conditions. The conditions of Turing instability are obtained, and various patterns can be exhibited by numerical simulations in the Turing instability region. For example, space-time periodic structures, periodic or quasiperiodic traveling wave solutions, stationary wave solutions, spiral waves, and spatiotemporal chaos, etc. have been observed. In particular, the different pattern structures have also been observed for same parameters and different initial values. That is, pattern structures also depend on the initial values. The similar patterns have also been seen in relevant references. However, the present Letter owes to pattern formation via diffusion-driven instabilities because the system is stable in the absence of diffusion.
GPM GROUND VALIDATION TWO-DIMENSIONAL VIDEO DISDROMETER (2DVD) GCPEX V1
National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) GCPEX dataset was collected by the Two-Dimensional Video Disdrometer (2DVD) data, which was...
GPM GROUND VALIDATION TWO-DIMENSIONAL VIDEO DISDROMETER (2DVD) NSSTC V1
National Aeronautics and Space Administration — The GPM Ground Validation Two-Dimensional Video Disdrometer (2DVD) NSSTC dataset was collected by the Two-Dimensional Video Disdrometer (2DVD), which uses two high...
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO4
Fritsch, K.; Ross, K. A.; Granroth, G. E.; Ehlers, G.; Noad, H. M. L.; Dabkowska, H. A.; Gaulin, B. D.
2017-09-01
We present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co2 + ions that are randomly distributed on triangular bilayers within the YbFe2O4 -type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q =(" close=")1 /3 ,1 /3 ,L )">1 /3 ,1 /3 ,L develop within the bilayers at temperatures as high as | ΘCW|˜100 K and extend over roughly five unit cells at temperatures below Tg=19 K. These two-dimensional static correlations are observed as diffuse rods of neutron scattering intensity along c* and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at Δ E ˜12 meV localized around Q. The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. We associate it with the effect of the staggered exchange field acting on the Seff=1 /2 Ising-like doublet of the Co2 + moments.
Directory of Open Access Journals (Sweden)
Cecilia M. Casadei
2018-01-01
Full Text Available Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.
A two-dimensional mathematical model of percutaneous drug absorption
Directory of Open Access Journals (Sweden)
Kubota K
2004-06-01
Full Text Available Abstract Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1 the flow rate of the drug, (2 the flux and the cumulative amount of drug eliminated into the receptor cell, (3 the steady-state value of the flux, (4 the time to reach the steady
Gebremedhin, Almaz Yirga; Kebede, Yigzaw; Gelagay, Abebaw Addis; Habitu, Yohannes Ayanaw
2018-01-01
Postpartum period is an important entry point for family planning service provision; however, women in Ethiopia are usually uncertain about the use of family planning methods during this period. Limited studies have been conducted to assess postpartum family planning use in Addis Ababa, in particular and in the country in general. So, this study was conducted to assess postpartum family planning use and its associated factors among women in extended postpartum period in Kolfe Keranyo sub city of Addis Ababa. A community-based cross sectional study was conducted from May to June 2015 on 803 women who have had live births during the year (2014) preceding the data collection in the sub city. The multi-stage cluster sampling technique was used to select study participants. Data were collected by interviewer administered structured questionnaire, entered into EPI INFO version 7 and analyzed by SPSS Version 20. Bivariable and Multivariable logistic regression models were employed to see the presence and strength of the association between the dependent and independent variables by computing the odds ratios with a 95% confidence intervals and p -values. The prevalence of postpartum family planning use was 80.3% (95% CI: 74.5, 83.1). Marriage, (AOR 0.09, 95% CI: 0.03, 0.22), menses resumption after birth, (AOR 2.12, 95% CI: 1.37, 3.41), length of time after delivery, (AOR 2.37, 95% CI: 1.18, 4.75), and history of contraceptive use before last pregnancy, (AOR 0.12, 95% CI: 0.07, 0.18) were the factors associated with postpartum family planning use. The prevalence of postpartum family planning use was high and the main factors associated with it were marriage, menses resumption, length of time after delivery, and history of previous contraceptive use. Therefore women should get appropriate information about the possibility of exposure to pregnancy prior to menses resumption by giving special emphasis to those who had no previous history of contraceptive use and exposure to
Development of two-dimensional interdigitated center of pressure sensor
Yoo, Byungseok; Pines, Darryll J.
2017-12-01
This paper presents the development of a two-dimensional (2D) flexible patch sensor to detect and monitor the center of pressure (CoP) location and the total magnitude of a spatially distributed pressure to the specific surface areas of engineering structures. The CoP sensor with the contact mode induced by a pressure distribution was formulated by force sensitive resistor technology and was mainly composed of a thin conductive polymer layer, adhesive spacers, and two interdigitated patterned electrode films with unique sensing aperture shadings. By properly mapping the interdigitated electrode patterns to the top and bottom surfaces of the conductive polymer, the proposed sensor ideally enables to measure an overall applied pressure level and its centroid location within a predetermined sensing region in real-time. The CoP sensor containing 36 sensing sections within a dimension of around 3 × 3 inches was prototyped and experimentally investigated to verify its capability to identify the CoP location and magnitude due to the presence of a permanent magnet-based local pressure distribution. Only five electric wires connected to the CoP sensor to inspect the pressure-sensing positions of 36 segments. The evaluation results of the measured sensor data demonstrate good agreements with the actual test parameters such as the total pressure and its centroid position with about 5% locational error. However, to provide accurate information on the overall pressure range, the compensation factors must be determined and applied to the individual sensing sections of the sensor.
Coherent and radiative couplings through two-dimensional structured environments
Galve, F.; Zambrini, R.
2018-03-01
We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.
Edge orientations of mechanically exfoliated anisotropic two-dimensional materials
Yang, Juntan; Wang, Yi; Li, Yinfeng; Gao, Huajian; Chai, Yang; Yao, Haimin
2018-03-01
Mechanical exfoliation is an approach widely applied to prepare high-quality two-dimensional (2D) materials for investigating their intrinsic physical properties. During mechanical exfoliation, in-plane cleavage results in new edges whose orientations play an important role in determining the properties of the as-exfoliated 2D materials especially those with high anisotropy. Here, we systematically investigate the factors affecting the edge orientation of 2D materials obtained by mechanical exfoliation. Our theoretical study manifests that the fractured direction during mechanical exfoliation is determined synergistically by the tearing direction and material anisotropy of fracture energy. For a specific 2D material, our theory enables us to predict the possible edge orientations of the exfoliated flakes as well as their occurring probabilities. The theoretical prediction is experimentally verified by examining the inter-edge angles of the exfoliated flakes of four typical 2D materials including graphene, MoS2, PtS2, and black phosphorus. This work not only sheds light on the mechanics of exfoliation of the 2D materials but also provides a new approach to deriving information of edge orientations of mechanically exfoliated 2D materials by data mining of their macroscopic geometric features.
Universality of modular symmetries in two-dimensional magnetotransport
Olsen, K. S.; Limseth, H. S.; Lütken, C. A.
2018-01-01
We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.
Engineering the Kondo state in two-dimensional semiconducting phosphorene
Babar, Rohit; Kabir, Mukul
2018-01-01
Correlated interaction between dilute localized impurity electrons and the itinerant host conduction electrons in metals gives rise to the conventional many-body Kondo effect below sufficiently low temperature. In sharp contrast to these conventional Kondo systems, we report an intrinsic, robust, and high-temperature Kondo state in two-dimensional semiconducting phosphorene. While absorbed at a thermodynamically stable lattice defect, Cr impurity triggers an electronic phase transition in phosphorene to provide conduction electrons, which strongly interact with the localized moment generated at the Cr site. These manifest into the intrinsic Kondo state, where the impurity moment is quenched in multiple stages and at temperatures in the 40-200 K range. Further, along with a much smaller extension of the Kondo cloud, the predicted Kondo state is shown to be robust under uniaxial strain and layer thickness, which greatly simplifies its future experimental realization. We predict the present study will open up new avenues in Kondo physics and trigger further theoretical and experimental studies.
Persistence in a Two-Dimensional Moving-Habitat Model.
Phillips, Austin; Kot, Mark
2015-11-01
Environmental changes are forcing many species to track suitable conditions or face extinction. In this study, we use a two-dimensional integrodifference equation to analyze whether a population can track a habitat that is moving due to climate change. We model habitat as a simple rectangle. Our model quickly leads to an eigenvalue problem that determines whether the population persists or declines. After surveying techniques to solve the eigenvalue problem, we highlight three findings that impact conservation efforts such as reserve design and species risk assessment. First, while other models focus on habitat length (parallel to the direction of habitat movement), we show that ignoring habitat width (perpendicular to habitat movement) can lead to overestimates of persistence. Dispersal barriers and hostile landscapes that constrain habitat width greatly decrease the population's ability to track its habitat. Second, for some long-distance dispersal kernels, increasing habitat length improves persistence without limit; for other kernels, increasing length is of limited help and has diminishing returns. Third, it is not always best to orient the long side of the habitat in the direction of climate change. Evidence suggests that the kurtosis of the dispersal kernel determines whether it is best to have a long, wide, or square habitat. In particular, populations with platykurtic dispersal benefit more from a wide habitat, while those with leptokurtic dispersal benefit more from a long habitat. We apply our model to the Rocky Mountain Apollo butterfly (Parnassius smintheus).
Adaptation and timing recovery for two-dimensional optical storage
Immink, Andre H.; Riani, Jamal; van Beneden, Steven; Bergmans, Jan; Ciacci, Massimo; Nowbakht Irani, Ali; Coene, Wim; van der Lee, Alexander; Bruls, Dominique
2004-09-01
This paper discusses several issues related to adaptation and timing recovery for two-dimensional (2D) optical storage. In the TwoDOS format bits are stored on a 2D hexagonal lattice which is formed by recording multiple bit rows with a fixed phase relation in a so-called broad spiral or meta-spiral. Besides a large increase in data rate by reading out with multiple spots, also a density increase by a factor of two compared to Blu-ray Disc is targeted. To increase the storage density, 2D signal processing is proposed including 2D PRML detection in the form of a stripe-wise Viterbi detector. This detector introduces an increasing detection delay when going from the outer rows towards the center of the broad spiral. For fast control loops in a decision-directed mode, special measures are needed to avoid instability due to this delay. Another issue is the large span of the 2D inter-symbol interference at higher densities and tilt, leading to a large 2D equalizer. Furthermore, in case the broad spiral is recorded with a multiple-pass mastering technology (e.g. for ROM TwoDOS discs), write-channel imperfections such as time-varying lattice distortion require independent timing recovery on each row within the broad spiral.
Simulations of two-dimensional electronic correlation spectra
International Nuclear Information System (INIS)
Kim, Hack Jin; Jeon, Seung Joon
2001-01-01
Two-dimensional (2D) correlation method, which generates the synchronous and the asynchronous 2D spectrum by complex cross correlation of the Fourier transformed spectra, is an analysis method for the changes of the sample spectrum induced by various perturbations. In the present work, the 2D electronic correlation spectra have been simulated for the cases where the sample spectrum composed of two gaussian bands changes linearly. When only the band amplitudes of the sample spectrum change, the synchronous spectrum shows strong peaks at the band centers of the sample spectrum, but the asynchronous spectrum does not make peaks. When the sample spectrum shifts without changing intensity and width, the synchronous spectrum shows peaks around the initial and final positions of the band maximum and the asynchronous spectrum shows long peaks spanning the shifting range. The band width change produces the complex 2D correlation spectra. When the sample spectrum shifts with band broadening, the width change by 50 % of full width at half maximum (FWHM) does not give so large an effect on the correlation spectrum as the spectral shift by one half of FWHM of the sample spectrum
Covariance problem in two-dimensional quantum chromodynamics
International Nuclear Information System (INIS)
Hagen, C.R.
1979-01-01
The problem of covariance in the field theory of a two-dimensional non-Abelian gauge field is considered. Since earlier work has shown that covariance fails (in charged sectors) for the Schwinger model, particular attention is given to an evaluation of the role played by the non-Abelian nature of the fields. In contrast to all earlier attempts at this problem, it is found that the potential covariance-breaking terms are identical to those found in the Abelian theory provided that one expresses them in terms of the total (i.e., conserved) current operator. The question of covariance is thus seen to reduce in all cases to a determination as to whether there exists a conserved global charge in the theory. Since the charge operator in the Schwinger model is conserved only in neutral sectors, one is thereby led to infer a probable failure of covariance in the non-Abelian theory, but one which is identical to that found for the U(1) case
Two-dimensional steady unsaturated flow through embedded elliptical layers
Bakker, Mark; Nieber, John L.
2004-12-01
New analytic element solutions are presented for unsaturated, two-dimensional steady flow in vertical planes that include nonoverlapping impermeable elliptical layers and elliptical inhomogeneities. The hydraulic conductivity, which is represented by an exponential function of the pressure head, differs between the inside and outside of an elliptical inhomogeneity; both the saturated hydraulic conductivity and water retention parameters are allowed to differ between the inside and outside. The Richards equation is transformed, through the Kirchhoff transformation and a second standard transformation, into the modified Helmholtz equation. Analytic element solutions are obtained through separation of variables in elliptical coordinates. The resulting equations for the Kirchhoff potential consist of infinite sums of products of exponentials and modified Mathieu functions. In practical applications the series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately but up to machine accuracy, provided that enough terms are used. The pressure head, saturation, and flow may be computed analytically at any point in the vadose zone. Examples are given of the shadowing effect of an impermeable elliptical layer in a uniform flow field and funnel-type flow between two elliptical inhomogeneities. The presented solutions may be applied to study transport processes in vadose zones containing many impermeable elliptical layers or elliptical inhomogeneities.
One and two dimensional simulations on beat wave acceleration
International Nuclear Information System (INIS)
Mori, W.; Joshi, C.; Dawson, J.M.; Forslund, D.W.; Kindel, J.M.
1984-01-01
Recently there has been considerable interest in the use of fast-large-amplitude plasma waves as the basis for a high energy particle accelerator. In these schemes, lasers are used to create the plasma wave. To date the few simulation studies on this subject have been limited to one-dimensional, short rise time simulations. Here the authors present results from simulations in which more realistic parameters are used. In addition, they present the first two dimensional simulations on this subject. One dimensional simulations on a 2 1/2-D relativistic electromagnetic particle code, in which only a few cells were used in one direction, on colinear optical mixing are presented. In these simulations the laser rise time, laser intensity, plasma density, plasma temperature and system size were varied. The simulations indicate that the theory of Rosenbluth and Liu is applicable over a wide range of parameters. In addition, simulations with a DC magnetic field are presented in order to study the ''Surfatron'' concept
Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.
Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan
2016-11-30
Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS 2 , MoSe 2 , WS 2 , and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.
The two-dimensional reactor dynamics program TINTE. Pt. 2
International Nuclear Information System (INIS)
Gerwin, H.
1989-02-01
The TINTE code system deals with the nuclear and the thermal transient behaviour of the primary circuit of an HTGR taking into consideration the mutual feedback effects in two-dimensional r-z geometry. In Part One of this report (Juel-2167) the initial equations were compiled and methods of solution discussed. In an appendix to this second part they are completed by some supplementary points. The TINTE code construction and a detailed input description will be discussed in Part Three. The Part Two shows examples of application, especially a comparative calculation of dynamic experiments performed at the AVR. A good agreement between calculational and experimental results is found. Further examples show the flexibility of TINTE: first of all, individual moduli of TINTE are used to find a solution to a thermofluid problem. In addition TINTE is used to demonstrate the mutual feedback between nuclear and thermal processes in process heat reactors, including those with natural convective conditions, without any control rod movement. (orig.) [de
Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures
Energy Technology Data Exchange (ETDEWEB)
Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU
2009-01-01
The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.
Tracer dispersion in two-dimensional rough fractures.
Drazer, G; Koplik, J
2001-05-01
Tracer diffusion and hydrodynamic dispersion in two-dimensional fractures with self-affine roughness are studied by analytic and numerical methods. Numerical simulations were performed via the lattice-Boltzmann approach, using a boundary condition for tracer particles that improves the accuracy of the method. The reduction in the diffusive transport, due to the fractal geometry of the fracture surfaces, is analyzed for different fracture apertures. In the limit of small aperture fluctuations we derive the correction to the diffusive coefficient in terms of the tortuosity, which accounts for the irregular geometry of the fractures. Dispersion is studied when the two fracture surfaces are simply displaced normally to the mean fracture plane and when there is a lateral shift as well. Numerical results are analyzed using the Lambda parameter, related to convective transport within the fracture, and simple arguments based on lubrication approximation. At very low Péclet number, in the case where fracture surfaces are laterally shifted, we show using several different methods that convective transport reduces dispersion.
Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation
Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.
2012-01-01
The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).
Thermal analysis of two-dimensional structures in fire
Directory of Open Access Journals (Sweden)
I. Pierin
Full Text Available The structural materials, as reinforced concrete, steel, wood and aluminum, when heated have their mechanical proprieties degraded. In fire, the structures are subject to elevated temperatures and consequently the load capacity of the structural elements is reduced. The Brazilian and European standards show the minimal dimensions for the structural elements had an adequate bearing capacity in fire. However, several structural checks are not contemplated in methods provided by the standards. In these situations, the knowledge of the temperature distributions inside of structural elements as function of time of exposition is required. The aim of this paper is present software developed by the authors called ATERM. The software performs the thermal transient analysis of two-dimensional structures. The structure may be formed of any material and heating is provided by means of a curve of temperature versus time. The data input and the visualization of the results is performed thought the GiD software. Several examples are compared with software Super TempCalc and ANSYS. Some conclusions and recommendations about the thermal analysis are presented
Tunable states of interlayer cations in two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)
2014-03-31
The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.
Critical phenomena in quasi-two-dimensional vibrated granular systems.
Guzmán, Marcelo; Soto, Rodrigo
2018-01-01
The critical phenomena associated to the liquid-to-solid transition of quasi-two-dimensional vibrated granular systems is studied using molecular dynamics simulations of the inelastic hard sphere model. The critical properties are associated to the fourfold bond-orientational order parameter χ_{4}, which measures the level of square crystallization of the system. Previous experimental results have shown that the transition of χ_{4}, when varying the vibration amplitude, can be either discontinuous or continuous, for two different values of the height of the box. Exploring the amplitude-height phase space, a transition line is found, which can be either discontinuous or continuous, merging at a tricritical point and the continuous branch ends in an upper critical point. In the continuous transition branch, the critical properties are studied. The exponent associated to the amplitude of the order parameter is β=1/2, for various system sizes, in complete agreement with the experimental results. However, the fluctuations of χ_{4} do not show any critical behavior, probably due to crossover effects by the close presence of the tricritical point. Finally, in quasi-one-dimensional systems, the transition is only discontinuous, limited by one critical point, indicating that two is the lower dimension for having a tricritical point.
Synthesis of Two-Dimensional Materials for Capacitive Energy Storage.
Mendoza-Sánchez, Beatriz; Gogotsi, Yury
2016-08-01
The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. The factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented. The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. Particularly, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-dimensional modeling of conduction-mode laser welding
International Nuclear Information System (INIS)
Russo, A.J.
1984-01-01
WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon
Filtering and control for classes of two-dimensional systems
Wu, Ligang
2015-01-01
This book focuses on filtering, control and model-reduction problems for two-dimensional (2-D) systems with imperfect information. The time-delayed 2-D systems covered have system parameters subject to uncertain, stochastic and parameter-varying changes. After an initial introduction of 2-D systems and the ideas of linear repetitive processes, the text is divided into two parts detailing: · general theory and methods of analysis and optimal synthesis for 2-D systems; and · application of the general theory to the particular case of differential/discrete linear repetitive processes. The methods developed provide a framework for stability and performance analysis, optimal and robust controller and filter design and model approximation for the systems considered. Solutions to the design problems are couched in terms of linear matrix inequalities. For readers interested in the state of the art in linear filtering, control and model reduction, Filtering and Control for Classes of ...
Two dimensional condensation of argon adsorbed on lamellar halides
International Nuclear Information System (INIS)
Millot, Francis.
1976-03-01
Lamellar halides such as NiCl 2 , FeCl 2 , NiBr 2 , MnBr 2 , MgBr 2 , CdBr 2 , CoI 2 , FeI 2 , MnI 2 , CaI 2 and PbI 2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed [fr
Two-dimensional transition metal dichalcogenides: interface and defect engineering.
Hu, Zehua; Wu, Zhangting; Han, Cheng; He, Jun; Ni, Zhenhua; Chen, Wei
2018-03-06
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been considered as promising candidates for next generation nanoelectronics. Because of their atomically-thin structure and high surface to volume ratio, the interfaces involved in TMDC-based devices play a predominant role in determining the device performance, such as charge injection/collection at the metal/TMDC interface, and charge carrier trapping at the dielectric/TMDC interface. On the other hand, the crystalline structures of TMDCs are enriched by a variety of intrinsic defects, including vacancies, adatoms, grain boundaries, and substitutional impurities. Customized design and engineering of the interfaces and defects provides an effective way to modulate the properties of TMDCs and finally enhance the device performance. Herein, we summarize and highlight recent advances and state-of-the-art investigations on the interface and defect engineering of TMDCs and their corresponding applications in electronic and optoelectronic devices. Various interface engineering approaches for TMDCs are overviewed, including surface charge transfer doping, TMDC/metal contact engineering, and TMDC/dielectric interface engineering. Subsequently, different types of structural defects in TMDCs are introduced. Defect engineering strategies utilized to modulate the optical and electronic properties of TMDCs, as well as the developed high-performance and functional devices are summarized. Finally, we highlight the challenges and opportunities for interface and defect engineering in TMDC materials for electronics and optoelectronics.